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Abstract

Feynman amplitudes are being expressed in terms of a well struc-
tured family of special functions and a denumerable set of numbers
- periods, studied by algebraic geometers and number theorists. The
periods appear as residues of the poles of regularized primitively diver-
gent multidimensional integrals. In low orders of perturbation theory
(up to six loops in the massless ϕ4 theory) the family of hyperloga-
rithms and multiple zeta values (MZVs) serves the job. The hyper-
logarithms form a double shuffle differential graded Hopf algebra. Its
subalgebra of single valued multiple polylogarithms describes a large
class of euclidean Feynman amplitudes. As the grading of the dou-
ble shuffle algebra of MZVs is only conjectural, mathematicians are
introducing an abstract graded Hopf algebra of motivic zeta values
whose weight spaces have dimensions majorizing (hopefully equal to)
the dimensions of the corresponding spaces of real MZVs.

The present expository notes provide an updated version of 2014’s
lectures on this subject presented by the author to a mixed audience
of mathematicians and theoretical physicists in Sofia and in Madrid.

1Extended version of a talk at the 2014 ICMAT Research Trimester ”Multiple Zeta
Values, Multiple Polylogarithms, and Quantum Field Theory”, Madrid.



Contents

1 Introduction 1

2 Residues of primitively divergent amplitudes 3
2.1 Periods in position space renormalization . . . . . . . . . . . . 3
2.2 Vacuum completion of 4-point graphs in ϕ4 . . . . . . . . . . . 5
2.3 Primitive conformal amplitudes . . . . . . . . . . . . . . . . . 6

3 Double shuffle algebra of hyperlogarithms 8

4 Formal multizeta values 11
4.1 Shuffle regularized MZVs . . . . . . . . . . . . . . . . . . . . . 11
4.2 Hopf algebra of motivic zeta values . . . . . . . . . . . . . . . 15

5 Single-valued hyperlogarithms. Applications 18

6 Outlook 22

Appendix. Historical Notes 23

2



1 Introduction

++ In the period preceding the start of the Large Hadron Collider (LHC)
at CERN the ”theoretical theorists” indulged into physically inspired specu-
lations. That produced (occasionally) interesting mathematical insights but
the contact of the resulting activity with real physics, as much as it existed at
all, mainly came through its impact on quantum field theory (QFT). When
LHC began working at full swing the major part of the theory which does
have true applications in particle physics turned out to be good old perturba-
tive QFT - as it used to be over sixty years ago with quantum electrodynam-
ics. There is a difference, however. Half a century ago the dominating view
still was that QFT is ”plagued with divergences” and that renormalization
merely ”hides the difficulties under the carpet”. In the words of Freeman
Dyson [D72] perturbative QFT was an issue for divorce between mathemat-
ics and physics. The work of Stueckelberg, Bogolubov, Epstein and Glaser,
Stora and others gradually made it clear (in the period 1950-1980, although
it took quite a bit longer to get generally acknowledged) that perturbative
renormalization can be neatly formulated as a problem of extension of dis-
tributions, originally defined for non-coinciding arguments in position space.
A parallel development, due to Stueckelberg and Petermann, Gell-Mann and
Low, Bogolubov and Shirkov (see [BS]), culminating in the work of Kenneth
Wilson, the renormalization group, became a tool to study QFT - well beyond
keeping track of renormalization ambiguities. (The authors of [FHS] have felt
the need, even in 2012 - the year of the final confirmation of the Standard
Model through the discovery of the Higgs boson - to appeal to fellow theo-
rists ”to stop worrying [about divergences] and love QFT”.) It was however
a newer development, pioneered by David Broadhurst that led to an unlikely
confluence between particle physics and number theory (see e.g. [BK] and
references to earlier work cited there). In a nutshell, renormalization consists
in subtracting a pole term whose residue is an interesting number - a period
in the sense of [KZ] - associated with the corresponding Feynman ampli-
tude, independent of the ambiguities inherent to the renormalization proce-
dure. These numbers also appear in the renormalization group beta-function
[S97, GGV] and, somewhat mysteriously, in the successive approximation of
such an all important physical quantity as the anomalous magnetic moment
of the electron (see [Sch] as well as Eq. (3.18) below). More generally, for
rational ratios of invariants and masses, euclidean Feynman amplitudes are
periods [BW]. Theorists are trying to reduce the evaluation of Feynman am-

1



plitudes to an expansion with rational coefficients in a basis of transcendental
functions and numbers (see [ABDG, D] and references therein). Thanks to
the rich algebraic structure of the resulting class of functions, this develop-
ment did not make mathematically minded theorists redundant - substituted
by computer programmers.

The present lecture provides an introductory survey of the double shuf-
fle and Hopf algebra of hyperlogarithms and of the associated multiple zeta
values and illustrates their applications to QFT on simple examples of eval-
uating massless Feynman amplitudes in the position space picture. We note
by passing that this picture is advantageous for exhibiting the causal factor-
ization principle of Epstein-Glaser [EG, NST] and it allows an extension to
a curved space-time (see [BF, HW, DF, deMH]). It is also preferable from
computational point of view when dealing with off-shell massless amplitudes
(see [S14, DDEHPS, T14, T15]). On the other hand, on shell scattering am-
plitudes are studied for good reasons in momentum space. Moreover, the
pioneering work of Bloch, Kreimer and others [BEK, BlK, BrS, BS13, Bl15]
that displayed the link between Feynman amplitudes, algebraic geometry and
number theory is using the ”graph polynomial” in the Schwinger (or Feyn-
man) momentum space α-representation. The equivalence of the definition
of quantum periods in the different pictures is established in [Sch].

We begin in Sect. 2 with a brief introduction to position space renor-
malization highlighting the role of ”Feynman periods”. We point out in
Sect. 2.3 that (primitive) 4-point functions in the ϕ4 theory are conformally
invariant and can be expressed as functions of a complex variable z (that
appears subsequently as the argument of multiple polylogarithms). Sect.
3 is devoted to the double shuffle algebra of hyperlogarithms including the
Knizhnik-Zamolodchikov equation for their generating function L(z). The
definition of monodromy of L(z) (3.13) involves the ”Drinfeld associator”
- the generating series of multiple zeta values (MZVs) whose formal and
motivic generalizations are surveyed in Sect. 4. We give, in particular, a
pedestrian summary of Brown’s derivation of the Hilbert-Poincaré series of
the dimensions of weight spaces of motivic zeta values and formulate the
more refined Broadhurst-Kreimer’s conjecture. The Hopf algebra of MZVs
is extended at the end of Sect. 4 to a comodule structure of a quotient Hopf
algebra of multiple polylogarithms. In Sect. 5 we review Brown’s theory
[B04, B] of single valued hyperlogarithms and end up with a couple of il-
lustrative applications. An appendix is devoted to a brief historical survey,
including a glimpse into the life and work of Leonhard Euler with whom
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originates to a large extent the theory of MZVs and polylogarithms.

2 Residues of primitively divergent amplitudes

2.1 Periods in position space renormalization

A position space Feynman integrand G(~x) in a massless QFT is a rational
homogeneous function of ~x ∈ RN. If G corresponds to a connected graph with
V (≥ 2) vertices then, in a four-dimensional (4D) space-time, N = 4(V − 1).
The integrand is convergent if it is locally integrable everywhere so that it
defines a homogeneous distribution on RN. G is superficially divergent if it
gives rise to a homogeneous density in RN of non-positive degree:

G(λ~x) dNλx = λ−κG(~x) dNx , κ ≥ 0 , ~x ∈ RN (λ > 0) ; (2.1)

κ is called the (superficial) degree of divergence. In a scalar QFT with mass-
less propagators a connected graph with a set L of internal lines gives rise to
a Feynman amplitude that is a multiple of the product

G(~x) =
∏

(i,j)∈L

1

x2
ij

, xij = xi − xj, x2 =
∑
α

xαxα. (2.2)

If G is superficially divergent (i.e. if κ = 2L−N ≥ 0 where L is the number
of lines in L) then it is divergent - that is, it does not admit a homogeneous
extension as a distribution on RN . (For more general spin-tensor fields whose
propagators have polynomial numerators a superficially divergent amplitude
may, in fact, turn out to be convergent - see Sect. 5.2 of [NST].) A divergent
amplitude is primitively divergent if it defines a homogeneous distribution
away from the small diagonal (xi = xj for all i, j). The following proposition
(Theorem 2.3 of [NST12]) serves as a definition of both the residue ResG
and of a renormalized (primitively divergent) amplitude Gρ(~x).

Proposition 2.1. If G(~x) (2.2) is primitively divergent then for any
smooth norm ρ(~x) on RN there exists a distribution ResG such that

[ρ(~x)]εG(~x)− 1

ε
(ResG)(~x) = Gρ(~x) +O(ε). suppResG = {0}. (2.3)

Here Gρ is a distribution valued extension of G(~x) to RN . Its calculation is
reduced to the case κ = 0 of a logarithmically divergent graph by using the
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identity

(ResG)(~x) =
(−1)κ

κ!
∂i1 ...∂iκRes (xi1 ...xiκG)(~x) (2.4)

where summation is assumed (from 1 to N) over the repeated indices i1, ..., iκ.
If G is homogeneous of degree −N then

(ResG)(~x) = res (G) δ(~x) (for ∂i(x
iG) = 0) . (2.5)

Here the numerical residue resG is given by an integral over the hypersurface
Σρ = {~x| ρ(~x) = 1}:

resG =
1

πN/2

∫
Σρ

G(~x)
N∑
i=1

(−1)i−1xidx1 ∧ ...d̂xi... ∧ dxN , (2.6)

(a hat over an argument meaning, as usual, that this argument is omitted).
The residue resG is independent of the (transverse to the dilation) surface
Σρ since the form in the integrant is closed in the projective space PN−1.

We note that N is even, in fact, divisible by 4, so that PN−1 is orientable.
The functional resG is a period according to the definition of [KZ, M-S].

Such residues are often called ”Feynman” or ”quantum” periods in the present
context (see e.g. [Sch]). The same numbers appear in the expansion of the
renormalization group beta function (see [S97, GGV]).

The convention of accompanying the 4D volume d4x by a π−2 (2π2 be-
ing the volume of the unit sphere S3 in four dimensions), reflected in the
prefactor, goes back at least to Broadhurst and is adopted in [Sch, BrS]; it
yields rational residues for one- and two-loop graphs. For graphs with three
or higher number of loops ` (= h1, the first Betti number of the graph) one
encounters, in general, multiple zeta values of overall weight not exceeding
2`− 3 (cf. [BK, Sch, S14]). If we denote by L and V the numbers of internal
lines and vertices of a connected graph then ` = L − V + 1(= V − 1 for
a connected 4-point graph in the ϕ4 theory). With the above choice of the
4D volume form the only residues at three, four and five loops (in the ϕ4

theory) are integer multiples of ζ(3), ζ(5) and ζ(7), respectively. The first
double zeta value, ζ(3, 5), appears at six loops (with a rational coefficient)
(see the census in [Sch]). All known residues were (up to 2013) rational linear
combinations of multiple zeta values (MZVs) [BK, Sch]. A seven loop graph
was recently demonstrated [P, B14] to involve multiple Deligne values - i.e.,
values of hyperlogarithms at sixth roots of unity.
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The definition of a period is deceptively simple: a complex number is a period if its
real and imaginary parts can be written as absolutely convergent integrals of rational func-
tions with rational coefficients in domains given by polynomial inequalities with rational
coefficients. The set P of all periods would not change if we replace everywhere in the
definition ”rational” by ”algebraic”. If we denote by Q̄ the field of algebraic numbers (the
inverse of an algebraic number being also algebraic) then we would have the inclusions

Q ⊂ Q̄ ⊂ P ⊂ C. (2.7)

The periods form a ring (they can be added and multiplied) but the inverse of a period
needs not be a period. Feynman amplitudes in an arbitrary (relativistic, local) QFT can
be normalized in such a way that the only numerical coefficient to powers of coupling
constants and ratios of dimensional parameters that appear are periods [BW]. The set of
all periods is still countable although it contains infinitely many transcendent numbers.
A useful criterion for transcendence is given by the Hermite-Lindemann theorem: if z is
a non-zero complex number then either z or ez is transcendental. It follows that e(= e1)
is transcendental and so is π as eiπ = −1 and i is algebraic. Furthermore, the natural
logarithm of an algebraic number different from 0 and 1 is transcendental. Examples of
periods include the transcendentals

π =

∫∫
x2+y2≤1

dxdy, lnn =

∫ n

1

dx

x
, n = 2, 3, ..., (2.8)

as well as the values of iterated integrals, to be introduced in Sect. 3, at algebraic argu-

ments. They include both the classical MZVs as well as the above mentioned multiple

Deligne values. The basis e of natural logarithms, the Euler constant γ = −Γ′(1), as well

as ln(lnn), ln(ln(lnn)), ..., and 1/π are believed (but not proven) not to be periods.

2.2 Vacuum completion of 4-point graphs in ϕ4

In the important special case of the ϕ4 theory (in four space-time dimensions)
the definition of residue admits an elegant generalization which also simplifies
its practical calculation. Following Schnetz [Sch, S14] we associate to each
4-point graph Γ of the ϕ4 theory a completed vacuum graph Γ̄, obtained from
Γ by joining all four external lines in a new vertex ”at infinity”. An n-
vertex 4-regular vacuum graph - having four edges incident with each vertex
and no tadpole loops - gives rise to n 4-point graphs (with (n − 1) vertices
each) corresponding to the n possible choices of the vertex at infinity. The
introduction of such completed graphs is justified by the following result (see
Proposition 2.6 and Theorem 2.7 of [Sch] as well as Sect. 3.1 of [T15]).

Theorem 2.2. A 4-regular vacuum graph Γ̄ with at least three vertices
is said to be completed primitive if the only way to split it by a four edge cut
is by splitting off one vertex. A 4-point Feynman amplitude corresponding to
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a connected 4-regular graph Γ is primitively divergent iff its completion Γ̄ is
completed primitive. All 4-point graphs with the same primitive completion
have the same residue.

The period of a completed primitive graph Γ̄ is equal to the residue of each
4-point graph Γ = Γ̄−v (obtained from Γ̄ by cutting off an arbitrary vertex v).
The resulting common period can be evaluated from Γ̄ by choosing arbitrarily
three vertices {0, e (s.t. e2 = 1),∞}, setting all propagators corresponding to
edges of the type (xi,∞) equal to 1 and integrating over the remaining n− 2
vertices of Γ (n = V (Γ)):

Per(Γ̄) ≡ res(Γ) =

∫
Γ(e, x2, ..., xn−1, 0)

n−1∏
i=2

d4xi
π2

. (2.9)

The proof uses the conformal invariance of residues in the ϕ4-theory.
There are infinitely many primitively divergent 4-point graphs (while

there is a single primitive 2-point graph - corresponding to the self-energy
amplitude (x2

12)−3). A remarkable sequence of `-loop graphs (` ≥ 3) with
four external lines, the zig-zag graphs, can be characterized by their n-point
vacuum completions Γ̄n, n = ` + 2 as follows. Γ̄n admits a closed Hamilto-
nian cycle that passes through all vertices in consecutive order such that each
vertex i is also connected with i± 2 (modn). These graphs were conjectured
by Broadhurst and Kreimer [BK] in 1995 and proven by Brown and Schnetz
[BS12] to have residues

Per(Γ̄`+2) =
4− 43−`

`

(
2`− 2

`− 1

)
ζ(2`− 3) for ` = 3, 5, ... ;

=
4

`

(
2`− 2

`− 1

)
ζ(2`− 3) for ` = 4, 6, ... . (2.10)

We note that the periods for ` = 3, 4 also belong to the wheel with ` spokes
series and are given by

(
2`−2
`−1

)
ζ(2`− 3) (cf. (5.9) below).

2.3 Primitive conformal amplitudes

Each primitively divergent Feynman amplitude G(x1, ..., x4) defines a con-
formally covariant (locally integrable) function away from the small diagonal
x1 = ... = x4. On the other hand, every four points, x1, ..., x4, can be con-
fined by a conformal transformation to a 2-plane (for instance by sending
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a point to infinity and another to the origin). Then we can represent each
euclidean point xi by a complex number zi so that

x2
ij = |zij|2 = (zi − zj)(z̄i − z̄j). (2.11)

To make the correspondence between 4-vectors x and complex numbers z
explicit we fix a unit vector e and let n be a variable unit vector parametrizing
a 2-sphere orthogonal to e. Then any euclidean 4-vector x can be written (in
spherical coordinates) in the form:

x = r(cosρ e+ sinρ n) , e2 = 1 = n2 , en = 0 , r ≥ 0 , 0 ≤ ρ ≤ π . (2.12)

In these coordinates the 4D volume element takes the form

d4x = r3drsin2ρ dρ d2n ,

∫
S2
d2n = 4π . (2.13)

We associate with the vector x (2.12) a complex number z such that:

z = reiρ → x2(= r2) = zz̄ , (x− e)2 = |1− z|2 = (1− z)(1− z̄) (2.14)∫
n∈S2

d4x

π2
= |z − z̄|2d

2z

π
,

∫
S2
δ(x)d4x = δ(z)d2z . (2.15)

For a graph with four distinct external vertices in the ϕ4 theory the
amplitude (integrated over the internal vertices) has scale dimension 12 (in
mass or inverse length units) and can be written in the form:

G(x1, ..., x4) =
g(u, v)∏
i<j x

2
ij

=
F (z)∏
i<j |zij|2

(2.16)

where the indices run in the range 1 ≤ i < j ≤ 4, the (positive real) variables
u, v, and (the complex) z are conformally invariant crossratios:

u =
x2

12x
2
34

x2
13x

2
24

= zz̄ , v =
x2

14x
2
23

x2
13x

2
24

= |1− z|2 , z =
z12z34

z13z24

. (2.17)

The crossratios z and z̄ are the simplest realizations of the argument
z of the hyperlogarithmic functions introduced in the next section. They
also appear (as a consequence of the so called dual conformal invariance
[DHSS, DHKS]) in the expressions of momentum space integrals like

T (p2
1, p

2
2, p

2
3) =

∫
d4k

π2k2(p1 + k)2(k − p3)2
=
F (z)

p2
3

(2.18)

where p1 + p2 + p3 = 0,
p21
p23

= zz̄,
p22
p23

= |1− z|2 (see Eqs. (5-9) of [D]).

7



3 Double shuffle algebra of hyperlogarithms

The story of polylogarithms begins with the dilogarithmic function (see the
inspired and inspiring lecture [Z] as well as the brief historical survey in the
Appendix). Here we shall start instead with the modern general notion of a
hyperlogarithm [B, B09] whose physical applications are surveyed in [P, D].

Let σ0 = 0, σ1, ..., σN be distinct complex numbers corresponding to an
alphabet X = {e0, ..., eN}. Let X∗ be the set of words w in this alphabet
including the empty word ∅. The hyperlogarithm Lw(z) is an iterated integral
[C, B09] defined recursively in any dense simply connected open subset U of
the punctured complex plane D = C \Σ, Σ = {σ0, ..., σN} by the differential
equations2

d

dz
Lwσ(z) =

Lw(z)

z − σ
, σ ∈ Σ , L∅ = 1 , (3.1)

and the initial condition

Lw(0) = 0 for w 6= 0n(= 0 . . . 0), L0n(z) =
(ln z)n

n!
. (3.2)

Denoting by σn a word of n consecutive σ’s we find, for σ 6= 0,

Lσn(z) =
(ln(1− z

σ
))n

n!
. (3.3)

There is a correspondence between iterated integrals and multiple power
series:

(−1)dLσ10n1−1...σd0nd−1(z) = Lin1,...,nd(
σ2

σ1

, ...,
σd
σd−1

,
z

σd
) (3.4)

where Lin1,...,nd is given by the d-fold series

Lin1,...,nd(z1, ..., zd) =
∑

1≤k1<...<kd

zk11 ...z
kd
d

kn1
1 ...kndd

. (3.5)

More generally, we have

(−1)dL0n0σ10n1−1...σd0nd−1(z) =∑
k0≥0 ki≥ni,1≤i≤d

k0+...+kd=n0+...+nd

(−1)k0+n0

d∏
i=1

(
ki − 1
ni − 1

)
L0k0 (z)Lik1−kr(

σ2

σ1

, ...,
σd
σd−1

,
z

σd
). (3.6)

2We use following [B11, S14] concatenation to the right. Other authors, [B14, D], use
the opposite convention. This also concerns the definition of coproduct (4.27) (4.29) below.
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In particular, L01(z) = Li2(z) − ln zLi1(z) = Li2(z) + ln z ln(1 − z). The
number of letters |w| = n0 + ...+ nd of a word w defines its weight, while the
number d of non zero letters is its depth. We observe that the product LwLw′
of two hyperlogarithms of weights |w|, |w′| and depths d, d′ can be expanded
in hyperlogarithms of weight |w| + |w′| and depth d + d′ (as the product
of simplices can be expanded into a sum of higher dimensional simplices).
This observation can be formalized as follows. The set X∗ of words can be
equipped with a commutative shuffle product w ttw′ defined recursively by

∅ ttw = w(= w tt∅) , au ttbv = a(u ttbv) + b(au ttv) (3.7)

where u, v, w are (arbitrary) words while a, b are letters (note that the empty
word ∅ is not a letter). We denote by

OΣ = C
[
z,
( 1

z − σi

)
i=1,...,N

]
(3.8)

the ring of regular functions on D. Extending by OΣ linearity the corre-
spondence w → Lw one proves that it defines a homomorphism of shuffle
algebras OΣ ⊗ C(X) → LΣ where LΣ is the OΣ span of Lw, w ∈ X∗. The
commutativity of the shuffle product is made obvious by the identity

Luttv = LuLv(= LvLu). (3.9)

It is easy to verify, in particular, that the dilogarithm Li2(z)(= −L10(z))
given by (3.5) for d = 1, n1 = 2 disappears from the shuffle product:

L0tt1(z) = L01(z) + L10(z) = L0(z)L1(z). (3.10)

If the shuffle relations are suggested by the expansion of products of iterated
integrals, the product of series expansions of type (3.5) suggests the (also
commutative) stuffle product. Rather than giving a cumbersome general
definition we shall illustrate the rule on the simple example of the product
of depth one and depth two factors (cf. [D]):

Lin1,n2(z1, z2)Lin3(z3) = Lin1,n2,n3(z1, z2, z3) +

Lin1,n3,n2(z1, z3, z2) + Lin3,n1,n2(z3, z1, z2) +

Lin1,n2+n3(z1, z2z3) + Lin1+n3,n2(z1z3, z2). (3.11)

We observe the that the multiple polylogarithms of one variable (with z1 =
... = zd−1 = 1 considered in [B04, S14] span a shuffle but not a stuffle algebra.
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As seen from the above example the stuffle product also respects the weight
but (in contrast to the shuffle product) only filters the depth (the depth of
each term in the right hand side does not exceed the sum of depths of the
factors in the left hand side (which is three in Eq. (3.11)).

It is convenient to rewrite the definition of hyperlogarithms in terms of a
formal series L(z) with values in the (free) tensor algebra C(X) (the complex
vector space generated by all words in X∗) which satisfies the Knizhnik-
Zamoldchikov equation:

L(z) :=
∑
w

Lw(z)w,
d

dz
L(z) = L(z)

N∑
i=0

ei
z − σi

. (3.12)

One assigns weight −1 to eσ, so that L(z) carries weight zero. If the index
of the hyperlogarithm Lw is expressed by its (potential) singularities σi the
word w which multiplies it in the series (3.12) should be written in terms of
the corresponding (noncommuting) symbols ei (thus justifying the apparent
doubling of notation). In the special case when the alphabet X consists of
just two letters e0, e1 corresponding to σ0 = 0, σ1 = 1, L(z) is the generating
function of the classical multipolylogarithms while its value at z = 1, Z :=
L(1) is the generating function of MZVs. In these notations the monodromy
of L around the points 0 and 1 is given by

M0 L(z) = e2πie0 L(z) , M1 L(z) = Z e2πie1 Z−1L(z), Z =
∑
w

ζww,

(3.13)
so thatM0L0n(z) = L0n(z)+2πiL0(n−1)(z),M1Lin(z) = Lin(z)−2πiL0(n−1)(z).
The first relation (3.13) follows from the fact that L(z) is the unique solution
of the Knizhnik-Zamolodchikov equation obeying the ”initial” condition

L(z) = ee0 ln zh0(z), h0(0) = 1, (3.14)

h0(z) being a formal power series in the words in X∗ that is holomorphic in
z in the neighborhood of z = 0. The second relation (3.13) is implied by the
fact that there exists a counterpart h1(z) of h0, holomorphic around z = 1
and satisfying h1(1) = 1 such that

L(z) = Z ee1 ln(1−z) h1(z) (3.15)

(see [S14] or Appendix C of [T14]). This construction can be viewed as a
special case (corresponding to N = 1) of a monodromy representation of the
fundamental group of the punctured plane D (studied in Sect. 6 of [B]).
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The next simplest case, N=2, including the square roots of unity ±1, has
been considered by physicists [RV] under the name harmonic polylogarithms.
The value of the function

L−10n−1(z) =
∞∑
k=1

(−1)k−1 z
k

kn
= −Lin(−z) (3.16)

at z = 1 is the Euler phi function [Ay] (alias, Dirichlet eta function)

φ(n) =
∞∑
k=1

(−1)k−1 1

kn
= (1− 21−21−n)ζ(n), φ(1) = ln(2), (3.17)

a special case of the Dirichlet L-functions [S]. It is remarkable that the
anomalous magnetic moment of the electron, the most precisely measured
quantity in physics, is expressed in terms of eta values:

g − 2

2
=

1

2

α

π
+ (φ(3)− 6φ(1)φ(2) +

197

2432
)(
α

π
)2 + ... (3.18)

(see [Sch] where also the next (α3-)contribution is expressed in terms of
(multiple) eta values). The same weight three combination, φ(3)−6φ(1)φ(2),
appears in the second order of the Lamb shift calculation (see [LPR]).

Remark 3.1 The repeated application of the recursive differential equa-
tions (3.1) leads to dLσ(z) = dz

z−σ (d1 = 0). Brown [B] calls such differential
equations unipotent and proves that the double shuffle algebra LΣ is a dif-
ferential graded (by the weight) algebra.

The weight of consecutive terms in the expansion of L(z) (3.15) is the sum
of the weights of hyperlogarithms and the zeta factors. It is thus natural to
begin the study of multiple polylogarithms with the algebra of MZVs.

4 Formal multizeta values

4.1 Shuffle regularized MZVs

We now turn to the alphabet X of two letters e0, e1 corresponding to σ0 =
0, σ1 = 1 and restrict the multiple polylogarithm (3.5) to a single variable:

Lin1,...,nd(z) =
∑

1≤k1<...<kd

zkd

kn1
1 ...kndd

.
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The MZV ζ(n1, ..., nd) is then defined as its value at 1 whenever the corre-
sponding series converges. Using also (3.4) we can write:

(−1)dζ10n1−1...10nd−1 = ζ(n1, ..., nd) =
∑

1≤k1<...<kd

1

kn1
1 ...kndd

for nd > 1. (4.1)

The convergent MZVs of a given weight satisfy a number of shuffle and
stuffle identities. Looking for instance at the shuffle (sh) and the stuffle (st)
products of two −ζ10 = ζ(2) we find:

sh : ζ2
10 = 4ζ1100 + 2ζ1010(= 4ζ(1, 3) + 2ζ(2, 2)); st : ζ(2)2 = 2ζ(2, 2) + ζ(4);

hence ζ(4) = 4ζ(1, 3) = ζ(2)2 − 2ζ(2, 2). (4.2)

There are no non-zero convergent words of weight 1 and hence no shuffle or
stuffle relations of weight 3. On the other hand, already Euler has discov-
ered the relation: ζ(1, 2) = ζ(3). Thus shuffle and stuffle relations among
convergent words do not exhaust all known relations among MZVs of a given
weight. Introducing the divergent zeta values which correspond to nd = 1
we observe that they cancel in the difference between the shuffle and stuffle
products uttv− u ∗ v of divergent words. For instance, at weight 3 we have

ζ((1)tt(2)) = 2ζ(1, 2) + ζ(2, 1); ζ((1) ∗ (2)) = ζ(1, 2) + ζ(3) + ζ(2, 1). (4.3)

Extending the homomorphism w → ζ(w) as a homomorphism of both the
shuffle and the stuffle algebras to divergent words, assuming, in particular,
that ζ((1) tt(2)) = ζ((1) ∗ (2)) = ζ(1)ζ(2) and taking the difference of the
two equations (4.3) we observe that all divergent zeta’s cancel and we recover
the above Euler’s identity.

Remark 4.1 In fact, the shuffle product is naturally defined (as we did
in (3.7)) in the two-letter alphabet {0, 1} used as lower indices, while the
stuffle product has a simple formulation in the infinite alphabet of all positive
integers, appearing (in parentheses) as arguments of zeta. Eq. (4.1) provides
the translation between the two:

~n = (n1, ..., nd)↔ (−1)nρ(~n) for ρ(~n) = 10n1−1...10nd−1. (4.4)

Using this correspondence one obtains, in particular, the first relation (4.3).
It is useful to introduce shuffle regularized MZVs using the following result

(see Lemma 2.2 of [B11]).
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Proposition 4.1. There is a unique way to define a set of real numbers
I(a0; a1, ..., an; an+1) for any ai ∈ {0, 1}, such that

(i) I(0; 1, a2, ....an−1, 0; 1) = (−1)dζ(n1, ..., nd) for ρ(~n) = (1, a2, ..., an−1, 0);

(ii) I(a0; a1; a2) = 0, I(a0, a1) = 1 for all a0, a1, a2 ∈ {0, 1};
(iii) I(a0; a1, ..., ar; an+1)I(a0; ar+1, ..., ar+s) =∑
σ∈Σ(r,s)

I(a0; aσ(1), ..., aσ(r+s); an+1) (r + s = n);

(iv) I(a; a1, ..., an; a) = 0 for n > 0;

(v) I(a0; a1, ..., an; an+1) = (−1)nI(an+1; an, ..., a1; a0);

(vi) I(a0; a1, ..., an; an+1) = I(1− an+1; 1− an, ..., 1− a1; 1− a0). (4.5)

Here Σ(r, s) is the set of permutations of the indices (1, ..., n) preserving the
order of the first r and the last s among them; Eq. (v) is the reverse of path
formula, while (vi) expresses functoriality with respect to the map t→ 1− t.
Eq. ζ(n1, ..., nd) = (−1)dI(0; ρ(~n); 1) then defines the shuffle regularized zeta
values for all nd ≥ 1. Condition (ii) implies, in particular, ζ(1) = 0.

In fact, it suffices to add a condition involving multiplication by the di-
vergent word (1),

ζ((1) ttw − (1) ∗ w) = 0 for all convergent wordsw, (4.6)

to the shuffle and stuffle relations among convergent words in order to obtain
all known relations among MZVs of a given weight. For w = (n), n ≥ 2 (a
word of depth 1), Eq. (4.6) gives

ζ((1) tt(n)− (1) ∗ (n)) =
n−1∑
i=1

ζ(i, n+ 1− i)− ζ(n+ 1) = 0 (4.7)

(a relation known to Euler). The discovery (and the proof) that

ζ(2n) = − B2n

2(2n)!
(2πi)2n, B2 =

1

6
, B4 = − 1

30
, B6 =

1

42
, (−1)n−1B2n ∈ Q>0,

(4.8)
where Bn are the (Jacob) Bernoulli numbers, was among the first that made
Euler famous (see Appendix). Nothing is known about the transcendentality

of ζ(n) (or of ζ(n)
πn

) for odd n. We introduce following Leila Schneps [S11] the
notion of the Q-algebra FZ of formal MZVs ζf which satisfy the relations:

ζf (1) = 0, ζf (u)ζf (v) = ζf (uttv) = ζf (u∗v), ζf ((1)ttw−(1)∗w) = 0. (4.9)
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The algebra FZ =
⊕

nFZn is weight graded and

FZ0 = Q,FZ1 = {0},FZ2 = 〈ζ(2)〉,FZ3 = 〈ζ(3)〉,FZ4 = 〈ζ(4)〉,
FZ5 = 〈ζ(5), ζ(2)ζ(3)〉,FZ6 = 〈ζ(2)3, ζ(3)2〉,

FZ7 = 〈ζ(7), ζ(2)ζ(5), ζ(2)2ζ(3)〉, (4.10)

where < x, y, ... > is the Q vector space spanned by x, y, ... (and we have
replaced ζf by ζ in the right hand side for short). Clearly, there is a surjection
ζf → ζ of FZ onto Z. The main conjecture in the theory of MZVs
is that this surjection is an isomorphism of graded algebras. This is a strong
conjecture. If true it would imply that there is no linear relation among MZVs
of different weights over the rationals. Actually, a less obvious statement is
valid: such an isomorphism would imply that all MZVs are transcendental.
Indeed, if a non-zero multiple zeta value is algebraic, then expanding out its
minimal polynomial according to the shuffle relation ζ(u)ζ(v) = ζ(u ttv)
(starting with ζ2(w)) would give a linear combination of multiple zetas in
different weights equal to zero, contradicting the weight grading. In fact, we
only know that there are infinitely many linearly independent over Q odd
zeta values (Ball and Rivoal, 2001) and that ζ(3) is irrational (Apéry, 1978).
From now on, we shall follow the physicists’ practice to treat this conjecture
as true and to omit the f ’s in the notation for (formal) MZVs.

Examples: E1. In order to see that the space Z4 of weight four zeta values
is 1-dimensional we should add to Eqs. (4.2) the relation (4.7) for n = 3 and
its depth three counterpart:

ζ((1)tt(1, 2)−(1)∗(1, 2)) = ζ(1, 1, 2)−ζ(1, 3)−ζ(2, 2)(= ζ(1, 1, 2)−ζ(4)) = 0.
(4.11)

This allows to express all zeta values of weight four as (positive) integer
multiples of ζ(1, 3) (see Eq. (B.8) of [T14]).

E2. The shuffle and the stuffle products corresponding to ζ(2)ζ(3) give
two relations which combined with (4.7) for n = 4 allow to express the three
double zeta values of weight five in terms of simple ones:

ζ(1, 4) = 2ζ(5)− ζ(2)ζ(3), ζ(2, 3) = 3ζ(2)ζ(3)− 11

2
ζ(5),

ζ(3, 2) =
9

2
ζ(5)− 2ζ(2)ζ(3). (4.12)

In general, the number of convergent words of weight n and depth d in
the alphabet {0, 1} is

(
n−2
d

)
, so their number at weight n is 2n−2. As it follows
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from Eq. (4.10) the number of relations also grows fast: there are six relations
among the eight MZVs at weight five; 14 such relations at weight six, 29,
at weight seven. One first needs a double zeta value, say ζ(3, 5), in order
to write a basis (of four elements) at weight eight (there being 60 relations
among the 26 elements of FZ8). Taking the identities among (formal) zeta
values into account we can write the generating series Z of MZV (also called
Drinfeld’s associator) in terms of multiple commutators of e0, e1:

Z = 1 + ζ(2)[e0, e1] + ζ(3)[[e0, e1], e0 + e1] + .... (4.13)

It is natural to ask what is the dimension dn of the space FZn of (formal)
MZVs of any given weight n and then to construct a basis of independent
elements. These problems have only been solved for the so called motivic
MZV. Here is a simple-minded substitute of their abstract construction.

4.2 Hopf algebra of motivic zeta values

Consider the concatenation algebra

C = Q〈f3, f5, ...〉, (4.14)

the free algebra over Q on the countable alphabet {f3, f5, ....} (see Example
21 in [Wa]). The algebra of motivic zeta values is identified (non-canonically)
with the algebra

C[f2] = C ⊗Q Q[f2], (4.15)

which plays an important role in the theory of mixed Tate motives (see Sect.
3 of [B11]).The algebra C[f2] is graded by the weight (the sum of indices
of fi) and it is straightforward to compute the dimension dn of the weight
spaces C[f2]n for any n. Indeed, the generating (or Hibert-Poincaré) series
for the dimensions dCn of the weight n subspace of C is given by∑

n≥0

dCnt
n =

1

1− t3 − t5 − ...
=

1− t2

1− t2 − t3
(4.16)

while the corresponding series of the second factor Q[f2] in (4.15) is (1 −
t2)−1. Multiplying the two we obtain the dimensions dn of the weight spaces
conjectured by Don Zagier:∑

n≥0

dnt
n =

1

1− t2 − t3
, d0 = 1, d1 = 0, d2 = 1, dn+2 = dn + dn−1. (4.17)
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Here is a wonderful more detailed conjecture advanced by Broadhurst and
Kreimer [BK] (1997); its motivic version is still occupying mathematicians.

Let Zrn be the linear span of ζ(n1, ..., nk), n1 + ... + nk = n, k ≤ r; we
define dn,r as the dimension of the quotient space Zrn/Zr−1

n . Broadhurst and
Kreimer have advanced the following conjecture for the generating series of
dn,r (based on experience with MZVs appearing in Feynman amplitudes):

D(X, Y ) =
1 + E(X)Y

1−O(X)Y + S(X)Y 2(1− Y 2)
=
∑

dn,rX
nY r. (4.18)

Here E(X) and O(X) generate series of even and odd powers of X,

E(X) =
X2

1−X2
= X2 +X4 + ..., O(X) =

X3

1−X2
= X3 +X5 + ..., (4.19)

while S(X) is the generating series for the dimensions of the spaces of cusp
modular forms (see for background the physicists’ oriented survey [Za]):

S(X) =
X12

(1−X4)(1−X6)
. (4.20)

Setting in (4.18) Y = 1 we recover the Zagier conjecture (4.17) (with dn =∑
r dn,r), proven for motivic MZVs. The ansatz (4.18) can presently only be

derived in the motivic case under additional assumptions (cf. [CGS]).
The concatenation algebra C, identified with the quotient

C = C[f2]/Q[f2], (4.21)

can be equipped with a Hopf algebra structure (with fi as primitive elements)
with the deconcatenation coproduct ∆ : C → C ⊗ C given by

∆(fi1 ...fir) = 1⊗ fi1 ...fir + fi1 ...fir ⊗ 1 +
r−1∑
k=1

fi1 ...fik ⊗ fik+1
...fir . (4.22)

This coproduct can be extended to the trivial comodule C[f2] (4.15) by setting

∆ : C[f2]→ C ⊗ C[f2], ∆(f2) = 1⊗ f2 (4.23)

(and assuming that f2 commutes with fodd). Remarkably, there appear to be
a one-to-one (albeit non-canonical) correspondence between the bases of the
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weight spaces Zn and C[f2]n as displayed in the following list ([B11], 3.4)

〈ζ(2)〉 ↔ 〈f2〉; 〈ζ(3)〉 ↔ 〈f3〉; 〈ζ(2)2〉 ↔ 〈f 2
2 〉;

〈ζ(5), ζ(2)ζ(3)〉 ↔ 〈f5, f2f3(= f3f2)〉; 〈ζ(2)3, ζ(3)2〉 ↔ 〈f 3
2 , f3 ttf3〉;

〈ζ(7), ζ(2)ζ(5), ζ(2)2ζ(3)〉 ↔ 〈f7, f2f5, f
2
2 f3〉;

〈ζ(2)4, ζ(2)ζ(3)2, ζ(3)ζ(5), ζ(3, 5)〉 ↔ 〈f 4
2 , f3 ttf3f2, f3 ttf5, f5f3〉. (4.24)

There is a counterpart of Proposition 4.1 defining motivic iterated integrals
whose Hopf algebra3, [Gon], is non-canonically isomorphic to C[f2]. It allows
to define a surjective period map C[f2] → Z onto the algebra of real MZVs
([B11] Theorem 3.5). Since, on the other hand, C[f2] satisfies the defining
relations of the formal zeta values we have the surjections FZ → C[f2] →
Z. Our main conjecture would then mean that the two (surjective) maps
are also injective and thus define isomorphisms of graded algebras.. If true
it would imply that the (infinite sequence of) numbers π, ζ(3), ζ(5), ... are
transcendental algebraically independent over the rationals (cf. [Wa]). It
would also fix the dimension of the weight spaces Zn to be equal to dn (4.17).
Presently, we only know that this is true for n = 0, 1, 2, 3, 4; in general, the
above cited results prove that

dimZn ≤ dn , dimZn = dn for n ≤ 4 . (4.25)

Remark 4.2 The validity of the above sharpened conjecture would imply,
in particular, that ζ(2n + 1) are primitive elements of the Hopf algebra of
MZVs:

∆(ζ(2n+ 1)) = ζ(2n+ 1)⊗ 1 + 1⊗ ζ(2n+ 1). (4.26)

Eq. (4.8) precludes the possibility of extending this property to even zeta

values. Indeed, it implies the relation ζ(2n) = bnζ(2)n, bn = (24)n|B2n|
2(2n)!

which

is only compatible with the one-sided coproduct ∆ζ(2) = 1⊗ ζ(2).
If for weights n ≤ 7 one can express all MZVs in terms of (products

of) simple zeta values (of depth one) the last equation (4.24) shows that
for n ≥ 8 this is no longer possible. Brown [B12] has established that the
Hoffman elements ζ(n1, ..., nd) with ni ∈ {2, 3} form a basis of motivic zeta
values for all n (see also [D12, Wa]).

The coproduct for MZV, described in Remark 4.2 extends to hyperloga-
rithms and can be formulated in terms of the regularized iterated integrals of

3Brown’s definition which we follow differs from Goncharov’s (adopted in [CGS]) in
that the motivic ζm(2) is non-zero
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Proposition 4.1. - see Theorem 3.8 of [B11] and Sect. 5.3 of [D]. Here we shall
just reproduce the special case of the coproduct of a classical polylogarithm:

∆Lin(z) = Lin(z)⊗ 1 +
n−1∑
k=0|

(ln z)k

k!
⊗ Lin−k(z). (4.27)

According to Remark 4.2 specializing to z = 1 in (4.27) for even n leads to
a contradiction unless we factor the algebra of hyperlogarithms by ζ(2) or,
better, by ln(−1) = iπ(=

√
−6ζ(2)) setting

H := LΣ/iπLΣ so that LΣ = H[iπ] . (4.28)

The coaction ∆ is then defined on the comodule LΣ as follows:

∆ : LΣ → H⊗LΣ , ∆(iπ) = 1⊗ iπ . (4.29)

The asymmetry of the coproduct is also reflected in its relation to differenti-
ation and to the discontinuity discσ =Mσ − 1:

∆(
∂

∂z
F ) = (

∂

∂z
⊗ id)∆F , ∆(discσF ) = (id⊗ discσ)∆F . (4.30)

We leave it to the reader to verify that e.g. for F = Li2(z) both sides of
(4.30) give the same result. This allows us, in particular, to consider LΣ as
a differential graded Hopf algebra.

5 Single-valued hyperlogarithms. Applications

Knowing the action of the monodromy Mσi around each singular point of
a hyperlogarithm one can construct single valued hyperlogarithms in the
tensor product of LΣ with its complex conjugate [B]. We shall survey this
construction for classical multiple polylogarithms LΣ = Lc, defined as O-
linear combination of Lw(z) for w, words in the ”Morse alphabet” X =
{e0, e1} ↔ {0, 1}, where O = C[z, 1

z
, 1
z−1

]. This case is spelled out in [B04,

S14]. The tensor product L̄c ⊗ Lc contains functions of (z̄, z) transforming
under arbitrary representations of the monodromy group (see Theorem 7.4 of
[B]) including the trivial one, - i.e. the single-valued multiple polylogarithms
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(SVMPs). We introduce an ŌO basis of homogeneous SVMPs Pw(z) and
will denote by

PX(z) =
∑
w∈X∗

Pw(z)w (5.1)

its generating series. Their significance stems from the fact that a large class
of euclidean Feynman amplitudes are single valued. The following theorem is
a special case of Theorem 8.1 proven by Brown [B] (coinciding with Theorem
2.5 of [S14]).

Theorem 5.1 There exists a unique family of single-valued functions Pw(z), w ∈
X∗, z ∈ C \ {0, 1} such that their generating function (5.1) satisfies the fol-
lowing Knizhnik-Zamolodchikov equations and initial condition:

∂PX(z) = PX(z)(
e0

z
+

e1

z − 1
) , ∂ :=

∂

∂z
, ∂̄ :=

∂

∂z̄
,

∂̄PX(z) = (
e0

z̄
+

e′1
1− z̄

)PX(z) , Z−e0,−e′1e
′
1Z
−1
−e0,−e′1

= Ze0,e1e1Z
−1
e0,e1

,

PX(z) ∼ ee0 ln(zz̄) for z ∼ 0 . (5.2)

The functions Pw(z) are linearly independent over ŌO and satisfy the shuffle
relations. Every element of their linear span has a primitive with respect to
∂
∂z

, and every single valued function F (z) ∈ L̄cLc can be written as a unique
ŌO-linear combination of Pw(z).

The equation for e′1 is dictated by the expression for the monodromy of
Lw(z) (3.13) around z = 1 and can be solved recursively in terms of elements
of the Lie algebra over the ring of zeta integers Z[Z], generated by e0, e1 and
their multiple commutators (see Lemma 2.6 of [S14]). The result is:

e′1 = e1 + 2ζ(3)[[[e0, e1], e1] , e0 + e1] + ζ(5)(...) + ... , (5.3)

where the parenthesis multiplying ζ(5) consists of eight bracket words of
degree six in {e0, e1}. It follows, in particular, that e′1 = e1 for words of
weight not exceeding three or depth not exceeding one.

We proceed to constructing some simple examples of basic SVMPs. For
words involving (repeatedly) a single letter we have

P0n(z) =
(ln z̄z)n

n!
(Pw(0) = 0 for w 6= 0n, w 6= ∅), P1n(z) =

(ln |1− z|2)n

n!
.

(5.4)
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The depth-one-weight-two SVMPs, which satisfy the differential equations

∂P01 =
P0

z − 1
, ∂̄P01 =

P1

z̄
(P01(0) = 0 = P10(0)) ,

∂P10 =
P1

z
, ∂̄P10 =

P0

z̄ − 1
, (5.5)

are given by

P01 = L10(z̄) + L01(z) + L0(z̄)L1(z) = Li2(z)− Li2(z̄) + ln z̄z ln(1− z),

P10 = L01(z̄) + L10(z) + L1(z̄)L0(z) = Li2(z̄)− Li2(z) + ln z̄z ln(1− z̄) .(5.6)

They obey the shuffle relation P01 +P10 = P0P1 so that the only new weight
two function is their difference,

P01 − P10 = 2(Li2(z)− Li2(z̄) + ln z̄z ln
1− z
1− z̄

) = 4iD(z) , (5.7)

proportional to the Bloch-Wigner dilogarithm (see [Bl] as well as the stimulat-
ing survey [Z]), D(z) = Im(Li2(z)+ln(1−z) ln |z|). One can also write down
depth-one SVMPs of arbitrary weight encountered in the expression Fn(z)
for the graphical function associated with the wheel diagram with (n + 1)
spokes, first computed by Broadhurst in 1985 (for a modern treatment and
references to earlier work - see [S14]):

Fn(z) = (−1)n
P0n−110n(z)− P0n10n−1(z)

z − z̄
=

=
n∑
k=0

(−1)n−k
(
n+ k

n

)
P0n−k(z)

Lin+k(z)− Lin+k(z̄)

z − z̄
. (5.8)

The period of the wheel amplitude is given by the limit of this expression for
z → 1

Fn(1) =

(
2n

n

)
Li2n−1(1) =

(
2n

n

)
ζ(2n− 1). (5.9)

Just like MZVs appear as values at z = 1 of multiple polylogarithms the
values at one of SVMPs define single-valued periods [B13] which find applica-
tions in QFT (and in superstring theory - in the hands of Stephan Stieberger).
Their generating function is

Zsv = Pe0,e1(1) = 1 + 2ζ(3)[e0, [e1, e0]] + 2ζ(5)(...) + ...⇒ ζsv(2) = 0. (5.10)
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The structure of a graded Hopf algebra of the family of hyperlogarithms
allows to read off there symmetry properties from the simpler properties
of ordinary logarithms, as illustrated in Example 25 of [D] which begins

with a derivation of the inversion formula for the dilog: Li2

(
1
x

)
= iπ lnx −

Li2(x) − 1
2

ln2 x + 2ζ(2). Remarkably, the SVMPs satisfy simpler symme-
try relations under the permutation group S3 of Möbius transformations of
P1(C)\{0, 1,∞} that interchange the singular points (see Sect. 2.6 of [S14]).
S3 is generated by two involutive transformations, s1 : z → 1− z, s2 : z → 1

z

such that s1s2 : z → z−1
z
, (s1s2)3 = 1. The formal power series Pe0,e1(z) sat-

isfies simple symmetry relations under s1 and s2 (cf. Lemma 2.17 of [S14]):

Pe0,e1(1− z) = Pe0,e1(1)Pe1,e0(z), Pe0,e1(
1

z
) = Pe0,−e0−e1(1)P−e0−e1,e1(z).

(5.11)
According to (5.10) the first factor in the right hand side of (5.11) does not
contribute to the transformation law of SVMPs of weight one and two; s1 just
permutes the indices 0 and 1 while P0(1

z
) = −P0(z), P1(1

z
) = P1(z) − P0(z)

and

P01(
1

z
) = P00(z)− P01(z), P10(

1

z
) = P00(z)− P10(z)⇒ D(

1

z
) = −D(z)

(5.12)
where D(z) is the Bloch-Wigner dilogarithm (5.7).

Finally we shall demonstrate as a simple illustration of the theory how
one can calculate - without really integrating - the integral

I(x1, x2, x3, x4) =

∫
d4x

π2

4∏
i=1

1

(x− xi)2
=
f(u, v)

x2
13x

2
24

, (5.13)

where u, v are the crossratios (2.17). Using the conformal invariance of f(u, v)
we can set x1 →∞, x2 = e (e2 = 1), x4 = 0;x2

3 = z̄z, (x3 − e)2 = |1− z|2 (cf.
Sect. 2.3). Applying to the result the 4-dimensional Laplacian with respect
to x3 which acts on F (z) = f(u, v) as 1

4
∆3F (z) = 1

z−z̄ ∂̄∂[(z − z̄)F (z)], and
using the fact that the massless scalar propagator is the Green function of
−∆ we obtain:

∂̄∂[(z − z̄)F (z)] =
z̄ − z

z̄z|1− z|2
=

1

z̄(z − 1)
− 1

z(z̄ − 1)

⇒ F (z) =
P01(z)− P10(z)

z − z̄
. (5.14)
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Thus F (z) is given by (5.8) for n = 1, (z − z̄)F (z) being the only odd with
respect to complex conjugation SVMP of weight two. We note that the odd
denominator z−z̄ also comes from the Jacobian J of the change of integration
variables {xα} → {Di = (x− xi)2}, α, i = 1, ..., 4 in (5.13):

I(x1, ..., x4) =
1

π2

∫
1

J

4∏
i=1

dDi

Di

, J = det

(
∂Di

∂xα

)
. (5.15)

Indeed, at the singularity Di = 0 we have

J |Di=0 = 4x2
13x

2
24

√
2(u+ v + uv)− 1− u2 − v2 = 4x2

13x
2
24

√
−(z − z̄)2.

(5.16)
(More about the ”d(log) forms and generalized unitarity cuts” the reader will
find in Sect. 6 of [H].) Integrals of the type of (5.13) have been calculated long
ago by more conventional methods [UD]. For an application of the present
techniques to a (previously unknown) 3-loop correlator - see [DDEHPS].

6 Outlook

Multidimensional Feynman integrals give rise to a family of functions and
numbers with the structure of a differential graded double shuffle Hopf al-
gebra. It is displayed most readily for conformally invariant position space
amplitudes in a massless QFT.

The dimensions of weight spaces of MZVs (which exhaust the Feynman
periods up to six loops in the massless ϕ4 theory) do not exceed - and are
conjectured to coincide with - their motivic counterparts studied by Francis
Brown [B11]. Values of hyperlogarithms at sixth roots of unity first appear
at seven loops. For the two-loop sunrise integral with massive propagators
one encounters multiple elliptic polylogarithms [BV, ABW, BKV].

The interplay between algebraic geometry, number theory and perturba-
tive QFT is a young and vigorous subject and our survey is far from complete.
We have not touched upon the application of cluster algebras to multileg on-
shell Feynman amplitudes - see [GGSVV] for a remarkable first step in this
direction. As hyperlogarithms and associated numbers do not suffice for ex-
pressing massive and higher order Feynman amplitudes, mathematicians are
exploring their generalizations [BL, Brown, B15] and physicists are closely
following this development [ABW, BS]. For the connections of MZVs with
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other parts of mathematics (including the Grothendieck-Teichmüller Lie al-
gebra, mixed Tate motives and modular forms) - see [S11].
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Appendix. Historical Notes

Leonhard Euler (1707-1783)

Just as Archimedes (287-212) dominated the mathematics of the 3d century
BC so, 2000 years later, Euler is dominating the mathematics of 18th century.
Born in the family of the Protestant minister of the parish church in Riehen, a
suburb of the free (Swiss) city of Basel (see [G] where pictures of the church
and of the parish residence are reproduced), he entered the University of
Basel at the age of 13 to study theology. His mathematics professor, Leibniz’s
student Johann Bernoulli (1667-1748 - who had inherited the Basel chair of
his brother Jacob, 1654-1705), offered to give private consultations at his
home to the diligent boy on Saturday afternoons. At the age of twenty
Euler accepted a call to the Academy of Sciences of St. Petersburg (founded
a few years earlier by the czar Peter I, the Great) where two of Johann’s
sons, Daniel and Niklaus Bernoulli, were already active. Contrary to most
other foreign members he mastered quickly the Russian language, both in
writing and speaking. It is during this very active first St. Petersburg period
(along with major work on mechanics, music theory, and naval architecture)
that Euler first became interested (around 1729) in the ”Basel problem”
- the problem of finding what we would now call (after Riemann) ζ(2)(=∑∞

1 1/n2). (It is actually a problem which a young professor in Bologna,
Pietro Mengoli, successor of the great Cavalieri, posed in 1644/1650 [Ay]
and which excited the brothers-rivals Jacob and Johann Bernoulli in Basel.)
Euler started by devising efficient approximation for calculating the (slowly
convergent) series for ζ(2). As Weil [W] puts it ”as with most of the questions
that ever attracted his attention, he never abandoned it, soon making a
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number of fundamental contributions ...”. In 1731 the 24-year-old Euler
introduced the ”Euler-Mascheroni constant” (see [La]):

γ = lim
n→∞

(
n∑
k=1

1

k
− lnn) =

∞∑
n=2

(−1)n
ζ(n)

n
(= 0.5772...) . (A.1)

He then discovered the so-called Euler-MacLaurin formula and introduced
for the first time the Bernoulli numbers into the subject [W]. Next came,
in 1735, his sensational discovery of the formula ζ(2) = π2

6
, based on a

bold application of the theory of algebraic equations to the transcendental
equation 1 − sinx = 0. This was soon followed by by the calculation of
ζ(m) for m = 4, 6, etc. In the same period Euler calculated ζ(3) up to ten
significant digits and convinced himself that it is not a rational multiple of π3

(with a small denominator) and found on the way the identity ζ(1, 2) = ζ(3)
[D12]. Peeling off consecutive prime factors from ζ(s), starting with two (see
[G]),

(1− 2−s)ζ(s) = 1 + 3−s + 5−s + ... ,

Euler discovered in 1737 the fabulous product formula,∏
p

(1− p−s)ζ(s) = 1 . (A.2)

It was during the subsequent Berlin period (1741-1766, invited by Frederick
II) that Euler conjectured, in 1749, the functional equation for the zeta func-
tion that became, 110 years later, the basis of Riemann’s great 1859 paper,
[W]. Euler’s work on number theory was done, as Fermat’s a century earlier,
against a background of contempt towards the field by the majority of math-
ematicians. He was not deterred. As he once observed ”one may see how
closely and wonderfully infinitesimal analysis is related not only to ordinary
analysis but even to the theory of numbers, however repugnant the latter
may seem to that higher kind of calculus” (see [We] Chapter III Sect. V).
Euler’s ”defense of Christianity” of 1747, as Weil ([We] Chapter III, Sect. II)
puts it, ”did nothing to ingratiate its author with the would be philosopher-
king Frederick.” Disgusted by the superficial (but fashionable at the court
of Frederick) anticlerical Voltaire, Euler took the opportunity offered to him
by Empress Catherine II (the Great) to return to St. Petersburg where he
spent the last (most productive!) period of his life (1766-1783).

24



Polylogarithms and multiple zeta values

The study of polylogarithms has started with the dilogarithm function. Its
integral representation (that serves as an analytic continuation of the series)

Li2(z) (=
∞∑
n=1

zn

n2
) = −

∫ z

0

ln(1− t)
t

dt (A.3)

first appears in 1696 in a letter of Leibniz (1646-1716) to Johann Bernoulli.
As already noted, Euler started playing with the corresponding series around
1729. According to Maximon [M] (who is taking care to establish the priority
of British mathematicians) the first study of the properties of the integral
(A.3) for complex z belongs to John Landen (1719-1790) whose memoir ap-
pears in the Phil. Trans. R. Soc. Lond. in 1760, albeit most authors credit
for this Euler (who wrote on the subject later, in 1768). The first comprehen-
sive study of the dilog was given in the book of Spence of 1809 (see [A, M])
whose results are usually attributed to later work of Abel. The name Euler
dilogarithm was only introduced by Hill (1828). The two-variable, five-term
relation

Li2(x) + Li2(y) + Li2(
1− x
1− xy

) + Li2(1− xy) + Li2(
1− y

1− xy
) =

π2

6
− lnx ln(1− x)− ln y ln(1− y) + ln(

1− x
1− xy

) ln(
1− y

1− xy
) (A.4)

was discovered and rediscovered by Spence (1809), Abel (1827), Hill (1828),
Kummer (1840), Schaeffer (1846) (see [Z]). The oriented (odd under permu-
tations of the vertices) volume of the ideal tetrahedron in hyperbolic space
is expressed in terms of the Bloch-Wigner function (5.7): D̃(z1, ..., z4) :=
D( z12z34

z13z24
). It has been found by Lobachevsky in 1836 (for a review see [Mil]).

An early (1955) reference, in which Clausen’s (1832) dilogarithm appears in
a fourth order calculation in QFT, is [KS]. Two years later A. Petermann
and (independently) C.A. Sommerfield uncovered ζ(3) in a calculation of the
electron magnetic moment (see the lively review [St] where important later
work by Laporta and Remiddi [LR] is also surveyed). It reappeared in an-
other calculation in perturbative quantum electrodynamics in the mid 1960’s
[R]. The modern notations and a survey of dilogarithmic identities and their
polylogarithmic generalizations are given by an electrical engineer [L] (for a
nice informative review of his book - see [A]). The harmonic polylogarithms
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(with singularities at the three roots of the equation x3 = x) are surveyed
in [RV]. David Broadhurst was a pioneer in the systematic study of MZV
in QFT (see [BK] and references to earlier work cited there as well as his
popular talk [B10] in which he shares his enthusiasm with beautiful numbers
- like ζ(3) - appearing in various branches of physics). The resurgence of
polylogarithms in pure mathematics, anticipated by 19th century work of
Kummer and Poincaré and a 20 century contribution by Lappo-Danilevsky,
was prepared by the work of Chen [C, B09] on iterated path integrals. The
coproduct of hyperlogarithms was written down by Goncharov [Gon] as a
planar decorated version of Connes-Kreimer’s Hopf algebra of rooted trees
[CK]. One of a number of recent conferences dedicated to this topic had
the telling title Polylogarithms as a Bridge between Number Theory and Par-
ticle Physics (see the notes [Zh] which contain a historical survey with a
bibliography of some 394 entries). Recent developments and perspectives are
surveyed in Francis Brown’s lecture [Br14] at the 2014 Intentional Congress of
Mathematicians as well as in the lectures ([Bl15, CGS]) in these proceedings.
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Inst. H. Poincaré, A19:3 (1973) 211-295.

[FHS] M. Flory, R.C. Helling, C. Sluka, How I learned to stop worrying and
love QFT, arXiv:1201.2714.

[G] W. Gautschi, Leonhard Euler: His Life, the Man, and His Works, SIAM
Review 50:1 (2008) 3-33.

[GGSVV] J.K. Golden, A.B. Goncharov, M. Spradlin, C. Vergu, A. Volovich,
Motivic amplitudes and cluster coordinates, arXiv:1305.1617 [hep-th];
J.K. Golden, M. Spradlin, The differential of all two-loop MHV ampli-
tudes in N=4 Yang Mills theory, arXiv:1306.1833 [hep-th].

[Gon] A. Goncharov, Galois symmetry of fundamental groupoids and
noncommutative geometry, Duke Math. J. 128:2 (2005) 209-284;
math/0208144v4.

[GGV] J.M. Gracia-Bondia, H. Gutierrez-Garro, J.C. Varilly, Improved
Epstein-Glaser renormalization in x-space. III Versus differential renor-
malization, Nucl. Phys. B886 (2014) 824-826; arXiv:1403.1785v3.

[H] J.M. Henn, Lectures on differential equations for Feynman integrals, J.
Phys. A; arXiv:1412.2296v3 [hep-ph].

[HW] S. Hollands, R.M. Wald, Existence of local covariant time ordered
products of quantum fields in curved spacetime, Commun. Math. Phys.
231 (2002) 309-345; gr-qc/0111108.

[KZ] M. Kontsevich, D. Zagier, Periods, in:Mathematics - 20101 and beyond,
B. Engquist, W. Schmid, eds., Springer, Berlin et al. 2001, pp. 771-808.

[KS] G. Källen, A. Sabry, Forth order vacuum polarization, Dan.
Mat.Fys.Med. 29:17 (1955) 1-20.

[La] J.C. Lagarias, Euler’s constant: Euler’s work and modern develop-
ments, Bull. Amer. Math. Soc. 50:4 (2013) 527-628.

[LR] S. Laporta, E. Remiddi, The analytical value of the electron g − 2
at order α3 in QED, Phys. Lett. B379 (1996) 283-291; arXiv:hep-
ph/9602417.

30



[LPR] B.E. Lautrup, A. Peterman, E. de Rafael, Recent developments in the
comparison between theory and experiment in quantum electrodynam-
ics, Physics Reports 3:4 (1972) 193-260.

[L] L. Lewin, Polylogarithms and Associated Functions, North Holland,
Amsterdam 1981; Structural Properties of Polylogarithms, Mathemat-
ical Surveys and Monographs, Vol. 37 AMS, Providence, R.I. 1991.

[M] L.C. Maximon, The dilogarithm function for complex argument, Proc.
Roy. Soc. Lond. A459 (2003) 2807-2819.

[Mil] J.W. Milnor, Hyperbolic geometry: the first 150 years, Bull. Amer.
Math. Soc. 5:1 (1982).

[M-S] S. Müller-Stach, What is a period?, Notices of the AMS (2014);
arXiv:1407.2388 [math.NT].

[NST12] N.M. Nikolov, R. Stora, I. Todorov, Euclidean configuration space
renormalization, residues and dilation anomaly, Lie Theory and Its Ap-
plications in Physics (LT9), Ed. V.K. Dobrev, Springer Japan, Tokyo
2013, pp. 127-147; CERN-TH-PH/2012-076, LAPTH-Conf-016/12.

[NST] N.M. Nikolov, R. Stora, I. Todorov, Renormalization of massless
Feynman amplitudes as an extension problem for associate homoge-
neous distributions, Rev. Math. Phys. 26:4 (2014) 1430002 (65 pages);
CERN-TH-PH/2013-107; arXiv:1307.6854 [hep-th].

[P] E. Panzer, Feynman integrals via hyperlogarithms, Proc. Sci. bf 211
(2014) 049; arXiv:1407.0074 [hep-ph]; Feynman integrals and hyper-
logarithms, PhD thesis, 220 p. 1506.07243 [math-ph].

[RV] E. Remiddi, J.A.M. Vermaseren, Harmonic polylogarithms, Int.J. Mod.
Phys. A15 (2000) 725-754; arXiv:hep-ph/9905237.

[R] J. Rosner, Sixth order contribution to Z3 in finite quantum electrody-
namics, Phys. Rev. Letters 17:23 (1966) 1190-1192.

[S11] L. Schneps, Survey of the theory of multiple zeta values, 2011.

[S97] O. Schnetz, Natural renormalization, J. Math. Phys. 38 (1997) 738-
758; hep-th/9610025.

31



[Sch] O. Schnetz, Quantum periods: A census of φ4 transcendentals, Com-
mun. in Number Theory and Phys. 4:1 (2010) 1-48; arXiv:0801.2856v2.

[S14] O. Schnetz, Graphical functions and single-valued multiple polyloga-
rithms, Commun. in Number Theory and Phys. 8:4 (2014) 589-685;
arXiv:1302.6445v2 [math.NT].

[S] J. Steuding, An Introduction to the Theory of L-Functions, A course
given in Madrid, 2005-06.

[St] D. Styer, Calculation of the anomalous magnetic moment of the elec-
tron, June 2012 (available electronically).

[T14] I. Todorov, Polylogarithms and multizeta values in massless Feynman
amplitudes, in: Lie Theory and Its Applications in Physics (LT10), ed.
V. Dobrev, Springer Proceedings in Mathematics and Statistics, 111,
Springer, Tokyo 2014; pp. 155-176; Bures-sur-Yvette, IHES/P/14/10.

[T15] I. Todorov, Renormalization of position space amplitudes in a massless
QFT, PEPAN Special Issue (2016); CERN-PH-TH-2015-016.

[UD] N.I. Ussyukina, A.I. Davyddychev, An approach to the evaluation of
3- and 4-point ladder diagrams, Phys. Letters B298 (1993) 363-370.

[Wa] M. Waldschmidt, Lectures on multiple zeta values, Chennai IMSc 2011.

[We] A. Weil, Number Theory - An Approach through history from Hammu-
rapi to Legendre, Birkhäuser, Basel 1983, 2007.
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