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Abstract

This paper deals with the Grothendieck dessins d’enfants, that is
tamely embedded graphs on surfaces. We investigate combinatorics
of systems of equations determining a Belyi pair corresponding to a
dessin, that is a rational function with at most 3 critical values on an
algebraic curve, such that its preimage is the dessin under consider-
ation. Several properties of extra, or so-called parasitic, solutions of
such systems are described.

1 Introduction

Theory of tamely embedded graphs on surfaces was originated by A. Grothen-
dieck in [7]. He called these graphs dessins d’enfants , or just dessins , for
their very simple combinatorial structure. Grothendieck put forward the cor-
respondence between these dessins d’enfants and algebraic curves together
with non-constant rational functions with at most 3 critical values on these
curves which gives rise to plenty of new and non-trivial interrelations between
different structures in category theory, algebra, algebraic geometry, complex
analysis, topology, etc. For example, this correspondence establishes an ap-
proach to a visualization of algebraic curves over number fields and to an
interpretation of the action of general Galois group Aut(Q) on the set of
their isomorphism classes, here Q denotes the field of algebraic numbers.
The origins of the theory can be found in the special volumes [14, 16] and
the modern development of the theory and its numerous applications are
described in the detailed and self-contained surveys [13, 19].

The main problem of the theory is to calculate a particular Belyi pair,
corresponding to a given dessin. There are several particular solutions, see [2,
5, 6, 12, 10, 15, 17, 18, 20], but to solve this question more or less generally
is still an open problem even for dessins of genus zero. In this paper we
provide a general system of equations in the Hurwitz space, which determines
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the Belyi functions of all dessins of the prescribed combinatorial type and
investigate some combinatorial properties of such systems. Note that even
for the dessins of genus zero (in this case the system may be written more
explicitly) there is no direct way to get a solution of a general system of
this type within reasonable time limits since the degrees appear to be too
high. We develop some special technique to predict and investigate extra,
or so-called parasitic, solutions of such systems, which gives a possibility to
choose the ”right” normalization leading to the equations of minimal possible
degrees.

Acknowledgements. The author wishes to thank Professor George Sha-
bat, Natalia Amburg and Dimitri Zvonkine for interesting discussions. Also
I would like to express my gratitude to the Institute des Hautes Études Sci-
entifiques, Bures-sur-Yvette, France, for the warm hospitality, nice scientific
atmosphere and financial supprot.

2 Definitions and Notations

2.1 Dessins d’enfants

Definition 2.1. A graph, Γ, is called bicolored if all its vertices are colored
in two different colors, say black and white, in such a way that each edge has
two vertices of different colors.

Definition 2.2. A dessin d’enfant D is a compact connected smooth ori-
ented surface M together with a bicolored graph Γ on it such that the com-
plement M \Γ is homeomorphic to a disjoint union of open discs. Such a disc
is called a face of the dessin. Vertices and edges of the dessin are vertices
and edges of the corresponding graph.

We denote by α(D), ω(D), n(D), γ(D) the number of black vertices, white
vertices, edges, and faces of D, correspondingly. We will write just α, ω, n, γ
if the dessin D is clear from the context.

Definition 2.3. A valency of a vertex of a dessin is a number of edges
incident to this vertex. A valency of a face is defined to be the number of
edges incident to this face divided by 2, note that if both sides of an edge
are incident to a given face then it should counted twice.

Definition 2.4. A sequence of numbers 〈a1, . . . , aα|w1, . . . , wω|c1, . . . , cγ〉 is
called a combinatorial type if it can be realized as a list of valencies of all
vertices and faces of a certain dessin.
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Definition 2.5. Two dessins are said to be isomorphic if there exists a
homeomorphism between corresponding surfaces under which one dessin is
transformed into another.

Remark 2.6. It is straightforward to see that isomorphic dessins have the
same combinatorial types. However, combinatorial type does not determine
a dessin up to isomorphism, see Figure 1, for example.
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Figure 1. Non-isomorphic dessins with the same combinatorial type

〈3, 2, 1|3, 1, 1, 1|6〉.

In some cases it is more convenient to consider non-bicolored graphs em-
bedded into surfaces in such a way that the complement is homeomerphic to
a disjoint union of open discs. In this case we will speak about non-bicolored
dessins . It is easy to see that non-bicolored dessins can be obtained from
bicolored ones by forgetting the coloring. Conversely, for any non-bicolored
dessin d’enfant we can add a vertex of the other color in the middle of each
edge to get a dessin d’enfant in the sense of Definition 2.2. Note that non-
bicolored dessins can possess with loops and multiple edges. In the non-
bicolored context we say that a valency of a face is the number of edges
incident to this face (without dividing by 2).

2.2 Belyi pairs

Definition 2.7. A Belyi pair (X , β) is an algebraic curve X together with a
non-constant rational function β : X → CP1, which has at most three critical
values. Function β is usually called a Belyi function.

Remark 2.8. Up to the linear-fractional transformation of CP1 we may and
we do fix the critical values of β, crit(β) ⊆ {0, 1,∞}.

Definition 2.9. A Belyi pair is called clean if all ramifications of β over 1
has the order 2.

Remark 2.10. It is straightforward to see that if (X , β) is a Belyi pair, then
(X , 4β(1− β)) is a clean Belyi pair.

Belyi pairs are in some sense widely spread objects among all algebraic
curves and rational functions on them, namely the following is true:
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Theorem 2.11. [4] Let X be a smooth complete irreducible algebraic curve
over C. Then the following statements are equivalent:

1. X is isomorphic to the complexification of a curve defined over a num-
ber field;

2. There exists a Belyi function on X .

It is easy to check, that if (X , β) is a Belyi pair, then β−1([0, 1]) is a dessin
d’enfant on the topological model of X whose edges are {β−1((0, 1))}, black
vertices are {β−1(0)}, and white vertices are {β−1(1)}. If (X , β) is a clean Be-
lyi pair, then β−1([0, 1]) is a non-bicolored dessin d’enfant on the topological
model of X whose edges are {β−1((0, 1])} and vertices are {β−1(0)}.

Moreover, the following result is true.

Theorem 2.12. ([7],[17]) Any non-bicolored dessin d’enfant can be obtained
by the above construction from some complex clean Belyi pair. This pair is
defined uniquely up to an isomorphism.

Similar result for bicolored dessins and (not necessarily clean) Belyi pairs
holds, see [1].

Moreover it is possible to define categories of dessins d’enfants and Belyi
pairs (correspondingly, non-bicolored dessins and clean Belyi pairs) and to
prove their equivalence, see [17, 1].

2.3 Determining systems and parasitic solutions

Theorem 2.13. Let V al := 〈a1, . . . , aα|w1, . . . , wω|c1, . . . , cγ〉 be a certain
combinatorial type. Let X be a smooth irreducible curve of genus g = 1

2
(2−

α − ω + n − γ) over C. Assume that there exist pairwise distinct points
A1, . . . , Aα, W1, . . . ,Wω, C1, . . . , Cγ ∈ X and a function β ∈ C(X ) such that
the following equalities for divisors hold

(β) =
α∑
j=1

ajAj −
γ∑
j=1

cjCj,

(β − 1) = −
γ∑
j=1

cjCj +
ω∑
j=1

wjWj.

Then (X , β) is a Belyi pair.

Proof. Let us assume that β has a critical value V /∈ {0, 1,∞}. In this case
the preimage of V is effective (since ramification over ∞ is already counted).
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Therefore,

(d β) =
α∑
j=1

(aj − 1)Aj +
ω∑
j=1

(wj − 1)Wj −
γ∑
j=1

(cj + 1)Cj + V.

Let us compute the degrees of divisors on both sides of this equality. On the
left hand side we have

deg (d β) = 2g − 2.

On the right hand side, since all points Ai, Wj, Ck are pair-wise distinct, we
have

deg (
α∑
j=1

(aj − 1)Aj +
ω∑
j=1

(wj − 1)Wj −
γ∑
j=1

(cj + 1)Cj + V ) =

=
α∑
j=1

(aj − 1) +
ω∑
j=1

(wj − 1)−
γ∑
j=1

(cj + 1) + deg W =

=
α∑
j=1

aj − α +
ω∑
j=1

wj − ω −
γ∑
j=1

cj − γ + deg V.

Since V al is a combinatorial type, we have that
α∑
j=1

aj =
ω∑
j=1

wj =
γ∑
j=1

cj = n.

Thus deg (d β) = 2g − 2 + deg V . It follows that deg V = 0.

Definition 2.14. For any sequence of positive integers

V al := 〈a1, . . . , aα|w1, . . . , wω|c1, . . . , cγ〉

we consider the following system of equations in the Hurwitz space Hg,n(C),

where n =
α∑
j=1

aj, g = 1
2
(2 + n− α− ω − γ):

There exists a curve X , points A1, . . . , Aα, W1, . . . ,Wω, C1, . . . , Cγ ∈ X , and
a rational function β : X → CP1 such that the following equalities for the
divisors hold 

(β) =
α∑
j=1

ajAj −
γ∑
j=1

cjCj,

(β − 1) = −
γ∑
j=1

cjCj +
ω∑
j=1

wjWj.
(2.1)

This system is denoted by S(V al).

Remark 2.15. It follows from Theorem 2.13 that if V al is a combinatorial
type, then system (2.1) has a solution and this solution is a Belyi pair,
corresponding to one of the realizations of V al.
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If g = 0 we may re-write system (2.1) in the following, more explicit,
form:

Definition 2.16. Let V al be a certain combinatorial type, g :=
α∑
j=1

aj = 0.

Then the system of polynomial equations S0(V al), obtained from the formal
polynomial equality

K1(z − A1)
a1 · · · (z − Aα)

aα − (z − C1)
c1 · · · (z − Cγ)

cγ =
= K2(z −W1)

w1 · · · (z −Wω)
wω .

(2.2)

by considering the coefficients at the same degrees of the variable z on both
sides of this equality, is called the determining system for Belyi functions
corresponding to different realizations of V al.

Remark 2.17. In the cases of g = 1, 2 the system S(V al) also can be written
explicitly. In addition, there are special families of dessins of positive genus,
for which S can be written more or less explicitly.

Definition 2.18. Let V al be a combinatorial type. A solution of the system
S(V al) is called parasitic if one of the following conditions is not satisfied:

1. the genus of X is not 1
2
(2 +

α∑
j=1

aj − α− ω − γ);

2. deg β 6=
α∑
j=1

(the number of edges of the dessin);

3. β is not a Belyi function;

4. β is a Belyi function for a certain dessin, with combinatorial type dif-
ferent from V al.

Definition 2.19. A parasitic solution is called geometrical if (X , β) is a
Belyi pair, and non-geometrical otherwise.

Several attempts to work with determining systems and parasitic solution
for dessins of genus 0 where made in [3, 10, 11].

3 A necessary condition for parasitic solution

It follows from Theorem 2.13 that parasitic solutions can appear only in the
case of junction of some of the points Ai, Wj, Ck with each other. In order
to ”predict” parasitic solutions we have to find what particular points can,
or can not, coincide.
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Theorem 3.1. Let V al be a combinatorial type of genus 0 (2 +
α∑
i=1

ai − α−

ω − γ = 0). Assume that S0(V al) has a geometric parasitic solution. Then
there exist indices i, j, 1 ≤ i ≤ α, 1 ≤ j ≤ γ, such that Ai = Cj.

Proof. We denote the obtained solution by σ. Since this solution is
geometric, there is a dessin d’enfants corresponding to σ, denote this dessin
by Dσ. Also since V al is a combinatorial type, we denote by D a certain
dessin corresponding to this type. Assume that for any i, j Ai 6= Cj and
consider the following cases:

1. There exists a pair (i, j), i 6= j such that Ai = Aj. Since there is no
cancellation, the sum of the degrees in the numerator of σ is equal to the
sum of degrees in the numerator of β. Thus the number of edges of Dσ is
equal to the number of edges of D, but the number of black vertices of Dσ

is at most α − 1. However Dσ has to satisfy a Euler formula, which implies
that either the number of faces or the number of white vertices should be
greater than the corresponding number for D. Thus σ is not a solution of
S0(V al). A contradiction.

2. There exist i, j such that Ci = Cj, or there exists i, j such that
Wi = Wj. These cases can be considered similar with the previous.

3. There exist i, j such that Ai = Wj. Now writing −(z − C1)
c1 · · · (z −

Cγ)
cγ = −K1(z − A1)

a1 · · · (z − Aα)
aα + K2(z − W1)

w1 · · · (z − Wω)
wω and

substituting Bj = Ai we get that the right hand side of this equality is
divisible by (z − Ai). Then by the Main Theorem of Algebra there exists k
such that (z − Ck) is divisible by (z −Ai). Then Ck = Ai which contradicts
to our assumptions.

Theorem 3.2. Let V al be a combinatorial type of genus 0 (2 +
α∑
i=1

ai − α−

ω − γ = 0). Assume that S0(V al) has a parasitic solution. Then there exist
indices i, j, 1 ≤ i ≤ α, 1 ≤ j ≤ γ, such that Ai = Cj.

Proof. Let n =
α∑
j=1

aj be the number of edges of a dessin corresponding

to V al. We assume that

(K1, K2; A1, . . . , Aα; C1, . . . , Cγ; W1, . . . ,Wω)

is a solution of S0(V al) and for all i, j, i = 1, . . . , α, j = 1, . . . , γ it holds
that Ai 6= Cj. Then the degree of the function

σ = K1
(z − A1)

a1 · · · (z − Aα)
aα

(z − C1)c1 · · · (z − Cγ)cγ
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is equal to 2n. Hence, its derivative has exactly 4n − 2 zeros. At the same
time, it follows from the system S(V al) that σ has at least

α∑
i=1

ai − α +

γ∑
j=1

cj − γ + 2n− n = 2n− α + 2n− γ + n = 4n− 2

critical values. Thus σ has no critical points except A1, . . . , Aα; C1, . . . , Cγ;
W1, . . . ,Wω. However, the values of σ in these points are determined by
the equations S0(V al) and lie in the set {0, 1,∞}. Therefore, σ is a Belyi
function. It follows by the definition that if σ is parasitic solution now, then
it is a geometrical parasitic solution. Now Theorem 3.1 completes the proof.

4 Combinatorics of parasitic solutions

Theorem 4.1. Let V al := 〈a1, . . . , aα|w1, . . . , wω|c1, . . . , cγ〉 be a certain se-
quence of positive integers, not necessary a combinatorial type. The set of
different (up to a linear-fractional transformation) geometrical parasitic so-
lutions of S(V al) is finite.

Proof. Let Dσ be a certain dessin corresponding to parasitic solution σ.
Since Dσ satisfies S(V al) it follows that α(Dσ) ≤ α, ω(Dσ) ≤ ω, γ(Dσ) ≤ γ,

n(Dσ) ≤
α∑
j=1

aj. Also the combinatorial type of Dσ has the upper bound V al.

By [9] it follows that only finite number of abstract graphs can appear. Any
abstract graph can be embedded in a surface in finite number of ways, and
hence gives rise to just finite number of dessins d’enfants. By the equivalence
theorem for Belyi pairs and dessins d’enfants, see [1, 17], there is only a finite
set, B, of different, up to linear-fractional transformations, Belyi functions
corresponding to a given finite set of dessins d’enfants. Thus all solutions
of S(V al) are contained in a finite set of Belyi functions corresponding to
dessins whose combinatorial type is coordinatewise less than or equal to V al.
Then S(V al) has at most finite number of geometrical parasitic solutions.

Remark 4.2. Note that even in the simplest examples we may have an
infinite number of non-geometrical parasitic solutions.

Example 4.3. Let D0,2,0 be the following dessin d’enfant:
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Figure 2.

Theorem 4.4. A combinatorial type V al0,2,0 := 〈5, 2, 2, 1|2, 2, 2, 2, 2|5, 4, 1〉,
whose unique realization is the dessin D0,2,0 from Example 4.3 has a 1-
parametric family of non-geometrical parasitic solutions.

Proof. We will use the following notations for the complex coordinates
of critical points of β. Let A0 be the coordinate of the vertex of valency 1
of D0,2,0, A1, A2 be the coordinates of the black vertices of valencies 2, A be
the coordinate of the vertex of valency 5; C1, C2, C3 be the coordinates of
the centers of faces of valencies 1, 4, 5, correspondingly; K1 be a proportion
coefficient. Thus the direct substitution shows that the values A0 = −1,

A = C2 = 0, A1 = t, A2 = −1

8

8t + 5

2t + 1
, C1 =

1

8

(1 + 12t + 16t2)2

(4t + 3)(4t + 1)(2t + 1)
,

C3 = ∞, K = 83 2t + 1

(4t + 3)(4t + 1)
provides a 1-parametric system of parasitic

solutions

σ = 83 2t + 1

(4t + 3)(4t + 1)

z(z + 1)(z − t)2(z + 8t+5
16t+8

)2

z − (1+12t+16t2)2

8(4t+3)(4t+1)(2t+1)

.

Then by taking the derivatives and comparing the values in their roots,

one can see that if t = 0 or t = −5

8
then σ is a Belyi function and for all

other values of t the function σ is not a Belyi function.

Corollary 4.5. There exist combinatorial types that possess with the in-
finitely many parasitic solutions.

Until the end of this section let a dessin will be a non-bicolored dessin.

Definition 4.6. A dual dessin d’enfants to a dessin D, denoted by D∗, is
the dessin with the same surface as D, whose vertices are the centers of the
faces of D. It is said that vertices C, C ′ of D∗ are incident to the same edge
if and only if the corresponding faces are incident to the same edge and C, C ′

are connected by the same number of common edges as many common edges
have the corresponding faces. These edges are embedded into the surface in
such a way that any edge of D intersects exactly one edge of D∗ and any
edge of D∗ intersects exactly one edge of D.

Example 4.7. Below we give an example of a pair of dual dessins:
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Remark 4.8. It is straightforward to check that (D∗)∗ = D.

This notion is vital in connection with triangularization of a surface and
in connection with the bigraphs and Euler bridge problem, see [8].

For parasitic solutions corresponding to dual dessins we have the following
classification result:

Theorem 4.9. Let V al := 〈a1, . . . , aα|c1, . . . , cγ〉 be a certain combinatorial
type of a non-bicolored dessin (so we do not have white vertices, hence, their
valencies as well). The system S(V al) has a parasitic solution if and only if
the corresponding system for the dual dessin has a parasitic solution. More-
over, a parasitic solution of the first system is geometrical if and only if the
corresponding parasitic solution of the second system is geometrical.

Proof. Note that the combinatorial type of the dual dessin is V al∗ =
〈c1, . . . , cγ|a1, . . . , aα〉. Also if β is a Belyi function for a dessin D then there
is a normalization under which the Belyi function for D∗ is 1

β
, see [17]. The

result follows now from the fact that S(V al) is homogeneous.

5 Series of graphs with geometrical parasitic

solutions

Theorem 5.1. Let

V al := 〈a1, . . . , aϕ, a, 2, . . . , 2︸ ︷︷ ︸
2µ

|w1, . . . , wψ, 2, . . . , 2︸ ︷︷ ︸
2µ+2

|c1 . . . , cξ, 2µ + 2〉

be a combinatorial type of a certain genus-0 dessin D having the fragment

A s��
���
�

�
�sscc

c
c

Figure 4.

with the valency of the vertex in the point A is equal to a ≥ 5 and such that
each of two loops in this fragment contains µ black points of valency 2 and
µ white points of valency 2 and the valency of the face between these two
loops is equal to 2µ + 2, which means that there is no other fragments of the
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dessin inside this face. Then the system S0(V al) has a geometrical parasitic
solution σ corresponding to the dessin Dσ with the combinatorial type

V alσ := 〈a1, . . . , aϕ, a− 2, 2, . . . , 2︸ ︷︷ ︸
µ

|w1, . . . , wψ, 2, . . . , 2︸ ︷︷ ︸
µ+1

|c1 . . . , cξ〉

which can be obtained from D by the deleting of the face of valency (2µ + 2).

Proof. The system S(V al) is given by the following formal equality of
polynomials

−K(z − C1)
c1 · · · (z − Cξ)

cξ(z − C)2µ+2+
+(z − A1)

a1 · · · (z − Aϕ)
aϕ(z − A)a(z −M1)

2 · · · (z −M2µ)
2 =

= (K − 1)(z −W1)
w1 · · · (z −Wψ)wψ(z −N1)

2 · · · (z −N2µ+2)
2

(5.1)

here the letters Ci denote the complex numbers giving the coordinates of the
centers of faces of the dessin D, the letters Ai, Mi denote the coordinates of
the black vertices, and Wi, Ni denote the coordinates of the white vertices
of D.

Let us consider now the dessin d’enfant Dσ which is essentially the same
as D but instead of the part on the Figure 4 it contains the following one
loop:

Â s��
�
�s

c
c

Figure 5.
where the valency of the vertex in point Â is (a − 2) and there are µ black
and µ + 1 white vertices of valency 2 on the loop. It is easy to check that
the combinatorial type of Dσ is equal to V alσ. Thus there exist complex
numbers

K̂; Â1, . . . , Âϕ, Â, M̂1, . . . , M̂µ; Ĉ1, . . . , Ĉξ ∈ CP1,

such that the rational function

σ(z) = K̂
(z − Â1)

a1 · · · (z − Âϕ)
aϕ(z − Â)a−2(z − M̂1)

2 · · · (z − M̂µ)
2

(z − Ĉ1)c1 · · · (z − Ĉξ)cξ

is a Belyi function for Dσ. Thus there exist complex numbers

Ŵ1, . . . , Ŵψ, N̂1, . . . , N̂µ+1 ∈ CP1

such that the following equality holds for all z ∈ CP1:

σ(z)− 1 = (K̂ − 1)
(z − Ŵ1)

w1 · · · (z − Ŵψ)wψ(z − N̂1)
2 · · · (z − N̂µ+1)

2

(z − Ĉ1)c1 · · · (z − Ĉξ)cξ
.

(5.2)
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Let us check that the values

K = K̂; A1 = Â1, . . . , Aϕ = Âϕ, A = Â,

M1 = M̂1, . . . ,Mµ = M̂µ, Mµ+1 = Â, . . . ,M2µ = Â;

C1 = Ĉ1, . . . , Cψ = Ĉψ, C = Â;

W1 = Ŵ1, . . . ,Wψ = Ŵψ;

N1 = N̂1, . . . , Nµ+1 = N̂µ+1, Nµ+2 = Â, . . . , N2µ+2 = Â

(5.3)

satisfy the system of equations determined by (5.1). Indeed, it follows
from (5.2) that the following formal polynomial equality holds:

−K̂(z − Ĉ1)
c1 · · · (z − Ĉψ)cψ+

+(z − Â1)
a1 · · · (z − Âϕ)

aϕ(z − Â)a−2(z − M̂1)
2 · · · (z − M̂µ)

2 =

= (K̂ − 1)(z − Ŵ1)
w1 · · · (z − Ŵψ)wψ(z −N1)

2 · · · (z −Nµ+1)
2.

(5.4)

Multiplying this with (z − Â)2µ+2 on both sides we get the equality for any
z ∈ C. However, it is easy to see that by substituting the values (5.3) into the
equation (5.1) we obtain (5.4) multiplied by (z − Â)2µ+2 on both sides, i.e.,
the equality. Thus the sequence (5.3) satisfy the system S0(V al). The fact
that this solution is geometrical and satisfy the conditions of the theorem
follows directly from its construction.

Let us note that there are infinitely many combinatorial types satisfying
this theorem.

Corollary 5.2. Let Dλµ be a genus-0 dessin d’enfants of the following form:

s c s c q q q c s c s��
���
�

�
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c

Figure 6.

which consists of the handle with λ white and λ black vertices of valency 2,
and two loops with the common vertex and µ white and µ black vertices of
valency 2 on each of the loops. For all λ ≥ 0 and µ ≥ 0 the system S0(V al),
where

V al = 〈5, 2, . . . , 2︸ ︷︷ ︸
λ+2µ

, 1| 2, . . . , 2︸ ︷︷ ︸
λ+2µ+3

|2λ + µ + 3, 2µ + 2, µ + 1〉

with the unique realization Dλµ has a geometrical parasitic solution, corre-

sponding to the dessin D̂λµ, which is drown at Figure 7:

s c s c q q q c s c s��
��scc

Figure 7.12



Remark 5.3. We would like to note that in the above example the coloring
does not play a role, in particular, similar result can be obtained if the most
left vertex is white as far the vertex of valency 5 is still black.
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