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Abstract. We prove that the finitely presentable subgroups of
residually free groups are separable and that the subgroups of type
FP∞ are virtual retracts. We describe a uniform solution to the
membership problem for finitely presentable subgroups of residu-
ally free groups.

1. Introduction

The importance of residual finiteness and subgroup separability have
long been recognized, both in group theory and topology. The impor-
tance of residual freeness, on the other hand, has only come into focus
recently despite being studied for several decades, cf. [1]. This increased
awareness of residually free groups is due to the central role that they
play in the resolution of Tarski’s problems on the logic of free groups
(see [9], [10] et seq. and [6], [7] et seq.). In that body of work, the
central objects of study are the finitely generated fully residually free
groups, also known as limit groups.

Fix a non-abelian free group F. A group G is residually free if, given
an element g ∈ G r 1, there exists a homomorphism f : G → F with
f(g) 6= 1. And G is fully residually free if, for every finite subset
X ⊆ G r 1, there exists a homomorphism f : G → F with 1 /∈ f(X).
Sela [9] and Baumslag–Myasnikov–Remeslennikov [2] show that every
finitely generated residually free group is a subgroup of a direct product
of finitely many fully residually free groups.

Free groups and free abelian groups are fully residually free. So too
are the fundamental groups of compact surfaces of Euler characteristic
at most −2. A direct product of residually free groups is residually
free but the direct product of a non-abelian group and a non-trivial
group is never fully residually free. The reader may wish to keep direct
products of free and surface groups in mind as examples of residually
free groups.
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The second author [13] established strict constraints on the manner
in which finitely generated subgroups can sit inside limit groups (see
Theorem 4), while the first author, in joint work with Howie, Miller and
Short [4], proved that the finiteness properties of residually free groups
govern the manner in which they can sit inside direct products of limit
groups (see Theorems 6 and 8). Following some reductions, the results
of [4] allow one to treat an arbitrary finitely presented residually free
group as if it were a subdirect product of limit groups that contains a
term of the lower central series. Thus, provided that one has lemmas
to cover the required reductions, one can prove interesting facts about
residually free groups by pulling back results about nilpotent groups.
In the context that interests us here—the results of [13] concerning
subgroup separability and virtual retractions—we shall see that the
required reductions pose little problem.

Theorem A. If G is a finitely generated residually free group and
H ⊂ G is a subgroup of type FP∞ over Q then H is a virtual retract
of G.

Theorem B. If G is a finitely generated residually free group and H
is a finitely presentable subgroup of G then H is separable in G.

Theorem B is new even in the case where G is a direct product of
free groups or surface groups.

We remind the reader of the meaning and origin of the terms ap-
pearing in these theorems. A subgroup H ⊂ G is a virtual retract if
there exists a finite-index subgroup V ⊂ G, containing H, and a ho-
momorphism ρ : V → H that restricts to the identity on H. Following
Long and Reid [8], if every finitely generated subgroup of G is a virtual
retract then we say that G has local retractions or property LR.

A finitely generated group G is of type FPn over Q if Q, viewed as a
trivial QG-module, has a projective resolution in which the first (n+1)
resolving modules are finitely generated. The group G is of type FP∞
over Q if it is FPn over Q for all n. If G has a compact K(G, 1) then
it is of type FP∞, and the converse holds for residually free groups [4].

A subgroup H ⊂ G is termed separable if, for every g ∈ GrH, there
exists a finite-index subgroup K ⊂ G containing H but not g.

Remark 1. If f : G′ → G is an epimorphism of groups then H ⊂ G
is separable in G if and only if f−1(H) is separable in G′.

If every finitely generated subgroup of G is separable then G is called
locally extended residually finite, or LERF. An old theorem of Mal’cev
shows that finitely generated virtually nilpotent groups are LERF.
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Already in the direct product of three free groups one finds finitely
subgroups that are not of type FP∞; the first examples are due to
Stallings [12]. Thus Theorem A would not remain valid if we assumed
only that H was finitely presented. Likewise, the hypothesis of Theo-
rem B cannot be weakened to allow for finitely generated subgroups,
because such subgroups are not separable in general, even in the direct
product of two free groups, as the following example shows.

Example 2. Let Q = 〈a1, . . . , am|r1, . . . , rn〉 be a finite presentation
for a non-residually finite group, for example

BS(2, 3) = 〈a, b| a−1b2a = b3〉,
and let q : F → Q be the corresponding surjection from a free group
F = 〈a1, . . . , an〉. The diagonal subgroup ∆ is not separable in Q×Q.
Thus H = (q × q)−1(∆) is not separable in F × F , by Remark 1. But
H is generated by the finite set of elements {(ai, ai)|1 ≤ i ≤ m} ∪
{(rj, 1)|1 ≤ j ≤ n} ⊂ F × F .

Finally, we would like to point out that although it is far from view in
the present article, the two trains of thought that we harness to prove
our results ([13] and [4]) both draw crucially on ideas that originate
in Stallings’ proof [11] of Marshall Hall’s Theorem, i.e. Theorem A for
free groups.

2. Reduction to subdirect products

The purpose of this section is to reduce Theorems A and B to the
special case where G is a direct product of limit groups and H ⊂ G
is a subdirect product. (We remind the reader that a subgroup of a
direct product S ⊂ G1 × · · · × Gn is termed a subdirect product if its
projection to each Gi is onto.)

Our results rely crucially on the following result of Sela [9, Claim
7.5] and Baumslag–Myasnikov–Remeslennikov [2, Corollary 19].

Theorem 3. A finitely generated group G is residually free if and only
if it is a subdirect product of finitely generated, fully residually free
groups.

If H ⊂ G is separable in (respectively, is a virtual retract of) G and
K ⊂ G is any subgroup then H ∩K is separable in (respectively, is a
virtual retract of) K. It follows that we need only consider the case
when

G = Λ1 × · · · × Λn

where each Λi is a limit group. Write πi : G → Λi for projection onto
the ith factor.
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In order to apply the results of [4] we must also arrange that the
subgroups H ⊂ G that we consider are subdirect products. This is
achieved by using the following lemma to replace G by Ĥ := π1(H)×
· · · × πn(H). The proof of this lemma applies to subdirect products
of arbitrary groups with property LR. Its applicability in our situation
rests on work of the first author.

Theorem 4 (Theorems A & B of [13]). If G is a finitely generated,
fully residually free group and H is a finitely generated subgroup of G
then H is separable in G and a virtual retract of G.

Lemma 5. A subgroup H is separable in (respectively, is a virtual
retract of) G if and only if it is separable in (respectively, is a virtual

retract of) Ĥ.

Proof. It is easy to see that, if H is separable in (respectively, is a
virtual retract of) G then H is separable in (respectively, is a virtual

retract of) Ĥ. So we will concentrate on the converse assertions.
For each i, πi(H) is a virtual retract of Λi, so there exists a finite-

index subgroup Vi ⊂ Λi and a retraction ρi : Vi → πi(H). The product
retraction

ρ = ρ1 × · · · × ρn : V1 × · · · × Vn → Ĥ.

exhibits Ĥ as a virtual retract. It follows immediately that if H is a
virtual retract of Ĥ then H is a virtual retract of G. Suppose H is
separable in Ĥ and g /∈ H. There are two cases to consider. If g /∈ Ĥ
then, for some i, πi(g) /∈ πi(H). As πi(H) is separable in Λi it follows

that g can be separated from H. If g ∈ Ĥ then, by the hypothesis
that H is separable in Ĥ, there exists a finite-index subgroup V̂ ⊂ Ĥ
containing H but not g. Now ρ−1(V̂ ) is a finite-index subgroup of G
containing H but not g. �

With this lemma in hand, we shall henceforth assume that G =
Λ1 × · · · × Λn = Ĥ.

The following notation will be useful in what follows. Let Ai =
Λ1 × · · · × Λi, let Bi = Λi+1 × · · · × Λn, and write

pi : G = Ai ×Bi → Ai

for the projection that kills Bi and

qi : G = Ai ×Bi → Bi

for the projection that kills Ai.
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3. Virtual retractions

The reductions of the previous section allow us to appeal to the
following theorem of Bridson, Howie, Miller and Short [4].

Theorem 6. Let D = Λ1 × · · · ×Λn be a direct product of non-abelian
limit groups. If a subdirect product S ⊂ D is of type FPn over Q and
Λi ∩ S 6= 1 for i = 1, . . . , n, then S has finite index in D.

The following lemma completes the proof of Theorem A.

Lemma 7. Let G = Λ1 × · · · ×Λn be a product of limit groups and let
H ⊂ G be a subgroup that is of type FPn over Q. Then H is a virtual
retract of G.

Proof. According to Lemma 5, we may assume that H is a subdirect
product. We reorder the factors so that, for some i, Ai−1 ∩H is trivial
and, for all j ≥ i, H∩Λj 6= 1. There is no loss of generality in assuming
that for at most one j ≥ i, say j = i, Λj is abelian. Decompose Λj as
P ×Q where H ∩ P = 1 and H ∩Q is of finite index in Q. We relabel
the factors again so that P is subsumed into Ai−1 and Q becomes Λi.

We have now arranged that G = Λ1 × · · · × Λn where, for some i,
Ai−1 ∩ H = 1, Λi is abelian (possibly trivial) with H ∩ Λi of finite
index in Λi, and Bi is a direct product of non-abelian limit groups that
intersect H non-trivially. The projection qi−1 is injective on H; let
ι : qi−1(H) → G be the inverse of qi−1|H .

We claim that the intersection S := qi−1(H)∩Bi is finitely generated.
Indeed I := qi−1(H) ⊂ Λi×Bi is finitely generated and intersects Λi in
a subgroup of finite index, so I0 := (I ∩ Λi) × S, being of finite index
in I, is also finitely generated, and S is a quotient of I0.

Now S satisfies the hypotheses of Theorem 6 in the direct product
Bi = Λi+1 × · · · × Λn, and hence is of finite-index. Therefore qi−1(H)
has finite index in Λi ×Bi = Bi−1 and the restriction of ι ◦ qi−1 defines
a retraction Ai−1 × qi−1(H) → H. �

4. Separability

The proof that finitely presented subgroups are separable requires a
further result from [4].

Theorem 8 (cf. Theorem 4.2 of [4]). Let D = Λ1×· · ·×Λn be a direct
product of limit groups and suppose that S ⊂ D is a finitely presented
subdirect product with S ∩ Λi 6= 1 for each i. Then S ∩ Λi C Λi and
Λi/(S ∩ Λi) is virtually nilpotent for each i.
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That S ∩ Λi is normal in Λi follows directly from the fact that S is
a subdirect product. In the argument of [4], Theorem 8 appears under
some additional hypotheses: that n ≥ 2; that each Λi is non-abelian;
and that each Λi splits as an HNN-extension over a cyclic subgroup,
with stable letter ti ∈ S ∩ Λi. But in the way we have stated the
theorem, each of these hypotheses can be removed. If n = 1 then,
because S is a subdirect product, S = Λi so the quotient is trivial. If
Λi is abelian then Λi/(S ∩ Λi) is abelian and therefore nilpotent. As
observed in the proof of part 5 of Proposition 3.1 of [4], each Λi contains
a finite-index subgroup ∆i that decomposes as an HNN-extension of
the required form. As ∆i/(S ∩ ∆i) is virtually nilpotent, Λi/(S ∩ Λi)
is also virtually nilpotent.

Corollary 9. If D and S satisfy the hypotheses of Theorem 8 then S
is separable in D.

Proof. Let N = (S ∩ Λ1) × · · · × (S ∩ Λn), a normal subgroup of D.
By Theorem 8, D/N is virtually nilpotent. Let q : D → D/N be the
quotient map. As virtually nilpotent groups are subgroup separable,
q(S) is separable in D/N . Since N ⊂ S we have S = q−1(q(S)), so the
result follows by Remark 1. �

In the light of Lemma 5, the following lemma completes the proof of
Theorem B.

Lemma 10. Let G = Λ1 × · · · ×Λn be a direct product of limit groups
and let H ⊂ G be a finitely presentable subdirect product. Then H is
separable in G.

Proof. Renumbering the factors, as before, we may assume there
exists an integer i so that qi|H is a monomorphism and qi(H)∩Λj 6= 1
for each j > i. Let ι : qi(H) → H be the inverse of qi|H . Let g ∈ GrH.
We aim to find a finite-index subgroup of G containing H but not g.

Suppose that g /∈ Ai× qi(H). As qi(H) ⊂ Bi satisfies the hypotheses
of Corollary 9, there exists a finite-index subgroup K ⊂ Bi containing
qi(H) but not qi(g), so q−1

i (K) separates g from H in G.
Suppose now that g ∈ Ai × qi(H). We first claim that there exists a

finite-index subgroup V of Ai × qi(H) containing H but not g. To see
this, we write H as the graph of ι:

H = {(a, b) ∈ Ai × qi(H)| a = ι(b)}.

Consider the map f : Ai×qi(H) → Ai×Ai defined by (a, b) 7→ (a, ι(b)).
The pre-image of the diagonal subgroup of Ai×Ai under f is precisely
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H—in particular, f(g) /∈ f(H). The claim now follows because diago-
nal subgroups of direct products of residually finite groups are always
separable. For if f(g) = (α1, α2) with α1 6= α2, then since Ai is resid-
ually finite there exists a map φ from Ai to a finite group Q such that
φ(α1) 6= φ(α2), so

φ× φ : Ai × Ai → Q×Q

is a map to a finite group and (φ × φ) ◦ f(g) /∈ (φ × φ) ◦ f(H). If
V is the pre-image of the diagonal subgroup of Q×Q under the map
(φ× φ) ◦ f , then V is a finite-index subgroup of Ai × qi(H) containing
H but not g.

It now suffices to separate V from g in G. Notice that V is a finitely
presented subgroup of G and, for each i, V ∩ Λi 6= 1. Furthermore,
since H is a subdirect product of G and H ⊂ V , we have that V is also
a subdirect product. Therefore V satisfies the hypotheses of Theorem
8, so is separable. �

5. The membership problem

A solution to the membership problem for an arbitrary finitely pre-
sentable subgroup of a product of free and surface groups is given in
section 5.2 of [5]. The results of [4] allow one to extend this to finitely
presented subgroups of residually free groups [3]. However, that solu-
tion is not uniform—the algorithm depends on additional information
about the subgroup. Here we provide a uniform solution.

Corollary 11. There is an algorithm that, given a finite presentation
for a residually free group G ∼= 〈A | R〉, a finite set of words S in the
alphabet A ∪A−1 and an additional word g, will determine whether or
not g lies in the subgroup of G generated by S provided that S is finitely
presentable. (If S is not finitely presentable, the algorithm will termi-
nate with the correct conclusion if g ∈ 〈S〉 but may fail to terminate if
g /∈ 〈S〉.)

The proof is a standard argument about separable subgroups, which
we outline here. The algorithm consists of two processes run in parallel,
one of which will reach a conclusion: on the one hand, one enumerates
the finite quotients of G and checks to see if the image of g lies in the
image of 〈S〉, stopping if it does not and declaring that g /∈ 〈S〉; on
the other hand, working in the free group F (A), one proceeds along
an enumeration un of the words in the free monoid on S ∪ S−1 and a
näıve enumeration of the products pm in F (A) of conjugates of relators
r ∈ R, checking to see if each g−1un is freely equal to pm. (One proceeds
diagonally through the enumerations un and pm.)
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A limitation of the utility of this algorithm comes from the obser-
vation that in general there is no way of knowing if 〈S〉 is finitely
presentable. This is the case when G is the direct product of two free
groups, for example.
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