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INTRODUCTION

Let G be a semisimple algebraic group with Lie algebra g. We consider generalisations
of Lusztig’s ¢g-analogue of weight multiplicity. Fix a maximal torus 7' C G. Let m/ be
the multiplicity of weight ;1 in a simple G-module V), with highest weight \. Lusztig’s
g-analogues m)(q) (also known as Kostka-Foulkes polynomials for the root system of G)
are certain polynomials in ¢ such that m{(1) = m/. A recent survey of their properties,
with an eye towards combinatorics, is given in [19]. These polynomials arise in numer-
ous problems of representation theory, geometry, and combinatorics. Work of Lusztig
[16] and Kato [12] shows that, for A and ; dominant, m{(q) are connected with certain
Kazhdan-Lusztig polynomials for the affine Weyl group associated with G. To define
m4(q), one first considers a g-analogue of Kostant’s partition function, P. It is conceivable
to replace the set of positive roots, A*, occurring in the definition of P with an arbitrary
finite multiset ¥ in the character group X of T'. If the elements of ¥ belong to an open half-
space of X ® Q (this is our first hypothesis on V), then we still obtain certain polynomials
m) 4 (q). We always assume that ) is dominant, whereas ;1 € X can be arbitrary. In this
article, we are interested in the non-negativity problem for the coefficients of m (¢). For

Lusztig’s g-analogues, this problem has been considered by Broer. He proved that m)(q)
1
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has non-negative coefficients for any A € X, if and only if (4, a¥) > —1forall @ € A™T
(see [1, Theorem 2.4] and [4, Prop. 2(iii)]).

Our first goal is to provide sufficient conditions for my ;(¢) to have non-negative coef-
ficients. Let B be the Borel subgroup of G corresponding to A (i.e., the roots of B are
positive!) and X the set of dominant weights. The second hypothesis is that ¥ is as-
sumed to be the multiset of weights for a B-submodule N of a G-module V. Then m) (q)
is said to be a generalised Kostka-Foulkes polynomial. Let P O B be any parabolic subgroup
normalising N and G xp N the corresponding homogeneous vector bundle on G/P. We
obtain a relation between the Euler characteristic of induced line bundles £ on the G x p N
and generalised Kostka-Foulkes polynomials. Using the collapsing G xp N — G-N C V,
we get a vanishing result for H*(G xp N, L), i > 1, and conclude that m% ,(¢) has non-
negative coefficients for all A € X if 1 is sufficiently large. An explicit lower bound for
 is also given, see Section 3. This approach is based on the Grauert-Riemenschneider
vanishing theorem. We also notice that Broer’s formula for diqmg‘(q) [3] can be generalised
to m) y(¢)- The most natural examples of generalised Kostka-Foulkes polynomials occur
if W C A™. For instance, one can take N to be a B-stable ideal in Lie(B, B) C g.

Our second goal is to study in details the special case in which ¥ = A}, the set of short
positive roots. The required B-submodule, Vef, lies in Vj;, where @ is the short dominant
root. The polynomials W} (q) := m}
(1) appeared already in work of Heckman [8], and a geometric interpretation of mj(q)

(q) are said to be short g-analogues. The numbers

given in [24] shows that m}(¢) have non-negative coefficients. Let A" be the set of long
positive roots, W, the (normal) subgroup of W generated by all s, (o € A}"), and p; the
half-sum of the long positive roots. Approach of Section 3 enables us to prove that m/(q)
has nonnegative coefficients whenever p + p;, € X (Cor. 4.3). But to obtain exhaustive
results, we take another path. We consider the shifted (= dot) action of W; on X, (w, 1) —
w® = wlp+ p) — p, and show that my“#(q) = (—1)“m}(q). Therefore my(q) = 0 if
p is not regular relative to the shifted W;-action, and it suffices to consider m)(¢q) only for
p that are dominant with respect to A;". For a A} -dominant i, we prove that m}(¢) has
non-negative coefficients for all A € X if and only if (u,a") > —1 for all & € A}, see
Theorem 4.10. This is an extension of Broer’s results in [1, Sect. 2]. Again, this stems from
a careful study of cohomology of line bundles on G x g V;". In these considerations, it is
important that IV is a semi-direct product W (Il,) x W;, where the first group is generated
by the short simple reflections. Modifying approach of R. Gupta [6], we define analogues
of Hall-Littlewood polynomials (Section 5). These polynomials in ¢, denoted ?A(q), are
indexed by A € X, and form a Z-basis for the g-extended character ring A[q] of G. Let
X be the character of V) and H the connected semisimple subgroup of G' whose root
system is A;. The polynomials P,(q) interpolate between x, (at ¢ = 0) and a certain
sum of irreducible characters of H (at ¢ = 1). We obtain some orthogonality relations
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for Py(g) and show that xy = > 5.
by R. Gupta in [6, 7] can be extended to this setting. For instance, we prove a version

mh(q) P, (q). Moreover, the whole theory developed

of Kato’s identity [12, 1.3] and point out a scalar product in A[g] such that {P(q)}rex,
to be an orthogonal basis. In a sense, the reason for such an extension is that G-V; =:
MN(Vj) is the null-cone in Vj, and, as well as the nilpotent cone M C g, this variety is
an irreducible normal complete intersection. On the other hand, Theorem 4.10 yields
vanishing of higher cohomology of the structure sheaf OGXBV§+, and, together with [15],
this implies that 91(1};) has only rational singularities.

We conjecture that if y satisfies vanishing conditions of Theorem 4.10, then W) (¢) can
be interpreted as the “jump polynomial” associated with a filtration of a subspace of 1,
see Subsection 6.3. This is inspired by [5].

Acknowledgements. This work was completed during my stay at .LH.E.S. (Bures-sur-Yvette) in

Spring 2009. I am grateful to this institution for the warm hospitality and support.

1. NOTATION

Let G be a connected semisimple algebraic group of rank r, with a fixed Borel subgroup
B and a maximal torus 7" C B. The corresponding triangular decomposition of g = Lie(G)
isg=u" ®t@uand b = t® u. The character group of 7" is denoted by X. Let A be the
root system of (G,T). Then B determines the set of positive roots A* and the monoid of
dominant weights X .

e Il is the set of simple roots in A*;
® ©1,..., ¢, are the fundamental weights in X .

Write W for the Weyl group and s, for the reflection corresponding to o € A*. Set
N(w) = {a € At | wa € —A*} and e(w) = (—1)“™), where ((w) = #N(w) is the usual
length function on W. For i € X, let 4™ denote the unique dominant element in W . We
fix a W-invariant scalar product (, ) on X ®z Q. As usual, a¥ = 2a/(«, ) for o € A. For
any A € X, we choose a simple highest weight module V,; V' is the u-weight space in
Vy and mf = dim V.

We consider two partial orders in X. For p,v € X,

e the root order is defined by letting ;1 < v if and only if v — p lies in the monoid
generated by A™; notation y < v means that y < v and p # v;
o the dominant order is defined by letting i < v if and only if v — pp € X .

If U is a finite multiset in X, then || is the sum of all elements of ¥ (with respective
multiplicities). Recall that |AT|/2 = ¢; + ... + ¢,, and this quantitiy is denoted by p.

Let P be a parabolic subgroup of G. For a P-module N, let G x p N denote the homoge-
neous G-vector bundle on G/ P whose fibre over {P} € G/P is N; we write L¢/p(V') for
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the locally free O, p-module of its sections. If N is a submodule of a G-module, then the
natural morphism f : G xp N — G-N is projective and G-equivariant. It is a collapsing in
the sense of Kempf [13]. Recall that G- is a closed subvariety of V, since N is P-stable.
If dimG xp N = dim G- N, then f is said to be generically finite. If N’ is another P-module,
then G xp (N & N') is a vector bundle on G x p N with sheaf of sections L« . n(N').

For any graded G-module € = @;C; with dim €; < oo, its G-Hilbert series is defined by

Ha(C;q) Z Z dim Homg (Vy, €;)e’ ¢’ € Z[X][[q]).

J AEXy

2. MAIN DEFINITIONS AND FIRST PROPERTIES

Let V be a finite-dimensional rational G-module and N a P-stable subspace of V. We as-
sume that the T-weights occurring in N lie in an open half-space of X®7Q. (This hypothe-
sis implies that all v € NV are unstable vectors in the sense of Geometric Invariant Theory.)
Counting each T-weight according to its multiplicity in N, we get a finite multiset ¥ in X.

The generalised partition function, Py, is defined by the series Hﬁ Z Py (v
aE\II — ¢

Accordingly, its g-analogue is defined by

P
HaE‘I/(l - qea Z \Ijq

In view of our assumption on N, the numbers Py(v) are well-defined, and Py ,(v)
is a polynomial in ¢, with non-negative integer coefficients. Clearly, Py ,(v) counts
the “graded occurrences” of v in the symmetric algebra S*(N). That is, [¢/]Py4(v) =
dim (S7N).

For A € X, and ;1 € X, define the polynomials mj ;(¢) by

(2.1) my g (q) = Y e(w)Pug(wA+p) — (1 +p)).

weW
This definition makes sense for any multiset U. But we require that our ¥ to be always
the multiset of weights of a P-submodule of a G-module, since we are going to exploit
geometric methods.

For N = u C gand ¥ = A", one obtains Lusztig’s ¢g-analogues of weight multiplicity
[16] (= Kostka-Foulkes polynomials for A), and m{ ,, (1) = m}. Therefore, m} y(q) is
said to be a (V, ¢)-analogue of weight multiplicity or geﬁemlised Kostka-Foulkes polynomial. 1f
U = A%, we will omit the subscript A* in previous formulae.

As m) 4 (q) is a polynomial in g, one might be interested in its derivative. For ¥ = A™,
a nice formula for diqu((q) is found by Broer [3, p.394]. We notice that his method works
in general, and it is more natural to begin with a formula for the derivative of Py 4(v).
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Theorem 2.1. T\I, d) =D Py (v — ).
YEW n>1

Proof. The derivative diqf])q,7q(1/) equals the coefficient of ¢ in the expansion of Py ,4(v). Let
the polynomials R, ,,(¢) be defined by the generating function

1 — ge” > Pugri(v n
= e = S e — 2 2 Rm@e

aev¥ ©n n=0

It is easy to compute these polynomials for n = 0,1. First, taking ¢ = 0, we obtain
>, Rou(g)e" = 1. Second, we have

/

1 — qe®
2 Fuula)e = [H TG

acV

LYyt

aE\II ac¥ n>1

’t:O =

n—1

if u =na,aa €V
Hence Ry ,(q) = 1 s
0, otherwise.

Next, >, Py gri(v)e” =32, R u(@)Puq(7)e" 7", Hence

j)\P,q+t(V)ey = Z :Rn,,u(Q):P\I/,q(V - M)tnv

n,p
and extracting the coefficient of ¢t we get the assertion. 0
Corollary 2.2. mA o Z Z ¢ 1m§\“g[]n'y

YEV n>1

It would be nice to have a formula for the degree of these polynomials and neces-
sary conditions for mj ;(¢) to be nonzero. For Lusztig’s g-analogues, it is easily seen that

mi(q) # 0if and only if ;1 < A, and deg m{(¢) = ht(A — ). However, if U is arbitrary, i.e.,
there is no relation between A" and V, then it is impossible to compare the degrees of
different summands in Equation (2.1). The only general assertion we can prove concerns
the case in which ¥ C A™.

Lemma 2.3. Suppose that W C A*. Then w} ¢ (q) = 1 and if m} ,(q) # 0, then p < \.

Note that if m} ;(q) # 0, then it is not necessarily true that A\ —  lies in the monoid
generated by V.

3. COHOMOLOGY OF LINE BUNDLES AND GENERALISED KOSTKA-FOULKES
POLYNOMIALS

3.1. Statement of main results. We assume that P D B and choose a Levi subgroup
L C P such that L D T. Write n for the nilpotent radical of p = Lie(P), and A(n) for the
roots of n; hence A(n) C A*. Let X denote the character group of P. Obviously, X is
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the character group of the central torus in L, and we may identify X” with a subgroup of
X. Then %i = X, N X? is the monoid of P-dominant weights, i.e., the dominant weights
A such that P stabilises a nonzero line in V). Let pp be the sum of those fundamental
weights that belong to X”.

In this section, we prove the following two theorems:

Theorem 3.1. Set Z = G xp N. For u € XF, let Lz(1u)* be the dual of the sheaf of sections of
the line bundle G xp (N @ C,) — Z. Then

(i) H(Z,Lz(n)*) =0 forall i > 1 whenever i > pp + || — |A(n)].
(ii) If the collapsing Z — G-N is generically finite, then H'(Z,Lz(p)*) = 0 forall i > 1
whenever p > |V| — |A(n)].

Theorem 3.2. Suppose N is P-stable and y € X7

(i) If u> pp + V] — |A(n)|, then m (q) has non-negative coefficients for any A € X .
(ii) If the collapsing G xp N — G-N is generically finite, then mj (q) has non-negative
coefficients for any \ € X whenever u > |¥| — |A(n)|.

(Note that ||, |A(n)| € XF. Hence both inequalities concern weights lying in X*.)
q ghts lymng

Actually, Theorem 3.2 follows from Theorem 3.1 and a relation between (U, ¢)-analogues
and cohomology of line bundles, see Theorem 3.9 below. Such an approach to (¥, q)-
analogues is inspired by work of Broer [1, 2].

3.2. Algebraic-geometric facts. For future reference, we recall some standard results in
the form that we need below. Let U be the total space of a line bundle on an algebraic
variety Z and 7 : U — Z be the corresponding projection. If £ is a locally free Oz-module,
then £* is its dual.

Lemma 3.3. Let F be the sheaf of sections of .

(i) If £ is alocally free O z-module of finite type, then (7" L) = @, 5o(L ® (F=")*).
(i) If G is a quasi-coherent sheaf on U, then H'(U,G) = H'(Z,7.G) for all i.

Proof. (i) Use the ”projection formula” and the equality 7.(Op) = D, 5o (F*")*.
(ii) This is true because 7 is an affine morphism. U

Thus, vanishing of higher cohomology for 7*£ will imply that for £® (F®")* for all n > 0.
The following is a special case of the Grauert-Riemenschneider theorem in Kempf’s ver-
sion ([13, Theorem 4]):

Theorem 3.4. Let wy denote the canonical bundle on U. Suppose there is a proper generically
finite morphism U — X onto an affine variety X. Then H'(U,wy) = 0 forall i > 1.
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3.3. Proof of Theorem 3.1. Recall that N is a P-submodule of a G-module V, V is the
corresponding multiset of weights, and ¥ belongs to an open half-space of X ®z Q. Our
goal is to obtain a sufficient condition for vanishing of higher cohomology of line bundles
onZ =G xp N.

For € X%, let C, denote the corresponding one-dimensional P-module. Consider
U =G xp (N @ C,) with projections 7 : U — G xp N and s : U — G/P. Then m makes
U the total space of a line bundle on Z. For simplicity, the sheaf of sections of this bundle
is often denoted by £ z(x) in place of Lz(C,,). Note that Lz(p)* = Lz(—p). We regard C,
as the highest weight space in the G-module V,,. Therefore U admits the collapsing into
Vaev,.

Since U is the total space of a G-linearised vector bundle on GG/ P, the canonical bundle
wy is a pull-back of a line bundle on GG/ P. The top exterior power of the cotangent space
atexn € U (e € Gistheidentityand n € N ® C,)is

N (g/p) @ APN* @ (C,) = NP ® (NPN)* © (C,)"
The corresponding character of P is v — p, where 7 := |A(n)| — |¥|. Therefore
wy =~ Kk (Layp(Cyop)) =7 (Lz(y — 1)).

By Lemma 3.3, we obtain 7.(wy) = ©,,5 Lz(7 — 1) ® Lz(nu)* and hence

HZ(U7 <"}U) = @ HZ(Zv EZ(<n+1)M_7)*)'

n>0

In order to apply Theorem 3.4, we need sufficient conditions for the collapsing
fu.:U—-G(NaC,)
to be generically finite. There are two possibilities now.

A) The collapsing f : Z — G-N is generically finite.
It is then easily seen that f, is generically finite for any ;. € X . This yields the following
vanishing result:

Proposition 3.5. If fy : Z — G-N is generically finite and v = |A(n)| — ||, then
HY(Z,Lz((n+1)p—7)") =0
forany p € XY and alln > 0, i > 1. In particular, taking n = 0 and letting v = y1 — ~y, we obtain
H'(Z,Lz(v)") =0 foralli > 1

ifv e X' is such that v > |¥| — |A(n)|.
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B) The collapsing f : Z — G-N is not generically finite.
Here we have to correct the situation, i.e., choose 1 such that f, to be generically finite.

Looking at the collapsing f,, : G xp (N @ C,) — G-(N @ C,) the other way around, we
notice thatif ¢, : G xp C, — G-C, C V,, is generically finite, then so is f,. However, v, is
generically finite (in fact, birational) if and only if 1 € X/ is a P-regular dominant weight,
ie., u > pp. Equivalently, = i + pp for some o € X7.

This provides a weaker vanishing result that applies to arbitrary P-submodules.

Proposition 3.6. Let N be an arbitrary P-submodule. If i1 € X% and > pp, then
HY(Z,Lz((n+1)u—7)") =0
foralln >0, > 1. In particular, taking n = 0 and letting v = p — -y, we obtain
HY(Z,Lz(v)")=0foralli>1

whenever v € XF and v > pp + || — |A(n)|.

Combining Propositions 3.5 and 3.6, we obtain Theorem 3.1.

Remark 3.7. The estimate in part B) is not optimal, because we do not actually need generic
finiteness for 7,,. It can happen that both f and v, are not generically finite, while f, is.
(See e.g. Theorem 4.2 below.)

3.4. Proof of Theorem 3.2. The cohomology groups of Lz (1) = L« .~ (1) have a natural
structure of a graded G-module by

H'(G xp N, Laxpn(p) ~ @ H(G/P, Leyp(S'N* @ C,)),

J=0

where S N* is the j-th symmetric power of the dual of N. Set H* () := H(Z,Lz(u)*). It
is a graded G-module with

(H'(n)); = H(G/P, Layp(S'N @ C,)").
As dim(H'(p)); < oo, the G-Hilbert series of H'(u) is well-defined:
He(H'(1n);q) = > Y dimHomg (Va, (H'(1));)e*q’ € Z[X][[q].
J Aexy

We also need the non-graded version of functor Hq. If M is a finite-dimensional G-
module, then
He(M) = > dimHomg(Vi, M)e* € Z[X].
AEXL

This extends to virtual G-modules by linearity.
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Assume for a while that P = B, i.e,, Z = G’ xg N. By the Borel-Weil-Bott theorem for
G/B, we have

, Vi, fv=w(p+p) —peXiand {(w) =
Hf(G/B,zG/B<u>*>{ (h+p) = p € Xy and bw)

0, otherwise.

Using the non-graded functor H, one can also write

(3.1) He(D) (—1)'H'(G/B,La/p(n)")) =

)

e(w)e”, ifv=w(p+p) —peX,.
0, otherwise.

The following result is well known in case of Lusztig’s g-analogues, see e.g. [5,
Lemma 6.1]. For convenience of the reader, we provide a proof of the general statement.

Theorem 3.8. For any i € X, we have

S (D) HG(H'(G x5 N, Lowpn (1));q) = Y wh y(g)e

% AeX,

Proof. Each finite-dimensional B-module M has a B-filtration such that the associated
graded B-module, denoted M, is completely reducible. Then

S (V' H(G/B. Layn(M)") = (=1 H'(G/B. Layn((31)").

We will apply this to the B-modules SN ® C,, j =0,1,....

> (=)"Ha(H'(G x5 N, L ,n(1)*5q)

i
]

- ZHG(Z<—1)iHi(G/B> Lep(8'N @ Cu))iq)
_ ZHG(Z<_ )Y H'(G/B, La/p(S'N ® C,)*); q)
= Z > dim(§'N)" JHG(Z<—1>1‘H¢<G/B,£G/B<V+u>*)

= Y Py, (MG Z(—l)iH%G/ByEo/B(v+u>*)7

vES*N

where notation v F S/ N means that v is a weight of S N. By the BWB-theorem, the weight
v + p contributes to the last sum if and only if v + 1 + pis regular, i.e, w(v +p+p) — p =
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A € X, for a unique w € W. Therefore, using Eq. (3.1), we obtain
> Pug)He(D (=1)'H(G/B, Lop(v+ p)*) =
YN cw)Pug(w A+ p) = p—p)et =D mh y(g)e,

AEX; weW pYSK

as required. O

Theorem 3.9. For any u € X', we have

D (—1)Ha(HY(G xp N, Lawpn(1));q) = > mh (g

7 Aexy

Proof. Using the Leray spectral sequence associated to the morphism G/B — G/P, one
easily proves that, for any p € X7, there is an isomorphism

HY(G/B, Lo/n(S'N © C,)") = H'(G/P, Lop(S'N ® C,)").
Thus, the assertion reduces to the previous theorem. O

Corollary 3.10. If p € X" and H'(G xp N, Lgxpn(p)*) = 0 for i > 1, then w¥ ;(q) has
non-negative coefficients for all A € X..

Now, combining this corollary and Propositions 3.5, 3.6, we obtain Theorem 3.2.

Remark 3.11. By Theorem 3.9, if higher cohomology of £z(1)* vanishes, then the polyno-
mial mj ,(¢) counts occurrences of V" in the graded G-module H°(Z, Lz(u)*). In partic-
ular, m} (1) is the multiplicity of V¥ in H°(Z, Lz(11)*).

3.5. If we wish to get a generically finite collapsing for a B-stable N C V, then P must
be chosen as large as possible. That is, we have to take P = Norm¢(N), the normaliser of
N in G. However, even this does not guarantee the generic finiteness.

Example 3.12. Let ¢ be a B-stable subspace of u C g. Actually, ¢ is a B-stable ideal of u. Let
P = Norm¢(c). The image of the collapsing G x p¢ — G- is the closure of a nilpotent orbit.
Hence dim(G-¢) is even. However, dim(G x p ¢) can be odd. For instance, take ¢ = [u, u]. If
G is simple and G # S L, then Norm¢([u, u]) = B. But dim(G x g [u,u]) is even if and only
if rk(G) is. It can be shown that the collapsing G x 5 [u,u] — G-[u,u] is generically finite if
and only if g € {A,,, Bs,,, Cay, Eg, Es, Fy, Go}.

B-stable (or “ad-nilpotent”) ideals of u provide the most natural class of examples of
generalised Kostka-Foulkes polynomials. There is a rich combinatorial theory of these
ideals. In particular, the normalisers of ad-nilpotent ideals has been studied in [21].
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Example 3.13. a) For G = SLs,1, consider ¥ = {y € A" | ht(y) > n+1}. The correspond-
ing ad-nilpotent ideal is u,, = [...[u,u],...,u]. By direct calculations, |¥| = p. Therefore
~~

the normaliser of u,, equals B [21, Theorem 2.4(ii)]. Next, dim(G xp u,,) = 2n? + 2n + (;)
and the dense orbit in G-u,, corresponds to the partition (2,...,2,1). Therefore dim G-u,, =
2n? + 2n, and the collapsing is not generically finite unless n = 1. By Theorems 3.1(i) and
3.2(i) with P = B, we obtain

- HY (G Xp Uy, Loxpu, (1)*) =0forany p € X, and i > 1;

— m) y(¢) has non-negative coefficients for all \, 1 € X .

b) For G = SL,,, consider ¥ = {y € A" | ht(y) > n}. The corresponding ad-nilpotent
ideal is u,,_;. Since | V| = p+¢,, the normaliser of u,,_; equals B. Again, direct calculations
show that dim(G X g w,_1) — dim G-u,_; = (}). Here we have

- H(G xp Uy, Loxpu, ,(1)*) =0 forany pu > p, and i > 1;

— mj (¢) has non-negative coefficients for all A € X, and ;1 > ¢,

Remark 3.14. For an arbitrary B-stable subspace N C V, the normaliser of N is fully
determined by |¥|. The proof of [21, Theorem 2.4(i),(ii)] goes thorough verbatim, and it
shows that | V| is dominant and

the root subspace g_,, (a € II) B
{belong to Lie(Normg(N)) } < {(a,[¥]) =0}

Equivalently, one can say that Normg(N) = Normg (AY™ N N), where AY™ NN C Adm Ny,

4. THE LITTLE ADJOINT MODULE AND SHORT ¢-ANALOGUES

Let G be a simple algebraic group such that A has two root lengths. There is a special
interesting case in which ¥ = AT is the set of short positive roots. The subscripts ‘s” and
‘1’ will be used to mark objects related to short and long roots, respectively. For instance,
A, is the set of all long roots, AT = AT UAS, and II, = TINA;,. Let 6 be the short dominant
root. The G-module Vj is said to be little adjoint.

Lemma 4.1. The set of nonzero weights of Vg is Ay; mf§ = 1 for v € Ay and m = #11,.

The last equality is proved in [20, Prop. 2.8]; the rest is obvious. It follows that there is
a unique B-stable subspace of ; whose set of weights is Af. Write V" for this subspace.
In the rest of the article, we work with ¥ = Af and the B-stable subspace N = V. In
place of P+ () and miA:
m%(q) are said to be short g-analogues (of weight multiplicities).

We have X, NA] = {0}. Set p, = }|Af|and p, = 3|A[|. Itis easily seen that p, (resp. p;)
is the sum of fundamental weights corresponding to Il (resp. 1I;). Let H be the connected

(q), we write P,(v) and ™} (q), respectively. The polynomials
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semisimple subgroup of G that contains 7" and whose root system is A;. The Weyl group
of H is the normal subgroup of IV generated by all “long” reflections. It is denoted by W.
Let G(II;) (resp. g(Ils)) denote the simple subgroup of G (subalgebra of g) whose set of
simple roots is II,. Then rk g(Il;) = #II, and B N G(Il;) =: B(Il;) is a Borel subgroup of
G(Ily). Clearly, G(Il;)-T' =: L is a standard Levi subgroup of G and G(Il;) = (L, L).

The collapsing G' xp Vg — G-ngr is not generically finite, and Theorem 3.2(i) (with
pp = p, A(n) = A, and |A}| = 2p;) yields the bound p > 2p, — p = ps — p for my(q).
However, in this case there is a better bound, and our first goal is to obtain it. To this end,
we need some further properties of little adjoint modules.

The weight structure of Vj; shows that V;|¢,) contains the adjoint representation of
G(Il). To distinguish the Lie algebra g(II;) sitting in g and the adjoint representation of
G(I1y) sitting in Vj, the latter will be denoted by g(I1;). That is,

Vilea,) = 8(IL) @ R,

where R is the complementary G(I1;)-submodule. The above decomposition is L-stable
and hence T-stable. We have R” = 0 and the weights of R are those short roots that are
not Z-linear combinations of short simple roots. Furthermore, V;“ =g(Il,)* & R*, where
R* C Rand g(Il;)" = g(II;) Nu is a maximal nilpotent subalgebra of g(II;).

Theorem 4.2. If ju>> py, then the collapsing f\°) - G x 5 (V;7@C,) — G-(V;” @ C,) is birational.

Proof. Recall that C,, is the line of B-highest weight vectors in V. Obviously, £ is bira-
tional if and only if the following property holds: for a generic point (v,v,) € V;" @ C,, if
g-(v,v,) € V; ®C, (g9 € G), then g € B. Let P denote the standard parabolic subgroup of
G whose Levi subgroup is L. If 113> p;, then the normaliser in G of the line (v,,) is contained
in P. Consequently, if g(v,v,) € V;" & C,, then g € P.

Take v =v' +r € V;" (r € R) such that ¢’ is a regular nilpotent element of g(II,)". Write
g = g192 € P, where ¢g; € G(Il,) and ¢, lies in the radical of P, rad(P). It is easily seen that
rad(P) preserves R* and acts trivially in V" /R*. Therefore g, does not change the g(II,)-
component of v, i.e., go-v = v'+7' (r' € R"). Hence g-v = g;-v' + g1-r', and g;-v' € g(II,) " is
still a regular nilpotent element of g(II;). But the latter is only possible if g; € B(Il;) and
hence g € B. O

Corollary 4.3. If v + p, € X, then
(i) H(G xp V;_,,CGXBV';(V)*) =0fori>1;
(it) mY(q) has non-negative coefficients for all A € X .

Proof. (i) Set U = G xp (V;- @ C,) and Z = G xp V;". Then wy = Ly(y — p), where
v = |AT| = |Af| = 2p,. By Theorems 3.4 and 4.2, H (U, wy) = 0 for i > 1 whenever 1 > p;.
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Hence H(Z, Lz((n+1)u—)*) = 0, see Section 3. In particular, H(Z, Lz(v)*) = 0, where
v = u — 7. It remains to observe that v > —p,.

(ii) This follows from (i) and Theorem 3.8. OJ

Remark 4.4. The proof of Corollary 4.3(i) uses (a version of) the Grauert-Riemenschneider
theorem. However, for v = 0 (at least) one can adapt Hesselink’s proof of [9, Theorem B],
which does not refer to Grauert-Riemenschneider and goes through for any algebraically
closed field k of characteristic zero. Using this, one can prove the following: Let N be any
B-stable subspace of Vj such that N O V;*. Then H'(G x5 N,Og, ) = 0fori > 1.

Let us describe a semi-direct product structure of W, which plays an important role below.
Consider two subgroups of W

e W, is generated by all “long” reflections in W. It is a normal subgroup of W.

e W(Il,) is generated by all simple “short” reflections, i.e., by s, with a € II,.

Lemma 4.5. (i) W isasemi-direct product of W, and W (Il,): W ~ W (IL,) x W,.
(i) W(IL) = {we W | w(Af) € A}

Proof. (i) Since W) is a normal subgroup of W and W, N W (1l,) = {1}, it suffices to prove
that the natural mapping W (Il;) x W; — W is onto. We argue by induction on the length
of w € W. Suppose w ¢ W (Il,) and w = wysgws € W, 3 € 11, is a reduced decomposition.
Then w = wywssg, where 5/ = wy(f) € A, and (wywe) < ¢(w). Thus, all long simple
reflections occurring in an expression for w can eventually be moved up to the right.

(ii) Since s,(A) € Af for o € I, W(Il;) € {w € W | w(A) C Af}. On the
other hand, if w(A) € A and w = w's, is a reduced decomposition, then the equality
N(w) = so(N(w"))U{a} shows that « is necessarily short, so that we can argue by induction
on {(w). O

Recall that the null-cone of a G-module V, 91(V), is the zero set of all homogeneous
G-invariant polynomials of positive degree. Next proposition summarises invariant-
theoretic properties of V; and 91(Vj;) required below, which are of independent interest.
All the assertions can easily be verified using the classification, but our intention is to
present a conceptual proof.

Proposition 4.6. a) M(V;) = G-V;". Hence it is irreducible;

b) The restriction homomorphisms C[Vz] — Clg(IL,)] — C[V] induce the isomorphisms
C[V5)¢ = C[g(I1,)]¢M) = CVW M), and C[V5] is a polynomial algebra.

c) N(Vp) is a reduced normal complete intersection of codimension #(11).



14 D.PANYUSHEV

Outline of the proof. We refer to [22] for invariant-theoretic results mentioned below.

a) This follows from the Hilbert-Mumford criterion and the fact any maximal subset of
weights of Vj, lying in an open half-space, is I¥-conjugate to A}.

b) The weight structure of Vj shows that V) = V.. If v € V is generic, then g-v + V) =
Vj. Therefore G-V7 is dense in V; and a generic stabiliser (= stabiliser in general position) for
G:Vj contains H. Actually, it is not hard to prove that H is a generic stabiliser for G:Vj. By
the Luna-Richardson theorem, we then have C[V;]¢ = C[V|NeUD/H and it is easily seen
that Ne¢(H)/H ~ W/W; ~ W(II,). Furthermore, the W (II,)-action on V7 is nothing but
the standard reflection representation on the Cartan subalgebra of g(I1;).

c) Let fi,..., fm be basic invariants in C[V;]¢ ~ C[g(IL,)]¢"), m = #(II,). Let
e € g(Il;) C Vj; be regular nilpotent. Then the differentials of the f;’s are linearly inde-
pendent at e € N(Vj;) [14]. Hence the ideal of M(Vj3) is (fi, ..., fm) and MN(Vp) is a reduced
complete intersection (cf. [14, Lemma4]). Finally, 9(Vj) contains a dense G-orbit whose
complement is of codimension > 2. This yields the normality. O

Our ultimate goal is to get a complete characterisation of weights p € X such that m)(q)
has nonnegative coefficients for any A € X. To this end, we exploit a different approach
that does not use vanishing theorems of Section 3.

A key observation is that short g-analogues obey certain symmetries with respect to
the simple reflections s, € W, a € II;. Clearly, s,(Af) = A7. Therefore P,(v) = Py(sav).
Using this, we compute

@1) mi(q) = > e(w)Py(wA +p) = (1 +p))
weWw
= Y c(W)Py(saw(A+p) = salpi+p) = = > e(w)Py(w(A+ p) = sapt = 5ap)
weWw weW
= =D @)y (wA+p) = (sap — a + p)) = —my “(g).

The shifted action of W, on X is defined by

wOy=wly+mp)—
For a € II;, one easily recognise s, (/1 + «) as s, © p and hence Eq. (4.1) can be written as
m5*“*(g) = —m}(q). This readily implies the equality
(4.2) my " (g) = e(w) Wh(q)

for any w € W;. Note that for w € W, the length /(w) depends on the choice of ambient
group, W or W, but the parity ¢(w) does not! (This is because ¢(w) = det(w) for the
reflection representation of W in X ®z Q.)
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Let X, y denote the monoid of H-dominant weights with respect to A;". From (4.2), we
immediately deduce that

e it suffices to know m}(q) for u € Xy — pi.

e if such a p is not H-dominant, then it lies on a wall of the shifted dominant Weyl
chamber for H, and hence m)(q) = 0.

e Thus, the problem is reduced to studying polynomials m)(q) for 1 € X, g.

Short g-analogues enjoy several good interpretations at ¢ = 1. Write m¥ in place of m5(1).

(1) As already observed in Remark 3.11, if higher cohomology of £z(v)* vanish, then
mY is the multiplicity of V' in H(Z, Lz(v)*).

(2) Ifv e Xy yand Vi) is a simple H-module with highest weight v, then m¥ is the
multiplicity of Vi) in Vi |, denoted muIt(Vl,(H), Vilm), see [8, Lemma 3.1].

(Our m¥ is mf’H(u) in the notation of [8]. In fact, Heckman works in a general situation,
where H C G is an arbitrary connected reductive group.) Furthermore, the numbers m¥
are naturally defined for all A\, v € X and they satisfy the relation

(4.3) Tyt = e(w)e(w)my, weW, e W,

(See Equation (3.7) in [8].) The semi-direct product structure of W provides an extra
symmetry to this picture that is absent in the general setting of [8]. Namely, if v is H-
dominant, then so is wv for any w € W(Il,). Using this one easily proves that m% = my”
forall A € X, and w € W(ILy).

Recall that {y"} = WuNX,. Let w, denote the unique element of minimal length such
that w,(n) = pt.

Lemma 4.7. If n € X, g, then w, € W(Il,) and hence i~ — v is a nonnegative Z-linear
combination of short simple roots.

Proof. It is known that N(w,) = {y € A" | (y,p) < 0}, see [4, Prop.2(i)]. Since p is
H-dominant, N(w,) C A}, and we conclude by Lemma 4.5(ii). O
Proposition 4.8. Let ;1 € X p.

1) Suppose that there is v € X such that p < v < p*. Then mt(q) # 0and m* = 0. In
particular, m*(q) has both positive and negative coefficients.

2) If Vi, occurs in H(G/B, La/p(S*(V;") @ C,)*), then j = ht(u* — p). Furthermore, for
j=ht(u" —p), H°(...) contains a unique copy of V..

Proof. 1) Since w, € W(II,), we have m* = 7', and the latter equals zero, because
v < pt. (Obviously, the H-module with highest weight ;1 cannot occur in V,,|.)
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Since 4 < v < pt and pt — p is a nonnegative Z-linear combination of short simple

roots, the latter holds for v — p as well. Set a = ht(v — u). By definition,
m(q) = Y e(w)Py(w(v + p) — (1 + p))-
wew

Asv—ypu € Span(Il,), the summand P, (w(v+p)—(u+p)) can be nonzero only if w € W (IL,).
Forw = 1, wehave P, (v—u) = ¢°+ (lower terms). If w # 1, then deg P, (w(v+p)—(u+p)) <
a. Hence the highest term of m%(q) is ¢%, and we are done.

2) This readily follows from the BWB-theorem and Lemma 4.7. OJ

Our main result on non-negativity for short g-analogues is a converse to the first claim of
the previous proposition. For the proof of the main theorem, we need a technical lemma.

Lemma 4.9. 1) Suppose that V; occurs in H'(G/B, La/p(N (V3/V;) @ C )*) Then v < pt.
2) (Forv = p*) If V¥, occurs in H'(G/B, La/p(N (Vg/ V") @ C,)*), then j =i > (w,,).

Proof. Set M; = N (V5/V;") ® C,.

1) If V; occurs in H'(G/B, La/5(M;)*), then it also occurs in H(G/B, Lg/5(M;)*). By
the BWB-theorem, there is then a weight v of M, and w € W such that /(w) = i and
w(y + p) — p = v. All weights of M, are of the form p — |A| for some A C A}, where
#(A) < j. Hence w(p + p — |A]) = p + v. Clearly, w(p — |A]) = p — |C| for some C' C Af
depending on w and A. Thus, w(p + p — |A]) S w(p) + pand v < w(p) < p'.

2) If V¥ occurs in H “(G/B, Lg/(M;)*), then, by the first part of the proof, we must
have w(pu + p — |A|) = p+ u*, where A C A} and ¢(w) = i. Hence w(p) = pt and
w(p—|A|) = p. Therefore A = N(w) and i = {(w) = #(A) > l(w,,). Since #(A) < j as well,
we are done. O

The following is the main result of this section.

Theorem 4.10. For ;1 € X g, the following conditions are equivalent:

(i) HY(G xp V', £GXBV+( )*)=0foralli >

(it) ™A (q) has nonnegative coefficients for any X € %Jr,
(i) IfuxvutforveX,, thenv =put;

(iv) (u,a") > —1foralla € Af.

Proof. By Corollary 3.10, (i) implies (ii); and Proposition 4.8 shows that (ii) implies (iii).
Since v is already assumed to be H-dominant, (iii) and (iv) are equivalent in view of [4,
Prop. 2(iii)].

It remains to prove the implication (iii) = (i). Our argument is an adaptation of Broer’s
proof of [1, Theorem 2.4]. We construct a similar Koszul complex and consider its spectral
sequence of hypercohomology.
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The pull-back vector bundle G x5 (V5 @ (V3/V;")) on X := G xp Vj has the global G-
equivariant section g v — g (v, 7) whose scheme of zeros is exactly Z = G xp V. Here
v is the image of v € V; in Vj;/ Vg. Let . : Z — X denote the inclusion. The dual of this
section gives rise to a locally free Koszul resolution of Oz regarded as O x-module:

s Fr S5 P ,0 -0

with 77 = Lx(N(V3/V;)*[-j]. Here the brackets ‘[—j]" denote the degree shift of a
graded module. (That is, if M = &M;, then M[r|; = M, ;.) Therefore the generators of
the locally free O x-module F 7 have degree j. Tensoring this complex with the invertible
sheaf Lx(C,)* = Lx(1)*, we get a locally free resolution of graded O x-modules

(4.4) F()* = Lg(u)" — 0,

where F(u)™ = Lx (N (Vz/V;") ® C,)*[—j]. Since X ~ G/B x V3, we have the isomor-
phism

H'(X, Lx (N (V/V") @ Cu)") = C[Vg] @ H'(G/B, Lo/p(N (Vg/V5") ® Cu)*)

of graded C[Vj]-modules. For the spectral sequence of hypercohomology associated to
the Koszul complex (4.4), we have

HY X, 1.Lz(pn)*) = HYZ, Lz(n)*), ifl=0;

1"kl kXJ_Cl *\) _
By = HY(X, 30(F(1)")) {0’ 140

and

Byt = H'(X, F(u)") = C[Vyl[k] @ H(G/B, Loys(N*(Va/V5") ® CL)").
(See [25, 5.7] for basic facts on hypercohomology.) It follows that there is a spectral se-
quence of graded C[Vj]-modules

45)  'E =CVjl[—jl® H(G/B, Leyp(N (Va/Vy) @ C)*) = H(Z, Lz(1)*).

Let i — j be maximal with H*(G /B, Lg/5(N (V5/V;") ® C,)*) # 0. If V;* occurs in this co-
homology group, then v < p*, by Lemma 4.9(1). A basis for V,* corresponds to some free
generators of C[V;]-module’E;”" of degree j. Since i — j is maximal, these generators are
in the kernel of d;”". But they are not in the image of d;’ ", as all elements of 'E, 7~
are of degree > j. Hence these generators correspond to nonzero generators of ', 7.
Likewise, their images in /£, ”* do not vanish. In view of convergence of the above spec-
tral sequence, this implies that the multiplicity of V" in H7(Z, Lz(p)*) is  at least one. It
follows that, for some m € N, the multiplicity of V" in H"/(G/B, L¢/5(S™(V,") @ C,)*)
is also at least one. Any weight of (V") ® C, is of the form y 4 v with = 0. Hence
v+p=w(p+vy+p) for some w € W with {(w) = i — j. Consequently, v = p and alto-
gether 4 < v < u". Hence v = u*. Now, Lemma 4.9(2) yields i = j > {(w,,). In particular,
condition (i) holds. O
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The following is an analogue of [1, Prop. 2.6].

Proposition 4.11. Suppose that ;1 € X, p satisfies vanishing conditions of Theorem 4.10. Then
the graded C[Vy]-module H°(Z, Lz (11)*) is generated by the unique copy of V¥, sitting in degree
ht(u™ — ).

Proof. Eq. (4.5) an the last part of the proof of Theorem 4.10 shows that

e The generators of the C[Vj]-module H°(Z, L z(11)*) arise from G-modules sitting in
HI(G/B, La/s(N (Ve Vi) © C,)), with i > (u,);

o H'(G/B, La/p(N'(Vy/V;") ® C,)*) only contains G-modules of type V7, .
It follows that the degree of generators of H(Z,Lz(1)*) is at least ¢(w,). On the other
hand, if H°(G/B, £G/B(SJ/'(;/?) ® C,)*) contains a G-submodule of type V7, then j <
ht(u™ — p) by Proposition 4.8(2). Therefore, there cannot be generators of degree larger
than ht(p* — ). It only remains to prove that if 1 € X  satisfies the vanishing condition,
then ¢(w,) = ht(u* —p). Clearly, £(w,) < ht(u™ —p). Assume the inequality is strict. Then
there is a w € W and a simple reflection s; such that p < w(p) < s;w(p) < pt and
siw(p) = w(p) + ka; with k& > 2. Then v := w(u) + «; belongs to the convex hull of w(p)
and s;w(p); hence < v+ < p*, which contradicts the vanishing condition. O

Finally, we mention that above two interpretations of numbers mY and Theorem 4.10
lead to an interesting equality.

Proposition 4.12. If v € X, g and (v,a") > —1 forall « € AT, then H°(G/H, EG/H(VV(H)*))
and H°(G' xp V5", L, v+ (v)*) are isomorphic G-modules. In particular, for v = 0, we obtain
0

C[G/H] ~ C[G xp V;"] as G-modules.
Proof. By Frobenius reciprocity,
mult(Vy, H(G/H, Le/n (V) = mult(VED, Vi g).

Hence the multiplicity of V¥ in both spaces H’(..) under consideration is equal to m%. O

5. SHORT HALL-LITTLEWOOD POLYNOMIALS

In this section, we define “short” analogues of Hall-Littlewood polynomials and establish
their basic properties. Recall that A is a reduced irreducible root system, and A™ = A LI
Af, II = II, U I, ete. It is convenient to assume that in the simply-laced case all roots
are short and II; = @. Then the following can be regarded as a generalisation of Gupta’s
theory [6, 7].

The character ring A of finite-dimensional representations of G is identified with Z[X]".
For A € X, let x, denote the character of V), i.e., x, = ch(V)) = ZM mhet. By Weyl’s char-
acter formula, x, = J(e**?)/J(e?), where J = Y . e(w)w is the skew-symmetrisation
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operator. Weyl’s denominator formula says that J(e”) = e”[],.,(1 — e ). The usual
scalar product (, ) on A = Z[X]V is given by (xx, x») = 0.

The projection j : Z[X] — Z[X]V is given by j(f) := J(f)/J(e’).
Set t&ns)(q) = 3" ¢'™), where the summation is over w € W (Il,),, the stabiliser of ) in
W (I1,).

We will work in the g-extended character ring Al[g]] or its subring Alg] and agree to
extend our operators and form g-linearly. We first put

< (s) ef _
A = ;A =er (1 —qe™@).
b e N By 1§
For \, u € X, define :
= O 1 s
Eu(q) = j(eA"), Palg) = (AP
tx (q)

Clearly, E,,(q) € A[[g]] and t{™(¢)-Px(q) € A[g]. It will immediately be shown that P,(q)
is a well-defined element of Ag], i.e., t&ns) (q) divides j (e’\-Aff)) in A[q]. We say that P,(q)
is a short Hall-Littlewood polynomial. (For, if AT = A" orif AT and II, are replaced with A"
and II in the above definition, then one obtains the usual Hall-Littlewood polynomials
Py(q) for A.)

Proposition 5.1.

Pyg)=J( ][  (1—qeM))Jp)"

aeAT, (a,\)>0

Proof. 1) First consider the case in which A = 0. Here
J(e”)-j(eo-Ags)) - J( Z (_q)#Aep—IAI).
AcAf

It is known that p — |A] is regular if and only if A = N(w) for some w € W [17]. Since
A C Af, Lemma 4.5(ii) shows that actually w € W(II;). Hence

J(Y (=g#ter My = 37 (=g ) = D q" ™I =5 (@) T ().
AcAf weW (I1s) weW (I1;)
This proves that Py(q) = 1.
2) For an arbitrary A € X, we notice that ) i, e(w)w(e? [ enr(1 — ge™®)) is
divisible by t(AHS) (q), by the first part of proof.

(One has to consider the splitting [[,ca+(1 —¢e™) =[] (=0 - ) L (ar)>0(- - - ), and
use the fact that w([[,. ,0)>0(1 — 2€¢7)) =1, (ar)50(1 — ge™) for any w € W)

This is already sulfficient to conclude that P,(g) belongs to A[g]. Further easy calcula-
tions that require a splitting W ~ W* x W, are left to the reader. O
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Remark 5.2. Our proof is inspired by the remark in [6, p.70, last paragraph], where
R. Gupta refers to Macdonald’s argument for the Hall-Littlewood symmetric functions.

Remark 5.3. The Hall-Littlewood polynomials P,(g) interpolate between the irreducible
ng #WA_) > wew € (if ¢ = 1). For the short Hall-
Littlewood polynomials P,(q), we still have P,(0) = XA At ¢ = 1, we obtain a linear

characters y, (if ¢ = 0) and orbital sums

combination of irreducible characters for H. Namely, if X/ denote the character of V"
€ X g, then
ﬁ)\(l) = # Z Xw)\
weW (IL)
An easy proof uses the semi-direct product structure of W (Lemma 4.5) and Weyl’s char-
acter formula for H. (Note thatif A € X, then w\ € X, g for any w € W(IL,).)

Theorem 5.4. In A[[q|], the following relations hold:

(1) (Bu(0), PA(q)) = 0r s

— tu
(2) EM(Q) = HaEAs<1 _ qea) HaeAs(l — qea).

Proof. (1) We mimic Gupta’s proof of [6, Theorem 2.5]. The plan is as follows:
(

Fu(q) and EO(Q) =

(i) If xx occursin E,,(q ) j( , ), then 7 = 1i; and the coefficient of y,, equals 1;

(i) If x, occurs in j(e*- A ) then 7 < A; and the coefficient of x) equals t( : (q),
(i) Putey, = (j(e*A qs)),](e A, ))> Then ¢, = ¢, » and hence
' (@) (Br(), Pal@)) = 5" (@)(Bula), Pa(a):

It will then follow that ¢y, = 8,-t\"*)(¢) proving the assertion.

(s)

For (i): By Weyl’s character formula, the coefficient of x in j(e*-A , ) equals the coeffi-
cient of e™** in (the expansion of)

T Eula) = 3 elwpu (H N qea)> .

This coefficient equals ), 5 £(w)¢#”, where the summation is over w € W and multi-sets
Bof At suchthatm+p=w(p+p+|B|). Thenm+p = w (7w +p)=pu+p+|B| = p+p.
Hence 7 = p. If m = pi, then the only possibility isw = 1 and B = @.

For (11): Now, we are interested in the coefficient of ¢™* in

Z e(w)w (e H (1—ge™®))

weW aeA;L

Itisequalto ), 4 e(w)(—q)**, where the summation is over w € W and subsets A C A}
such that 7+ p = w(A+ p—|A|). Since wA < Aand w(p—|A|) < p, weobtainm+p < A+ p.
Moreover, in case of equality we have w\ = Aand p—w~!p = | A|. This means that w € W),
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and N(w) = A € Af. By Lemma 4.5(ii), we conclude that w € W (Il,). Thus, #A = {(w)
and the coefficient of e*** equals 3°,cyyr1,), ¢ = (™) (q).
AV,

For (iii): Set £ = It is a W-invariant element of A[[¢]] and Af% =

1
HQEA (1 - qea) .
Hence j (e”-A(S )E = j(et A ) ). But € is also a self-dual character. Thus, we have
= (AP, j(eAP)E) = (e APE, j(e-A)) = cun.
(2) The equality E,(q) = HS ( )é-P,(q) is essentially proved in (iii). Taking ;1 = 0 yields
the rest. 0
Proposition 5.5. E,(q) = ., Mh(¢)xx.

ehtp

Proof. By definition, J(ep)Eu(q) =J (HaeAj(l — qea)> — ;?q(y>t](eu+u+p).

The weight i« + v + p contributes to the last sum if and only if 1 + v + p = w(A + p) for
some A € X, and w € W. Hence

SR )ty = 3T ST Py(wh+ p) — (1 + p)) (e

AEX; WEW
LSS a0 ) ek )~ X )
AeXL weW AEX,

O

Part 1(ii) in the proof of Theorem 5.4 shows that {Py(q)}cx, is a Z-basis in A[q]. Further-
more, Theorem 5.4(1) and Proposition 5.5 readily imply that
(5.1) X== Y mNq)Px(q).

rexy

Note that this sum is finite, since m’ (¢) = 0 unless \ < 7. Let us transform the expres-
sion for P,(q) given by definition:

J(e) 4\ (q) Pa(q) = J (e [ (1 —qe™))

aeAF
- (P e - o) = S () e
Hence P,(q) = m U;V w (eA Hﬁiii((ll : zea; ) ) , and substituting this in Equa-
tion (5.1) we obtain a generalisation of an identity of Kato (cf. [6, Theorem 3.9]):
(5.2) X = A; m(q) tf\nsl)(q) U;Vw (eA Hﬁii;((ll : Zf;?) _
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Taking g = 1, we obtain

T Zw( aeArfl—e“”)'

AEX, weW

Taking into account that W = W(IL,) x W; and m) = m** for any w € W(Il,), this

specialisation is equivalent to the formula x» = >>\cx, _ﬁxgH).

We introduce another bilinear form in A[g] such that { P,(¢)} to be an orthogonal basis.
To this end, the null-cone in Vj; plays the same role as the nilpotent cone 91 C g for the
Hall-Littlewood polynomials P,(q), cf. [7, §2].

For a graded G-module M = ¢;M; with dim M, < oo, the graded character of M,
ch,(M), is the formal sum Y, ch(M,)q" € A[[q]].
Proposition 5.6. The graded character of the graded G-algebra CI0(Vj)] equals
),
HaEAS(]‘ - qeOé) 0
Proof. The weight structure of V; (Lemma 4.1) shows that the graded character of C[V}]
equals ch,(C[Vj]) = .
q 4(C[Vg]) (1 — )7 HaeAs(l — ge®)
section of codimension m := #II, and the ideal of 9(V}) is generated by algebraically

chy(CIN(Vg)]) =

We know that 91(Vj) is a complete inter-

independent generators of C[V;]“. Furthermore, if dy, . . ., d,, are the degrees of these gen-
erators, thend; — 1,...,d,, — 1 are the exponents of W (Il;) (Prop. 4.6). Thus,
[T, (1 —¢*%) e 0+gt---+¢"
chy (CIN(V)]) = st — L0 = M= PO
( q) HQEAS( qe ) HO(GAS< qe )
and it is well known that téﬂs)(q) =112, (1 +q+--+qg% ). O

Combining Propositions 5.5 and 5.6 yields
chy(CIR(VR))) = Y ™ (a)x,
AeX,
which is [24, Theorem 4]. In other words, Y., dim(Homg (Vy, C[9(V3)]; ))q' = m3(q) for
every A € X,.

Define a new bilinear form in A[g] by letting

Oon xuh) = Do 197 (@)€) = (o, 158 (0)-Ex)-

In view of Proposition 5.6, {(xx, x,.)) is a polynomial in ¢ that counts graded occurrences
of the G-module V) ® V¥ in C[N(V3)].

IIs
£ (q)

Theorem 5.7. (P(q), P,(q))) = )

A
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Proof. By definition and Theorem 5.4, we have

- S g S 10 () o (q)
(Pr(@). Pu(@) = (Pa(a). 5 (@) EPu(a)) = (Pala). Sy LE0) = 5 L,
ti ' (q) ti ' (q)
Here we also use the fact that Al®)¢ A( and hence t(HS) (9)-6Pulq) = Eulq) O

Finally, using Eq. (5.1), we obtain

N R ()
<<X)\7 XM>> = ﬂ; mA(Q) mu(Q) tgrns)(z) .

6. MISCELLANEOUS REMARKS

6.1. Itis noticed in [6, 5.1] that Lusztig’s g-analogues m/(¢) satisfy the identity

Ap —e a
(6.1) > ml(g)e! = He ™) =Xx" H .

peEX ¢ 1ozl —ge7) oo (1 —ae™)

This can be regarded as quantisation of the equality xx = >_, m)e", which describes V,
as T-module. In the context of short g-analogues, we wish to have a quantisation of the
equality x, = > WEX s mAX“ , which describes V) as H-module [8, §3]. The desired
quantisation is

Proposition 6.1. Z (C_I)X H =X

neEXL H

1—e@
Z H 1 — qefa
weW,; aeAT

#W
Proof. Using Weyl's formula, the function (1 € X4 ) — XﬁH) can be extended to the
whole of X such that it will satisfy the identity XEUIQH = e(w)xY", w € W,. Recall that ‘®’
stands for the shifted action of W;. Since the same identity holds for m)(q), see Eq. (4.2),

the left hand side can be replaced w1th Z i ( ). The rest can by achieved via
,u63€

routine transformations of this sum, using the definition of m}(¢) and Weyl’s character

formulae for H and G. O

Yet another quantisation, which is easier to prove, is

i J(eMr) _ [[oso(l—€™)
(62) Zm)\(q>e - er HaEA;"(l _ qe—a> = XX HaeA;]'(]' . qe—oe) '

Comparing Equations (6.1) and (6.2), we obtain a relation between Lusztig’s and short

H 1 —qe” Zm/\ Zﬁ,\(q)e

aEA+ neX veX

peX

g-analogues:
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Whence Wy (q) = > (—g)**mi (). Or, conversely, m”(q) = Zq#Bﬁ‘;HB'(q), where
AcAf B
B ranges over the finite multisets in A;". In particular, taking ¢ = 1 and p = 0, we obtain
dim Vi =m) = Z (—1)#Am|/\A|.
AcCAf
Example. If G = Spy,, then H = (SLy)" and A" = {2¢y,...,2¢,}. Heree;, + ... + ¢, is
W-conjugate to ¢, = €1 + ... + ¢ and the previous relation becomes

dim V¥ = Z(—l)k (Z) m3eE.
k=0

6.2. Itis well known that, for A strictly dominant, the Hall-Littlewood polynomials P, (q)
have a nice specialisation at ¢ = —1: If A > p, then Py(—1) = xa_,X,. (See [23, 7.4] for
a generalisation to symmetrisable Kac-Moody algebras.) For A of type A,, P\(—1) is
a classical Schur’s @-function [18, IIL.8]. A similar phenomenon occurs for short Hall-
Littlewood polynomials.

Proposition 6.2. Suppose \ > p, and G is of type B,,, C,,, or Ey. Then Py(—1) = x2_p. Xp.-

Proof. If \ > p,, then t(AHS)(q) =1 and

Pa=1) =J( J[ (1 +e)J(e) " =

AeAT
Z e(w)w(e* P HP) (e H (14e™)-J(e”) ™ = xap,- H (e2/? 4 e79/2),
wew xeAd AeAt
For G is of type B,,, C,,, or Fy, it is known that x,, = [T o+ (e*/? 4 ¢7*/2) [20, Theorem 2.9].

O

Remark 6.3. The proof of equality x,, = [T cat(€*/? + ¢ /%) in [20] is only based on the
assumption that ||long||?/||short||? = 2, i.e., it does not refer to classification. For G,, the
true equality is [T, ca+ (€2 +e7%/%) = x,, + L.

6.3. Ranee Brylinski proved that Lusztig’s g-analogues m)(q) can be computed via a
principal filtration on V' whenever H (G Xp u, Lgx5u(C,)*) = 0 for all i > 1. Namely,
m} (¢) coincides with the “jump polynomial” of the principal filtration, see [5] for details.
Another approach to her results can be found in [11].

I hope that a similar description exists for short g-analogues. First, we need a subspace
of V), whose dimension equals m) = mult(V7, V). Let VAU(H) be the subspace of H-
highest vectors in V, with respect to A;". Then VAU(H)’“ = VAU<H) N VY has the required
dimension. For a € A™, let e, be a nonzero root vector of g. Brylinski’s principal filtration
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is determined by the principal nilpotent element e = ) _e,. In the context of short
g-analogues, we consider e, = ) ;. ¢, and the corresponding filtration of VA M That
is, we set

J2 (VI = fp e VU | ety = 0},
The jump polynomial is defined to be

= " dim (2 (V) Lt (v DR ) g

p=0

Conjecture 6.4. If i € X y satisfies vanishing conditions of Theorem 4.10, then 7 (q) = m¥(q).

6.4. Although the collapsing f : Z = G xp V;" — 9(Vj) is not generically finite, it can
be used for deriving useful properties of the null-cone. Let ¢ : Oy, — Rf.Oz be the
corresponding natural morphism. Since [ is projective, H'(Z, %) is a finite C[9(V})]-
module; and there is the trace map H°(Z,0z) — C[N(V;)] because N(Vj) is normal.
The trace map determines a morphism (in the derived category of Ogy;)-modules) ¢
Rf.Oz — Oxy,). By Theorem 4.10, H(Z,0z) = 0 for i > 1,i.e., R'f.Oz = 0 fori > L.
Hence ¢’ o ¢ is a quasi-isomorphism of Owy;) with itself. Therefore, by [15, Theorem 1],
M7M(V;) has only rational singularities.

Clearly, this argument works in a more general context and yields the following:

Proposition 6.5. Let N be a P-stable subspace in a G-module V. If H(G xp N,Ogx,n) = 0
forall i > 1, then the normalisation of G-N has only rational singularities.
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