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Abstract

While entropy per unit time is a meaningful index to quantify the dynamic features of exper-

imental time series, its estimation is often hampered by the finite length of the data. We here

investigate the performance of entropy estimation procedures, relying either on block entropies or

Lempel-Ziv complexity, when only very short symbolic sequences are available. Heuristic analytical

arguments point at the influence of temporal correlations on the bias and statistical fluctuations,

and put forward a reduced effective sequence length suitable for error estimation. Numerical stud-

ies are conducted using, as benchmarks, the wealth of different dynamic regimes generated by the

family of logistic maps and stochastic evolutions generated by a Markov chain of tunable correlation

time. Practical guidelines and validity criteria are proposed, based on the result that the quality of

entropy estimation is sensitive to the sequence temporal correlation hence self-consistently depends

on the entropy value itself.
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I. INTRODUCTION

Investigating non-linear dynamic features of a system from a single experimental time

series is an ubiquitous issue that gave rise to a very rich methodology [1]. An important

characteristic is entropy (per unit time) which has been defined in a coherent manner in

dynamical system theory, stochastic dynamics and information theory [2, 3]. It quantifies

global temporal organization of time series and provides a meaningful statistics in surrogate

data tests for discriminating linear and various non-linear dynamic models [4]. We focus here

on entropy estimation for a symbolic sequence originating either from the intrinsic discrete-

ness of the system states (e.g. linguistic data [5], DNA sequences [6, 7]), from an adequate

partition of the phase space [8, 9] or from an adapted encoding (e.g. behavioral sequences

[10, 11], speech analysis [12, 13], spike emission in neurons [14, 15]). We address the specific

sub-question of controlling entropy estimation for very short time series (for which under-

sampling is likely to be critical) and, for a given dynamics, what is the minimal sequence

size for which entropy analysis gives significant results. We shall henceforth consider only

very short symbolic sequences of length N ≤ 1000. Actually, such a limitation on the data

length is often encountered in biological, medical or social data, mainly due to the necessary

restriction to a time window in which the system evolution can be considered as stationary.

The paper is organized as follows. In the next section, we recall the definition of entropy

(per unit time, denoted h throughout the paper) in terms of the limiting behavior of block

entropies, and we present the associated estimation procedures. We then investigate the

bias and statistical fluctuations in entropy estimation, focusing on non asymptotic results

(i.e. for very short symbolic sequences) and without the usual assumption of an independent

and identically distributed (i.i.d.) data sample. We thus propose to consider an effective

sequence length Neff (instead of N) to account for sample correlation in error computation.

Next we briefly present the Lempel-Ziv compression algorithms and their relation to entropy,

yielding an alternative estimation procedure for h. Then numerical investigation of finite-

size effects for the different methods of entropy estimation is conducted using as benchmarks

short symbolic sequences of known dynamics, either deterministic (logistic maps) or stochas-

tic (Markov chains). We evidence precisely how correlation time of the sequence controls

statistical errors. Our aim being to give practical guidelines on the relevant procedures that

can be implemented to extract discriminating information on the temporal organization of
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very short symbolic sequences, we focus our conclusions on the self-consistent dependence

of the estimation quality on the entropy value itself.

II. BLOCK-ENTROPIES AND ASSOCIATED ENTROPY ESTIMATORS

Considering a stationary source emitting at each time step a symbol from a finite alphabet

of size k, its block-entropy of order n is defined as the Shannon entropy of the probability

distribution pn(w) of the n-words [41]:

Hn ≡ −
∑

w

pn(w) ln pn(w) (1)

where the sum runs over all the possible n-words w, hence depends on the dynamics of the

source over time intervals of n steps. n 7→ Hn is monotonous non decreasing and concave.

Accordingly, hn = Hn+1 −Hn decreases towards a limit h as the word length n tends to ∞,

that defines the entropy rate of the source [42]:

h = lim
n→∞

Hn+1 −Hn = lim
n→∞

Hn

n
(2)

The ratio hn,av = Hn/n also decreases, from which follows that Hn ≥ nh and hn,av ≥ hn ≥ h.

For an i.i.d. sequence, h coincides with H1. Other simple situations where the entropy

rate can be determined analytically are periodic regimes and Markov sources; explicitly,

hn = h as soon as n ≥ q for a Markov chain of order q, and hn = 0 hence h = 0 and

hn,av ∼ 1/n for a periodic sequence of period T ≤ n.

The influence of the symbol distribution on the entropy is fully encapsulated in H1, with

H1 ≤ ln k (where the equality holds for uniform distribution only). For an i.i.d. sequence,

the knowledge of the symbol distribution p1 thus gives a full account of the source properties

and h = H1. When correlations are present and pn is not a product of n replicas of the

symbol distribution p1, we have hn,av < h1,av and hn < h1. Consequently, correlations

are encapsulated in the way h differs from H1. But the respective contributions of symbol

distribution and temporal structures are not additive and (H1 − h)/h cannot be used as a

simple measure of the correlation strength. In fact, the entropy h accounts for the whole

statistical dependencies in an integrated way [43] (i.e. more thoroughly than correlation

functions that are restricted to linear correlations). Although, a general qualitative principle

states that h decreases if correlations increase and 1/h has the meaning of a correlation time,

the relation between entropy and sequence correlations is not straightforward.

3



In practice, h should most often be estimated from a single observed sequence [s] ≡

(si)1≤i≤N of length N . We shall henceforth denote X̂ the estimator of a quantity X, without

mentioning explicitly that it depends on the sequence [s] and its length N . Any ‘hatted’

quantity is thus a random variable, relative to a finite-length sequence and reflecting its

length-dependent distribution.

Several variants have been proposed for estimating Shannon entropy (block entropies in

the present context), like bias-corrected or jackknifed estimators [16] but they all rely on

the i.i.d. nature of the data. This assumption typically fails when investigating the entropy

rate of a correlated times series. So, we limit ourselves to the maximum-likelihood estimator

Ĥn of Hn directly following from the definition (1) using the maximum-likelihood estimator

p̂n(w) of the n-word distribution, i.e. the frequency of w. Then an estimator ĥ of h is

provided by one of the following possibilities:

(i) the difference ĥn = Ĥn+1 − Ĥn, for n large enough.

(ii) the average ĥav,n = Ĥn/n for n large enough;

(iii) the slope ĥslope of the linear region on the graph n 7→ Ĥn, before it saturates at a value

Ĥmax ∼ ln N due to finite sampling. Since slope determination is known to be computa-

tionally unstable, we will not consider this third method to get an estimation of h but we

shall exploit it to appreciate the strength of the finite-size effects (see figure 1).

Note that all three ways provide a non parametric estimation of h, insofar as no param-

eterized expression of pn(w) is required, nor any assumption about the source other than

stationarity and ergodicity.

The maximum-likelihood estimation of pn(w) needs the extraction of n-words from the

sequence [s] from which one can obtain N − n + 1 overlapping n-words. It should be

underlined that this word sequence [w] = (wi)1≤i≤N−n+1 forms a correlated sample of n-

words, not only because of the overlap between the successive words, but also because of

inherent statistical dependencies within the symbol sequences [s] (precisely those entropy h

accounts for). Heuristic criteria based on the statistical meaning of entropy h can be derived

to account for the influence of these correlations.

Given the sequence length N , there is an upper bound on the word length n that it

is possible to investigate with a sufficient statistical quality. It is currently derived by

considering that there are only N/n independent n-words in the sequence which leads to

the constraint N ≥ nkn [17]. But this estimation is valid for i.i.d. sequences only, where
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the correlations between n-words follow only from their overlapping. In the general case,

non-trivial correlations between n-words originating from correlations within the sequence

should be taken into account. Using the interpretation of h as the average independent

information (in ln k units) brought by the observation of an additional symbol, the original

sequence length should be replaced by an effective length

Neff ≈
Nh

ln k
(3)

to account for intrinsic correlations. The criterion bounding the word length thus writes

more stringently

Nh ≥ n kn ln k (4)

In fact, the dependence of this constraint, and more generally of the entropy estimation

quality, with respect to the number k of symbols might be not so strong. Indeed, for n

large enough, Shannon-McMillan-Breiman theorem [18] states that the number of n-words

of non-negligible probability that actually contribute to the entropy is not kn but enh and

the criterion reduces to

Nh � n enh ln k (5)

Even though the theorem cannot be strictly applied to short sequences due to their bounded

acceptable word length, its contents hints at a dependence of the quality of the estimation

with respect to the entropy value h in a non trivial way since enh/h is minimal in h = 1/n.

We thus expect better estimation for moderate h than for high h, and strong difficulties to

assess very small or vanishing values of h.

A similar criterion follows from a recurrence argument. It has been established that the

minimal recurrence time Tn at the level of n-words (that is, the smallest time t such that

(x0, x1, . . . , xn−1 = x−t, x−t+1, . . . x−t+n−1)) behaves as enh, namely limn→∞(1/n) ln Tn → h

in probability [19]. On qualitative grounds, it yields a similar criterion Nh � nenh ln k to

ensure that it is not improbable to observe a typical n-word a sufficient number of times to

get a good statistics for estimating p̂n (at least for typical words). Here again, the effective

size of the sample of n-words is Neff/n in order to account for time correlations.

These clues will be the guideline of our quality assessment of entropy estimation and

systematic numerical study.
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III. BIAS AND FLUCTUATIONS IN FINITE-SIZE BLOCK-ENTROPY ESTIMA-

TORS

Previous studies focused either on the convergence (N → ∞) of the estimators towards

the exact entropy and the asymptotic error estimation [20, 21, 22, 23], or on the scaling

behavior of entropy and error estimators [17, 24, 25, 26]. None of these two classes of

results are relevant in experimental studies where only very short sequences are available.

In this case, the asymptotic regime is presumably out of reach and the range of accessible

lengths (word length n or sequence length N) too narrow to validate any scaling behavior.

Asymptotic error estimators might be not only meaningless but possibly misleading, e.g.

subtracting an asymptotic estimation of the bias might actually not lead to an improvement

in entropy estimation. Moreover, error bars and finite-size effects on the estimation have been

established within restricted dynamic models, most often i.i.d. random variables sequences

invalid for correlated time series.

Our aim is rather to provide a model-free quality assessment of entropy estimation. We

shall thus analyze the discrepancy between Hn and the estimated value Ĥn as a function of

the sequence length N and the block-size n using its decomposition into a bias (deterministic

contribution in the error) and fluctuations (of vanishing average). Two complementary

sampling situations should be considered:

(i) the case of good statistics, where typical n-words are adequately sampled and their prob-

ability pn(w) properly estimated by their frequency of occurrence p̂n(w). It corresponds to

the condition supw Npn(w) � 1 or in practice supw Np̂n(w) � 1.

(ii) the case of bad statistics, where a word occurs at most a few times and frequencies of

occurrence are meaningless. It corresponds to Npn(w) ≤ O(1) for all n-words.

Since we are interested in the influence of time correlation on the entropy estimation, we

shall use the integrated correlation time as an indicator of the statistical dependencies. The

integrated correlation time τint(w) of the process i → δwwi
is defined as follows [3, 27, 28]:

τint(w) =
1

2

+∞∑
−∞

Cw(t)

Cw(0)
(6)

where Cw(t) = 〈δwwi
δwwi+t

〉−〈δwwi
〉〈δwwi+t

〉 is the correlation function of the n-word w within

the sequences generated by the source [29] with δwwi
being the Kronecker symbol, such that

δwwi
= 1 if w = wi else 0.
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A. Good statistics

In the case of good statistics, entropy estimation simply parallels the definition of Hn,

setting the estimator Ĥn equal to the block-entropy of the maximum-likelihood estimator of

the n-word probability distribution:

p̂n(w) =
1

N − n + 1

N−n+1∑
i=1

δwwi
(7)

Under the assumption of statistical stationarity of the process i → si, hence of the process

i → wi for any word-length n, the random variables δwwi
(for w given and wi random) are

identically distributed, of mean 〈δwwi
〉 = pn(w), so that the estimator p̂n(w) is unbiased. As

mentioned above, these variables δwwi
are correlated, all the more since the source is itself

correlated. The law of large numbers:

lim
N→∞

p̂n(w) = pn(w) almost surely (8)

nevertheless applies provided the correlations decrease rapidly enough at infinity i.e.

τint(w) < ∞ [3, 27, 28].

We introduce the error δp̂n(w) = p̂n(w)−pn(w) which is centered since p̂n(w) is unbiased.

Under the assumption τint(w) < ∞, a generalized central limit theorem [44] applies and the

error can be characterized by its variance

〈δp̂n(w)2〉 =
2pn(w)[1− pn(w)]τint(w)

N
(9)

In computing this error δp̂n(w), we identified pn(w) and τint(w) with their estimators, since

the difference yields an higher-order contribution.

The discrepancy ∆Ĥn between estimated and real values of the block entropy is currently

decomposed into a statistical error corresponding to the fluctuation δĤn ≡ Ĥn − 〈Ĥn〉, and

the systematic error corresponding to the bias bĤn
≡ 〈Ĥn〉 −Hn:

∆Ĥn ≡ Ĥn −Hn = δĤn + bĤn
(10)

Although p̂n(w) is unbiased, Ĥn depends in a nonlinear way on p̂n(w) and 〈Ĥn〉 6= Hn.

Explicit expression of these finite-size corrections are obtained by expanding Ĥn with respect

to δp̂n(w):
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∆Ĥn = −

(∑
w

[1 + ln pn(w)]δp̂n(w) +
1

2pn(w)
δp̂n(w)2 +O(δp̂n(w)3)

)
(11)

where the sum runs over the set of all n-words present in the sequence, i.e. having a non-

vanishing probability. The validity of the expansion only requires that |δp̂n(w)| � pn(w),

namely that 2τint(w) � Npn(w) for all typical words if we consider statements in the sense

of L2 convergence, i.e. statements about the moments of ∆Ĥn.

Taking the average of the above expansion yields the expression for the bias bĤn
≡ 〈∆Ĥn〉

[45]:

bĤn
= −

∑
w

1

2pn(w)
〈δp̂n(w)2〉+ h.o. (12)

≈ −
∑

w

2τint(w)[1− pn(w)]

N
(13)

Due to the above-mentioned restriction on the range of the sum, it comes at lower order:

bĤn
≈ − 2τnMn

N
(14)

where Mn is the number of n-words of non-vanishing probability and τn = 〈τint〉n the average

of the correlation time. It amounts to replace the term N/n in the bias estimators given in

the literature [16, 20, 21, 22, 23, 24, 25] by an effective number

Neff

n
=

N

2τn

(15)

so as to account for the contribution of the correlations between the n-words. The definition

(3) of Neff is thus supported by the extension of central limit theorem to the case of correlated

sequences. We recover Neff = N for an i.i.d. sequence and Neff is all the smaller that the

range of correlations is larger. For a strongly correlated sequence, the very definition of h

as a compression rate yields: 2τn ∼ n ln k/h, and Neff ∼ Nh/ ln k, recovering equation (3),

becoming dramatically small in case of long-range correlations, for h � 1. The statistical

error on the word probability distribution finally writes

δp̂n(w)

p̂n(w)
≈
√

n

Neffpn(w)
(16)

Accordingly, the criterion for good statistics is more stringent than that derived on the basis

of the current error estimators for independent samples i.e. supw Npn(w) � 1. It writes
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rather supw Neffpn(w) � n, especially for long-range correlated sequences where h � ln k

hence Neff � N . This yields an upper bound n∗(N, h) on the word-length n, such that

n � n∗(N, h) corresponds to a situation of good statistics, where

n∗(N, h) ∼


ln N

h
if h = O(1)

Nh
ln k

if h → 0

(17)

The statistical error on Hn is directly related to the variance of ∆Ĥn, which can be

estimated as follows (noticing that
∑

w δp̂n(w) = 0 since both pn and p̂n are normalized to 1):

〈(δĤn)2〉 = 〈(∆Ĥn)2〉 − b2
Ĥn

= Var(∆Ĥn)

=

〈[∑
w

ln pn(w)δp̂n(w)

]2〉
+ h.o. (18)

where again correlations between the sampled n-words control the amplitude of δp̂n(w).

More explicitly, let us compute for n large enough the leading-order terms using the Shannon-

McMillan-Breiman theorem: either the n-word w is one of the Mn ∼ enh typical n-words,

and pn(w) ≈ e−nh, else pn(w) ≈ 0. Hence, from (14) it comes:

bĤn
≈ − nehn

Neff

(19)

and plugging (9) in (18) yields

〈(δĤn)2〉1/2 ≈ n h enh/2
√

n/Neff (20)

Although the bias scales as 1/N and the fluctuation as 1/
√

N , in agreement with current

wisdom, the prefactors coming from correlations cannot be ignored for practical purposes:

considering N instead of Neff would drastically underestimate the errors.

B. Bad statistics

In the case of very short sequences, the regime of good statistics allowing to estimate

n-word probabilities will not be valid for n larger than a few units, and entropy estimation

has to be done in an undersampling situation [30]. It is no longer justified to perform
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an expansion of Ĥn around pn(w) in powers of δp̂n(w), and another procedure has to be

implemented.

Denoting K̂N(w) =
∑N−n+1

i=1 δwwi
the number of occurrences of the word w in the con-

sidered sequence (it also implicitly depends on the length n of the word w), the dominant

contributions to Ĥn comes from K̂N(w) = 1 or K̂N(w) = 2, a larger number of occurrences

being highly improbable. Nevertheless, K̂N(w) = 2 or K̂N(w) = 1 is simply a matter of

chance, reflecting a finite-size fluctuation and not the value of pn(w). This means that the

word count does not approximate the probability distribution pn(w). The relevant expansion

should now be performed around K̂N(w) = 0 [21, 24]:

〈Ĥn〉 = −
∑
K

∑
w

K

N

(
ln

K

N

)
Prob(K̂N(w)=K) (21)

At the leading order, neglecting the multiple occurrences of some words, it simply remains

Ĥn = ln N (22)

which accounts for the saturation of the curve n → Ĥn predicted above heuristically. The

correlation between n-words in the sample are usually not taken into account, based on the

argument that the probability of joint occurrence is very weak [25]. Indeed, sticking to a

first-order expansion, involving only Prob(K̂N(w) = 1), allows to neglect this issue. But

as soon as one tries to estimate more precisely Ĥn and takes into account the next terms

with K ≥ 2, then it is necessary to consider these correlations, that might notably affect

the probabilities Prob(K̂N(w) = K).

A straightforward estimation of the crossover location is currently obtained by matching

the linear part Ĥn ≈ hn and the saturation value[46] Ĥn ≈ ln N due to undersampling at

large n; or a given sequence length N , this yields n∗(N, h) ∼ ln N/h. This result becomes

paradoxical when h → 0 since it would indicate that large n-values could be faithfully con-

sidered as h → 0, the larger the closer h is to 0, whereas we expect an opposite behavior

for the estimation quality, as discussed above in Section II for correlated sequences. The

paradox is solved if we use the refined criterion Neff � nenh for good statistics stated in

equation (5): at very low value of h, it yields a crossover value n∗(N, h)

simNh/ ln k that consistently decreases with h. Although the criterion (5) is a rough ap-

proximation for small n since the Shannon-McMillan-Breiman theorem is an asymptotic

result, it yet shows how the value of h influences the very procedure of its estimation, here

the upper bound n∗(N, h) above which drastic finite-size effects (bad statistics) arise.
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This analytical study demonstrates that estimating entropy is a self-consistent problem,

since the convergence rate and error bars depend on the estimated value of h insofar as it

reflects the time correlations of the source.

IV. LEMPEL-ZIV COMPLEXITY

The viewpoint adopted in computing Lempel-Ziv complexity is a priori far different from

that associated with Shannon entropy rate h. Indeed, the definition of Shannon entropy

rate h involves a global feature of the dynamics, namely its invariant measure. It can be

computed from the knowledge of a single trajectory insofar as the measure is ergodic and

allows the reconstruction of the probability distribution of the source from the observation

of a single typical sequence. But it is not in its own right meaningful as a feature of a single

sequence. By contrast, Lempel-Ziv complexity provides a measure of the compressibility of

the considered single symbolic sequence, in other words the information contents per symbol.

Under the assumption that the source is stationary and ergodic, Lempel-Ziv theorems [31]

ensure that Lempel-Ziv complexity coincides with h up to a factor ln k involving the number

k of symbols in the alphabet. This assumption indeed implies that almost all symbolic

sequences have the same compressibility features, hence the computation can be equivalently

performed with any typical sequence [47] and its result coincides with the average.

According to the Lempel-Ziv scheme, the sequence of length N is parsed into Nw words.

Two different parsings have been proposed, either “LZ77” [32]:

1 • 0 • 01 • 10 • 11 • 100 • 101 • 00 • 010 • 11...

where the parsing considered as a new word the shortest one that has not yet been encoun-

tered, or “LZ76” [33]:

1 • 0 • 01 • 101 • 1100 • 1010 • 001011 • ...

where the parsing considers as a new word any subsequence that has not yet been encoun-

tered (the fourth word in the above example is thus 101 and not the 2-sequence 10 since the

latter has already been seen). One then computes

L̂ =
Nw[1 + logkNw]

N
with lim

N→∞
L̂ =

h

ln k
(23)

An alternative and simpler computation involves

L̂0 =
Nw ln N

N
with lim

N→∞
L̂0 = h (24)
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Replacing logk N by ln N makes the limit directly comparable to h, whereas the original

definition is normalized with a common upper bound equal to 1. We respectively specify

N (76)
w , L̂(76) or N (77)

w , L̂(77) according to the chosen parsing. [48]

Computation of error bars on Lempel-Ziv complexity does not follow from a standard

limit theorem. There is indeed no analytical way to check the internal consistency of the

estimation and its accuracy. The only internal test of validity is to check the convergence

of L̂0 as a function of N , ensuring that the limiting behavior is reached. For a stationary

ergodic source, both finite-size estimators decrease to their limit [18]. A numerical fit L̂0 ∼

h + (a logk N)/Nγ for large N has been proposed in [17]. Other asymptotic estimators

are given and shown in [18, 19]. A simple expression of the standard deviation has been

proposed in [34]

σ̂ = (L̂0)
3/2 s√

N logk N
(25)

where s is the standard deviation of the word length in the parsing (according to [33]).

Nevertheless, this computation relies on the questionable assumption that the words in

the parsing are i.i.d. according to a Gaussian distribution N(Λ, s2) where Λ = N/Nw is the

average length of these words; its relevance has been yet supported by numerical simulations

only in simple cases and for N large enough (N > 105).

We rather investigate short (N ≤ 103) and correlated sequences where such asymptotic

error estimation and assumptions on word distribution are irrelevant; we precisely focus on

the influence of time correlations on estimation quality, in particular the relative performance

of the two parsings for very short and correlated sequences.

V. NUMERICAL INVESTIGATIONS

In order to investigate the relative performance of the different entropy estimators on

short symbolic sequences as a function of their size N and correlation time τn, we performed

a panel of numerical tests. We used the family of logistic maps and a family of Markov

chains with tunable correlation time as benchmarks. Logistic maps provide a paradigmatic

example of a deterministic evolution in a continuous phase space where the trajectories are

turned into symbolic sequences using a generating partition, while Markov chains exemplify

a stochastic evolution between discrete states. The entropy h is equally well-defined and

known (either numerically or analytically) in both cases. The flexibility of such numerical
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models with controlled entropy allows to investigate the relation between the value of h and

the quality of its estimation in very different dynamic regimes.

A. Dynamical models

1. Logistic maps

We first used logistic maps xn+1 = axn(1− xn), where xn ∈ [0, 1] and a ∈ [3.5, 4], taking

benefit of the almost exhaustive knowledge available about this one-parameter dynamics.

Several different dynamic regimes are encountered as the control parameter a varies [35],

ranging from periodic to fully random through critical and chaotic. The entropy h(a) can

be computed exactly as the Lyapunov exponent (on a sufficiently long run) according to

the Pesin equality [36]. We coded the sequences using the available generating partition

[0, 1/2[∪[1/2, 1]. By varying a, we are able to tune the amount of correlations in the source

and the entropy of the generated sequences. We shall therefore use the intrinsic entropy rate

to characterize the dynamics as regards its time organization and correlations.

2. Markov chain with tunable correlation time

We also considered binary sequences of length N generated by a Markov chain, with

transition matrix

R(a, b) =

 1− a b

a 1− b

 (26)

(with notation Ri←j) having eigenvalues 1 and 1− a− b, hence a characteristic time

τ(a, b) =
1

− ln |1− a− b|
(27)

that can be shown to coincide with the correlation time of the evolution. The stationary

distribution writes

peq =

 b
a+b

a
a+b

 (28)

and the entropy:

h(a, b) = − b2

a + b
ln b− b(1− a)

a + b
ln(1− a)− a2

a + b
ln a− a(1− b)

a + b
ln(1− b) (29)
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For simplicity, we shall present the results obtained in the case where b = a ≤ 1/2, which

corresponds to a one-parameter family of Markov chain, with transition matrix

R(a) =

 1− a a

a 1− a

 (30)

with entropy:

h1(a) = −a ln a− (1− a) ln(1− a) (31)

and correlation time:

τ(a) =
1

− ln(1− 2a)
(32)

B. Simulations and results

1. Convergence and saturation of block-entropy estimator

We first considered the behavior of the block-entropy maximum-likelihood estimator Ĥn

as a function of the word length n in three typical dynamical regimes: chaotic, critical and

periodic, see figure 1, and investigated the crossover between good and bad statistics. For

the chaotic regime, where h = O(1), the vertical dashed line indicates the location of the

theoretical crossover n∗(N, h) = ln N/h. At the onset of chaos, it has been proved for logistic

map (a = ac) [20, 24] that Hn(ac) = ln(3n/2) for n equal to a power of 2. Even with short

sequences, the sublinear increases of n → Hn can nevertheless be detected, i.e. n → Hn

markedly departs from a straight line n → hn. It also markedly departs from the behavior

observed for a periodic sequences (although h = 0 in both cases) since as soon as n is larger

than the period, one has Hn = const.

2. Quality assessment of entropy estimation

Quality assessment of entropy estimation was quantified using the difference ĥ−h between

the estimated value of entropy and the true one considering different entropy estimators:

blocks-entropy estimators (ĥn = Ĥn+1 − Ĥn and ĥav = Ĥn/n for n = 5) and Lempel-Ziv

complexity estimators (L̂(76) and L̂(77)). In every numerical simulation, a normalized version

of Lempel-Ziv complexity estimator L̂(7.) was used namely L̂(7.) = L̂ ln(2)/max[L̂] where

max[L̂] is the maximum value of complexity obtained for random i.i.d. binary sequences
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[37, 38]; the factor ln(2) appears to facilitate the comparison between Lempel-Ziv complexity

and entropy h. These estimators and conventions were used for all the results presented here.

Self-consistency of entropy estimation was investigated using the dependence of the en-

tropy estimation quality as a function of entropy value h (figure 2) or correlation time τn

(figure 3). As expected, a visible decreasing trend appears on figure 2 where the quality of

the entropy estimation is better for high entropy dynamics than for low ones. It agrees with

the heuristic argument based on the effective length Neff = Nh/ ln k which predicts larger

errors for low h. As a general observation, all the entropy estimators overestimate h with

the noticeable exception of L̂(76) which tends to underestimate high values of entropy. Nev-

ertheless, L̂(76) outperforms all other estimators at small h. Thus, contrary to the current

claim that L̂(77) is more efficient than L̂(76) for correlated sequences [26], we observe that

L̂(76) gives far better estimation than L̂(77) at small h. Our results show that ĥn,av and L̂(77)

always overestimate h although they are efficient for weakly correlated sequences, of high

entropy. Nevertheless, their performance are far too low compared to that of the two other

estimators (ĥn and L̂(76)) and ĥn,av and L̂(77) should thus be rejected in entropy estimation.

ĥn gives equally (but moderately) good results, so it could be specially fruitful in case of an

automated computation a priori covering low-h and high-h situations; one of its virtues is

to always provide an overestimation of h. Actually, for high values of h, ĥn appears to be

the best estimator, while L̂(76) outperforms the other estimators for correlated sequences i.e.

for low values of h.

These results show that our claim on the influence of temporal correlations on the con-

vergence of entropy estimators, hence the necessity of a self-consistent quality assessment,

are valid for both deterministic and stochastic evolutions. It is thus essential to have a first

guess about h or τn before choosing the estimation procedure.

Convergence with sequence length was investigated considering the convergence of the

different entropy estimators: ĥn, ĥav,L̂
(76), L̂(77) described above (see figure 4). In the

case of random dynamics, the performances of all the estimators are comparable for short

sequence length (N > 500). In the critical deterministic case, the constancy of ĥn and ĥn,av

(at a non vanishing value) reflects the dramatically slow convergence of these estimators in

case of strong correlations and L̂(76) appears to be the best estimator. It provides valuable

estimation of h even for moderate sequence length (N > 1200). In the stochastic critical
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case, the high variability depicted in the estimation with L̂(77) and ĥav reflects dramatically

the finite-size effects for long-range correlations. These results thus underline the dual aspect

of finite-size effects in block-entropy approach for estimating h: (i) a convergence issue of Hn

and hn,av towards their limit h (constraining the word-length n) and (ii) a statistical issue in

the reconstruction of the word probability distribution from a single sequence (constraining

the sequence length N). In Lempel-Ziv approach, there is a priori no statistical issue since

Lempel-Ziv complexity is relative to a single sequence; nevertheless, statistics somehow

reappears in the sequence dependence (non uniformity) of the convergence to h as N →∞.

VI. CONCLUSION

Our analysis has been based on two assumptions: ergodicity and stationarity of the

dynamics. Ergodicity assumption underlying estimator definitions means that the entropy

estimation deals with the invariant measure sampled in the observation, i.e. the measure

of interest. In this respect, it is not a limitation and does not affect the consistency of the

results. By contrast, stationarity assumption is a strict requirement, that precisely leads

to consider restricted time windows and to characterize the dynamics from the analysis of

(very) short sequences.

We have seen that the validity and the optimality of the different (model-free) ways

of estimating the source entropy h, as well as their quality assessment, depend crucially

on the very value of h. Since time correlation of the source, as quantified by h itself,

influences dramatically the bias and statistical fluctuations, error estimation should not be

done assuming i.i.d. sequence. As regards the error bars, all happens as if the sequence

were of effective length Neff = Nh/ ln k. This self-consistency of entropy estimation and its

quality hints at using a two-step method, where a preliminary rough and quick estimation

of h indicates what method should be implemented to get the most accurate and most

faithful estimation of h, with a possible trade-off between accuracy and assessment of definite

bounds. In most of the cases, algorithmic estimation using Lempel-Ziv complexity performs

this valuable compromise for very short sequences.
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[5] W. Ebeling and T. Pöschel, Europhysics Letters 26, 241 (1994).

[6] H. Herzel, W. Ebeling, and A. Schmitt, Physical Review E 50, 5061 (1994).

[7] C. Peng, S. Buldyrev, A. Goldberger, S. Havlin, M. Simons, and S. H.E., Physical Review E

47, 3730 (1993).

[8] E. Bollt, T. Stanford, Y. Lai, and K. Zyczkowski, Physical Review Letters 85, 3524 (2000).

[9] E. Bollt, T. Stanford, Y. Lai, and K. Zyczkowski, Physica D 154, 259 (2001).

[10] M. Paulus, M. Geyer, L. Gold, and A. Mandell, Proceedings of the National Academy of

Sciences USA 87, 723 (1990).

[11] P. Faure, H. Neumeister, D. Faber, and H. Korn, Fractals 11, 233 (2003).

[12] K. Doba, L. Pezard, A. Lesne, V. Christophe, and J. Nandrino, Psychological Reports 101,

237 (2007).

[13] K. Doba, J. Nandrino, A. Lesne, J. Vignau, and L. Pezard, New Ideas in Psychology 26, 295

(2008).

[14] S. Strong, R. Koberle, R. de Ruyter van Steveninck, and W. Bialek, Physical Review Letters

80, 197 (1998).

[15] J. Amigo, J. Szczepanski, E. Wajnryb, and M. Sanchez-Vives, Neural Computation 16, 717

(2004).

[16] L. Paninski, Neural Computation 15, 1191 (2003).
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FIG. 1: Behavior of the block-entropy estimator Ĥn when increasing the word length n in the

deterministic case (left) and the stochastic case (right) for binary sequences of length N = 1000.

In the deterministic case, sequences were obtained using the logistic map with different parameter

values: a = ac ≈ 3.569 (h = 0) for the critical behavior with long-range correlations, a = 3.83 for

the periodic regime (h = 0) and a = 4 for the fully chaotic regime (where Hn = n ln 2 and h = ln 2).

In the stochastic case, fully chaotic behavior was obtained using a = 1/2, periodic dynamics using

a = 0.1 and critical behavior using a = 10−3 � 1. The vertical dashed line indicates the theoretical

location n∗ = ln N/h of the crossover between good and bad statistics when h > 0 (chaotic regime)

above which Ĥn saturates to a value ln N .
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FIG. 2: Entropy estimation quality ĥ − h as a function of the true entropy value h in the case

of a deterministic evolution (left) and in the stochastic case (right). In the deterministic case,

sequences are generated from a logistic map with control parameter a ∈ [3.5, 4]. In the stochastic

case, sequences are generated from a Markov chain with a transition matrix parameter a ∈ [0, 1/2].

The exact value h of the entropy is computed as the Lyapounov exponent from a very long typical

trajectory in the logistic case; it is known analytically in the Markov case. The estimators are

calculated for 100 symbolic sequences of length N = 1000 generated with random initial conditions

for 500 values of the control parameter a. Values represented on the figure correspond to the mean

value over these 100 sequences.
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FIG. 3: Entropy estimation quality ĥ− h as a function of the average integrated correlation time

τn, in the deterministic case (left) and stochastic case (right). The numerical procedure is similar

to that described in figure 2.
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FIG. 4: Entropy estimation quality ĥ−h as a function of the sequence length N in the deterministic

case (left column) and stochastic case (right column) for full randomness (top row) and infinite-

range correlations (bottom row). Fully random sequences are generated using the chaotic logistic

map with parameter a = 4 (deterministic case) and an uncorrelated Markov chain with parameter

a = 1/2 (stochastic case). Sequences with infinite-range correlations are generated using the

critical logistic map with parameter a = ac ≈ 3.569 (deterministic case) and Markov chain with

parameter a = 10−3 � 1 i.e. with correlation time τ(a) ≈ 1/a � 1 (stochastic case). The entropy

of 200 symbolic sequences with random initial conditions and varying length N ∈ [200, 2000]

was computed using each estimator. Values represented on the figures correspond to the mean

value over these 200 sequences. Standard deviation is depicted using vertical error bars. For the

deterministic case and critical behavior, the caption inset is the same as for the other plots but for

clarity, it is not depicted on the figure.
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