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Abstract

We consider a Sklyanin algebra S with 3 generators, which is the quadratic algebra over a
field K with 3 generators x, y, z given by 3 relations pxy + qyx+ rzz = 0, pyz + qzy + rxx = 0
and pzx + qxz + ryy = 0, where p, q, r ∈ K. This class of algebras enjoyed much of attention,
in particular, using tools from algebraic geometry, Feigin, Odesskii [10], and Artin, Tate and
Van den Berg [3], showed that if at least two of the parameters p, q and r are non-zero and at
least two of three numbers p3, q3 and r3 are distinct, then S is Koszul and has the same Hilbert
series as the algebra of commutative polynomials in 3 variables. It became commonly accepted,
that it is impossible to achieve the same objective by purely algebraic and combinatorial means,
like the Gröbner basis technique. The main purpose of this paper is to trace the combinatorial
meaning of the properties of Sklyanin algebras, such as Koszulity, PBW, PHS, Calabi-Yau, and
to give a new constructive proof of the above facts due to Artin, Tate and Van den Bergh.
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It is well-known that algebras arising in string theory, from the geometry of Calabi-Yau manifolds,
i.e. various versions of Calabi-Yau algebras, enjoy the potentiality-like properties. This in essence
comes from the symplectic structure on the manifold. The notion of noncommutative potential
was first introduced by Kontsevich in [15]. Let F = C⟨x1, ...xn⟩, then the quotient vector space
Fcyc = F/[F, F ] has a simple basis labeled by cyclic words in the alphabet x1, ...xn. For each
j = 1, ..., n in [15] was introduced a linear map δ

δxj
: Fcyc → F : Φ 7→ δΦ

δxj
.

δΦ

δxj
=

∑
s|is=j

xis+1xis+2...xirxi1xi2 ...xis−1

So, for any element Φ ∈ Fcyc, which is called potential, one can define a collection of elements
δΦ
δxi
, i = 1, ..., n. An algebra which has a presentation:

U = C⟨x1, ..., xn⟩/{
δΦ

δxi
}i=1,...n

is called a potential algebra. This can be generalised to superpotential algebras. It is known
for 3-dimensional Calabi-Yau that they are always derived from a superpotential. But not all
superpotential algebras are Calabi-Yau. This question was studied in details in [11, 12], [13] (see
also references therein), in [23] the conditions on potential which ensure CY have been studied.
The most general counterpart of potentiality and its relation to CY (in one of possible definitions)
considered in [14],Th 3.6.4.

The simplest example of potential algebras are commutative polynomials. Another important
example, which have been studied thoroughly [9, 6, 10, 2, 3, 16] are Sklyanin algebras. We are
aiming here to demonstrate, that such properties of these algebras as PBW, PHS, Kosulity, Calabi-
Yau could be obtained by constructive, purely combinatorial and algebraic methods, avoiding the
power of algebraic geometry demonstrated in [2, 3] and later papers continuing this line.

Throughout this paper K is an arbitrary field, B is a graded algebra, and the symbol Bm stands
for the mth graded component of algebra B. If V is an n-dimensional vector space over K, then
F = F (V ) is the tensor algebra of V . For any choice of a basis x1, . . . , xn in V , F is naturally
identified with the free K-algebra with the generators x1, . . . , xn. For subsets P1, . . . , Pk of an
algebra B, P1 . . . Pk stands for the linear span of all products p1 . . . pk with pj ∈ Pj . We consider
a degree grading on the free algebra F : the mth graded component of F is V m. If R is a subspace
of the n2-dimensional space V ⊗ V , then the quotient of F by the ideal I generated by R is called
a quadratic algebra and denoted A(V,R). For any choice of bases x1, . . . , xn in V and g1, . . . , gk in
R, A(V,R) is the algebra given by generators x1, . . . , xn and the relations g1, . . . , gk (gj are linear
combinations of monomials xixs for 1 6 i, s 6 n). Since each quadratic algebra A is degree graded,
we can consider its Hilbert series

HA(t) =

∞∑
j=0

dimKAj t
j .

Quadratic algebras whose Hilbert series is the same as for the algebra K[x1, . . . , xn] of commu-
tative polynomials play a particularly important role in physics. We say that A is a PHS (for
’polynomial Hilbert series’) if

HA(t) = HK[x1,...,xn](t) = (1− t)−n.

Following the notation from the Polishchuk, Positselski book [7], we say that a quadratic algebra
A = A(V,R) is a PBW-algebra (Poincare, Birkhoff, Witt) if there are bases x1, . . . , xn and g1, . . . , gm
in V and R respectively such that with respect to some compatible with multiplication well-ordering
on the monomials in x1, . . . , xn, g1, . . . , gm is a (non-commutative) Gröbner basis of the ideal IA
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generated by R. In this case, x1, . . . , xn is called a PBW-basis of A, while g1, . . . , gm are called the
PBW-generators of IA.

In order to avoid confusion, we would like to stress from the start that Odesskii [6] as well as
some other authors use the term PBW-algebra for what we have already dubbed PHS. Since we
deal with both concepts, we could not possibly call them the same and we opted to follow the
notation from [7].

Another concept playing an important role in this paper is Koszulity. For a quadratic algebra
A = A(V,R), the augmentation map A→ K equips K with the structure of a commutative graded
A-bimodule. The algebra A is called Koszul if K as a graded right A-module has a free resolution
· · · → Mm → · · · → M1 → A → K → 0 with the second last arrow being the augmentation map
and with each Mm generated in degree m. The last property is the same as the condition that the
matrices of the above maps Mm → Mm−1 with respect to some free bases consist of elements of
V (=are homogeneous of degree 1). If (p, q, r) ∈ K3, the Sklyanin algebra Qp,q,r is the quadratic
algebra over K with generators x, y, z given by 3 relations

pyz + qzy + rxx = 0, pzx+ qxz + ryy = 0, pxy + qyx+ rzz = 0.

Note that if p ̸= 0, then Qp,q,r is obviously the same as the algebra Sa,s with 3 generators is the
quadratic algebra over K with generators x, y, z given by 3 relations

yz − azy − sxx = 0, zx− axz − syy = 0, xy − ayx− szz = 0,

where a = − q
p , s = − r

p . This way, we reduce the number of parameters, and will deal with algebras
Sa,s.

Odesskii [6] proved that in the case K = C, a generic Sklyanin algebra is a PHS. That is,

HSa,s(t) =
∞∑
j=0

(j+2)(j+1)
2 tj for generic (a, s) ∈ C2,

where generic means outside the union of countably many algebraic varieties in C2 (different from
C2). In particular, the equality above holds for almost all (a, s) ∈ C2 with respect to the Lebesgue
measure. Polishchuk and Positselski [7] showed in the same setting and with the same meaning of
the word ’generic’, that for generic (a, s) ∈ C2, the algebra S is Koszul but is not a PBW-algebra.
For further references, we label their results:

a generic Sklyanin algebra Sa,s over C is Koszul and PHS. (0.1)

The same results are contained in the Artin, Shelter paper [1].
Artin, Tate and Van den Berg [2, 3], and Feigin, Odesskii [10], considered certain family of infinite

dimensional representations of Sklyanin algebra, namely reps, where variables are represented by
matrices with one nonzero upper diagonal. In other words, they considered modules with one-
dimensional graded components. This example was very instructive, and core for most arguments.
They showed that if at least two of the parameters p, q and r are non-zero and the equality
p3 = q3 = r3 fails, then Qp,q,r is Artin–Shelter regular. More specifically, Qp,q,r is Koszul and has
the same Hilbert series as the algebra of commutative polynomials in three variables.

It became commonly accepted that it is impossible to obtain the same results by purely algebraic
and combinatorial means like the Gröbner basis technique, see, for instance, comments in [6, ?].
The main purpose of this paper is to perform this very impossibility. Namely, we prove the same
results by using only combinatorial algebraic techniques, but not algebraic geometry. Mainly, we
use just (non-commutative) Gröbner basis approach.

Theorem 0.1. The algebra Qp,q,r is Koszul for any (p, q, r) ∈ K3. The algebra Qp,q,r is PSA if
and only if at least two of p, q and r are non-zero and the equality p3 = q3 = r3 fails.
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We stress again that the above theorem is essentially one of the main results in [3]. However, our
proof is very different. It is based entirely on Gröbner bases computations, properties of Koszul
algebras and their Hilbert series, and certain other arguments of cobinatorial nature. This approach
is substantially different from the proofs in Artin, Tate, Van den Bergh papers [2, 3], for example,
they get the fact that Sklyanin algebras are PHS as a byproduct of Koszulity. We do it the other
way around, we find the Hilbert series first, and then use it to prove Koszulity.

Despite the fact that Odesskii [6] argues that ’classical combinatorial techniques are inadequate
for determining the Hilbert series of Sklyanin algebras’, we use these techniques and they turn out
to be quite helpful. Recently Sokolov [8] asked whether there exist a constructive way to determine,
for which paprameters (generalised) Sklyanin algebras are PHS. This motivates us to look for a
constructive proofs of known results on Koszulity, PBW and PHS properties of 3-dimensional
Sklyanin algebras, due to Artin, Tate, Van den Bergh. The only results from [2, 3], which we were
not able to recover by Gröbner bases methods, deals with really subtle question on whether it is
a domain. One can feel a taste of the level of difficulty of questions related to zero divisors and
nilpotents in rings, algebras, groups, looking at classical papers in this area [18, 19, 20, 21, 22, 17].

To complete the picture we determine which of these algebras are PBW.

Theorem 0.2. The algebra Qp,q,r is PBW if and only if at least one of the following conditions is
satisfied:

(0.2.1) pr = qr = 0;

(0.2.2) p3 = q3 = r3;

(0.2.3) (p+ q)3 + r3 = 0 and the equation t2 + t+ 1 = 0 is solvable in K.

The condition of solvability of the quadratic equation above is automatically satisfied if K is
algebraically closed or if K has characteristic 3. On the other hand, if K = R, the third case is
empty.

By Theorem 0.1, in the case K = C, there are exactly 10 pairs (a, s) such that Sa,s is not a PHS.
Note that for an arbitrary field K there no more then 10 cases, which are not PHS. There are no
obstacles to the Koszulity of S.

We also study the case of generalized Sklyanin algebras, namely we show that if instead of
keeping coefficients in the relations to be triples of the same numbers p, q, r, we allow them to
be all different, the situation changes dramatically. For instance, we show that generically such
algebras are finite-dimensional and non-Koszul.

For q = (a, b, c, α, β, γ) ∈ K6, consider the generalized Sklyanin algebra Ŝq given by the generators
x, y, z and the relations

yz − azy − αxx = 0, zx− bxz − βyy = 0, xy − cyx− γzz = 0. (0.2)

The situation with Koszulity as well as with the generic series for generalized Sklyanin algebras
Ŝq is spectacularly different from that of the Sklyanin algebras Sa,s.

Theorem 0.3. For q = (a, b, c, α, β, γ) from a non-empty Zarisski open subset of K6, Ŝq is finite
dimensional and non-Koszul.

By the above result, if K is infinite, a Zarisski-generic Ŝq is very far from being a PHS. However,
it is possible to figure out exactly which Ŝq are PHSs.

We give here a complete classification of generalised Sklyanin algebras w.r.t. PTA property.

Theorem 0.4. For q = (a, b, c, α, β, γ) ∈ K6, the algebra Ŝq is a PHS if and only if at least one of
the following conditions is satisfied:

(0.4.1) a = b = c ̸= 0 and (a3, αβγ) ̸= (−1,−1);
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(0.4.2) (a, b, c) ̸= (0, 0, 0) and either α = β = b−a = 0 OR γ = α = c−a = 0 OR β = γ = b− c = 0;

(0.4.3) a = b = c = 0 and αβγ ̸= 0;

(0.4.4) α = β = γ = 0 and (a, b, c) ̸= (0, 0, 0);

(0.4.5) a9 = −1, a3 ̸= −1, {b, c} = {a7, a13} and αβγ = −a6.

Furthermore, if Ŝq is a PHS, then it is Koszul.

In the case αβγ ̸= 0, where all squares are present, the list shortens considerably.

Corollary 0.5. For q = (a, b, c, α, β, γ) ∈ K6 satisfying αβγ ̸= 0, the algebra Ŝq is a PHS if and
only if either a = b = c and (a3, αβγ) ̸= (−1,−1) or (0.4.5) is satisfied.

We recall some known facts on Koszul and PBW algebras and prove few useful technical lemmas
in Section 1. We make a number of easy preliminary observations in Section 2. Theorem 0.1 is
proved in Section 3, while Theorem 0.2 is proved in Section 4. In Section 6 we show that the
situation changes dramatically if instead of keeping coefficients in the relations to be triples of
the same numbers, we allow them to be all different. For instance, we show that generically such
algebras are finite dimensional and non-Koszul. Section ?? is devoted to further comments.

1 General background

We shall use the following well-known facts, all of which can be found in [7]. Every monomial
quadratic algebra A = A(V,R) (=there are linear bases x1, . . . , xn and g1, . . . , gm in V and R
respectively, such that each gj is a monomial in x1, . . . , xn) is a PBW-algebra. Next, if we pick a
basis x1, . . . , xn in V , we get a bilinear form b on the free algebra F = F (V ) defined by b(u, v) = δu,v
for every monomials u and v in the variables x1, . . . , xn. The algebra A! = A(V,R⊥), where
R⊥ = {u ∈ V 2 : b(r, u) = 0 for each r ∈ R}, is called the dual algebra of A. Clearly, A! is
a quadratic algebra in its own right. Recall also that there is a specific complex of free right
A-modules, called the Koszul complex, whose exactness is equivalent to the Koszulity of A:

. . .
dk+1−→(A!

k)
∗ ⊗A

dk−→(A!
k−1)

∗ ⊗A
dk−1−→ . . .

d1−→(A!
0)

∗ ⊗A = A −→ K → 0, (1.1)

where the tensor products are over K, the second last arrow is the augmentation map, each tensor
product carries the natural structure of a free right A-module and dk are given by dk(φ ⊗ u) =
n∑

j=1
φj ⊗ xju, where φj ∈ (A!

k−1)
∗, φj(v) = φ(vxj). Although A! and the Koszul complex seem to

depend on the choice of a basis in V , it is not really the case up to the natural equivalence [7]. We
recall that

every PBW-algebra is Koszul;

A is Koszul ⇐⇒ A! is Koszul;

if A is Koszul, then HA(−t)HA!(t) = 1. (1.2)

Note that the Koszul complex (1.3) of any quadratic algebra is exact at its last 3 terms: K,
(A!

0)
∗ ⊗A = A and (A!

1)
∗ ⊗A. This accounts for the fact [7] that if HA! is a polynomial of degree

2, then A is Koszul if and only if HA(−t)HA!(t) = 1. That is, the Koszulity of such algebras
is determined by their Hilbert series. We generalize this statement to the case when HA! is a
polynomial of any degree.

Proposition 1.1. Let A = A(V,R) be a quadratic algebra such that HA! is a polynomial of degree
k, and Koszul complex of A is exact in all terms, with at most one exception. Then A is Koszul if
and only if HA(−t)HA!(t) = 1.
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Proof. Excluding trivial cases suppose that k 6 3
Let us denote series of A and A! respectively:

HA!(t) = 1 + nt+ dt2 +
k∑

j=3

sjt
j =

k∑
j=0

sjt
j

and

HA(t) = 1 + nt+ (n2 − d)t2 +
k∑

j=3

ajt
j =

∞∑
j=0

ajt
j .

Consider the Koszul complex:

0 → . . .
dk+1−→(A!

k)
∗ ⊗A

dk−→(A!
k−1)

∗ ⊗A
dk−1−→ . . .

d1−→(A!
0)

∗ ⊗A = A −→ K → 0, (1.3)

and its splitting w.r.t. A-grading, namely the corresponding sequence, starting from lth term:

0 → (A!
k)

∗ ⊗Al
dk−→(A!

k−1)
∗ ⊗Al+1

dk−1−→ . . .
dm−1−→ (A!

m)∗ ⊗Ak+l−m
dm−→ (1.4)

(A!
m−1)

∗ ⊗Ak+l−m+1
dm−1−→ . . .

d2−→(A!
1)

∗ ⊗Ak+l−1
d1−→(A!

0)
∗ ⊗Ak+l

d0−→K → 0,

Let the Koszul complex be exact in mth term (A!
m)∗ ⊗A.

Now we use the exactness of (1.4) at terms (A!
k)

∗ ⊗ Al, ..., (A
!
m+1)

∗ ⊗ Ak+l−m−1, and get the
equality:

dim (im dm−1 ∩ (A!
m)∗ ⊗Ak+l−m) = sm+1ak+l−1 − sm+2ak+l−m−2 + ...+ (−1)k−m+1skal.

The exactness at terms
(A!

m−1)
∗ ⊗Ak+l−m+1, ..., (A

!
0)

∗ ⊗Ak+l, k,
give us:

dim (ker dm ∩ (A!
m)∗ ⊗Ak+l−m) = smak+l−m − sm−1ak+l−m+1 + ...+ (−1)ms0ak+l.

The exactness of the sequences in mth term (A!
m)∗⊗Ak+l−m according to the above expressions

for im and ker will mean:

k∑
j=0

(−1)jsja
k+l−j = 0, ∀l,

which is exactly a condition on the series:

HA(−t)HA!(t) = 1.

We shall use Proposition 1.1 in a rather specific situation. To make this application easier, we
derive the following corollaries.

Corollary 1.2. Let A = A(V,R) be a quadratic algebra such that A!
4 = {0}, A!

3 is polynomial of
degree 3 and

0 → (A!
3)

∗ ⊗A
d3−→(A!

2)
∗ ⊗A

d2−→(A!
1)

∗ ⊗A
d1−→(A!

0)
∗ ⊗A = A

d0−→K → 0 (1.5)

be the Koszul complex of A. Assume also that d3 is injective. Then A is Koszul if and only if
HA(−t)HA!(t) = 1.

6



We say that u ∈ A = A(V,R) is a right annihilator if V u = {0} in A. A right annihilator u is
non-trivial if u ̸= 0.

Corollary 1.3. Let A = A(V,R) be a quadratic algebra such that A!
4 = {0}, A!

3 is one-dimensional
and A!

2w ̸= {0} for every non-zero w ∈ A!
1. Then the following statements are equivalent:

(1.3.1) A is Koszul;

(1.3.2) A has no non-trivial right annihilators and HA(−t)HA!(t) = 1.

Proof. Fix a basis x1, . . . , xn in V . Since A!
4 = {0} and A!

3 is one-dimensional, the Koszul complex
of A is of the shape

0 → A = (A!
3)

∗ ⊗A
d3−→(A!

2)
∗ ⊗A

d2−→(A!
1)

∗ ⊗A
d1−→(A!

0)
∗ ⊗A = A

d0−→K → 0. (1.6)

Let φ : A!
3 → K be the linear isomorphism identifying (A!

3)
∗ ⊗ A with K ⊗ A = A. By definition

d3 : A → (A!
2)

∗ ⊗ A acts according to the formula d3(u) =
n∑

j=1
φj ⊗ xju, where φj(v) = φ(vxj).

Clearly, the condition A!
2w ̸= {0} for w ∈ A!

1\{0} yields linear independence of φ1, . . . , φn in (A!
2)

∗.
It follows that d3(u) = 0 if and only if u is a right annihilator in A. Thus

d3 is injective if and only if A has no non-trivial right annihilators. (1.7)

If A is Koszul, the complex (1.6) is exact and therefore d3 is injective. By (1.7), A has no non-trivial
right annihilators. Furthermore, HA(−t)HA!(t) = 1 according to (1.2). Thus (1.3.1) implies (1.3.2).

Assume now that (1.3.2) is satisfied. By (1.7), d3 is injective. So we can apply Proposition 1.1,
and get that A is Koszul. Thus (1.3.2) implies (1.3.1).

Our next observation is that neither Koszulity nor the Hilbert series of a quadratic algebra
A = A(V,R) is sensitive to changing the ground field.

Remark 1.4. Fix the bases x1, . . . , xn and r1, . . . , rm in V and R respectively. Then A = A(V,R)
is given by the generators x1, . . . , xn and the relations r1, . . . , rm. Let K0 be the subfield of K
generated by the coefficients in the relations r1, . . . , rm and B be the K0-algebra defined by the
exact same generators x1, . . . , xn and the exact same relations r1, . . . , rm. Then A is Koszul if and
only if B is Koszul (see, for instance, [7]) and the Hilbert series of A and of B coincide. The latter
follows from the fact that the Hilbert series depends only on the set of leading monomials of the
Gröbner basis. Now the Gröbner basis construction algorithm for A and for B produces exactly
the same result. Thus if a quadratic algebra given by generators and relations makes sense over 2
fields of the same characteristic, then the choice of the field does not effect its Hilbert series or its
Koszulity. In particular, replacing the original field K by its algebraic closure or by an even bigger
field does not change the Hilbert series or Koszulity of A. On the other hand, the PBW-property
is sensitive to changing the ground field [7].

The next lemma admits a natural generalization to the case of algebras with any number n of
generators. We stick with n = 3 since it is the only case we apply it in.

Lemma 1.5. Let A = A(V,R) be a quadratic K-algebra such that dimV = dimR = 3 and dimA3 =
10. Then the following hold:

(1.5.1) If there are linear bases x, y, z in V and f , g, h in R and an order < on the monomials
compatible with the multiplication such that the leading monomials f , g and h of f , g and h
satisfy

{f, g, h} ∈
{
{xy, xz, yz}, {yx, yz, xz}, {xy, xz, zy}, {yx, zx, zy}, {yx, yz, zx}, {xy, zx, zy}

}
. (1.8)

then {x, y, z} is a PBW-basis of A and f , g, h are PBW-generators of IA. In particular, A
is a PBW-algebra and is Koszul. Furthermore, A is a PSA;
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(1.5.2) If A is a PBW-algebra with a PBW-basis {x, y, z} and PBW-generators f , g, h, then their
leading monomials f , g and h must satisfy (1.8).

Proof. First, suppose that the assumptions of (1.5.1) are satisfied. It is easy to see that there
are exactly 10 degree 3 monomials which do not contain a degree 2 submonomial from {f, g, h}.
Furthermore, there is exactly one overlap of the leading monomials f , g and h. If this overlap
produces a non-trivial degree 3 member of the Gröbner basis of the ideal IA of the relations of A,
we have dimA3 = 10− 1 = 9, which violates the assumption dimA3 = 10. Hence f , g and h form
a Gröbner basis of IA. Thus A is a PBW-algebra and therefore is Koszul. Now choosing between
the left-to-right and the right-to-left degree-lexicographical orderings and ordering the variables
appropriately, we can assure that the leading monomials of the standard relations xy− yx, xz− zx
and yz − zy of K[x, y, z] are exactly f , g and h. Since these relations form a Gröbner basis of IA,
the Hibert series of A and K[x, y, z] are the same (the Hilbert series depends only on the set of
leading monomials of the members of a Gröbner basis). Hence A is a PSA. This concludes the
proof of (1.5.1).

Now assume that A is a PBW-algebra with a PBW basis {x, y, z} and PBW-generators f , g, h.
Since f , g and h form a Gröbner basis of IA, it is easy to see that dimA3 is 9 plus the number of
overlaps of the leading monomials f , g and h of f , g and h. Since dimA3 = 10, the monomials f , g
and h must produce exactly one overlap. Now it is a straightforward routine check that if at least
one of three degree 2 monomials in 3 variables is a square, these monomials overlap at least twice.
The same happens, if the three monomials contain uv and vu for some distinct u, v ∈ {x, y, z}.
Finally, the triples (uv, vw,wu) and (vu, uw,wv) produce 3 overlaps apiece. The only option left
is for f , g and h to satisfy (1.8).

Another tool we use is the following elementary and known fact about the varieties of quadratic
algebras. We sketch its proof for the sake of convenience.

Lemma 1.6. Assume that

V is an n-dimensional vector space over K and for 1 6 j 6 d, qj : Km → V 2

is a polynomial map. For each b ∈ Km, let Rb = span{q1(b), . . . , qd(b)},
which defines the quadratic algebra Ab = A(V,Rb).

(1.9)

For k ∈ Z+, let
hk = min

b∈Km
dimAb

k.

Then the non-empty set {b ∈ Km : dimAb
k = hk} is Zarissky open in Km.

Proof. We can assume that k > 2 (for k ∈ {0, 1}, the set in question is the entire Km). Pick c ∈ Km

such that dimAc
k = hk. Denoting Ib = IAb , we then have dim Ick = nk − hk. Note that since Ibk

is the linear span of uqj(b)v, where 1 6 j 6 d, u, v are monomials and the degree of uv is k − 2,
dim Ibk is exactly the rank of the rectangular nk−2d(k − 1) × nk K-matrix M(b) of the coefficients
of all uqj(b)v. Let M1(b), . . . ,MN (b) be all (nk − hk)× (nk − hk) submatrices of M(b). For each j,
let δj(b) be the determinant of the matrix Mj(b). Clearly, each δj is a (commutative) polynomial
in the variables b = (b1, . . . , bm). Obviously,

G = {b ∈ Km : dimAb
k > hk} = {b ∈ Km : dim Ibk < nk − hk} = {b ∈ Km : δ1(b) = . . . = δN (b) = 0}

is Zarissky closed. Since dimAc
k = hk, c /∈ G and therefore G ̸= Km. On the other hand,

if b ∈ U = Km \ G, then dimAb
k 6 hk. By the definition of hk, dimAb

k > hk and therefore
dimAb

k = hk. Thus U = {b ∈ Km : dimAb
k = hk}. The required result immediately follows.
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The following result of Drinfeld [4] features also as Theorem 2.1 in Chapter 6 in [7]. To explain
it properly, we need to remind the characterization of Koszulity in terms of the distributivity of
lattices of vector spaces. Let A = A(V,R) be a quadratic algebra. For n > 3, let Ln(V,R) be
the finite lattice of subspaces of V n generated by the spaces V kRV n−2−k for 0 6 k 6 n − 2 (as
usual, the lattice operations are sum and intersection). Then A is Koszul if and only if Ln(V,R) is
distributive for each n > 3 (see [7, Chapter 3]). The mentioned result of Drinfeld is as follows.

Lemma 1.7. Assume that (1.9) is satisfied and U is a non-empty Zarissky open subset of Km such
that dimAb

2 and dimAb
3 do not depend on b for b ∈ U . Then for each k > 3, the set

{b ∈ U : Lj(V,Rb) for 3 6 j 6 k are distributive}

is Zarissky open in Km.

The proof of the above lemma is rather classical. It is a blend of the same argument as in the proof
of Lemma 1.6 with an appropriate inductive procedure. Chiefly, we need the following corollary of
Lemmas 1.6 and 1.7. Recall that if K is uncountable, then we say that a generic s ∈ Km has a
property P if P is satisfied for all s ∈ Km outside a union of countably many algebraic varieties
(different from whole Kn).

Corollary 1.8. Assume that K be uncountable and (1.9) is satisfied and hk = min
b∈Km

dimAb
k for

k ∈ Z+. Then for generic b ∈ Km, HAb(t) =
∞∑
k=0

hkt
k. Furthermore, exactly one of the following

statements holds true:

(1.8.1) Ab is non-Koszul for every b ∈ Km satisfying dimAb
3 = h3 and dimAb

2 = h2;

(1.8.2) Ab is Koszul for generic b ∈ Km.

Proof. By Lemma 1.6, HAb(t) =
∞∑
k=0

hkt
k for b from the intersection of countably many non-empty

Zarissky open sets and therefore for a generic b ∈ Km. By Lemma 1.6, U = {b ∈ Km : dimAb
3 =

h3 anddimAb
2 = h2} is a non-empty Zarissky open subset of Km. If Ab is non-Koszul for every

b ∈ U , (1.8.1) is satisfied. Assume now that (1.8.1) fails. Then there is c ∈ U for which Ac is
Koszul. By Lemma 1.7, Wk = {b ∈ U : Lj(V,Rb) for 3 6 j 6 k are distributive} is Zarissky open
in Km. Since Ac is Koszul, c ∈ Wk for every k > 3. Since for b from the intersection of Wk with
k > 3, Ab is Koszul and each Wk is Zarissky open and non-empty, (1.8.2) is satisfied. Obviously,
(1.8.1) and (1.8.2) are incompatible.

2 Elementary observations

Obviously, multiplying (p, q, r) ∈ K3 by a non-zero scalar does not change the algebra Qp,q,r. It
turns out that there are non-proportional triples of parameters, which lead to isomorphic (as graded
algebras) Sklyanin algebras.

2.1 Some isomorphisms of Sklyanin algebras

Lemma 2.1. For every (p, q, r) ∈ K, the graded algebras Qp,q,r and Qq,p,r are isomorphic.

Proof. Swapping two of the variables, while leaving the third one as is, provides an isomorphism
between Qp,q,r and Qq,p,r.

Lemma 2.2. Assume that (p, q, r) ∈ K3 and θ ∈ K is such that θ3 = 1 and θ ̸= 1. Then the graded
algebras Qp,q,r and Qp,q,θr are isomorphic.
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Proof. The relations of Qp,q,r in the variables u, v, w given by x = u, y = v and z = θ2w read
puv + qvu + θrww = 0, pwu + quw + θrvv = 0 and pvw + qwv + θruu = 0. Thus this change of
variables provides an isomorphism between Qp,q,r and Qp,q,θr.

Lemma 2.3. Assume that (p, q, r) ∈ K3 and θ ∈ K is such that θ3 = 1 and θ ̸= 1. Then the
graded algebras Qp,q,r and Qp′,q′,r′ are isomorphic, where p′ = θ2p+ θq + r, q′ = θp + θ2q + r and
r′ = p+ q + r.

Proof. A direct computation shows that the space of the quadratic relations of Qp,q,r in the variables
u, v, w given by x = u+ v+w, y = u+ θv + θ2w and z = u+ θ2v+ θw (the matrix of this change
of variables is non-degenerate) is spanned by p′uv + q′vu+ r′ww = 0, p′wu+ q′uw + r′vv = 0 and
p′vw + q′wv + r′uu = 0. Thus Qp,q,r and Qp′,q′,r′ are isomorphic.

2.2 Easy degenerate cases

First, if p = q = r = 0, then Qp,q,r is the free algebra and therefore A = Qp,q,r is PBW and
therefore Koszul and has the Hilbert series HA(t) = (1− 3t)−1. If exactly two of p, q and r are 0,
then A is monomial and therefore is PBW and therefore Koszul. One easily verifies that in this
case HA(t) =

1+t
1−2t . If p3 = q3 = r3 ̸= 0, one easily checks that the defining relations of A form a

Gröbner basis in the ideal they generate. Hence A is PBW and therefore Koszul. Furthermore, the
Hilbert series of A is the same as for the monomial algebra given by the leading monomials xx, xy
and xz of the relations of A. It follows that again HA(t) =

1+t
1−2t . If r = 0 and pq ̸= 0, Lemma 1.5

yields that A is PBW (and therefore Koszul) PSA. The latter means that HA = (1 − t)−3. As
a matter of fact, A in this case is the algebra of quantum polynomials. These observations are
summarised in the following lemma.

Lemma 2.4. The Sklyanin algebra A = Qp,q,r is PBW and therefore is Koszul if r = 0, or if
p = q = 0, or if p3 = q3 = r3. Moreover, HA(t) = (1 − 3t)−1 if p = q = r = 0, HA(t) =

1+t
1−2t if

exactly two of p, q and r are 0 or if p3 = q3 = r3 ̸= 0 and HA = (1− t)−3 if r = 0 and pq ̸= 0.

2.3 The Hilbert series of the dual algebra

Lemma 2.5. Let (p, q, r) ∈ K and A = Qp,q,r. Then the Hilbert series of A! is given by

HA!(t) =


1 + 3t if p = q = r = 0;
1+2t
1−t if p3 = q3 = r3 ̸= 0 or exactly two of p, q and r equal 0;

(1 + t)3 otherwise.

(2.1)

Moreover, A!
2w ̸= {0} for each non-zero w ∈ A!

1 provided HA!(t) = (1 + t)3.

Proof. If p = q = r = 0, the result is trivial. If p3 = q3 = r3 ̸= 0 or exactly two of p, q and r equal
0, Lemma 2.4 yields that A is Koszul and HA(t) =

1+t
1−2t . By (1.2), HA!(t) = 1+2t

1−t . If r = 0 and

pq ̸= 0, then Lemma 2.4 yields that A is Koszul and HA(t) = (1− t)−3. By (1.2), HA!(t) = (1+ t)3.
Thus (2.1) holds if r = 0 or p3 = q3 = r3 or p = q = 0.

Now consider the case r ̸= 0, (p, q) ̸= (0, 0) and pq = 0. By Lemma 2.1, A is isomorphic to S0,s

for some s ̸= 0. The defining relations of A! in this case can be written as yx = 0, xz = 0, zy = 0,
xy = −1

szz, yy = −szx and xx = −syz. Applying the non-commutative Buchberger algorithm, we
get that the (finite) Gröbner basis of the ideal IA! of the relations of A! is

yx, xz, zy, xy + 1
szz, yy + szx, xx+ syz,

yzx+ 1
szzz, zzx, yzz, zzzx, yzzz, zzzz.
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Then the only normal words are x, y, z, zx, yz, zz and zzz and therefore HA!(t) = 1+3t+3t2+t3 =
(1 + t)3, which proves (2.1) in the case r ̸= 0, (p, q) ̸= (0, 0) and pq = 0.

Thus it remains to consider the case when pqr ̸= 0 and p3 = q3 = r3 fails. In this case A is
isomorphic to Sa,s with as ̸= 0 and (a3, s3) ̸= (−1,−1). The defining relations of A! then can be
written as xx = s

azy, xy = −1
szz, yx = a

szz, yy = −szx, xz = −azx and yz = − 1
azy. A direct

computation shows that

xx− s
azy, xy + 1

szz, yx− a
szz, yy + szx,

xz + azx, yz + 1
azy, zzy, zzx, zzzz

is a Gröbner basis of IA! . The only normal words are x, y, z, zx, zy, zz and zzz. Again, we have
HA!(t) = 1 + 3t+ 3t2 + t3 = (1 + t)3, which completes the proof of (2.1).

Assume now that HA!(t) = (1 + t)3 and w = αx+ βy + γz be a non-zero element of A!
1 = V . It

remains to show that A!
2w ̸= {0}. If r = 0, (2.1) yields pq ̸= 0. Then A = Sa,0 with a ̸= 0. It is easy

to see that the one-dimensional space A!
3 is spanned by yzx = zxy = xyz and that every monomial

with at least two copies of the same letter vanishes in A!. Then for g = α1yz + β1zx + γ1xy
with α1, β1, γ1 ∈ K, we have gw = (αα1 + ββ1 + γγ1)yzx. Since (α, β, γ) ̸= (0, 0, 0), it follows
that A!

2w ̸= {0}. If r ̸= 0, from the above description of the Gröbner basis of IA! it follows
that the one-dimensional space A!

3 is spanned by xxx = yyy = zzz and that every monomial
of degree 3 with exactly two copies of the same letter (like xxy or zyz) vanishes in A!. Then
for g = α1xx + β1yy + γ1zz with α1, β1, γ1 ∈ K, we have gw = (αα1 + ββ1 + γγ1)zzz. Since
(α, β, γ) ̸= (0, 0, 0), it follows that A!

2w ̸= {0}.

Note [7] that for every quadratic algebra A = A(V,R) (Koszul or otherwise), the power series
HA(t)HA!(t) − 1 starts with tk with k > 4. This allows to determine dimA3 provided we know
dimA!

j for j 6 3. Applying this observation together with (2.1), we immediately obtain the
following fact.

Corollary 2.6. Let (p, q, r) ∈ K and A = Qp,q,r. Then

dimA3 =


27 if p = q = r = 0;
12 if p3 = q3 = r3 ̸= 0 or exactly two of p, q and r equal 0;
10 otherwise.

(2.2)

2.4 Lower estimate for HQp,q,r

Lemma 2.7. For every (p, q, r) ∈ K, dimQp,q,r
n > (n+1)(n+2)

2 for every n ∈ Z+.

Proof. By Remark 1.4, we can without loss of generality assume that K is uncountable (just replace
K by an uncountable field extension, if necessary). For each n ∈ Z+, let

dn = min
(a,b,c)∈K3

dimQa,b,c
n .

Clearly, d2 = 6. By (2.2), d3 = 10. Obviously, P = Q1,−1,0 = K[x, y, z] is Koszul and dimP2 = 6 =
d2, dimP3 = 10 = d3. By Corollary 1.8 and Lemma 2.5, for generic (a, b, c) ∈ K3, A = Qa,b,c is

Koszul and satisfies HA(t) =
∞∑
n=0

dnt
n and HA!(t) = (1+t)3. Now by (1.2),

∞∑
n=0

dnt
n = (1−t)−3 and

therefore dn = (n+1)(n+2)
2 for every n ∈ Z+. Now the result follows from the definition of dn.

3 Proof of Theorem 0.1

Throughout this section p, q, r ∈ K and A = Qp,q,r. If p3 = q3 = r3 or p = q = 0 or r = 0, the
conclusion of Theorem 0.1 follows from Lemma 2.4. We split our consideration into cases. First,
we eliminate easier ones.
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3.1 Case pq = 0, (pr, qr) ̸= (0, 0)

By Lemma 2.1, we can without loss of generality assume that p ̸= 0 and q = 0. Since r ̸= 0,
A = S0,s for some s ̸= 0. It turns out that in this case, the Gröbner basis of the ideal IA of the
relations of A is

xx− 1
syz, xy − szz, yy − 1

szx, xzx− s2zzy, xzz − 1
s2
yzy,

yzx− szzz, xzyz − s3zzyx, yzyz − s2zzzx, yzzz − zzzy.

None of the leading monomials of the members of this basis starts with z. It follows that the set
of normal words is closed under multiplication by z from the left. Hence zu ̸= 0 for every non-zero
u ∈ A and therefore A has no non-trivial right annihilators.

Since the set of leading monomials depends neither on s nor on the underlying field K, we have
HA = HB, where B = S0,1 = Q1,0,−1 is a C-algebra. Let θ = e2πi/3 ∈ C. Using Lemma 2.3, we see
that B is isomorphic to Q1,−θ,0. By Lemma 2.4, HB(t) = (1− t)−3 and therefore HA(t) = (1− t)−3.
By Lemma 2.5 and Corollary 1.3 A is Koszul, which completes the proof of Theorem 0.1 in this
case.

3.2 Case p3 = q3 ̸= 0, r ̸= 0

In this case A = Sa,s with a3 = −1 and s ̸= 0 and the Gröbner basis of the ideal of the relations
of A is

xx− 1
syz +

a
szy, xy − ayx− szz, xz − 1

azx− s
ayy, yyz +

1
azyy, yzz +

1
azzy.

None of the leading monomials of the members of this basis starts with z. As above, it follows that
zu ̸= 0 for every non-zero u ∈ A and therefore A has no non-trivial right annihilators.

It is easy to describe the normal words. Namely, they are the words of the shape zk(yz)lymxε

with k, l,m ∈ Z+ and ε ∈ {0, 1}. Now one easily sees that the number of normal words of degree
n is exactly the number of pairs (k,m) of non-negative integers satisfying k + m 6 n, which is
(n+1)(n+2)

2 . Indeed, for every k,m ∈ Z+ satisfying k + m 6 n, there are unique l ∈ Z+ and
ε ∈ {0, 1} for which the degree of zk(yz)lymxε is n. Hence HA(t) = (1− t)−3. By Lemma 2.5 and
Corollary 1.3 A is Koszul, which completes the proof of Theorem 0.1 in this case.

3.3 Case (p3 − r3)(q3 − r3) = 0, (p3 − r3, q3 − r3) ̸= (0, 0) and pqr ̸= 0

By Lemma 2.1, we can without loss of generality assume that p3 = r3. Now by Lemma 2.2, we
can without loss of generality assume that p = r. Hence A = Sa,−1, where a ̸= 0 and a3 ̸= −1.
Unfortunately, in this case the Gröbner basis of the ideal of the relations of A does not appear to
be finite. However there is a way around that. Namely, computing the Gröbner basis of the ideal of
the relations of A = Sa,−1 up to degree 4 (there are 2 elements of degree 3 and 2 elements of degree
4), one easily verifies that g = yzx−zzz, is cyclically invariant element, and that it commutes with
one variable, hence it is central in A. Now let B = A/I, where I is the ideal in A generated by g.
Now the Gröbner basis of the ideal of the ideal of the relations of B is

x2+yz−azy, xy−ayx+z2, xz− 1
azx−

1
ay

2, yzx−z3, y2x−zyz, y2z−ayzy+ 1
azy

2+ 1
az

2x,
yzyz−ayz2y+z3x, yzyx− 1

ayz
3− 1

az
3y, yzy2+yz2x−az4, y4+yz3−azyz2,

yz2yx− 1
ayz

4+ 1
az

3yz−z4y, yz2y2−z3yx, yz3y−z4x, yz2yzy− 1
a2
yz4x− 1

a2
z3y3+ 1

az
4yx,

yz2yz2+ 1
ayz

4y− 1
az

3yzy−z4x, yz6−z6y, yz4yz−z5y2, yz4y2+yz5x−a2z5yx+az7.

Yet again, none of the leading monomials of the members of this basis starts with z. Hence
zu ̸= 0 in B for every non-zero u ∈ B. Note that the set of leading monomials depends neither
on a nor on the underlying field K. Let C be the algebra A in the case K = C and a = 2 and
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D be the corresponding algebra B: D = C/⟨g⟩. Since C = Q1,−2,1, Lemma 2.3 yields that C
is isomorphic to Q1,θ,0, where θ = 22πi/3. In particular, C being isomorphic to the algebra of
quantum polynomials in 3 variables has no zero divisors and satisfies HC(t) = (1 − t)−3. Hence
D, being a factor of C by a central element of degree 3, satisfies dimD0 = 1, dimD1 = 3,
dimD2 = 6 and dimDn = dimCn − dimCn−3 = 3n for n > 3. Since HB = HD, we have

HB(t) = 1 +
∞∑
n=1

3nt. Now since B is a factor of A by a central element of degree 3, we have

dimAn 6 dimAn−3 + dimBn = dimAn−3 + 3n for n > 3 and all these inequalities turn into
equalities precisely when g is not a zero divisor. Solving these recurrent inequalities and using the
initial data dimA0 = 1, dimA1 = 3, dimA2 = 6, we get dimAn 6 (n+1)(n+2)

2 for n ∈ Z+ and all
these inequalities turn into equalities precisely when g is not a zero divisor. Combining this with
Lemma 2.7, we conclude that HA = (1− t)−3 and that g is not a zero divisor in A.

Now assume that there is a non-zero homogeneous element of A satisfying zu = 0. Then there
is such an element u of the lowest degree. Since zu = 0 in B, we have u = 0 in B. By definition of
B, there is v ∈ A such that u = vg in A. Then zvg = 0 in A. Since g is not a zero divisor zv = 0
in A. Since v is non-zero and has degree lower (by 3) than u, we have arrived to a contradiction.
Hence zu ̸= 0 in A for every non-zero u ∈ A and therefore A has no non-trivial right annihilators.
By Lemma 2.5 and Corollary 1.3 A is Koszul, which completes the proof of Theorem 0.1 in this
case.

3.4 Main case pqr(p3 − r3)(q3 − r3)(p3 − q3) ̸= 0

In this case A = Sa,s with as(a3 + 1)(s3 + 1)(a3 − s3) ̸= 0. For the sake of brevity, we use the
following notation

α = a3 + 1 and β = s3 + 1.

The above restrictions on a and s yield αβ(α− β)(α− 1)(β − 1) ̸= 0. In this case

g = yyy + α−β
sβ yzx− a

szyx+ α−β
β zzz

is a non-zero central element in A. It is given in [1] and reproduced in [3]. In fact it is straightforward
(we have done it to be on the safe side) to verify that g is indeed non-zero and central by computing
the members of the Gröbner basis of the ideal of the relations of A up to degree 4. Now we consider
the algebra

B = A/I, where I is the ideal in A generated by g.

In other words, B is given by the generators x, y and z and the relations

xx = 1
syz −

a
szy, (3.1)

xy = ayx+ szz, (3.2)

xz = 1
ayz −

s
azy, (3.3)

yyy = −α−β
sβ yzx+ a

szyx− α−β
β zzz, (3.4)

where the first three of the above relations are the defining relations of A. Resolving the overlaps
xxy, xxz and yyxz, we obtain further 3 relations holding in B:

yyx = −a2β
s2α

yzz + 1
szyz −

aβ
s2α

zzy, (3.5)

yyz = aα
α−β yzy −

1
azyy −

s2α
a(α−β)zzx, (3.6)

α2−αβ+β2

β(α−β) yzyx = s(α2−αβ+β2−α2β)
aαβ(β−1) yzzz + a(α2−αβ+β2)

s2α(α−β)
zzyz + α2−αβ+β2−α2β

as2β(α−β)
zzzy. (3.7)

Note that (3.4), (3.5) and (3.6) correspond to all degree 3 members of the Gröbner basis for the
ideal of the relations of B, while (3.7) is just one degree 4 member of the same basis.
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Next we consider the graded right B-module

M = B/zB.

The reason for doing this is apparent from the following lemma.

Lemma 3.1. The following implications hold true

HM (t) = 1 + 2t+
∞∑
n=2

3tn =⇒ HA(t) = (1− t)−3 and A is Koszul. (3.8)

n > 2 and dimMj 6 3 for 2 6 j 6 n =⇒ dimMj = 3 for 2 6 j 6 n. (3.9)

Proof. Clearly,

dimBj = dim zBj−1 + dimBj/zBj−1 = dim zBj−1 + dimMj for j > 1.

Hence
dimBj 6 dimBj−1 + dimMj for j > 1;
dimBj = dimBj−1 + dimMj ⇐⇒ zu ̸= 0 for u ∈ Bj−1 \ {0}.

Since, obviously, dimM0 = dimB0 = 1 and dimM1 = 2, the above display yields

provided n > 2 and dimMj 6 3 for 2 6 j 6 n, we have
dimBj 6 3j for 1 6 j 6 n;

dimBj = 3j for 1 6 j 6 n ⇐⇒
{

dimMj = 3 for 2 6 j 6 n and
zu ̸= 0 in B for u ∈ B \ {0} with degu < n.

(3.10)

Since g is central in A and is a homogeneous element of degree 3, we have

dimAj = dim gAj−3 + dimAj/gAj−3 = dim gAj−3 + dimBj for j > 3.

Since dimA0 = dimB0 = 1, dimA1 = dimB1 = 3 and dimA2 = dimB2 = 6, the above display
yields

provided n > 3 and dimBj 6 3j for 1 6 j 6 n, we have

dimAj 6 (j+1)(j+2)
2 for 0 6 j 6 n;

dimAj =
(j+1)(j+2)

2 for 0 6 j 6 n⇐⇒
{

dimBj = 3j for 1 6 j 6 n and
gu ̸= 0 in A for u ∈ A \ {0} with degu 6n− 3.

(3.11)

Combining (3.10) and (3.11), we get

provided n > 3 and dimMj 6 3 for 2 6 j 6 n, we have

dimAj 6 (j+1)(j+2)
2 for 0 6 j 6 n;

dimAj =
(j+1)(j+2)

2 for 0 6 j 6 n⇐⇒


dimMj = 3 for 2 6 j 6 n,
zu ̸= 0 in B for u ∈ B \ {0} with degu < n,
gu ̸= 0 in A for u ∈ A \ {0} with degu 6 n− 3.

(3.12)

On the other hand, be Lemma 2.7, dimAj > (j+1)(j+2)
2 for each j ∈ Z+. Thus (3.12) can be

rewritten as follows:

provided n > 3 and dimMj 6 3 for 2 6 j 6 n, we have

dimAj =
(j+1)(j+2)

2 for 0 6 j 6 n, dimMj = 3 for 2 6 j 6 n,
zu ̸= 0 in B for u ∈ B \ {0} with degu < n
and gu ̸= 0 in A for u ∈ A \ {0} with degu 6 n− 3.

(3.13)
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Obviously, (3.9) is a direct consequence of (3.13). Now assume that HM (t) = 1 + 2t +
∞∑
n=2

3tn.

By (3.13), HA(t) = (1 − t)−3, zu ̸= 0 in B for every u ∈ B \ {0} and g is not a zero divisor in A.
Now we shall show that zu ̸= 0 for every u ∈ A \ {0}. Assume the contrary. Then there is the
minimal n ∈ N for which there exists u ∈ An \ {0} satisfying zu = 0 in A. Hence zu = 0 in B.
Since we already know that z is not a left zero divisor in B, u = 0 in B. Hence there is v ∈ A such
that u = vg in A. Since u ̸= 0 in A, we have v ̸= 0 in A. Since 0 = zu = zvg in A and g is not a
zero divisor in A, we have zv = 0 in A. Since deg v = degu− 3 = n− 3 < n, we have arrived to a
contradiction with the minimality of n. Thus zu ̸= 0 for each u ∈ A \ {0} and therefore A has no
non-trivial right annihilators. By Lemma 2.5, HA!(t) = (1 + t)3. Hence HA(t)HA!(−t) = 1. Now
Corollary 1.3 implies that A is Koszul, which completes the proof.

According to Lemma 3.1, the proof of Theorem 0.1 will be complete as soon as we prove that

HM (t) = 1 + 2t +
∞∑
n=2

3tn. The rest of this section is devoted to doing exactly this by means of

applying the Gröbner basis technique. The second part of Lemma 3.1 is just a tool which spares
us from doing some of the calculations. We start by describing the typical situation in which the
components of M find themselves.

For n ∈ Z+, we say that condition Ω(n) is satisfied if

dimMj = 3 for 2 6 j 6 n+ 3, yzn+1V =Mn+3 and there are pn, qn, rn ∈ K such that

yznyx = −a2

s2
pnyz

n+2, yznyy = −1
sqnyz

n+1x, yznyz = arnyz
n+1y, (3.14)

where (3.14) consists of equalities in M .
First, observe that if Ω(n) is satisfied, yzn+2, yzn+1x and yzn+1y are linearly independent in

M and therefore the numbers pn, qn and rn are uniquely determined. Next, using (3.4), (3.5) and
(3.6), one easily sees that

Ω(0) is satisfied with p0 =
β
α , q0 =

α−β
β and r0 =

α
α−β . (3.15)

Lemma 3.2. Assume that Ω(n) is satisfied. Then the following equations hold in M :

b1,1n yzn+1yx = −a2

s2
c1,1n yzn+3 and b1,2n yzn+1yx = −a2

s2
c1,2n yzn+3,

b2,1n yzn+1yy = −1
sc

2,1
n yzn+2x and b2,2n yzn+1yy = −1

sc
2,2
n yzn+2x,

b3,1n yzn+1yz = ac3,1n yzn+2y and b3,2n yzn+1yz = ac3,2n yzn+2y,

(3.16)

where

b1,1n = α(α− 1)rn − β(α− 1), c1,1n = β(α− 1)pn + (β − 1)(α− β),

b1,2n = β(α− 1)qn − (α− 1)(α− β)rn + (α− 1)β, c1,2n = β(β − 1)qn − (β − 1)(α− β),

b2,1n = β(α− 1)rn − (α− β), c2,1n = (α− 1)(α− β)pn − α(β − 1),

b2,2n = (α− β)qn − α(α− 1)rn + (α− β), c2,2n = −(α− β)qn + α(β − 1),

b3,1n = (α− β)rn − α, c3,1n = αpn − β,

b3,2n = αqn − β(α− 1)rn + α, c3,2n = αqn + β.

(3.17)

Moreover, (b2,1n , c2,1n , b2,2n , c2,2n ) ̸= (0, 0, 0, 0) and (b3,1n , c3,1n , b3,2n , c3,2n ) ̸= (0, 0, 0, 0). Furthermore, if
(b1,1n , b1,2n ) ̸= (0, 0), (b2,1n , b2,2n ) ̸= (0, 0) and (b3,1n , b3,2n ) ̸= (0, 0), then Ω(n+ 1) is satisfied.

Proof. The equalities (3.16) are obtained by resolving (and reducing) the overlaps (yzkyx)z =
yzky(xz), (yzkyy)y = yzk(yyy), (yzkyx)x = yzky(xx), (yzkyy)z = yzk(yyz), (yzkyx)y = yzky(xy)
and (yzkyy)x = yzk(yyx) respectively using (3.14) and (3.1–3.6).

Now, let us show that (b2,1n , c2,1n , b2,2n , c2,2n ) ̸= (0, 0, 0, 0). Assume the contrary: b2,1n = c2,1n =
b2,2n = c2,2n = 0. According to (3.17), these equalities yield pn = β

α , qn = α−β
β , rn = α−β

β(α−1) and
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α2 − αβ + β2 − αβ2 = 0, which together with (3.17) imply that c1,2n = c3,1n = 0, b3,1n = α(β−α)
α−1 ̸= 0,

c3,2n = αβ ̸= 0, c1,1n = −β(α−β)
α ̸= 0 and b1,2n = −α(α−β) ̸= 0 (recall that αβ(α−β)(α−1)(β−1) ̸= 0).

Hence the two equations in the first line of (3.16) are linearly independent and so are the two
equations in the third line of (3.16). Thus (3.16) yields yzn+1yx = yzn+3 = yzn+1yz = yzn+2y = 0
in M . Since Mn+3 is spanned by yzn+1x, yzn+1y and yzn+2, these equalities imply that Mn+4 is
spanned by yzn+1yy and yzn+2x. Hence dimMn+4 < 3, while dimMj 6 3 for j 6 n+ 3. We have

arrived to a contradiction with (3.9), which proves that (b2,1n , c2,1n , b2,2n , c2,2n ) ̸= (0, 0, 0, 0).
Next, let us show that (b3,1n , c3,1n , b3,2n , c3,2n ) ̸= (0, 0, 0, 0). Assume the contrary: b3,1n = c3,1n =

b3,2n = c3,2n = 0. According to (3.17), these equalities yield pn = −qn = β
α , rn = α

α−β and

α2−αβ+β2−α2β = 0, which together with (3.17) imply that c1,1n = b2,1n = 0, c2,1n = β(α−β) ̸= 0,

b1,1n = α2β(α−1)
α−β ̸= 0 and c1,2n = −αβ(β − 1) ̸= 0. Since c1,1n = 0, b1,1n ̸= 0 and c1,2n ̸= 0, the

two equations in the first line of (3.16) are linearly independent. This together with b2,1n = 0 and
c2,1n ̸= 0 implies that yzn+1yx = yzn+2x = yzn+3 = 0 in M . These equalities together with the fact
that Mn+3 is spanned by yzn+1x, yzn+1y and yzn+2 implies that Mn+4 is spanned by yzn+1yy,
yzn+1yz and yzn+2y. Resolving the overlaps (yzn+2x)x = yzn+2(xx), (yzn+2x)y = yzn+2(xy),
(yzn+2x)z = yzn+2(xz), (yzn+1yx)x = yzn+1y(xx), (yzn+1yx)y = yzn+1y(xy) and (yzn+1yx)z =
yzn+1y(xz) by means of the relations yzn+1yx = yzn+2x = yzn+3 = 0 in M and (3.1–3.6) in B
we get, respectively, that the equalities yzn+2yz = 0, yzn+2yx = 0, yzn+2yy = 0, yzn+1yzy = 0,
yzn+1yzz = 0 and yzn+1yzx = 0 are satisfied in M . These equalities together with the fact that
Mn+4 is spanned by yzn+1yy, yzn+1yz and yzn+2y yield Mn+5 = {0}. Again, we have arrived to a
contradiction with (3.9), which proves that (b3,1n , c3,1n , b3,2n , c3,2n ) ̸= (0, 0, 0, 0).

Finally, assume that (b1,1n , b1,2n ) ̸= (0, 0), (b2,1n , b2,2n ) ̸= (0, 0) and (b3,1n , b3,2n ) ̸= (0, 0). Then (3.17)
yields the existence of pn+1, qn+1 and rn+1 in K such that (3.14) with n replaced by n + 1 is
satisfied. By Ω(n), yzn+1V = Mn+3. Hence yzn+1V 2 = Mn+4. Using (3.1–3.3) and (3.14) with n
replaced by n+1, one easily sees that yzn+2V =Mn+4. In particular, dimMn+4 6 3 and therefore
dimMn+4 = 3 by (3.9). Hence Ω(n+ 1) is satisfied.

Lemma 3.3. Assume that Ω(n) is satisfied and pn = −qn = rn = β
α . Then HM (t) = 1+2t+

∞∑
n=2

3tn.

Proof. It is easy to check that in the case pn = −qn = rn = β
α , the equations (3.17) provided by

Lemma 3.2 read yzk+3 = 0, yzk+1y = 0 and yzk+1yy = 1
syz

k+2x (in M). It follows that Mn+4

is spanned by yzk+1yx, yzk+2x and yzk+2y. Now using the relations (3.1–3.6), it is easy to verify
that Mn+5 = Mn+4V is spanned by yzk+2yx, yzk+2yy and yzk+2yz. That is, Mn+5 = yzk+2yV .
Since yzk+3 = 0 in M , it follows that if u ∈ B and yu = 0 in M , then yzk+2yu = 0 in M .
Applying this observation to u ∈ Bk and using the equality Mn+4+k = yzk+2yBk (follows from
Mn+5 = yzk+2yV ), we get dimMn+4+k 6 dimM4+k for k ∈ N. Since Ω(n) is satisfied and since
we have already checked that Mn+4 and Mn+5 have 3-element spanning sets, we get dimMj 6 3
for j 6 n+ 5. Now the inequality dimMn+4+k 6 dimM4+k for k ∈ N yields dimMj 6 3 for all j.

Now by (3.9), HM (t) = 1 + 2t+
∞∑
n=2

3tn.

Lemma 3.4. Assume that α2 − αβ + β2 = 0. Then HM (t) = 1 + 2t+
∞∑
n=2

3tn.

Proof. By (3.15), Ω(0) is satisfied with p0 = β
α , q0 = α−β

β and r0 = α
α−β . Using α2 − αβ + β2 = 0,

we see that p0 = −q0 = r0 =
β
α . It remains to apply Lemma 3.3.

Lemma 3.5. Assume that α2 − αβ + β2 ̸= 0 and Ω(n) is satisfied. Then

pn(qn + 1) = rn((α− 1)pn − (β − 1)) = qn(rn − 1). (3.18)
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Proof. Let bj,kn and cj,kn be the numbers defined in (3.17). By Lemma 3.2, (b2,1n , c2,1n , b2,2n , c2,2n ) ̸=
(0, 0, 0, 0) and (b3,1n , c3,1n , b3,2n , c3,2n ) ̸= (0, 0, 0, 0). Furthermore, the equality b1,1n = c1,1n = b1,2n = c1,2n =
0 implies α2 −αβ+ β2 = 0 and therefore (b1,1n , c1,1n , b1,2n , c1,2n ) ̸= (0, 0, 0, 0). Thus each of the lines in
(3.16) contains at least one non-trivial equation. It is a matter of straightforward verification that
if in any of the lines the two equations are linearly independent, then dimMn+4 < 3 and we arrive
to a contradiction with (3.9). Thus each of the matrices(

b1,1n c1,1n

b1,2n c1,2n

)
,

(
b2,1n c2,1n

b2,2n c2,2n

)
and

(
b3,1n c3,1n

b3,2n c3,2n

)
is degenerate. Hence the determinants of the matrices in the above display equal 0. Plugging in
the explicit expressions (3.17) for bj,kn and cj,kn and simplifying, we arrive to the system

0 = α2pn(qn + 1)− αβrn((α− 1)pn − (β − 1))− α(α− β)qn(rn − 1);
0 = (α− β)pn(qn + 1)− αrn((α− 1)pn − (β − 1)) + βqn(rn − 1);
0 = β(α− 1)pn(qn + 1)− (α− β)rn((α− 1)pn − (β − 1))− α(β − 1)qn(rn − 1).

This is a system of linear equations on the variables pn(qn+1), rn((α−1)pn−(β−1)) and qn(rn−1).
The third equation is always a linear combination of the first two, while the first two equations are
linearly independent precisely when α2 − αβ + β2 ̸= 0. Now it is easy to see that this system is
equivalent to (3.18).

Lemma 3.6. Assume that Ω(n) is satisfied, α2 − αβ + β2 ̸= 0 and

(pn, qn, rn) /∈
{(

β
α ,−

β
α ,

β
α

)
,
(
− (β−1)(α−β)

β(α−1) , α−β
β , α−β

β(α−1)

)
,
(

α(β−1)
(α−1)(α−β) ,

α(β−1)
α−β , α

α−β

)}
.

Then Ω(n+ 1) is satisfied.

Proof. Let bj,kn and cj,kn be the numbers defined in (3.17). Using the equation (3.18) provided by
Lemma 3.5 together with (3.17), we easily obtain that

b1,1n = b1,2n = 0 ⇐⇒ (pn, qn, rn) =
(
β
α ,−

β
α ,

β
α

)
;

b2,1n = b2,2n = 0 ⇐⇒ (pn, qn, rn) =
(
− (β−1)(α−β)

β(α−1) , α−β
β , α−β

β(α−1)

)
;

b3,1n = b3,2n = 0 ⇐⇒ (pn, qn, rn) =
(

α(β−1)
(α−1)(α−β) ,

α(β−1)
α−β , α

α−β

)
.

By Lemma 3.2, Ω(n+1) is satisfied if (b1,1n , b1,2n ) ̸= (0, 0), (b2,1n , b2,2n ) ̸= (0, 0) and (b3,1n , b3,2n ) ̸= (0, 0).
Hence the above display yields the required result.

Lemma 3.7. Assume that Ω(n) is satisfied, α2 − αβ + β2 ̸= 0 and

(pn, qn, rn) =
(
− (β−1)(α−β)

β(α−1) , α−β
β , α−β

β(α−1)

)
.

Then Ω(n+ 2) is satisfied.

Proof. Plugging pn = − (β−1)(α−β)
β(α−1) , qn = α−β

β and rn = α−β
β(α−1) into Lemma 3.2, we see that the

equations (3.16) read yzn+1yx = 0, yzn+2x = 0 and yzn+1yz = ayzn+2y inM . It follows thatMn+4

is spanned by yzn+3, yzn+1yy and yzn+2y. Using the equation yzn+1yx = 0 together with (3.1–
3.3), we can resolve the overlaps (yzn+2x)x = yzn+2(xx), (yzn+2x)y = yzn+2(xy) and (yzn+2x)z =
yzn+2(xz) to obtain that yzn+2yx = − s

ayz
n+4, yzn+2yy = 1

syz
n+3x and yzn+2yz = ayzn+3y. It

also follows that Mn+5 is spanned by yzn+4, yzn+3y and yzn+3x. By (3.9), Mn+4 and Mn+5 are

3-dimensional. Thus Ω(n+ 2) is satisfied with pn+2 =
s3

a3
= β−1

α−1 , qn+2 = −1 and rn+2 = 1.
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Lemma 3.8. Assume that Ω(n) is satisfied, α2 − αβ + β2 ̸= 0 and

(pn, qn, rn) =
(

α(β−1)
(α−1)(α−β) ,

α(β−1)
α−β , α

α−β

)
.

Then Ω(n+ 3) is satisfied.

Proof. Plugging pn = α(β−1)
(α−1)(α−β) , qn = α(β−1)

α−β and rn = α
α−β into Lemma 3.2, we see that the

equations (3.16) read yzn+1yx = − s
ayz

n+3, yzn+1yy = 0 and yzn+2y = 0. It follows that
Mn+4 is spanned by yzn+3, yzn+2x and yzn+1yz. Using the equation yzn+1yy = 0 together
with (3.1–3.6), we can resolve the overlaps (yzn+1yy)x = yzn+1(yyx), (yzn+1yy)y = yzn+1(yyy)
and (yzn+1yy)z = yzn+1(yyz) to obtain that yzn+1yzz = − 1

ayz
n+3y, yzn+1yzx = −syzn+4

and yzn+1yzy = s2

a2
yzn+3x. Now Mn+4 is spanned by yzn+4, yzn+3y and yzn+3x. On the

next step we resolve the overlaps (yzn+1yzx)z = yzn+1yz(xz), (yzn+1yzx)x = yzn+1yz(xx) and
(yzn+1yzy)x = yzn+1(yzyx) with the help of (3.1–3.7) and the above equations in M (note
that (3.7) is needed to resolve (yzn+1yzy)x = yzn+1(yzyx) and that it can be used because

α2−αβ+β2 ̸= 0) to obtain respectively that yzn+3yx = −a2

s2
pn+3yz

n+5, yzn+3yy = −1
saqn+3yz

n+4x

and yzn+3yz = arn+3yz
n+4y with pn+3 = − (β−1)(α−β)

(α−1)β , qn+1 = α(β−1)
α−β and rn = β

α . It also fol-

lows that Mn+6 is spanned by yzn+5, yzn+4y and yzn+4x. By (3.9), Mn+4, Mn+5 and Mn+6 are
3-dimensional. Thus Ω(n+ 3) is satisfied.

Lemma 3.9. The Hilbert series of M is given by HM (t) = 1 + 2t+
∞∑
n=2

3tn.

Proof. If α2 −αβ+ β2 = 0, the result is provided by Lemma 3.4. For the rest of the proof we shall
assume that α2 − αβ + β2 ̸= 0. If

there exists n ∈ Z+ such that Ω(n) is satisfied and pn = −qn = rn = β
α ,

the result is provided by Lemma 3.3. Thus for the rest of the proof we can assume that the
condition in the above display fails. Now by Lemmas 3.6, 3.7 and 3.8, if Ω(n) is satisfied, then
Ω(m) is satisfied for some m ∈ {n + 1, n + 2, n + 3}. By (3.15), Ω(0) is satisfied. Hence Ω(n)
is satisfied for infinitely many n. It follows that dimMj = 3 for j > 2. Since dimM0 = 1 and

dimM1 = 2, we have HM (t) = 1 + 2t+
∞∑
n=2

3tn.

Direct application of Lemmas 3.9 and 3.1 conclude the proof of Theorem 0.1.

4 Proof of Theorem 0.2

We need the following elementary fact.

Lemma 4.1. Assume that the equation t2 + t+1 = 0 has no solutions in K and p, q, r ∈ K satisfy
p2 + q2 + r2 = pr + qr + pq. Then p = q = r.

Proof. The equality p2+q2+r2 = pr+qr+pq can be rewritten as (p−q)2+(q−r)2 = (p−q)(q−r).
Assume that p = q = r fails. Then either p − q ̸= 0 or q − r ̸= 0. Without loss of generality, we
can assume that p − q ̸= 0. Then the equality (p − q)2 + (q − r)2 = (p − q)(q − r) implies that
t2 + t+ 1 = 0 for t = r−q

p−q . We have arrived to a contradiction.

The next lemma deals with necessary conditions for Sa,s to be PBW.

Lemma 4.2. Assume that a, s ∈ K are such that s ̸= 0, (a3, s3) ̸= (−1,−1) and A = Sa,s is PBW.
Then (1− a)3 = s3 and the equation t2 + t+ 1 = 0 has a solution in K.
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Proof. Pick a PBW basis u, v, w in V for A and the corresponding PBW-generators f, g, h ∈ R.
Let f , g and h be the leading (with respect to the corresponding order >) monomials of f , g and h.
Without loss of generality, we may assume that u > v > w and f > g > h. By (2.2), dimA3 = 10.
By the second part of Lemma 1.5,

h ∈ {vw,wv} and {f, g} ∈
{
{uv, uw}, {vu, uw}, {vu,wu}

}
if h = vw,

{f, g} ∈
{
{uv, uw}, {vu,wu}, {uv,wu}

}
if h = wv.

(4.1)

Since there is no degree 2 monomials greater than uu, uu does not feature at all in any of f , g
or h. Since f , g and h span R, uu does not feature in any element of R. In particular it does not
feature in the original relations r1 = yz− azy− sxx, r2 = zx− axz− syy and r3 = xy− ayx− szz,
when written in terms of the variables u, v, w. Since u, v and w form a basis in V , there are unique
t1, t2, t3 ∈ K such that x ∈ t1u + L, y ∈ t2u + L and z ∈ t3u + L, where L is the linear span of v
and w. Since x, y and z form a basis of V as well, (t1, t2, t3) ̸= (0, 0, 0). Plugging this data into the
definition of rj we see that the uu-coefficients in r1, r2 and r3 (when written in terms of u, v and w)
are (1−a)t2t3−st21, (1−a)t1t3−st22 and (1−a)t1t2−st23 respectively. On the other hand, we know
that r1, r2 and r3 do not contain uu. Hence (1−a)t2t3−st21 = (1−a)t1t3−st22 = (1−a)t1t2−st23 = 0.
If t1 = 0, we get st22 = st23 = 0 and therefore t2 = t3 = 0 (recall that s ̸= 0). This is not possible
since (t1, t2, t3) ̸= (0, 0, 0). Thus t1 ̸= 0. Similarly, t2 ̸= 0 and t3 ̸= 0. Multiplying the equalities
(1 − a)t2t3 = st21, (1 − a)t1t3 = st22 and (1 − a)t1t2 = st23, we get (1 − a)3(t1t2t3)

2 = s3(t1t2t3)
2.

Since t1t2t3 ̸= 0, it follows that (1− a)3 = s3.
It remains to show that the equation t2 + t+ 1 = 0 has a solution in K. This certainly happens

if K has characteristic 3. Thus for the rest of the proof we can assume that the characteristic of
K is different from 3. Assume the contrary: there is no t ∈ K such that t2 + t + 1 = 0. Since
t3−1 = (t−1)(t2+t+1), 1 is the only solution of the equation t3 = 1. Since (1−a)3 = s3, it follows
that s = 1−a. Since s ̸= 0 the equalities (1−a)t2t3− st21 = (1−a)t1t3− st22 = (1−a)t1t2− st23 = 0

yield t2t3 − t21 = t1t3 − t22 = t1t2 − t23 = 0. Since tj are non-zero, from t2t3 = t21, we get t3 =
t21
t2
.

Plugging this into t1t3 = t22, we obtain t31 = t32 and therefore t1 = t2. Similarly, t2 = t3. Thus
t1 = t2 = t3 ̸= 0. Then without loss of generality, we may assume that t1 = t2 = t3 = 1. The
expressions for x, y and z in terms of u, v and w now look like x = u+ pv + αw, y = u+ qv + βw
and z = u+rv+γw, where the coefficients are from K. Since both {x, y, z} and {u, v, w} are linear
bases in V ,

the matrix C =

 1 p α
1 q β
1 r γ

 is invertible. (4.2)

By (4.1), h ∈ {vw,wv}. Since each of the monomials uv, vu and vv is greater than each of vw
and wv, h should not contain uv, vu and vv. Since r1, r2 and r3 form a basis in R, h is a non-
trivial linear combination of r1, r2 and r3. It follows that the 3 × 3 matrix M of the coefficients
in front of uv, vu and vv in r1, r2 and r3 written in terms of u, v and w must be non-invertible.
Plugging x = u + pv + αw, y = u + qv + β and z = u + rv + γw into r1 = yz − azy − (1 − a)xx,
r2 = zx− axz− (1− a)yy and r3 = xy− ayx− (1− a)zz (recall that s = 1− a), we easily compute
this matrix and then its determinant:

M =

 q − ap+ (a− 1)r p− aq + (a− 1)r (1− a)(pq − r2)
p− ar + (a− 1)q r − ap+ (a− 1)q (1− a)(pr − q2)
r − aq + (a− 1)p q − ar + (a− 1)p (1− a)(qr − p2)

 and

detM = (a− 1)2(a+ 1)(p2 + q2 + r2 − pq − pr − qr)2.

Since detM = 0 and we know that a ̸= 1 (otherwise s = 0), we have that either a = −1 or
p2 + q2 + r2 = pq + pr + qr. By (4.2), the equality p = q = r fails. If p2 + q2 + r2 = pq + pr + qr,
Lemma 4.1 implies then that the equation t2 + t+ 1 = 0 has a solution in K.
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It remains to consider the case a = −1. Then s = 1− a = 2. Since s ̸= 0, charK ̸= 2. We have
r1 = yz + zy − 2xx, r2 = zx + xz − 2yy and r3 = xy + yx − 2zz and therefore rj are symmetric.
Since a linear change of variables does not break the symmetry, rj remain symmetric when written
in terms of u, v and w. It follows that f , g and h, being linear combinations of rj , are symmetric
as well. Since h ∈ {vw,wv} and uv > vv > vw, uw > vw, vu > vv > wv and wu > wv, h does
not contain either uv, uw and vv or vu, wu and vv. Since h is symmetric, it does not contain uv,
uw and vv in any case. Since h is a non-trivial linear combination of rj , it follows that the 3 × 3
matrix N of the coefficients in front of uv, uw and vv in r1, r2 and r3 written in terms of u, v and
w must be non-invertible. Plugging x = u + pv + αw, y = u + qv + β and z = u + rv + γw into
r1 = yz + zy − 2xx, r2 = zx+ xz − 2yy and r3 = xy + yx− 2zz, we easily verify that

N =

 p+ q − 2r α+ β − 2γ 2(pq − r2)
p+ r − 2q α+ γ − 2β 2(pr − q2)
q + r − 2p β + γ − 2α 2(qr − p2)

 , detN = 6(p2 + q2 + r2 − pq − pr − qr) detC,

where C is the matrix defined in (4.2). Since the characteristic of K is neither 2 nor 3, C is invertible
and N is non-invertible, it follows that p2 + q2 + r2 = pq + pr + qr. As above, an application of
Lemma 4.1 yields that the equation t2 + t+ 1 = 0 has a solution in K.

Lemma 4.3. Assume that the equation t2 + t + 1 = 0 has a solution in K and a, s ∈ K are such
that s ̸= 0, (a3, s3) ̸= (−1,−1) and (1− a)3 = s3. Then A = Sa,s is PBW.

Proof. First, we consider the case charK = 3. In this case the equality (1−a)3 = s3 yields s = 1−a.
We shall show that the linear basis u, v, w in V defined by x = u + v + w, y = u − v, z = u is a
PBW basis in A. Indeed, consider f = r1, g = r1 − r2 and h = r1 + r2 + r3, written in terms of u,
v and w, where r1 = yz−azy− (1−a)xx, r2 = zx− axz− (1−a)yy and r3 = xy− ayx− (1− a)zz
are the defining relations of A. Now it is straightforward to verify that the leading monomials
of f , g and h are uv, uw and vw, respectively (this relies on characteristic of K being 3 and on
(a3, s3) ̸= (−1,−1)). By (2.2), dimA3 = 10. By the first part of Lemma 1.5, u, v and w form a
PBW-basis of A with PBW-generators f , g and h. In particular, A is PBW.

From now on, we can assume that charK ̸= 3. Let θ be a solution of the quadratic equation
t2 + t + 1 = 0. Then θ ̸= 1 and θ3 = 1. Since A = Sa,s = Q−1,a,s and s3 = (1 − a)3, Lemma 2.2
allows us, without loss of generality, to assume that s = 1−a. Then A = Q−1,a,1−a. By Lemma 2.3,
A is isomorphic to Qb,c,0, where b = 1+ θ− a and c = 1− a(1+ θ). By Lemma 2.4, A is PBW.

Now we are ready to prove Theorem 0.2. Let (p, q, r) ∈ K3 and A = Qp,q,r. If pr = qr = 0 or
p3 = q3 = r3, A is PBW according to Lemma 2.4. For the rest of the prove we assume that these
equalities fail. That is, r ̸= 0, (p, q) ̸= (0, 0) and (p3 − q3, p3 − r3) ̸= (0, 0). By Lemma 2.1 we can
without loss of generality assume that p ̸= 0. Then A = Sa,s with s ̸= 0 and (a3, s3) ̸= (−1,−1),
where a = − q

p and s = − r
p . If A is PBW, Lemma 4.2 yields that the equation t2 + t + 1 = 0 is

solvable in K and s3 = (1− a)3. The latter equation is equivalent to (p+ q)3 + r3 = 0. Conversely,
if (p+ q)3 + r3 = 0 and t2 + t+1 = 0 is solvable in K, then s3 = (1− a)3 and A is PBW according
to Lemma 4.3. This completes the proof of Theorem 0.2.

5 Corollaries on Calabi–Yau property of Sklyanin algebras for var-
ious paprameters

As a byproduct of the exactness of the Koszul complex, we just proved, we can get the following
corollary.

Corollary 5.1. The Sklyanin algebra Qp,q,r is CY if and only if there are at least two non-zero
parameters among p, q and r and the equation p3 = q3 = r3 fails.
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To explain this we need to remind few facts.

Definition 5.2. An associative algebra A is called n-CY if there exists a projective bimodule
resolution P• of A such that Hom(P•, A ⊗ A) ∼ Pn−• or, equivalently, the derived category of
A-bimodules satisfies Serre’s duality.

There is a standard way, see, for example, [16] to construct a self-dual complex CW of A-
bimodules for algebras given by a (super)potential W , using the non-commutative differential.
First, for k 6 l, we denote by [·, ·] : (V ∗)⊗k × V ⊗l → V ⊗(l−k), the bilinear map given by

[φ1 ⊗ . . .⊗ φk, ω1 ⊗ . . .⊗ ωl] = ⟨φk ⊗ . . .⊗ φ1, ω1 ⊗ . . .⊗ ωk⟩ωk+1 ⊗ . . .⊗ ωl,

where ⟨·, ·⟩ is the natural pairing on (V ∗)⊗k ×V ⊗k coming from the standard identifying of (V ∗)⊗k

with (V ⊗k)∗.
When A is potential with the potential W ∈ V ⊗n and 0 6 k 6 n, we define

∆W
k : (V ∗)⊗k → V ⊗(n−k), ∆W

k (ψ) = [ψ,W ].

Then Wn−k = ∆W
k ((V ∗)⊗k) is a linear subspace of V ⊗(n−k). These spaces allow us to define the

following complex CW of A-bimodules:

0 → A⊗Wn ⊗A
dn−→ . . .−→d2A⊗W1 ⊗A

d1−→A⊗W0 ⊗A→ 0,

where dj = εj(SL + (−1)j)SR with εj = (−1)j(n−j) if j < n+1
2 and εj = 1 otherwise, SL(a ⊗

v1 . . . vj ⊗ b) = av1 ⊗ v2 . . . vj ⊗ b and SR(a⊗ v1 . . . vj ⊗ b) = a⊗ v1 . . . vj−1 ⊗ vjb.
It is proved in [16][Lemma 6.5] that this complex is always self-dual and in the case when A is

quadratic, it is a subcomplex of the Koszul bimodule complex, which is the Koszul complex with
the rightmost K removed tensored by A on the right (this turns it into a bimodule complex). In par-
ticular, Wj ⊆ (A!

j)
∗ and the corresponding maps match. Moreover, it is shown in [16][Theorem 6.2]

that if A is quadratic and Koszul, then A is CY if and only if the complex CW coincides with the
Koszul bimodule complex. The latter happens if and only if dimWj = dimA!

j when j 6 n and

A!
j = 0 for j > n. Now everything boils down to computing the dimensions of Wj for Sklyanin

algebras (depending on parameters).
The relations of the Sklyanin algebra Qp,q,r are the noncommutative partial derivatives of the

potential
W = r(x3 + y3 + z3) + p(xzy + zyx+ zxy) + q(yxz + xzy + zyx).

We shall from the start exclude the mega-degenerate case p = q = r = 0. It is easy to see
that for ∆W

3 : (V ∗)⊗3 → K, ∆W
3 (xxx) = r, ∆W

3 (zyx) = p and ∆W
3 (zxy) = q, which yields

dimW0 = 1. Next, for ∆W
2 : V ∗ ⊗ V ∗ → V , we have ∆W

2 (xx) = rx, ∆W
2 (zy) = px, ∆W

2 (yz) = qx,
∆W

2 (yy) = ry, ∆W
2 (xz) = py, ∆W

2 (xz) = qy, ∆W
2 (zz) = rz, ∆W

2 (yx) = pz and ∆W
2 (xy) = qz. Since

(p, q, r) ̸= (0, 0, 0), the image of ∆W
2 contains the basis x, y, z of V and therefore dimW1 = 3. For

∆W
1 : V ∗ → V ⊗ V , we have ∆W

1 (x) = rxx+ pyz + qzy, ∆W
1 (y) = ryy + pzx+ qxz and ∆W

1 (z) =
rzz + pxy + qyx. Since these are linearly independent dimW2 = 3. Finally, for ∆W

0 : K → V ⊗3,
∆W

0 (1) =W ̸= 0 and therefore dimW3 = 1.
According to Lemma 2.5, dimWj = dimA!

j for j 6 3 and A!
j = 0 for j > 3 for A = Qp,q,r

whenever there are at least two non-zero parameters among p, q and r and the equation p3 = q3 = r3

fails. Under these assumptions, the Koszul bimodule complex provides a self-dual resolution, which
ensures the CY property. In the remaining cases, the equalities dimWj = dimA!

j break, since

according to Lemma 2.5 HA!(t) = 1+2t
1−t . For instance, dimA!

3 = 3 ̸= 1 = dimW3. Hence A is not
CY in these degenerate cases.

This type of argument provides a way to check the CY property using HA! . If one has a Koszul
potential quadratic algebra, then the CY property is equivalent to the equalities dimWj = dimA!

j .
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6 Generalized Sklyanin algebras

Let ξ = (p1, p2, p3, q1, q2, q3, r1, r2, r3) ∈ K9. In this section we consider the K-algebras Q̂ξ given by
the generators x, y and z and the relations

p1yz + q1zy + r1xx = 0, p2zx+ q2xz + r2yy = 0, p3xy + q3yx+ r3zz = 0. (6.1)

We call these generalized Sklyanin algebras. The actual Sklyanin algebras correspond to the case
p1 = p2 = p3, q1 = q2 = q3 and r1 = r2 = r3. We will demonstrate that 3-parameter Sklyanin alge-
bras Qp,q,r, coming from nature, are very different and specific, comparing to other their relatives
from the class of generalized Sklyanin algebras. Indeed, seemingly innocuous generalization leads
to a dramatic changes in the behavior.

We know that generic Sklyanin algebras are Koszul PSAs. This is no longer the case for gener-
alized Sklyanin algebras.

Theorem 6.1. For ξ from a non-empty Zarisski open subset of K9, both A = Q̂ξ and A! are finite
dimensional.

Note that when both A = Q̂ξ and A! are finite dimensional, their Hilbert series are non-constant
polynomials and therefore (1.2) fails. Thus A is non-Koszul. Hence Theorem 6.1 yields that if K
is infinite, a Zarisski-generic Q̂ξ is finite dimensional and non-Koszul. We can actually determine
the minimal Hilbert series of a generalized Sklyanin algebra:

Hmin(t) =
∞∑
n=0

dnt
n, where dn = min

ξ∈K9
dim Q̂ξ

n.

Theorem 6.2. If K ̸= Z2 (K is not the 2-element field), then the minimal Hilbert series Hmin of
a generalized Sklyanin algebra is given by Hmin(t) = 1 + 3t + 6t2 + 9t3 + 9t4. If K = Z2, then
Hmin(t) = 1+3t+6t2+9t3+9t4+5t5+ t6. In any case, there exists a generalized Sklyanin algebra
A such that HA = Hmin.

Remark 6.3. By Theorem 6.2 and Lemma 1.6, if K is an infinite field, a Zarissky-generic Q̂ξ has
the Hilbert series 1 + 3t+ 6t2 + 9t3 + 9t4 and therefore has dimension 28. If K ̸= Z2, the minimal
dimension of Q̂ξ is again 28, while for K = Z2, the minimal dimension of Q̂ξ is 34.

It is possible to characterize PSA among the generalized Sklyanin algebras. The annoying bit
is that the set of leading monomials of the relations depends on the distribution of zeros among
the coefficients. Fortunately many cases are equivalent to each other by means of applying a
permutation of variables (any permutation of variables keeps the shape of the relations and shuffles
the coefficients) and scaling the variables (a substitution which multiplies each variable by a non-
zero constant).

First, we describe the following 4 classes of generalized Sklyanin algebras. Namely, we say that
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for a generalized Sklyanin algebra A,

A ∈ P1 if

{
A is a Sklyanin algebra A = Qp,q,r with
(pq, pr, qr) ̸= (0, 0, 0) and (p3 − q3, p3 − r3) ̸= (0, 0);

(6.2)

A ∈ P2 if

{
A is a generalized Sklyanin algebra, whose relations have the shape
yz − azy = 0, bzx− xz = 0, xy − ayx = 0, where a, b, c ∈ K;

(6.3)

A ∈ P3 if

{
A is a generalized Sklyanin algebra, whose relations have the shape
yz − azy = 0, bzx− xz + yy = 0, xy − ayx = 0, where a, b ∈ K;

(6.4)

A ∈ P4 if

{
A is a generalized Sklyanin algebra, whose relations have the shape
yz − azy = 0, azx− xz + yy = 0, xy − ayx− zz = 0, where a ∈ K;

(6.5)

A ∈ P5 if


A is a generalized Sklyanin algebra, whose relations have the shape
yz + θzy + θ2xx = 0, zx+ θ4xz + θ2yy = 0, xy + θ7yx+ θ2zz = 0,
where θ ∈ K satisfies θ9 = 1 and θ3 ̸= 1;

(6.6)

A ∈ P6 if

{
A is a generalized Sklyanin algebra, whose relations have the shape
xx = 0, θ2zx+ xz + yy = 0, xy + θyx+ zz = 0, where θ3 = 1.

(6.7)

Note that while Pj for 1 6 j 6 4 are infinite if K is infinite, P5 and P6 are finite. More
specifically, P5 is empty if K∗ has no elements of order 9 and contains 6 sets of relations otherwise.
Furthermore these 6 algebras are one and the same since the permutations of the variables act
transitively on the 6-element set of algebras defined in P5. Similarly, if K∗ has no elements of order
3, P6 contains just one set of relations, while if K∗ has elements of order 3, P6 contains three sets
of relations. Two of them change one into another under swapping of y and z, thus leaving us with
two (non-isomorphic) algebras. All in all there are at least one and at most three algebras in P5

and P6.

Theorem 6.4. Assume that K is algebraically closed and let A be a generalized Sklyanin algebra.
Then A satisfies HA(t) = (1−t)−3 if and only if the defining relations of A can be turned into that of
an algebra from Pj for some 1 6 j 6 6 by means of a permutation of the variables, a scaling of the
variables and a normalization of the relations (multiplying each relation by a non-zero constant).
Furthermore, A is Koszul if j 6 5 and A is non-Koszul if j = 6.

In other words, Theorem 6.4 says algebras in Pj with j 6 5 are Koszul PSAs, algebras in P6 are
PSA but non-Koszul, while the classes Pj for 1 6 j 6 6 cover all generalized Sklyanin PSAs up to
a permutation and scaling of the variables.

6.1 Proof of Theorem 6.4

Lemma 6.5. Let K be algebraically closed, ξ = (p1, p2, p3, q1, q2, q3, r1, r2, r3) ∈ K9 and ξ′ =
(p1, p2, p3, q1, q2, q3, r

′
1, r

′
2, r

′
3) ∈ K9 be such that r1r2r3 = r′1r

′
2r

′
3 and for each j ∈ {1, 2, 3}, ei-

ther rj = r′j = 0 or rjr
′
j ̸= 0. Then there is a scaling of the variables providing an isomorphism

between Q̂ξ and Q̂ξ′.

Proof. For α, β, γ ∈ K∗, under the scaling substitution x = αu, y = βv, z = γw, the defining
relations of Q̂ξ (in terms of u, v and w after a suitable normalization) take form

p1vw + q1wv +
r1α2

βγ uu = 0, p2wu+ q2uw + r2β2

αγ vv = 0, p3uv + q3vu+ r3γ2

αβ ww = 0.

Thus in order to prove that a scaling providing an isomorphism between Q̂ξ and Q̂ξ′ , it suffices to
show that

r1α
2

βγ
= p′,

r2β
2

αγ
= q′ and

r3γ
2

αβ
= r′ for some α, β, γ ∈ K∗. (6.8)
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First, assume that at least two of rj are non-zero. Without loss of generality, r2r3 ̸= 0. Then

r′2r
′
3 ̸= 0. Since K is algebraically closed, there is β ∈ K∗ such that β3 =

r′3r
′
2
2

r3r22
. Now we choose

α = 1 and γ = r2β2

r′2
. Now it is routine to verify that (6.8) is satisfied.

The case r1 = r2 = r3 = 0 is trivial. It remains to consider the case when exactly one of rj is
zero. Without loss of generality, r1 = r2 = 0 and r3 ̸= 0. Then r′1 = r′2 = 0 and r′3 ̸= 0. Now
choosing β = γ = 1 and α = r3

r′3
, we see that (6.8) is satisfied.

Lemma 6.6. Let 1 6 j 6 5 and A ∈ Pj. Then A is a Koszul PSA.

Proof. By Remark 1.4, we can without loss of generality assume that K is algebraically closed.
The case A ∈ P1 follows from Theorem 0.1. In the case A ∈ Pj with 2 6 j 6 4, it is routine to
verify that the defining relations of A form a Gröbner basis of the ideal they generate. Thus A
is PBW and therefore Koszul. By Proposition 1.5, A is a PSA. It remains to consider the case
A ∈ P5. Let θ ∈ K be such that θ9 = 1 ̸= θ3. Then θ6 + θ3 + 1 = 0. This equality yields
(θ2 + θ3)(θ2 + θ6)(−θ3 − θ5) = θ6. By Lemma 6.5, A is isomorphic to the algebra given by the
generators x, y and z and the relations g1 = g2 = g3 = 0, where

g1 = yz + θzy + (θ2 + θ3)xx, g2 = zx+ θ4xz + (θ2 + θ6)yy, g3 = xy + θ7yx− (θ3 + θ5)zz.

A direct computation yields that there are exactly two degree 3 elements of the Gröbner basis of the
ideal these relations generate (with the leading monomials yyy and yyz). It follows dimA3 = 10.

Consider the substitution x = u+ v+w, y = u+ θ3v+ θ6w, z = −θ2(u+ θ6v+ θ3w) and let h1,
h2 and h3 be g1, g2 and g3 written in terms of u, v and w. First, it is easy to see that uu does not
feature in any of hj . Next, the leading monomial of h1 is uv. Next, the 2× 2 matrix of the uv and
uw coefficients in h1 and h2 is non-degenerate and therefore, there is a ∈ K such that the leading
monomial of h2+ah1 is uw. Finally, one easily checks that the leading monomial of h3+h2+h1 is
vw (actually, the only other monomial featuring in h3 + h2 + h1 is wv). By Lemma 1.5, B is PBW
with PBW-basis u, v, w and PBW-generators h1, h2 + ah1, h3 + h2 + h1 and B is a PSA. Since A
is isomorphic to B, A is a Koszul PSA.

Lemma 6.7. Let A ∈ P6. Then A is a non-Koszul PSA.

Proof. By definition of P4, the defining relations ofA read xx = 0, θ2zx+xz+yy = 0, xy+θyx+zz =
0, where θ3 = 1. Now the non-commutative Buchberger algorithm provides a Gröbner basis for the
ideal generated by these relations. Namely, this basis comprises these relations together with two
degree 3 elements yyz − θ2zyy and θyzz − zyy. Now, exactly as in one of the cases for Sklyanin
algebras, the normal words are zk(yz)lymxε with k, l,m ∈ Z+ and ε ∈ {0, 1} and the number of

normal words of degree n is (n+1)(n+2)
2 . Hence HA(t) = (1− t)−3 and therefore A is a PSA.

The dual algebra A! is given by the relations yz = 0, zy = 0, yy = θzx, xz = θzx, xy = zz
and yx = θzz. The non-commutative Buchberger algorithm provides a Gröbner basis for the ideal
generated by these relations. Namely, this basis comprises these relations together with three degree
3 elements zxx, zzx and zzz. The normal words are y, z, zz, zx and xn for every n ∈ N, which
gives HA!(t) = 1 + 3t+ 3t2 + t3 + t4 + t4 + . . . Hence the equality HA(−t)HA!(t) = 1 fails and A is
non-Koszul.

In order to complete the proof of Theorem 6.4 it remains to show that if K is algebraically closed
and let A generalized Sklyanin PSA, then A falls into one of the families Pj for 1 6 j 6 6 after
suitable permutation and scaling of variables (together with normalization of relations, of course).
The consideration splits into cases according to how zeros are distributed among the coefficients.
We can assume from the start that none of the defining relations of A vanishes. Indeed, otherwise
dimA2 > 6 and A is not a PSA. The six cases pjqkrl ̸= 0 for {j, k, l} = {1, 2, 3} are obtain
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from one another by suitable permutations of variables. If pjqkrl = 0 for every j, k, l satisfying
{j, k, l} = {1, 2, 3}, then the matrix  p1 q1 r1

p2 q2 r2
p3 q3 r3


has either a zero column or a zero 2 × 2 submatrix (the case of a zero row is excluded by the
assumption that none of the relations is zero). Thus up to a permutation of the variables, we have
only to deal with the cases

• p3q2r1 ̸= 0;

• q1 = q2 = q3 = 0;

• r1 = r2 = r3 = 0;

• q1 = q3 = r1 = r3 = 0;

• p1 = p2 = q1 = q2 = 0.

First, we deal with easier cases. If p1 = p2 = q1 = q2 = 0 is satisfied, the relations of A (up to a
normalization) take shape xx = 0, yy = 0 and p3xy+ q3yx+ r3zz = 0. Regardless which monomial
is leading in the last relation, computing the degree 3 elements of the Gröbner basis, we easily see
that dimA3 > 11 (it is actually either 11 or 12). Hence dimA3 ̸= 10 and A is not a PSA.

If q1 = q3 = r1 = r3 = 0 is satisfied, the relations of A (up to a normalization) take shape yz = 0,
xy = 0 and p2zx + q2xz + r2yy = 0. Regardless which monomial is leading in the last relation,
computing the degree 3 elements of the Gröbner basis, we again see that dimA3 > 11 (it is 11, 12
or 13). Hence dimA3 ̸= 10 and A is not a PSA.

If r1 = r2 = r3 = 0 is satisfied, then either A belongs to P2 or A is a monomial algebra satisfying
dimA3 = 12. In the latter case A is not a PSA.

The case q1 = q2 = q3 = 0 is slightly more involved. If at least two of rj equal 0, we can without
loss of generality assume that r1 = r2 = 0. The relations of A take the shape yz = 0, zx = 0
and p3xy + r3zz = 0. Again, it is easy to see that dimA3 > 11 and therefore A is not a PSA.
It remains to consider the case when at least two of rj are non-zero. Without loss of generality
r1r2 ̸= 0. First, consider the case p1 = 0. Then the relations take shape xx = αyz, yy = βzx and
zz = 0 with α = −p1

r1
and β = −p2

r2
. If αβ = 0, then we have dimA3 > 10 and A is not a PSA. If

αβ ̸= 0, Lemma 6.5 allows us by means of a scaling of variables to bring the relations to xx = yz,
yy = zx and zz = 0. It is a tedious enough but a doable exercise to check that dimA6 = 31 ̸= 28
and this implies that A is not a PSA (actually j = 6 is the first degree for which dimAj deviates

from (j+1)(j+2)
2 ). It remains to consider the case r1r2p3 ̸= 0. Then the relations of A take shape

xx = αyz, yy = βzx and xy = γzz with α = −p1
r1
β = −p2

r2
and γ = − r3

p3
. If at leat two of

the numbers α, β and γ are 0, dimA3 > 11 and A is not a PSA. If α = 0, βγ ̸= 0 or β = 0,
αγ ̸= 0, then by a permutation and scaling of the variables (using Lemma 6.5), we get the familiar
relations xx = yz, yy = zx and zz = 0. We already know that then dimA6 = 31 and therefore
A is not a PSA. If γ = 0, αβ ̸= 0, by Lemma 6.5, a scaling of the variables turns the relations
into xx = yz, xy = 0, yy = zx. In this case, using the Gröbner basis technique, one easily checks
that dimA4 = 17 ̸= 15 and therefore A is not a PSA. Finally, if αβγ ̸= 0, using the fact that K is
algebraically closed, we can find r ∈ K∗ such that r3 = γ

αβ . Now Lemma 6.5 provides a scaling of
the variables, which turns the relations into yz − rxx = 0, zx− ryy = 0 and xy − rzz = 0. These
are the relations of Q1,0,−r ∈ P1.

It remains to consider the main (and most involved) case p3q2r1 ̸= 0. We treat in more detail.
In this case we can write the relations of A as xx = ayz+αzy, xy = byx+βzz and xz = cyy+γzx,
where a = −p1

r1
, b = − q3

p3
, c = − r2

q2
, α = − q1

r1
, β = − r3

p3
, γ = −p2

q2
. The leading monomials xx,

xy and xz of the relations admit 3 overlaps xxx, xxy and xxz. Resolving these, we find that the
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degree 3 part of the Gröbner basis of the ideal of the relations comprises of

ξ1 = c(ab+ α)yyy + a(bγ − 1)yzx+ α(bγ − 1)zyx+ β(αγ + a)zzz,

ξ2 = (ab2 + cβ)yyz + (αb2 − a)yzy + (cβγ − α)zyy + β(b+ γ2)zzx,

ξ3 = c(b2 + γ)yyx+ (bcβ − a)yzz + (aγ2 − α)zyz + (αγ2 + cβ)zzy.

Since there are exactly 12 degree 3 monomials, which do not contain any of xx, xy and xz as a
submonomial, dimA3 = 12 − d, where d is the dimension of the space spanned by ξ1, ξ2 and ξ3.
Thus A can not be a PSA unless d = 2. Since no monomial features in more than one of ξj , d equals
2 precisely when exactly one of ξj equals 0. Now, solving the corresponding systems of algebraic
equations, we see that

ξ1 = 0 ⇐⇒ bγ−1=ab+α=0 OR bγ−1=β=c=0 OR a=α=0,

ξ2 = 0 ⇐⇒ a=α=β=0 OR b+γ2=α=a=c=0 OR γ9+1=b+γ2=α−cβγ=a−cβγ5=0,

ξ3 = 0 ⇐⇒ a=α=c=0 OR b2+γ=α=a=β=0 OR b9+1=b2+γ=a−cβb=α−cβb5=0.

Using the above display, it is easy to see that

ξ2 = 0, ξ1 ̸= 0, ξ3 ̸= 0 ⇐⇒ γ9+1=b+γ2=α−cβγ=a−cβγ5=0 and cβ(γ3+1) ̸= 0.

ξ3 = 0, ξ1 ̸= 0, ξ2 ̸= 0 ⇐⇒ b9+1=b2+γ=a−cβb=α−cβb5=0 and cβ(b3+1) ̸= 0.

ξ1 = 0, ξ2 ̸= 0, ξ3 ̸= 0 ⇐⇒ a=α=0 ̸=cβ OR bγ−1=β=c=0 ̸=aα
OR bγ−1=ab+α=0 ̸=aα and (b3+1, cβ−aγ)̸=(0, 0).

Since dimA3 = 10 precisely when exactly one of ξj is 0, we can restrict ourselves to this case.
If only ξ2 vanishes or only ξ3 vanishes, the above display yields that there is θ ∈ K such that
θ9 = 1 ̸= θ3 and after a permutation of the variables, the relations of A take shape yz+θzy+s1xx,
zx + θ4xz + s2yy and xy + θ7yx + s3zz with s1s2s3 = θ6. Now Lemma 6.5 implies that a scaling
of the variables brings the relations to that of an algebra in P6. It remains to consider the case
ξ1 = 0, ξ2 ̸= 0 and ξ3 ̸= 0. By the above display, a = α = 0 ̸= cβ OR bγ − 1 = β = c = 0 ̸= aα
OR bγ − 1 = ab+ α = 0 ̸= aα and (b3 + 1, cβ − aγ) ̸= (0, 0). In the case bγ − 1 = β = c = 0 ̸= aα,
Lemma 6.5 provides a scaling of the variables bringing the relations to that of an algebra from P3.
Now assume that bγ− 1 = ab+α = 0 ̸= aα and (b3+1, cβ− aγ) ̸= (0, 0). If β = c = 0, we fall into
the previous case. Thus we can assume that (β, c) ̸= (0, 0). The equality bγ− 1 = ab+α = 0 ̸= aα
yields that after a normalization the relations take shape yz − bzy + s1xx, zx − bxz + s2yy and
xy − byx + s3zz, where s1 = − 1

a , s2 = c
γ , s3 = −β. Moreover, at least two of sj are non-zero. If

there is j with sj = 0, then after a permutation and a scaling of the variables (use Lemma 6.5),
we bring the relation to P4. If s1s2s3 ̸= 0, we use algebraic closeness of K to find t ∈ K∗ such that
t3 = s1s2s3 = cβ

aγ . By Lemma 6.5, we can turn the relations into yz − bzy + txx, zx − bxz + tyy

and xy− byx+ tzz, which are the relations of Q1,−b,t. Since (b3 + 1, cβ − aγ) ̸= (0, 0), the equality
1 = −b3 = t3 fails. Since bt ̸= 0, we have fallen into the class P1.

It remains to consider the case a = α = 0 ̸= cβ. In this case after a scaling provided by
Lemma 6.5, the defining relations of A take form xx = 0, xy− byx+ zz = 0 and xz+ yy−γzx = 0.
Computing the Gröbner basis up to degree 4, we get dimA4 = 14 ̸= 15 (and therefore A is not a
PSA) unless b3 = −1 and γ = b2. On the other hand, if b3 = −1 and γ = b2, these relations fall
into P6. This concludes the proof of Theorem 6.4.

6.2 Proof of Theorems 6.1 and 6.2

Lemma 6.8. Assume that charK ∈ {3, 5}. Then the generalized Sklyanin algebra A given by the
relations xx+zy = 0, xy+2yx+zz = 0 and xz+zx+yy = 0 satisfies HA(t) = 1+3t+6t2+9t3+9t4

and HA!(t) = 1 + 3t+ 3t2.
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Proof. The proof is a matter of a direct computation of the Gröbner bases. Whatever the charac-
teristic of K except for 2, the Gröbner basis of the ideal of relations of A! is

xx− zy, xy − zz, xz − zx, yx− 2zz, yy − zx, yz, zzx, zzy, zzz,

which yields HA! = 1 + 3t+ 3t2.
If charK = 3, then the Gröbner basis of the ideal of relations of A is

xz + yy + zx, xy − yx+ zz, xx+ zy, yzz + zyz, yyz − yzy + zzx, yyy − zyx− zzz,
yzyz − zzyy − zzzx, yzyy − zyzx+ zzzz, yzyx− zyyx− zzzy, zzzzz, zzzzy,
zzzzx, zzzyz, zzzyy, zzzyx, zzyzy, zzyzx, zzyyx.

If charK = 5, then the Gröbner basis of the ideal of relations of A is

xz + yy + zx, xy + 2yx+ zz, xx+ zy, yyz + yzy + zzx, yyy − zyx− zzz, yyx− yzz − 2zyz,
zyzx+ 2zzyx, yzzz + zyzz − 2zzzy, yzzy + zyzy + 2zzyy − 2zzzx, yzyz + zyzy + zzyy,
yzyy − yzzx+ zyzx− zzyx− zzzz, yzyx+ yzzz − 2zyzz − zzyz − zzyz − zzzy, zzzzz, zzzzy,
zzzzx, zzzyz, zzzyy, zzzyx, zzyzz, zzyzy, zyzzx.

In both cases it follows that HA(t) = 1 + 3t+ 6t2 + 9t3 + 9t4.

It is worth mentioning that in the above lemma, the condition charK ∈ {3, 5} can be significantly
relaxed. For instance, the same conclusion holds if charK ∈ {0, 11, 13, 17}. On the other hand, the
conclusion of Lemma 6.8 fails if charK ∈ {2, 7, 19, 23}.

Lemma 6.9. Let a ∈ K be such that

a ̸= 0, a ̸= 1, a2 + 3 ̸= 0, a3 + 3a− 1 ̸= 0, a4 − a3 + 3a2 − 2a+ 1 ̸= 0,
2a4 − a3 + 2a2 + 3a− 3 ̸= 0, a6 − 3a5 + 4a4 − 5a3 + 10a2 − 3 ̸= 0, a6 − a5 + 5a4 − 7a3 + 8a2 − 12a+ 6 ̸= 0
and a7 − 2a6 + 4a5 − 8a4 + 7a3 − a2 − 2a+ 1 ̸= 0.

(6.9)
Then the generalized Sklyanin algebra A given by the relations xx = zy, xy = zz and xz = yy+azx
satisfies HA(t) = 1 + 3t+ 6t2 + 9t3 + 9t4 and HA!(t) = 1 + 3t+ 3t2.

Proof. The Gröbner basis of the ideal of relations of A! is

xx+ zy, xy + zz, axz + zx, yx, ayy + zx, yz, zzx, zzy, zzz,

which yields HA! = 1 + 3t+ 3t2. The only conditions needed here are a ̸= 0 and a ̸= 1. Using the
same two restrictions, we compute the Gröbner basis of the ideal of relations of A up to degree 4:

xx− zy, xy − zz, xz − yy − azx, yyx− 1
azyz +

a2+1
a zzy, yyy − zyx+ azzz, yyz + (a− 1)zzy + a2zzx,

yzyx− ayzzz + a+1
a−1zzyz +

a(a2−a+2)
a−1 zzzy, zyzx− (a+ 1)zzyx+ a2zzzz,

yzyy + a2

a−1yzzx+ a2+a+1
a−1 zzyx− a(a2+2)

a−1 zzzz, zyzy + (a2 − a− 1)zzyy + a3zzzx,

yzyz − (a2 + 1)yzzy + a(a2 − a− 1)zzyy + a2(a2 + 1)zzzx, zyzz + a+1
a−1zzyz −

a(a2+1)
a−1 zzzy.

(6.10)
The degree 3 and 4 elements in the above list are obtained by resolving the overlaps xxz, xxx,
xxy, yyyy, yyyz, yyyx, yyxx, yyxy and yyxz. Resolving the overlaps zyzxx, zyzyz, zyzxy, zyzyx,
zyzxz and zyzyy respectively, we obtain that the following equalities hold in A:

(2− a− a2)zzzyy = (a3 + a2 + a− 1)zzzzx, (3 + 3a− 4a2 + a3 − a4)zzzyy = a3(a2 + 3)zzzzx,
(a2 + 3)zzzyz = a(a2 + 3)zzzzy, (a6 − a5 + 3a4 − 3a3 + 3a2 − 2a− 1)zzzyz = (a6 − a5 + 5a4 − 4a3 + 3a2 + a− 1)zzzzy,
(3a− 1)zzzyx = (a3 + a2 + a− 1)zzzzz, (a4 − 2a3 + 3a2 − 3a− 1)zzzyx = −(a4 − a3 + 2a2 − a+ 1)zzzzz.

(6.11)
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It is easy to see that the conditions a2+3 ̸= 0, a6− 3a5+4a4− 5a3+10a2− 3 ̸= 0, a6− a5+5a4−
7a3+8a2− 12a+6 ̸= 0 and a7− 2a6+4a5− 8a4+7a3− a2− 2a+1 ̸= 0, which are satisfied due to
(6.9), are equivalent to the linear independence of the equations in each line of (6.11). Hence the
equalities (6.11) yield that

zzzyy = zzzzx = zzzyz = zzzzy = zzzyx = zzzzz = 0 (6.12)

in A. Resolving the overlaps yzyxx, yzyyz, yzyxy, yzyyx, yzyxz and yzyyy respectively by means
of (6.10) and (6.12), we obtain that the following equalities hold in A:

ayzzzx = (a2 + 1)yzzyy, a2yzzzx = (1− 2a)yzzyy,
ayzzzy = (a2 + 1)yzzyz, (a− a2 − 1)yzzzy = (a− 1)yzzyz,
2ayzzzz = (a3 + a+ 1)yzzyx, a(1− 2a)yzzzz = (a− 1)yzzyx.

(6.13)

Conditions a3 + 3a− 1 ̸= 0, a4 − a3 + 3a2 − 2a+ 1 ̸= 0 and 2a4 − a3 + 2a2 + 3a− 3 ̸= 0 from (6.9)
imply that the linear independence of the equations in each line of (6.13). Hence the equalities
(6.13) yield that

yzzzx = yzzyy = yzzzy = yzzyz = yzzzz = yzzyx = 0 (6.14)

in A. From (6.10), (6.12) and (6.14) it now follows that HA(t) = 1 + 3t + 6t2 + 9t3 + 9t4, which
completes the proof.

Lemma 6.10. If K ̸= Z2, then there is α ∈ K6 such that HA(t) = 1 + 3t + 6t2 + 9t3 + 9t4 and
HA!(t) = 1 + 3t+ 3t2, where A = Q̂ξ with ξ = (α1, . . . , α6, 1, 1, 1).

Proof. If charK ∈ {3, 5}, the result follows from Lemma 6.8. For the rest of the proof we assume
that charK /∈ {3, 5}. By Lemma 6.9, it suffices to find a ∈ K for which (6.9) is satisfied. If
charK /∈ {2, 3, 5}, then a = −1 satisfies (6.9). Thus it remains to consider the case charK = 2. In
this case, one easily verifies that (6.9) is equivalent to

a ̸= 0, a ̸= 1, a3 + a+ 1 ̸= 0, a5 + a3 + 1 ̸= 0. (6.15)

The total number of a failing (6.15) never exceeds 10. Thus a required a does exist provided K has
more than 10 elements. This leaves us with two options to consider: |K| = 4 and |K| = 8. If K is
the 4-element field, there is a ∈ K satisfying a2 + a+ 1 = 0. Such an a also satisfies (6.15). If K is
the 8-element field, there is a ∈ K satisfying a3 + a2 + 1 = 0. Again, such an a satisfies (6.15).

Lemma 6.11.

Proof of Theorem 6.1. For α ∈ K6, let ξα = (α1, . . . , α6, 1, 1, 1) ∈ K9. Example 6.15 provides
α ∈ K6 for which the spaces B7 and B!

3 vanish, where B = Q̂ξα . By Lemma 1.6, there is a non-

empty Zarissky open subset V of K6 such that A7 = A!
3 = {0} for A = Q̂ξα with α ∈ V . Now

let
U =

{
ξ ∈ K9 : ξ1ξ2ξ3 ̸= 0,

( ξ4
ξ1
, ξ5ξ2 ,

ξ6
ξ3
, ξ7ξ1 ,

ξ8
ξ2
, ξ9ξ3

)
∈ V

}
.

Clearly, U is non-empty and Zarissky open in K9 and {Q̂ξα : α ∈ V } = {Q̂ξ : ξ ∈ U}. Hence for
A = Q̂ξ with ξ ∈ U both A and A! are finite dimensional. This completes the proof of Theorem 6.1.

Now assume that the characteristic if K is different from 2. Obviously, for each α ∈ K6, dimA0 =
dimA!

0 = 1, dimA1 = dimA!
1 = dimA!

2 = 3 and dimA2 = 6 for A = Q̂ξα . The Golod–Shafarevich
theorem gives a lower estimate for the dimensions of the graded components of a quadratic algebra
in terms of the numbers of generators and relations. In our case it yields dimA3 > 9 and dimA4 > 9.
By Lemma 6.14, there is β ∈ K6 such that for B = Q̂ξβ , HB(t) = 1+ 3t+6t2 +9t3 +9t4, HB!(t) =
1+3t+3t2. Now, Proposition 1.6 provides a non-empty Zarissky open subset V of K6 such that for
each α ∈ V , the first 6 terms of the Hilbert series of A = Q̂ξα are 1+3t+6t2+9t3+9t4+0t5, while
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the first 4 terms of the Hilbert series of A! are 1+3t+3t2+0t3. Hence HA(t) = 1+3t+6t2+9t3+9t4,
HA!(t) = 1+3t+3t2 for α ∈ V . Now for the Zarissky open set U in K9 defined in the above display
(with the new V ) we have that the algebra Q̂ξ for ξ ∈ U has the Hilbert series 1+3t+6t2+9t3+9t4

while its dual has the Hilbert series 1 + 3t+ 3t2.

ZZZ
We need specific examples. Assume that the ideal of the relations of a quadratic Q-algebra A,

given by generators x1, . . . , xn and relations r1, . . . , rm with integer coefficients, possesses a finite
Gröbner basis g1, . . . , gk with respect to some ordering on the monomials (we do not divide by
integers at all while producing gj even if all coefficients in a gj have a common factor). Let also p
be a prime number, which is not a factor of any leading coefficient of a gj . Then for the Zp-algebra
B given by the relations rj considered as members of Zp⟨x1, . . . , xn⟩, g1, . . . , gk treated as members
of Zp⟨x1, . . . , xn⟩ form a Gröbner basis of the relations of B as well. Moreover the set of leading
monomials of the basis does not change. Hence the Hilbert series of A and B are the same for any
p except finitely many: the potential exceptions are the divisors of the leading coefficients of gj .
Now it is a straightforward matter of applying the algorithm to determine the Hilbert series of A
and the set of exceptional primes. The following examples are obtained with an aid of Gröbner
basis calculating software.

Example 6.12. For ξ = (−1,−1,−1, 1, 0,−1, 1, 1, 1) ∈ K9, the generalized Sklyanin algebra A =
Q̂ξ satisfies HA(t) = 1 + 3t+ 6t2 + 9t3 + 9t4 and HA!(t) = 1 + 3t+ 3t2 provided the characteristic
p of K satisfies p /∈ {2, 5, 11, 13, 41}.

Example 6.13. For ξ = (−1,−1,−1, 2, 0,−1,−2, 8, 1) ∈ K9, the generalized Sklyanin algebra
A = Q̂ξ satisfies HA(t) = 1+3t+6t2+9t3+9t4 and HA!(t) = 1+3t+3t2 provided the characteristic
p of K satisfies p /∈ {2, 3, 17, 47}.

Note that the exceptional characteristics listed in the above examples are exceptional indeed:
the Hilbert series becomes different. Combining Examples 6.12 and 6.13, we immediately obtain
the following result.

Lemma 6.14. If charK ̸= 2, then there is ξ ∈ K9 such that A = Q̂ξ satisfies HA(t) = 1 + 3t +
6t2 + 9t3 + 9t4 and HA!(t) = 1 + 3t+ 3t2.

In the case charK = 2, we can not claim this much. At least, if K is the 2-element field, the
conclusion of Lemma 6.14 fails. The next best thing is provided by the following example.

Example 6.15. Let ξ = (−1,−1,−1, 0, 0, 1, 1, 1, 1) ∈ K9. Then the generalized Sklyanin algebra
A = Q̂ξ satisfies HA(t) = 1+3t+6t2+9t3+9t4+5t5+ t6 and HA!(t) = 1+3t+3t2 (no exceptional
characteristics this time).

Proof of Theorems 6.1 and 6.2. For α ∈ K6, let ξα = (−1,−1,−1, α1, . . . , α6) ∈ K9. Example 6.15
provides α ∈ K6 for which the spaces B7 and B!

3 vanish, where B = Q̂ξα . By Lemma 1.6, there is a

non-empty Zarissky open subset V of K6 such that A7 = A!
3 = {0} for A = Q̂ξα with α ∈ V . Now

let
U =

{
ξ ∈ K9 : ξ1ξ2ξ3 ̸= 0,

( ξ4
ξ1
, ξ5ξ2 ,

ξ6
ξ3
, ξ7ξ1 ,

ξ8
ξ2
, ξ9ξ3

)
∈ V

}
.

Clearly, U is non-empty and Zarissky open in K9 and {Q̂ξα : α ∈ V } = {Q̂ξ : ξ ∈ U}. Hence for
A = Q̂ξ with ξ ∈ U both A and A! are finite dimensional. This completes the proof of Theorem 6.1.

Now assume that the characteristic if K is different from 2. Obviously, for each α ∈ K6, dimA0 =
dimA!

0 = 1, dimA1 = dimA!
1 = dimA!

2 = 3 and dimA2 = 6 for A = Q̂ξα . The Golod–Shafarevich
theorem gives a lower estimate for the dimensions of the graded components of a quadratic algebra
in terms of the numbers of generators and relations. In our case it yields dimA3 > 9 and dimA4 > 9.
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By Lemma 6.14, there is β ∈ K6 such that for B = Q̂ξβ , HB(t) = 1+ 3t+6t2 +9t3 +9t4, HB!(t) =
1+3t+3t2. Now, Proposition 1.6 provides a non-empty Zarissky open subset V of K6 such that for
each α ∈ V , the first 6 terms of the Hilbert series of A = Q̂ξα are 1+3t+6t2+9t3+9t4+0t5, while
the first 4 terms of the Hilbert series of A! are 1+3t+3t2+0t3. Hence HA(t) = 1+3t+6t2+9t3+9t4,
HA!(t) = 1+3t+3t2 for α ∈ V . Now for the Zarissky open set U in K9 defined in the above display
(with the new V ) we have that the algebra Q̂ξ for ξ ∈ U has the Hilbert series 1+3t+6t2+9t3+9t4

while its dual has the Hilbert series 1 + 3t+ 3t2.
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