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Abstract

We show how the double Poisson algebra introduced in [2] appear as a particular
part of a pre-Calabi-Yau structure, i.e. cyclically invariant, with respect to the natural
inner form, solution of the Maurer-Cartan equation on A @& A*. Specific part of this
solution is described, which is in one-to-one correspondence with the double Poisson
algebra structure. As a consequence we have that appropriate pre-Calabi-Yau struc-
tures induce a Poisson bracket on representation spaces (RepnA)Gl" for any associative
algebra A.
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1 Introduction

We consider the structures introduced in [6], [7], [11], [13], which are cyclically invariant with
respect to the natural inner form solutions of the Maurer-Cartan equation on the algebra A & A*,
for any graded associative algebra A. This structure is called pre-Calabi-Yau algebra. We show,
how the double Poisson algebra [2] appear as a particular part of a pre-Calabi-Yau structure.

It was suggested in [5] that cyclic structure on Ay-algebra with respect to certain non-degenerate
inner form should be considered as a symplectic form on the formal noncommutative manifold. Here
we demonstrate that specific case of the form on A & A*, namely pre-Calabi-Yau structure serves
as a noncommutative version of Poisson bracket.

Indeed, we check that pre-Calabi-Yau structure of appropriate kind on A induce a Gl,,- invariant
Poisson bracket on the representation spaces (Rep,, A) of A. More precisely, we found the way to
associate to a pre-Calabi-Yau structure of appropriate arities A = (A, m = mgl) + mgl)) a double
Poisson bracket, which satisfies all axioms of the double Poisson algebra [2]. This allows to consider
pre-Calabi-Yau structures as a noncommutative version of Poisson structure according to ideology
introduced in [8], saying that noncommutative structure should manifest as a corresponding com-
mutative structure on representation spaces.

The way we establish the correspondence between the two structures is the following. First, we
associate to a solution of the Maurer-Cartan equation of type B the Poisson algebra structure. Most
subtle point here is the choice of the definition of the bracket via the pre-Calabi-Yau structure.

Theorem 1.1. Let the bracket is defined by the formula



<g ® f, {{b7a}}> = <m3(a7 5 b)7g>7

where a,b € A, f,g € A* and ms(a, f,b) = ¢ € A corresponds to the component of type B of the
solution to the Maurer-Cartan ms: A x A* x A — A. Then this bracket does satisfy all axioms of
the double Poisson algebra.

Thus, pre-Calabi- Yau structures (A @& A*,m = mgl) +m§1)) of type B (i.e. corresponding to the
tensor of the type AR A* @ A® A* or A* @ A® A* ® A) are in one-to-one correspondence with
double Poisson brackets {{-,-}} : A® A — A® A for an arbitrary associative algebra A.

Here we concentrate on the non-graded version of the double Poisson structure, and show how
it could be obtained as a part of the solution of the Maurer-Cartan equation on the algebra A® A*,
which is already a graded object - otherwise the Maurer-Cartan equation would be trivial. Namely,
we consider the grading on R = A @ A*, where Ry = A, Ry = A*, and find it quite amazing
how graded continuation of an arbitrary non-graded associative algebra can induce an interesting
non-graded structure on A itself. In order the non-graded version of double Poisson algebra to be
induced on associative algebra A (sitting in degree zero) it have to be 2-pre-Calabi-Yau structure
in case of this grading. Analogous results for an arbitrary graded associative algebra will be treated
elsewhere.

The structure of the paper is the following. We explain the notions of strong homotopy asso-
ciative algebra (Aoo-algebra) and of pre-Calabi-Yau structure on A, or graded associative algebra
in Section 1.

Then in Section 2 we investigate the general structure of equations coming from the Maurer-
Cartan of appropriate arities (4 and 5) to be compared with the double Poisson bracket. We spot
some peculiarities of this system of equations, where, for example, equations obtained from M Cj
never contain both X X and XY terms. Here X X means the composition of two operations of type
B, while XY means the composition of operations of different kinds (of type A and type B).

In Section 3 we perform main computations to show that parts of the solutions to the Maurer-
Cartan equation corresponding to exclusively operations of the type AQ A*RARA* are in one-to-one
correspondence with double Poisson brackets.

In Section 4 we finally discuss how appropriate kind of pre-Calabi-Yau structures via double
Poisson bracket induce Poisson structures on representation spaces of an arbitrary associative al-
gebra.

2 Finite and infinite dimensional pre-Calabi-Yau alge-
bras

We deal here with the definition of a d-pre-Calabi-Yau structure on Ay.-algebra. Further in the text
we consider mainly pre-Calabi-Yau structures on an associative algebra A. Since in the definition of
pre-Calabi-Yau structure the main ingredient is Ayo-structure on A® A* we start with the definition
of Ax-algebra, or strong homotopy associative algebra introduced by Stasheff [12].
Let A be a Z graded vector space A = EBZ A,,. Let C'(A, A) be Hochschild cochains C'(A4, A) =
ne

Hom(A[1]®, A[1]), for [ > 0, C*(A, A) = [] C'(A, A). With respect to the Gerstenhaber bracket
k>1
[—, —]a we have the Maurer-Cartan equation



[m(1 Z Z )emp(z1, ..., Tim1, mg(Xj, ..., Tigg—1), ..., 2k) =0, (2.1)

p+q=k+1 =1

where
e= || + ...+ |zi_1/, |z;|" = |25 — 1 = degz; — 1

In fact, there are two accepted conventions of grading of an A.-algebra. They differ by a shift
in numeration of graded components. In one convention, we call it Conwv.1, each operation has
degree 1, while the other is determined by making the binary operation to be of degree 0, and the
degree of operation of arity n, m, to be 2 — n. This second convention will be called Conv.0. If
the degree of element x in Conv.0 is degw = ||, then shifted degree in A%" = A[1], which fall into
Conv.1, will be deg®"z = |z|', where |z|' = |z| — 1, since z € A" = A[1]"*+1.

The formulae for the Maurer-Cartan equations and cyclic invariance of the inner form are
different in different conventions. Since we mainly will use the Conv.1, but in a way need Conv.0
as well we present both of them.

The the Maurer-Cartan in Conw.0 is:

[m Z Z mp xl,...,xi_l,mq(:ﬂj,...,xi+q_1),...,xk):O, (2.2)

ptq=k+1i=1

where
=i(g+1) +q(z1| + ... +[zizal,

Definition 2.1. An element m() € C®(A, A)[1] which satisfies the Maurer-Cartan equation
[m™, mM]; with respect to the Gerstenhaber bracket [—, —]g is called an Ay-structure on A.

Equivalently, it can be formulated in a more compact way as a coderivation on the coalgebra of
the bar complex of A.

In particular, associative algebra with zero derivation A = (4, m = mél)) is an example of Aqo-
algebra. The component of the Maurer-Cartan equation of arity 3, M (5 will say that the binary

operation of this structure, the multiplication ms is associative:

(ab)c - (Z(bC) = dm3(a> b7 C) + (_1)0m3(da7 b, C) + (_1)Um3(a7 db? C) + (_1)0m3(a7 b7 dC)
We can give now definition of pre-Calabi-Yau structure (in Conv.1).

Definition 2.2. A d-pre-Calabi-Yau structure on a finite dimensional A.-algebra A is
(I). an A structure on A & A*[1 —d],
(IT). cyclic invariant with respect to natural non-degenerate pairing on A @ A*[1 — d], meaning:

(M (01, ory ), g1 ) = (=1l (el ol (00 i), on))

where the inner form ), ( on A + A* is defined naturally as ((a, f), (b, g)) = f(b) + (—=1)l9/"eg(a)
for a,b € A, f,g € A*
(IIT) and such that A is As-subalgebra in A @& A*[1 — d].



The signs in this definition written in Conv. 1, are assigned according to the Koszul rule. It is
not quite the case in Conwv.0, where the cyclic invariance with respect to the natural non-degenerate
pairing on A @ A*[1 — d], from (II) sounds:

netfon(Jaz|"+...+ o] ¢

(mp(ag,...,an),an+1) = (—1) Mmp (a2, ...apt1), 1))

The appearance of the arity n, which influence the sign in this formula, does not really fit with
the Koszul rule, this is the feature of the Conv.0, and this is why it is more convenient to work
with the Conv.1.

As we will need to refer to these later, let us define separately the cyclic invariance condition
and inner form symmetricity in Conwv.1:

(Mp(ar, ..., o), anyr) = (=)l el +etlanal) g (0 api1), 1)) (2.3)

(.y) = —(=1)F Wy, z) (2.4)

The notion of pre-Calabi-Yau algebra introduced in [7], [11], [13] seemingly use the fact that
A is finite dimensional, since there is no natural grading on the dual algebra A* = Hom(A, K),
induced form the grading on A in infinite dimensional case. The general definition suitable for
infinite dimensional algebra was given in [7], [6], and it is equivalent to the definition, where the
Hom(A, K) is substituted with the graded version: A* = ®(A,,)* = Hom(A,K). We will give this
general definition and show the equivalence further in this section.

Example. The most simple example of pre-Calabi-Yau structure demonstrates that this struc-
ture does exist on any associative algebra. Namely, the structure of associative algebra on A can
be extended to the associative structure on A& A*[1 —d] in such a way, that the natural inner form
is (graded)cyclic with respect to this multiplication. This amounts to the following fact: for any
A-bimodule M the associative multiplication on A® M is given by (a+ f)(b+g) = ab+af +gb. In
this simplest situation both structures on A and on A + A* are in fact associative algebras. More
examples one can find in [3], [10], [1].

One can reformulate the above definition without A*, using the inner product, to change inputs
and outputs of operations, and by this to substitute A* with A, as it was done in [7]. The Aq.-
structure on A @ A* means first of all the bunch of linear maps

my: (A® AN - Ag A*.
Such a map splits as a collection of linear maps of the type

E=mildlc ABPL @ AN @ @ A®P @ A*®% — A(or A")

where Y p;+¢ =N, 0<p; <N.

These could be interpreted, using the inner product, as tensors of the type, A%t @ A*®" @ ... ®
A®PL @ A*®a N p; +q = N + 1, and graphically depicted as operations where incoming edges
correspond to elements of A, outgoing edges to elements of A* and the marked point correspond
to the output of operation mgllj'j_'_’,%ll. (Of course, due to cyclic invariance operations with different
marked points are equal up to sign). This gave rise to the definition below.

But first, we should define higher Hochschild cochains and generalised necklace bracket.

Definition 2.3. For k > 1 the space of k-higher Hochschild chains is defined as



C(4) i= [ Hom(A[1]*", 4%%)

k
= JI Hom(® AQ)®i, A%F)
=1

140,720

Note, that C(V(A) = C*(A, A) is the space of usual Hochschild cochains.

We can see that element of the higher Hochschild cochain can be interpreted as depicted above
operation with r incoming edges and k outgoing edges. There is a marked point in the picture
as well, but because of the cyclic invariance condition one can move this marked point with the
change of the sign. Indeed, suppose that the last position is marked, then it can be moved to the
one but last using the formula:

< x1,m(ra, ..., xy) >= (—1)7 < xp, m(x1, .oy Tp_1) >

where z; € A or A*. Thus, just higher Hochschild cochains, without a specified point will appear
in the definition of pre-Calabi-Yau structure.

The composition of two operations of this kind translates according to definition2.2 to the
explained above picture via the notion of generalised necklace bracket:

Definition 2.4. The generalised necklace bracket between two elements f, g € C*)(A) is given as
[f, 9lgenmeckt = fog—(—=1)7go f, where composition f o g consists of inserting all outputs of f to
all inputs from g with signs corresponding to the Koszul rule.

Definition 2.5. Let A be a Z-graded space A = ®A,,. The pre-Calabi-Yau structure on A is a
solution m = 7, m®), m*) e C*)(A) of the Maurer-Cartan equation [m, M| gennecki = 0 with
respect to. generalised necklace bracket.

Definition 2.6. The pre-Calabi-Yau structure on a Z-graded space A = @A, is a cyclically
invariant Ao, structure on A & A*[1 — d|, where A* is understood as A* = @&(A4,)" = Hom(A4, K).

Proposition 2.7. The definitions of pre-Calabi- Yau structures 2.5 and 2.6 are equivalent.

Proof. To demonstrate this we will start with an element m =}, 4 m®), mk) e c®)(A), m*) =
A®T — A®k depicted as an operation with r incoming arrows, k outgoing arrows, and one marked
point.

From this data we construct a collection of operations m,, : (A & A*)®" — A ® A*, to form an
Aso-structure on A @ A*.

So let us have an element ¢ in the tensor product (in some order) of r copies of A and k copies
of A*, where the last position is specified. Thus we have an operation FE : A®" — A®F with one
fixed entry. This defines an element E € (A")®" ® A®* (by means of the natural pairing) such that

(B(a1® .®a), [1® . @ fe) = (E,a1® .. ® ar @ f1 @ ... ® fi)

Note that here we use the equality A** = A, which is true only for finite dimensional spaces. We
should make sure that we use duals satisfying A™* = A, as it is done in definition2.6.

Now we can define an operation from the A,-structure on A & A* corresponding to the above
operation F,

mn—l(a17f17"' 7.]?]6)



if the marked point have an outgoing edge and

~

mnfl(alaflw . 'aar)

if the marked point has an incoming edge. Here n = k+r and the order of entries of elements from
A and from A* is dictated by the order in £. In these two cases we define m,,_ as follows:

(frsmn—1(ar, fi, o)) = (a1 @ ©a, @ fi @+ @ fr);
(ary M1 (a1, fiy- @) = (E,01 @ @0, @ f1 @+ ® fi).

O]

In spite definition 2.5 looks more beautiful and reveals nice graphically presented connection
with A infinity structure, we will use definition 2.6, since we find it easier to work with and make
sure all details are correct.

3 Structure of the Maurer-Cartan equations

The general Maurer-Cartan equations on C' = A @ A* for the operations m,, : C[1]" — C[1] have
the shape

p—1
Z Z(—l)emp(xl, ce Zim1,mg (T, Tipg—1)s -5 TE),
p+q=k+1 i=1
where
e= |z + ...+ |zial, |zs| = degzs — 1

Now the equations we get from the Maurer-Cartan in arities four and five will look as follows.
In arity 4, M Cy reads:

(—1)0m3(1‘1$2, x3, 1'4) + (—1)'”1|,m3(a:1, rox3, :E4) + (—1)|$1|,+‘$2‘/m3(x1, X9, 1'3174)—1—

(=)™ g (1, ma (w0, 23, 24)) + (—=1)mo(ms(z1, 22, 23), 24)

In arity 5, M Cy reads:

(—1)°ms(ms(x1, 2, 23), 24, 25) + (= 1)1 'mg (21, ma (@, w3, 24), 25)+
(_1)|$1‘l+|$2|,m3(‘r1a X2, mg(l’g, X4, 1E5)) =0

Operations of arity 4 or higher are absent since we are looking for the structure of the form
m = m(;) + mél).

Since we have Maurer-Cartan equations on A ® A*, it essentially means that any equation splits
into the set of equations with various distributions of inputs/outputs from A and A*. Note that
solutions of the Maurer-Cartan which are interesting for us correspond to operations AQ A - A® A
(which can serve as a double bracket). These are operations from tensors with exactly two Ath
and two A*th.

Remind that an operation, say, A* x A* x A — A* can be naturally interpreted as an element
of the space A® A® A* ® A* and this tensor due to cyclic invariance of the structure equals to its
cyclic permutations up to sign, in this case A*QARARA*, AARA*®ARAand AQA*R A*® A.



There is another type of tensor from A® A*® A® A* for which there is only one cyclic permutation
A*® A® A" ® A. Due to cyclic invariance

<m3(f7a7g)7 b> = i<m3(b7 I a)?.g)

operation A* x A x A* — A* corresponding to tensor A ® A* ® A ® A* is the same as operation
A x A* x A — A corresponding to tensor A* ® A ® A* ® A. These tensors encode the second type
of operations.

Two types of operations mentioned above which are different up to cyclic permutation on tensors
will serve as variables in the equations we obtain from the Maurer-Cartan.

Let us list 6 tensors corresponding to 2 operations, corresponding to two types of main variables
in our equations.

Type A Type B

A*RARAR A", Ax A* x A* — A,

A'QA " RARA, AXAXA* - A AQA ' @ARA*, A*xAx A* = A*,
AQA*RA*®A, A*XAXxA—A A" QARA*®A, AxA*xX A— A,
ARARQA* @ A*, A*x A* x A — A*.

Definition 3.1. We say that operations corresponding to the tensor A® A® A*® A* (and its cyclic
permutations) are operations of type A, and operations corresponding to the tensor A® A*® A® A*
(and its cyclic permutations) are operations of type B.

The other operations which are also variables in the Maurer-Cartan equation, correspond to
the tensors containing not exactly two A and two A*. We call them secondary type variables, as
opposed to the main type, consisting of variables of type A and B. These are the following.

Secondary type

ARARARA*, A*XA* X A* 5 A", A"QA*"QA*®A, AxAxA— A,
A QARARA, AXA*xXA* > A AQA*QA*®A*, A*xX Ax A— A*
ARA*RA®A, A*XAXA* A A QAQRA*®A", AxA"xA* = A*,
ARARA*RA, A*XA*xA—-A A QA QAR A*, AxAxA"— A*
ARARARA, A*XA*XA" 5 A A QA QA" RA", AxAxA— A

Let us look at what we can get from the Maurer-Cartan in arity 5.

First consider the input row containing 4 or more entries from A (or A*). It is easy to check
that in this case all terms of equations we get contain secondary type variables. For example,
consider the input A, A, A*, A, A. The term ms(ms(a, f,b),c,d) is zero if mg(a,b, f) € A, since
A is associative algebra and ms(ai,az,as) = 0 for all aj,as,a3 € A. If ms(a,b, f) € A* then the
operation is of secondary type, from tensor A* ® A* ® A @ A*.

Another group of equations correspond to input containing three A (or A*). These are divided
according to what is the output of the corresponding operation of arity 5. In case of operations
with 3 inputs from A, two inputs from A* and output from A* as well as 3 inputs from A*, two
inputs from A and output from A, all terms of the equations still contain at least one variable of
secondary type.

This property of equations will allow us to restrict any solution of the Maurer-Cartan to the
ones containing only main variables (take the projection of solution to the space of main variables,
and ensure that we have a solution again).



In the cases of operations with 3 inputs from A, two inputs from A* and output from A as well
as 3 inputs from A*, two inputs from A and output from A*, all terms of the equations contain only
variables of the main type. Each of these cases corresponds to 10 (5 choose 2) equations on main
variables. We consider their structure in more detail. These equations on main variables contain
both variables of types A and of B. Call variables of type B by X’s and of type A by Y’s. Then
the system of equations again splits into those each term of which contains a Y variable and those
which are equations only on X's.

Lemma 3.2. Any equation on main variables coming from M C5 either containing only terms X X,
i.e. only variables of type B or each term contains at least one variable Y - variable of type A.

Proof. Let us see from which inputs terms of type XX can appear. There are two operations of
type B: I. Ax A*x A — A and II. A* x A x A* — A*. Consider the case of composition of the
type mg(x1, ms(z2, z3,24),25)). In case L. to have a composition of two operations of type B we
forced to start with input row A*(AA*A)A*. In case II. to have a composition of two operations
of type B we forced to start with input row A(A*AA*)A. The remaining types of compositions:
ms(ms(z1, x2,x3), x4, x5)) and mg(z1, va, ms(xs, x4, x5)) analogously give the same result. Thus
the only rows of inputs from which X X term can appear are those two rows. We see moreover that
no compositions containing variable Y (operation of type A) appear from this row of input. Thus
variables X and Y are separated in the above sense in this system of equations. ]

This structure of the system of equations on operations which constitute an unwrapped Maurer-
Cartan equation will be a key to relate any pre-Calabi-Yau structure concentrated in appropriate
arities to the double Poisson bracket. Each equation that we get from MCj5 consists of 'quadratic’
terms, meaning terms involving two operations. This system of equations has the feature that in
no equation both terms containing two X variables and XY or YY terms appear. These terms are
separated. The above arguments allow us to see that

Proposition 3.3. Projection of any MC5 solution to the B-type component is also a solution of
MCs.

4 Solutions to the Maurer-Cartan equations in arity
four and five and double Poisson bracket

In this section we show that the pre-Calabi-Yau structures of type B, namely the ones which are
solutions of type B (corresponding to the tensor A ® A* @ A ® A* or A* ® A® A* @ A) of the
Maurer-Cartan equation on A @ A*, are in one-to one correspondence with the non-graded double
Poisson brackets.

We choose the main example of grading on A + A* in order to get correspondence with the
non-graded double Poisson bracket. Namely, in order to have multiplication on A to be of degree
0 (as it should be in Conv.0 ), we have to have Ay = A. Then, in order for the type B operations
(the most interesting part of the solution of the Maurer-Cartan, which is a ternary operation) to
make sense, i.e. according to the Conv.0, to be of degree —1, we need A* to be in the component
of degree 1. That is, R= A @ A* is graded by Ry = A and R; = A*.

Now we shift this grading by one, to use more convenient formulae of Conv.1. Thus we get
inAsh = A[1] A*" = A, and R*h = A" + A*h is graded by R*% = A, R§" = A*, that is A will
have degree —1, and A*, degree 0, when we are in shifted situation, and in Conwv.1.



(1)

Let A be an arbitrary associative algebra A = (A,m = my’) with a pre-Calabi-Yau struc-

ture given as a cyclicly symmetric Aso-structure on A & A*: (A ® A*,m = mgl) + mgl)). We

define the double Poisson bracket via the pre-Calabi-Yau structure, more precisely its component
corresponding to the tensor A ® A* ® A ® A*, as follows.

Definition 4.1. The double bracket is defined as:

<g ® fv {{b’a}}> = <m3(a’ f7 b),g>,

where a,b € A, f,g € A* and ms(a, f,b) = ¢ € A corresponds to the component of ms:
Ax A*x A— A

By choosing this definition we set up a one-to-one correspondence between pre-Calabi-Yau
structures of type B and double Poisson brackets from [2]. This choice have been done in such a
way that it would be possible to show the double bracket defined above indeed satisfies all axioms
of double Poisson bracket. Note, that it is most subtle point, since there are many possibilities for
this choice, and only some choices give the required one-to-one correspondence.

We will check that double bracket defined in this way satisfies all axioms of the double Poisson
bracket.

Anti-symmetry:

{a, 0} = —{{b,a}}” (4.1)
Here {{b,a}}*? means the twist in the tensor product, i.e. if {{b,a}} =3 b; ® ¢;, then {{b,a}}? =
> ®b;. Z
i Double Leibniz:

{a, be}} = bf{a, e}t + {{a, bi}e (4.2)

and double Jacobi identity:

fa, {b, BB + T2y {bl{c, al} B o + 732y {cl{a, 0 1 (4.3)
Here fora€c AQ A® A, and o € S3

To(a) = ag—1(1) ® ay—1(2) ® ay—1(3).
The {{ }} 1 defined as

{{b,a1 ® an}}L = {{b,al}}L Xal X ... R an

Theorem 4.2. Let the bracket is defined by the formula

<g ® fv {{b7a}}> = <m3(a7 f? b)7g>7

where a,b € A, f,g € A* and ms(a, f,b) = ¢ € A corresponds to the component of type B of the
solution to the Maurer-Cartan mz: A x A* x A — A. Then this bracket does satisfy all axioms of
the double Poisson algebra.

Thus, pre-Calabi- Yau structures (A @® A*,;m = mél) +m§1)) of type B (i.e. corresponding to the
tensor of the type A@ A* ® A® A" or A* @ A® A* ® A) are in one-to-one correspondence with
double Poisson brackets {{-,-}} : A® A — A® A for an arbitrary associative algebra A.

9



Proof. Anti-symmetry of the double Poisson bracket reads in these notations:

(f©g,{{b,a}}) = =(g @ £, {a, b}}),

So we need to check that
<m3(b>ga (Z), f> = _<m3(a7 f7 b)a g)

Indeed, using cyclic invariance, we have

<f ® g, {{67 CL}}> - <m3(a> s b)v g>
= (=D)PPI Ul Hal+I) (g (g, a, f), b) =
= (=1D)IPI gl +Hal+F1) (_1)lal" Qal '+ (10 (a, £,b), g)
= _<m3(a7 f7 b)vg> = _<g ® f7 {{a7 b}}>

We used the fact that in our grading Vf € A*,|f|' =0 and Va € A, |a| = —1.
By this the anti-symmetry of obtained in this way from pre-Calabi-Yau structure (non-graded)

bracket is proven.
Now we deduce the Leibnitz identity from the part of the arity 4 of the Maurer—Cartan equations

with inputs from A,A, A* and A.
General Maurer—Cartan in arity 4 reads:

lz1] [z1|"+|z2|

m3(961962, 3, 954) + (—1) m3($1,x2$3, x4) + (—1) mg(ml, T2, x3x4)+
(—D)l1l 2 ymg (20, 23, 24) + ma (@1, 22, 23)24 = 0

Applying this to the input a, b, f, ¢ from A,A, A*, A we have
m3(ab7 f7 C) + (_1)|a|'m3(a, bf7 C) + (_1)|a‘l+|b|/m3(a’ ba fC) + (_1)|a|/am3(b7 fa C) + m3(a> b7 f)C =0.

Since we consider solutions containing only B-type components, two terms in the equation
(ms(a, b, f)c and ms(a,b, fc)) vanish, leaving us with

ma(ab, f,c) —ms(a,bf,c) —ams(b, f,c) = 0. (4.4)

after we applied our grading, where |a|' = —1 for all a € A.
Now we pair the above equality obtained from M}y with g (the equality holds if and only if it
holds for any pairing with an arbitrary g € A*):

<m3(aba fv C)?Q) - <TTL3(CL, bf7 C)ag> - <am3(ba fa C)vg> =0.

and express the three terms appearing there via the double bracket.
For doing this we need the following lemma.

Lemma 4.3. The following equalities hold:

R)  (g@af,{{b,clh) = (9@ [, {b cPa)

L) (ga@ f,{{b,clh) = (9@ f,a{{b,c}})

10



Proof. (R)
o af, {bel) = 3 (0® af,bi i) =
Z< af Cz ( )Z f?cz =

(9@ f,) bi®ca) = (g f,{{b,c}a)

We use here:
<af7 Ci> (2:3)(_]_)|a‘/(|f‘/+|cl|/) <fCi7 CL> (2:3)

(_1)\a|/(|f|/+|cz‘|’)(_1)|f\’(lcz‘\’+|a\’)<cia7f>

@D _qlal U1ty (—py e +al’) . _(_pylesal 171 (£, cuq)

and in our grading, where for all a € A, f € A%, |a|' = —1,|f|' = 0, we get

(af, i) = (f, cia) (4.5)

(L)
(ga® f,{{b,c}}) = Z<ga ® )b @ ci) =

S (ga @b (f @) LS (abi, g)(f, i)
DN g (foe) = - Z<g ® frabi ® ;) = ~{g ® f,a{{b,c}})
We use here:

2.3 ’ ’ R
(ga, b;) (:)<_1)\g\ (al+1b:) (b, g)

(a, big) 2 (—1)labllal’ (g ab,)

and in our grading, where for all a € A, f € A*, |a|' = —1,|f| = 0, we get

(g9a,b;) = (abi, g) (4.6)
and
respectively.
O

Now we are ready to express three terms of the Maurer-Cartan equation 4.4 via the bracket.

(m3(ab, f,c).9) D (g @ f, {{c,ab}});
(m3(a,bf,¢),9) = (g @ bf, e, a})

9© f.{{c,aj}b);
<am3(b> f> C)v g> Cyd:m2 _<m3(b> f> C)v ga > =4 <ga ® fv {{C b}}> é<g Y fv a{{c, b}}>

£

11



According to these the Maurer-Cartan can be rewritten as

<g ® f’ {{Ca ab}}> - <g ® fa {{C, a}}b> - <g ® fv a{{cv b}}>
which is exactly the Leibniz identity:

{e,ably = {{e, alpb + affc, b}

Now it remains to prove that the double bracket defined via the solution of the Maurer-Cartan
(of type B) as

(9@ f,{{b,a}}) = (mfa, f,0),9)

for all a,b € A, f,g € A*, does satisfy the Jacobi identity.

The appropriate part of the Maurer-Cartan equation to consider is the part of arity 5, with
inputs from A,A*, A, A* and A.

General Maurer—Cartan in arity 5 reads:

lz1]

(—1)mg(mg(x1, 22, 23), 24, 25) + (= 1) 'mg(21, ms(we, x3, 74), 5)+

(=)l el s (), w9, ma (23, w4, 25)) = 0

Applying this to the input a, f,b, g, c from A,A*, A, A* A we get

m3(m3(a7 fa b)a 9, C) + (_1)\a|'m3(a’ m3(f7 b7 9)7 C) + (_1)|a‘l(_1)|a‘l+|f‘/m3(av f7 m3(ba g, C)) =0.
Thus from the Maurer-Cartan we have.

m3(m3(a7 fa b),g,c) - m3(a7m3(f> b,g),c) - m3(a7 f7 ’I’)’Lg(b,g,C)) =0. (48)

Since we are going to prove the double Jacobi identity:

{a, {b, et + mas{{o, e, ab B + msef{e, {{a, 0]} = 0.

we need to express double commutators via the operations - solutions of the Maurer-Cartan
equation.

Lemma 4.4. For any a,b,c € A and o, B,y € A* the from the definition 4.1 it follows:

<Oé ® LR, {{a’7 {{b7 C}}}}L> = <m3(m3(c7 7 b)7 B, (1), Oé)
Proof.

(a®@ By {a{b.cr) = (a®B,{{a, (id® v, {b,c}})}})
= (ms({id @7, {{b,c}), B,a), @)
= <m3(m3(ca g b)? B, a)? a)

12



Clearly (4.8) is equivalent to

<m3(m3(a7f7 b),g,c), h> - <m3(a>m3(f7 b,g),c), h> - <m3(aaf> mg(b,g,c)),h> =0. (49)

for any a,b,c € A and f,g,h € A*.
By Lemma (4.4), the first summand in (4.9) is given by

<m3(m3(a7 f7 b)7 9, C)7 h> = <h ®g& f7 {{67 {{b7 a}}}}L> (410)
We show now that the second term in (4.9) is expressed via double commutator as:

(ma3(a, m3(f,b,9),¢),h) = —(g @ f @ h, {b, {{a, c}} }}1). (4.11)

Indeed, using cyclic invariance and graded symmetry of the inner product, we see

(m3(a,ma(f,b,9),¢), h) = (=)l LIS (5 (my (£,1, g), ), ), a) =

(= 1)lal' Uml ol Hel HRE) (1) mFbg) (" HP Hal) (o (¢, b, a), ms(f, b, g))) =

(—1)lal (m(F b+l A (1) m(Fb) (el Al +Hal"). _ (1) m(ehall Im(Fbo) (o (£ b ), ma(c, h, a)) =

(1)l (m(FbI el A (1) m(£b) (e +AI+Hal') . _(_q)lm(eha)l'im(fbo)l

(DM s R g b, g, m (e, ), ) =

(_1)Ial’(\m(f,b,g)|’+\0|’+|h|’) (—1) Im(£:0,9)I(lel +|hl"+]al") _(_1)|m(07h7a)\’\m(f,b,g)|’

(=) (gl +mleha)l') (bl (gl Hmle k@) +1) (g (g, ms(c, by a), f), b)) =

(—1)lal (mFba) el +1A) (1) m(F o)l (el +Ih]'+al') . _(_q)lm(eha)lim(Fb.)l
(1)1 Bl Hlal Hmleh.a) ') (g bl ol +meha)l 111 (_q)lol (m(ehall ) s (ma (e, By a)), £,B), g).

Taking into account that in our grading |m(f, b, g)|" = |f|'+|b]'+ |9/’ +1 =0 and |m(a, f,b)| =
la|" + |f|" + || +1 = —1 for all a,b € A, f,g € A* we see that the latter sign is -, hence we get
the required:

’ /

<m3(a7 m3(f7 b7g)7 C), h) = _<g b2y f ® h7 {{b7 {{a') C}}}}L>7

since due to Lemmad4.4

<m3(TTL3(C, h’ CL)), f? b)v g> = <g ® f ® ha {{b7 {{CL, C}}}}L>

Now we consider the third term in (4.9) and show that it is expressed via double commutator
as:

(ms(a, f,m3(b, g,¢))), h) = =(f @ h®© g, {a, {c,b}} }}1)- (4.12)

Indeed, using cyclic invariance, we see
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<m3(a7 f7 m3<b7 g, C))7 h> = (_1)|a\/(|f|’+|m(b,g,C)\/+|h|') <m3(f7 m3(b7 g, C), h’): a’> -
(1) el A+ +AI (1)1 (mlbg. V4l (s (ms (b, 9. ). b ). f)

Taking into account signs in our grading, we see that the letter sign is ”-”, thus by 4.4

(= 1)lal U1 Hmb.g. )"+ ()l (gl IR +al) (o (ms (b, g, ¢), b, a), f)
_<m3(m3(b7 g, C)? h? a)? f> = _<f ®h® g, {{av {{07 b}}}}L>

Thus 4.9 can be rewritten as:

<h ®WgR f? {{C, {{b7 aH}}L) + <g ® f ® h, {{b7 {{a7 C}}}}L> + <f ®h® 9, {{a7 {{C, bH}}L) =0

We see that permutations of functionals f, g, h € A* in our formulas match with the permutation
on the images of the bracket in the double Jacobi identity:

T23)(h @ g f) =g @ f@hTas)(h©g@ f) = fOh®g.
Thus we get the required identity4.3:

{cllo, ali B + 723 {{of{a; e + Tsy) al{e, b1 e = 0.
U

5 Polyderivations from pre-Calabi-Yau structures in-
duce a Poisson bracket on representation spaces

Consider polyderivations, that is maps 41 ®---® A, — A1 ® - --® Ay, which satisfy kind of Leibniz
identities.

Definition 5.1. Let PolyDer(A®", M), for any A®"-bimodule M, be the space of polyderivations,
that is linear maps § : A ® ... ® A — M satisfying the Leibniz identity:

v/

§(a1®...0a;0] @...Q0a, = (1®...00;®...01)d(a1®...Qa] ®...0a,)+6(01®...Q0;®...0a,) (1®...Qa] ®...21)

Definition 5.2. We call a solution of the Maurer-Cartan on A & A (and a corresponding linear
map § : A® A — A® A) a restricted polyderivation, 6 € RPolyDer(A%?, A®?), if its projection to
B-component is a polyderivation.

Now we can see that any pre-Calabi-Yau structure, that is a cyclicly invariant A, structure
on (A @ A*,m) concentrated in arities two and three m = mgl) + mgl), which is a restricted
polyderivation gives rise to the Poisson bracket on the space Rep(A, m) which is GL,, invariant.

This follows from
Theorem 5.3. Pre-CY structure of appropriate arities (A @ A*,;m = mél) + mgl)), which is addi-
tionally a restricted polyderivation § : A® A — A® A, § € RPolyDer(A%®?, A®?) gives rise to the

double Poisson bracket.
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Proof. As we have shown before in Theorem4.2, that there is one-to-one correspondence between
pre-Calabi-Yau structures of type B and double Poisson brackets. We now want to show that for
any solution of M Cj, its projection to the space of solutions of type B is also a solution. Thus this
projection will create a double bracket.

This comes from the consideration of Section 2 on the structure of equations arising from M C}.
We showed that all equations but those which are entirely on operations of type B contain in each
term at least one operation of type A. Hence if we replace in a given solution of the Maurer-Cartan
equation all Y's (corresponding to operations of type A) by zero, we get all equations with Y in
them automatically satisfied. System of equations arising from M C5 turns into its restriction to
those equations which are on operations of type B only. The latter, as we know (Theorem4.2)
under the assignment

<g ® f’ {{CL, b}}> = <gv m3(a7 fa b)>

(which automatically has antisymmetry) coincides with the double Jacobi identity.

Unfortunately, the analogous procedure of projection of any solution onto the components of
type B does not work in the same way for MCy4. This is why we additionally asked for our
arbitrary pre-Calabi-Yau structure to be a restricted polyderivation. Now the type B component
of any Maurer-Cartan solution gives us a double Poisson bracket. O

Corollary 5.4. Any pre-Calabi- Yau structure of an arbitrary associative algebra A of signature
(A A*,m = mgl) +m§1)) which is a restricted polyderivation, p: AQ A — A® A induces a Poisson
structure on representation spaces Rep(A,n), which is Gl,-invariant.

Proof. 1t comes as a direct consequence of Van den Bergh’s construction for double Poisson bracket
[2], after the application of Theorem5.3. O

Note that there was a considerable freedom in the choice of definition for the double bracket
via the pre-Calabi-Yau structure (in spite it is in many ways defined by various features of the
double bracket), but only the one presented in definition4.1, together with appropriate choice of
the grading on A @ A* allowed to deduce the axioms of double bracket. By this choice we thus
found an embedding of a double Poisson structures into pre-Calabi-Yau structures.
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