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Abstract

For a Borel measure and a sequence of partitions on the unit inter-
val, we define a multifractal spectrum based on coarse Holder regularity.
Specifically, the coarse Holder regularity values attained by a given mea-
sure and with respect to a sequence of partitions generate a sequence of
lengths (or rather, scales) which in turn define certain Dirichlet series,
called the partition zeta functions. The abscissae of convergence of these
functions define a multifractal spectrum whose concave envelope is the
(geometric) Hausdorff multifractal spectrum which follows from a certain
type of Moran construction. We discuss at some length the important spe-
cial case of self-similar measures associated with weighted iterated func-
tion systems and, in particular, certain multinomial measures. Moreover,
our multifractal spectrum is shown to extend to a tapestry of complex
dimensions for a specific case of atomic measures.
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1 Introduction

Multifractal analysis is the study of physical, mathematical, dynamical, proba-
bilistic, and statistical concepts in which a whole range of fractals may arise from
a single object. Such phenomena are often modeled by measures that have highly
irregular concentrations of mass. These richly structured measures are called
multifractal measures, or simply multifractals, and arise from situations such
as, but certainly not limited to, rainfall distribution, turbulence, distribution of
galaxies, spatial distribution of earthquakes, internet traffic modeling, and mod-
eling of financial time series. See, for example, [13, 14, 15, 54, 55, 61, 62, 64].

One setting for multifractal analysis that very much pertains to this paper
is provided by number theory, specifically the study of N-ary (or base-NN) expan-
sions of real numbers, where N is an integer greater than 1. The set of numbers
in the unit interval with N-ary expansions containing the digits 0,1,..., N—11in
proportions given by a probability vector with N components generate a fractal
set. For a fixed N, the collection of the various fractal sets constructed in this
manner provides a multifractal decomposition of the unit interval. A tool used
to study the structure of these fractal sets is the Hausdorff dimension and this
tool plays an important role in our approach to multifractal analysis. In general,
the collection of Hausdorff dimension values determines a multifractal spectrum
which describes the multifractal decomposition of a set (or rather, of a mass
distribution). See, for instance, [3, 6, 7, 8, 10, 13, 14, 15, 18, 53, 58, 59, 60].

Our primary objective here is the determination of multifractal spectra as
the abscissae of convergence values for specific collections of Dirichlet series.
The abscissa of convergence of a Dirichlet series is analogous to the radius of
convergence of a power series and plays an important role in this work and in the
theory of complex dimensions of fractal strings. Our technique is motivated by
the determination of the Minkowski dimension of fractal strings as abscissae of
convergence of geometric zeta functions (which are Dirichlet series themselves,
see [44, 46, 48] and §2). This determination allows for the definition of the
generalization of Minkowski dimension called complex dimensions which are
used, among other things, in expressions for counting functions and volume
formulas in the study of the oscillatory phenomena of fractal strings.

In our setting, we take a measure supported on a subset of the unit interval
and determine its one-parameter family of partition zeta functions, indexed by
a countably infinite collection of coarse Holder regularity values (which we call
regularity values), and their abscissae of convergence. Regularity values are the
exponents ¢ for which a measure behaves locally like rf, for small r, where r
is a positive real number that determines scale. In particular, we show that
these abscissae of convergence recover classical forms of the geometric and sym-
bolic Hausdorff multifractal spectra in certain cases and Hausdorff dimensions
of Besicovitch subsets of self-similar fractals in others.

This work, along with [32, 42, 63] and [48, §13.3] (which is an exposition of
some of the work in those references), marks the beginning of a new theory of
complex dimensions for multifractals. In particular, this work greatly expands
upon the results presented in [42] where the partition zeta functions and abscissa



of convergence function for a generalized binomial measure supported on the
Cantor set are developed and analyzed. Moreover, this paper provides significant
strides toward the long-term goal stated (in a different but analogous manner)
in [42] of developing a theory of oscillatory phenomena which are intrinsic to
multifractal geometries. This theory would parallel that developed for fractal
strings in [44, 46, 48] but would involve a whole family of partition zeta functions
indexed by regularity and their complex dimensions.

Other works which examine (from a different perspective) multifractal mea-
sures similar to those examined in this paper are [1, 3,4, 6, 7, 8, 10, 13, 14, 15, 16,
47, 49, 53, 56, 58, 59, 60]. A variety of other techniques in multifractal analysis
can be found in [9, 11, 18, 24, 25, 26, 27, 47, 50, 51, 52, 54, 55, 61, 62]. For the the-
ory of complex fractal dimensions, one should consult the works of M. L. Lapidus
and M. van Frankenhuijsen [43, 44, 45, 46, 47, 48] and their extensions with
B. M. Hambly, H. Herichi, J. Lévy Véhel, H. Lu, E. P. J. Pearse, J. A. Rock, and
S. Winter, accordingly, in [19, 21, 22, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 42, 63].

The remainder of this paper is organized as follows:

§2 provides a review of the relevant aspects of the theory of fractal strings
and complex dimensions. In particular, we recall a connection between the
counting function of the lengths of a fractal string and its complex dimensions
from [44, 46], which motivates the definition of a suitable counting function in
our multifractal setting given in §4.

83 provides a review of the relevant aspects of multifractal analysis, in par-
ticular weighted iterated function systems, coarse Holder regularity «, geometric
and symbolic Hausdorfl multifractal spectra, and Besicovitch subsets of Moran
fractals. These notions will play an important role in our approach, particularly
in §5.

84 contains the definitions of our main objects of study: «-lengths, parti-
tion zeta function, abscissa of convergence function, compler dimensions with
parameter «, tapestry of compler of dimensions, and counting function of the
a-lengths.

§5 develops our main results regarding the partition zeta functions and
abscissa of convergence functions of certain self-similar measures defined by
weighted iterated function systems. In particular, connections with some of
the well-known results found in [3, 7, 10, 15] and a recovery of the multifractal
spectrum of the binomial measure on the unit interval (as described for example
in [13, 14, 15]) are presented.

§6 develops the partition zeta functions, abscissa of convergence functions,
tapestries of complex dimensions, and counting functions for a certain collection
of multifractal atomic measures. In particular, exact explicit formulas for the
counting functions of the associated a-lengths are given in terms of the underly-
ing complex dimensions with regularity «. These examples are among the first
steps toward a new theory of complex dimensions and oscillatory phenomena
for multifractals.

87 closes the paper with a discussion of related works in progress and ideas
for further development of multifractal analysis via zeta functions.
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Figure 1: The lengths of the Cantor string.

2 Fractal Strings

A brief review of fractal strings, geometric zeta functions and complex dimen-
sions (all of which are defined below) is in order. Results on fractal strings can
be found in [19, 20, 28, 29, 30, 32, 33, 34, 35, 36, 41] and results on geometric
zeta functions and complex dimensions can be found in [19, 21, 22, 31, 32, 33,
34, 35, 36, 37, 38, 39, 40, 42, 43, 44, 45, 46, 47, 48, 63].

The primary references for the theory of complex dimensions of fractal
strings are the monographs [44] and [46]. A significantly expanded second edi-
tion of [46] is forthcoming in [48], but for the convenience of the reader, we will
mostly refer to [46] throughout the paper (except when required otherwise).

2.1 Fractal Strings and Minkowski Dimension

The primary example of a fractal string used throughout this work is the well-

known Cantor string Qcg (the complement of the classical ternary Cantor set

in the unit interval [0, 1]). The first several lengths of the Cantor string appear

in Fig. 1 and the Cantor string is discussed in much more detail in §2.3 below.
Fractal strings are defined as follows:

Definition 2.1. A fractal string Q is a bounded open subset of the real line.

As in [32, 44, 46], we distinguish a fractal string 2 from its sequence of
lengths £ (with multiplicities). The sequence £ = {¢;}2°, is the nonincreasing
sequence of lengths of the disjoint open intervals (a;, b;), where Q = U2, (a;, b;).
More specifically, in this paper we follow the convention established in [44, 46]
and generally do not consider the case where £ comprises a finite collection of
lengths. This is done in order to avoid discussion of trivial counterexamples to



established results. We will, however, sometimes indicate what happens in the
trivial case when L consists of finitely many lengths. Thus, throughout this
paper, L typically comprises an infinite collection of lengths. We view L either
as a decreasing sequence of positive distinct lengths denoted {l,,}°2 ; along with
their multiplicities {m,, }22 ;, or as a nonincreasing sequence of (possibly equal)
positive lengths denoted {¢;}$2, and repeated according to their multiplicities.

A generalization of Minkowski dimension called complez dimension (defined
in §2.2 below) is used to study the properties of certain fractal subsets of R.
For instance, the boundary of a fractal string 2, denoted 012, is often fractal
and can be studied using complex dimensions. Throughout this text, a fractal
string 2 is taken to be an open subset of the unit interval [0,1] with £ as its
associated sequence of lengths.

The volume of the (inner) tubular neighborhood of radius € of the boundary
0N of a fractal string  is

V() = |[{z € Q| dist(z,09) < £},

where | - | denotes the Lebesgue measure (length). The Minkowski dimension of
00, or simply of L, is!

dimp/(0Q) = D := inf{a > 0 | limsup V()e* " < oo}.

e—0t

Note that one may refer directly to the Minkowski dimension of the sequence
of lengths £ because V' (g) can be shown to only depend on L (see [41, 46]).

In [28], it is shown that if F' = 0 is the boundary of a bounded open set
Q, then d — 1 < dimg (F) < dimp;(F) < d where d is the Euclidean dimension
of the ambient space, dimg (F) is the Hausdorfl dimension of F' and dimy; (F')
is the Minkowski dimension of F'. We consider the case d = 1 in this paper,
thus

If F is self-similar and further satisfies the Open Set Condition (defined in §3),
it is well known that dimgy (F) = dimp(F). (See, e.g., [57, 23] and [14, Ch. 9].)

2.2 Complex Dimensions and Counting Functions

The following equalities describe a relationship between the Minkowski dimen-
sion of a fractal string € (taken to be the Minkowski dimension of 92) and the
sum of each of its lengths with exponent v € R. This relationship with suitably
defined Dirichlet series (later called geometric zeta functions in [43, 44, 46]) was
first observed in [29] using a key result of A. S. Besicovitch and S. J. Taylor [5],
and a direct proof can be found in [46, pp. 17-18] (and can also be found in
[48]). We have?

I This fractal dimension is also often called “box dimension” in the applied literature.
2Strictly speaking, we must assume that £ consists of infinitely many nonzero lengths;
otherwise, dimps(9Q) = max{0, D, }.



(o]
dimp(9Q) = D = D = inf{veR|Z€Z <oo}. (2.1)

i=1
Here, D, can be considered to be the abscissa of convergence of the Dirichlet
series Y-, £5, where s € C. This Dirichlet series is the geometric zeta function
of £; it is the function that has been generalized in [32, 42, 63] using notions
from multifractal analysis and will in part motivate our proposed approach to

multifractal zeta functions.

Definition 2.2. The geometric zeta function of a fractal string Q) with lengths
L is

Ce(s) =) 6= muls, (2.2)
i=1 n=1

where Re(s) > Dg.

To consider lengths ¢; = 0, the convention 0° = 0 for all s € C is used.

One can extend the notion of the Minkowksi dimension of a fractal string
) to complex values by considering the poles of a meromorphic extension of (.
In general, (¢ may not have a meromorphic extension to all of C, yet one may
consider suitable closed regions W C C where (; has a meromorphic extension,
and collect the corresponding poles in these regions.

Assume that (, has a meromorphic extension to a connected open neigh-
borhood of W and there is no pole of {» on OW. By a slight abuse of notation,
(r denotes the geometric zeta function and its (necessarily unique) meromorphic
extension to W.

Remark 2.3. More specifically, in [46, 48], the ‘window’ W is chosen to be
the closed subset of C that is to the right of the ‘screen’ S = OW, defined as
the graph (with the 2 and y axes interchanged) of a bounded and Lipschitz
real-valued function on (—oo, Dz]; see [46, §5.3].

Definition 2.4. The set of (visible) complex dimensions of a fractal string
with lengths L is

De(W) :={w € W | (¢ has a pole at w}. (2.3)

Furthermore, if W = C, then Dy := D (C) is simply called the set of complex
dimensions of L.

The following proposition, which is a special case of [46, Thm. 5.10] (also
found in [48]), uses the complex dimensions D(W) of a fractal string in a
formula for the geometric counting function of L, denoted N (x) and defined
by

Ne(@)=#{i>1|6 <at= > my,

n>1|i; <z



Figure 2: Approzimation of the Cantor string Qcg.

where, as above, {/;}°; denotes the nonincreasing sequence of lengths of £
repeated according to their multiplicities, whereas {l,,}52; denotes the decreas-
ing sequence of distinct lengths of £ with associated multiplicities given by

{mn oy

Proposition 2.5. Let Q be a fractal string with lengths L such that Dp(W)
consists entirely of simple poles. Then, under certain mild growth conditions on
Ce (namely, if ¢ is languid of a suitable order, in the sense of [46, 48]), we
have "
x
Ne(w) = ) —res(Ce(s)w) +{Cc(0)} + R(2), (2.4)

w€eD (W)

where R(x) is an error term of small order and the term in braces is included
only if 0 € W\D,(W).

Remark 2.6. It is not necessary for the poles to be simple, but then the explicit
formula for N, is slightly more complicated to state; see [46, §6.2.1] for details.

Remark 2.7. If a fractal string 2 is strongly languid, then according to Theo-
rem 5.14 of [46], Eq. (2.4) holds with no error term (i.e., R(z) = 0). Examples
of strongly languid fractal strings are self-similar strings (see [46, Chs. 2 & 3]).
In particular, the results for the counting functions to be presented in §6 follow
from Theorem 5.14 of [46].

Before continuing to the next section on multifractal analysis, consider the
following results on classic examples of fractal strings—the Cantor string and
the Fibonacci string. The Cantor string plays an important role throughout
this paper and the Fibonacci string is recovered in Example 5.16 below.

2.3 The Cantor String and the Fibonacci String

The Cantor string is defined as the open set Q2cg that is composed of all the
deleted middle-third open intervals in the usual construction of the classical
ternary Cantor set. Hence, its boundary 0€Q¢g is simply the ternary Cantor set
itself. An approximation of the Cantor string appears in Fig. 2.

The distinct lengths of the Cantor string are given by [, = 37" with
multiplicity m, = 2"~! for every positive integer n; see Fig. 1. Hence, for
Re(s) > logs 2,

o0

Cc(s) =Ces(s) = Z gn—lg—ns _ 37

ST (25)

n=1



Upon meromorphic continuation, we see that the last equality above holds for
all s € C; hence, for j :=+/—1,

2jzm
Dy =Dcs =<1 2+ - Z 2.
c cs {Ogg +10g3 EXS } (2.6)

and these poles are simple.

In order to illustrate Proposition 2.5 above, we give an exact formula for the
counting function of the Cantor string, N¢g, in terms of the complex dimensions
Des (see [46, Eq. (1.31), p.22]). For all z > 1, we have

1 > pD+izp

N, = -1
cs() 2log 3 ZZZ_:DO D+ jzp

where D = log; 2 is the Minkowski dimension of the Cantor string (technically,
of the Cantor set) and p = 27/log3 is its oscillatory period. This formula
for Nos(x) is a special case of the explicit formula for the geometric counting
function of general fractal strings provided by Theorems 5.10 and 5.14 in [46].
Note that in light of this formula, Nog + 1 can be written as the product of z”
and a multiplicatively periodic (or ‘log-periodic’) function of z.

Another example of a fractal string which is relevant to this paper is the
Fibonacci string. The geometric zeta function of the Fibonacci string (g, (s) is
recovered as a special case in Example 5.16. (See §2.3.2 of [46] for the develop-
ment of the Fibonacci string.) The sequence of lengths for the Fibonacci string
is

Lrip = {2_" | 27" has multiplicity F,+1,n € N} ,
where N is the set of nonnegative integers and F,, denotes the nth Fibonacci
number. (Recall that F), is defined by the recurrence relation: F,41 = F, +
Fn—l; and F() = O,Fl = 1)

Furthermore, the geometric zeta function (gj, of the Fibonacci string Lgip,
is given by

1

Crin(s) = ;Fm?’” R EET e ——— 2.7)

The complex dimensions Dy, can be found by solving the quadratic equation
P weC.
Thus,
Drib ={D+jzp|2€Z}U{-D+j(z+1/2)p |z € Z}, (2.8)

where ¢ = (1 4 +/5)/2 is the Golden Ratio, D = log, ¢, and p = 27/log2. In
§2.3.2 of [46], these complex dimensions are used to determine a volume formula
for the tubular neighborhood of the Fibonacci string.

We close §2.3 by noting that both the Cantor string and the Fibonacci
string are self-similar fractal strings, in the sense of [46, Chs. 2 & 3].

In the following section, we introduce some of the relevant theory and results
on multifractal analysis currently available in the literature.
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3 Multifractal Analysis

Approaches to multifractal analysis which use multifractal measures closely re-
lated to those considered in this paper, and recalled below accordingly, can be
found in [1, 2, 3, 4, 6, 7, 8, 10, 13, 14, 16, 47, 49, 53, 56, 58, 59, 60]. A variety of
other techniques in multifractal analysis (incorporating wavelets, for instance)
can be found in [9, 11, 24, 25, 26, 27, 47, 50, 51, 52, 54, 55, 61, 62].> A common
setting for multifractal analysis is that provided by self-similar measures defined
by a probability vector and an Iterated Function System (IFS, or “map specified
Moran construction” as in [7]) which satisfies the Open Set Condition (OSC,
see [57, 23] and [14]). We construct such measures in this section by following
the development found in [60, §1] and investigate the multifractal structure of
these and other types of measures throughout this paper.

3.1 Iterated Function Systems and Self-Similar Measures

Multifractal analysis of measures is the study of the fractal structure of the sets
E, of points x € E for which the measure p(B(z,r)) of the closed ball B(z,r)
with center  and radius r satisfies

p logu(Blar)
r—0+ logr

)

where t > 01is local Hélder regularity and F is the support of . That is, from this
traditional perspective, multifractal analysis is the study of the fractal geometry
of the sets E; where a Borel measure p behaves locally like 7.

The setting for multifractal analysis provided by a self-similar measure
uniquely defined by an IFS which satisfies the OSC and a probability vector is
developed as follows. For positive integers N and d and each i € {1,..., N},
let S; : R — R be a contracting similarity with scaling ratio (or Lipschitz
constant) r; € (0,1). Let r = (r1,...,rn), and let p = (p1,...,pn) be a
probability vector. The collection of contracting similarities {S;}X, is said to
satisfy the OSC if there exists a nonempty, bounded, and open set V' C R? such
that S;(V) ¢ V and S;(V) N Sk(V) = 0 for all 4 # k with i,k € {1,...,N}.
We note that in this paper, as with many others on multifractal analysis, the
collection of functions {S;}, is assumed to satisfy the OSC. However, [60] and
[65], for instance, do not require the OSC to be satisfied.

The multifractal measures for our setting are constructed as follows. Define
the set F and the self-similar measure p (supported on E) to be the unique
nonempty compact subset of R? and the unique Borel probability measure which
satisfy, respectively, F = Uf;l Si(E) and p = Zf\; pipp o S;t (see [23]). In
particular, the measures considered in Proposition 3.3 and §5 below are defined
in this manner. The Hausdorff dimension of the the support E is given by the

3The perspective adopted in all of these references is quite different, however, from the one
adopted here, which consists in working with suitably defined partition (or multifractal) zeta
functions.
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solution of the Moran equation (see [57])

dori=1 (s>0) (3.1)

3.2 Multifractal Spectra

The multifractal spectra of Definitions 3.1 and 3.2 along with Proposition 3.3
below are presented as found in [60], as well as the corresponding references
therein. See especially the work of R. Cawley and R. D. Mauldin in [7].

Definition 3.1. The geometric Hausdorff multifractal spectrum f, of a Borel

measure pu (on a Borel measurable subset of R?) supported on E is given by
fo(t) = dimg(Ey), (3.2)

where t > 0, dimy is the Hausdorff dimension, and

B, = {er| lim w:t}. (3.3)
r—0+ logr

The geometric Hausdorff multifractal spectrum f, is difficult to compute
for general self-similar measures. Thus, the symbolic multifractal spectrum
fs defined in terms of symbolic dynamics are often considered instead. This
symbolic multifractal spectrum f,, defined below, also serves as an analog to
the approach to multifractal analysis developed in this paper.

For a nonnegative integer n and an integer N > 2, let

ANo={i=i1...0, | EeN" i, €{1,...,N}}
and
AN i={i=iyip... |k €N" iy € {1,...,N}},

where N = {0,1,2,...}. For i € AN, let ijn =iy ...4, be the truncation of i at
the nth term. Fori=14;...4, € A*, we let S; :=S5;, 0...05;, and E; := S;(E).
Likewise, let p; := p;, -+ p;, and rj := 14, ---1;, . Finally, let 7 : AN = R? be
defined by {7 (i)} := N5 Eijr,-

Definition 3.2. The symbolic Hausdorff multifractal spectrum fs of a self-similar
measure p constructed as above is given by

fo(t) = dimp (w{i € AV | lim LO8Pin _ t}) (3.4)

n—00 log Tiln

fort > 0. (Here and henceforth, given A C RY, dimp(A) denotes the Hausdorff
dimension of A.)

12



The function f,(t) is usually easier to analyze than f,(t). Define b: R — R
by

N
>opin =1, (3.5)
i=1
and let b* : R — R U {—o0} be the Legendre transform of b. That is, for ¢t € R,
b*(t) := inf (tq + b(q)). (3.6)
qeR

When the OSC is satisfied, we have the following proposition (see, for
instance, [1, 7, 60]).

Proposition 3.3. Let u be the unique self-similar measure on R? defined, as
above, by the IFS associated with {S;}X_, which satisfies the Open Set Condition
and weighted by the probability vector p. Then

fo(=b'(a)) = fs(=V'(q)) = b"(=b'(a)), (3.7)

where ¢ € R and b is the derivative of b (assumed to exist here). Moreover, for
the support E of the measure 1, we have

dimp (E) = b(0) = b*(—b(0)). (3.8)

Other well-known properties of the function f = f; = fs are described in
the following section.

3.3 Properties of the Multifractal Spectrum

A full development of the properties of the multifractal spectrum f = f; = f
of a self-similar measure p described in this section, some of which are displayed
in Fig. 3, can be found in [7, §1], specifically Fig. 1.3 therein.

A self-similar measure p uniquely defined by {S;}%, and p has maximum
and minimum regularity values ¢y, and ty.x which define the domain of f.
These values are given by

tmin :mln{lognp@ | 1€ {].,,N}}

and
tmax = max{log”pi |ie {1,...,N}};

hence the domain of f (i.e., the values of ¢ for which E; is nonempty) is
[tmin, tmax]). See Fig. 3.

Regardless of the values of D1 = f(tmin) and Dy = f(tmax), the slopes of f
at the points (tmin, D1) and (tmax, D2) are infinite. The value Ds = t; = f(t1)
is the information dimension of p. The value Dy = f(t2) = max{f(¢t) |t €
[tmin, tmax)} 1S the Hausdorff dimension of p. Thus, by Proposition 3.3 we have

Dy = f(t2) = max{f(t) | t € [tmin, tmax)} = dimy (E) = b*(='(0)).

13



(1)

Figure 3: The graph of the multifractal spectrum f(t) = fq(t) = fs(t) of a
self-similar measure p supported on a set defined by an IFS, where t is local
Holder regularity. The behavior of f is discussed in §3.3 and, for a specific
case, is recovered in the context of the abscissa of convergence function and
coarse Holder reqularity in §5.5.

See Fig. 3.

If p; = rP for alli € {1,...,N}, then D = Dy = f(D) and the domain
of f is the singleton {D}. Excluding this case, f is concave and satisfies the
following inequalities:

J(tmin) = D1 < f(t1) = D3 < f(t2) = Dy

and
f(tmax) = D2 < D4~

3.4 Besicovitch Subsets of Moran Fractals

Another setting of multifractal analysis that is important for our purposes is
the one provided by the Besicovitch subsets of self-similar Moran fractals. (See
[56, §1], for instance.)

For an IFS which satisfies the OSC on the unit interval [0, 1] with scal-
ing ratios r = (r1,...,7y) and a probability vector q = (¢1,...,qn) (that is,
Zi]\il gi=1and ¢; >0 forie {1,...,N}), the Besicovitch subset E(q) of the

self-similar set E (defined by the IFS) is defined by the coding mapping 7 from
{1,..., N} to E as follows:

E(q) := {T(x) € E| lim 1 Z)@;(xk) =q,r€{l,.. .,N}N*} , (3.9)
k=1

n—oo N

14



where ¢ € {1,...,N}, x; is the characteristic function of the singleton {i},
= (zg)72, with o € {1,..., N}, and N* is the set of positive integers.

The well-known result in Proposition 3.4 below follows from the results of
A. S. Besicovitch in [4] and ties the results of Theorem 5.2 to existing theory.
(See, also, [7, 53, 56].)

Proposition 3.4. For an IFS which satisfies the OSC on the unit interval [0, 1]
with scaling ratios r and a probability vector q, we have

. 2T qilogg
dimpg (E(q)) = =———. (3.10)
Eizl qi log;

Remark 3.5. In 1934, A. S. Besicovitch studied the unique nonterminating
binary expansion of « € [0,1] (i.e., the case where N = 2 and zj, € {0,1}) in [3]
and proved that

dimy (E(q)) = —2 log (ﬁ) g—2q2 log gz
In 1949, H. G. Eggleston generalized this result to N-ary expansions in [10] and
found that N
dimgy (E(q)) = —Zilglg?\'/. 84 .
(Also see [15, Ch. 6].) In §5, we recover these results when ¢; € Q N[0, 1] for
ie{l,...,N}.

3.5 Coarse Holder Regularity

As a break from the mold defined by the results in this section up to this point,
the multifractal structure investigated in upcoming sections of this paper is
based on the notion of coarse Holder reqularity as defined in [51, 32, 42, 48, 63],
for example, and simply called regularity in this paper. Regularity is key to the
development of the partition zeta functions defined in the next section.

Definition 3.6. For a given Borel measure i with range in [0, 00| and an inter-
val U C [0, 1] with positive Lebesgue measure (denoted |U|), the reqularity A(U)
of U is

log u(U)
AlU) = ——=. 3.11
)= L (3.11)
Equivalently, A(U) is the exponent « that satisfies
U* = u(U).

Note that regularity can be considered for any interval, whether open, closed,
or neither. To construct the partition zeta functions, intervals are gathered
according to their regularity.

In general, regularity values « in the extended real numbers [—oco, 0o] may
be considered. For infinite regularity values, we take

a=00=AU) e pnU) =0and |U| >0,

15



and
a=-o00=AU) & u(U) = oo and |U| > 0.

However, in §5, we only consider finite regularity values and in §6, we consider
a = oo only briefly.

Fixing the regularity o when taking a measure p and a sequence of par-
titions B into consideration allows one to define the partition zeta functions,
which is done in the next section.

16



4 Definitions

In this section, we define the main objects of study, in particular, the parti-
tion zeta functions. We consider self-similar measures which are supported on
a subset of the unit interval [0, 1] and define the partition zeta functions in a
manner which is similar to the way the geometric zeta functions are defined.
(Compare Definition 2.2.) These definitions are similar in that both use a se-
quence of lengths to provide terms for certain Dirichlet series. However, unlike
the geometric zeta functions, the lengths which define a partition zeta function
are defined by the scales which stem from a sequence B of partitions P,, (for
n € N*) of the unit interval and a fixed regularity value « (as defined in §3.5).
To elaborate, we first define the appropriate sequence of lengths. Here and
henceforth, we assume each partition P,, comprises a finite number of disjoint
intervals with positive length.

Definition 4.1. For a Borel measure p on the interval [0,1] and a sequence
of partitions B = {Pn}2; of [0,1] with mesh tending to zero, the sequence of
a-lengths L’%(a) corresponding to regqularity o € [—00, 0] is given by

Ly(a):={l|t= |P!| and A(P}) = a, where n € N*, P} € P, } . (4.1)

The a-lengths are essentially the distinct scales, along with their multiplicities,
of the intervals at level n (for all n € N*) in the partition P,, € P which have
regularity a.. In turn, the a-lengths are used to define the partition zeta function
as follows:

Definition 4.2. For a Borel measure {1 on the interval [0,1] and a sequence of
partitions P = {P,}2, with mesh tending to zero, the partition zeta function
C%(a, s) corresponding to regularity o € [—o0, 0] is given by

C{E{(aa 8) = Cﬁ(s)a (42)
where L := Ly () and Re(s) is large enough. That is,

Gles) = Y eS—Z > IR, (4.3)

ZEL‘,“ (a) n=1A(P})=a

where the inner sum is taken over the intervals P! with reqularity A(P!) = «
in the partition P, for each n € N*, and Re(s) > D, with L := L%(a) as in
Definition 4.1 above.

If there is no interval P! such that A(P!) = g for some regularity value
g, then we set C{f} (v, -) identically equal to zero and we refer to such regularity
values as trivial reqularity values. By extension, we will call ¢rivial the regularity
values « for which C&é (c, ) is an entire function. This is the case, for example,
if L’%(a) consists of at most finitely many nonzero a-lengths and is true iff
we are in that situation provided C{f} (a, s) is assumed to have a meromorphic
continuation to an open neigborhood of [Re(s) > 0]; see Remark 4.5 below.
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Remark 4.3. Unlike the case of the multifractal zeta functions from [17, 32,
48, 63], there is no particular partition zeta function which directly corresponds
to the lengths of the fractal string of the complement in [0, 1] of the support of
a given measure. Still, there is a connection to the Hausdorff (and Minkowski)
dimension of the support, as will be seen in §5. Also, for a given measure p, there
are at most countably many nontrivial regularity values attained with respect
to a given sequence of partitions 3. Hence, for a given measure and sequence of
partitions, there are at most countably many partition zeta functions that are
not entire (possibly in the broader context of Remark 5.17 below).

In order to connect our methods to those outlined in §3, with motivation
provided by Definition 2.2 and Proposition 3.3, we consider the function f{é
on [—o0, 00] which maps the regularity values « attained by a measure p with
respect to a sequence of partitions B to the abscissa of convergence of the
corresponding partition zeta function (%(a, ).

Definition 4.4. Given a Borel measure i on [0,1] and a sequence of partitions
P with mesh tending to zero, the abscissa of convergence function f;g, () is given

by

f(a) =inf {7 €R | ¢la,7) < oo}, (4.4)
for a € [—00,00]. For a trivial reqularity value g, we set f&g(ao) =0.

That is, more precisely, in general f4(«) is defined as the maximum of 0 and
the abscissa of convergence (given by Eq. (4.4)) of the Dirichlet series defining
(%(a, -); so that f%(a) > 0 for all nontrivial regularity values @ € R and when
(!;3(040, -) is entire for a given value of ag (i.e., when g is trivial), ffg(ozo) =
max{0, —oco} = 0. (See Remark 4.5.) Accordingly, for a nontrivial regularity
value , {s € C | Re(s) > fy;(@)} is the largest open right half-plane on which
the Dirichlet series in Eq. (4.3) is absolutely convergent.

Remark 4.5. Note that if L’%(a) consists of infinitely many nonzero a-lengths
and ng (a, s) admits a meromorphic continuation to an open neigborhood of
[Re(s) > 0], then by Eq. (4.3), (p(a,0) = Zf€£fi,(0t) 1 = oo. Hence, by defi-
nition, the abscissa of convergence of C&é (c, ) is necessarily nonnegative in this
case; in particular, the partition zeta function C{f} (, ) cannot be entire. Con-
versely, if C%(a) consists of finitely many nonzero a-lengths, then C&é (a,-) is
clearly entire and hence, its abscissa of convergence is —oo; from which it follows
that ffg(oz) = max{0, —oco} = 0. This justifies, in particular, our terminology
for trivial/nontrivial regularity values and the more precise definition of f%(a)
given in the text immediately following Definition 4.4. That is, regularity « is
trivial iff C%(a) consists of finitely many nonzero lengths, or more generally, if
Cﬁé(a, -) is entire. Otherwise, « is nontrivial.

When the partition zeta function C{f} (a, ) has a meromorphic continuation
to a window W, C C, we have the following definitions. Note that with a mild
abuse of notation, C{é(a,s) denotes the partition zeta function as well as its
meromorphic continuation to W,.
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Definition 4.6. For a Borel measure u on [0,1], sequence P of partitions of
[0, 1] with mesh tending to zero, and regularity o € [—00, 00|, the set of
complex dimenstons with parameter «, denoted by Dgg (o, Wo,), is given by

Dy (o, Wa) := {w € Wy | {§-(a, s) has a pole at w}, (4.5)
for an appropriate window W, .

Gathering the sets D%(a, W) by all finite regularity values « attained by u
with respect to 3 yields the following collection.

Definition 4.7. For a Borel measure p on [0,1] and sequence P of partitions
of [0, 1] with mesh tending to zero, the tapestry of complex dimensions 7%’ with
respect to the windows Wy, is given by

Ty = {(a,w) | a € (—00,0),w € D%(Q,Wa)}. (4.6)
Note that by definition, we have
T CRx W, CRxC.

In light of Definition 4.6 and Proposition 2.5, we define as follows the count-
ing function of the a-lengths of a measure p with respect to a sequence of par-
titions P and the attained regularity values a.

Definition 4.8. For L := L’%(a), the counting function of the a-lengths of u
with respect to P is

Ny (o, ) := Ng(z), (4.7)
for x > 0.

Remark 4.9. Note that N4 (o, x) does not correspond to a fractal string per se,
just a sequence of lengths (or rather, scales). In this setting, the corresponding
explicit formulas for general fractal strings are discussed in [46, Ch. 5] (also [48]),
and as mentioned in §2.3, can immediately be used to describe the multiscale
behavior of p with respect to 8 and regularity c.

The following section investigates the properties of the partition zeta func-
tions and the abscissa of convergence functions for self-similar measures and
their natural sequences of partitions.
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5 Partition Zeta Functions of
Self-Similar Measures

We now develop and investigate the partition zeta functions of a self-similar
measure £ on [0,1] and its natural sequence of partitions of [0, 1], denoted B,
where both p and B are defined by an IFS and a probability vector as in §3.1.
The scaling ratios given by r, along with the probability vector p, completely
determine the regularity values o which the measure p attains with respect to

P.

5.1 Self-Similar Measures and
Natural Sequences of Partitions

Consider an IFS with contracting similarities {S;}¥; which satisfy the OSC
and have scaling ratios r = (r1,...,7ry) such that 27]\;1 r; <1 and r; > 0 for
each i € {1,...,N}. (Here and thereafter, we have N > 2.) Without loss of
generality, we may assume that 0 € S1([0,1]) and 1 € Sy([0,1]). Furthermore,
let p = (p1,-..,pNn) be a probability vector; that is, Zf\; p; = 1 and, without
loss of generality in the setting of this section, p; > 0 for all ¢ € {1,..., N}.

At each stage K € N* = {1,2,...} of the recursive construction of the
IFS, there are N¥ distinct closed intervals with positive mass. These intervals,
along with the distinct intervals which fill in the gaps between them (if any),
constitute the partitions Px for each K € N*. In turn, {Px}%_; constitutes
the natural sequence of partitions 3. Each of the intervals in Px with positive
mass have their length and mass completely described by an ordered IN-tuple
of nonnegative integers k = (ki,...,kxn) such that Zfil k; = K. That is,
an interval P € Pg with positive mass has length |P| of the form 7 ...rhN
and mass p(P) of the form p’fl » -p’fvf". See Fig. 4, where we use the notation
introduced below.

Ultimately, k = (k1,...,kn) and r = (r1,...,7n) define the regularity
value (k) as below and, in turn, the Besicovitch subset E(k/K), defined by
Eq. (3.9), of the Moran (self-similar) fractal E = supp(u). See [7, 53, 56, 60] for
the construction of Moran fractals and related results in more general settings.

Remark 5.1. Intervals without mass have regularity o = oo, but we do not
investigate this case (except in §6, and there only briefly) since the resulting
partition zeta functions are divergent everywhere. This is in stark contrast
to the results obtained under the context of the multifractal zeta functions as
described in [17, 32, 42, 48, 63], where regularity o = oo precisely recovers the
geometric zeta function and @ = —oo yields the Hausdorff dimension of the
boundary of a certain type of fractal string.

The breakdown of mass and length as above provides a complete description
of the regularity values attained by a self-similar measure p with respect to the
natural sequence of partitions B. Specifically, k = (k1, ..., kn) corresponds to
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Figure 4: The solid black blocks correspond to intervals which have regularity
a(1,2) stemming from the measure B (see §5.2) and its natural sequence of
partitions.

the regularity value a = a(k) given by

. N
Clog (pt - pRY) 3L kilogpi

B log (r’f1 e erN) Zi\il k; logm7

where the convention 0log0 = 0 is used. Note the similarity to the ratio of
logarithms used in Eq. (3.4). Before stating and deriving our main results, we
consider the partition zeta functions and abscissa of convergence function of a
well-known binomial measure.

a(k)

5.2 A Multifractal Measure on the Cantor Set

Consider a binomial measure § supported on the classical ternary Cantor set
defined by the weighted IFS given by r = (1/3,1/3) with probabilities p =
(p1,p2) such that 0 < p; < p2 < 1. At every stage K € N* of the IFS, there
are 2% intervals with positive mass. The number of intervals at stage K with
regularity a(ks, K) := a(k) is given by the binomial coefficient

K\ (K\ K
ki) \ko)  Ealkal’

where the first equality holds since k&1 = K — ko. See Fig. 4 for a depiction
of the first five stages of the weighted IFS with N = 2, r = (1/3,1/3), and
p = (1/3,2/3), resulting in the self-similar measure /5 and the natural sequence
of partitions .
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log;2

Figure 5: The graph of f = fq% (@) as a function of reqularity « for the binomial
measure 3 supported on the Cantor set.

The partition zeta function Cé; (a, s) with regularity o = a(kq, K) is given

by
—nKs
C‘D a,s) g (nk2)3 .

The abscissa of convergence function f = fm () is given by
Fi(a) = — wlogy @ — (1 — o) logy(1 — o)
_ l-a 1 l-—a
N logs 2 ©8s logs 2
11—« 11—«
—(1- 1 1—
( logs 2) o8 ( logs 2) ,

(See Fig. 5.) The development of the partition zeta

where © = ko /K =

functions Cm (, s) and the abscissa of convergence function fq/; () are provided
below in more general settings.

log 2

5.3 First Main Result: Distinct Regularity

For a self-similar measure defined by an IFS and a probability vector, the task

of collecting the intervals with identical regularity values from every partition

in P is relatively simple when the conditions of Theorem 5.2 are satisfied.
Here and henceforth, we let

m m!
mi... mpyN ' ml'mN'
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denote the multinomial coefficients, where m; € N for i € {1,..., N} and m :=
N
D= M-

Theorem 5.2. Let i1 be the self-similar measure and B be the natural sequence
of partitions defined by an IFS with scaling ratios v = (r1,...,rN) which sat-
isfies the OSC and is weighted by a probability vector p (as described in §5.1).
Consider the following hypothesis:

(H) Suppose that for allk = (k1,...,kn) € NN where ged(ky, ..., ky) =1 and
k # 0, we have that the reqularity values a(k) are distinct. (See Remark
5.8 below.) That is, suppose a(z1, ..., zn) = a(k) if and only if there exists
m € N* such that z; = mk; for alli € {1,...,N}.

Assume that hypothesis (H) holds. Then, for any k = (k1,...,kn) € NV with
ged(kq, ... ky) =1, and letting K := Zi\;l ki, we have

<g<a<k>,s>=z( nk )(rfl---rfwm. (5.1)

nki---nky
n=1

Moreover, the abscissa of convergence o = fq’é(a(k)) of the partition zeta
function (g (a(k), s) is given by

SN (ki) K)log(ki/K)
SN (ki) K)logri

where E(k/K) is the Besicovitch subset of the Moran (self-similar) fractal E =
supp(u) defined by the scaling ratios r= (r1,...,rn) and the probability vector
k/K = (k1/K,...,kn/K); see Eq. (3.9) in §3.4. Equivalently, and with use of
the convention 0° = 1, the abscissa of convergence o is the unique real number
satisfying the equation

fypla(k)) = = dimy (E(k/K)), (5:2)

k k K*
riteeer V)Y —— =1, 5.3
(1 N)klfl"'kva ( )
in addition, o > 0.
Proof. Every interval from P is taken into account since ged(ks, ..., ky) = 1.

Specifically, for the given positive integers (z1, ..., zn ), there is an integer m € N*
such that mk; = z; for each i; hence the corresponding intervals have the same
regularity since a(k) = a(nk) for all n € N*. Thus, a = a(k) is attained by u
in P, i for each n € N* and the corresponding intervals contribute their lengths
to the same partition zeta function. The coefficients (nkIMfL kN) stem from the
multinomial distribution of mass among the intervals in the partitions P, k.
To determine the abscissa of convergence function fy;(e(k)), an application
of Stirling’s formula and the n-th root test allows for the formulation of the
abscissa of convergence, written o for notational convenience, in terms of the
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N-tuples k = (k1,...,ky) and r = (r1,...,7n). Indeed, for a fixed real number
s, Stirling’s formula yields

nK
Kn,s 1= < )(T]fl .. .T?VN)ns

nki---nky
— (TZK)' k1 kn\ns
B (nkl)!...(nkN)!(rl TN
(Tlfl . -T?VN)"SK"K \/E

(1+en),

KRk k2, - -2k
where €,, — 0 as n — co. Hence,

k1 kn\s 7o K
1/n_(r1 e )P K
n,s T k1 kN

Kk

(14 6,),

where 6, — 0 as n — oo. Therefore, according to the n-th root test, the
numerical series

= s nky---nky 1 N

n=1

converges for s > p and diverges for s < p, where p is the unique real number

such that X
K
1= (pkr gy 22
(1 N)k]fl---k]ka

Equivalently,

" o By SN (ki/K) log(ki/K)
fm(a(k))_p_bg*'“*”< KK >_ S, e/ K)logrs

(The fact that p is well defined and p > 0 will be explained at the end of the
proof.) By definition of the abscissa of convergence o (see Definition 4.4), it
follows that

fhlal) = =p,

which in light of the previous expression for p, establishes part of Theorem 5.2.
Finally, by Proposition 3.4 applied to r and the probability vector q = k/K,
we have

S0l (ki/ K) log(ki/ K)
v (ki/K) logr;
where E(k/K) is the Besicovitch subset referred to in Theorem 5.2. (See, also,

[7, 53, 56].) This last equality, combined with the fact that o = p, enables us
to conclude the proof of the main statement of Theorem 5.2.

fylak) =0 = = dimp (E(k/K)),
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As promised, we now supplement the proof by briefly explaining why p is
well defined as the unique real solution of the equation ¢(s) = 1, where

k k K*
8) = (ryt - ) ——————.
(P() (1 N)kfl.”kjkvl\,
First, note that ¢ is strictly decreasing on (—oo,00); indeed, ¢'(s) < 0 since
0<r; <1fori=1,...,N. Second, observe that ©(0) = K¥/(kF* ... kkx) > 1
since K = Zf\; k; and not all of the integers k; are zero for i = 1,..., N. (As
noted above, the convention 0° = 1 is used.) Hence, p is well defined and p > 0,
as desired. O

Remark 5.3. We believe that the assumption (H) made in Theorem 5.2 is
essentially superfluous. That is, we expect that the regularity values a(k) are
either always distinct or can be broken down into distinct values with corre-
sponding multiplicities, as is done (in a special case) in Lemma 5.10 below.

Remark 5.4. Theorem 5.2 applies to the results on the binomial measure 8
presented in §5.2. In that setting, a(ks, K) = log,(p1) + (k2/K)log, (p2/p1)
and these regularity values are distinct as long as p; < p. Indeed, using the
substitution z = ko /K, we have that a(ks, K) = a(z) = log,.(p1)+z log, (p2/p1)
is a nonconstant linear function.

The condition of Theorem 5.2 requiring a(z1, ..., 2n) = a(k) if and only if
there exists m € N* such that z; = mk; for all i € {1,..., N} is not a necessary
condition. Indeed, the next section shows that this condition can be replaced
with rational independence of the logarithm of the probability values when there
is a single distinct scaling ratio used in the IFS. Moreover, the following corollary
shows that, at least in the specific case of the binomial measure 5y on the unit
interval [0, 1], we have fqﬁf (t) = fo(t) = fs(t) = b*(t), where fgo is the concave
envelope of fq‘éo on the interval [tmin,tmax]- (See [3, 4, 8, 10, 56], as well as
Figs. 3 and 5, but note that for Sy we have r = (1/2,1/2) and for 8 in §5.2 we
haver = (1/3,1/3).)

The following corollary also stems from the discussion that follows [42,
Theorem 4.2] and the connection to the binomial measure on the unit interval
(called By below) discussed, for instance, in [13, 14, 15].

Corollary 5.5. Consider the binomial measure By defined by the similarities
Si(x) = x/2 and So(z) = x/2 + 1/2 with scaling ratios r = (1/2,1/2) and the
probability vector p = (1/3,2/3). Then, for all t € [tmin, tmax|, we have

FR2(t) = fo(t) = fult) = b*(1), (5.4)

where fqﬁ;} is the concave envelope of fgo on the interval [tmin, tmax|. (Here,
[tmin, tmax] = [log, 3 — 1,10g, 3].)
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Proof. By Theorem 5.2, we have

0 _ (k1/K)log(k1/K) + (k2/ K) log(k2/ K)
fq@ (a(k)) = (k1/K)logry + (ko/ K)logrs

——ﬁlo b —@10 ke
- K g2 K K <)) K

. kQ kQ kQ kQ

a(k) = log(2k2 /3K)
log(1/2%)
Since ko is a nonnegative integer and K is a positive integer where ky < K,
the maximum value of a(k) is 10gy 3 = tiax and the minimum value of a(k) is
logy 3 — 1 = tmin-
Now, according to [13], we have

tmax — t tmax — t t— tmi t— tmi
fg(t) — _ max 1Og2 (t max ) _ min 1Og2 ( min ) ,

tmax - tmin max ~— tmin tmax - tmin tmax - tmin

Further, we have
ko

:1 —
0gy 3 K

where ¢ € [tmin, tmax] = [logs 3 — 1,log, 3].
For ¢ = logy 3 — ko /K = a(k), we have tmax — tmin = 1, tmax —t1 = k2/ K,
and t1 — tymin = 1 — ko /K. Substitution yields
Bo _
[ (1) = fo(tr).

Note that the collection of all regularity values ¢t = logy 3—ko/ K = (k) is
a dense subset of [tmin, tmax] = [logy 3 — 1,log, 3]; furthermore, recall that f,(t)
is concave (see §3.3). Therefore, by Proposition 3.3 we have

() = fo(t) = fult) = b*(2)
on [tmin7 tmax] . O

Remark 5.6. Corollary 5.5 immediately holds in the slightly more general case
where the components of the probability vector p are distinct (that is, p1 # p2).
However, in this paper we address only the case p = (1/3,2/3), for clarity of
exposition.

The next corollary is a simple consequence of Theorem 5.2 and the Moran
equation.

Corollary 5.7. Assume that the conditions of Theorem 5.2 hold and, addition-
ally, that r=(X,..., \) where 0 < X <1/N. Then

F(a(1, ., 1)) = dimp (supp(n). (55)
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Proof. In this case, K = N and by Theorem 5.2 we have

fy(a(l,...,1)) = —logy N.

The Moran equation (Eq. (3.1)) then becomes

N
D AT=NN=1,
i=1
which has the unique solution s = —log, N when s > 0. O

In light of Theorem 5.2, Theorem 5.12 (an analog of Theorem 5.2 in §5.4
below), Corollary 5.5, and Corollary 5.7, we make the following conjecture:

Conjecture 5.8. For a self-similar measure p on [0, 1] and its natural sequence
of partitions P, we have

F(®) = fot) = fo(t) = b7 (D), (5.6)

for allt € [tmin, tmax], where f:g (t) is the concave envelope OffSL3 (@) on [tmin, tmax) -

Remark 5.9. Conjecture 5.8 would be proven in the case where the regu-
larity values a(k) are distinct if, for instance, one could show that for all
k = (k1,...,kn) € NV such that ged(ki, ..., kn) = 1,

Ea(k) = E(k/K)7

where E,y) is given by Eq. (3.3) with ¢ = a(k) and E(k/K) is given by Eq. (3.9)
with g = k/K. See [63, Thm. A], [16, Prop. 5.1], and [7] for further evidence
for the validity of Conjecture 5.8.

One condition of Theorem 5.2 that is required throughout the rest of this
paper is that the components of k = (k1,...,ky) satisfy ged(kq,..., kn) = 1.
This condition guarantees that every interval stemming from 8 with regularity
a(k) is taken into account in the corresponding partition zeta function. The
next section develops and analyzes such partition zeta functions for a specific
class of self-similar measures.

5.4 Second Main Result: Two Distinct Probabilities
and a Single Scaling Ratio

Consider an IFS with N contracting similarities and a single scaling ratio (Lips-
chitz constant) r such that 0 < r =r; <1/N, foralli € {1,..., N}. In contrast
to what happens for the results in §5.3, the collection of finite regularity values
attained by the corresponding measure p on the natural sequence of partitions
B in this setting is determined solely by the probability vector p.

Suppose there are w > 2 (w € N*) distinct values among the components
of p=(p1,...,pn). (The case where w = 1 is a special case of Example 5.15
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below.) Denote the distinct probabilities by p’ = (pj,...,p),), and denote the
multiplicity of each of the numbers p} by ¢; for ¢ = 1,...,w. In this setting,

Yuycq =N and pi* . pRY = (p)" ... (p),)"e, where 330 ks = Yo k) =
K. We continue to use the convention 0log0 = 0, and therefore, 0° = 1.
Lemma 5.10. With u and B as above, if ged(ky, ..., k.,) =1 and the numbers

log, pi, .. .,log, pl, are rationally independent, then the distinct regularity values
attained by p on P are given by

1 / /
alk, . k) = = log, (1) . (0l,)" ) (5.7)

Moreover, for every n € N*, the number of intervals P with regularity value

a(nki,...,nkl) =a(ky,... k.,

T w
in the partition Ppx is
nk _ nk nk’l nk;)
(nkl, - ,nkN) - <nk’1, o ;nk{1,>cl e

Proof. For every N-tuple of nonnegative integers k, there exists an n € N such
that
a(k) = a(nky,...,nkl).

The rational independence of the numbers log, p; and the fact that
1 w
log, x ((p’l)kl . (p;,)k) =% ; ki log, p;

imply that the regularity values a(kf, ..., k.,) are indeed distinct. Moreover, we
have

(p1+ -+ )" = (aapy + -+ cwpr,)"
which immediately yields

nk _ nk nkg nkiﬂ
nki,...nky)  \nk{,... nkl, )t T

Lemma 5.10 allows us to determine the corresponding partition zeta func-
tions and abscissa of convergence function in Proposition 5.11, as we now ex-
plain.

O

Proposition 5.11. If the conditions of Lemma 5.10 are satisfied, then

[ee]
K ’ 7
m k _ n nky n)kw nKs 5.8
009.5) = 32 (4 " g, )ittt 6.5

and

IRk Ve
%mmnz%wwhwm»:b&KG%L_AELJ. (5.9)

K,
cll .. .CU)‘“KK
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Proof. Eq. (5.8) follows at once from Lemma 5.10. Next, much as in the proof
of Theorem 5.2, it can be seen that an application of Stirling’s formula and
the n-th root test implies that the abscissa of convergence v := fy(a(k)) of
(p(a(k),-) satisfies

c]fll R
T (R

That is, v > 0 is the unique real solution of the above equation. Hence,

., (ki)k’l . (k/))kiu
filak) =~ =log,x | —F——F—— |
B C]fl . -cﬁ}”KK

1= (rK)'Y

as desired. O

In the special case of the conditions specified in Lemma 5.10 where r; =
.=ry =7 and w = 2, the abscissa of convergence function fy(a(k)) can
easily be expressed as a function of the single variable o« = «a(k}, K) = a(k).
The results then mirror those described in [7, 60], among others, in the case of
“map specified” Moran fractals (i.e., generated by an IFS) as popularized by

[2].

Theorem 5.12. Assuming the conditions of Lemma 5.10 are satisfied and,

specifically, w =2 and ry = ... =ry =, then we have
Ch(ak), 5) = G (a(ky, K), s Z <nk> cg) " —R2) PRy mKs (5 1)
and

VAV Y TALA
Fi(a)) = F(@(h, K)) = log, (gj . ’f))“(,f;( K>. (5.11)

(Recall that ¢1 and co denote the multiplicities, respectively, of the two distinct
values of p1,...,PN-)

Moreover, the concave envelope fq’g of f% has infinite slope at the extreme
values of the attained regularity values.

Lastly, we have

masc{ £ (@)} = fi(a(ca/N) = dimp (supp(s). (5.12)

Proof. We have
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Letting @ = kb /K, we have
_a—log(h)
log, (p5/p1)

This substitution allows one to express the abscissa of convergence function
9(x) := fyg(a(ks, K)) in the following form:

N A
g(iﬁ) - f‘g’(a(k% K)) - long ((N B 622)Kkécgl22_KK>

T 1—2z
—zlog, (L) +(1—2)1 .
ctog, (2) +1- oo, (=2 )

By temporarily allowing z € [0, 1] and using a slight abuse of notation, we
deduce that the first two derivatives of g are given by

-1
’ -] £ 1 ‘1 " _ .
g'(z) = log, (—1 _x> + log,. (02 ;o g'(2) 20 —2)loar

It immediately follows, assuming without loss of generality that p} < p) and
x € (0,1), that

lim g(x) = - logr C1, lim g(x) = logr C2,
z—0+ z—1-

lim ¢'(x) =00, lim ¢'(z) = —o0,

z—0+t z—1~

and
g"(z) <0,

which implies that ffg is concave. A bit more calculus then shows that

max{fy;(a(k))} = fy(a((c1, c2))) = —log, N = dimp (supp(p)).

a(k)
In particular, the last equality holds since s = —log,. N is the unique real-valued
solution of the equation Nr® = 1. (See Proposition 3.3 and Eq. (3.5).) O

The following section discusses the way in which the results of §5.4 recover
recent as well as classical results on self-similar measures.

5.5 Recovery of Recent and Classical Results

Theorem 5.12 allows for the recovery of recent and classical results from the
multifractal analysis of self-similar measures in the context provided by the
partition zeta functions and the abscissa of convergence function, as we now
discuss.
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I0953 B

Figure 6: The first few stages in the construction of the trident measure ¥ and
its natural sequence of partitions B (left), along with the graph of its abscissa
of convergence function f = f%’(a) as a function of reqularity o (right).

Example 5.13 (The Trident Measure). If N = 3,r = (1/5,1/5,1/5), and
p = (1/5,3/5,1/5), then w = 2,¢; = 2 and ¢2 = 1; the resulting self-similar
measure is called the trident measure 1 (see Fig. 6). The distinct regularity
values attained by 1 on its natural sequence of partitions 3 are

IOg (371]«’2/577,[() o k_/2 10g5 ]

alk) = = 17578 K

furthermore, the partition zeta functions are

Gp(a19.9) = Y- (11 ) rg e

n=1 nké
and the abscissa of convergence function is
Fp(a(k)) = —zlogs () — (1 — ) logs (1 — ) + (1 — z) logs 2,

where x = k},/K = lég_T(’B and a(k) = a. Thus,

fyla(k) = f3() = - (%) log, (11@;—3)




See Fig. 6 for the graph of the concave envelope of f&’g Note that ffé(a) behaves
as described in §3.3, as expected.

Example 5.14 (Recovery of Classical Results). Some of the results obtained by
R. Cawley and R. D. Mauldin in [7], partially reproduced in §3.3, along with the
classical results obtained by A. S. Besicovitch in [3] and H. G. Eggleston in [10]
and described in Remark 3.5, can be recovered in the setting of this section. For
instance, see Example 1.6 on page 205 of [7]. Setting N = 4,r = (r,r,r,7), and
p = (p},p}, s, p5) (hence w = 2) yields the desired recovery of this example.
Another classical example which can be recovered in our setting is the binomial
measure [y supported on the unit interval, as noted in Corollary 5.5. Indeed,
setting N = 2,r = (1/2,1/2) and p = (1/3,2/3) (hence w = 2) yields the

desired recovery in this instance.

Example 5.15 (Monofractal Measures). If there exists D > 0 such that r? = p;
for all ¢ € {1,..., N}, then the resulting measure p is the natural Hausdorff
measure of the underlying generalized Cantor set as discussed on page 201 of [7]
and the end of §3.3. More specifically, this Cantor set, which coincides with the
support of p, is the self-similar set defined by the IFS {S;}X ;. The primitive
of p is defined by fg(dp) = p([0,2]) and its graph, at least in the usual case of
the ternary Cantor set when N = 2, r = (1/3,1/3), and p = (1/2,1/2), is the
well-known Devil’s staircase (see, for instance, [15, Ch. 6]). (In other words,
the primitive of p is the Cantor—Lebesgue function.) Recall that this function is
nondecreasing and continuous on [0, 1] with zero derivative almost everywhere
(on the Cantor string, in fact), yet its range is the full interval [0, 1]. See [46,
§12.2] for an investigation of the Devil’s staircase and a discussion of a new
notion of fractality based on the distribution of complex dimensions of fractal
strings. Fittingly, the only regularity values attained by p on the intervals from
its natural sequence of partitions are oo and D. Also, fq’g (D) = D and according
to Definition 4.4, this abscissa of convergence function is trivially equal to zero
for all other finite regularity values since no length stemming from 3 has finite
regularity value different from D. (Note that in the special case where u = p,
as above, we have D = log;2.)

The following example is the result of work done by Scott Roby in the
Multifractal Analysis research project at California State University, Stanislaus
in December 2010 and January 2011. The weighted IFS associated with this
example satisfies the OSC, but the resulting regularity values are not distinct in
the sense of hypothesis (H) from Theorem 5.2, nor are the conditions of Lemma
5.10 satisfied. Nonetheless, the attained regularity values and the family of
partition zeta functions are fully determined. As a special case, the geometric
zeta function of the Fibonacci string (pin(s) is recovered. (See §2.3 above for
the development of the Fibonacci string and for a more thorough analysis, see
§2.3.2 of [46].)

Example 5.16 (Recovery of the Fibonacci String). Consider a weighted IFS
that satisfies the OSC where r = (1/2,1/4,1/10) and p = (1/2,1/4,1/4). Then
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the regularity values attained by the resulting measure p with respect to its
natural sequence of partitions 9 are given by
log 9~ (k1+2k2+2ks)

alk) = alky, k2, ks) = log (2~ (k1+2k2) 10 —Fa)

where k1, k2, ks € N and are not all zero. Note that the vectors k1 = (1,0,0)
and ko = (0,1, 0) both yield regularity value 1. Hence, the collection of attained
regularity values are not distinct in the sense of hypothesis (H) from Theorem
5.2. In order to distinguish the regularity values in this case, set M := ki + 2ko
and suppose k3 # 0. Define a(M, k3) by

log2 —log b
a(Mk3) =ak) =14+ 7——"—.
( 3) (k) g—;log2+log 10

The values of a(M,k3) are distinct when ged(M, ks) = 1, which we assume
to be the case for the remainder of this example. For a given regularity value
a(M, k3) and positive integer n, the corresponding a-lengths are

Ln(a(M, k3)) == (2= M107*s)",

with multiplicities given by

| 24 nM+2nks4+1 | -
._ Lﬁ + ZJ

where || is the floor (i.e., integer part) function. That is, for x € R, [z] is the

greatest integer such that [z] < z. The partition zeta functions are then given
by

Cp(a(M, ks), Zmn (M, k3)) (ln (M, k3)))°.

In the case where M = 1 and k3 = 0, so that «(1,0) = 1, we recover the
geometric zeta function of the Fibonacci string up to an additive constant (or
multiplication by a nowhere vanishing entire function in terms of the closed
forms of these functions). Indeed, in this case the lengths are given by 1, (1) =
27" and the multiplicities are given by

mp(1) = z% (n _V;TJFE; g 2i> = Fot1,

1=

where F, 41 is the (n+1)th Fibonacci number. We refer the reader to §2.3 above
and to [46, §2.3.2] for a discussion of the Fibonacci string and its geometric zeta
function (gip. The partition zeta function is therefore given by

27° 447
/1. : —l =
1 S Z Fn+12 CFlb(S) 1= 1—92-5_4-s’
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where Cpip, is given by Eq. (2.7). Thus, the corresponding complex dimensions,
in both the classic sense and with respect to the parameter 1, are given by (cf.
Eq. (2.8))

Driy = Dly(1) = {D + jzp | 2 € ZYU{-D + j(z +1/2)p | z € Z},

where ¢ = (1 4+ +/5)/2 is the Golden Ratio, D = log, ¢, and p = 27/ log 2.

The only other case in this example for which the partition zeta function
and the complex dimensions are explicitly known is when M = 0 and k3 = 1.
In this case, the partition zeta function is

(a(0,1),8) =Y 107",
n=1

The complex dimensions with respect to the regularity value a(0, 1) are therefore
given by
Dy (a(0,1)) = {jzp | 2 € Z},

where p = 27/ log 10.

The remaining complex dimensions with respect to an arbitrary regularity
value «, and even the corresponding abscissae of convergence, have yet to be
determined.

Remark 5.17. The next step in the development of the theory of complex
dimensions for self-similar measures is to determine Diy;(ev, Wo,) and 7y, in the
general situation considered in §5 (or at least for interesting classes of examples,
such as the multinomial multifractal measures). The work of D. Essouabri
and the second author in [12] should provide a solid foundation for such a
pursuit. It suggests, in particular, that the theory of complex fractal dimensions
developed in [44] and [46] (or [48]) should eventually be extended to apply to
zeta functions that are viewed as analytic functions on Riemann surfaces (rather
than just on suitable domains of the complex plane C or of the Riemann sphere
C* = CU{oco}). In the present situation, the classic Riemann surface associated
with the logarithm (or the square root) would be required; see [12], which is
motivated in part by the earlier, less general, results obtained in [42, 63] and
described in [48, §13.3.6].

34



Figure 7: Approximation of the fractal strings Q1 and Q.

6 Partition Zeta Functions of Atomic Measures

In this section, we investigate the properties of certain atomic measures which
are not self-similar in the sense of §5. Let o1 be given by

g1 = i 37i53—i
i=1

and let Q1 = (0,1)\{37¢}22, be the fractal string determined by the complement
in [0, 1] of the support of o7 (less the point 1). Let Q2 be the open subset of [0, 1]
obtained by placing disjoint open intervals with the lengths of the Cantor string
L s end-to-end in nonincreasing order from right to left, with the single interval
of length 1/3 placed so that its right-endpoint is at 1 (see Fig. 7). Then, let o
be the atomic measure supported on the left-endpoints of the fractal string Qs,
where the left-endpoint of each distinct open interval has weight given by the
length I, = 37" of said interval (see Fig. 7).

The sequence of distinct lengths £1 of the fractal string ; is given by
L1 ={2-37"}52,, where each length has multiplicity 1. Also, the sequence of
distinct lengths Lo of the fractal string €25 is exactly the same as the sequence of
distinct lengths of the Cantor string. More specifically, £o = Log = {377} 4,
but where each length 37" has multiplicity 2"~ ! (instead of 1). See Fig. 7 and
§2.3.

In order to determine the corresponding partition zeta functions for o1 and
o2, we must choose a suitable sequence of partitions. In the absence of naturally
defined sequences of partitions for o7 and o, throughout this section we take
P to be the sequence of partitions P,, of left-closed, right-open ternary intervals
PF of length 37" for k € {1,...,3" —1} and P3" = [(3" — 1)/3",1], ordered
from left to right by k. That is, for each n € N*, the partition P, is given by

{[07 1/3n)’ [1/371’ 2/3n)7 AR [(3n - 2)/3n7 (3n - 1)/3n)7 [(?’n - 1)/3n7 1]} (6'1)

6.1 A Full Family of Multifractal Complex Dimensions

As with the determination of the other partition zeta functions in this paper,
the most delicate part of the process in the case of the measures o; and o5 and
the sequence of partitions B is to find and distinguish the nontrivial regularity
values.
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Figure 8: A breakdown of the reqularity values attained by o1 with respect to the
sequence of partitions P. The value inside each interval is its regularity. The
leftmost blank intervals have regularity oo = 1+logsn 2 at each stagen € N*. The
remaining blank intervals have no mass and therefore have reqularity o = oo.

Lemma 6.1. For the measure o1 and the sequence of partitions P as given
in Eq. (6.1), the distinct nontrivial regularity values have the following forms:
1+ logsn 2,k1/K, and oo, where n, ki, K € N* k1 < K, and ged(k1, K) = 1.

Proof. For each n € N*, the leftmost interval P! of each partition P, has
regularity given by A(Pl) = 1 + logg. 2. For n, ki, K € N* k; < K, and
ged(kq, K) = 1, the intervals Pf(k;” have regularity given by A(Pf(k,i Y=k /K.
No other interval P* stemming from B has mass, thus A(P¥) = oo for each of
these intervals. See Fig. 8. O

Remark 6.2. An immediate consequence of Lemma 6.1 is that the a-lengths
of oy for a = k1 /K are given by

L34 (k1 /K) = {37%™ [ 375" has multiplicity 1,n € N*}; (6.2)

see Fig. 8. The sequences L3 (k1/K) are strongly languid and trivially self-
similar* (see Remark 2.7). This fact effects the forms of the explicit formulas
for the counting functions of the a-lengths to be presented in Theorem 6.6.

Before stating and proving Theorem 6.6, we give the forms of the parti-
tion zeta functions, abscissa of convergence function, complex dimensions with
respect to «, and tapestry of complex dimensions corresponding to the nontriv-
ial and finite regularity values « obtained by o7 with respect to . At this
point, the reader may wish to briefly review §4, specifically the definition of the
complex dimensions with parameter « (Definition 4.6) and the definition of the
tapestry of complex dimensions (Definition 4.7).

4Strictly speaking, they are not self-similar since a single scaling ratio is involved and so
the multiplicities are trivial.
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Figure 9: The abscissa of convergence function f = f&gl (o) =0 on (0,1] (left)
and tapestry of complex dimensions T = 7:51 of o1 with respect to P (right).

Theorem 6.3. The partition zeta functions for the nontrivial and finite requ-
larity values o obtained by o1 with respect to*P as in Lemma 6.1 are respectively
given by

(3 (1+loggn 2,8) = 37 (6.3)
and
o 3—Ks
Cr,p (k1/K,s) = 1_3-Ks’ (6.4)
where s € Cyn, k1, K € N* k1 < K, and ged(k1, K) = 1.
Furthermore, the abscissa of convergence function is given by
[y (@) =0, forall a € (—o0,00). (6.5)

Moreover, for regularity o = k1 /K, the complex dimensions with respect to
« are given by

o _ 215z
Dg (k1/K,C) = {Klogg |z e z} . (6.6)

Lastly, the tapestry of complex dimensions 7:51 s given by
Tt = _ M e DG (kK C), where by < K, k1, K € N
Dt (OC,OJ)|OZ—?,OJ€ q3( 1/ ) ),Were 1= s V1 € )

(6.7)
as portrayed in Fig. 9.
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Proof. Egs. (6.3) and (6.4) follow immediately from Lemma 6.1 and Remark
6.2. Note that Eq. (6.4), explicitly

> 37Ks
o _ —Kns __
G (k1K) =) 375" = ———pr,

n=1

is first obtained by assuming that Re(s) > 0, so that the geometric series in-
volved converges. However, the end result clearly holds for all s € C, as can be
seen upon meromorphic continuation. Hence, Eq. (6.4) holds for all s € C.

Observe that the partition zeta functions with regularity o = 1+loggn 2 for
all n € N* have no poles and hence no complex dimensions, so their abscissae of
convergence are trivially equal to —oo; and hence, according to Definition 4.4,
we have f3' () := max{0, —oo} = 0 for all these regularity values av. For those
partition zeta functions with regularity k1 /K, the abscissa of convergence is also
zero since s = 0 is the unique real-valued solution to the equation 1 —37%% = 0.
Therefore, fy'(a) =0 for all & € (—o0, 00); see Fig. 9.

The expressions for the partitions zeta functions with regularity a = k1 /K
have numerators which never vanish. Therefore, we deduce that the complex di-
mensions with parameter « are given by Eq. (6.6). In turn, in light of Definition
4.7, the complex dimensions with respect to o immediately yield the tapestry
of complex dimensions given in Eq. (6.7). O

Remark 6.4. The only other regularity value attained by o with respect to B
is a = 00; see Fig. 8 along with §3.5. However, the intervals with such regularity
are so numerous that the resulting partition zeta function Cg{ (00, ) is divergent
everywhere. A similar remark holds for the measure o5 discussed below in §6.2.

Remark 6.5. The complex dimensions D%l (k1/K,C) and the tapestry ’7:51
are exactly the same as those obtained for the measure ¢ = o7 in Corollary
13.55 and Remark 13.56 of [48, §13.3.5] (which was written in conjunction with
the fourth author of this paper and describes joint work of the second and
fourth authors). However, those results are obtained in the context provided
by multifractal zeta functions, which we discuss briefly in §7. The multifractal
zeta functions are examined in [32, 42, 48, 63] and are defined therein by a
measure, a regularity value, and a sequence of scales (instead of a sequence of
partitions). The multifractal structure of atomic measures similar to o1 and o3
are considered in [51], but not in the context of partition or multifractal zeta
functions.

Next, we give an explicit formula, expressed in terms of the underlying
complex dimensions Dfi} (a, C), for the counting functions of the a-lengths of o1
with respect to 3, as given by Efg (o) in Remark 6.2 above.

Theorem 6.6 (Exact pointwise formula for the a-lengths of o1). For each
reqularity value o = ki /K, with k1, K € N* k; < K, and ged(k1,K) = 1 (as
in Lemma 6.1), the counting function of the a-lengths of o1 with respect to P
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satisfies

1 it
Nt = N3 (k1/K,z) =M = — 6.8
‘43(0‘,37) ‘,]3( 1/ ,.13) K10g3w; W’ ( )
where the formula holds pointwise for every x > 1, with M := |logsx x| and

Dy =Dy (k1/K,C) as given in Eq. (6.6) of Theorem 6.3. (Here, as before, |y|
denotes the integer part of y.)

Proof. In this proof, we must assume that the reader has some familiarity with
the theory developed in [46]. Fix a regularity value o = k1 /K as given by
Lemma 6.1. In light of Eq. (6.2), the fact that Ny (k1/K,2) = M = [loggx x|
is immediate.

Next, we justify the explicit formula (6.8) for Ny'(k1/K,z). This result
follows from [46, Thm. 5.14], the pointwise explicit formula without error term,
applied at level £k =1 (in the terminology of [46]) to the zeta function

3—KS
Gy (a,8) = (' (k1 /K, s) = T_3Ks 5€ C,

viewed as the “geometric” (or rather “scaling”) zeta function of the generalized
fractal string associated with the a-lengths of o1 (see Definition 4.1). More
specifically, since 0 is a pole of (3! («,-) and with our present notation, [46,
Thm. 5.14] yields for all z > A (with A := 1, as explained below):

Ny (o, ) = Z res <§C§§ (a,8);8 = w)

w€Dy
xw o1 .
= Z ——res (o' (a,s)is =w).
w€ED,

Hence (6.8) follows since (y' (@, ) and Do := D' (a, C) are given by Egs. (6.4)
and (6.6), respectively, and consequently, for w = 27jz/(K log3) (with z € Z),
we have

3—Ks 3—Kw 1
o1 . — — . — — —
res (C‘I* (o 5); s = w) e <1 T3Ks 0T w) " (Klog3)3 -k« ~ Klogs’
independently of z € Z.

Note that the aforementioned explicit formula of [46] can be applied here
because an elementary computation (entirely analogous to the one performed
on page 189 of [46, §6.4]) shows that (' (a, -) is strongly languid (in the sense
of [46, Def. 5.3]) of order K = 0 < 1 and with constant A = 1. (Here, we use the
notation xk and A employed in [46]; see especially [46, §5.3].) More specifically,
with A := 1, we clearly have
_ 1
|1 -3k

3—Ks

e < 1= (A7),

as Re(s) — —00.® Also, we have W = C in this case. This concludes the proof
of Theorem 6.6. O

5Strictly speaking, in the above inequality, 1 should be replaced by 7, for any given n > 1.
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Figure 10: A breakdown of the reqularity values attained by oo with respect to
the sequence of partitions 3. The blank intervals have no mass and therefore
have reqularity o = oo.

Remark 6.7. We leave it as an exercise for the interested reader to verify
that given the simple form of the sequence of a-lengths obtained in Remark
6.2, it is possible to recover Eq. (6.8) by a direct computation (also involving a
conditionally convergent Fourier series, but no longer using [46, Thm. 5.14]). (In
more complicated situations, however, we would have to use the exact explicit
formula in [46, Thm 5.14], or its counterpart with error term given in [46,
Thm. 5.10], or even more generally, their distributional analogues obtained in
[46, §5.4].) We note that the computation would then resemble the one carried
out in a related context for the Cantor string in [46, §1.1.2]. It is also useful to
observe that Eq. (6.8) can be equivalently rewritten as follows:

Ng' (o, z) = g(u), with u:= [loggr z], (6.9)

where g is the 1-periodic function given by the (conditionally) convergent Fourier

series ,
e?ﬂ'jzu

1
= , ueR. 6.10
o) = g (6.10)

Observe that the lack of positive real part in the complex dimensions
Dg (k1/K,C) stems from the unit multiplicity of each corresponding distinct
a-length in L3 (k1/K). In the case of o2, however, the multiplicities of the
distinct a-lengths are integer powers of 2. This results in a nonconstant linear
multifractal spectrum for o5, as described in the next section.

6.2 A Nonconstant Linear Multifractal Spectrum

The determination of the distinct nontrivial regularity values in the case of o9
with respect to 3 is actually easier than that of o;.
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Lemma 6.8. For the measure oo and the sequence of partitions P given at
the beginning of §6, the distinct nontrivial reqularity values have the following

Clog(37F1) Ky * =
forms: Tog(3=F) %=, and oo, where ki, K € N*, ky < K, and ged(ky, K) = 1.

(See Fig. 10.)

Proof. Each interval Plk(n which contains two or more point-masses has regular-
ity 1, since o2 (PF, ) = |PE, | for all such intervals. Furthermore, each interval of
length 3~ which contains a single point-mass of the form 37"*1 with n € N*,
has regularity

. 10g(3_k1) . k1

~log(37K) K’
Finally, observe that no other interval stemming from 8 has mass and hence,
a = oo for each of these intervals; see Fig. 10. O

Remark 6.9. The sequence of a-lengths £ (1) of 03 for a = k1 = K = 11is
given by

L3(1) = {37 | 37" has multiplicity 3-2"~!,n € N*}. (6.11)

Moreover, the sequence of a-lengths L7 (k1/K) of o for v = ki /K with ky < K
is given by

L3 (k1/K) = {375 | 375" has multiplicity 2""~!,n € N*}. (6.12)

As with the case of o1 above, the sequences L3 (k1/K) are also self-similar and
strongly languid; see Remark 2.7. This effects the form of the counting function
of the a-lengths presented in Theorem 6.12 below.

Before stating and proving Theorem 6.12, we give the forms of the partition
zeta functions, abscissa of convergence function, complex dimensions with re-
spect to «, and tapestry of complex dimensions corresponding to the nontrivial
and finite regularity values « obtained by o5 with respect to 3.

Theorem 6.10. The partition zeta functions for the nontrivial and finite requ-
larity values o obtained by oo with respect to P as in Lemma 6.8 are respectively
given by

i 3.3
o' (Ls) = T—5 3= (6.13)
and
" 2k1—1 . 3—Ks
G (k1/K,s) = 1ok .3 K5’ (6.14)

where s € C, k1, K € N* k1 < K, and ged(k1,K) = 1. (Here and henceforth,
when k1 < K, we assume that ged(ky, K) = 1.)
Furthermore, the abscissa of convergence function is given by

F5(0) = g2k /K) = "L togy 2, (6.15)
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Figure 11: The abscissa of convergence function [ = fgf () (left) and tapestry
T = ’7:52 of complex dimensions of oo with respect to B (right).

where o = k1 /K such that ki < K with k1, K € N*; see Fig. 11. (Note that this
equation also holds when a = k1 = K =1.)

Moreover, the set of complex dimensions Dgf (o, C) with respect to a =
k1/K, where k1 < K with k1, K € N*, is

D2 (/K. C) = { Mlog, 24 27| e g, (6.16)
U)K BT K o3 ' '

(Note that this equation still holds when a« = k1 = K = 1.)

Lastly, the tapestry of complex dimensions ’7:52 s given by

k
TR? = {(a,w) |a= ?1,0.) € D (k1/K,C), where k1 < K, ki, K € N*},

(6.17)
as portrayed in Fig. 11.

Proof. This proof is very similar to that of Theorem 6.3. Indeed, in light of
Lemma 6.8, Egs. (6.13) and (6.14) follow from Eqgs. (6.11) and (6.12), respec-
tively, first by summing a geometric series (for Re(s) > % logs 2) and then by
meromorphically continuing the resulting expressions to all of C. We deduce at
once that the abscissa of convergence function is given by Eq. (6.15).

Finally, Eq. (6.16) (and then Eq. (6.17)) follows immediately from Egs. (6.13)
and (6.14). O
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Remark 6.11. The concave envelope f%z of fy* on [0,1] is a nonconstant linear
multifractal spectrum for the measure o2. Indeed, for every ¢ € [0, 1], we have

2 (t) = tlogy 2. (6.18)

Note that, unlike for the results of Theorem 5.2, each nonzero value f32(t)
cannot be equal to the Hausdorff dimension of some subset of the support of
02. Indeed, the support of oy is the countable set 925, which has Hausdorff
dimension equal to zero.

Next, we close this section by giving an explicit formula, expressed in terms
of the underlying complex dimensions Dfi? (a, C), for the counting functions of
the a-lengths of o2 with respect to 9B, as given by L7 () in Remark 6.9.

Theorem 6.12 (Exact pointwise formula for the a-lengths of o3). For each
nontrivial regularity value of oo with respect to P given by Lemma 6.8, the
counting function of the a-lengths is as follows:

1 (e =k = K =1). For the reqularity value « = 1, we have

w

3 T
NZ2(1,2)=3-(2M —1) = - 3, 6.19
¥ (1,2) ( ) 210g3§3w (6.19)
w 1

where this formula holds pointwise for every x > 1, with M = |logs x|
and Dy := Dy (1,C) as given in Eq. (6.16).

2 (o = k1/K). For the regularity value o = k1 /K such that kv < K with
k1, K € N* and ged(k1, K) =1 (as in Theorem 6.10), we have

2k}1—1(2k1ﬂ[ _ 1)
2k1 — 1

N%Q(aax) :N%Q(kl/Kax)
1 ¥ k11

= —_ 6.20

210g3Kw€2D: w +1—2k1’ (6.20)

where this formula holds pointwise for every x > 1, with M := |logsx x|
(as in Theorem 6.6) and Do := D (o, C) as given in Eq. (6.16).

Proof. The proof parallels that of Theorem 6.6 and therefore follows from [46,
Thm. 5.14] by showing (as on page 189 of [46, §6.4]) that for each given regularity
o2

a, Gy (a, ) is strongly languid of order x = 0 and with constant A = A4, = 1.
This last conclusion follows from the estimate

G (0, 5)] < (A7) Re,
as Re(s) — —oo, where A = A, is given respectively by A4 := 37137 1)1 =1

when @ =1 (as in Case 1) and by A :=3"5(375)71 =1 with a = k; /K (as in
Case 2).
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Moreover, since in either Case 1 or 2 of the theorem, 0 does not belong to
D, the exact explicit formula of [46, Thm. 5.14] (applied at level k = 1) yields
forallz > A, = 1:

Ny (a,x) = Z res (%SQ%Q (a,8);8 = w) + (3’ (a,0)

W€Dy
= Z ﬁres ({”2 (a,8);8 = w) + (2, 0).
weD w * *

Consequently, the result follows since (in light of Theorem 6.10) an elementary
computation shows that in Case 1 or 2, respectively, we have for every w € D,:

(p’ (@, 0) = =3, res (C%Z (o, 8);8 = w) = %g?)’
while A .
Gy (@, 0) = T ok Tes (C%Q(a,s);SZw) = K Iog3
This concludes the proof of Theorem 6.12. O

Remark 6.13. A comment completely analogous to the one made in Remark
6.7 (for the measure o) applies to the measure os.

In light of Theorem 6.10, we deduce at once the following result from The-
orem 6.12:

Corollary 6.14. The expression for the counting functions for the a-lengths
can be rewritten as follows, in Case 1 (a« = 1) or Case 2 (o = k1/K, with
k1 < K and ged(ky, K) = 1) of Theorem 6.12:

2mjz

. 3logs 2 rTos3
Ny'(Lw) +3= 2log3 ;Z logs 2 + ifgj;
= 218323 (log; )
= /% MG (logs 7), (6.21)
and (for a« = k1 /K, as in Case 2)
ok1—1 k1 logx 2 I T

Ny (o, 2)

+ = —
P =1 200g3F L ki logye 2+ 2
= gh e 2 (logsx )
= 2/% (MG, (logsx 7), (6.22)
where Gy (in Case 1) or G4, (in Case 2) is the 1-periodic function given by the
conditionally convergent Fourier series

3 e
Gi(u) :=
1) 210g3;10g32+

2myzu

u€eR, (6.23)

2mwjz
log 3

44



and (for a« = k1 /K, as in Case 2)

1 627rjzu

Gao(u) == u€eR. (6.24)

210g 3K = IOgBK 2 + lgg—%i{ )

Most of the key results of §6.2, namely, Lemma 6.8, Theorem 6.10 and
Theorem 6.12, readily extend to cases involving slightly more general forms of
the Cantor string. Such generalized results are stated here with less formality
than in the previous sections and without proof since they follow those presented
above, mutatis mutandis.

Example 6.15 (Generalization of the measure o3). Let m € N such that m > 2
and let A = (2m — 1)~!. Using this m and ), construct the measure ¢ in the
way o9 is constructed. The multiplicity of the initial intervals is m — 1 and each
of these intervals has length A. (We note that m = 2 and hence A = 1/3 in the
following development would allow us to recover the results from §6.2.)

The sequence of partitions B in this setting are partitions P,, which split
the unit interval into disjoint subintervals of length A". The nontrivial and
finite regularity values « attained by o with respect to *J3 are exactly the same
as those attained in the case of oy. That is,

log(\1) Ky

alk, K) = m K

and again we take o = k; /K such that ky < K with k1, K € N* (and ged(k1, K) =
1 when k1 < K). The sequence of a-lengths £5(1) for = k1 = K = 1 is given
by

L£5(1) = {\" | A" has multiplicity A~ (m — 1)m"~",n € N*}.

The sequence of a-lengths L£(k1/K) for a = k1 /K with ky < K is given by
Ly (k1/K) = {AE™ | AK™ has multiplicity (m — 1)m*" = n e N*}.

Hence, the partition zeta functions are given by

m— TS m — s—1
G(1e) = A Sy ey = (2 DA

m ot 1—mM\s
and i .
. Ke n __ (m_l)m 1_1/\ s
(k1 /K,s) Z ) =

where s € C, k1, K € N* k; < K, and ged(kp, K) = 1.
As a result, the abbcmba of convergence function is given by

() = 130k /K) = "L tog, - m,
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where o = k1 /K such that k; < K with k1, K € N*. Note that this equation
also holds when a = k; = K = 1. Furthermore, observe that log, -1 m > 0 since
A 1=2m—1and m > 2.

Moreover, the set of complex dimensions D (o, C) with respect to o =
k1/K, where k1 < K with ki, K € N*| is

p kl 27’(']2’
Note that this equation also holds when a = k1 = K = 1.
It follows that the tapestry of complex dimensions T‘ﬁ is given by

k \
TR = {(a,w) la= ?1,0.) € D§(k1/K,C), where ky < K.k, K € N }

Finally, we leave it as an exercise for the interested reader to obtain the
counterpart of Theorem 6.12 (the explicit formula for the counting function of
the a-lengths), using the same line of reasoning as in the proof of that theorem.

The following section concludes the paper with a brief description of natural
questions and avenues of research provided by the approach to multifractal
analysis via zeta functions adopted in this work.
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Figure 12: Approximation of three fractal strings with the same sequence of
lengths L, specifically the lengths of the Cantor string Qcs. The boundary of
each fractal string has the same Minkowski dimension, but the Hausdorff di-
mensions differ.

7 Conclusion

The determination of the meromorphic continuation (or some other appropri-
ate extension) of the partition zeta functions will be addressed in the near
future. Work in this direction has already begun by the second author and
D. Essouabri in [12]. Upon a suitable change of variable, the results of such
an investigation will provide the poles, and hence complex dimensions, for this
family of self-similar multifractal measures. This leads naturally to the search
for an understanding of multifractal objects in more general settings, specif-
ically those with non-multiplicative construction and properties. In the long
term, motivated by [32, 42, 63] and the theory of complex dimensions in [44, 46]
(also with consideration of the work done by J. Lévy Véhel and F. Mendivil
in [50]), one may wish to investigate the physical or geometric oscillations of
multiplicative and non-multiplicative multifractal objects in geometric, spectral
and dynamical settings, as was done with fractal strings by way of their com-
plex dimensions. (See, for example, [43, 44, 45, 46, 48], along with the relevant
references mentioned in the introduction.) This work, [12, 50], as well as the
exposition of some of the aspects of [42] given in [48, §13.3], should provide a
nice foundation for such a theory of complex dimensions for multifractals.

A recent predecessor of this work is [32], by M. L. Lapidus, J. Lévy-Véhel
and J. A. Rock, where certain Dirichlet series were introduced and used in order
to study some geometric properties of fractal strings which are not accounted for
in the theory developed in [44, 46]. The intent of the definition of the multifractal
zeta functions from [32, 63], however, was to extend the techniques used in the
theory of complex dimensions of fractal strings to multifractal analysis in some
way. An elaboration on the difficulties of using these multifractal zeta functions
to this end is provided in [63], where the primary object study of this work, the
partition zeta function, is first introduced.

In [17, 32, 42, 63], connections between the Hausdorff dimension of re-
lated fractal sets and the topological zeta function are established and examined.
Specifically, in [17], building upon some examples in [32], certain collections of
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fractal strings {2 with identical sequence of lengths £ are shown to have iden-
tical Minkowski dimension but varying Hausdorff dimension (see Fig. 12). The
values for the Hausdorff dimension are computed, respectively, as the abscissa
of convergence of the topological zeta function.

Another interesting extension of our results could lie within the investi-
gation of self-similar measures constructed with weighted IFSs which do not
satisfy the OSC. Such an investigation began with an example® developed by
Scott Roby which was based in no small part upon the results pertaining to
second-order identities from [65]. However, a full determination of the partition
zeta functions in this setting has yet to be discovered.

6This example was presented by Scott Roby in the poster titled Multifractal analysis of
a measure when the open set condition is not satisfied in the MAA Undergraduate Poster
Session at the 2011 Joint Mathematics Meetings in New Orleans.
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