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Abstract. A spectral reformulation of the Riemann hypothesis was obtained

in [LaMa2] by the second author and H. Maier in terms of an inverse spec-

tral problem for fractal strings. The inverse spectral problem which they stud-
ied is related to answering the question “Can one hear the shape of a fractal

drum?”and was shown in [LaMa2] to have a positive answer for fractal strings

whose dimension is c ∈ (0, 1) − { 1
2
} if and only if the Riemann hypothesis

is true. Later on, the spectral operator was introduced semi-heuristically by

M. L. Lapidus and M. van Frankenhuijsen in their development of the theory
of fractal strings and their complex dimensions [La-vF2, La-vF3] as a map

that sends the geometry of a fractal string onto its spectrum. In this survey ar-

ticle, we focus on presenting the results obtained by the authors in [HerLa1]
about the invertibility (in a suitable sense) of the spectral operator, which

turns out to be intimately related to the critical zeroes of the Riemann zeta

function. More specifically, given any c ≥ 0, we show that the spectral operator
a = ac, now precisely defined as an unbounded normal operator acting in an

appropriate weighted Sobolev space Hc, is ‘quasi-invertible’ (i.e., its trunca-

tions are invertible) if and only if the Riemann zeta function ζ = ζ(s) does not
have any zeroes on the vertical line Re(s) = c. It follows, in particular, that

the associated inverse spectral problem has a positive answer for all possible
dimensions c ∈ (0, 1), other than the mid-fractal case when c = 1

2
, if and only if

the Riemann hypothesis is true. Therefore, in this latter result from [HerLa1],

a spectral reformulation of the Riemann hypothesis is obtained from a rigorous
operator theoretic point of view, thereby further extending the earlier work of

the second author and H. Maier in their study of the inverse spectral problem.
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1. Introduction

In [LaMa2], a spectral reformulation of the Riemann hypothesis was ob-
tained by M. L. Lapidus and H. Maier, in terms of inverse spectral problems for
fractal strings. The inverse spectral problem they studied investigates answering
the following question:

“Can one hear the shape of a fractal string?”

More specifically,

“Let L be a given standard fractal string whose dimension is D ∈
(0, 1). If this string has no oscillations of order D in its spectrum,
can one deduce that it is Minkowski measurable (i.e., that it has
no oscillations of order D in its geometry)?”

The question turned out to have a positive answer other than in the ’midfrac-
tal’ case, i.e., for any fractal string whose dimension is D ∈ (0, 1)− 1

2 , if and only if
the Riemann hypothesis is true. (See [LaMa2], announced in [LaMa1].) This result
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provided a resolution for the converse of the modified Weyl–Berry conjecture which
was formulated in [La1] and then resolved in the affirmative by M. L. Lapidus and
C. Pomerance in [LaPo2] (announced in [LaPo1]) in the case of fractal strings (i.e.,
one-dimensional drums with fractal boundary). Later on, this work was revisited in
the light of the theory of fractal strings and their complex dimensions which was
developed in [La-vF2, La-vF3] by M. L. Lapidus and M. van Frankenhuijsen.

In addition, in [La-vF3], the spectral operator was introduced ‘semi-heuristic-
ally’ as the map that sends the geometry of a fractal string onto its spectrum.

In our recent joint work [HerLa1], we provided a precise definition of the
spectral operator a as well as a rigorous functional analytic framework within which
to study its main properties. We showed that a = ac is an unbounded normal op-
erator acting on a suitable scale of Hilbert spaces (indexed by the Minkowski di-
mension c in (0,1) of the underlying fractal strings) and precisely determined its
spectrum (which turned out to be equal to the closure of the range of values of
the Riemann zeta function along the vertical line Re(s) = c). Furthermore, we in-
troduced a suitable family of truncated spectral operators a(T ) and deduced that
for a given c ≥ 0, the spectral operator a = ac is quasi-invertible (i.e., each of the
truncated spectral operators is invertible) if and only if there are no Riemann ze-
roes on the vertical line of equation Re(s) = c. It follows that the associated inverse
spectral problem has a positive answer for all possible dimensions c ∈ (0, 1), other
than the mid-fractal case when c = 1

2 , if and only if the Riemann hypothesis is true.

Using, in particular, results concerning the universality of the Riemann zeta
function among the class of non-vanishing holomorphic functions, we also showed
in [HerLa1] that the spectral operator is invertible for c > 1, not invertible for
1
2 < c < 1, and conditionally (i.e., under the Riemann hypothesis), invertible for

0 < c < 1
2 . Moreover, we proved that the spectrum of the spectral operator is

bounded for c > 1, unbounded for c = 1, equals the entire complex plane for
1
2 < c < 1, and unbounded but, conditionally, not the whole complex plane, for

0 < c < 1
2 . We therefore deduced that four types of (mathematical) phase transitions

occur for the spectral operator at the critical values (or critical fractal dimensions)
c = 1

2 and c = 1, concerning the shape of its spectrum, its boundedness (the spectral
operator is bounded for c > 1, unbounded otherwise), its invertibility (with phase
transitions at c = 1 and, conditionally, at c = 1

2 ), as well as its quasi-invertibility

(with a single phase transition at c = 1
2 if and only if the Riemann hypothesis holds

true).

The theory of fractal strings and their complex dimensions investigates the
geometric, spectral and physical properties of fractals and precisely describes the
oscillations in the geometry and the spectrum of fractal strings; see, in particular,
[La-vF2, La-vF3]. Such oscillations are encoded in the complex dimensions of the
fractal string, which are defined as the poles of the corresponding geometric zeta
function. This theory has a variety of applications to number theory, arithmetic
geometry, spectral geometry, fractal geometry, dynamical systems, geometric mea-
sure theory, mathematical physics and noncommutative geometry; see, for example,
[La2, La3, La-vF1, La-vF2, La-vF3, La-vF4, La5]; see, in particular, Chapter
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13 of the second edition of [La-vF3] for a survey of some of the recent developments
in the theory.

The goal of the present survey article is to give an overview of the spectral
reformulation of the Riemann hypothesis obtained in [HerLa1] by studying (from
various points of view) the invertibility of the spectral operator a = ac, and to show
how this work sheds new light (especially, from an operator theoretic perspective) on
the earlier reformulation obtained in [LaMa2] and revisited in [La-vF2, La-vF3].

In closing this introduction, we note that other aspects of the research mem-
oir (or monograph) [HerLa1] are surveyed in [HerLa3] and [HerLa4]. In partic-
ular, in [HerLa3], the emphasis is placed on various kinds of mathematical ‘phase
transitions’ in connection with the spectral operator and its spectrum, while in
[HerLa4], the focus is on the ‘universality’ of the spectral operator. Finally, in the
work in preparation [HerLa2], we study the operator-valued Euler product repre-
sentation of the spectral operator, both outside and within the critical strip.

The remainder of this paper is organized as follows. In §2, we briefly review
the relevant aspects of the theory of generalized fractal strings and their complex
dimensions, along with the corresponding explicit formulas (both in the geometric
and spectral settings). In §3, after having discussed the heuristic formulation of the
spectral operator provided in [La-vF3], we precisely define and study the infini-
tesimal shift ∂c (the differentiation operator in one real variable) in terms of which
we in turn define the spectral operator ac. Namely, ac = ζ(∂c) (defined via the
measurable functional calculus for unbounded normal operators), where ζ = ζ(s)
is the classic Riemann zeta function. We also determine the spectrum of ∂c and
give the explicit representation of the shift group generated by ∂c. In §4, we explain
in more details the original inverse spectral problem for fractal strings studied in
[LaMa1, LaMa2] and state the corresponding results obtained therein. We also
briefly discuss the associated direct spectral problem for fractal strings studied
earlier in [LaPo1, LaPo2], and place it in the broader context of the (modified)
Weyl–Berry conjecture for fractal drums. In §5, we introduce the truncated infinites-
imal shifts and spectral operators in terms of which we can define two new notions
of invertibility of a = ac, namely, quasi-invertibility and almost invertibility. After
having determined the spectra of the above operators and their truncations, we
characterize the quasi-invertibility (as well as the almost invertibility) of ac. In §6,
we use the results of §5 to deduce the aforementioned spectral reformulation of the
Riemann hypothesis (RH) (as well as of almost RH, according to which all but
finitely many zeroes of ζ(s) are located on the vertical line Re(s) = 1

2 ). Finally, in
§7 (and toward the end of §6), we mention several open problems and extensions
of the above results, as well as very briefly discuss some of the other main results
of [HerLa1] (or of [HerLa2]).

At the end of the paper, two appendices are also provided. In the first one
(Appendix A, §8) we give an elementary overview of some of the main properties
of ζ and of Riemann’s beautiful explicit formula connecting the prime numbers and
the zeroes of ζ. Moreover, in Appendix B (i.e., §9), we provide an outline of the
proof of two key preliminary results from [HerLa1] (discussed in §3 of the present
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paper), namely, the normality of the infinitesimal shift ∂c and the characterization
of its spectrum σ(∂c):

σ(∂c) = {s ∈ C : Re(s) = c}.

2. Generalized Fractal Strings and Their Complex Dimensions

2.1. The geometry and spectra of ordinary fractal strings. In fractal
geometry, an ordinary fractal string is a bounded open subset Ω of the real line. Such
a set is a disjoint union of open intervals, the lengths of which form a sequence

L = l1, l2, l3, ... (2.1.1)

which we will assume to be infinite. Since vol1(Ω) =
∑
j≥1 lj < ∞ (where vol1 is

the one-dimensional Lebesgue measure on R), we may assume without loss of gen-
erality that {lj}j≥1 is nonincreasing and tends to zero as j →∞.

Important information about the geometry of L is contained in its geometric
zeta function,

ζL(s) =

∞∑
j=1

lj
s, (2.1.2)

where Re(s) > DL. Here, DL := inf{α ∈ R :
∑∞
j=1 l

α
j < ∞} is the dimension

of L;1 it is called the abscissa of convergence of the Dirichlet series
∑∞
j=1 lj

s and

coincides with the fractal (i.e., Minkowski or box) dimension2 of the boundary of
Ω. Furthermore, ζL is assumed to have a suitable meromorphic extension to an ap-
propriate domain of the complex plane containing the half-plane {Re(s) > DL}.

The complex dimensions of an ordinary fractal string L, as introduced by
the second author and M. van Frankenhuijsen in the theory of fractal strings and
their complex dimensions, are defined as the poles of the meromorphic extension
of ζL. Interesting information about the geometric, spectral (i.e., vibrational) and
dynamical oscillations of a fractal string is encoded in both the real parts and imag-
inary parts of its complex dimensions (see [La-vF2, La-vF3] for more information
about the theory of ordinary fractal strings and their complex dimensions; see also
Remark 2.2).

Remark 2.1. In the theory of complex dimensions, an object is called fractal
if its geometric zeta function has at least one complex dimension with positive real
part. (See [La-vF3, §12.2].) As a result, as expected, all (non-trivial) self-similar
geometries are ‘fractal’. Furthermore, other geometries, which could not be viewed
as being fractal according to earlier definitions (in [Man]), are shown to be ‘fractal’
in this new sense, as desired; this is the case, for example, of the Cantor curve (or
‘devil’s staircase’) and of Peano’s plane-filling curve. Moreover, every arithmetic
geometry ought to be ‘fractal’, due to the presence of the (critical) zeroes of the

1It then follows that {s ∈ C : Re(s) > DL} is the largest open half-plane on which the series∑∞
j=1 l

s
j is (absolutely) convergent.

2For the notion of Minkowski (or box) dimension, see, e.g., [Fa], [Mat], [La1] or [La-vF2,
La-vF3]. See also Definition 4.3 and Remark 4.4.
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corresponding arithmetic zeta function (or L-function).3 See [La-vF2, La-vF3,
La5].

Remark 2.2. The theory of fractal strings originated in [La1–4], [La-Po1–3],
[LaMa1–2] and in the memoir [HeLa]. It was pursued in many directions since
then, by the second author and his collaborators, while the mathematical theory
of complex fractal dimensions developed and matured; see the books [La-vF2],
[La-vF3] and [La5]. See, especially, Chapter 13 of the second revised and en-
larged edition of [La-vF3] for an overview of the theory and for a number of
relevant references, including [HamLa] for the case of random fractal strings,
[LaLu1, LaLu2, LaLu-vF1, LaLu-vF2] for the case of nonarchimedean (or p-
adic) fractal strings, [LaLeRo, ElLaMaRo] for the study of multifractal strings,
as well as [LaPe] and [LaPeWi] where the beginning of a higher-dimensional the-
ory of complex dimensions of fractals is developed, particularly under suitable as-
sumptions of self-similarity. (See also [LaRaZu] for a significantly more general
higher-dimensional theory, potentially applicable to arbitrary fractals.)

The Cantor string, denoted by CS, and defined as the complement of the
Cantor set in the closed unit interval [0, 1], is a standard example of an ordinary
fractal string:

CS = ( 1
3 ,

2
3 )
⋃

( 1
9 ,

2
9 )
⋃

( 7
9 ,

8
9 )
⋃

( 1
27 ,

2
27 )
⋃

( 7
27 ,

8
27 )
⋃

( 19
27 ,

20
27 )
⋃

( 25
27 ,

26
27 )
⋃
...

Here, each length lj = 3−j−1, j ≥ 0, is counted with a multiplicity wj =
2j . Thus, the geometric zeta function associated to such a string is

ζCS(s) =

∞∑
j=0

2j .3−(j+1)s =
3−s

1− 2.3−s
(2.1.3)

whose set of poles is the set of complex numbers

DCS = {D + inp : n ∈ Z}, (2.1.4)

where D = log3 2 is the dimension of the CS and p= 2π
log 3 . This set is called the set

of complex dimensions of CS. Note that the real part of these complex numbers is
the Minkowski dimension of CS and that the imaginary parts correspond to the
oscillatory period p in the volume of the inner tubular neighborhoods of CS, as we
now explain.

For a given ε > 0, the volume of the inner tubular neighborhood of the bound-
ary, ∂Ω, of a fractal string L with radius ε > 0, is

VL(ε) = vol1{x ∈ Ω : d(x, ∂Ω) < ε}, (2.1.5)

where vol1 is the one-dimensional Lebesgue measure on R, as before, and d(x, ∂Ω)
denotes the distance from a point x ∈ R to the boundary of Ω. In the case of the
Cantor string CS and as is shown in [La-vF3, §1.1.2], we have

VCS(ε) =
2−Dε1−D

D(1−D) log 3
+

1

log 3

∞∑
n=1

Re

(
(2ε)1−D−inp

(D + inp)(1−D − inp)

)
− 2ε. (2.1.6)

3Those zeroes are viewed as the poles of the logarithmic derivative of the L-function (for

instance, the Riemann zeta function in the case of the elusive space attached to the rational
number field Q and the Riemann zeroes).
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In this manner, the geometric oscillations that are intrinsic to the Cantor set (viewed
as the fractal boundary of the Cantor string) are expressed in terms of the under-
lying complex dimensions.

More generally, another representation of the volume VL(ε) of the inner tubu-
lar neighborhood of a fractal string L was obtained by using the explicit formulas
from [La-vF3, Ch. 5] (to be presented and discussed later on in this paper, see
Theorem 2.6). More specifically, under some mild assumptions, the following ‘frac-
tal tube formula’ is established in [La-vF3, Ch. 8], enabling one to express VL(ε)
as a sum over the complex dimensions of the fractal string L:

VL(ε) =
∑

ω∈DL(W)

res

(
ζL(s)(2ε)1−s

s(1− s)
;ω

)
+ {2εζL(0)}. (2.1.7)

Here, the term in braces is included only if 0 ∈ W −DL(W). Furthermore, DL(W)
denotes the set of visible complex dimensions relative to a suitable ‘window’W ⊂ C
(i.e., the set of poles in W of the meromorphic continuation of ζL to a connected
open neighborhood of W); see [La-vF3, §1.2.1]. Moreover, in general, the tube for-
mula (2.1.7) also contains an error term which can be explicitly estimated as ε→ 0+.

If we assume, for the simplicity of exposition, that 0 /∈ W, 1 /∈ DL(W), and
that all of the visible complex dimensions are simple (i.e., are simple poles of ζL),
then (2.1.7) becomes

VL(ε) =
∑

ω∈DL(W)

res
(
ζL(s);ω

) (2ε)1−ω

ω(1− ω)
, (2.1.8)

which is often referred to as a ‘fractal tube formula’. (See Theorem 8.1 and Corol-
lary 8.3 in [La-vF3].)

Note that in the above case of the Cantor string CS, we have W = C,
DCS(W) = DCS , and the error term vanishes identically. In addition, the resulting
exact (or fractal) tube formula (2.1.6) holds pointwise (rather than just distribu-
tionally), in agreement with the pointwise tube formulas also obtained in [La-vF3,
§8.1.1 & §8.4]. Finally, observe that (2.1.6) follows from (2.1.8) since (in light of
Equations (2.1.3) and (2.1.4)) the complex dimensions of CS are simple and have
the same residue, 1

log 3 .

We will see shortly that the explicit distributional formulas play an important
role in motivating the definition of the spectral operator ac.

Spectral information (representing the frequencies of the ‘vibrations’ of the
fractal string) can also be derived. Indeed, one can listen to the sound of a given
ordinary fractal string L = {lj}∞j=1. Here, the positive numbers lj denote the lengths
of the connected components (i.e., open intervals) of a bounded open set Ω of the
real line R, with (possibly) fractal boundary ∂Ω. In fact, spectral information about
L is encoded by its spectral zeta function, which is defined as

ζν(s) =
∑
f

f−s, (2.1.9)
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where f = kl−1j (k, j = 1, 2, ...) are the normalized frequencies of L. Up to a triv-
ial normalization factor, these are simply the square roots of the eigenvalues of the
Laplacian (or free Hamiltonian) on Ω, with Dirichlet boundary conditions on ∂Ω. So
that, in particular, the associated eigenfunctions are constrained to have nodes at
each of the endpoints of the intervals of which the open set Ω is composed (see,
e.g., [La1–5, LaPo1–3, LaMa1–2, HeLa, La-vF2, La-vF3] for more details).

The geometry and the spectrum of L are related via the following formula
(see [La2–3], [LaMa2], [La-vF3, §1.3]):

ζν(s) = ζL(s).ζ(s), (2.1.10)

where ζ is the Riemann zeta function. Here, ζL is the geometric zeta function of
L, defined by ζL(s) =

∑∞
j=1 l

s
j , for Re(s) > DL, the abscissa of convergence of the

Dirichlet series
∑∞
j=1 l

s
j or dimension of L (which coincides with the Minkowski

dimension of ∂Ω, see [La2], [La-vF3, §1.2], along with Definition 4.3 and Remark
4.4 below).

Equation (2.1.10) plays a key role in connecting the spectrum of a fractal
string L to its geometry or conversely (and provided no zero of ζ coincides with a
visible complex dimension of L), in relating the geometry of a fractal string to its
spectrum via the Riemann zeta function.

In hindsight, this relation helps explain the approach to the direct spectral
problem for fractal strings adopted in [LaPo 1–2] and the approach to inverse
spectral problems for fractal strings used in [LaMa 1–2]. We stress, however, that
a number of technical difficulties had to be overcome in order to formulate and
derive the results obtained in those papers. In addition, the notion of complex di-
mension that was only hidden or heuristic in [LaPo 1–2], [LaMa 1–2], [La 1–3]
and [HeLa], was developed rigorously in [La-vF2, La-vF3] (and other papers by
the authors of these monographs, beginning with [La-vF1]) in part to provide a
systematic approach (via explicit formulas generalizing Riemann’s explicit formula
discussed in Appendix A) to the results on direct and inverse spectral problems
obtained in loc. cit. (See, for example, [La-vF3, Chs. 6 & 9].)

Remark 2.3. Various extensions of the factorization formula (2.1.10) have
since been obtained in [Tep1, Tep2, DerGrVo, LalLa], in the context of analysis
on fractals [Ki] and (single or multi-variable) complex dynamics, using the deci-
mation method [Ram, RamTo, Sh, FukSh, Sab1–3] for the eigenfunctions of
Laplacians on certain self-similar fractals.

A consequence of a special case of the explicit formulas of [La-vF2, La-vF3]
applied to the spectrum and the geometry of a fractal string (in the spirit of formula
(2.1.10)) is that the Riemann zeta function (as well as a large class of arithmetic
zeta functions and other Dirichlet series) cannot have an infinite vertical arithmetic
progression of zeroes.4 (See [La-vF3, Chs. 10 & 11] for a proof of this result and sev-
eral of its refinements.) For instance, applying the aforementioned explicit formulas

4In the special case of ζ, this result was already obtained by C. Putnam [Put1, Put2] in the
1950s, via a completely different proof which does not extend to the general case considered in
[La-vF1,La-vF2,La-vF3].
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to the Cantor String CS and assuming that the Riemann zeta function were to
vanish at the complex dimensions D+ inp of CS, where n ∈ Z−{0}, then one can
deduce that CS would have to sound the same as a Minkowski measurable fractal
string of the same dimension D = log3 2.

A similar conclusion can be obtained by considering generalized Cantor strings
(with noninteger multiplicities). This conclusion is contradicted by the results of
[La-vF3, Ch. 10] according to which such fractal strings always have geometric os-
cillations (of leading order) in their geometry, from which one deduces the above
theorem about the nonexistence of zeroes in infinite arithmetic progressions.

From now on, we will denote by ζL (respectively, ζν) the meromorphic contin-
uation (when it exists) of the geometric zeta function (respectively, of the spectral
zeta function) of a fractal string L.

2.2. Generalized fractal strings and their explicit formulas. Next,
we introduce one of our main objects of investigation, the class of generalized frac-
tal strings, and some of the mathematical tools needed to study it. (See [La-vF3,
Ch. 4].)

A generalized fractal string η is defined as a local positive or complex measure
on (0,+∞) satisfying |η|(0, x0) = 0, for some x0 > 0.5 Here, the positive (local)
measure |η| is the variation of η.6 A standard example of a generalized fractal string
can be obtained as the measure associated to an ordinary fractal string L = {Lj}∞j=1

with multiplicities wj . (Here, {Lj}∞j=1 denotes the sequence of distinct lengths of
L, written in decreasing order and tending to zero as j → ∞.) Such a measure is
defined as

ηL =

∞∑
j=1

wjδ{L−1
j }

. (2.2.1)

Note that ηL is a generalized fractal string since |ηL| does not have any mass on
(0, L−11 ). Here and in the sequel, δ{x} is the Dirac delta measure or the unit point
mass concentrated at x > 0.

Remark 2.4. In many important situations where an extension of formula
(2.2.1) is used, one should think of the positive numbers Lj (or their analog `j in
Equation (2.1.2) and the discussion preceding it) as scales rather as the lengths
associated with some concrete geometric object. Furthermore, as we will see next in
Remark 2.5, the multiplicities wj need not be integers, in general.

Remark 2.5. In the case of an ordinary fractal string, wj is always integral
for any j ≥ 1. However, in general, this multiplicity is not necessarily integral. For

5In short, a positive (or complex) local measure on (0,+∞) is a locally bounded set-function
on (0,+∞) whose restriction to any bounded Borel subset (or equivalently, subinterval) of (0,+∞)
is a standard positive (or complex) measure. See, e.g., [La-vF3, §4.1].

6For an introduction to measure theory, we refer, e.g., to [Coh, Fo]. Recall that when η is
positive, then |η| = η.
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instance, the prime string

ηB =
∑
m≥1,p

(
log p

)
δpm , (2.2.2)

where p ∈ P:= the set of all prime numbers, is an example of a generalized fractal
string for which wj = log p is non-integral. It is also the measure associated to the
non-ordinary fractal string L = {p−mj }∞j=1 with multiplicities log pj, where pj is the
j-th prime number written in increasing order. Hence, the use of the word ‘general-
ized’ is well justified for this class of strings.

Let η be a generalized fractal string. Its dimension is

Dη := inf
{
σ ∈ R :

∫ ∞
0

x−σ|η|(dx) <∞
}
. (2.2.3)

The counting function of η is7

Nη(x) :=

∫ x

0

η(dx) = η(0, x). (2.2.4)

The geometric zeta function associated to η is the Mellin transform of η. It is
defined as

ζη(s) :=

∫ ∞
0

x−sη(dx) for Re(s) > Dη, (2.2.5)

where Dη is the dimension of η (and is also called the abscissa of convergence of
the Dirichlet integral

∫∞
0
x−sη(dx)). As we did in §2.1, we assume that ζη has a

meromorphic extension to some suitable (open, connected) neighborhood W of the
half-plane {Re(s) > Dη} (see [La-vF3, §5.3] for more details on how the window
W is defined) and we define the set Dη(W) of visible complex dimensions of η by8

Dη(W) := {ω ∈ W : ζη has a pole at ω}. (2.2.6)

For example, the geometric zeta function of the prime string ηB (defined above
in Equation (2.2.2)) is

ζηβ (s) = −ζ
′(s)

ζ(s)
for s ∈ C. (2.2.7)

Therefore, the complex dimensions of ηβ are the zeroes of ζ (each counted with
multiplicity one, along with the single and simple pole of ζ (located at s = 1). We
recall that the trivial zeroes of ζ occur at the values s = −2n, for n = 1, 2, 3, ...The
nontrivial (or critical) zeroes of the Riemann zeta function, which are located in-
side the critical strip (i.e., inside the region 0 < Re(s) < 1 of the complex plane),
are conjectured to lie on the vertical line Re(s) = 1

2 ; this celebrated conjecture is
known as the Riemann hypothesis. (See Appendix A.)

7More precisely, in order to obtain accurate pointwise formulas, one must set Nη(x) =
1
2

(η(0, x] + η[0, x)), much as in the pointwise theory of Fourier series.
8Since ζL is assumed to be meromorphic, DL(W ) is a discrete (and hence, at most countable)

subset of C. Furthermore, since ζL is holomorphic for Re(s) > DL (because by definition of DL,
the Dirichlet integral

∫∞
0 x−sη(dx) is absolutely convergent there), all the complex dimensions ω

of L satisfy Re(ω) ≤ DL.
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The spectral measure ν associated to η is defined by

ν(A) =

∞∑
k=1

η

(
A

k

)
, (2.2.8)

for any bounded Borel set (or equivalently, interval) A ⊂ (0,+∞). The geometric
zeta function of ν is then called the spectral zeta function associated to η.

Two important generalized fractal strings (within our framework) are the
harmonic generalized fractal string

h =

∞∑
k=1

δ{k}, (2.2.9)

and the prime harmonic generalized fractal string defined for each prime p ∈ P as

hp =

∞∑
k=1

δ{pk}, (2.2.10)

where, as before, δ{.} is the Dirac delta measure. They will play a key role in defining
the spectral operator and its operator-valued Euler product (see Equations (3.1.7)
and (3.1.8)). These strings are related via the multiplicative convolution operation
of measures ∗ as follows:

h = ∗
p∈P

hp. (2.2.11)

As a result, we have

ζh(s) = ζ∗hp
p∈P

(s) = ζ(s) =
∏
p∈P

1

1− p−s
=
∏
p∈P

ζhp(s), (2.2.12)

for Re(s) > 1.

The spectral zeta function associated to ν, which as we have seen, is defined as
the geometric zeta function of ν, is related to ζη via the following formula (which is
the exact analog of Equation (2.1.10)):

ζν(s) = ζη(s).ζ(s), (2.2.13)

where ζ is the Riemann zeta function. As is recalled in Appendix A, ζ is well known
to have an Euler product expansion given by the formula

ζ(s) =
∏
p∈P

(1− p−s)−1, for Re(s) > 1, (2.2.14)

where, as before, p runs over the set P of all prime numbers. Note that this Euler
product was reinterpreted differently in Equation (2.2.12) just above.

Throughout their development of the theory of complex dimensions and in-
spired by Riemann’s explicit formula,9 which expresses the counting function of
the number of primes less than some positive real number in terms of the zeroes
of the Riemann zeta function, the second author and M. van Frankenhuijsen ob-
tained (and extensively used) explicit distributional formulas associated to η. In
these formulas, the k-th distributional primitive (or anti-derivative) of η is viewed

9See Appendix A for a discussion of the analogy between Riemann’s original explicit formula
and the explicit formulas for generalized fractal strings obtained in [La-vF2, La-vF3].
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as a distribution, acting on functions in the Schwartz space [Schw] on the half-line
(0,+∞). (See [La-vF3, Ch. 5] for a detailed discussion and a precise statement of
these explicit formulas, both in their distributional and pointwise form.)

Theorem 2.6. [La-vF2, La-vF3] Let η be a languid generalized fractal string.10

Then, for any k ∈ Z, its k-th distributional primitive is given by

P [k]
η (x) =

∑
ω∈Dη(W)

res

(
xs+k−1ζη(s)

(s)k
;ω

)
+

1

(k − 1)!

k−1∑
j=0,

−j∈W−Dη

(
k − 1

j

)
(−1)jxk−1−j

.ζη(−j) +R[k]
η (x), (2.2.15)

where ω runs through the set Dη(W) of visible complex dimensions of η and R[k]
η (x) =

1
2πi

∫
S x

s+k−1ζη(s) ds
(s)k

is the error term, which can be suitably estimated as x →
+∞ and which, under appropriate hypotheses, vanishes identically (thereby yield-
ing exact explicit formulas, see [La-vF3, §5.3 & §5.4]).11

The explicit distributional formula stated in Theorem 2.6 provides a represen-
tation of η, in the distributional sense, as a sum over its complex dimensions which
encode in their real and imaginary parts important information about the (geo-
metric, spectral or dynamical) oscillations of the underlying fractal object. Recall
also from our discussion in Appendix A that the original explicit formula was first
obtained by Riemann in 1858 as an analytical tool to understand the distribution
of the primes. It was later extended by von Mangoldt and led in 1896 to the first
rigorous proof of the Prime Number Theorem, independently by Hadamard and de
la Vallée Poussin. (See [Edw, Ing, Ivi, Pat, Tit].) In [La-vF3, §5.5], the inter-
ested reader can find a discussion of how to recover the Prime Number Theorem,
along with a suitable form of Riemann’s original explicit formula and its various
number theoretic extensions, from Theorem 2.6 (and more general results given in
[La-vF3, Ch. 5]).

Note that Theorem 2.6 enables us to obtain, in the distributional sense, use-
ful representations of the k-th primitives of η, for any k ∈ Z. For instance, if we
apply it at level k = 0, we obtain an explicit representation of η which is called the
density of geometric states formula (see [La-vF3, §6.3.1] and Remark 2.7):

η =
∑

ω∈Dη(W)

res(ζη(s);ω)xω−1. (2.2.16)

We also recall that the spectral measure ν = η ∗ h is itself a generalized fractal
string. Thus, when applying the explicit formulas (also at level k = 0), we obtain
an explicit formula for ν which is similar to the density of spectral states (or density
of frequencies formula) in quantum physics (see [La-vF3, §6.3.1]):

10A generalized fractal string η is said to be languid if its geometric zeta function ζη satisfies

some suitable polynomial growth conditions; see [La-vF3, §5.3].
11Here, in general, the binomial coefficients

(k−1
j

)
are defined in terms of the gamma function

Γ = Γ(s). Moreover, the Pochhammer symbol is defined by (s)k = s(s+ 1)...(s+ k− 1), for k ≥ 1,

and (s)k =
Γ(s+k)

Γ(s)
for any k ∈ Z.
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ν = ζη(1) +
∑

ω∈Dη(W)

res(ζη(s)ζ(s)xs−1;ω)

= ζη(1) +
∑

ω∈Dη(W )

res(ζη(s);ω)ζ(ω)xω−1, (2.2.17)

where 0 /∈ W, 1 /∈ Dη(W) and, as above, res(ζη(s);ω) denotes the residue of ζη(s)
as s = ω.

Remark 2.7. Note that the explicit expressions for η and ν, stated respectively
in Equation (2.2.16) and Equation (2.2.17), are given as a sum over the complex
dimensions of η. Here, for clarity, we stated these formulas in the case of simple
poles and neglected including the possible error terms.

Next, we introduce the spectral operator, as defined in [La-vF3] and present
some of its fundamental properties, which are rigorously studied in [HerLa1] and
further discussed in [HerLa2].

3. The Spectral Operator ac and the Infinitesimal Shifts ∂c

3.1. A ‘heuristic’ definition of ac. Following, in particular, the work in
[La1–3, LaPo1–3, LaMa1–2, HeLa], relating the spectrum of certain classes
of fractal strings to their geometry has been a subject of significant interest to the
authors of [La-vF2, La-vF3] throughout their development of the theory of fractal
strings and their complex dimensions. Motivated by this fact and also the formula
recalled in Equations (2.1.10) and (2.2.13), the spectral operator was ‘heuristically’
defined in [La-vF3, §6.3.2]12 as the operator mapping the density of geometric states
η to the density of spectral states ν:13

η 7−→ ν (3.1.1)

At level k=1, it will be defined on a suitable Hilbert space Hc, where c ≥ 0,
as the operator mapping the counting function of η to the counting function of
ν = η ∗ h (that is, mapping the geometric counting function Nη onto the spectral
counting function Nν):

Nη(x) 7−→ ν(Nη)(x) = Nν(x) =

∞∑
n=1

Nη

(x
n

)
. (3.1.2)

Note that under the change of variable x = et, where t ∈ R and x > 0, one
can obtain an additive representation of the spectral operator a,

f(t) 7→ a(f)(t) =

∞∑
n=1

f(t− log n), (3.1.3)

12By ’heuristically’, we mean that the spectral operator and its operator-valued Euler prod-
uct (see Equations (3.1.3) and (3.1.5)) were defined in [La-vF3, §6.3.2] without introducing a
proper functional analytic framework enabling one to rigorously study their properties and pro-
vide conditions ensuring their invertibility.

13This is the level k = 0 version of the spectral operator, in the sense of Theorem 2.6 and of
the ensuing discussion.
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and of its operator-valued Euler factors ap

f(t) 7→ ap(f)(t) =

∞∑
m=0

f(t−m log p). (3.1.4)

These operators are related by an Euler product as follows:

f(t) 7→ a(f)(t) =

∏
p∈P

ap

 (f)(t), (3.1.5)

where the product is the composition of operators.

Let f be an infinitely differentiable function on R. Then, the Taylor series of
f can be formally written as

f(t+ h) = f(t) +
hf ′(t)

1!
+
h2f

′′
(t)

2!
+ ...

= eh
d
dt (f)(t) = eh∂(f)(t), (3.1.6)

where ∂ = d
dt is the first order differential operator with respect to t.14

Remark 3.1. In our later, more mathematical discussion, f will not necessarily
be the counting function of some generalized fractal string η, but will instead be
allowed to be an element of the Hilbert space Hc (with possibly some additional
conditions on f or on the parameter c); see Equation (3.2.1) below and the text
surrounding it, along with Equations (3.3.1) and (3.4.2).

Note that this yields a new heuristic representation for the spectral operator
and its prime factors:

a(f)(t) =

∞∑
n=1

e−(logn)∂(f)(t) =

∞∑
n=1

(
1

n∂

)
(f)(t)

= ζ(∂)(f)(t) = ζh(∂)(f)(t) =
∏
p∈P

(1− p−∂)−1(f)(t) (3.1.7)

and for any prime p,

ap(f)(t) =

∞∑
m=0

f(t−m log p) =

∞∑
m=0

e−m(log p)∂(f)(t) =

∞∑
m=0

(
1

∂m

)
(f)(t)

=

(
1

1− p−∂

)
(f)(t) = (1− p−∂)−1(f)(t) = ζhp(∂)(t). (3.1.8)

Remark 3.2. The above representations of the spectral operator, its operator-
valued Euler factors and its operator-valued Euler product were given in [La-vF3,
§6.3.2] without specifying a domain (or a ‘core’) enabling one to study them and ana-
lyze some of their fundamental properties. (See footnote 12.) Finding an appropriate
Hilbert space and a domain which is equipped with natural boundary conditions sat-
isfied by the class of counting functions of generalized fractal strings was one of the

14This differential operator is the infinitesimal generator of the (one-parameter) group of

shifts on the real line. For this reason, it is also called the infinitesimal shift ; see Lemma 3.11 and
Lemma 3.13 which justify this terminology.
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first steps taken in [HerLa1] prior to studying these operators and then deriving the
desired spectral reformulation of the Riemann hypothesis. Finally, we mention the
fact that the operator-valued prime factors and their operator-valued Euler product
are investigated in [HerLa2]. In particular, in that paper, we establish the conver-
gence (in the operator norm) of the operator-valued Euler product and investigate
the conjecture (suggested by comments in [La-vF3, §6.3.2]) according to which, in
an appropriate sense, this same Euler product can be analytically continued and
shown to converge to the spectral operator even in the critical strip 0 < Re(s) < 1.

3.2. The weighted Sobolev space Hc. In [HerLa1], we start by provid-
ing a functional analytic framework enabling us to rigorously study the spectral
operator. This functional analytic framework is based in part on defining a specific
weighted Hilbert space Hc, dependent on a parameter c ≥ 0, in which the spectral
operator is acting, and then on precisely defining and studying this operator. We
set

Hc = L2(R, µc(dt)), (3.2.1)

where µc is the absolutely continuous measure on R given by µc(dt) := e−2ctdt
(here, dt is the Lebesgue measure on R).

Remark 3.3. Note that Hc is the space of (C-valued) Lebesgue square-integrable
functions f with respect to the positive weight function w(t) = e−2ct :

||f ||2c :=

∫
R
|f(t)|2e−2ctdt <∞. (3.2.2)

It is obtained by completing the space Hc of infinitely differentiable functions f on
R = (−∞,+∞) satisfying the finiteness condition (3.2.2). (It follows, of course,
that Hc is dense in Hc.)

The Hilbert space Hc is equipped with the inner product

< f, g >c :=

∫
R
f(t)g(t)e−2ctdt

and the associated Hilbert norm ||.||c =
√
< . , . >c (so that ||f ||2c =∫

R |f(t)|2e−2ctdt). Here, g denotes the complex conjugate of g.

Next, we introduce the boundary conditions to be naturally satisfied within
our framework by the class of counting functions of generalized fractal srings. (See
Remarks 3.1, 3.4 and 3.5.) Note that if f ∈ Hc and f is absolutely continuous on R
(i.e., f ∈ AC(R)), then

|f(t)|e∓ct → 0 as t→ ±∞, (3.2.3)

respectively. Because the domain D(∂c) of the infinitesimal shift ∂c will consist of
absolutely continuous functions (see Equation (3.3.1)), these are natural boundary
conditions, in the sense that they are automatically satisfied by any function f in
the domain of ∂c or of a function of ∂c, such as the spectral operator ac = ζ(∂c)
(see Equation (3.4.1)).

Remark 3.4. The asymptotic condition at +∞ in Equation (3.2.3) implies that
(roughly speaking) the functions f satisfying these boundary conditions correspond
to elements of the space of fractal strings with dimension D ≤ c.
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Remark 3.5. Note that in the original multiplicative variable x = et and for an
ordinary fractal string L, it is shown in [LaPo2] that if f(t) := NL(x) is of order
not exceeding (respectively, is precisely of the order of) xc = ect as x → +∞ (i.e.,
as t→ +∞), then c ≤ D (respectively, c = D, the Minkowski dimension of L).15 In
addition, it follows from [La2, LaPo2, La-vF3] that (with the same notation as
above)

D = α := inf{γ ≥ 0 : NL(x) = f(et) = O(eγt), as t→ +∞}, (3.2.4)

and hence, α coincides with the abscissa of convergence D = DL of the geometric
zeta function ζL.

Moreover, let us suppose that L is normalized so that its geometric count-
ing function satisfies NL(x) = 0 for 0 < x ≤ 1 (which, in the additive vari-
able t = log x, amounts to assuming that f(t) = 0 for all t ≤ 0, where we let
f(t) := NL(et), as above).16 Then we can simply reflect f with respect to the origin
(i.e., let F (t) := f(t) for t ≥ 0 and F (t) := f(−t) for t ≤ 0) in order to obtain
an even, nonnegative function F defined on all of R and therefore having the same
asymptotic behavior as f(|t|) as t → ±∞. In particular, if f ∈ L2([0,+∞), µc(dt))
satisfies f(t) = o(ect) as t → +∞, then F ∈ Hc and satisfies the above boundary
conditions stated in Equation (3.2.3): F (t) = o(e±ct) as t→ ±∞, respectively. Note
that if, furthermore, f is absolutely continuous on [0,+∞) (i.e., f ∈ AC([0,+∞))),
then F is absolutely continuous on R and hence belongs to the domain of ∂c, as de-
fined by Equation (3.3.1) below.

3.3. The infinitesimal shifts ∂c and their properties. In this subsec-
tion, we first define the domain of the infinitesimal shift ∂c, in §3.1.1, then review
the properties of ∂c (and of its spectrum) established in [HerLa1], in §3.3.2, and
finally study (in §3.3.3) the contraction group of linear operators generated by ∂c;
as it turns out, this is a suitable version of the shift group on the real line.

3.3.1. The domain of the infinitesimal shifts. Recall from the heuristic dis-
cussion surrounding Equation (3.1.7) that the differential operator ∂ = ∂c, also
called the infinitesimal shift, arises naturally in the representation of the spectral
operator, its operator-valued Euler factors and its operator-valued Euler product
(see Equation (3.1.5)). Motivated by this fact, and in light of our proposed defini-
tion for the spectral operator in Equation (3.4.1), we adopt the following precise
domain for the infinitesimal shift ∂c:

D(∂c) = {f ∈ Hc ∩AC(R) : f ′ ∈ Hc}, (3.3.1)

where AC(R) is the space of (locally) absolutely continuous functions on R and
f ′ denotes the derivative of f , viewed either as a function or a distribution. Recall
that for f ∈ AC(R), f ′ exists pointwise almost everywhere and is locally integrable,

15See [LaPo2] (and §4.2 below) for a thorough discussion of the geometric and spectral

interpretations of various asymptotic conditions satisfied by the counting functions of ordinary

fractal strings. (See also [HeLa] for further generalizations.)
16Without loss of generality, this can always be done since there exists x0 > 0 such that

NL(x) = 0 for all 0 < x < x0. Indeed, it suffices to replace each lj with
lj
l1

to allow the choice

x0 = 1 (in the multiplicative variable, and hence, t = 0, in the additive variable).
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therefore defining a regular distribution on R. (See, e.g., [Br, Fo, Ru, Schw].)17 In
addition, we let

∂c := f ′, for f ∈ D(∂c). (3.3.2)

3.3.2. Normality and spectra of the infinitesimal shifts. Our first result will
enable us to form various functions of the first order differential operator ∂c and,
in particular, to precisely define the spectral operator ac.

Theorem 3.6. [HerLa1] ∂c is an unbounded normal18 linear operator on Hc.
Moreover, its adjoint ∂∗c is given by

∂∗c = 2c− ∂c, with domain D(∂∗c ) = D(∂c). (3.3.3)

Remark 3.7. We encourage the reader to consult Appendix B for a sketch of
the proof of Theorem 3.6 and for a useful reformulation of that theorem, provided
in Corollary 9.1. This proof and the corresponding reformulation are based on a
representation of the infinitesimal shift ∂c in terms of a linear unbounded normal
operator Vc (acting on Hc = L2(R, e−2ctdt)) which is unitarily equivalent to the
standard momemtum operator V0 = 1

i ∂ = 1
i
d
dt (acting on H0 = L2(R)).

In order to find the spectrum σ(ac) of the spectral operator, we first determine
the spectrum of ∂c, which turns out to be equal to the vertical line of the complex
plane passing through the constant c.

Theorem 3.8. [HerLa1] Let c ≥ 0. Then, the spectrum of ∂c is the closed
vertical line of the complex plane passing through c. Furthermore, it coincides with
the essential spectrum, σe(∂c), of ∂c :

σ(∂c) = σe(∂c) = {λ ∈ C : Re(λ) = c }. (3.3.4)

More specifically, the point spectrum of ∂c is empty (i.e., ∂c does not have any
eigenvalues)19 and σap(∂c), the approximate point spectrum of ∂c, coincides with
σ(∂c). Hence, σap(∂c) is also given by the right-hand side of Equation (3.3.4).20

Remark 3.9. Note that the infinitesimal shift ∂c is unbounded (since, by The-
orem 3.8, its spectrum is unbounded), normal (by Theorem 3.6, ∂∗c∂c = ∂c∂

∗
c ), and

sectorial (in the extended sense of [Ha], since by Theorem 3.8, σ(∂c) is contained
in a sector of angle π

2 ).

Remark 3.10. It is shown in [HerLa1] that in addition to being normal, ∂c is
m-accretive, in the sense of [Kat]. According to a well-known theorem in semigroup
theory, this means that ∂c is the infinitesimal generator of a contraction semigroup
of operators; see Lemmas 3.11 and 3.13.

17Note that D(∂c) is the weighted Sobolev space H1(R, µc(dt)); see, e.g., [Br] or [Fo] for the

classic case when c = 0 and hence this space coincides with the standard Sobolev space H1(R).
18Recall that this means that ∂c is a closed (and densely defined) operator which commutes

with its adjoint ∂∗c ; see [Ru].
19We caution the reader that the terminology concerning the spectra of unbounded opera-

tors is not uniform throughout the well-developed literature on this classical subject; see, e.g.,

[DunSch, EnNa, Kat, ReSi, Sc, JoLa].
20Recall that λ ∈ σap(∂c) (i.e., λ is an approximate eigenvalue of ∂c) if and only if there exists

a sequence {fn}∞n=1 of elements of D(∂c) such that ||fn|| = 1 for all n ≥ 1 and ||∂cfn−λfn||c → 0

as n→∞. (See, e.g., [EnNa] or [Sc].)
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3.3.3. The strongly continuous group of operators {e−t∂c}t∈R. The strongly
continuous contraction group21 of bounded linear operators {e−t∂c}t∈R plays a cru-
cial role in the representation of the spectral operator ac = ζ(∂c) which was obtained
and rigorously justified in [HerLa1]; see Theorem 3.14 and Remark 3.15. (See also
Equations (3.1.6) and (3.1.7), along with the discussion surrounding them, con-
cerning heuristic representations of the spectral operator, its operator-valued Euler
factors and its operator-valued Euler product.)

Using Theorem 3.6 (or equivalently, Corollary 9.1 of Appendix B), we obtain
the following result.

Lemma 3.11. [HerLa1] For any c ≥ 0, {e−t∂c}t∈R is a strongly continuous
contraction group of operators and ||e−t∂c || = e−tc for any t ∈ R. The adjoint group
{(e−t∂c)∗}t∈R is then given by {e−t∂∗c }t∈R = {e−t(2c−∂c)}t∈R.

Remark 3.12. If we let i :=
√
−1, it follows from Corollary 9.1 that {e−t(

∂c
i )}t∈R

is a unitary group if and only if c = 0. (Compare with Theorem 9.2 in Appendix
B.)

Another key feature of this strongly continous group of operators is highlighted
in the following result.

Lemma 3.13. [HerLa1] For any c ≥ 0, the strongly continuous group of
operators {e−t∂c}t∈R is a translation (or shift) group. That is, for every t ∈ R,
(e−t∂c)(f)(u) = f(u− t), for all f ∈ Hc and u ∈ R. (For a fixed t ∈ R, this equality
holds between elements of Hc and hence, for a.e. u ∈ R.)

In light of Lemma 3.13, the infinitesimal generator ∂ = ∂c of the shift group
{e−t∂}t∈R is called the infinitesimal shift of the real line.

3.4. The spectral operator ac. In [HerLa1], we define the spectral oper-
ator a = ac as follows, where ∂ = ∂c is the normal operator defined in §3.3.1:

a = ζ(∂), (3.4.1)

via the measurable functional calculus for unbounded normal operators; see, e.g.,
[Ru]. If, for simplicity, we assume c 6= 1 to avoid the pole of ζ at s = 1, then ζ is
holomorphic (and, in particular, continuous) in an open neighborhood of σ(∂). If
c = 1 is allowed, then ζ is meromorphic in an open neighborhood of σ(∂) (actually,
in all of C). Hence, when c 6= 1, we could simply use the holomorphic (or the con-
tinuous) functional calculus for unbounded normal operators (see [Ru]), whereas
when c = 1, we could use the meromorphic functional calculus for sectorial opera-
tors (see [Ha]). For any value of c, however, the measurable functional calculus can
be used.

The domain of the spectral operator is the following:

D(a) = {f ∈ D(∂) : a(f) = ζ(∂)(f) ∈ Hc}. (3.4.2)

Our next result, Theorem 3.14 below, provides a representation of the spec-
tral operator a as a composition map of the Riemann zeta function ζ and the first

21We refer to [EnNa, Go, HiPh, JoLa, Kat, Paz, ReSi] for the theory of strongly
continuous semigroups.
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order differential operator ∂c. It also gives a natural connection between this repre-
sentation and the earlier one obtained for the spectral operator in Equations (3.1.3)
and (3.1.7). (See also Lemmas 3.11, 3.13 and Equations (7.2.1), (7.2.2) in §7.)

Theorem 3.14. [HerLa1] Assume that c > 1. Then, a can be uniquely extended
to a bounded operator on Hc and, for any f ∈ Hc, we have (for almost all t ∈ R or
as an equality in Hc) :

a(f)(t) =

∞∑
n=1

f(t− log n) = ζ(∂c)(f)(t) =

( ∞∑
n=1

n−∂c

)
(f)(t). (3.4.3)

In other words, for c > 1, we have

ac = ζ(∂c) =

∞∑
n=1

n−∂c , (3.4.4)

where the equality holds in B(Hc), the space of bounded linear operators on Hc.

Remark 3.15. For any c > 0, we also show in [HerLa1] that Equation (3.4.3)
holds for all f in a suitable dense subspace of D(a), which we conjectured to be a
core for a and hence to uniquely determine the unbounded operator a = ac = ζ(∂c),
viewed as the (operator-valued) ‘analytic continuation’ of

∑∞
n=1 n

−∂c to the critical
strip 0 < Re(s) < 1 (and thus also to the open half-plane Re(s) > 0).

In order to study the invertibility of the spectral operator, a characterization
of the spectrum σ(ac) of the spectral operator was obtained in [HerLa1] by using
the spectral mapping theorem for unbounded normal operators (the continuous
version when c 6= 1 and the meromorphic version, when c = 1); see Remark 3.17.

Theorem 3.16. [HerLa1] Assume that c ≥ 0. Then

σ(a) = ζ(σ(∂)) = cl
(
ζ({λ ∈ C : Re(λ) = c})

)
, (3.4.5)

where σ(a) is the spectrum of a = ac and N = cl(N) is the closure of N ⊂ C.

Remark 3.17. We refer to the appropriate appendix in [HerLa1] for a dis-
cussion of the spectral mapping theorem for linear unbounded normal operators. In
short, if φ is a continuous function on σ(Q), where Q is a given (possibly unbounded)

normal operator, then σ(φ(Q)) = φ(σ(Q)). Moreover, if φ is a (C-valued) meromor-
phic function on an open neighborhood of the spectrum σ(Q) (and say, Q has no
eigenvalues),22 then σ̃(φ(Q)) = φ(σ̃(Q)), interpreted as an equality between subsets

of the Riemann sphere C̃ := C∪{∞}. Here, given a linear operator K, the extended

spectrum σ̃(K) is the compact subset of C̃ defined by σ̃(K) = σ(K) if K is bounded
and σ̃(K) = σ(K) ∪ {∞} if K is unbounded. (Note that if φ is meromorphic, then

it is continuous when viewed as a C̃-valued function.)23

We will see in §5 that the characterization of the spectrum of the infinitesi-
mal shift ∂c obtained in Theorem 3.8 will play an important role in our proposed

definition of the truncated infinitesimal shifts and spectral operators, {∂(T )
c }T≥0 and

{a(T )
c }T≥0 (in §5.1), the determination of their corresponding spectra σ(∂

(T )
c ) and

22Or more generally, if no eigenvalue of Q coincides with a pole of φ lying in σ(Q).
23We wish to thank Daniel Lenz and Markus Haase for helpful written correspendence about

the spectral mapping theorem in this context.
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σ
(
a
(T )
c

)
(in §5.2), the study of the quasi-invertibility of ac (in §5.3), and ultimately,

in our spectral reformulation of the Riemann hypothesis discussed in §6.1.

4. Inverse and Direct Spectral Problems for Fractal Strings

4.1. The original inverse spectral problem. The problem of deducing
geometric information from the spectrum of a fractal string, or equivalently, of
addressing the question

“Can one hear the shape of a fractal string?”,

was first studied by the second author and H. Maier in [LaMa1, LaMa2]. More
specifically, the inverse spectral problem they considered was the following:

“Given any fixed D ∈ (0, 1), and any fractal string L of dimension D such that
for some constant cD > 0 and δ > 0, we have

Nν(x) = W (x)− cDxD +O(xD−δ), as x→ +∞, (4.1.1)

is it true that L is Minkowski measurable?”.

Remark 4.1. Here, the Weyl term W (x) is the leading asymptotic term. Namely,

W (x) := (2π)−1vol1(Ω)x, (4.1.2)

where x is the (normalized) frequency variable and vol1(Ω) denotes the “volume”
(really, the length) of Ω ⊂ R. Furthermore, much as before, the spectral counting
function N = Nν(x) is equal to the number of frequencies of L less than x.

The geometric notion of Minkowski measurability will be recalled below in
Definition 4.3. For now, we note that the above question is indeed stated in the
form of an inverse spectral problem. Namely, one is asked to deduce geometric in-
formation about a fractal string from spectral asymptotic information about the
string. Roughly speaking, given that the spectrum of L has a monotonic asymp-
totic second term (i.e., does not have any oscillations of order D, the Minkowski
dimension of L (or ∂Ω) (see Equation (4.1.1) and Definition 4.3), does it follow that
the geometry of L does not have any oscillations of leading order D (see Equation
(4.1.3) in Definition 4.3, along with §4.2 below)?

The authors of [LaMa1, LaMa2] have shown that this question à la Mark
Kac (but interpreted rather differently than in [Kac]) “Can one hear the shape
of a fractal string?”, is intimitely connected with the Riemann hypothesis. More
specifically, they proved that for a given D ∈ (0, 1), this inverse spectral problem is
true for every fractal string of dimension D if and only if the Riemann zeta function
does not have any zeroes along the vertical line Re(s) = D: ζ(s) 6= 0 for Re(s) = D.

It follows, in particular, that the inverse spectral problem has a negative an-
swer in the ‘mid-fractal case’ where D = 1

2 (because ζ has a zero, and even infinitely

many zeroes, along the critical line Re(s) = 1
2 ). Moreover, it follows that this in-

verse spectral problem has a positive answer for all fractal strings whose dimension
is an arbitrary number D ∈ (0, 1)− 1

2 if and only if the Riemann hypothesis is true.

Remark 4.2. The work in [LaMa2] (announced in [LaMa1]) was revisited
and extended to a large class of arithmetic zeta functions in [La-vF1, La-vF2,
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La-vF3], using the explicit formulas recalled in Theorem 2.6 and the then rigorously
defined notion of complex dimension. (See [La-vF3, Ch. 9].) Our work in [HerLa1,
HerLa2] can also be extended to this more general setting, as will be clear to the
reader familiar both with the functional calculus (for unbounded normal operators)
and the theory of L-functions, but by necessity of concision, we will not discuss this
development here.

Definition 4.3. A fractal string L (or equivalently, ∂Ω, the boundary of the
associated open set Ω ⊂ R) is said to be Minkowski measurable if the following
limit exists in (0,+∞) :

lim
ε→0+

vol1(Ωε)

ε1−D
:=M(L), (4.1.3)

whereM(L) is called the Minkowski content of L (or of ∂Ω) and, as before, vol1(Ωε)
denotes the volume of the inner ε-neighborhood of ∂Ω: Ωε = {x ∈ Ω : dis(x, ∂Ω) <
ε}. It then follows that D is the Minkowski (or box) dimension of L (i.e., of ∂Ω).

Moreover, recall that the Minkowski dimension of L (or equivalently, of ∂Ω) is
defined by

D = sup{α ≥ 0 :M∗α(L) =∞} = inf{α ≥ 0 :M∗α(L) = 0}, (4.1.4)

where M∗α(L), the α-dimensional upper Minkowski content of L (or of ∂Ω), is
given by

M∗α(L) := lim sup
ε→0+

vol1(Ωε)

ε1−α
. (4.1.5)

(The α-dimensional lower Minkowski content of L, M∗, α(L), is defined analo-
gously, but with a lower limit instead of an upper limit on the right-hand side of the
counterpart of Equation (4.1.5).)

Remark 4.4. Recall that D = DL, the Minkowski dimension of a fractal string
L, coincides with the abscissa of convergence of the Dirichlet series initially defining
the geometric zeta function ζL; see Equation (2.2.3) and the text following it.24 This
key fact was first observed in [La2] using an important result of Besicovitch and
Taylor [BesTa], and a direct proof of this equality was later provided in [La-vF2,
Thm. 1.10]. Furthermore, recall that in the present geometric situation, we always
have D ∈ [0, 1]. In other words, the dimension D = DL of an ordinary fractal string
always lies in the ‘critical interval’ (0, 1) or coincides with one of its endpoints,
0 and 1, corresponding to the ‘least’ and ‘most’ fractal case, respectively (in the
terminology of [La1]).

4.2. Fractal strings and the (modified) Weyl–Berry conjecture. Prior
to the work in [LaMa1, LaMa2], the second author and Carl Pomerance [LaPo1,
LaPo2] had studied the corresponding direct spectral problem for fractal strings.
They thereby had resolved in the affirmative the (one-dimensional) modified Weyl–
Berry conjecture (as formulated in [La1]) according to which if a fractal string L is
Minkowski measurable of dimension D ∈ (0, 1), then its spectral counting function
Nν(x) has a monotonic asymptotic second term, proportional to M(L)xD. More
specifically, the authors of [LaPo1, LaPo2] had shown, in particular, that if L
is Minkowski measurable (which, according to a key result in [LaPo2], is true iff

lj ∼ L.j−
1
D as j → ∞ or equivalently, iff NL(x) ∼ C.xD as x → +∞, for some

24This is why we abuse notation by using the same symbol for these two notions.
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L > 0 and C > 0),25 then the eigenvalue (or rather, frequency) counting function
Nν(x) satisfies Equation (4.1.1) (with o(xD) instead of O(xD−δ)), where

cD := 2−(1−D)(1−D)(−ζ(D))M(L) (4.2.1)

andM(L) is the Minkowski content of L, as defined in Equation (4.1.3). (Note that
−ζ(D) > 0 for 0 < D < 1.)

This result and its proof (along with related results and conjectures in [La1]
and [La2, La3]) suggested the possibility of developing a theory of complex ex-
ponents (or complex dimensions) which enables one to give a natural geometric
meaning to the critical strip 0 < Re(s) < 1. Accordingly, the least (respectively,
most) fractal case D = 0 (respectively, D = 1) would correspond to the left-
hand side Re(s) = 0 (respectively, right-hand side Re(s) = 1) of the critical
strip. Furthermore, the mid-fractal case D = 1

2 would correspond to the critical

line Re(s) = 1
2 , along which all of the nontrivial (or critical) zeroes of ζ are sup-

posed to lie.

The above intuition was both used and justified in the work of [LaMa1,
LaMa2]. In particular, a key result of [LaMa2] was proved by assuming that ω =
D + iτ (τ > 0) is a zero of ζ (which implies that ζ(ω) = 0, where ω = D − iτ),
then showing that it follows that Nν(x) − W (x) is asymptotically proportional
to M(L)xD, and finally constructing a fractal string L of dimension D which is
not Minkowski measurable (in light of the above characterization of Minkowski
measurability from [LaPo2]).26 This fractal string provides a counter-example to
the inverse spectral problem considered in §4.1 (recall that we have assumed here
that ζ(ω) = 0, with Re(ω) = D), under the above assumption that ζ(s) has at
least one zero along the vertical line Re(s) = D. In other words, heuristically, the
imaginary part τ of the ‘complex dimension’ ω gives rise to geometric oscillations
(of leading order D), thereby showing that L is not Minkowski measurable (in light
of the Minkowski measurability criterion of [LaPo2]), but the spectral oscillations
(also of order D) that should be associated with τ are ‘killed’ because ζ(ω) = ζ(ω) =
0. We note that in the language of the theory of complex (fractal) dimensions since
then developed in [La-vF1, La-vF2, La-vF3], the fractal string L constructed in
[LaMa2] has precisely for set of complex dimensions

DL = {D,ω, ω}, where ω = D + iτ . (4.2.2)

Moreover, the explicit formulas from [La-vF2, La-vF3] (see Theorem 2.6 and
especially, its consequence at the spectral level, Equation (2.2.17)) can be used in
order to obtain a streamlined proof of the fact that the spectral oscillations of L
disappear in this case, because ζ(ω) = ζ(ω) = 0 and ω, ω are simple poles of ζL;
see [La-vF3, Ch. 9].

Remark 4.5. (The higher-dimensional case.) The Weyl–Berry conjecture
[Berr1, Berr2] for the vibrations of fractal drums was partially resolved in [La1]
in the case of drums with fractal boundaries (in any dimension N ≥ 1). See also the

25Here, lj ∼ mj as j → ∞ means that lj = mj(1 + o(1)) as j → ∞, where o(1) stands
for a function tending to zero at infinity; and similarly for functions of a continuous variable

x ∈ (0,+∞).
26Indeed, according to the construction of [LaMa2], we have NL(x) ∼ xD + β(xω + xω) =

xD(1 + 2βcos(τ log x)), for some β > 0 small enough.
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important earlier work of J. Brossard and R. Carmona [BroCa] where was provided
a counter-example to the original conjecture (expressed in terms of the Hausdorff in-
stead of the Minkowski dimension of the boundary) and a corresponding, but weaker,
error estimate was obtained for the asymptotics of the trace of the heat kernel (or
‘partition function’), in the special case of the Dirichlet Laplacian.

Accordingly, it was shown by the second author in [La1] that if Ω ⊂ RN (N ≥ 1)
is an arbitrary bounded open set with (inner) Minkowski dimension D ∈ (N −1, N)
and of finite upper Minkowski content (i.e., M∗ =M∗D(∂Ω) < ∞),27 we have the
following remainder estimate for the Dirichlet Laplacian on Ω (interpreted either
variationally or distributionally):

Nν(x) = W (x) +O(xD) as x→ +∞, (4.2.3)

where W (x) := (2π)−NBNvolN (Ω)xN is the Weyl (or leading) term28 with volN (Ω)
and BN respectively denoting the N -dimensional volume of Ω and the closed unit
ball of RN .29 Furthermore, in [La1], the error estimate in Equation (4.2.3) is shown
to be sharp in every possible dimension D ∈ (N−1, N). Moreover, analogous results
are obtained in [La1] for the Neumann Laplacian (under suitable assumptions on
∂Ω) as well as for positive elliptic operators of order 2m (m ∈ N, m ≥ 1) and with
possibly variable coefficients.

For further discussion of the Weyl–Berry conjecture (and its later modifications,
beginning with [La1] and [LaPo3]) or its physical motivations, we refer, for exam-
ple, to [Berr1, Berr2, BroCa, La1, La2, La3, La4, LaPo2, LaPo3, FlVa,
Ger, GerScm1, GerScm2, HeLa, MolVai, vB-Gi, HamLa], along with [La-
vF2, §12.5] and the relevant references therein. (See also, for example, [Berr1,
Berr2, FukSh, La3, KiLa1, Ham1, Ham2, KiLa2, Ki, Sab1, Sab2, Sab3,
Str, Tep1, Tep2] and the relevant references therein for the case of a drum with
a fractal membrane rather than with a fractal boundary.)

5. Quasi-Invertibility and Almost Invertibility of the Spectral Operator

In order to study the invertibility of the spectral operator ac, we first in-
troduce two new families of truncated operators: the truncated infinitesimal shifts

∂
(T )
c and the truncated spectral operators a

(T )
c . These are the key mathematical

objects behind the existence of two notions of invertibility of the spectral operator
ac which were introduced and studied in [HerLa1], namely, quasi-invertibility and
almost invertibility (see Definitions 5.3 and 5.4 below). We show in [HerLa1] that
these two notions of invertibility play a key role in unraveling the precise relation
between the existence of a suitable ‘inverse’ for the spectral operator and the in-
verse spectral problem for fractal strings studied in [LaMa1, LaMa2] (as well as
later on, in [La-vF1, La-vF2, La-vF3], via the explicit formulas) and discussed
in §4.1.

27We always have that D ∈ [N − 1, N ], a statement which reduces to the familiar condition

D ∈ [0, 1] in the case of an ordinary fractal string (i.e., N = 1); see [La1], where the cases D = N−
1, N and N − 1

2
are respectively referred to as the least, most and mid-fractal cases. Furthermore,

we note that in RN , the Minkowski dimension and (upper, lower) Minkowski content are defined
exactly as in Definition 4.3 above, except with 1−D and 1−α replaced by N −D and N −α, in

Equation (4.1.3) and Equation (4.1.5), respectively.
28When N = 1, it reduces to the Weyl term given in Equation (4.1.2).
29In the least fractal case when D = N−1, the error term on the right-hand side of Equation

(4.2.3) should be replaced with O(xN−1 log x).
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5.1. The truncated operators ∂
(T )
c and a

(T )
c . In order to define the no-

tion of quasi-invertibility, we first introduce the truncated infinitesimal shift ∂(T )

and the truncated spectral operator a(T ). As is stated in Corollary 9.1 and Theo-
rem 9.3 (see Appendix B) or follows equivalently from Theorems 3.6 and 3.8, the
infinitesimal shift ∂ = ∂c is given by

∂c = c+ iV, (5.1.1)

where V = Vc is an unbounded self-adjoint operator on Hc with spectrum σ(V ) =
R. Thus, given T ≥ 0, we define the truncated infinitesimal shift as follows:

A(T ) = ∂(T ) := c+ iV (T ), (5.1.2)

where

V (T ) := φ(T )(V )

and φ(T ) is a suitable (i.e., T -admissible) cut-off function (so that we have, in
particular, σ(A(T ))
= c+ i[−T, T ]).

Remark 5.1. More precisely, φ(T ) is any T -admissible cut-off function, defined
as follows: when c 6= 1, φ(T ) is a continuous function defined on R and the closure
of its range is equal to [−T, T ]. Furthermore, when c = 1, φ(T ) is meromorphic
in an open neighborhood of R in C and the closure of the range of its restriction
to R is equal to [−T, T ]; in this case, one views φ(T ) as a continuous function

with values in the Riemann sphere C̃ := C ∪ {∞}. (For example, we may take
φ(T )(s) = T

π tan−1(s), initially defined for s ∈ R.) One then uses the measurable
functional calculus for unbounded normal operators, along with the corresponding
continuous (c 6= 1) or meromorphic (c = 1) version of the spectral mapping theorem
(see the relevant appendix in [HerLa1] and Remark 3.17 above) in order to define
both ∂(T ) and a(T ) and calculate their spectra.

Similarly, in light of the definition of the (standard) spectral operator a = ac
given in Equation (3.4.1), the truncated spectral operator a(T ) = a

(T )
c is defined by

a(T )
c := ζ

(
∂(T )

)
. (5.1.3)

Note that the above construction can be generalized as follows:

Given 0 ≤ T0 ≤ T , one can define a (T0, T )-admissible cut-off function φ(T0,T )

exactly as above, except with [−T, T ] replaced with {τ ∈ R : T0 ≤ |τ | ≤ T}.

Correspondingly, one can define V (T0,T ) = φ(T0,T )(V ),

A(T0,T ) = ∂(T0,T ) := c+ iV (T0,T ) (5.1.4)

and

a(T0,T )
c = ζ(∂(T0,T )), (5.1.5)

where ∂(T0,T ) is the (T0, T )-infinitesimal shift and a(T0,T ) is the (T0, T )-truncated
spectral operator.

Remark 5.2. Note that when we let T0 = 0 in Equations (5.1.4) and (5.1.5),

we recover A(T ) and a
(T )
c ; i.e., A(T ) = A(0,T ) and ac = a

(0,T )
c .
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Finally, we introduce the notions of quasi-invertibility and almost invertibility
of a = ac as follows (the standard notion of invertibility of an operator is recalled
in Remark 5.5 below):

Definition 5.3. The spectral operator a is quasi-invertible if its truncation
a(T ) is invertible for all T > 0.

Definition 5.4. Similarly, a is almost invertible if for some T0 ≥ 0, its trun-
cation a(T0,T ) is invertible for all T > T0.

Note that in the definition of “almost invertibility”, T0 is allowed to depend
on the parameter c. Furthermore, observe that quasi-invertiblity implies almost in-
vertibility.

Remark 5.5. Recall that a (possibly unbounded) densely defined linear operator
A : D(A) ⊂ H→ H on a Hilbert space H, where D(A) is the domain of A, is said
to be invertible if it is invertible in the set theoretic sense and if its inverse is
bounded.30In other words, there exists a bounded linear operator B : H → H with
range D(A) and defined on all of H, such that ABu = u for all u ∈ H and BAv = v,
for all v ∈ D(A). Furthermore, note that according to the definition of the spectrum
σ(A) of A, the linear operator A is invertible if and only if 0 /∈ σ(A) (See, e.g.
[DunSch, Kat, ReSi, Ru, Sc].)

5.2. The spectra of ∂
(T )
c and a

(T )
c . The spectra of A(T ) and aT are now

respectively determined as follows:

Theorem 5.6. [HerLa1] For all T > 0, A(T ) is a bounded normal linear op-
erator whose spectrum is given by

σ(A(T )) = {c+ iτ : |τ | ≤ T}. (5.2.1)

Theorem 5.7. [HerLa1] For all T > 0, a
(T )
c is a bounded normal linear oper-

ator 31 whose spectrum is given by

σ(a(T )
c ) = {ζ(c+ iτ) : |τ | ≤ T}. (5.2.2)

More generally, given 0 ≤ T0 ≤ T , the exact counterpart of Theorem 5.6 holds

for A(T0,T ) and a(T0,T ) = a
(T0,T )
c , except with |τ | ≤ T replaced with T0 ≤ |τ | ≤ T .

Our next result provides a necessary and sufficient condition for the invert-
ibility of the truncated spectral operator:32

Corollary 5.8. [HerLa1] Assume that c ≥ 0. Then, the truncated spectral
operator a(T ) is invertible if and only if ζ does not have any zeroes on the vertical
line segment {s ∈ C : Re(s) = c, |Im(s)| ≤ T}.

30If, in addition, A is closed (which will be the case of all of the operators considered here, in-

cluding ∂c, ac and its truncations a
(T )
c and a

(T,T0)
c ), the inverse operator is automatically bounded

(by the closed graph theorem); see, e.g., [DunSch, Kat, Ru].
31More precisely, only when c = 1, which corresponds to the pole of ζ(s) at s = 1, a(T ) is

not bounded (since ζ(1) = ∞ ∈ C̃) and hence, Equation (5.2.2) must then be interpreted as an

equality in C̃, with ζ viewed as a C̃-valued (continuous) function. (See Remark 3.17.)
32Recall from the end of Remark 5.5 that by definition of the spectrum, a

(T )
c is invertible if

and only if 0 /∈ σ(a
(T )
c ).
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Naturally, given 0 ≤ T0 ≤ T , the same result as in Corollary 5.8 is true for
a(T0,T ) provided |Im(s)| ≤ T is replaced with T0 ≤ |Im(s)| ≤ T .

5.3. Quasi-invertibility of ac, almost invertibility and Riemann ze-
roes. Next, we deduce from the above results necessary and sufficient conditions
ensuring the quasi-invertibility or the almost invertibility of a = ac. Such conditions
turn out to be directly related to the location of the critical zeroes of the Riemann
zeta function.

Theorem 5.9. [HerLa1] Assume that c ≥ 0. Then, the spectral operator ac =
ζ(∂c) is quasi-invertible if and only if the Riemann zeta function does not vanish
on the vertical line {s ∈ C : Re(s) = c}.

We now state the exact counterpart of Theorem 5.9 for the almost invertibility
(rather than the quasi-invertibility) of a = ac.

Theorem 5.10. [HerLa1] Assume that c ≥ 0. Then, ac is almost invertible
if and only if all but (at most) finitely many zeroes of ζ are off the vertival line
Re(s) = c.

Remark 5.11. In light of Definition 5.3, Theorem 5.9 follows from Corollary
5.8. Similarly, in light of Definition 5.4, Theorem 5.10 follows from the counterpart
(or really, the extension) of Corollary 5.8 mentioned in the comment following that
corollary. Moreover, it is worth pointing out that the definitions of the Hilbert space

Hc as well as of the spectral a = ac and of its truncations a
(T )
c and a

(T,T0)
c given

in [HerLa1] make sense for any c ∈ R. Accordingly, all of the results stated in §5
have an appropriate counterpart for any c ∈ R provided we take into account the
trivial zeroes of ζ(s), located at s = −2n, for n = 1, 2, ...For simplicity, we will not
further discuss this issue here. (See Appendix B, however.)

6. Spectral Reformulations of the Riemann Hypothesis and of Almost
RH

6.1. Quasi-invertibility of ac and spectral reformulation of RH. In
this subsection, we first deduce from our earlier results in §5.3 (specifically from
Theorem 5.9) a spectral reformulation of the Riemann hypothesis (RH, see Theo-
rem 6.1 below), expressed in terms of the quasi-invertibility of the spectral operator
a = ac. From a functional analytic and operator theoretic point of view, this refor-
mulation sheds new light on, and further extends, the work of the second author and
H. Maier [LaMa2] in their study of the inverse spectral problem for vibrating fractal
strings. (See §4.1 above for a brief description of this inverse problem and of the
main results of [LaMa2].) This result also sheds new light on the reinterpretation
and further extensions of the work of [LaMa2] obtained in [La-vF3, Ch. 9] in terms
of a rigorously formulated theory of complex dimensions and the corresponding ex-
plicit formulas. (Recall from [La-vF3, §6.3.1] as well as from §2.2 and §3.1 above
that the heuristic spectral operator η 7→ ν can be understood in terms of the explicit
formulas of [La-vF2, La-vF3] expressed in terms of the geometric and spectral
complex dimensions of generalized fractal strings; see Equation (3.1.1), along with
Equations (2.2.16)and (2.2.17).) In particular, Theorem 6.1 below enables us to
give a precise mathematical meaning in this context to the notion of invertibility of
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the spectral operator, as discussed semi-heuristically in [La-vF3, Cor. 9.6]. Indeed,
here, the proper notion of invertibility of a is that of quasi-invertibility.

Theorem 6.1. [HerLa1] The spectral operator a = ac is quasi-invertible for
all c ∈ (0, 1) − 1

2 (or equivalently, for all c ∈ ( 1
2 , 1)) if and only if the Riemann

hypothesis is true.

Remark 6.2. The fact that the dimensional parameter c may equivalently be
assumed to lie in (0, 12 ), ( 1

2 , 1) or all of (0, 1)− 1
2 follows from the functional equation

for the Riemann zeta function, which connects ζ(s) and ζ(1 − s); see Equations
(8.0.2) and (8.0.3) in Appendix A. (An entirely analogous comment can be made
about Theorem 6.3 below.)

6.2. Almost invertibility of ac and spectral reformulation of “almost
RH”. We next deduce from the results of §5.3 (specifically, from Theorem 5.10)
a new statement concerning ζ, to which we refer to as a spectral reformulation of
the almost Riemann hypothesis (almost RH, in short).

Theorem 6.3. [HerLa1] The spectral operator a = ac is almost invertible for
all c ∈ ( 1

2 , 1) if and only if the Riemann hypothesis (RH) is “almost true”(i.e., on

every vertical line Re(s) = c, with c > 1
2 , there are at most finitely many exceptions

to RH).

Remark 6.4. Theorem 6.3 (as well as Theorem 5.10, of which it is a corollary)
does not have any counterpart in the results of [LaMa1, LaMa2] and [La-vF2,
La-vF3] or, to our knowledge, in the existing reformulations of the Riemann hy-
pothesis and of its many variants. Furthermore, recall that ζ(s) 6= 0 for Re(s) ≥ 1
(for Re(s) = 1, this is Hadamard’s theorem); see Appendix A. This fact explains
why we wrote c > 1

2 instead of c ∈ ( 1
2 , 1) in the latter part of Theorem 6.3.

Remark 6.5. Theorem 6.1 and Theorem 6.3 have natural counterparts for a
very large class of arithmetic zeta functions (or L-functions), thereby yielding a new
operator theoretic and spectral reformulation of the generalized Riemann hypothesis
(GRH) and of the “almost GRH”, respectively. Naturally, the corresponding gener-
alized spectral operator aL, c would then be defined by aL, c = L(∂c), where L = L(s)
is the L-function under investigation; see §7.1 and §7.3 below.

Remark 6.6. Note that according to our previous results and definitions, the
invertibility of the spectral operator a implies its quasi-invertibility, which in turn
implies its almost invertibility.

In light of Remark 6.6, we deduce the following corollary from Theorem 6.3
and Hardy’s theorem according to which ζ has infinitely many zeroes on the critical
line Re(s) = 1

2 (see, e.g., [Tit]).

Corollary 6.7. [HerLa1] For c = 1
2 , the spectral operator a is not almost

(and thus, not quasi-) invertible.

6.3. Invertibility of the spectral operator and phase transitions. We
have discussed in §5.3, §6.1 and §6.2 various characterizations of the quasi-invertibility
or of the almost invertibility of the spectral operator a = ac, either for a given c ≥ 0
in §5.3, or else for all c ∈ ( 1

2 , 1) (or equivalently, for all c ∈ (0, 1)− 1
2 ), in §6.1 and

§6.2, respectively. In the present subsection, however, we very briefly discuss the
invertibility of a, in the standard sense of closed (possibly unbounded) operators
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recalled in Remark 5.5. As it turns out, one has to distinguish three main cases:
c > 1, 1

2 < c < 1 and 0 < c < 1
2 . Although, there are several very interesting new

features that are quite different from those encountered in §5.3, §6.1 and §6.2, our
discussion of the (standard) invertibility of a will be rather succinct because it is
not the main object of the present paper. A detailed discussion can be found in
[HerLa1] and a survey of this topic is provided in [HerLa3].

Recall from the end of Remark 5.5 that, by definition of the spectrum σ(a)
of a, the operator a is invertible if and only if 0 /∈ σ(a). We therefore deduce from
Theorem 3.16 (the characterization of the spectrum of a) the following invertibility
criterion for a.

Theorem 6.8. [HerLa1] Assume that c ≥ 0. Then, the spectral operator a is
invertible if and only if 0 /∈ cl({ζ(s) : Re(s) = c}).33

Next, we will explore some of the consequences of Theorem 6.9 in light of
the universality of ζ(s) in the right critical strip { 12 < Re(s) < 1} (see part (2) of
Theorem 6.9) and conditionally (i.e., under RH) of the non-universality of ζ(s) in
the left critical strip {0 < Re(s) < 1

2} (see part (3) of Theorem 6.9, which makes
use of the work of R. Garuktis and J. Steuding in [GarSt]).

Theorem 6.9. [HerLa1, HerLa3] Assume that c > 0. Then:

(1) For c > 1, a is invertible34 and bounded; its spectrum is a compact subset
of C avoiding the origin.

(2) For c ∈ ( 1
2 , 1), a is not invertible and in fact, σ(a) = C. In particular, a is

unbounded.
(3) For c ∈ (0, 12 ), a is also unbounded (i.e., σ(a) is unbounded) and, assuming

the Riemann hypothesis (i.e., conditionally), a is not invertible (i.e., 0 /∈
σ(a)).35

As was alluded to above, Theorem 6.9 exhibits two different types of (math-
ematical) phase transitions, one occurring at c = 1, and conditionally, another one
occurring at c = 1

2 . These ‘phase transitions’ correspond to both the nature (or

the shape) of the spectrum, the boundedness of a,36 and the invertibility of a. The
possible physical origins and interpretations of these phase transitions are discussed
in [HerLa1] and [HerLa3].

We note that the spectral reformulation of the Riemann hypothesis provided
in §6.1 (and that of “almost RH”provided in §6.2) is associated with yet another
(mathematical) phase transition, occurring this time only at c = 1

2 (which corre-

sponds, of course, to both the mid-fractal dimension D = 1
2 and the critical line

Re(s) = 1
2 ). The same comment can be made about the earlier reformulations of

RH obtained in [LaMa1, LaMa2] and later on, in [La-vF2, La-vF3]; see loc. cit.

33That is, if and only if ζ does not have any zeroes on the vertical line Lc := {Re(s) = c}
and there is no infinite sequence {sn}∞n=1 of distinct points of Lc such that ζ(sn)→ 0 as n→∞.

34In light of Remark 6.6, it follows that a is also quasi- (and hence, almost) invertible.
35It is not known whether the conclusion of part (3) is true unconditionally or can be drawn

under a weaker hypothesis than RH; see [HerLa1, HerLa3]. (See also [GarSt].)
36In fact, it follows from Theorems 6.8 and 6.9 that a is bounded for c > 1 and unbounded

for 0 < c ≤ 1.
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and [La3].

Remark 6.10. We have seen above that the issue of universality of the Rie-
mann zeta function (and, more generally, of other L-functions, see [St]) plays an
important role in aspects of the present theory.37 This topic is explored in [HerLa1]
and in [HerLa4] where the spectral operator a = ζ(∂), viewed as a suitable quanti-
zation of the Riemann zeta function, is shown to be “universal”(in an appropriate
sense) among all non-vanishing holomorphic functions38 of the infinitesimal shift
∂ = ∂c (which now plays the role of the complex variable s in the classic theory of
universality).39

7. Concluding Comments

The functional analytic framework which was provided in [HerLa1] was crucial
to give a precise mathematical meaning to the heuristic definition of the spectral op-
erator given in [La-vF3, §6.3]. Indeed, it enabled us to rigorously define and study
the infinitesimal shift ∂c, the shift (or translation) semigroup et∂c , the spectral op-

erator ac = ζ(∂c) and its appropriate truncations a
(T )
c (and a

(T0, T )
c ),40 determine

their spectra and thus, obtain the spectral reformulation of the Riemann hypothesis
(RH) in Theorem 6.1 while investigating the invertibility of the spectral operator.
As a result, an extension of, and a new operator theoretic perspective on, the earlier
work in [LaMa2] were obtained.

7.1. Extension to arithmetic zeta functions. As was alluded to ear-
lier, the criteria provided in Theorems 5.9, 5.10, 6.8 and 6.9 clearly extend in a
natural manner to the spectral operators associated to a large class of arithmetic
zeta functions (or L-functions). The same can be said of most of the results of
[HerLa1, HerLa2, HerLa3, HerLa4] discussed in this survey.

7.2. Operator-valued Euler products. Furthermore, one can show (see
[HerLa2]) that for c > 1, ac belongs to B(Hc) and is given by the following operator-
valued Euler product expansion for a = ac:

ac = ζ(∂) =
∏
p∈P

(1− p−∂)−1, (7.2.1)

37We refer the interested reader to the books [KarVo], [Lau] and [St] for an exposition

of the theory of universality, originating (in the 1920s and in the 1970s, respectively) with the
beautiful Bohr–Landau and Voronin theorems. We simply mention here that roughly speaking,

“universality”(in this context) means that any non-vanishing holomorphic function (in a suitable

compact subset of { 1
2
< Re(s) < 1}) can be uniformly approximated by vertical translates of ζ

(or of the given L-function under study).
38restricted to a suitable compact subset of the right critical strip { 1

2
< Re(s) < 1}.

39The actual formulation of the universality of a is a little more complicated and involves the
family of truncated spectral operators a(T ).

40We note that the notion of ‘truncated spectral operator’ does not appear in

[La-vF3]. Infact, we were led to introducing it in [HerLa1] in order to find the appropriate
notion of invertibility (namely, quasi-invertibility) necessary to obtain this reformulation.
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where ∂ = ∂c and the convergence holds in the Banach algebra B(Hc) of bounded
linear operators on Hc. Moreover, still for c > 1, we have that ||ac|| ≤ ζ(c) and a is
invertible with (bounded) inverse given by

a−1c =
1

ζ
(∂) =

∞∑
n=1

µ(n)n−∂ , (7.2.2)

where the equality holds in B(Hc) and µ(n) is the classic Möbius function defined
by µ(n) = (−1)q if n ∈ N is a product of q distinct primes, and µ(n) = 0, other-
wise. (Compare Equations (7.2.2) and (3.4.4). Also, recall that for c > 1, Equation
(3.4.4) was rigorously justified by Theorem 3.14.) In addition, it was conjectured in
[La-vF3, §6.3.2] that the above Euler product in Equation (7.2.1) also converges
(in a suitable sense) inside the critical strip, that is, for 0 < c < 1. This conjecture
is addressed in [HerLa2].

7.3. Global spectral operator. Another interesting problem consists in
considering and studying the global spectral operator Ac := ξ(∂c), where ξ is the
global (or completed) Riemann zeta function given in Equation (8.0.3) of Appendix
A and satisfies the functional equation (8.0.2): ξ(s) = ξ(1− s). Due to the perfect
symmetry of the functional equation, this operator has some appealing properties,
particularly for c = 1

2 . In particular, an operator-valued functional equation con-
necting Ac and A1−c can be obtained (see [HerLa1]). Naturally, in spirit of §7.1,
an analogous problem can be investigated for generalized global spectral operators
associated with global (or completed) L-functions.

7.4. Towards a quantization of number theory. In closing, we note
that our study of the spectral operator provides a ‘natural quantization’ of several
identities in analytic number theory. For instance, as was briefly discussed at the
end of §6.3, we show in [HerLa1] (see also [HerLa4]) that one can obtain a ‘quan-
tization’ of Voronin’s theorem about the universality of the Riemann zeta function
which states that any non-vanishing holomorphic function in a compact subset
of { 12 < Re(s) < 1} can be uniformly approximated by imaginary translates of
ζ = ζ(s). In our context, and as a consequence, the ‘universality of the spectral op-
erator a = ζ(∂)’ will imply that the spectral operator can emulate any type of com-
plex behavior. As a result, it is chaotic and fractal [HerLa1, HerLa4]. (Possible
connections with various aspects of the research program developed in the book
[La5] still need to be explored in this context; see also the work in preparation
[La6].)

8. Appendix A: Riemann’s Explicit Formula

In this appendix, we first recall for the non-expert some basic properties of
the Riemann zeta function ζ. We then briefly discuss Riemann’s explicit formula
and explain the underlying ‘duality’ between the prime powers and the zeroes of
ζ. Finally, we point out the analogy between Riemann’s explicit formula and the
(generalized) explicit distributional formulas of [La-vF2, La-vF3] recalled in The-
orem 2.6. Indeed, in the latter formulas, the underlying ‘duality’ is now between a
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generalized fractal string η 41 and its associated complex dimensions.

We recall that Riemann showed in his celebrated 1858 paper [Rie] on the
distribution of prime numbers that

ζ(s) =

∞∑
n=1

n−s =

∞∏
p=1

1

1− p−s
, for Re(s) > 1 (8.0.1)

and that ζ has a meromorphic continuation to all of C with a single (and simple)
pole at s = 1, which satisfies the functional equation

ξ(s) = ξ(1− s), s ∈ C, (8.0.2)

where

ξ(s) := π−
s
2 Γ(

s

2
)ζ(s) (8.0.3)

is the completed (or global) Riemann zeta function (Here, Γ denotes the classic
gamma function.) Note that the trivial zeros of ζ(s) at s = −2n for n = 1, 2, 3, ...,
correspond to the poles of the gamma function Γ( s2 ). Riemann also conjectured that
the nontrivial (or critical) zeros of ζ(s) (i.e., the zeros of ζ(s) which are located in
the critical strip 0 < Re(s) < 1) all lie on the critical line Re(s) = 1

2 . This famous
conjecture is known as the Riemann hypothesis.

It is well known that the Euler product in Equation (8.0.1) converges ab-
solutely to ζ(s) for Re(s) > 1 and also uniformly on any compact subset of the
half-plane Re(s) > 1. As a result, ζ(s) does not have any zeroes for Re(s) > 1. Now,
using the ‘symmetry’ expressed by the functional equation (8.0.2), one deduces at
once that the Riemann zeta function does not have any other zeroes in the region
Re(s) < 0, except for the ‘non-critical’ (or trivial) zeroes corresponding to the poles
of the gamma function Γ( s2 ).

In 1892, Hadamard showed that ζ(s) does not have any zeroes on the vertical
line Re(s) = 1. A few years later, in 1896, his result turned out to be a key step
in the proof of the Prime Number Theorem. Hence, and again using the symmetry
of the functional equation (8.0.2), one can conclude that ζ(s) does not have any
zeroes on the vertical line Re(s) = 0. It follows that the critical strip (i.e., the subset
0 < Re(s) < 1) is the region of the complex plane in which the nontrivial zeroes of
ζ(s) are located. Moreover, we point out the fact that in light of Equation (8.0.3)
and the properties of the meromorphic continuation of ζ(s), the zeroes of ξ(s) co-
incide with the critical zeroes of ζ(s) and these zeroes come in complex conjugate
pairs (really, in 4-tuples, due to (8.0.2)) in the critical strip.42

In his same 1858 paper, Riemann obtained an explicit formula connecting an
expression involving the prime numbers (for example, the prime number counting
function), on the one hand, and the (trivial and critical) zeroes of the Riemann

41Here, we point out, in particular, the special case for which a generalized fractal string
η =

∑∞
j=1 wlj δl−1

j
is viewed (in the distributional sense) as an object encoding the geometry of a

standard fractal string L = {lj}∞j=1 with lengths (or scales) lj and multiplicities wlj .
42Naturally, ξ is meromorphic in all of C, with two (simple) poles located at s = 0 and s = 1.



32 HAFEDH HERICHI AND MICHELL. LAPIDUS

zeta function ζ(s), on the other hand.43

Consider the counting function f(x) :=
∑
pn≤x

1
n , defined for x > 0. In other

words, f(x) is the number of prime powers pn (n ∈ N, n ≥ 1) not exceeding x, each
counted with a weight 1

n . Then, a modern version of Riemann’s explicit formula can
be stated as follows:

f(x) =
∑
pn≤x

1

n
= Li(x)−

∑
ρ

Li(xp)−
∫ +∞

x

1

t2 − 1

dt

t log t
− log 2, (8.0.4)

where n runs through all positive integers, Li(x) :=
∫ x
0

dt
log t is the logarithmic inte-

gral and ρ runs through all the zeroes of the Riemann zeta function, ordered so that
their imaginary parts have increasing absolute values. Note that Equation (8.0.4)
provides a ‘duality ’ between the integral powers of the primes and the zeroes of
zeta.44

This duality between the primes p (or additively, their logarithms log p) and
the zeroes (and the pole) of ζ(s) has been key to most approaches to the Riemann
hypothesis. In a similar spirit, the generalization of Riemann’s explicit formula ob-
tained in [La-vF2, La-vF3] and discussed earlier in Theorem 2.6 connects certain
expressions involving a generalized fractal string η (for example, the geometric or
the spectral counting function of η), on the one hand, and the geometric or spectral
complex dimensions of η, on the other hand; that is, the poles of the geometric or
spectral zeta function of η.45

9. Appendix B: The Momentum Operator and Normality of ∂c

The goal of this appendix is to provide the main steps of a proof of Theo-
rem 3.6 and then to explain how to deduce from Theorem 3.6 (to be reformulated
in Corollary 9.1 below) the characterization of the spectrum of ∂c obtained in
Theorem 3.8 (and to be reformulated in Theorem 9.3 below). The aforementioned
restatements of Theorems 3.6 and 3.8 will be expressed in terms of the c-momentum
operator Vc, which we define next.

We recall that the infinitesimal shift ∂c was well studied in [HerLa1] and that
some of its fundamental properties were presented in §3.3 above. Next, we consider
the operator Vc defined as follows (for any c ∈ R):

Vc :=
∂c − c
i

, (9.0.5)

where i :=
√
−1 (here and throughout this appendix). Then, according to Equation

(3.3.3), Vc is an unbounded self-adjoint linear operator on Hc whose domain is the

43We refer, for example, the interested reader to [Edw, Ing, Ivi, Pat, Tit, La5, La-vF2,

La-vF3] for more detailed information about Riemann’s original formula and its various number
theoretic generalizations.

44Actually, for pedagogical reasons, we do not give here the more complicated Riemann

explicit formula in its original form, which was expressed in terms of the standard prime number
counting function.

45Note that the zeroes and the pole of ζ (along with their multiplicities) can be recovered

from the poles (and the sign of the residues) of the logarithm derivative − ζ
′(s)
ζ(s)

.
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same as the domain of ∂c (see Equation (3.3.1)); i.e., D(Vc) = D(∂c).

As a result, we obtain the following equivalent restatement of Theorem 3.6.

Corollary 9.1. Let c ∈ R. Then ∂c is a normal operator given by

∂c = c+ iVc = Re(∂c) + iIm(∂c), (9.0.6)

where Re(∂c) = c and Im(∂c) = Vc denote respectively the real and imaginary parts
of ∂c.

46 (Of course, it follows that Vc is a self-adjoint operator.)

Our next result follows from Equation (9.0.6).

Theorem 9.2. Let c ∈ R. Then 1
i ∂c is self-adjoint if and only if c = 0.

Note that the case where c = 0 then corresponds to the usual situation of
a quantum mechanical particle constrained to move on the real line R. In other
words, V0 = 1

i ∂0 is the standard momentum operator acting on H0 = L2(R).

With the notation of Corollary 9.1, we obtain the following characterization
of the spectrum of the self-adjoint ‘c-momentum operator ’ Vc:

Theorem 9.3. For any c ∈ R, the spectrum σ(Vc) of the unbounded self-adjoint
operator Vc = Im(∂c) is given by

σ(Vc) = σe(Vc) = R, (9.0.7)

where σe(Vc) denotes the essential spectrum of Vc.

In particular, note that the spectrum of the operator Vc coincides with the
spectrum of the classic momentum operator V0. In fact, we will show below that
Vc is unitarily equivalent to V0, which is a much stronger and more precise state-
ment. It follows that the point spectrum of Vc is empty (i.e., Vc does not have any
eigenvalues) and therefore, σap(Vc), the approximate point spectrum of Vc, coin-
cides with σ(Vc). Hence, σap(Vc) is also given by the right-hand side of Equation
(9.0.7).

Next, following [HerLa1], we outline the main steps of the proof of Corollary
9.1 and Theorem 9.3 (and hence, equivalently, of Theorems 3.6 and 3.8).47 It is well
known (see, e.g., [Sc] or vol. II of [ReSi]) that the standard momentum operator

V0 =
1

i
∂0 =

1

i

d

dt
(9.0.8)

is an unbounded self-adjoint operator in L2(R) since, via the Fourier transform, it
is unitarily equivalent to the multiplication operator by the variable t in L2(R) =
L2(R, dt) = H0. Moreover, σ(V0) = R since by the multiplication form of the spec-
tral theorem for unbounded self-adjoint (or, more generally, normal) operators (see,
e.g., [ReSi, Sc, JoLa, Ru]), σ(V0) is equal to the (essential) range of t 7→ t (t ∈ R),
which is R.

46For notational simplicity, we write c instead of c times the identity operator of D(∂c) =
D(Vc).

47An alternative (or “direct”) proof of Theorems 3.6 and 3.8, not simply using the known

results about the spectrum of V0 (based on the properties of the Fourier transform and the
multiplication form of the spectral theorem for self-adjoint operators), is also given in [HerLa1].



34 HAFEDH HERICHI AND MICHELL. LAPIDUS

As a result, Theorem 3.6 (or equivalently, Corollary 9.1) can be proved by
merely showing that Vc = ∂c−c

i is unitarily equivalent to V0. More specifically, it is
shown in [HerLa1] that

V0 = WVcW
−1 (9.0.9)

or equivalently,
Vc = W−1V0W, (9.0.10)

where W : Hc → H0 is the unitary map from Hc onto H0 defined by

(Wf)(t) = e−ctf(t) (9.0.11)

for f ∈ Hc, so that
(W−1g)(t) = ectg(t) (9.0.12)

for g ∈ H0.

Finally, we note that in light of the above proof, Vc is self-adjoint with spec-
trum σ(Vc) = R. (Indeed, as was recalled above, σ(V0) = R. Moreover, unitary
equivalence preserves the spectrum, so that σ(Vc) = σ(V0) = R.) Therefore, since
Vc = ∂c−c

i , we deduce that ∂c = c + iVc is a normal unbounded operator with
spectrum

σ(∂c) = c+ iσ(Vc) = c+ iR. (9.0.13)

This establishes both Corollary 9.1 (or equivalently, Theorem 3.6 ) and Theorem
9.3 (or equivalently, Theorem 3.8).48
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