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Abstract

We investigate certain properties of su(N)-valued two-dimensional soliton surfaces associated
with the integrable CPN−1 sigma models constructed by the orthogonal rank-one Hermitian pro-
jectors, which are defined on the two-dimensional Riemann sphere with finite action functional.
Several new properties of the projectors mapping onto one-dimensional subspaces as well as their
relations with three mutually different immersion formulas, namely, the generalized Weierstrass,
Sym-Tafel and Fokas-Gel’fand have been discussed in detail. Explicit connections among these
three surfaces are also established by purely analytical descriptions and, it is demonstrated that
the three immersion formulas actually correspond to the single surface parametrized by some
specific conditions.

1 Introduction

The construction of soliton surfaces associated with different integrable models has been an intense
area of research over the last few decades. The most interesting and successful theory concerning this
topic follows from the CPN−1 sigma models. Such models have a great importance in mathematical
physics due to the reason that a significant number of physical systems can be reduced to relatively
simple models defined either in Euclidean or in Minkowski space. In recent years, we have witnessed
a rapid progress in the theory as well as its applications in several branches of modern science. One
such promising example is in the context of quantum field theory and string theory, where the sigma
models defined on spacetime and their supersymmetric extensions in Grassmannian manifold play
essential roles in successful description of such theories [1]. Other relevant applications of sigma
models are found in numerous fields of physics; such as, in the Ising model of statistical physics [2],
in the reduction of self-dual Yang-Mills field to the Ernst equation for cylindrical gravitational waves
in gauge field theory [3, 4], in the motion of boundaries between regions of different densities and
viscosities in fluid dynamics [5] and in different phenomena of condensed matter physics, e.g. the
growth of crystals, deformation of membranes, dynamics of vortex sheets, surface waves, etc [4, 6].
In biochemistry and biology, soliton surfaces have been shown to play a crucial role in the study
of biological membranes and vesicles, particularly in the study of long protein molecules [7–9]
and the Canham-Helfrich membrane models [10]. These macroscopic models can be derived from
microscopic ones allowing one to explain the basic features and equilibrium shapes for biological
membranes and the liquid interfaces [11]. In chemistry, these theories are also applied in energy
and momentum transport along a polymer molecule [8].

The subject is very broad covering different areas of mathematical physics in conjunction with
the surface theory. The growing number of new results, particularly from the experimental side mo-
tivates us to explore the models in a more compact way. Especially, by finding an explicit connection
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between the projectors and the generalized Weierstrass formula for the immersion of surfaces, we
explore the possibility of expressing the CPN−1 models directly in terms of the Weierstrass surfaces.
In addition, we discuss the links among several soliton surfaces existing in the literature in a com-
plete analytical fashion. This will set up a direct connection of the theory of CPN−1 models with
the surface theory studied in many different contexts giving more opportunity to the experimentalist
to understand the subject in a more concrete way.

Our paper is organized as follows: In Sec. 2, we introduce the standard procedure for describing
the CPN−1 models in terms of the rank-1 Hermitian projectors. Later, for the purpose of making
our paper self-contained, we recollect some important properties of the projectors from the literature
along with some new additions. In Sec. 3, we build new properties of the generalized Weierstrass
surface by making use of the properties of the projectors. Relations among the Weierstrass surface
and two other soliton surfaces, namely, the Sym-Tafel and the Fokas-Gel’fand are demonstrated in
Sec. 4. Finally, our conclusions are stated in Sec. 5.

2 CPN−1 sigma models in projector formalism in Euclidean space

General properties of the CPN−1 sigma model and associated two-dimensional soliton surfaces in
multidimensional Euclidean space have been studied extensively through many different techniques.
The most interesting and fruitful approach follows from the description of the model in terms of
the orthogonal rank-1 Hermitian projectors Pk,

P 2
k = Pk, P †k = Pk, tr (Pk) = 1, PlPk = δlkPk,

N−1∑
k=0

Pk = IN , 0 ≤ (l, k) ≤ N − 1, (2.1)

which are defined on the Riemann sphere S2 = C ∪ {∞} with IN being an identity matrix of
dimension N ×N . The target space of the projectors Pk are the complex lines in CN , which means
that the projectors can be represented by the one dimensional vector functions fk(ξ, ξ̄) as given by

Pk =
fk ⊗ f †k
f †k · fk

, (2.2)

where fk is a mapping S2 3 (ξ, ξ̄) = x±iy 7→ fk ∈ CN−{0}. Note that Pk remains invariant when fk
is multiplied by any scalar function. The relation (2.2), in fact, provides an isomorphism between the
equivalent classes of CPN−1 models and the set of rank-1 Hermitian projectors Pk. The projector
formalism is sometimes more helpful in the sense that it automatically preserves the conformal
and scaling symmetries and assures that the maps are free from removable singularities [12], which
might have occurred in the unnormalized vector fields fk. Also, using this formalism, the equations
of motion and related properties of the model become significantly compact, which we will discuss
later in this section. Under the assumption that the action functional of the CPN−1 model is finite,
the higher order rank-1 projectors Pk, as defined in (2.2), can be obtained from the lowest order
projector P0, whose target space is an arbitrary holomorphic vector function f0(ξ), and vice versa,
by using the following recurrence relations of fk [12, 13]

fk+1 = (IN − Pk) · ∂fk, fk−1 = (IN − Pk) · ∂̄fk, (2.3)

where the holomorphic and anti-holomorphic derivatives are defined as

∂ ≡ ∂

∂ξ
≡ 1

2

(
∂

∂x
− i ∂

∂y

)
, ∂̄ ≡ ∂

∂ξ̄
≡ 1

2

(
∂

∂x
+ i

∂

∂y

)
. (2.4)

In terms of the projectors, the Lagrangian density and the Euler-Lagrange (EL) equations for the
CPN−1 models [14] can be expressed as

Lk = tr
[
∂Pk · ∂̄Pk

]
and

[
∂∂̄Pk, Pk

]
= ∅, (2.5)
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respectively, or equivalently in the form of a conservation law [15]

∂
[
∂̄Pk, Pk

]
+ ∂̄ [∂Pk, Pk] = ∅, (2.6)

with ∅ being a null matrix. The conservation law (2.6) means that there exists a set of 1-form

dXk = i
([
∂̄Pk, Pk

]
dξ̄ − [∂Pk, Pk] dξ

)
, (2.7)

which are closed differentials and can be utilized to construct the following N ×N matrices in the
form of contour integrals γk in C

Xk

(
ξ, ξ̄
)

= i

∫
γk

([
∂̄Pk, Pk

]
dξ̄ − [∂Pk, Pk] dξ

)
, Xk

(
ξ, ξ̄
)
∈ su(N), (2.8)

which may be identified as surfaces immersed in real (N2− 1)-dimensional Euclidean spaces [13,16,
17]. This mapping of an area of the Riemann surface S2 into a set of su(N) matrices, S2 3 (ξ, ξ̄) 7→
Xk(ξ, ξ̄) ∈ su(N) ' RN2−1, is known as the generalized Weierstrass formula for the immersion of
2D surfaces in RN2−1 [18–20]. By choosing a proper integration constant in such a way that the
Xk’s become traceless, one obtains the expression of surfaces in an explicit form [17]

Xk = ickIN − iPk − 2i
k−1∑
j=0

Pj ∈ su(N), ck =
1 + 2k

N
, (2.9)

= i(ck − 1)Pk + i(ck − 2)

k−1∑
j=0

Pj + ick

N−1∑
l=k+1

Pl ∈ su(N), (2.10)

and, correspondingly, the inverse of (2.9) [12]

Pk = X2
k − 2i (ck − 1)Xk − ck (ck − 2) IN . (2.11)

One then computes the tangent vectors to the surfaces (2.9) as follows

∂Xk = −i∂Pk − 2i
k−1∑
j=0

∂Pj , ∂̄Xk = −i∂̄Pk − 2i
k−1∑
j=0

∂̄Pj , (2.12)

Also, from (2.7) the tangent vectors of the immersion are obtained as

∂Xk = −i [∂Pk, Pk] , ∂̄Xk = i
[
∂̄Pk, Pk

]
, (2.13)

which when compared with (2.12), one obtains

[∂Pk, Pk] = ∂Pk + 2
k−1∑
j=0

∂Pj ,
[
∂̄Pk, Pk

]
= −∂̄Pk − 2

k−1∑
j=0

∂̄Pj . (2.14)

2.1 Characteristics of the projectors in 1D-subspace

Based on [21] together with some new findings, we list some important properties of the projectors
Pk in the following:

(i) From the idempotent property P 2
k = Pk (2.1), it follows that the projectors Pk are diago-

nalizable and their eigenvalues are 0 and 1. Since the projectors map to a one-dimensional
subspace of CN −{∅}, their rank is 1. Therefore, only one of the eigenvalues of the projectors
Pk is 1 and the rest is/are 0. Hence tr(Pk) = 1. Also, the idempotency of projectors P 2

k = Pk
implies that (IN − 2Pk)

2k = IN and (IN − Pk)Pk = ∅.
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(ii) The differential consequences of P 2
k = Pk are

{∂Pk, Pk} = ∂Pk,
{
∂̄Pk, Pk

}
= ∂̄Pk, (2.15)

Pk · ∂Pk · Pk = Pk · ∂̄Pk · Pk = ∅, (2.16)

where {·, ·} represents the anticommutator between the matrices. Albeit, more general prop-
erties about the exchange among matrices Pk, ∂Pk and ∂̄Pk in an arbitrary order, irrespective
of the dimension of their target subspaces of CN − {∅} and projection angles, are given by

Pk · ∂Pk · ∂̄Pk · · · · · ∂Pk = ∂Pk · ∂̄Pk · · · · · ∂Pk · Pk, (2.17)

Pk · ∂Pk · ∂̄Pk · · · · · ∂Pk = ∂Pk · ∂̄Pk · · · · · ∂Pk · (IN − Pk) , (2.18)

for the total number of derivatives ∂Pk and ∂̄Pk being even and odd, respectively.

(iii) Some simple consequences follow from (2.1) as

Pk

k∑
j=0

Pj = Pk, Pj

N−2∑
l=0

Pl = Pj , j, l < k, (2.19)

Pk

k−1∑
j=0

Pj =
k−1∑
j=0

Pj · Pk = ∅. (2.20)

Using (2.12) and by differentiating the first equation in (2.19) with respect to ∂ and ∂̄, re-
spectively, it is straightforward to compute

∂Pk

k∑
j=0

Pj = ∂Pk,

k∑
j=0

Pj · ∂Pk = Pk · ∂Pk, (2.21)

∂̄Pk

k∑
j=0

Pj = ∂̄Pk · Pk,
k∑
j=0

Pj · ∂̄Pk = ∂̄Pk, (2.22)

which immediately imply to

∂Pk

k−1∑
j=0

Pj = Pk · ∂Pk,
k−1∑
j=0

Pj · ∂Pk = ∅, (2.23)

∂̄Pk

k−1∑
j=0

Pj = ∅,
k−1∑
j=0

Pj · ∂̄Pk = ∂̄Pk · Pk. (2.24)

The above Eqs. (2.19)–(2.24) have not been explored before, however, we will see that these
simple relations are very helpful to reduce the complicated expressions to a compact form.

(iv) From (2.16) it follows that

tr (Pk · ∂Pk) = tr
(
Pk · ∂̄Pk

)
= 0, (2.25)

and, consequently,
tr
(
Pk · ∂2Pk

)
= −tr (∂Pk · ∂Pk) , (2.26)

and the analogous relations hold when we replace ∂2 by the derivatives ∂∂̄, ∂̄∂ and ∂̄2. Since,
Pk satisfies the EL equation (2.5), by using (2.1) and (2.16) we have

tr (∂Pk · ∂Pk · Pk) = tr (∂Pk · ∂Pk) = 0 (2.27)

tr
(
∂̄Pk · ∂̄Pk · Pk

)
= tr

(
∂̄Pk · ∂̄Pk

)
= 0 (2.28)

tr
(
Pk · ∂Pk · ∂∂̄Pk

)
= tr

(
Pk · ∂̄Pk · ∂∂̄Pk

)
= 0, (2.29)
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for the proofs, see, [21]. Differentiating (2.27) and (2.28), we obtain

tr
(
∂̄∂Pk · ∂Pk

)
= 0, tr

(
∂∂̄Pk · ∂̄Pk

)
= 0. (2.30)

It is assumed that ∂∂̄Pk and ∂̄∂Pk are continuous at any given point and, therefore, by using
the Schwarz theorem for the mixed partial derivatives, one can say that ∂∂̄Pk = ∂̄∂Pk.

(v) For any square matrix A having the same dimension as the target space of the projectors
CN − {0}, we get

Pk ·A · Pk = tr (Pk ·A)Pk. (2.31)

(vi) The multiplication of any even number of ∂Pk and ∂̄Pk matrices with at least one projector
matrix Pk yields

∂Pk · ∂̄Pk · · · · · ∂Pk · Pk = tr
(
∂Pk · ∂̄Pk · · · · · ∂Pk · Pk

)
Pk, (2.32)

whereas the product of any odd number of identical ∂Pk or ∂̄Pk matrices is given by

∂Pk · ∂Pk · · · · · ∂Pk = tr (∂Pk · ∂Pk · · · · · ∂Pk · Pk) ∂Pk. (2.33)

(vii) From (2.27) and (2.28) we find some new and interesting properties, namely the left hand
sides of (2.32) and (2.33) for the lowest possible number of identical derivatives are equal to
zero, i.e.,

∂Pk · ∂Pk · Pk = ∂̄Pk · ∂̄Pk · Pk = ∅, (2.34)

∂Pk · ∂Pk · ∂Pk = ∂̄Pk · ∂̄Pk · ∂̄Pk = ∅, (2.35)

and, thus, in general we have

Pk · ∂Pk · Pk · ∂Pk · · · · · ∂Pk · Pk = Pk · ∂̄Pk · Pk · ∂̄Pk · · · · · ∂̄Pk · ·Pk = ∅, (2.36)

∂Pk · ∂Pk · · · · · ∂Pk = ∂̄Pk · ∂̄Pk · · · · · ∂̄Pk = ∅, (2.37)

for any number of Pk (including 0) in (2.36), as well as, for any number of identical derivatives
(greater than one in (2.36) except the case of ∂Pk · Pk · ∂Pk( 6= ∅) and greater than two in
(2.37)). The proof of (2.36) is obvious from (2.34) when we have only one Pk on the rightmost
position and the rest are derivatives. If Pk is in the leftmost position and there are even
number of derivatives on the right, then by using (2.17) Pk can be brought to the rightmost
position without any change. While for the case of odd number of derivatives by using (2.18)
one obtains a factor (I − Pk) on the rightmost position. The result is zero in either case. In
any other cases if we do not encounter the situation where the product contains factors like
Pk · ∂Pk · Pk = ∅ or ∂Pk · ∂Pk · Pk = ∅, we can follow the same analysis as above to bring
all of the Pk’s to the rightmost position, which always leave the product to be vanished. The
only exception is ∂Pk · Pk · ∂Pk(6= ∅). It should be mentioned that with the introduction of
(2.37) the property (2.33) becomes trivial.

(viii) The following traces vanish

tr
(
Pk · ∂Pk · Pk · ∂̄Pk · · · · · ∂Pk

)
= 0, (2.38)

where the total number of derivatives involving ∂ and ∂̄ is odd in arbitrary order, as well as,
the total number of projectors Pk (including 0) and their positions are also arbitrary. When
the total number of derivatives ∂ and ∂̄ is even, from (2.32) the relation turns out to be

tr
(
A · ∂Pk · ∂̄Pk · · · · · ∂Pk · Pk

)
= tr (A · Pk) tr

(
∂Pk · ∂̄Pk · · · · · ∂Pk · Pk

)
, (2.39)

where A is any square matrix of finite dimension N . If all the derivatives in (2.39) are either
∂ or ∂̄, then by virtue of (2.36) and (2.37) the left hand side of (2.39) vanishes.
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3 Properties of the generalized Weierstrass formula for the im-
mersion of surface

To explore the properties of the CPN−1 model in terms of the surface associated to it, in this section
we prove several properties of the surfaces Xk, which are used in various branches of mathematical
physics to a greater extent than the projectors.

Property 1: Xk’s belong to the set of su(N) matrices. Hence, X†k = −Xk and tr(Xk) = 0.
Making use of (2.9) and the partition of unity in terms of the projectors (5th equation in (2.1)), it
can be shown that the algebraic conditions

N−1∑
k=0

(−1)kXk = 0 and
N−1∑
k=0

Xk = 2i
N−1∑
k=0

(
k − N − 1

2

)
Pk, (3.1)

hold. This means that the su(N)-valued immersion functions Xk are linearly dependent. When one
multiplies (2.9) and (2.11) by Xk from the left and from the right, respectively, and compares the
Pk ·Xk obtained from them, one obtains the following cubic matrix equations corresponding to the
mixed solutions of (2.6) [22]

[Xk − ickIN ] [Xk − i(ck − 1)IN ] [Xk − i(ck − 2)IN ] = ∅, 1 ≤ k ≤ N − 2. (3.2)

In contrast, for the holomorphic (k = 0) and the anti-holomorphic (k = N − 1) solutions of (2.6),
the constraint relations turn out to be

[X0 − ic0IN ] [X0 − i(c0 − 1)IN ] = ∅, (3.3)

[XN−1 + icN−1IN ] [XN−1 + i(cN−1 − 1)IN ] = ∅, (3.4)

respectively. Since, Xk are anti-Hermitian by construction, one can always diagonalize them, and
the Eqs. (3.2)–(3.4) suggest that the eigenvalues of Xk are

ick, i (ck − 1) and i (ck − 2) , 0 < k < N − 1. (3.5)

The first two of them stand for the holomorphic solution, while for the anti-holomorphic solution
one needs to choose the last two.

Property 2: For arbitrary immersion functions Xk of a surface in su(N), which are parametrized
in conformal coordinates, satisfy the same EL equation as for the projectors Pk for the CPN−1
model (2.5). That is we have

[∂∂̄Xk, Xk] = ∅. (3.6)

Proof: The property was proved in [23], however, in a slightly complicated way resulting from a
different context. Here we provide a simple proof. From (2.5) and (2.13) it is straightforward to
obtain ∂∂̄Xk = i[∂̄Pk, ∂Pk]. Therefore, by expressing Xk in terms of the projectors Pk by using
(2.9), we arrive at

[∂∂̄Xk, Xk] = [∂̄Pk, ∂Pk]
(
Pk + 2

k−1∑
j=0

Pj

)
−
(
Pk + 2

k−1∑
j=0

Pj

)
[∂̄Pk, ∂Pk] (3.7)

= 2[∂̄Pk, ∂Pk]

k−1∑
j=0

Pj − 2

k−1∑
j=0

Pj · [∂̄Pk, ∂Pk], (3.8)

which vanishes according to (2.23) and (2.24). �
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Property 3: A straightforward calculation from (2.9) yields the Killing form of the two surfaces,
i.e. the inner product of the surfaces Xk on su(N), as given by

(Xk, Xm) = −1

2
tr(Xk ·Xm) =

Nck
2

(2− cm), ∀ m > k, (3.9)

(Xk, Xk) = −1

2
tr(X2

k) =
Nck

2
(2− ck)−

1

2
, (3.10)

where we have used the properties (2.1) for the purpose of simplification.

Property 4: The product of any number of Xk (including 0) and at least three of their derivatives
∂Xk always vanishes, i.e.

Xk · ∂Xk ·Xk · ∂Xk · · · · · ∂Xk ·Xk = Xk · ∂̄Xk ·Xk · ∂̄Xk · · · · · ∂̄Xk · ·Xk = ∅, (3.11)

with any arbitrary orderings of Xk and ∂Xk, provided that the derivatives are of identical type.

Proof: We first multiply (2.9) by Pk from the left and from the right, so that we obtain

Pk ·Xk = Xk · Pk = i (ck − 1)Pk = Pk ·Xk · Pk. (3.12)

Now, using (2.13), we express the tangent vectors ∂Xk in terms of the projectors Pk, and we compute

∂Xk · ∂Xk = ∂Pk · Pk · ∂Pk 6= ∅, (3.13)

∂Xk · ∂Xk · ∂Xk = i∂Pk · ∂Pk · Pk · ∂Pk − i∂Pk · ∂Pk · ∂Pk · Pk. (3.14)

From (2.36) we notice that both of the terms on the right hand side of (3.14) are zero. If we multiply
more number of ∂Xk in the left hand side of (3.14), we will end up with similar type of terms in
the right hand side but multiplied with more number of Pk and ∂Pk, which always vanish due to
(2.36). Multiplying more number of Xk with (3.14), we encounter two type of situations, where the
products contain either “ · · · Pk ·Xk · · · ” or “ · · ·Xk · · · ”. Because of (3.12), the first case turns
out to be zero. In the second case, Xk are multiplied by at least three derivatives and, therefore, by
(2.37) they also vanish. A similar analysis holds for the ∂̄ derivatives also. Thus, we prove (3.11).
However, (3.13) implies that the number of derivatives in the product has to be at least three. �

Property 5: For any number of Xk and their derivatives of identical type (including 0) with
arbitrary ordering, the following traces vanish

tr (Xk · ∂Xk · ∂Xk ·Xk · · · · · ∂Xk) = tr
(
Xk · ∂̄Xk · ∂̄Xk ·Xk · · · · · ∂̄Xk

)
= 0, (3.15)

Proof: From (3.10) we obtain

tr
(
X2
k

)
= 1 +Nck(ck − 2), (3.16)

which implies that
tr (Xk · ∂Xk) = tr

(
Xk · ∂̄Xk

)
= 0. (3.17)

Multiplication of Xk by (2.11) yields X3
k , the trace of which is again a constant, since the trace of

the lower order of Xk (3.16) is constant. Therefore, by utilizing (3.17), one obtains tr
(
X2
k · ∂Xk

)
=

tr
(
X2
k · ∂̄Xk

)
= 0. This process can be continued up to any arbitrary powers of Xk, i.e.

tr (Xn
k · ∂Xk) = tr

(
Xn
k · ∂̄Xk

)
= 0, n ∈ Z+. (3.18)

Now, using (2.13) we express ∂Xk in terms of the projectors Pk, and we compute

tr (∂Xk · ∂Xk) = 2tr (∂Pk · ∂Pk · Pk) , (3.19)

tr (Xk · ∂Xk · ∂Xk) = tr (∂Xk · ∂Xk ·Xk) = 2i(ck − 1)tr (∂Pk · ∂Pk · Pk) . (3.20)

The terms on the right hand side of (3.19) and (3.20) vanish due to (2.36). In reference to (3.11),
any other cases where the products contain more number of Xk’s and their derivatives must vanish.
Thus, we prove (3.15). �
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Property 6: Differentiating (3.17), it is easy to show that

tr
(
Xk · ∂2Xk

)
= −tr (∂Xk · ∂Xk) = 0, tr

(
Xk · ∂̄2Xk

)
= −tr

(
∂̄Xk · ∂̄Xk

)
= 0, (3.21)

tr
(
Xk · ∂∂̄Xk

)
= tr

(
Xk · ∂̄∂Xk

)
= −tr

(
∂Xk · ∂̄Xk

)
. (3.22)

In (3.21), the traces corresponding to ∂2 and ∂̄2 vanish because of (3.15). Further differentiations
of (3.21) yield

tr
(
∂̄∂Xk · ∂Xk

)
= 0, tr

(
∂∂̄Xk · ∂̄Xk

)
= 0. (3.23)

From (2.13), it is easy to prove that ∂̄∂Xk = −i
[
∂Pk, ∂̄Pk

]
= i

[
∂̄Pk, ∂Pk

]
= ∂∂̄Xk, since ∂̄∂Pk =

∂̄∂Pk.

Property 7: The following traces vanish

tr
(
∂∂̄Xk, ∂

2Xk

)
= 0, tr

(
∂∂̄Xk, ∂̄2Xk

)
= 0. (3.24)

Proof: From (2.13) it is straightforward to calculate the following traces

tr
(
∂∂̄Xk, ∂

2Xk

)
= tr

(
[̄∂Pk, ∂Pk] · [∂2Pk, Pk]

)
= tr

(
Pk · ∂̄Pk · ∂Pk · ∂2Pk

−∂̄Pk · ∂Pk · Pk · ∂2Pk + ∂Pk · ∂̄Pk · Pk · ∂2Pk − Pk · ∂Pk · ∂̄Pk · ∂2Pk
)

= 0, (3.25)

since by (2.17) one obtains Pk · ∂̄Pk · ∂Pk = ∂̄Pk · ∂Pk · Pk and Pk · ∂Pk · ∂̄Pk = ∂Pk · ∂̄Pk · Pk. In a
similar way, the other traces in (3.24) can also be shown to be vanished. �

Property 8: The tangent vectors corresponding to the immersed surfaces take the following forms

∂Xk = i [∂Xk, Xk] , ∂̄Xk = −i
[
∂̄Xk, Xk

]
. (3.26)

Proof: We first collect the terms of (3.26) from the right hand side to the left hand side and, then,
we express ∂Xk and Xk in terms of the projectors Pk by utilizing (2.11) and (2.12). Subsequently,
we use the orthogonality condition of the projectors, PlPk = δlkPk and (2.14) to arrive at

∂Xk − i [∂Xk, Xk] = 4i

k−1∑
j,l=0

([Pl, ∂Pj ] + [Pk, ∂Pj ]) . (3.27)

Next, we replace (3.27) by (2.14), so that we obtain

∂Xk − i [∂Xk, Xk] = 4i∂Pk ·
k−1∑
l=0

Pl − 4iPk · ∂Pk (3.28)

= 4i (∂Pk − ∂Pk · Pk − Pk · ∂Pk) = ∅, (3.29)

which proves (3.26). In (3.28) and (3.29), we have used (2.1) and (2.15) whenever required. �

Property 9: By using (3.26) successively, we prove

Xk · ∂Xk · ∂̄Xk · · · · · ∂Xk = ∂Xk · ∂̄Xk · · · · · ∂Xk ·
[
Xk + i(M − M̄)IN

]
, (3.30)

for any number of derivatives, with M and M̄ being the total number of derivatives ∂Xk and ∂̄Xk,
respectively.
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Property 10: In property 4, we proved that the traces of arbitrary number of Xk and their
identical derivatives ∂Xk or ∂̄Xk are always zero. Here we provide a more general property for the
mixed derivatives, i.e.

tr
(
Xk · ∂Xk ·Xk · ∂̄Xk · · · · · ∂Xk

)
= 0, M 6= M̄. (3.31)

Proof: By taking traces on both sides of (3.30), we easily obtain

tr
(
∂Xk · ∂̄Xk · · · · · ∂Xk

)
= 0, (3.32)

which holds for any type of orderings of the derivatives when M 6= M̄ . When (3.32) is multiplied
by any number of Xk in arbitrary order, we follow the same argument as given in Property 4
and Property 5 to show that the traces of the corresponding products vanish. When there is one
derivative multiplied by any number of Xk, because of (3.18) the traces are zero. For the cases of
three or more derivatives ∂Xk and ∂̄Xk (for M 6= M̄) when expressed in terms of the projectors, we
obtain the products of Pk and only odd number of ∂Pk in arbitrary orderings. Thus, by following
(2.38), we prove (3.31). �

Property 11: The following traces are zero

tr
(
Xn
k · ∂̄Xk · ∂∂̄Xk

)
= 0, tr

(
Xn
k · ∂Xk · ∂̄∂Xk

)
= 0, n ∈ Z+. (3.33)

Proof: Let us recall (2.9) and (2.13) to express Xk, ∂̄Xk and ∂∂̄Xk in terms of the projectors, so
that we obtain

tr
(
Xk · ∂̄Xk · ∂∂̄Xk

)
= −i tr

(
[ckIN − Pk − 2

k−1∑
j=0

Pj ] · [∂̄Pk, Pk] · [∂̄Pk, ∂Pk]
)

= i(ck − 2) tr
(
∂̄Pk · ∂∂̄Pk

)
, (3.34)

where we have used (2.1), (2.16) and (2.38) for the purpose of simplification. The right hand side of
(3.34) vanishes by virtue of (2.30). Since, Pk ·Xk = i(ck − 1)Pk (3.12), then (2.9) and (2.11) imply
that apart from some different constant terms in front, Xn

k acquires the same terms as Xk has in
equation (2.9). Therefore, we obtain

tr
(
Xn
k · ∂̄Xk · ∂∂̄Xk

)
= Constant · tr

(
∂̄Pk · ∂∂̄Pk

)
= 0, (3.35)

A similar reasoning is applied to the other case in (3.33). �

Property 12: For identical type of derivatives, the following relations hold

∂Xk · ∂Xk ·Xn
k = in(ck − 2)n∂Xk · ∂Xk = in(ck − 2)n∂Pk · ∂Pk, (3.36)

∂̄Xk · ∂̄Xk ·Xn
k = incnk ∂̄Xk · ∂̄Xk = incnk ∂̄Pk · ∂̄Pk, n ∈ Z+. (3.37)

By Property 3, (3.36) and (3.37) vanish when more number derivatives are multiplied on the left.
For mixed derivatives, we obtain(

∂Xk · ∂̄Xk

)m ·Xn
k =(αn − βn)

[(
∂Xk · ∂̄Xk

)m ·X2
k − 2α

(
∂Xk · ∂̄Xk

)m ·Xk

]
(3.38)

+ [βn + ickγ (αn − βn)]
(
∂Xk · ∂̄Xk

)m
, m = 1, 2, 3, · · · · ·(

∂̄Xk · ∂Xk

)m ·Xn
k =(αn − γn)

[(
∂̄Xk · ∂Xk

)m ·X2
k − 2α

(
∂̄Xk · ∂Xk

)m ·Xk

]
(3.39)

+ [γn + ickγ(αn − γn)]
(
∂̄Xk · ∂Xk

)m
, n = 0, 1, 2, · · · · ·

with α = i(ck − 1), β = ick and γ = i(ck − 2).
Proof: The proofs of (3.36) and (3.37) follow from simple calculations after representing Xk, ∂Xk

and ∂̄Xk in terms of Pk with the help of (2.9) and (2.13). We first compute

∂Xk · ∂Xk = ∂Pk · ∂Pk, (3.40)
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and, then, we multiply the left hand side of (3.40) by Xk on the right, so that we obtain

∂Xk · ∂Xk ·Xk = i(ck − 2)∂Pk · ∂Pk = i(ck − 2)∂Xk · ∂Xk. (3.41)

Here we have substituted Xk by Pk from (2.9) and simplified it by using (2.21) and (2.23). When
we multiply the left hand side of (3.41) with more number of Xk on the right, we gain a factor
i(ck − 2) each time on the right hand side, so that we arrive at (3.36) and similarly to (3.37). Eqs.
(3.38) and (3.39) can be proved in a similar way, however, slightly complicated than before. We
compute (

∂Xk · ∂̄Xk

)m
= (−1)m

(
∂Pk · ∂̄Pk

)m
, m = 1, 2, 3, · · · · · (3.42)

and (
∂Xk · ∂̄Xk

)m ·X2
k = (−1)m

[
β2
(
∂Pk · ∂̄Pk

)m
+ (α2 − β2)

(
∂Pk · ∂̄Pk

)m · Pk]
= (−1)2m

[
β2
(
∂Xk · ∂̄Xk

)m
+ (α2 − β2)

(
∂Xk · ∂̄Xk

)m · Pk] , (3.43)

so that when we substitute Pk from (2.11) in (3.43), we obtain(
∂Xk · ∂̄Xk

)m ·X2
k =(−1)2m

[
(α2 − β2)

{(
∂Xk · ∂̄Xk

)m ·X2
k − 2α

(
∂Xk · ∂̄Xk

)m ·Xk

}
+
{
β2 − ickγ(α2 − β2)

} (
∂Xk · ∂̄Xk

)m]
. (3.44)

Computing the higher orders in a similar way, we arrive at (3.38). �

4 Relation of Weierstrass surface with other integrable surfaces

The objective of this section is to realize the connection of generalized Weierstrass representation
associated with the CPN−1 model with some other soliton surfaces. To understand the origin of
such surfaces, we commence with a brief discussion of the linear spectral problem and, later we
establish the consistency of CPN−1 models with the linear spectral problem.

4.1 CPN−1 model and the linear spectral problem

Let us summarize briefly the results obtained by Fokas et al. [24] together with those obtained
in [25] in order to provide some basic notions for further analysis on CPN−1 models. Suppose
that the matrix functions U1, U2 ∈ g defined on the extended n-jet space N = (Jn, λ) satisfy the
compatibility condition in two independent variables u1 and u2

∂U1

∂u2
− ∂U2

∂u1
+ [U1, U2] = 0, (4.1)

which is also known as the zero-curvature condition and, let φ be a solution of a pair of linear
equations

∂φ

∂u1
= U1φ,

∂φ

∂u2
= U2φ, (4.2)

known as the Lax pair in the literature. Then, the integrable Lax equations (4.2) imply that there
exists an immersion of the integrable surface X ∈ g of the form [24]

X = τφ−1
∂φ

∂λ
+ νφ−1(pr(ωRφ) + φ−1Sφ ∈ g, τ, ν ∈ R, (4.3)

with S being an arbitrary g valued matrix function and pr(ωR) is the prolongation of an evolutionary
vector field ωR given by

pr(ωR) = ωR +DJR
k∂ukJ

, ωR = Rk[u]∂uk . (4.4)
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Here, uk are dependent variables, ukJ are their derivatives, DJ is the total derivative operator

Dα = ∂α + ukJ,α
∂

∂ukJ
, α = 1, 2, (4.5)

J = (j1, j2) is the symmetric multi-index and ωR is assumed to be a generalized symmetry of the
partial differential equation. The cases corresponding to ν = S = 0 and τ = S = 0 have been studied
by Sym-Tafel [26,27] and Fokas-Gel’fand [24,28], respectively, and are known as the Sym-Tafel (ST)
and the Fokas-Gel’fand (FG) surfaces in the literature. According to [25], the FG integrated form
of the surfaces associated with the conformal symmetries of the CPN−1 model take the form

XFG = νφ−1pr(ωR)φ = ν
[
f(u1)φ

−1U1φ+ g(u2)φ
−1U2φ

]
. (4.6)

We will study both of the surfaces later in this section. However, before that, let us see how the
above scheme fits into the case CPN−1 sigma models. By defining the matrices U1k and U2k in the
extended jet space

U1k =
2

1 + λ
[∂Pk, Pk] , U2k =

2

1− λ
[
∂̄Pk, Pk

]
, U †1k = −U2k, λ ∈ iR, (4.7)

the EL equation (2.5) become equivalent to (4.1) as follows[
∂∂̄Pk, Pk

]
= ∂̄U1k − ∂U2k + [U1k, U2k] = ∅. (4.8)

It is, then, possible to write the compatibility conditions in the form of the linear spectral problem

∂Φk = U1kΦk, ∂̄Φk = U2kΦk, (4.9)

so that the wave functions Φk can be integrated for an arbitrary solution of the EL equation (4.8)
with finite action as given by [12,29]

Φk = IN +
4λ

(1− λ)2

k−1∑
j=0

Pj −
2

1− λ
Pk. (4.10)

Therefore, the CPN−1 sigma models, indeed, admit a linear spectral problem [15, 29]. Since, the
spectral parameter λ is purely imaginary and Φk are the elements of the group SU(N), the inverse
of the wave functions can easily be computed as

Φ−1k = IN −
4λ

(1 + λ)2

k−1∑
j=0

Pj −
2

1 + λ
Pk. (4.11)

4.2 Weierstrass versus Sym-Tafel formulas for immersions

The ST formula for the immersion of surfaces [26,27] as discussed above is given by

XST
k = τφ−1k

∂

∂λ
φk, τ ∈ R+, (4.12)

and by definition XST
k belongs to su(N) provided that the matrix functions U, V also belong to

su(N). However, notice that in the case of CPN−1 models, the matrix functions U1k, U2k as defined
in (4.7) do not belong to su(N). Therefore, for the purpose of making the surface belonging to
su(N), we adjust the formula of the ST surface (4.12) in the following way

XST
k = −iτ

(
Φ−1k

∂

∂λ
Φk −

2ck
1− λ2

IN
)
∈ su(N). (4.13)
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The purely imaginary factor at the beginning of (4.13) appears due to the requirement that the
matrices XST

k have to be anti-Hermitian, whereas the additive factor is to ensure that the matrices
become traceless. The minus sign at the front is also important for our case, which we will discuss
in the following. Making use of (4.10) and (4.11), we obtain the ST formula for the immersion of
surfaces (4.13) in terms of projectors Pk as given by

XST
k = − 2iτ

1− λ2
(
Pk + 2

k−1∑
j=0

Pj − ckIN
)
∈ su(N), (4.14)

which coincides with the generalized Weierstrass surface (2.9) for λ = ±
√

1− 2τ , with the restric-
tions that λ has singularities at ±1. Since, by definition τ is a positive real number, λ always
becomes a purely imaginary quantity, which is consistent with the original definition of the spectral
parameter coming from the linear spectral problem (4.7). A positive sign in front of (4.13) would
make λ to be real and, therefore, it would destroy the consistency. Nevertheless, what we obtain is
a one parameter family of ST surfaces which are related to the Weierstrass surfaces corresponding
to the values of the spectral parameter λ. Of course, when the two surfaces, i.e. the ST and the
Weierstrass, merge together, both of the surfaces will automatically satisfy all the properties that
we have studied in the previous section.

The algebraic constraints imposed on the surfacesXk are such that the minimal polynomial (3.2)-
(3.4) is of the degree up to three. Let us now find the conditions under which the ST formula for
the immersion of surfaces in su(N) satisfies the minimal polynomial. For this purpose we substitute
the ST formula (4.14) into the relations (3.2)-(3.4). We start our analysis with the holomorphic
solution of the CPN−1 model (k = 0), with the wave functions given by

Φ0 = IN −
2

1− λ
P0, Φ−10 = IN −

2

1 + λ
P0. (4.15)

Consequently, the ST surface turns out to be

XST
0 =

2iτ

1− λ2
(c0IN − P0) . (4.16)

By replacing (4.16) into (3.3), we obtain

P0 =
(1− 2c0τN − λ2)

[
1− λ2 −N(1 + 2c0τ − λ2)

]
2τN(2−N)(λ2 − 1) + 4τ2N2(2c0 − 1)

IN . (4.17)

Now, we utilize the idempotent property P 2
0 = P0 (2.1) to arrive at

(1− 2c0τN − λ2)
[
1− λ2 −N(1 + 2c0τ − λ2)

]
2τN(2−N)(λ2 − 1) + 4τ2N2(2c0 − 1)

= 1, (4.18)

which when solved we obtain an algebraic restriction on the spectral parameter

λ = ±
√

1− 2τN(c0 − 1), ±
√
N − 1 + 2τN(c0 − 1)

N − 1
. (4.19)

For the anti-holomorphic solution (k = N − 1), the wave functions and the ST surface are given by

ΦN−1 =

(
1 + λ

1− λ

)2(
IN −

2

1 + λ
PN−1

)
, XST

N−1 =
2iτ

1− λ2
[(2 + cN−1)IN − PN−1] , (4.20)

respectively. We follow a similar procedure as for the the holomorphic solution to obtain

(1− λ2)2(1−N) + 2τN2
[
(2− cN−1)(1− λ2) + 2τ(cN−1 + 2)2

]
2τN2 [1 + τ(6 + 4cN−1)− λ2]

= 1. (4.21)
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The solutions of which are given by

λ = ±

[
N − 1 + τN2(cN−1 − 1)±

√
τ2N2 {4(N − 1)(cN−1 + 1)2 +N2(cN−1 − 1)2}

]1/2
√
N − 1

. (4.22)

More challenging is the mixed case (1 ≤ k ≤ N − 2). In this case, we replace XST
k given by (4.14)

into (3.2) and, we obtain the constraint relation as a polynomial in λ

ick(ck − 1)(ck − 2)λ6 + a4λ
4 + a2λ

2 + a0 = 0, (4.23)

with

a4 = ck
[
8− 6i+ (6 + 9i)ck − (2 + i)3c2k

]
− 4, (4.24)

a2 = 8− 12i+ ck(2 + i)
[
2 + 20i− (9 + 6i)ck + (3− 6i)c2k

]
, (4.25)

a0 = 4 + 12i− (16 + 38i)ck + (38 + 15i)c2k + (2 + 11i)c3k. (4.26)

4.3 Connection between the Fokas-Gel’fand and Weierstrass formulas defined
on Minkowski space

The standard form of the metric in Minkowski coordinates t, x in R2 is given by

dS2 = dt2 − dx2. (4.27)

We shall mainly work on the light-cone coordinates x+ = t+ x, x− = t− x in R2 with the metric

dS2 = dx+dx−. (4.28)

We denote the derivatives with respect to x+ and x− by ∂+ and ∂−, respectively. In what follows,
we will refer [30] and follow a similar procedure to that discussed in Sec. 2 to describe the CPN−1
models in terms of the orthogonal rank-1 Hermitian projectors Pk, albeit, functions of the light-cone
coordinates x+, x−. As obviously, the projectors Pk satisfy all the properties (2.1) as well as those
which were explored in Sec. 2.1 with ∂ and ∂̄ replaced by ∂+ and ∂−, respectively. However, since
the partial derivatives ∂+Pk and ∂−Pk are not complex conjugate to each other, unlike the case of
Euclidean space, the Weierstrass formula for the immersion of surfaces in Minkowski space acquires
the form

Xk(x+, x−) =

∫
γk(x+,x−)

(
[∂+Pk,Pk] dx+ − [∂−Pk,Pk] dx−

)
, (4.29)

without the multiplicative factor −i when compared to (2.8), which ensures the fact that the
immersion of the surface Xk(x+, x−) belongs to su(N). In order to write the EL equation (4.8)
in a more evolutionary form, we write the matrix functions (4.7) in terms of a set of anti-Hermitian
functions θk = i(Pk − IN/N) ∈ su(N) in the following form

U1k = − 2

1 + λ
[∂+θk, θk], U2k = − 2

1− λ
[∂−θk, θk], U1k,U2k ∈ su(N), (4.30)

so that the EL equation (4.8) takes the form

[∂−∂+θk, θk] = ∂+U2k − ∂−U1k − [U1k,U2k] = ∅. (4.31)

Note that, by switching to the Minkowski space the spectral parameter λ turns out to be real
and, the matrix functions U1k,U2k defined in (4.30) become elements of su(N). Therefore, the FG
formula (4.6) in the case of CPN−1 models acquires the form

XFGk = f(x+)Φ−1k U1kΦk + g(x−)Φ−1k U2kΦk ∈ su(N), (4.32)
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with ν = 1 and Φ being the solution of the linear spectral problem corresponding to (4.30). Let us
further consider that θk are the traveling wave solution of the EL equation (4.31), i.e. we express
θk as

θk ≡ θk(x+ + κx−), ∂−θk = κ∂+θk, κ ∈ R, (4.33)

so that the Weierstrass surfaces and their tangent vectors turn out to be

Xk(x+, x−) =

∫
γk(x+,x−)

[∂+θk, θk] (κdx− − dx+), (4.34)

∂+Xk = − [∂+θk, θk] , ∂−Xk = κ [∂+θk, θk] . (4.35)

Next, we compute some equivalent relations of (2.1) and (2.15) as

P2
k = Pk ⇒ θ2k =

1−N
N2

IN + i
N − 2

N
θk, (4.36)

{∂Pk,Pk} = ∂Pk ⇒ {∂+θk, θk} = i
N − 2

N
∂+θk, (4.37)

which yield another relation being equivalent to (2.16) as

Pk · ∂Pk · Pk = 0⇒ θk · ∂+θk · θk =
N − 1

N2
∂+θk. (4.38)

Successive uses of (4.36)-(4.38) produce some important relations

[∂±θk, θk]
(

1 + 2iθk −
2

N

)
= i∂±θk, (4.39)

i
(

1 + 2iθk −
2

N

)
∂±θk = [∂±θk, θk], (4.40){

[∂±θk, θk], ∂±θk
}

= 0, (4.41)

which we will utilize later. Going back to our discussion, using (4.30) one can solve the compatibility
conditions of the linear spectral problem

∂+ϕk = U1kϕk = − 2

1 + λ
[∂+θk, θk]ϕk, (4.42)

∂−ϕk = U2kϕk = − 2κ

1− λ
[∂+θk, θk]ϕk, (4.43)

to obtain the wave functions in the traveling wave case in the following form [25]

ϕk =
(
IN + 2iθk −

2

N
IN
)
e2χ[∂+θk,θk], χ = λ

( x+

1 + λ
− κx−

1− λ

)
. (4.44)

Correspondingly, the form of the FG surface (4.32) and its tangent vectors are modified as follows [25]

XFGk = 2(∂+f − f − κg)ϕ†k[∂+θk, θk]ϕk, (4.45)

∂+XFGk =
(
∂2+fχ−

2∂+f

1 + λ

)
ϕ†k[∂+θk, θk]ϕk, (4.46)

∂−XFGk = −
(

2∂−g + ∂+f
2κλ

1− λ

)
ϕ†k[∂+θk, θk]ϕk. (4.47)

It was argued in [25] that for a general conformal symmetry of the EL equation (4.8), the immersion
function (4.45) in Minkowski space has tangent vectors given by (4.46) and (4.47) for f = c1x

+ +
c2, g = c1x

−+ c3, but not for arbitrary real functions f and g. Therefore, in general the surface and
its tangent vectors acquire the forms

XFGk = −2(c1x
+ + κc1x

− − c1 + c2 + κc3)ϕ
†
k[∂+θk, θk]ϕk, (4.48)

∂+XFGk = − 2c1
1 + λ

ϕ†k[∂+θk, θk]ϕk, ∂−XFGk = −2c1

(
1 +

κλ

1− λ

)
ϕ†k[∂+θk, θk]ϕk, (4.49)
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with c1, c2 and c3 being constants. From (4.44), we now calculate

ϕ†k[∂+θk, θk]ϕk =
(

1 + 2iθk −
2

N

)
e−2χ[∂+θk,θk][∂+θk, θk]

(
1 + 2iθk −

2

N

)
e2χ[∂+θk,θk]

=
(

1 + 2iθk −
2

N

)
e−2χ[∂+θk,θk](i∂+θk)e

2χ[∂+θk,θk]

= i
(

1 + 2iθk −
2

N

) ∞∑
n=0

(−2χ[∂+θk, θk])
n

n!
(∂+θk)e

2χ[∂+θk,θk]

= i
(

1 + 2iθk −
2

N

)
∂+θke

4χ[∂+θk,θk]

= [∂+θk, θk]e
4χ[∂+θk,θk], (4.50)

where we have used (4.39)-(4.41) for the purpose of simplification. We now replace (4.50) in (4.49)
to obtain

∂+XFGk = − 2c1
1 + λ

[∂+θk, θk]e
4χ[∂+θk,θk], (4.51)

∂−XFGk = −2c1

(
1 +

κλ

1− λ

)
[∂+θk, θk]e

4χ[∂+θk,θk], (4.52)

which when compared with (4.35), we find a simple constraint relation

κ =
λ2 − 1

λ2 + 1
, (4.53)

for which the FG surface coincides with the generalized Weierstrass surface.

5 Conclusions

The main purpose of this paper was to provide a description of CPN−1 sigma models by expressing
them in terms of the soliton surfaces immersed in su(N) algebra without references to any additional
considerations. We provide an extension of the classical Enneper-Weierstrass representation of sur-
faces in su(N) which is identified with the N2− 1-dimensional Euclidean space. Several interesting
and nontrivial properties of the surfaces in such space have been explored. We have also analyzed
the circumstances under which the generalized Weierstrass formula for immersion of 2D-surfaces
coincide with those obtained from the Sym-Tafel formula and the Fokas-Gel’fand formula for im-
mersion. This result allows us to show the equivalence between these three analytic descriptions
and to conclude that under certain conditions they parametrized to the same surface in su(N).

The proposed approach opens many new directions in which our investigations can be followed
up. Firstly, in this paper we have explored some of the properties of the soliton surfaces arising from
the CPN−1 sigma models, however, we believe that there are many other interesting properties that
remain unexplored. Secondly, it would be exciting to study some other soliton surfaces associated
with our system and unify all of them in a single framework. Thirdly, a similar kind of analysis can
be carried out for other type of sigma models based on higher rank projectors defined on Grassman-
nian manifolds or on some homogeneous spaces. Finally and probably the most important problem
is to understand the connection of the projector formalism with the discrete integrable models,
which are albeit more recent version of the integrable systems.
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