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Abstract. We develop a geometric theory of self-similar p-adic fractal strings
and their complex dimensions. We obtain a closed-form formula for the geo-
metric zeta functions and show that these zeta functions are rational functions
in an appropriate variable. We also prove that every self-similar p-adic fractal
string is lattice. Finally, we define the notion of a nonarchimedean self-similar
set and discuss its relationship with that of a self-similar p-adic fractal string.
We illustrate the general theory by two simple examples, the nonarchimedean
Cantor and Fibonacci strings.

1. Introduction

In this paper, we lay out the foundation of a theory of self-similar p-adic (or
nonarchimedean) fractal strings, that is, bounded open subsets of the p-adic line
Qp having a self-similar subset of Qp for “boundary”. This theory extends in a
natural way the theory of real (or archimedean) self-similar fractal strings and their
complex dimensions developed in [20, 21]. We also introduce certain geometric zeta
functions, the poles of which play the role for self-similar p-adic fractal strings of the
complex dimensions for the standard real self-similar fractal strings. Furthermore,
we discuss the analogies and the differences with the usual theory.

In recent years, p-adic analysis [10, 29, 30] has been used in various areas of
mathematics as well as in aspects of quantum physics and string theory. In partic-
ular, p-adic models of quantum mechanics and string theory have been developed
as a possible way to understand the elusive geometry of spacetime at extremely
high energies and very small scales (typically, below Planck scale); see, e.g., [5, 31,
32]. Furthermore, several physicists have suggested that the small scale structure
of spacetime may be “fractal”; see, e.g., [7, 8, 26, 33].

On the other hand, in the recent book [12], it has been suggested that fractal
strings and their quantization, fractal membranes, may be related to aspects of
string theory. The present theory may be helpful in developing some of these ideas
further and eventually providing a framework for unifying the archimedean and
nonarchimedean fractal strings and membranes.

1.1. p-adic numbers. Let p ∈ N be a fixed prime number. Then for any nonzero
x ∈ Q, we can always write x = pv ·a/b, for a pair of coprimes a, b ∈ Z and a unique
v ∈ Z so that p does not divide ab. The p-adic norm is a function |·|p : Q −→ [0,∞)
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given by

|x|p = p−v and |0|p = 0.

One can verify that | · |p is indeed a norm on Q. Furthermore, it satisfies a strong
triangle inequality: for any x, y ∈ Q, we have |x + y|p ≤ max{|x|p, |y|p}. The
induced metric, dp(x, y) = |x − y|p, is therefore called an ultrametric. Relative to
the p-adic norm, Q satisfies the nonarchimedean property because for each x ∈ Q,
|nx|p will never exceed |x|p for any n ∈ N. The completion of Q with respect to the
ultrametric dp is the field of p-adic numbers Qp. More concretely, there is a unique
representation of every z ∈ Qp: z = avp

v + · · · + a0 + a1p + a2p
2 + · · · , for some

v ∈ Z and ai ∈ {0, 1, . . . , p − 1} for all i ≥ v. An important subspace of Qp is the
unit ball, Zp = {x ∈ Qp | |x|p ≤ 1}, which can also be represented as follows:

Zp = {a0 + a1p + a2p
2 + · · · | ai ∈ {0, 1, . . . , p − 1}, ∀i ≥ 0}.

Using this p-adic expansion, we can see that

(1.1) Zp =

p−1
⋃

a=0

(a + pZp),

where a + pZp = {y ∈ Qp | |y − a|p ≤ 1/p}. Moreover, by the strong triangle
inequality of the p-adic norm, Zp is closed under addition and hence is a ring. It
is called the ring of p-adic integers. Note that Zp is compact and thus complete.
Furthermore, Z is dense in Zp. Finally, Qp is a locally compact group, so there is a
unique (translation invariant) Haar measure µH , normalized so that µH(Zp) = 1;
hence µH(a+pnZp) = p−n for any n ∈ Z. For general references on p-adic analysis,
we point out, e.g., [10, 29, 30].

1.2. Real fractal strings. A real (or archimedean) fractal string L is a bounded
open subset Ω of the real line R with fractal boundary. The boundary ∂L of a
fractal string is defined to be the topological boundary ∂Ω of the bounded open
set Ω, i.e., ∂L = ∂Ω. It is well known that every bounded open subset of R can be
written as a countable union of disjoint open intervals Ij . Therefore, we write

Ω =
∞
⋃

j=1

Ij .

Furthermore, let us label the length (one-dimensional Lebesgue measure) of each
interval Ij by lj , then L can be identified with the sequence {lj}∞j=1, arranged in a
descending order l1 ≥ l2 ≥ l3 ≥ · · · > 0.

Important geometric information about a fractal string L is contained in its
geometric zeta function

ζL(s) =

∞
∑

j=1

lsj for ℜ(s) > DL,

where DL is the dimension of the fractal string. It is the inner Minkowski dimension
of the topological boundary of the fractal string ∂L and is defined as follows. For
any ε > 0, let V (ε) be the volume of the inner ε-neighborhood of ∂L:

V (ε) = µL{x ∈ Ω | d(x, ∂Ω) < ε},
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where µL is the one-dimensional Lebesgue measure on R and d(x, ∂Ω) is the distance
of x ∈ R to the set ∂Ω ⊂ R. Then the inner Minkowski dimension of ∂Ω is

DL = D = inf{α ≥ 0 | V (ε) = O(ε1−α) as ε → 0+}.
Precious information is encoded in the set D of poles of the geometric zeta function,
which are called the complex dimensions of a fractal string. The general philosophy
of the research monograph Fractal Geometry, Complex Dimensions and Zeta Func-
tions: Geometry and Spectra of Fractal Strings by Michel L. Lapidus and Machiel
van Frankenhuijsen [21] is that the complex dimensions describe the oscillations in
the geometry (and the spectrum) of a fractal string.

1.3. Self-similar fractal strings. An important class of real fractal strings is
composed of the self-similar strings LS , which are generated by J ≥ 2 scaling ratios

1 > r1 ≥ r2 ≥ · · · ≥ rJ > 0

by a procedure reminiscent of the construction of the classical Cantor set. These
scaling ratios possess an important dichotomy. Let G be a multiplicative subgroup
of the positive real line R+ generated by J scaling ratios r1, r2, . . . , rJ . Then it is
well known that G is either discrete or dense in R+. The self-similar string LS

is said to be lattice if G is discrete in R+ and nonlattice if G is dense in R+.
In the lattice case, there is a unique positive real number r < 1 and J positive
integers k1, k2, . . . , kJ without common divisor such that 1 ≤ k1 ≤ k2 ≤ · · · ≤ kJ

and rj = rkj for all j = 1, 2, . . . , J. Lattice strings are simpler than nonlattice
strings in the sense that their complex dimensions are periodically distributed on
finitely many vertical lines rather than quasiperiodically distributed within a certain
horizontally bounded strip as is the case with nonlattice strings [21, Thm. 2.17].
Nevertheless, every nonlattice string can be approximated by a sequence of lattice
strings via a Diophantine approximation procedure [21, Thm. 3.6]. Moreover, a
self-similar string is Minskowski measurable if and only if it is nonlattice [21, Thms.
8.23 and 8.36].

2. p-adic fractal strings

Let Ω be a bounded open subset of Qp. Then it can be decomposed into a
countable union of disjoint open balls1 with radius p−nj centered at aj ∈ Qp,

aj + pnj Zp = B(aj , p
−nj ) = {x ∈ Qp | |x − aj|p ≤ p−nj},

where nj ∈ Z and j ∈ N. There may be many different decompositions since
each ball can always be decomposed into smaller disjoint balls [10]; see Eq. (1.1).
However, there is a canonical decomposition of Ω into disjoint balls with respect to
a certain equivalence relation, as we now explain.

Definition 2.1. Let U be an open subset of Qp. Given x, y ∈ U, we write that
x ∼ y if and only if there is an open ball B ⊆ U such that x, y ∈ B.

It is clear from the definition that the relation ∼ is reflexive and symmetric. To
prove the transitivity, let x ∼ y and y ∼ z. Then there are open balls B1 containing
x, y and B2 containing y, z. Thus y ∈ B1 ∩ B2, so either B1 ⊆ B2 or B2 ⊆ B1 [30].
In any case, x and z are contained in the same open ball, so x ∼ z. Hence, the
above relation ∼ is indeed an equivalence relation on the open set U .

1We shall sometimes call the ball an interval.
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Definition 2.2. A p-adic (or nonarchimedean) fractal string Lp is a bounded open
subset Ω of Qp.

Thus it can be written, relative to the above equivalence relation, canonically as
a disjoint union of intervals or balls:

Lp =

∞
⋃

j=1

(aj + pnj Zp) =

∞
⋃

j=1

B(aj , p
−nj).

Hence, B(aj , p
−nj ) is the largest ball centered at aj and contained in Ω. We

may assume that the lengths (i.e., Haar measure) of the intervals aj + pnj Zp are
nonincreasing, by reindexing if necessary. That is,

p−n1 ≥ p−n2 ≥ p−n3 ≥ · · · > 0.

Definition 2.3. The geometric zeta function of a p-adic fractal string Lp is defined
as

(2.1) ζLp
(s) =

∞
∑

j=1

(µH(aj + pnj Zp))
s, for ℜ(s) > DLp

.

(See Definition 2.9 and Theorem 2.10 below for the definition of the number D =
DLp

.)

Remark 2.4. The geometric zeta function ζLp
is well defined since the decomposition

of Lp into open intervals aj + pnj Zp is unique.

Definition 2.5. The set of complex dimensions of Lp is defined to be

DLp
= {poles of ζLp

}.
Definition 2.6. Given a point a ∈ Qp and a positive real number r > 0, let
B(a, r) = {x ∈ Qp | |x − a|p ≤ r} be a metrically closed ball in Qp, as above. We
call S(a, r) = {x ∈ Qp | |x − a|p = r} the sphere of B.

Let Lp =
⋃∞

j=1 B(aj , rj) be a p-adic fractal string, we then define the metric
boundary βLp of Lp to be the union of the corresponding spheres, i.e.,

βLp =

∞
⋃

j=1

S(aj , rj).

Given a real number ε > 0, let us define the “inner ε-neighborhood” of Lp to be

Nε = {x ∈ Lp | dp(x, βLp) < ε},
where dp(x, βLp) = inf{|x − y|p | y ∈ βLp} is the p-adic distance of x ∈ Qp to
a subset βLp ⊂ Qp. Then the volume V (ε) of the inner ε-neighborhood of Lp is
defined to be the Haar measure of Nε, i.e., V (ε) = µH(Nε).

Remark 2.7. The above definition of V (ε) is a natural extension of the standard
definition for the volume of the inner ε-neighborhood; cf. [21, §1.1]. Indeed, when
Definition 2.6 is applied to a real fractal string, we recover the usual definition of
V (ε) recalled in §1.2.

Remark 2.8. D. V. Chistyakov [2] showed that the normalized one-dimensional
Hausdorff measure in the ultrametric space (Qp, | · |p) coincides with the standard
normalized Haar measure µH in Qp.
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2.1. Minkowski dimension.

Definition 2.9. The dimension of a p-adic fractal string Lp is defined as the inner
Minkowski dimension of βLp:

(2.2) DLp
= D = inf{α ≥ 0 | V (ε) = O(ε1−α) as ε → 0+}

The p-adic fractal string Lp is Minkowski measurable, with Minkowski content

M = lim
ε→0+

V (ε)εD−1

if this limit exists in (0,∞). Otherwise, the upper Minkowski content and lower
Minkowski content are respectively defined by

M∗ = lim sup
ε→0+

V (ε)εD−1

M∗ = lim inf
ε→0+

V (ε)εD−1

Thus 0 ≤ M∗ ≤ M∗ ≤ ∞ and a p-adic fractal string Lp is Minkowski measurable
if and only if M∗ = M∗ = M is a positive real number.

Theorem 2.10. Let Lp be a p-adic fractal string and suppose that it has infin-
itely many intervals of nonzero length. Then the abscissa of convergence σ of the
geometric zeta function ζLp

coincides with the dimension D of Lp. That is, D = σ.

Remark 2.11. Theorem 2.10 is the exact counterpart of Theorem 1.10 in [21], first
noted in [11]. For a proof, we refer to a forthcoming paper [14] or to [22].

3. Self-similar p-adic fractal strings

Definition 3.1. A map Φ : Zp −→ Zp is called a similarity contraction mapping
of Qp if there is a real number r ∈ (0, 1) such that

|Φ(x) − Φ(y)|p = r · |x − y|p
for all x, y ∈ Zp.

For any prime number p > 2, it follows from [24, Thm. 2.2 and Rmk. 2.3] that
Φ is an affine map given by Φ(x) = ax + b, where 0 6= a ∈ pZp and b ∈ Zp. (For
p = 2, we will only consider affine similarity contraction mappings.) Then it is well
known that every nonzero element a ∈ Zp can be written as a = u · pn for some
unit u ∈ Zp (i.e., |u|p = 1) and n ∈ N [25]. Thus r = |a|p = p−n and we record this
fact in the following lemma:

Lemma 3.2. Let Φ : Zp −→ Zp be a similarity contraction mapping of Qp with
the scaling ratio r, then r = p−n for some n ∈ N. Moreover, if p > 2, then
Φ(x) = ax + b, with a, b ∈ Zp and a = u · pn, for some unit u and n ∈ N.

For simplicity, let us take the unit interval (or ball) Zp in Qp and construct
a self-similar p-adic fractal string Lp as follows: Let J ≥ 2 be an integer and
Φ1, . . . , ΦJ : Zp −→ Zp be J similarity contraction mappings with the respective
scaling ratios r1, . . . , rJ ∈ (0, 1) satisfying

(3.1) 1 > r1 ≥ r2 ≥ · · · ≥ rJ > 0.

(See Figure 1.) Assume that

(3.2)

J
∑

j=1

rj < 1,



6 MICHEL L. LAPIDUS AND LŨ’ HÙNG

Zp

Φ1(Zp)

· · · · · ·· · · · · ·

· · ·· · · ΦJ (Zp) G1 GK

Φ11(Zp) Φ1J (Zp) Φ1(G1) Φ1(GK) ΦJ1(Zp) ΦJJ (Zp)ΦJ(G1) ΦJ(GK)
...

...
...

...

Figure 1. Construction of a p-adic self-similar fractal string.

and the images Φj(Zp) of Zp do not overlap, i.e., Φj(Zp) ∩ Φl(Zp) = ∅ for all j 6= l

(j, l ∈ {1, 2, . . . , J}). Note that it follows from Equation (3.2) that
⋃J

j=1 Φj(Zp) is

not all of Zp. We therefore have the following (nontrivial) decomposition of Zp into
disjoint intervals:

(3.3) Zp =

N
⋃

j=1

Φj(Zp) ∪
K
⋃

k=1

Gk,

where Gk is defined below.
In a procedure reminiscent of the construction of the classic Cantor set, subdivide

the interval Zp by means of the subintervals Φj(Zp). Then the convex 2 components
of

Zp\
J
⋃

j=1

Φj(Zp)

are the first substrings of the self-similar p-adic fractal string Lp, say G1, G2, . . . , GK ,
with K ≥ 1. These intervals Gk are called the generators 3 of Lp. The length of
each Gk is denoted by gk = µH(Gk). We assume that the lengths 4 g1, g2, . . . , gK

of the first substrings satisfy

(3.4) 1 > g1 ≥ g2 ≥ · · · ≥ gK > 0.

It follows from Equation (3.3) that

(3.5)
J
∑

j=1

rj +
K
∑

k=1

gk = 1.

We then repeat this process with each of the remaining subintervals Φj(Zp), j =
1, 2, . . . , J . As a result, we obtain a self-similar p-adic fractal string Lp = l1, l2, l3, . . . ,
consisting of intervals of length ln given by

(3.6) rν1
rν2

· · · rνq
gk,

for k = 1, . . . , K and all choices of q ∈ N ∪ {0} and ν1, . . . , νq ∈ {1, . . . , J}. The
lengths are of the form re1

1 . . . reJ

J gk with e1, . . . , eJ ∈ N ∪ {0}.
2We choose the convex components instead of the connected components because Zp is totally

disconnected. Naturally, no such distinction is necessary in the archimedean case; cf. [21, p.36].
3These are the “deleted” intervals in the first generation of the construction of Lp.
4They are called ‘gaps’ in [21].
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Remark 3.3. In general, we may start with any interval a+pnZp instead of the unit
interval Zp in the above construction of a self-similar p-adic string. Then the lengths
of the first substrings would be lk = gkµH(a + pnZp) = gk/pn and everything else
should be adjusted accordingly.

Example 3.4. Nonarchimedean Cantor string.

Let Φ1, Φ2 : Z3 −→ Z3 be two similarity contraction mappings of Qp given by

(3.7) Φ1(x) = 3x and Φ2(x) = 2 + 3x,

with the same scaling ratio r = 1/3 (i.e., r1 = r2 = 1/3). By analogy with the con-
struction of the standard Cantor string, subdivide the interval Z3 into subintervals

Φ1(Z3) = 0 + 3Z3 and Φ2(Z3) = 2 + 3Z3.

The remaining convex component

Z3\
2
⋃

j=1

Φj(Z3) = 1 + 3Z3 = G

is the first substring of a self-similar 3-adic fractal string, called the nonarchimedean
(or 3-adic) Cantor string and denoted by CS3 [13]. The length of G is

l1 = µH(1 + 3Zp) = 1/3.

By repeating this process with the remaining subintervals Φj(Z3), for j = 1, 2, we
obtain a sequence CS3 = l1, l2, l3, . . . , associated with the open set consisting of
intervals of lengths ln = 3−n with multiplicities mn = 2n−1. The nonarchimedean
Cantor string CS3 can also be written as follows (see Figure 2):

(3.8) CS3 = (1 + 3Z3) ∪ (3 + 9Z3) ∪ (5 + 9Z3) ∪ · · · ,

which is an enumeration of the following set

CS3 =

∞
⋃

α=0

⋃

w∈Wα

Φw(1 + 3Z3),

where Wα = {1, 2}α is the set of all finite words, on 2 symbols, of a given length
α ≥ 0 and Φw := Φwα

◦ · · · ◦ Φw1
for w = (w1, . . . , wα) ∈ Wα, where the maps Φ1

and Φ2 are given as in Equation (3.7). See §4 and [13] for more details.

...
...

...
...

Z3

0 + Z3 1 + 3Z3 = G 2 + Z3

0 + 9Z3 3 + 9Z3 6 + 9Z3 2 + 9Z3 5 + 9Z3 8 + 9Z3

Figure 2. Construction of the nonarchimedean (or 3-adic) Cantor string.
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By definition, the geometric zeta function of CS3 is given by

ζCS3
(s) = (µH(1 + 3Z3))

s + (µH(3 + 9Z))s + (µH(5 + 9Z3))
s + · · ·

=

∞
∑

n=1

2n−1

3ns
=

3−s

1 − 2 · 3−s
for ℜ(s) > log 2/ log 3.

The meromorphic extension of ζCS3
to the entire complex plane C is given by

(3.9) ζCS3
(s) =

3−s

1 − 2 · 3−s
,

with poles at

ω =
log 2

log 3
+ iν

2π

log 3
, ν ∈ Z.

Therefore, the set of complex dimensions of CS3 is given by

(3.10) DCS3
= {D + iνp | ν ∈ Z},

where D = log 2/ log 3 is the dimension of CS3 and p = 2π/ log 3 is its oscillatory
period. (See Definition 3.11 below.) Finally, note that ζCS3

is a rational function
of z = 3−s, i.e.,

(3.11) ζCS3
(s) =

z

1 − 2z
.

We refer the interested reader to [13] for additional information concerning the
nonarchimedean Cantor string and the associated 3-adic Cantor set.

3.1. Geometric zeta function.

Theorem 3.5. Let Lp be a self-similar p-adic fractal string. Then the geometric
zeta function of Lp has a meromorphic extension to the whole complex plane C and
is given by

(3.12) ζLp
(s) =

∑K

k=1 gs
k

1 −∑J

j=1 rs
j

, for s ∈ C.

Proof. By Definition 2.1 and Equation (3.6),

ζLp
(s) =

∞
∑

n=1

lsn =

K
∑

k=1

∞
∑

q=0





J
∑

ν1=1

· · ·
J
∑

νq=1

(rν1
· · · rνq

gk)s





=

K
∑

k=1

gs
k

∞
∑

q=0





J
∑

ν1=1

rs
ν1

· · ·
J
∑

νq=1

rs
νq





=

K
∑

k=1

gs
k

∞
∑

q=0





J
∑

j=1

rs
j





q

.

It is immediate to check (as in [23]) that there is a unique real solution D to

the equation
∑J

j=1 rs
j = 1. For ℜ(s) > D, we have |∑J

j=1 rs
j | < 1, so the above

geometric series converges. Therefore, we obtain

ζLp
(s) =

∑K

k=1 gs
k

1 −∑J

j=1 rs
j

.
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This computation is valid for ℜ(s) > D, but by the analytic continuation princi-
ple, the meromorphic extension of ζLp

to all of C exists and is given by the last
expression. �

An immediate consequence of Theorem 3.5 is the following result:

Corollary 3.6. The set of complex dimensions of a self-similar p-adic fractal string

Lp is contained in the set of complex solutions ω of the equation
∑J

j=1 rω
j = 1. 5

3.2. Lattice versus nonlattice string. The following definition is the exact coun-
terpart in this context of [21, Def. 2.14]:

Definition 3.7. A self-similar p-adic fractal string Lp is said to be lattice (or
nonlattice) if the multiplicative group generated by the scaling ratios r1, r2, . . . , rJ

is discrete (or dense) in R+.

Theorem 3.8. Every self-similar p-adic fractal string is lattice.

Proof. Let Lp be a self-similar p-adic fractal string generated by a family of sim-
ilarity contraction mappings Φ = {Φ1, . . . , ΦJ}, with scaling ratios r1, . . . , rJ . By
Lemma 3.2, for each j = 1, . . . , J , we have rj = p−nj for some nj ∈ N. Let
n := gcd{n1, . . . , nJ}; then r := p−n is the generator of the multiplicative group

G =
∏J

j=1 rZ
j generated by r1, . . . , rJ . Hence G is a discrete subgroup of R+ and

Lp is therefore lattice. �

Remark 3.9. Definition 3.7 can be slightly refined as in [21, §3.1.1]. More specif-
ically, Lp is said to be lattice if the multiplicative group generated by its distinct
scaling ratios is of rank 1. Theorem 3.8 then remains valid without change.

Remark 3.10. Theorem 3.8 is in sharp contrast with the usual theory of real self-
similar strings developed in [21, Chs. 2, 3]. Indeed, in the real case, there are both
lattice and nonlattice strings; see §1.3.

3.3. Periodicity of the poles and the zeros. Actually, a small modification
of the above argument (in §3.2) enables us to show that every self-similar p-adic
fractal string is “lattice” in a much stronger sense, as we now explain. It will follow
(see Theorem 3.13) that not only the poles (i.e., the complex dimensions of Lp) but
also the zeros of ζLp

are periodically distributed.
We introduce some useful notation. First, by Lemma 3.2, we write

(3.13) rj = p−nj , with nj ∈ N for j = 1, 2, . . . , J.

Second, we write

(3.14) gk = µH(Gk) = p−mk , with mk ∈ N for k = 1, 2, . . . , K.

Third, let

(3.15) d = gcd{n1, . . . , nJ , m1, . . . , mK}.
Then there exist positive integers n′

j and m′
k such that

(3.16) nj = dn′
j and mk = dm′

k for j = 1, 2, . . . , J and k = 1, . . . , K.

Finally, we set

(3.17) q = pd.

5Of course, if the string has a single generator (i.e., if K = 1), then this inclusion is an equality;
see Examples 3.4, 3.16 and Theorem 3.12.
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Without loss of generality, we can assume that the scaling ratios rj (respectively,
the gaps gk) are written in nondecreasing order as in Equations (3.1) and (3.4), so
that

(3.18) 0 < n′
1 ≤ n′

2 ≤ · · · ≤ n′
J and 0 < m′

1 ≤ m′
2 ≤ · · · ≤ m′

K .

Definition 3.11. Let p = 2π/ log q = 2π/d log p. Then p is called the oscillatory
period of Lp.

Theorem 3.12. Let Lp be a self-similar p-adic fractal string and z = q−s, with
q = pd as in Equation (3.17). Then the geometric zeta function ζLp

of Lp is a
rational function in z. Specifically,

(3.19) ζLp
(s) =

∑K

k=1 zm′

k

1 −∑J

j=1 zn′

j

,

where m′
k, n′

j ∈ N are given by Equation (3.16).

Proof. In view of Theorem 3.5 and Equations (3.13)–(3.17), we have

(3.20) ζLp
(s) =

∑K

k=1 gs
k

1 −∑J

j=1 rs
j

=

∑K

k=1 p−mks

1 −∑J

j=1 p−njs
=

∑K

k=1 zm′

k

1 −∑J

j=1 zn′

j

for z = q−s. The final expression for ζLp
is a rational function of z. �

To avoid any confusion, we stress that in the statement of the next theorem, ζLp

is viewed as a function of the original complex variable s.

Theorem 3.13. Let Lp be a self-similar p-adic fractal string. Then
(i) The complex dimensions of Lp and the zeros of ζLp

are periodically distributed
along finitely many vertical lines, with period p, the oscillatory period of Lp.

(ii) Furthermore, along a given vertical line, each pole (respectively, each zero)
of ζLp

has the same multiplicity.
(iii) Finally, the dimension D of Lp is the only complex dimension that is located

on the real axis 6. Moreover, D is simple 7 and is located on the right most vertical
line. That is, D is equal to the maximum of the real parts of the complex dimensions.

Proof. By Theorem 3.12, ζLp
is a rational function of z = q−s, hence is a peri-

odic function of s with period ip. Moreover, the numerator and denominator of
ζLp

(viewed as functions of z) are polynomials of degree m′
K and n′

J , respectively.
Therefore, each has, respectively, m′

K and n′
J complex zeros, counted with multi-

plicity. Parts (i) and (ii) now follow easily. See the proof of Theorems 2.17 and 3.6
in [21] for more detail, as well as for the proof of Part (iii). �

Remark 3.14. Again, this result is in sharp contrast with the case of real (or
archimedean) self-similar strings, where the zeros or the poles of the geometric
zeta function need not be periodically distributed along finitely many vertical lines,
let alone with the same period; cf. [21, Thm. 2.17]. Indeed, the complex dimen-
sions of nonlattice archimedean strings are quasiperiodically distributed within a
certain horizontally bounded strip, as is shown in [21, Ch. 3]. Moreover, even for
real lattice strings, only the poles, but not in general the zeros, are periodically

6By contrast, it is immediate to check that there are no real zeros (still in the s variable).
7i.e., D is a simple pole of ζLp

.
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distributed. Indeed, in the archimedean case, the gaps gk can take any positive real
values (less than one) rather than values in p−N.

Remark 3.15. As will be apparent to the expert reader, the situation described
above—specifically, the rationality of the zeta function in the variable z = q−s,
with q = pd, and the ensuing periodicity of the poles and the zeros—is analogous
to the one encountered for a curve (or more generally, a variety) over a finite field
Fq; see, e.g., Chapter 3 of [27]. In this analogy, the prime number p corresponds to
the characteristic of the finite field.

Example 3.16. Nonarchimedean Fibonacci String.
Let Φ1, Φ2 : Z2 −→ Z2 be two similarity contraction mappings of Q2 given by

(3.21) Φ1(x) = 2x and Φ2(x) = 1 + 4x,

with the respective scaling ratios r1 = 1/2 and r2 = 1/4. The self-similar 2-adic
fractal string with generator G = 3 + 4Z2 is called the nonarchimedean (or 2-adic)
Fibonacci string and denoted by FS2; compare with the archimedean counterpart
discussed in [21, §2.3.2]. It is given by the sequence FS2 = l1, l2, l3, . . . and consists
of intervals of lengths ln = 2−(n+1) with multiplicities fn+1, the Fibonacci numbers.
8 More specifically, the nonarchimedean Fibonacci string can also be written as
follows:

FS2 = (3 + 4Z2) ∪ (6 + 8Z2) ∪ (12 + 16Z2) ∪ (13 + 16Z2) ∪ · · · ,

which is an enumeration of the following set

FS2 =

∞
⋃

α=0

⋃

w∈Wα

Φw(3 + 4Z2),

where Φ1 and Φ2 are given as in Equation (3.21). See §4 for more detail.
By Theorem 3.5, the geometric zeta function of FS2 is given by

(3.22) ζFS2
(s) =

4−s

1 − 2−s − 4−s
.

The set of complex dimensions of FS2 is given by

(3.23) DFS2
= {D + iνp | ν ∈ Z} ∪ {−D + i(ν + 1/2)p | ν ∈ Z},

with D = log φ/ log 2, where φ = (1 +
√

5)/2 is the golden ratio, and p = 2π/ log 2,
the oscillatory period of FS2. (See Figure 3.) Note that ζFS2

does not have any
zero (in the variable s) since the equation 4−s = 0 does not have any solution.
Finally, as in Theorem 3.12, ζFS2

is a rational function of z = 2−s, i.e.,

(3.24) ζFS2
(s) =

z2

1 − z − z2
.

4. p-adic self-similar sets and strings

For α ∈ N ∪ {0}, let Wα = {1, 2, . . . , J}α be the set of all finite words, on J
symbols, of length α, and Φw = Φwα

◦ · · · ◦ Φw1
for w = (w1, . . . , wα) ∈ Wα.

8These numbers are defined by the recursive formula: fn+1 = fn + fn−1, f0 = 0, and f1 = 1.



12 MICHEL L. LAPIDUS AND LŨ’ HÙNG

p

1
2p

−D 0 D 1

Figure 3. The complex dimensions of the nonarchimedean (or
2-adic) Fibonacci string. D = log φ/ log 2 and p = 2π/ log 2.

Definition 4.1. A nonempty compact subset K of Zp is said to be a p-adic (or
nonarchimedean) self-similar set generated by the family of contraction mappings
Φ = {Φ1, Φ2, . . . , ΦJ} of Qp (leaving Zp invariant) 9 if

K = Ψ(K) :=

J
⋃

j=1

Φj(K).

Throughout the remainder of §4, we assume that Φ is a family of similarity
contraction mappings of Qp leaving Zp invariant and such that Φl(Zp)∩Φj(Zp) = ∅
for l 6= j. Also, we suppose that J ≥ 2 and hypothesis (3.2) holds. 10

Theorem 4.2. (i) There is a unique nonempty compact subset Sp of Zp such that

Sp = Ψ(Sp).

In other words, Sp is the unique p-adic self-similar set associated with the p-adic
iterated function system Φ = {Φ1, . . . , ΦJ}.

(ii) Furthermore, we have

Sp =

∞
⋂

α=0

⋃

w∈Wα

Φw(Zp).

9That is, such that Φj(Zp) ⊂ Zp, for j = 1, . . . , J.
10When p = 2, we assume as in §3 that the maps Φj are affine. When p > 2, this follows from

our hypotheses; see Lemma 3.2.
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(iii) Moreover, let Ψ1(X) = Ψ(X), given as in Definition 4.1, and for n ≥ 2,
let Ψn(X) = Ψ(Ψn−1(X)) for every nonempty compact subset X of Zp. Then the
sequence Ψn(X) converges to Sp, in the sense of the Hausdorff metric on Zp.

Proof. Recall from §1.1 that Zp, equipped with the ultrametric dp, is a complete
metric space. Therefore, the contraction mapping principle, applied to the complete
metric space of all nonempty compact subsets of Zp, equipped with the Hausdorff
metric induced by dp and to the contraction map Ψ defined in part (iii), shows
(as in [9]) 11 that there is a unique self-similar (or invariant) set of the family of
similarity contraction mappings Φ. 12 This proves part (i) and part (iii). For part
(ii), note that the family of similarity contraction mappings Φ satisfies the open
set condition with O = Zp; see [9, §5.2]. We refer to Hutchinson’s paper [9] for a
detailed argument in the case of arbitrary complete metric spaces. �

Theorem 4.3. Let Lp be the self-similar p-adic fractal string generated by the
above family of similarity contraction mappings Φ of Zp and let Sp be the p-adic
self-similar set associated with this family, as in Theorem 4.2. Then

Lp = Zp\Sp,

the complement of Sp in Zp.

Proof. This clearly follows from the construction of the self-similar p-adic fractal
string Lp and, in view of Theorem 4.2, of the definition of the p-adic self-similar
set Sp. �

Theorem 4.4. Under the same assumptions as in Theorem 4.3, we have:

Lp =
∞
⋃

α=0

⋃

w∈Wα−1

K
⋃

k=1

Φw(Gk),

where the generators Gk are defined as in §3 and Φw(Gk) = ∅ if w ∈ W−1.

Proof. By Theorems 4.2 and 4.3, we have

(4.1) Lp = Zp\Sp = Zp\
∞
⋂

α=0

⋃

w∈Wα

Φw(Zp) =
∞
⋃

α=0

(

Zp\
⋃

w∈Wα

Φw(Zp)

)

.

Thus, it suffices to prove that

Zp\
⋃

w∈Wα

Φw(Zp) =
⋃

w∈Wα−1

K
⋃

k=1

Φw(Gk),

for every α ≥ 0. We shall show this by induction on α. For α = 0, it is obvious.
For α = 1, it follows from the first step of the construction of Lp since

Zp\
⋃

w∈W1

Φw(Zp) = Zp\
J
⋃

j=1

Φj(Zp) =

K
⋃

k=1

Gk =
⋃

w∈W0

K
⋃

k=1

Φw(Gk).

11See also, e.g., [6, §9.2] and [23].
12It follows from [9] that Ψ is indeed a contraction.
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Suppose that Zp\
⋃

w∈Wα
Φw(Zp) =

⋃

w∈Wα−1

⋃K

k=1 Φw(Gk) for some α ∈ N. Then

Zp\
⋃

w∈Wα+1

Φw(Zp) = Zp\
J
⋃

j=1

Φj

(

⋃

w∈Wα

Φw(Zp)

)

=

J
⋃

j=1

Φj

(

Zp\
⋃

w∈Wα

Φw(Zp)

)

=

J
⋃

j=1

Φj





⋃

w∈Wα−1

K
⋃

k=1

Φw(Gk)





=
⋃

w∈Wα

K
⋃

k=1

Φw(Gk).

The induction is completed and hence the theorem is established. �

Remark 4.5. We leave it to the interested reader to illustrate the above theorems
by means of the 3-adic Cantor string and of the 2-adic Fibonacci string discussed
respectively in Example 3.4 and Example 3.16.

5. Concluding Comments

We close this paper with some comments regarding several possible directions
for future research in this area. We hope to address these issues in later work.

5.1. Adèlic self-similar strings and their spectra. It would be interesting to
unify the archimedean and nonarchimedean settings by appropriately defining adèlic
self-similar fractal strings, and then studying the associated spectral zeta functions
(as is done for standard archimedean fractal strings in [11, 15, 19, 20, 21]). To this
aim, the spectrum of these adèlic self-similar strings should be suitably defined and
its study may benefit from Dragovich’s work on adèlic quantum harmonic oscillators
[4]. In the process of defining these adèlic fractal strings, we expect to make contact
with the notion of a fractal membrane (or “quantized fractal string”) introduced
in [12, Ch. 3] and rigorously constructed in [16] as a Connes-type noncommutative
geometric space; see also [12, §4.2]. The aforementioned spectral zeta function of
an adèlic fractal string would then be viewed as the (completed) spectral partition
function of the associated fractal membrane, in the sense of [12].

5.2. p-adic self-similar flows. We expect that, much as was done in the real case
[21, Ch. 7], one could interpret the geometric zeta function of a p-adic self-similar
string as the dynamical zeta function of a suitable nonarchimedean dynamical sys-
tem, to be referred to as a “p-adic self-similar flow”. We could then obtain an asso-
ciated “prime orbit theorem” and explicit formulas for the corresponding counting
functions of (weighted) primitive periodic orbits.

5.3. Nonlattice self-similar p-adic fractal strings and Berkovich’s space.

As we have seen in §3.2, there can only exist lattice self-similar p-adic fractal
strings, because of the discreteness of the valuation group of Qp. However, in
the archimedean setting, there are both lattice and nonlattice self-similar strings.
We expect that by suitably extending the notion of self-similar p-adic fractal string
to Berkovich’s p-adic analytic space [1, 3], it can be shown that self-similar p-adic



SELF-SIMILAR P-ADIC FRACTAL STRINGS AND THEIR COMPLEX DIMENSIONS 15

fractal strings are generically nonlattice in this broader setting. 13 Furthermore,
we conjecture that every nonlattice string in Berkovich’s p-adic analytic space can
be approximated by lattice strings with increasingly large oscillatory periods (much
as occurs in the archimedean case [21, Ch. 3]).

5.4. Tube formulas for p-adic self-similar strings. It would be interesting to
establish suitable “tube formulas” for self-similar p-adic fractal strings, providing
a counterpart of the tube formulas obtained for archimedean self-similar strings
in [21, §8.4]. By analogy with the usual case, these formulas should express the
Haar measure of the appropriately defined inner ε-neighborhoods of the string 14

as power series in ε having exponents the complex (co)dimensions of the string. In
view of the discussion given in §5.3 just above, it would be natural to also consider
addressing this same question in the setting of Berkovich’s p-adic analytic space,
an enlarged model of Qp. Indeed, in that model, the counterpart of Zp is no longer
totally disconnected but is (uniquely) path connected.

5.5. Higher-dimensional p-adic self-similar sets and tilings. Finally, one
could consider higher-dimensional analogues of self-similar p-adic fractal strings, as-
sociated with suitable p-adic self-similar sets (or iterated function systems) and the
corresponding self-similar tilings [28]. One would then obtain higher-dimensional
counterparts of the tube formulas discussed in §5.4. We note that in the archimedean
case, higher-dimensional counterparts of the usual tube formulas of [21] have been
obtained in [17] for self-similar tilings and fractals; see also [18].
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