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Abstract

We consider a Sklyanin algebra S with 3 generators, which is the quadratic algebra over a
field K with 3 generators x,y, z given by 3 relations pxy + qyr + rzz =0, pyz + qzy +rxx =0
and pzx + qrz + ryy = 0, where p,q,r € K. This class of algebras enjoyed much of attention,
in particular, using tools from algebraic geometry, Feigin, Odesskii [10], and Artin, Tate and
Van den Berg [3], showed that if at least two of the parameters p, ¢ and r are non-zero and at
least two of three numbers p3, ¢® and 72 are distinct, then S is Koszul and has the same Hilbert
series as the algebra of commutative polynomials in 3 variables. It became commonly accepted,
that it is impossible to achieve the same objective by purely algebraic and combinatorial means,
like the Grobner basis technique. The main purpose of this paper is to trace the combinatorial
meaning of the properties of Sklyanin algebras, such as Koszulity, PBW, PHS, Calabi-Yau, and
to give a new constructive proof of the above facts due to Artin, Tate and Van den Bergh.
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It is well-known that algebras arising in string theory, from the geometry of Calabi-Yau manifolds,
i.e. various versions of Calabi-Yau algebras, enjoy the potentiality-like properties. This in essence
comes from the symplectic structure on the manifold. The notion of noncommutative potential
was first introduced by Kontsevich in [15]. Let F' = C(z1,...x,), then the quotient vector space
Feye = F/[F,F] has a simple basis labeled by cyclic words in the alphabet z1,...z,. For each
j=1,..,nin [15] was introduced a linear map % cFye > F: O — é%.

0P
g = Z Lijg41Tq342+- L5, Lj; Lijg.. . Tjy—1

I slis=j

So, for any element ® € Fy., which is called potential, one can define a collection of elements

0P i —1,...,n. An algebra which has a presentation:

ox;

5P
U= Cx, -~7$n>/{g}i=l,---n

is called a potential algebra. This can be generalised to superpotential algebras. It is known
for 3-dimensional Calabi-Yau that they are always derived from a superpotential. But not all
superpotential algebras are Calabi-Yau. This question was studied in details in [11, 12], [13] (see
also references therein), in [23] the conditions on potential which ensure CY have been studied.
The most general counterpart of potentiality and its relation to CY (in one of possible definitions)
considered in [14],Th 3.6.4.

The simplest example of potential algebras are commutative polynomials. Another important
example, which have been studied thoroughly [9, 6, 10, 2, 3, 16] are Sklyanin algebras. We are
aiming here to demonstrate, that such properties of these algebras as PBW, PHS, Kosulity, Calabi-
Yau could be obtained by constructive, purely combinatorial and algebraic methods, avoiding the
power of algebraic geometry demonstrated in [2, 3] and later papers continuing this line.

Throughout this paper K is an arbitrary field, B is a graded algebra, and the symbol B,, stands
for the m™ graded component of algebra B. If V is an n-dimensional vector space over K, then
F = F(V) is the tensor algebra of V. For any choice of a basis z1,...,2, in V, F is naturally
identified with the free K-algebra with the generators zi,...,z,. For subsets Pi,..., P of an
algebra B, P; ... P} stands for the linear span of all products p1 ...p, with p; € P;. We consider
a degree grading on the free algebra F: the m'™" graded component of F is V™. If R is a subspace
of the n?-dimensional space V ® V, then the quotient of F by the ideal I generated by R is called
a quadratic algebra and denoted A(V, R). For any choice of bases z1,...,z, in V and ¢gi1,...,¢gx in
R, A(V,R) is the algebra given by generators z1,...,z, and the relations g1, ..., gy (g; are linear
combinations of monomials z;xs for 1 < i,s < n). Since each quadratic algebra A is degree graded,
we can consider its Hilbert series

Hu(t) = Z dimKAj .
=0

Quadratic algebras whose Hilbert series is the same as for the algebra Kz, ..., z,] of commu-
tative polynomials play a particularly important role in physics. We say that A is a PHS (for
'polynomial Hilbert series’) if

HA(t) = HK[zl,...,xn](t) = (1 - t)_n'

Following the notation from the Polishchuk, Positselski book [7], we say that a quadratic algebra
A = A(V, R) is a PBW-algebra (Poincare, Birkhoff, Witt) if there are bases 1, ...,2, and g1, ..., gm
in V and R respectively such that with respect to some compatible with multiplication well-ordering
on the monomials in z1,...,2Zn, g1,...,9m is a (non-commutative) Grobner basis of the ideal 4



generated by R. In this case, z1,...,x, is called a PBW-basis of A, while g1, ..., gm are called the
PBW-generators of 14.

In order to avoid confusion, we would like to stress from the start that Odesskii [6] as well as
some other authors use the term PBW-algebra for what we have already dubbed PHS. Since we
deal with both concepts, we could not possibly call them the same and we opted to follow the
notation from [7].

Another concept playing an important role in this paper is Koszulity. For a quadratic algebra
A = A(V, R), the augmentation map A — K equips K with the structure of a commutative graded
A-bimodule. The algebra A is called Koszul if K as a graded right A-module has a free resolution

= My, = - = M) - A — K — 0 with the second last arrow being the augmentation map
and with each M, generated in degree m. The last property is the same as the condition that the
matrices of the above maps M,, — M,,_1 with respect to some free bases consist of elements of
V (=are homogeneous of degree 1). If (p,q,r) € K3, the Sklyanin algebra QP%" is the quadratic
algebra over K with generators z,y, z given by 3 relations

pyz +qzy+rex =0, pzx+qrz+ryy=0, pry-+qyr+rzz=_0.

Note that if p # 0, then QP%" is obviously the same as the algebra S%® with 3 generators is the
quadratic algebra over K with generators z,y, z given by 3 relations

yz —azy —sxx =0, zx—arz—syy=0, xy—ayr—szz=0,

where a = —%, s = —%. This way, we reduce the number of parameters, and will deal with algebras

S®s,
Odesskii [6] proved that in the case K = C, a generic Sklyanin algebra is a PHS. That is,

Hga.s(t) = Z J+2)(]+1 t/ for generic (a,s) € C2,

where generic means outside the union of countably many algebraic varieties in C? (different from
C?). In particular, the equality above holds for almost all (a, s) € C? with respect to the Lebesgue
measure. Polishchuk and Positselski [7] showed in the same setting and with the same meaning of
the word ’generic’, that for generic (a, s) € C2, the algebra S is Koszul but is not a PBW-algebra.
For further references, we label their results:

a generic Sklyanin algebra S*° over C is Koszul and PHS. (0.1)

The same results are contained in the Artin, Shelter paper [1].

Artin, Tate and Van den Berg [2, 3], and Feigin, Odesskii [10], considered certain family of infinite
dimensional representations of Sklyanin algebra, namely reps, where variables are represented by
matrices with one nonzero upper diagonal. In other words, they considered modules with one-
dimensional graded components. This example was very instructive, and core for most arguments.
They showed that if at least two of the parameters p, ¢ and r are non-zero and the equality
p? = ¢ = r3 fails, then QP%" is Artin-Shelter regular. More specifically, QP%" is Koszul and has
the same Hilbert series as the algebra of commutative polynomials in three variables.

It became commonly accepted that it is impossible to obtain the same results by purely algebraic
and combinatorial means like the Grobner basis technique, see, for instance, comments in [6, ?7].
The main purpose of this paper is to perform this very impossibility. Namely, we prove the same
results by using only combinatorial algebraic techniques, but not algebraic geometry. Mainly, we
use just (non-commutative) Grébner basis approach.

Theorem 0.1. The algebra QP%" is Koszul for any (p,q,r) € K3. The algebra QP9 is PSA if
and only if at least two of p, ¢ and r are non-zero and the equality p° = ¢° = r® fails.



We stress again that the above theorem is essentially one of the main results in [3]. However, our
proof is very different. It is based entirely on Groébner bases computations, properties of Koszul
algebras and their Hilbert series, and certain other arguments of cobinatorial nature. This approach
is substantially different from the proofs in Artin, Tate, Van den Bergh papers [2, 3], for example,
they get the fact that Sklyanin algebras are PHS as a byproduct of Koszulity. We do it the other
way around, we find the Hilbert series first, and then use it to prove Koszulity.

Despite the fact that Odesskii [6] argues that ’classical combinatorial techniques are inadequate
for determining the Hilbert series of Sklyanin algebras’, we use these techniques and they turn out
to be quite helpful. Recently Sokolov [8] asked whether there exist a constructive way to determine,
for which paprameters (generalised) Sklyanin algebras are PHS. This motivates us to look for a
constructive proofs of known results on Koszulity, PBW and PHS properties of 3-dimensional
Sklyanin algebras, due to Artin, Tate, Van den Bergh. The only results from [2, 3], which we were
not able to recover by Grobner bases methods, deals with really subtle question on whether it is
a domain. One can feel a taste of the level of difficulty of questions related to zero divisors and
nilpotents in rings, algebras, groups, looking at classical papers in this area [18, 19, 20, 21, 22, 17].

To complete the picture we determine which of these algebras are PBW.

Theorem 0.2. The algebra QP%" is PBW if and only if at least one of the following conditions is
satisfied:

(0.2.1)
(0.2.2)
(0.2.3) (p+q)® + 13 =0 and the equation t*> +t + 1 = 0 is solvable in K.

/—
3:

qr =0;
q3

p
p 3

The condition of solvability of the quadratic equation above is automatically satisfied if K is
algebraically closed or if K has characteristic 3. On the other hand, if K = R, the third case is
empty.

By Theorem 0.1, in the case K = C, there are exactly 10 pairs (a, s) such that S»* is not a PHS.
Note that for an arbitrary field K there no more then 10 cases, which are not PHS. There are no
obstacles to the Koszulity of S.

We also study the case of generalized Sklyanin algebras, namely we show that if instead of
keeping coefficients in the relations to be triples of the same numbers p,q,r, we allow them to
be all different, the situation changes dramatically. For instance, we show that generically such
algebras are finite-dimensional and non-Koszul.

For g = (a,b,c, o, B3,7) € Kb, consider the generalized Sklyanin algebra Sa given by the generators
x, y, z and the relations

yz—azy—axx =0, zr—brz—Pyy=0, xy—cyr—-yzz=0. (0.2)

__ The situation with Koszulity as well as with the generic series for generalized Sklyanin algebras
517 is spectacularly different from that of the Sklyanin algebras S*?°.

Theorem 0.3. For q = (a,b,c,a, 3,7) from a non-empty Zarisski open subset of K, Sa s finite
dimensional and non-Koszul.

By the above result, if K is infinite, a Zarisski-generic 59 is very far from being a PHS. However,
it is possible to figure out exactly which 5S¢ are PHSs.
We give here a complete classification of generalised Sklyanin algebras w.r.t. PTA property.

Theorem 0.4. For q = (a,b,c,a, 3,v) € Kb, the algebra S4 is a PHS if and only if at least one of
the following conditions is satisfied:

(04.1) a=b=c#0 and (a®,apy) # (-1, -1);
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0.4.2) (a,b,c) # (0,0,0) and eithera =3=b—a=00OR~y=a=c—a=00ORB=~v=b—c=0;
04.3) a=b=c=0 and afy # 0;

O.44)0z—5 v =0 and (a,b,c) # (0,0,0);

0.4.5) a® = -1, a® # —1, {b,c} = {a",a'3} and aBy = —a®.

Furthermore, if 54 is a PHS, then it is Koszul.
In the case a8y # 0, where all squares are present, the list shortens considerably.

Corollary 0.5. For ¢ = (a,b,c,a, 3,7) € K® satisfying aBy # 0, the algebra S4 s a PHS if and
only if either a = b = c and (a®,aBv) # (—1,—1) or (0.4.5) is satisfied.

We recall some known facts on Koszul and PBW algebras and prove few useful technical lemmas
in Section 1. We make a number of easy preliminary observations in Section 2. Theorem 0.1 is
proved in Section 3, while Theorem 0.2 is proved in Section 4. In Section 6 we show that the
situation changes dramatically if instead of keeping coefficients in the relations to be triples of
the same numbers, we allow them to be all different. For instance, we show that generically such
algebras are finite dimensional and non-Koszul. Section ?? is devoted to further comments.

1 General background

We shall use the following well-known facts, all of which can be found in [7]. Every monomial
quadratic algebra A = A(V,R) (=there are linear bases zi,...,z, and ¢1,...,9m, in V and R

respectively, such that each g; is a monomial in x1,...,2,) is a PBW-algebra. Next, if we pick a
basis z1,...,z, in V, we get a bilinear form b on the free algebra F' = F'(V') defined by b(u,v) = dy.
for every monomials v and v in the variables z1,...,2,. The algebra A' = A(V,R'), where

RY = {u € V2 : b(r,u) = 0 for each r € R}, is called the dual algebra of A. Clearly, A' is
a quadratic algebra in its own right. Recall also that there is a specific complex of free right
A-modules, called the Koszul complex, whose exactness is equivalent to the Koszulity of A:

LA oA B4 oAt Il e A=A K0, (1.1)

where the tensor products are over K, the second last arrow is the augmentation map, each tensor
product carries the natural structure of a free right A-module and dj, are given by di(p ® u) =
> ¢; ® zju, where ¢; € (AL_)*, ¢;(v) = p(va;). Although A' and the Koszul complex seem to
j=1

depend on the choice of a basis in V| it is not really the case up to the natural equivalence [7]. We
recall that

every PBW-algebra is Koszul;
Ais Koszul <= A' is Koszul;
if A is Koszul, then Ha(—t)H 4:(t) = 1. (1.2)

Note that the Koszul complex (1.3) of any quadratic algebra is exact at its last 3 terms: K,
(A))*® A= A and (A})* ® A. This accounts for the fact [7] that if H, is a polynomial of degree
2, then A is Koszul if and only if Ha(—t)H 4(t) = 1. That is, the Koszulity of such algebras
is determined by their Hilbert series. We generalize this statement to the case when H, is a
polynomial of any degree.

Proposition 1.1. Let A = A(V, R) be a quadratic algebra such that H 4 is a polynomial of degree
k, and Koszul complex of A is exact in all terms, with at most one exception. Then A is Koszul if
and only if Ha(—t)H 4 (t) = 1.



Proof. Excluding trivial cases suppose that k£ < 3
Let us denote series of A and A' respectively:

k k
Hy(t)=1+mnt+d? +Y sith =Y sit!

j=3 =0

and

Hy(t)=1+nt+ (n? - —}—Zaﬂ —Zatj
Consider the Koszul complex:
d dy—
0= .. Ay ea MUl yed™s . Sy ed=A4—K-0, (1.3)

and its splitting w.r.t. A-grading, namely the corresponding sequence, starting from [th term:

0= (A" ® A5 (A" ® Appy "5 ALY @ Ay 2 (1.4)

. o . d . d
(A 1) ® Apiomer ™ (A @ Apyro1 (AN ® Aj K = 0,

Let the Koszul complex be exact in mth term (A!,)* ® A.

Now we use the exactness of (1.4) at terms (A})* ® Ay, ..., (A}, 1)* ® Agpi—m—1, and get the
equality:

dim (imdp,—1 N (AL)* @ Apgiom) = Sma1@hiio1 — Sma2@hii—m—2 + - + (=1 ™ giq.

The exactness at terms

(A ) ® Apsiomats ey (AD)* @ Agyy, K,
give us:

dim (ker d,, ﬂ(A ) ® Agri—m) = SmAk+i—m — Sm—10k+i—m+1 + - + (—=1)™S0ak4;-

The exactness of the sequences in mth term (A},)* ® Ay, _m according to the above expressions
for im and ker will mean:

k
> (—1)sa"t =0, Vi,
j=0
which is exactly a condition on the series:
Hy(—t)H 4 (t) = 1.
O

We shall use Proposition 1.1 in a rather specific situation. To make this application easier, we
derive the following corollaries.

Corollary 1.2. Let A = A(V,R) be a quadratic algebra such that Ay = {0}, A} is polynomial of
degree 3 and

0— (A5)* ® A%, 5, (Ab)* ® A2, (A ® AN, LA @ A= A% K 0 (1.5)

be the Koszul complexr of A. Assume also that ds is injective. Then A is Koszul if and only if
Ha(—t)H 5 (t) = 1.



We say that u € A = A(V, R) is a right annihilator if Vu = {0} in A. A right annihilator u is
non-trivial if u # 0.

Corollary 1.3. Let A= A(V,R) be a quadratic algebra such that A} = {0}, A} is one-dimensional
and A!Qw # {0} for every non-zero w € A!l. Then the following statements are equivalent:

(1.3.1) A is Koszul;
(1.3.2) A has no non-trivial right annihilators and Ha(—t)H 4 (t) = 1.

Proof. Fix a basis 21,...,, in V. Since A} = {0} and Aé is one-dimensional, the Koszul complex
of A is of the shape

0 A= (A ©A B A) 0 A B4 ea @A) eA=4 K -0 (16)

Let ¢ : A5 — K be the linear isomorphism identifying (A})* ® A with K ® A = A. By definition

d3: A = (AY)* ® A acts according to the formula ds3(u) = > ¢; ® zju, where p;(v) = @(v;).
j=1

Clearly, the condition A\w # {0} for w € A\ {0} yields linear independence of @1, ..., @, in (A})*.
It follows that ds(u) = 0 if and only if u is a right annihilator in A. Thus

ds is injective if and only if A has no non-trivial right annihilators. (1.7)

If A is Koszul, the complex (1.6) is exact and therefore dj is injective. By (1.7), A has no non-trivial
right annihilators. Furthermore, H4(—t)H 41(t) = 1 according to (1.2). Thus (1.3.1) implies (1.3.2).

Assume now that (1.3.2) is satisfied. By (1.7), d3 is injective. So we can apply Proposition 1.1,
and get that A is Koszul. Thus (1.3.2) implies (1.3.1). O

Our next observation is that neither Koszulity nor the Hilbert series of a quadratic algebra
A = A(V, R) is sensitive to changing the ground field.

Remark 1.4. Fix the bases x1,...,2, and r1,...,ry, in V and R respectively. Then A = A(V, R)

is given by the generators x1,...,z, and the relations r1,...,7,. Let Ko be the subfield of K
generated by the coefficients in the relations rq,...,7, and B be the Ky-algebra defined by the
exact same generators x1,...,Z, and the exact same relations rq,...,r,. Then A is Koszul if and

only if B is Koszul (see, for instance, [7]) and the Hilbert series of A and of B coincide. The latter
follows from the fact that the Hilbert series depends only on the set of leading monomials of the
Grobner basis. Now the Grobner basis construction algorithm for A and for B produces exactly
the same result. Thus if a quadratic algebra given by generators and relations makes sense over 2
fields of the same characteristic, then the choice of the field does not effect its Hilbert series or its
Koszulity. In particular, replacing the original field K by its algebraic closure or by an even bigger
field does not change the Hilbert series or Koszulity of A. On the other hand, the PBW-property
is sensitive to changing the ground field [7].

The next lemma admits a natural generalization to the case of algebras with any number n of
generators. We stick with n = 3 since it is the only case we apply it in.

Lemma 1.5. Let A = A(V, R) be a quadratic K-algebra such that dim V' = dim R = 3 and dim Az =
10. Then the following hold:

(1.5.1) If there are linear bases x, y, z in V and f, g, h in R and an order < on the monomials
compatible with the multiplication such that the leading monomials f, g and h of f, g and h
satisfy

{f.9,h} € {{zy,xz,yz}, {yx,yz, a2}, {zy, vz, 2y}, {ya, 2z, 2y}, {yax, yz, za}, {xy, 22, 2y} ). (1.8)

then {z,y,z} is a PBW-basis of A and f, g, h are PBW-generators of I4. In particular, A
is a PBW-algebra and is Koszul. Furthermore, A is a PSA;



(1.5.2) If A is a PBW-algebra with a PBW-basis {z,y,z} and PBW-generators f, g, h, then their
leading monomials f, g and h must satisfy (1.8).

Proof. First, suppose that the assumptions of (1.5.1) are satisfied. It is easy to see that there
are exactly 10 degree 3 monomials which do not contain a degree 2 submonomial from {f, g, h}.
Furthermore, there is exactly one overlap of the leading monomials f, g and h. If this overlap
produces a non-trivial degree 3 member of the Grébner basis of the ideal I4 of the relations of A,
we have dim A3 = 10 — 1 = 9, which violates the assumption dim A3 = 10. Hence f, g and h form
a Grobner basis of 4. Thus A is a PBW-algebra and therefore is Koszul. Now choosing between
the left-to-right and the right-to-left degree-lexicographical orderings and ordering the variables
appropriately, we can assure that the leading monomials of the standard relations xy — yx, xz — zx
and yz — zy of K[z, y, 2] are exactly f, g and h. Since these relations form a Grobner basis of 14,
the Hibert series of A and K[z, v, z] are the same (the Hilbert series depends only on the set of
leading monomials of the members of a Grobner basis). Hence A is a PSA. This concludes the
proof of (1.5.1).

Now assume that A is a PBW-algebra with a PBW basis {z,y, 2} and PBW-generators f, g, h.
Since f, g and h form a Grobner basis of 4, it is easy to see that dim A3 is 9 plus the number of
overlaps of the leading monomials f, g and h of f, g and h. Since dim A3 = 10, the monomials f, g
and h must produce exactly one overlap. Now it is a straightforward routine check that if at least
one of three degree 2 monomials in 3 variables is a square, these monomials overlap at least twice.
The same happens, if the three monomials contain uv and vu for some distinct u,v € {z,y, z}.
Finally, the triples (uv,vw,wu) and (vu,uw,wv) produce 3 overlaps apiece. The only option left
is for f, g and h to satisfy (1.8). O

Another tool we use is the following elementary and known fact about the varieties of quadratic
algebras. We sketch its proof for the sake of convenience.

Lemma 1.6. Assume that

V is an n-dimensional vector space over K and for 1 < j <d, ¢ : K™ — V2
is a polynomial map. For each b € K™, let Ry = span{q;(b),...,q4(b)}, (1.9)
which defines the quadratic algebra A® = A(V, Ry).

For ke Z,, let
hj = min dim Az.
beK™

Then the non-empty set {b € K™ : dim A = hy} is Zarissky open in K™.

Proof. We can assume that k > 2 (for k € {0, 1}, the set in question is the entire K™). Pick ¢ € K™
such that dim Aj, = hj. Denoting Ib = I 40, we then have dim I, = n* — hy. Note that since I,l;
is the linear span of ug;(b)v, where 1 < j < d, u,v are monomials and the degree of uv is k — 2,
dim I} is exactly the rank of the rectangular n*~2d(k — 1) x n* K-matrix M (b) of the coefficients
of all ug;(b)v. Let My (b),..., Mx(b) be all (n* — hy,) x (n* — hy) submatrices of M (b). For each j,
let 0;(b) be the determinant of the matrix M;(b). Clearly, each §; is a (commutative) polynomial
in the variables b = (b1, ...,by). Obviously,

G={becK":dimA, > h} ={beK™:dimI} <n® —h} ={bec K™ :5,(b) =... = dy(b) =0}

is Zarissky closed. Since dim A, = hy, ¢ ¢ G and therefore G # K™. On the other hand,
if b e U=K"\G, then dimAz < hg. By the definition of hyg, dimAZ > hy and therefore
dim A% = hy.. Thus U = {b € K™ : dim A% = hi}. The required result immediately follows. O



The following result of Drinfeld [4] features also as Theorem 2.1 in Chapter 6 in [7]. To explain
it properly, we need to remind the characterization of Koszulity in terms of the distributivity of
lattices of vector spaces. Let A = A(V,R) be a quadratic algebra. For n > 3, let L,(V,R) be
the finite lattice of subspaces of V" generated by the spaces VFRV"™27F for 0 < k < n — 2 (as
usual, the lattice operations are sum and intersection). Then A is Koszul if and only if L, (V, R) is
distributive for each n > 3 (see [7, Chapter 3]). The mentioned result of Drinfeld is as follows.

Lemma 1.7. Assume that (1.9) is satisfied and U is a non-empty Zarissky open subset of K" such
that dim Ag and dim Ag do not depend on b for b € U. Then for each k > 3, the set

{beU:L;j(V,Ry) for3<j<k are distributive}
18 Zarissky open in K™.

The proof of the above lemma is rather classical. It is a blend of the same argument as in the proof
of Lemma 1.6 with an appropriate inductive procedure. Chiefly, we need the following corollary of
Lemmas 1.6 and 1.7. Recall that if K is uncountable, then we say that a generic s € K™ has a
property P if P is satisfied for all s € K™ outside a union of countably many algebraic varieties
(different from whole K™).

Corollary 1.8. Assume that K be uncountable and (1.9) is satisfied and hy, = bmﬂign dim A for
e m

o0

k € Z,. Then for generic b € K™, H (t) = 3. hitk. Furthermore, exactly one of the following
k=0

statements holds true:

(1.8.1) A’ is non-Koszul for every b € K™ satisfying dim A4 = hz and dim A} = hy;
(1.8.2) A’ is Koszul for generic b € K™,

[e.e]
Proof. By Lemma 1.6, H 41(t) = >_ hyt* for b from the intersection of countably many non-empty
k=0
Zarissky open sets and therefore for a generic b € K™. By Lemma 1.6, U = {b € K™ : dim A} =
hs anddim A} = hy} is a non-empty Zarissky open subset of K™. If A’ is non-Koszul for every
b € U, (1.8.1) is satisfied. Assume now that (1.8.1) fails. Then there is ¢ € U for which A€ is
Koszul. By Lemma 1.7, W, = {b e U : L;(V, Rp) for 3 < j < k are distributive} is Zarissky open
in K™. Since A€ is Koszul, ¢ € Wy, for every k > 3. Since for b from the intersection of W with
k > 3, Ab is Koszul and each W}, is Zarissky open and non-empty, (1.8.2) is satisfied. Obviously,
(1.8.1) and (1.8.2) are incompatible. O

2 Elementary observations

Obviously, multiplying (p,q,7) € K* by a non-zero scalar does not change the algebra QP97". It
turns out that there are non-proportional triples of parameters, which lead to isomorphic (as graded
algebras) Sklyanin algebras.

2.1 Some isomorphisms of Sklyanin algebras

Lemma 2.1. For every (p,q,r) € K, the graded algebras Q%" and QTP are isomorphic.

Proof. Swapping two of the variables, while leaving the third one as is, provides an isomorphism
between QP'%" and Q%P". u

Lemma 2.2. Assume that (p,q,r) € K® and 0 € K is such that 03 = 1 and 0 # 1. Then the graded
algebras QPT" and QP29 are isomorphic.



Proof. The relations of QP97 in the variables u, v, w given by z = u, y = v and z = §?w read
puv + quu + rww = 0, pwu + quw + Orvv = 0 and pvw + quwv + Oruu = 0. Thus this change of
variables provides an isomorphism between QP%" and QP%07. O

Lemma 2.3. Assume that (p,q,7) € K3 and 6 € K is such that 0> = 1 and § # 1. Then the
graded algebras QP" and QY7 are isomorphic, where p' = 0%p + 0q +r, ¢ = 0p + 6%2¢ +r and
r=p+q+r.

Proof. A direct computation shows that the space of the quadratic relations of QP>%" in the variables
u, v, w given by r = u +v +w, y = u+ v + 0%w and z = u + 6%v + Ow (the matrix of this change
of variables is non-degenerate) is spanned by p'uv 4+ ¢'vu + r'ww = 0, p'wu + ¢'uw + r'vv = 0 and
p'ow + ¢wu + r'uw = 0. Thus QP%" and Q7" are isomorphic. O

2.2 Easy degenerate cases

First, if p = ¢ = r = 0, then QP%" is the free algebra and therefore A = Q%" is PBW and
therefore Koszul and has the Hilbert series Ha(t) = (1 — 3t)~!. If exactly two of p, ¢ and r are 0,
then A is monomial and therefore is PBW and therefore Koszul. One easily verifies that in this
case Hy(t) = % If p? = ¢3 = 3 # 0, one easily checks that the defining relations of A form a
Grobner basis in the ideal they generate. Hence A is PBW and therefore Koszul. Furthermore, the
Hilbert series of A is the same as for the monomial algebra given by the leading monomials xx, xy
and xz of the relations of A. It follows that again H(t) = % If r =0 and pg # 0, Lemma 1.5
yields that A is PBW (and therefore Koszul) PSA. The latter means that Hq = (1 —t)73. As
a matter of fact, A in this case is the algebra of quantum polynomials. These observations are

summarised in the following lemma.

Lemma 2.4. The Sklyanin algebra A = QPP is PBW and therefore is Koszul if v = 0, or if
p=q=0, orifp> = ¢> =13 Moreover, Ho(t) = (1 =3t) L ifp=q=1r =0, Ha(t) = 11_+2tt if
ezactly two of p, g and r are 0 or if p> =q®> =13 #0 and Hy = (1 —t)"3 if r =0 and pq # 0.

2.3 The Hilbert series of the dual algebra
Lemma 2.5. Let (p,q,r) € K and A = QP%". Then the Hilbert series of A' is given by

143t ifp=q=r=0;
Hy(t) = 11+—_2tt if p? = ¢ =13 # 0 or exactly two of p, g and r equal 0; (2.1)
(1+1t)®  otherwise.

Moreover, Ayw # {0} for each non-zero w € A} provided H 5 (t) = (1 +1)3.

Proof. If p = q = r = 0, the result is trivial. If p3 = ¢3 = r3 # 0 or exactly two of p, ¢ and r equal
0, Lemma 2.4 yields that A is Koszul and H(t) = £, By (1.2), Ha(t) = 12 If r = 0 and
pq # 0, then Lemma 2.4 yields that A is Koszul and Ha(t) = (1—¢)73. By (1.2), H i (t) = (1+1)3.
Thus (2.1) holds if r =0 or p? = ¢ =13 or p = ¢ = 0.

Now consider the case r # 0, (p,q) # (0,0) and pg = 0. By Lemma 2.1, A is isomorphic to S%*
for some s # 0. The defining relations of A' in this case can be written as yz =0, zz =0, zy = 0,
Ty = —%zz, yy = —szx and xx = —syz. Applying the non-commutative Buchberger algorithm, we
get that the (finite) Grobner basis of the ideal I, of the relations of A' is

yr, Tz, 2Y, XY+ %zz, yy + szx, xx 4+ syz,

yzx—i—%zzz, 22T,  YZZ, ZZEX, YZzZ, ZZZZ.
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Then the only normal words are x, ¥y, 2, zx, Yz, 2z and zzz and therefore H 4 (t) = 1+3t+3t2+13 =
(1 +t)3, which proves (2.1) in the case r # 0, (p,q) # (0,0) and pg = 0.

Thus it remains to consider the case when pgr # 0 and p? = ¢ = 72 fails. In this case A is
isomorphic to S%* with as # 0 and (a3, s3) # (—1,—1). The defining relations of A' then can be
written as xx = Zzy, vy = —%zz, yr = S2z, yy = —szx, ¥z = —azzx and yz = —%zy. A direct
computation shows that

1
rr— 22y, Y+ S22, yr — L2z, Yy -+ szz,

Tz + azz, yz+ézy, Z2Y, REZX, RZZZ

is a Grobner basis of I4:. The only normal words are x, y, 2, zx, 2y, 2z and zzz. Again, we have
Hy(t) =14 3t + 3t + 3 = (1 + )3, which completes the proof of (2.1).

Assume now that H 4 (t) = (1 +1t)® and w = ax + By + 72z be a non-zero element of A} = V. Tt
remains to show that Abw # {0}. If r = 0, (2.1) yields pg # 0. Then A = S*° with a # 0. It is easy
to see that the one-dimensional space A!3 is spanned by yzxr = zxy = zyz and that every monomial
with at least two copies of the same letter vanishes in A'. Then for ¢ = ayyz + Bizx + My
with a1, 81,11 € K, we have gw = (aaq + 851 + v )yzx. Since (o, B,7) # (0,0,0), it follows
that Abw # {0}. If » # 0, from the above description of the Grobner basis of I, it follows
that the one-dimensional space Ag is spanned by zxx = yyy = zzz and that every monomial
of degree 3 with exactly two copies of the same letter (like zzy or zyz) vanishes in A'. Then
for ¢ = a1z + Bryy + 1122 with a1, 81,71 € K, we have gw = (aay + 881 + y71)z22. Since
(o, B,7) # (0,0,0), it follows that Abw # {0}. O

Note [7] that for every quadratic algebra A = A(V, R) (Koszul or otherwise), the power series
Ha(t)H 4 (t) — 1 starts with t* with k& > 4. This allows to determine dim A3 provided we know
dim A!j for j < 3. Applying this observation together with (2.1), we immediately obtain the
following fact.

Corollary 2.6. Let (p,q,r) € K and A = QP%". Then
27 ifp=q=1r=0;
dimAs =< 12 if p® = ¢® =13 #£ 0 or exactly two of p, ¢ and r equal 0; (2.2)
10 otherwise.

2.4 Lower estimate for Hgpar

Lemma 2.7. For every (p,q,r) € K, dim QR?" > %2("”) for everyn € Z.

Proof. By Remark 1.4, we can without loss of generality assume that K is uncountable (just replace
K by an uncountable field extension, if necessary). For each n € Z., let
d = : di a,b,c'
" (b T On
Clearly, dy = 6. By (2.2), d3 = 10. Obviously, P = Q% 10 = K[z, v, 2] is Koszul and dim P, = 6 =
do, dim P3 = 10 = d3. By Corollary 1.8 and Lemma 2.5, for generic (a,b,c) € K3, A = Q**¢ is
o0 o0
Koszul and satisfies Ha(t) = 3. d,t™ and H 4 (t) = (1+t)3. Now by (1.2), 3 d,t" = (1—t)~3 and
n=0

n=0

therefore d,, = w for every n € Z,. Now the result follows from the definition of d,,. ]

3 Proof of Theorem 0.1

Throughout this section p,¢,r € Kand A = QP9". If p> = ¢* =r3 or p=¢q =0 or r = 0, the
conclusion of Theorem 0.1 follows from Lemma 2.4. We split our consideration into cases. First,
we eliminate easier ones.
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3.1 Case pg=0, (pr,qr) # (0,0)

By Lemma 2.1, we can without loss of generality assume that p # 0 and ¢ = 0. Since r # 0,
A = S%% for some s # 0. It turns out that in this case, the Grébner basis of the ideal I4 of the
relations of A is

1 1 2 1
TT — LYz, TY — S22, YY — AT, TZT —23 22y, T2z — FY2Y,

YIT — 8222, TIYZ — SSZZYT, Y2YZ — SPZ2ZT, Yrir — 22ZZY.

None of the leading monomials of the members of this basis starts with z. It follows that the set
of normal words is closed under multiplication by z from the left. Hence zu # 0 for every non-zero
u € A and therefore A has no non-trivial right annihilators.

Since the set of leading monomials depends neither on s nor on the underlying field K, we have
Hj = Hp, where B = §%1 = Q10— i5 a C-algebra. Let 6 = ¢2™/3 € C. Using Lemma 2.3, we see
that B is isomorphic to Q°. By Lemma 2.4, Hg(t) = (1 —t)~3 and therefore H(t) = (1—1t)73.
By Lemma 2.5 and Corollary 1.3 A is Koszul, which completes the proof of Theorem 0.1 in this
case.

3.2 Casep’=¢#0,7r#0

In this case A = S%* with a® = —1 and s # 0 and the Grobner basis of the ideal of the relations
of Ais

1

Tr — Yz + G2y, wY —ayx — szz, w2 — L2k = Yy, yyz + L2y, Y2z + 522

None of the leading monomials of the members of this basis starts with z. As above, it follows that
zu # 0 for every non-zero u € A and therefore A has no non-trivial right annihilators.

It is easy to describe the normal words. Namely, they are the words of the shape z*(yz)ly™a®
with k,l,m € Z; and € € {0,1}. Now one easily sees that the number of normal words of degree
n is exactly the number of pairs (k,m) of non-negative integers satisfying k& + m < n, which is
%2(7”2). Indeed, for every k,m € Z, satisfying k£ + m < n, there are unique [ € Z, and
e € {0,1} for which the degree of z*(yz)'y™z* is n. Hence Hx(t) = (1 —t)~3. By Lemma 2.5 and

Corollary 1.3 A is Koszul, which completes the proof of Theorem 0.1 in this case.

3.3 Case (p* —1°)(¢* — %) =0, (p* —*,¢* — %) # (0,0) and pgr # 0

By Lemma 2.1, we can without loss of generality assume that p? = r3. Now by Lemma 2.2, we
can without loss of generality assume that p = r. Hence A = S%~!, where a # 0 and a® # —1.
Unfortunately, in this case the Grobner basis of the ideal of the relations of A does not appear to
be finite. However there is a way around that. Namely, computing the Grobner basis of the ideal of
the relations of A = S%~! up to degree 4 (there are 2 elements of degree 3 and 2 elements of degree
4), one easily verifies that g = yzx — zzz, is cyclically invariant element, and that it commutes with
one variable, hence it is central in A. Now let B = A/I, where [ is the ideal in A generated by g.
Now the Grobner basis of the ideal of the ideal of the relations of B is

$2—l—yz—azy, my—ayw—{—z?, :L'z—%2$—%y2, yZ$—z3, y21:—zyz, y%—ayzy—k%zyz—{—%zzx,

yeyz—ayz?y+23z, yryr—Ltyl—123y, yryPtyla—azt, yrtyzd-azyL?,
y2ryr—Ltyt4Liyz—2ty, y2yP—2tyx, y2By—2te, y2lyzy—Lyzte— 52354 Lty
Y22yt Lyty—L23yy—2ta, y25—20y, yelyz—25y?, yelyP+yPe—a?2dyataz’.

Yet again, none of the leading monomials of the members of this basis starts with z. Hence
zu # 0 in B for every non-zero u € B. Note that the set of leading monomials depends neither
on a nor on the underlying field K. Let C be the algebra A in the case K = C and a = 2 and
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D be the corresponding algebra B: D = C/{g). Since C = Q72! Lemma 2.3 yields that C
is isomorphic to QL0 where § = 227/3_ In particular, C being isomorphic to the algebra of
quantum polynomials in 3 variables has no zero divisors and satisfies Ho(t) = (1 — ¢)~3. Hence
D, being a factor of C' by a central element of degree 3, satisfies dim Dy = 1, dimD; = 3,
dimDy; = 6 and dimD,, = dimC,, — dimC),,_3 = 3n for n > 3. Since Hg = Hp, we have

o0
Hp(t) = 1+ > 3nt. Now since B is a factor of A by a central element of degree 3, we have

dim A, < dinrqll Aln,g + dim B, = dimA,_3 + 3n for n > 3 and all these inequalities turn into
equalities precisely when ¢ is not a zero divisor. Solving these recurrent inequalities and using the
initial data dim Ag = 1, dim A; = 3, dim A2 = 6, we get dim A,, < % for n € Z, and all
these inequalities turn into equalities precisely when g is not a zero divisor. Combining this with
Lemma 2.7, we conclude that H4 = (1 —¢)~2 and that g is not a zero divisor in A.

Now assume that there is a non-zero homogeneous element of A satisfying zu = 0. Then there
is such an element u of the lowest degree. Since zu = 0 in B, we have u = 0 in B. By definition of
B, there is v € A such that u = vg in A. Then zvg = 0 in A. Since g is not a zero divisor zv = 0
in A. Since v is non-zero and has degree lower (by 3) than u, we have arrived to a contradiction.
Hence zu # 0 in A for every non-zero u € A and therefore A has no non-trivial right annihilators.
By Lemma 2.5 and Corollary 1.3 A is Koszul, which completes the proof of Theorem 0.1 in this
case.

3.4 Main case pqr(p® —r®)(¢> — ) (p® — ¢®) # 0

In this case A = S%° with as(a® + 1)(s® + 1)(a® — s3) # 0. For the sake of brevity, we use the
following notation
a=a’+1 and =35 +1.

The above restrictions on a and s yield af(a — 8)(a —1)(8 — 1) # 0. In this case

a;[f yzx — Szyx + a’%ﬁzzz

9 =yyy +

is a non-zero central element in A. It is given in [1] and reproduced in [3]. In fact it is straightforward
(we have done it to be on the safe side) to verify that g is indeed non-zero and central by computing
the members of the Grébner basis of the ideal of the relations of A up to degree 4. Now we consider
the algebra

B = A/I, where [ is the ideal in A generated by g.

In other words, B is given by the generators z, y and z and the relations

T = %yz - 52y, (3.1)
Ty = ayr + szz, (3.2)
xz=1yz— Say (3.3)
yyy = 70‘5%53/21: + Szyx — O“%ﬂzzz, (3.4)

where the first three of the above relations are the defining relations of A. Resolving the overlaps
xxy, xxz and yyrz, we obtain further 3 relations holding in B:

2
YYyr = —%yzz —+ %zyz — %zzy, (35)
2
yyz = aa_aﬁyzy — %zyy — 7@(23,8) zZzx, (3.6)
>—af+° _ s(e?~ap+p’—a’p) a(a?—apf+5?) 2—af+p2—a?p
Tlap) YT = T YRRt aataspy AR T o) AR (3.7)

Note that (3.4), (3.5) and (3.6) correspond to all degree 3 members of the Grobner basis for the
ideal of the relations of B, while (3.7) is just one degree 4 member of the same basis.
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Next we consider the graded right B-module
M = B/zB.
The reason for doing this is apparent from the following lemma.

Lemma 3.1. The following implications hold true

Hy(t) =1+2t+ > 3t" = Ha(t) = (1—1)"3 and A is Koszul. (3.8)

n=2

n=2anddimM; <3 for2<j<n = dimM; =3 for2<j<n. (3.9)
Proof. Clearly,

dim B; = dim2B;_1 + dim B;/2B;_1 = dim2Bj_1 + dim M; for j > 1
Hence

dim B; < dim Bj_1 +dim M; for j > 1
dimB; =dim B;_1 + dimM; <= zu#0 for ue B;_; \ {0}.

Since, obviously, dim My = dim By = 1 and dim M; = 2, the above display yields

provided n > 2 and dim M; < 3 for 2 < j < n, we have
dim B; < 3j for 1 < j <

(3.10)
dimB; =3jfor1<j<n < {

dim M; = 3 for 2 < j < n and
zu;éO1anoru€B\{0}w1thdegu<n.

Since g is central in A and is a homogeneous element of degree 3, we have
dim A; = dimgA;_3 +dimA;/gA;_3 = dimgA;_3 +dim B; for j > 3.

Since dim Ag = dim By = 1, dim A; = dim B; = 3 and dim As = dim By = 6, the above display
yields

provided n > 3 and dim B; < 3j for 1 < j < n, we have
dlmAj<WforO<j\

. A (3.11)
dimAj:MforOQjén@ {

dim B; = 3j for 1 < j <n and
gu#OlnAforuEA\{O} with degu <n — 3.

Combining (3.10) and (3.11), we get

provided n > 3 and dim M; < 3 for 2 < j < n, we have
dimfb-é%forogj\
dimM; =3 for 2 <j<n, (3.12)
dimAj:wforogjgn@ zu # 0 in B for u € B\ {0} with degu < n,
gu#0in A for u € A\ {0} with degu < n — 3.

On the other hand, be Lemma 2.7, dim A; > W for each j € Z,. Thus (3.12) can be
rewritten as follows:

provided n > 3 and dim M; < 3 for 2 < j < n, we have
dimAj:wforO < n, dlmM =3for2<j<n,
zu;éOianoruEB\{O}w1thdegu<n

and gu # 0 in A for u € A\ {0} with degu < n — 3.

(3.13)
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o0
Obviously, (3.9) is a direct consequence of (3.13). Now assume that Hps(¢) = 1+ 2t + > 3t™.
n=2
By (3.13), Ha(t) = (1 — )73, zu # 0 in B for every u € B\ {0} and g is not a zero divisor in A.
Now we shall show that zu # 0 for every u € A\ {0}. Assume the contrary. Then there is the
minimal n € N for which there exists u € A,, \ {0} satisfying zu = 0 in A. Hence zu = 0 in B.
Since we already know that z is not a left zero divisor in B, v = 0 in B. Hence there is v € A such
that u = vg in A. Since v # 0 in A, we have v # 0 in A. Since 0 = zu = zvg in A and g is not a
zero divisor in A, we have zv = 0 in A. Since degv = degu —3 =n — 3 < n, we have arrived to a
contradiction with the minimality of n. Thus zu # 0 for each u € A\ {0} and therefore A has no
non-trivial right annihilators. By Lemma 2.5, H 4(t) = (1 +¢)3. Hence Ha(t)H 4 (—t) = 1. Now
Corollary 1.3 implies that A is Koszul, which completes the proof. O

According to Lemma 3.1, the proof of Theorem 0.1 will be complete as soon as we prove that
Hy(t) =1+2t+ Z 3t™. The rest of this section is devoted to doing exactly this by means of

applying the Grobner basis technique. The second part of Lemma 3.1 is just a tool which spares
us from doing some of the calculations. We start by describing the typical situation in which the
components of M find themselves.

For n € Z,, we say that condition Q(n) is satisfied if

dim M; =3 for 2 < j <n+ 3, yz""'V = M, ;3 and there are p,, ¢n, m» € K such that

y2yr = —Gpay2 2, ytyy = —Leuy e, yetyz = argyztly, (3.14)

where (3.14) consists of equalities in M.

First, observe that if Q(n) is satisfied, y2z"*2, y2"*1x and yz"*ly are linearly independent in
M and therefore the numbers p,,, g, and r, are uniquely determined. Next, using (3.4), (3.5) and
(3.6), one easily sees that

Q(0) is satisfied with py = g, g = O‘Tgﬁ and ro = ;%5. (3.15)

Lemma 3.2. Assume that Q(n) is satisfied. Then the following equations hold in M :

1,1 a2 2 43
bn yz y:L‘ = ——QCTL yz and bn yz yw = —Tcn yz
bn yz yy = —7cn yz 2z and bn yz yy =1 yz (3.16)
bolyzlyz = acylyz" 2y and b2yz"tlyz = acy yz"*zy,
where

b’ = aa —1)r, = Bla —1), en' = Bla—1)p + (B —1)(a = B),

bgj = Bla— >qn (a ~ D=+ (@=1B, e’ =88~ Dan— (B-1)(a=B),

b31 (a B)Qn_ (04_ 1)Tn+(a_/6)7 Cgl = _(a ﬁ)Qn+a(ﬁ_ 1)7

by ( _B)Tn_aa ¢ = ap, — 3,

bbe—aqn—B(a—l)rn—i-a, ? = agn + B

Moreover (b%l,cil,b22 2 ) # (0,0,0,0) and (bil,cil,bi2,cn ) (0,0,0,0). Furthermore, if
(b, ) # (0,0), (b3, 622) #(0,0) and (b2, b3?) # (0,0), then Q(n + 1) is satisfied.

Proof. The equalities (3.16) are obtained by resolving (and reducing) the overlaps (yz* ya;)z =
y2hy(xz), (y2"yy)y = y2"(yyy), (yzbyx)e = y2y(ax), (y2hyy)z = y2F(yyz), (y2Fyz)y = y2ty(ay)
and (yzFyy)z = y2*(yyz) respectively using (3.14) and (3.1-3.6).

Now, let us show that (b%’l,cil,b%2, %2) # (0,0,0,0). Assume the contrary: bl = 21 =

_ o a—p

b%’2 = c%’Q = 0. According to (3.17), these equalities yield p, = g, In = “F ™n = Fla=D) and
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a? — aB + % — afB? = 0, which together with (3.17) imply that =t =0, = % #0,

P =af £0, e = —w 2 0and by = —a(a—f) # 0 (recall that a8(a—B)(a—1)(8—1) # 0).
Hence the two equations in the first line of (3.16) are linearly independent and so are the two
equations in the third line of (3.16). Thus (3.16) yields yz""lyz = y2"*3 = y2"Tlyz = y2"T2y =0
in M. Since M, 3 is spanned by yz" "1z, 42"ty and yz"*2, these equalities imply that M, 4 is
spanned by yz"tlyy and y2""?z. Hence dim M, 14 < 3, while dim M; < 3 for j < n+ 3. We have
arrived to a contradiction with (3.9), which proves that (bq%jl, 2t b2 C?L’Q) #(0,0,0,0).

Next, let us show that (bz’l,ci’l,bi’Q,ci’Q) # (0,0,0,0). Assume the contrary: b3l = St =
b2? = &% = 0. According to (3.17), these equalities yield p, = —q, = 5, rn = ﬁ and
a? —af+ B2 —a?B = 0, which together with (3.17) imply that at=b2 =0, = Bla—pB) #0,
bt = Oﬂi(faﬁ_l) # 0 and ch? = —af(f —1) # 0. Since el = 0, bt # 0 and cl? # 0, the

two equations in the first line of (3.16) are linearly independent. This together with be' = 0 and
&'+ 0 implies that y2"lyz = y2"+2z = y2"+3 = 0 in M. These equalities together with the fact
that M, 3 is spanned by yz"Tlz, yz"*ly and y2"*? implies that M, 4 is spanned by yz"tlyy,
y2z""lyz and yz"*2y. Resolving the overlaps (yz""2x)x = yz"2(xx), (y2"22)y = y2""2(zy),
(yz"122)z = y2"T2(x2), (yz"Myz)z = y2"My(ex), (y2"Mye)y = y2"My(ey) and (y2"Tyz)z =
y2""ly(z2) by means of the relations yz"*lyr = y2" "2z = y2"™3 = 0 in M and (3.1-3.6) in B
we get, respectively, that the equalities yz"T2yz = 0, yz"2yz = 0, y2"2yy = 0, yz"Tlyzy = 0,
yz"yzz = 0 and y2z"tlyzz = 0 are satisfied in M. These equalities together with the fact that
M, 44 is spanned by yz"Tlyy, y2"yz and y2" 2y yield M, 5 = {0}. Again, we have arrived to a
contradiction with (3.9), which proves that (bf’l’l, A A 02’2) #(0,0,0,0).

Finally, assume that (by',by?) # (0,0), (ba',b57%) # (0,0) and (b, bp?) # (0,0). Then (3.17)
yields the existence of pp+1, gnt1 and r,y; in K such that (3.14) with n replaced by n + 1 is
satisfied. By Q(n), yz"*'V = M, 3. Hence yz""'V? = M, ,4. Using (3.1-3.3) and (3.14) with n
replaced by n + 1, one easily sees that y2" 2V = M, 4. In particular, dim M, 4 < 3 and therefore
dim My 44 = 3 by (3.9). Hence Q(n + 1) is satisfied. O

oo
Lemma 3.3. Assume that Q(n) is satisfied and p, = —qn = r, = g Then Hpy(t) = 142t+ > 3t™.

n=2
Proof. 1t is easy to check that in the case p, = —q, = r, = g, the equations (3.17) provided by
Lemma 3.2 read y2"3 = 0, y2"ly = 0 and y2""yy = Ly2""2z (in M). It follows that M4
is spanned by yzFtlyz, y2FT22 and yz¥+2y. Now using the relations (3.1-3.6), it is easy to verify
that M, 5 = M,+4V is spanned by yzFT2yz, yzFT2yy and y2z*t2yz. That is, M, 5 = yzF2yV.
Since yz*™3 = 0 in M, it follows that if u € B and yu = 0 in M, then yz¥™2yu = 0 in M.
Applying this observation to u € By and using the equality M, 4 = yz"*T2yBy, (follows from
M5 = y2"*29V), we get dim M4 441 < dim Mgy, for k& € N. Since Q(n) is satisfied and since
we have already checked that M, 4 and M, 15 have 3-element spanning sets, we get dim M; < 3
for j < n+5. Now the inequality dim M, 441 < dim My, for k € N yields dim M; < 3 for all j.

o0

Now by (3.9), Hy(t) =142t + > 3t™. O

n=2

o0
Lemma 3.4. Assume that o® —af + 32 =0. Then Hy(t) =1+ 2t + Y 3t™.

n=2

a’

Proof. By (3.15), £(0) is satisfied with py = B g0 = O‘Tgﬁ and rg = ai_ﬁ Using o? — af + 32 = 0,

we see that pg = —qg =109 = g It remains to apply Lemma 3.3. O

Lemma 3.5. Assume that o? — af + B2 # 0 and Q(n) is satisfied. Then

Pulgn +1) = ra((@ = Dpn — (B = 1)) = gn(ra — 1). (3.18)
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Proof. Let bZL’k and de be the numbers defined in (3.17). By Lemma 3.2, (bi’l,c%’l,bi’2,c%’2) #
(0,0,0,0) and (bi’l, At b2, ci’z) # (0,0,0,0). Furthermore, the equality A
0 implies &® — a8 + % = 0 and therefore (b};l, et b2, c};2) # (0,0,0,0). Thus each of the lines in
(3.16) contains at least one non-trivial equation. It is a matter of straightforward verification that
if in any of the lines the two equations are linearly independent, then dim M, .4 < 3 and we arrive
to a contradiction with (3.9). Thus each of the matrices

L1 1,1 21 21 31 3,1
12 12 |> 22 22 and 3,2 3,2
by, (% br Cn by Cn
is degenerate. Hence the determinants of the matrices in the above display equal 0. Plugging in
the explicit expressions (3.17) for bﬁ{k and cﬁ{k and simplifying, we arrive to the system

0=a?pn(gn +1) — afrp((@ = 1)pn — (B = 1)) — a(a = B)gn(rn — 1);
0= (Ct - /B)pn(Qn + 1) - arn((a - 1>pn - (ﬂ - 1)) + BQR(Tn - 1);
0=pB(a—=1pn(gn+1) = (= B)rn((a = 1)pn — (B —1)) = (B — 1)gn(rn — 1).

This is a system of linear equations on the variables p,(¢n+1), 7 ((a—1)p,—(8—1)) and ¢, (r, —1).
The third equation is always a linear combination of the first two, while the first two equations are
linearly independent precisely when a? — af + % # 0. Now it is easy to see that this system is
equivalent to (3.18). O

Lemma 3.6. Assume that Q(n) is satisfied, o® — af + 32 # 0 and

s anora) ¢ {(2-2.2), (-950857 55 5tetn) (@it “6 %) )

Then Q(n + 1) is satisfied.

Proof. Let bi* and ¢&* be the numbers defined in (3.17). Using the equation (3.18) provided by
Lemma 3.5 together with (3.17), we easily obtain that

b71’L’1 = b11172 =0 < (menarn) = (é -8 é)’

b?{l = bgf =0 <~ (pnan’/“n) = (_(,3—1)(04—5) ef o-p );

3,1 _ 13,2 __ _
bn _bn =0 <~ (pna(hlarn) - ((Ozfl)(a*ﬂ)’ a—

By Lemma 3.2, Q(n + 1) is satisfied if (by', by?) # (0,0), (b, b27) # (0,0) and (b, b5%)  (0,0).
Hence the above display yields the required result. O

Lemma 3.7. Assume that Q(n) is satisfied, o®> — aB + 32 # 0 and

_ B-D(a=p) a=f _a=
(P> Gn>n) = <_Wa B m)

Then Q(n + 2) is satisfied.

Proof. Plugging p, = —%, Gn = O‘Tgﬁ and r, = /G,E"a;fl) into Lemma 3.2, we see that the

equations (3.16) read yz"Tlyxr = 0, y2" 2z = 0 and y2"yz = ayz" 2y in M. It follows that M, 4
is spanned by yz"*3, y2"Tlyy and y2"*2y. Using the equation yz"*lyz = 0 together with (3.1-
3.3), we can resolve the overlaps (y2""2x)x = y2"2(zx), (y2"2x)y = y2"2(2y) and (y2"22)z =
y2""%(2z) to obtain that yz""2yx = — Syt y2"T2yy = Lyan g and y2"Pyz = ayz" Py, It
also follows that M, 5 is spanned by yz"**, 32"*3y and y2""3z. By (3.9), M, 4 and M, 5 are
3-dimensional. Thus Q(n + 2) is satisfied with pj,4o = Z—i = %, Gni2 = —1 and 7,40 = 1. d

17



Lemma 3.8. Assume that Q(n) is satisfied, o* — aff + 32 # 0 and

_ a(B=1)  of=1) _a
(Pns @nsTn) = ((a—l)(a—ﬁ)’ a3 aafg)-

Then Q(n + 3) is satisfied.

Proof. Plugging p, = %, Gn = Q&B__ﬁl) and r, = QL_B into Lemma 3.2, we see that the

equations (3.16) read yz""lyzr = —2yz"3, y"tlyy = 0 and yz""?y = 0. It follows that
M,4 is spanned by yz"t3, yz"*t2z and yz"tlyz. Using the equation yz"tlyy = 0 together
with (3.1-3.6), we can resolve the overlaps (yz"Tlyy)z = yz" (yyz), (y2" yy)y = y2"(yyy)
and (yz""lyy)z = yz"Tl(yyz) to obtain that yz"tlyzz = —Llyant3y yentlyzg = —gyzntd

and yz"tlyzy = Z—iyz”“‘Sx. Now M, 4 is spanned by yz"t4, 42”3y and y2"™3z. On the
next step we resolve the overlaps (yz""lyzz)z = y2" yz(z2), (yz"lyza)z = yz"lyz(zx) and
(yz"Tlyzy)x = yz"(yzyz) with the help of (3.1-3.7) and the above equations in M (note
that (3.7) is needed to resolve (yz"lyzy)r = yz”“(ygyw) and that it can be used because

o —aff+B% # 0) to obtain respectively that yz""3yx = =%y 3yz"1°, y2"Byy = —Lagnisy"Ta
and y2"P3yz = ar, 3y2" Ty with p,i3 = —%, Qi1 = % and 7, = g It also fol-

lows that M, ¢ is spanned by y2"*°, y2z" 4y and yz"*t*z. By (3.9), M,14, M, 15 and M, ¢ are
3-dimensional. Thus Q(n + 3) is satisfied. O

[o¢]
Lemma 3.9. The Hilbert series of M is given by Hyr(t) =142t + > 3t™.
n=2

Proof. If o® — a3 + B? = 0, the result is provided by Lemma 3.4. For the rest of the proof we shall
assume that o — af + B2 #0. If

there exists n € Z4 such that Q(n) is satisfied and p, = —¢, =, = g

)

the result is provided by Lemma 3.3. Thus for the rest of the proof we can assume that the
condition in the above display fails. Now by Lemmas 3.6, 3.7 and 3.8, if Q(n) is satisfied, then
Q(m) is satisfied for some m € {n + 1,n 4+ 2,n + 3}. By (3.15), Q(0) is satisfied. Hence Q(n)
is satisfied for infinitely many n. It follows that dim M; = 3 for j > 2. Since dim My = 1 and

o0
dim My = 2, we have Hy/(t) =1+ 2t + ) 3t™. O
n=2

Direct application of Lemmas 3.9 and 3.1 conclude the proof of Theorem 0.1.

4 Proof of Theorem 0.2

We need the following elementary fact.

Lemma 4.1. Assume that the equation t*> +t+1 = 0 has no solutions in K and p,q,r € K satisfy
PP+ +rP=pr+qr+pg. Thenp=gq=r.

Proof. The equality p?+q?+12 = pr+qr+pq can be rewritten as (p—¢)%+ (¢—7)? = (p—q)(g—7).
Assume that p = ¢ = r fails. Then either p — g #% 0 or ¢ — r # 0. Without loss of generality, we
can assume that p — ¢ # 0. Then the equality (p — ¢)? + (¢ — r)?> = (p — ¢)(¢ — r) implies that
t24+t+1=0fort= g. We have arrived to a contradiction. ]

The next lemma deals with necessary conditions for S%® to be PBW.

Lemma 4.2. Assume that a,s € K are such that s # 0, (a®,s%) # (—=1,-1) and A = S** is PBW.
Then (1 — a)® = s and the equation t*> +t +1 =0 has a solution in K.
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Proof. Pick a PBW basis u,v,w in V for A and the corresponding PBW-generators f,g,h € R.
Let f, g and h be the leading (with respect to the corresponding order >) monomials of f, g and h.
Without loss of generality, we may assume that u > v > w and f > g > h. By (2.2), dim A3 = 10.
By the second part of Lemma 1.5,

h € {vw,wv} and {z,ﬁ} € {{uv, uw}, {vu, vw}, {vu, wu}} ifE: vw,
{f,g} € {{uv,uw}, {vu, wu}, {uv, wu}} if h = wv.

Since there is no degree 2 monomials greater than uu, uu does not feature at all in any of f, g
or h. Since f, g and h span R, uu does not feature in any element of R. In particular it does not
feature in the original relations 1 = yz — azy — sxx, 19 = 2x — axz — syy and r3 = Ty — ayxr — szz,
when written in terms of the variables u, v, w. Since u, v and w form a basis in V, there are unique
t1,t2,t3 € K such that x € tju+ L, y € tou+ L and z € tgu + L, where L is the linear span of v
and w. Since x, y and z form a basis of V' as well, (¢1,t2,t3) # (0,0,0). Plugging this data into the
definition of r; we see that the uu-coefficients in 71, ro and r3 (when written in terms of u, v and w)
are (1—a)tats — st3, (1 —a)tits — st3 and (1 —a)tits — st2 respectively. On the other hand, we know
that r1, ro and r3 do not contain uu. Hence (1—a)tats—st? = (1—a)tit3—st3 = (1—a)tita—sts = 0.
If t1 = 0, we get st% = st2 = 0 and therefore ty = t3 = 0 (recall that s # 0). This is not possible
since (t1,ta,t3) # (0,0,0). Thus ¢; # 0. Similarly, t2 # 0 and t3 # 0. Multiplying the equalities
(1 — a)taty = st2, (1 — a)titz = st and (1 — a)tity = st3, we get (1 — a)3(t1tat3)? = s3(titats)?.
Since t1tats # 0, it follows that (1 — a)3 = s3.

It remains to show that the equation t? +¢ 4 1 = 0 has a solution in K. This certainly happens
if K has characteristic 3. Thus for the rest of the proof we can assume that the characteristic of
K is different from 3. Assume the contrary: there is no ¢t € K such that t* +¢+ 1 = 0. Since
t3—1= (t—1)(t>+t+1), 1 is the only solution of the equation 3 = 1. Since (1—a)? = 53, it follows
that s = 1 —a. Since s # 0 the equalities (1 — a)tats — st? = (1 —a)tity — st3 = (1 —a)tita—st3 =0
yield tots — t% = t1t3 — t% = t1ty — t?,, = 0. Since t; are non-zero, from tst3 = t%, we get t3 = g
Plugging this into tit3 = t3, we obtain 3 = t3 and therefore t; = t. Similarly, to = t3. Thus
t1 = to = t3 # 0. Then without loss of generality, we may assume that ¢; = to = t3 = 1. The
expressions for x, y and z in terms of u, v and w now look like x = v + pv + aw, y = u + qv + Sfw
and z = u+7rv+~yw, where the coefficients are from K. Since both {z,y, z} and {u,v,w} are linear
bases in V,

(4.1)

1
the matrix C'= | 1 is invertible. (4.2)
1

SR I3
=2 @® 9

By (4.1), h € {vw,wv}. Since each of the monomials uv, vu and vv is greater than each of vw
and wv, h should not contain wv, vu and vv. Since ri, ro and rg form a basis in R, h is a non-
trivial linear combination of r1, 79 and r3. It follows that the 3 x 3 matrix M of the coefficients
in front of uv, vu and vv in rq, r9 and rg written in terms of u, v and w must be non-invertible.
Plugging t =u+pv+aoaw, y=u+qu+ f and z = u + rv + yw into r; = yz — azy — (1 — a)zx,
ro = zx —axz — (1 —a)yy and r3 = 2y — ayr — (1 — a)zz (recall that s = 1 — a), we easily compute
this matrix and then its determinant:

g—ap+(a—1)r p—ag+(a—1r (1-a)lpg—r?)
M=|p-—ar+(a—1)q r—ap+(a—1)q (1—a)lpr—q?) and
r—ag+(a—1)p g—ar+(a—1p (1—a)(gr—p?
det M = (a — 1)%(a+ 1) (P> + ¢® + % — pg — pr — qr)>.

Since det M = 0 and we know that a # 1 (otherwise s = 0), we have that either a = —1 or
P>+ q®+ 1% = pg+ pr+ qr. By (4.2), the equality p = g = r fails. If p> + ¢> + 12 = pq + pr + qr,
Lemma 4.1 implies then that the equation t*> + ¢ + 1 = 0 has a solution in K.
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It remains to consider the case a = —1. Then s =1 — a = 2. Since s # 0, char K # 2. We have
r1 =Yz + 2y — 2xx, 10 = zx + vz — 2yy and r3 = ry + yxr — 22z and therefore r; are symmetric.
Since a linear change of variables does not break the symmetry, r; remain symmetric when written
in terms of u, v and w. It follows that f, g and h, being linear combinations of r;, are symmetric
as well. Since h € {vw,wv} and uv > vv > vw, vw > vw, vu > vv > wv and wu > wv, h does
not contain either uv, uw and vv or vu, wu and vv. Since h is symmetric, it does not contain uw,
uw and vv in any case. Since h is a non-trivial linear combination of r;, it follows that the 3 x 3
matrix N of the coefficients in front of uv, uw and vv in r1, r9 and rg written in terms of u, v and
w must be non-invertible. Plugging x = u + pv + aw, y = v+ qu + f and z = u + rv + yw into
r=yz+ zy — 2xx, ro = zx + xz — 2yy and r3 = xy + yxr — 222, we easily verify that

p+q—2r a+pB-2y 2(pg—r?)
N=| p+r—2¢ a+vy—-28 Z(pr—q) , detN:6(p2—|—q2+7“2—pq—pr—qr)detC,
qg+r—2p B+v—2a 2(qr—rp )

where C'is the matrix defined in (4.2). Since the characteristic of K is neither 2 nor 3, C' is invertible
and N is non-invertible, it follows that p?> + ¢> + r> = pq + pr + qr. As above, an application of
Lemma 4.1 yields that the equation t? 4+ ¢ 4+ 1 = 0 has a solution in K. 0

Lemma 4.3. Assume that the equation t> +t +1 = 0 has a solution in K and a,s € K are such
that s # 0, (a3,s%) # (—1,—1) and (1 — a)® = s*. Then A = S** is PBW.

Proof. First, we consider the case char K = 3. In this case the equality (1—a)? = s yields s = 1—a.
We shall show that the linear basis u, v, w in V defined by r = u+v4+w, y=u—v, z=wuis a
PBW basis in A. Indeed, consider f =r1, g =1 — ro and h = r{ + ro + r3, written in terms of wu,
v and w, where r1 = yz —azy — (1 —a)axx, ro = zx —azxz — (1 —a)yy and r3 = xy —ayzr — (1 —a)zz
are the defining relations of A. Now it is straightforward to verify that the leading monomials
of f, g and h are uwv, uw and vw, respectively (this relies on characteristic of K being 3 and on
(a3,s%) # (—1,-1)). By (2.2), dim A3 = 10. By the first part of Lemma 1.5, u, v and w form a
PBW-basis of A with PBW-generators f, g and h. In particular, A is PBW.

From now on, we can assume that char K # 3. Let 6 be a solution of the quadratic equation
t2+t+1=0. Then § # 1 and #3 = 1. Since A = §%° = Q= 1%% and s*> = (1 — a)3, Lemma 2.2
allows us, without loss of generality, to assume that s = 1 —a. Then A = Q~5%!=? By Lemma 2.3,
A is isomorphic to Q¥“°, where b=1+6 —a and ¢ = 1 — a(1+6). By Lemma 2.4, A is PBW. 0O

Now we are ready to prove Theorem 0.2. Let (p,q,7) € K3 and A = QP%". If pr = gr = 0 or
p? = ¢ =13, Ais PBW according to Lemma 2.4. For the rest of the prove we assume that these
equalities fail. That is, r # 0, (p,q) # (0,0) and (p® — ¢3,p® — r3) # (0,0). By Lemma 2.1 we can
without loss of generality assume that p # 0. Then A = S%* with s # 0 and (a?,s%) # (—1, 1),
where a = —% and s = —%. If A is PBW, Lemma 4.2 yields that the equation ¢ +t+ 1 = 0 is
solvable in K and s = (1 — a)3. The latter equation is equivalent to (p + ¢)® + r = 0. Conversely,
if (p+q)>+73=0and t?> +t+1 =0 is solvable in K, then s = (1 —a)? and A is PBW according
to Lemma 4.3. This completes the proof of Theorem 0.2.

5 Corollaries on Calabi—Yau property of Sklyanin algebras for var-
ious paprameters

As a byproduct of the exactness of the Koszul complex, we just proved, we can get the following
corollary.

Corollary 5.1. The Sklyanin algebra QP9" is CY if and only if there are at least two non-zero
parameters among p, q¢ and r and the equation p® = ¢® = > fails.
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To explain this we need to remind few facts.

Definition 5.2. An associative algebra A is called n-CY if there exists a projective bimodule
resolution P*® of A such that Hom(P®, A ® A) ~ P"* or, equivalently, the derived category of
A-bimodules satisfies Serre’s duality.

There is a standard way, see, for example, [16] to construct a self-dual complex Cy of A-
bimodules for algebras given by a (super)potential W, using the non-commutative differential.
First, for k < I, we denote by [-,-] : (V*)®* x V& — y®(=k) the bilinear map given by

(P1®...QYrLw ®... 0w =(Pr ®...QP1,W V... R Wk)Wkt+1 X ... R wy,

where (-, -) is the natural pairing on (V*)®¥ x V& coming from the standard identifying of (V*)®¥
with (V&k)*,
When A is potential with the potential W € V®" and 0 < k < n, we define

AY (VB o veeR) AW (g) = [, ).

Then W,,_j, = AV ((V*)®F) is a linear subspace of V®("~*). These spaces allow us to define the
following complex Cyy of A-bimodules:

0 AW, A% —sR2AeW oA S AeWy® A — 0,

where d; = £;(Sg + (=1)7)Sg with e; = (=1)™=) if j < % and e; = 1 otherwise, Sp(a ®
V..., ®b) =avi ®vy...v;@band Sp(a®@v;...v; ®b) =a@v;...vj_1 ®v;b.

It is proved in [16][Lemma 6.5] that this complex is always self-dual and in the case when A is
quadratic, it is a subcomplex of the Koszul bimodule complex, which is the Koszul complex with
the rightmost K removed tensored by A on the right (this turns it into a bimodule complex). In par-

ticular, W; C (A%)* and the corresponding maps match. Moreover, it is shown in [16][Theorem 6.2]

that if A is quad]ratic and Koszul, then A is CY if and only if the complex Cy coincides with the
Koszul bimodule complex. The latter happens if and only if dim W; = dim A!j when j < n and
A!j = 0 for j > n. Now everything boils down to computing the dimensions of W; for Sklyanin
algebras (depending on parameters).

The relations of the Sklyanin algebra QP'?" are the noncommutative partial derivatives of the
potential

W =r(2 +y° + 23) + plazy + zyz + 22y) + q(yxz + z2y + 2y2).

We shall from the start exclude the mega-degenerate case p = ¢ = r = 0. It is easy to see
that for AY . (V93 o K, AV (vazz) = r, AV (2yz) = p and AY (z2y) = ¢, which yields
dim Wy = 1. Next, for AV : V* @ V* = V, we have AV (zx) = rz, AV (2y) = pz, AV (y2) = qz,
AW (yy) = ry, AV (z2) = py, AV (z2) = qy, AV (22) = rz, AV (yz) = pz and AV (zy) = ¢z. Since
(p,q,7) # (0,0,0), the image of ALY contains the basis x, y, z of V and therefore dim W; = 3. For
AV . V* - VeV, we have AV (2) = rox + pyz + qzy, AV (y) = ryy + pza + gzz and AV (2) =
rzz + pxy + qyx. Since these are linearly independent dim Wy = 3. Finally, for Agv K — V3,
AY (1) = W # 0 and therefore dim W3 = 1.

According to Lemma 2.5, dim W; = dim A!j for 7 < 3 and A!j =0 for j > 3 for A = QP?"
whenever there are at least two non-zero parameters among p, ¢ and r and the equation p3 = ¢% = 3
fails. Under these assumptions, the Koszul bimodule complex provides a self-dual resolution, which
ensures the CY property. In the remaining cases, the equalities dim W; = dim A!j break, since
according to Lemma 2.5 H 4 (t) = 12t For instance, dim A = 3 # 1 = dim W3. Hence A is not
CY in these degenerate cases.

This type of argument provides a way to check the CY property using H 4. If one has a Koszul
potential quadratic algebra, then the CY property is equivalent to the equalities dim W; = dim A;
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6 Generalized Sklyanin algebras

Let &€ = (p1, p2, 3, q1, 92, G3,71,72,73) € K. In this section we consider the K-algebras @5 given by
the generators =, y and z and the relations

p1yz + qrzy +rize =0, pozx + qexz +1oyy =0, p3xy + qsyxr + r3zz = 0. (6.1)

We call these generalized Sklyanin algebras. The actual Sklyanin algebras correspond to the case
P1=p2 =pP3, q1 = q2 = q3 and r; = r2 = r3. We will demonstrate that 3-parameter Sklyanin alge-
bras QP'%", coming from nature, are very different and specific, comparing to other their relatives
from the class of generalized Sklyanin algebras. Indeed, seemingly innocuous generalization leads
to a dramatic changes in the behavior.

We know that generic Sklyanin algebras are Koszul PSAs. This is no longer the case for gener-
alized Sklyanin algebras.

Theorem 6.1. For ¢ from a non-empty Zarisski open subset of K?, both A = @5 and A" are finite
dimensional.

Note that when both A = @5 and A' are finite dimensional, their Hilbert series are non-constant
polynomials and therefore (1.2) fails. Thus A is non-Koszul. Hence Theorem 6.1 yields that if K
is infinite, a Zarisski-generic @5 is finite dimensional and non-Koszul. We can actually determine
the minimal Hilbert series of a generalized Sklyanin algebra:

oo
Hmin(t) = Z dntn, where dn = ggﬁ{% dim @%

n=0

Theorem 6.2. If K # Zy (K is not the 2-element field), then the minimal Hilbert series Hyin of
a generalized Sklyanin algebra is given by Huyin(t) = 14 3t + 6t% + 9t3 + 9t*. If K = Zo, then
Hpin(t) = 143t + 612 + 93+ 9t* + 5t° + 5. In any case, there exists a generalized Sklyanin algebra
A such that Hq = Hpyin.

Remark 6.3. By Theorem 6.2 and Lemma 1.6, if K is an infinite field, a Zarissky-generic @5 has
the Hilbert series 1 + 3¢ + 6t2 + 9t3 + 9t* and therefore has dimension 28. If K # Zo, the minimal
dimension of Q¢ is again 28, while for K = Z,, the minimal dimension of Q¢ is 34.

It is possible to characterize PSA among the generalized Sklyanin algebras. The annoying bit
is that the set of leading monomials of the relations depends on the distribution of zeros among
the coefficients. Fortunately many cases are equivalent to each other by means of applying a
permutation of variables (any permutation of variables keeps the shape of the relations and shuffles
the coefficients) and scaling the variables (a substitution which multiplies each variable by a non-
zero constant).

First, we describe the following 4 classes of generalized Sklyanin algebras. Namely, we say that
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for a generalized Sklyanin algebra A,

. A is a Sklyanin algebra A = QP%" with
AePif 6.2
G ) .0.0-0) o 9 19) £ (0.0 62
. A is a generalized Sklyanin algebra, whose relations have the shape
APy if { yz —azy =0, bzx —xz =0, zy — ayx = 0, where a, b, c € K; (6.3)
AP, if A is a generalized Sklyanin algebra, whose relations have the shape (6.4)
yz —azy =0, bzx —zz +yy =0, 2y — ayxr = 0, where a,b € K;
. A is a generalized Sklyanin algebra, whose relations have the shape
A € Py if (6.5)
yz —azy =0, azx —zz+yy =0, zy — ayr — zz = 0, where a € K;
A is a generalized Sklyanin algebra, whose relations have the shape
AePsif yz +0zy 4+ %xx =0, 2z + 0laz + 0?yy = 0, zy + 07yx + 6222 = 0, (6.6)
where 6 € K satisfies §° = 1 and 63 # 1;

AcPif A is a generalized Sklyanin algebra, whose relations have the shape (6.7)
6 vz =0, 0?22 + 2z +yy =0, vy + Oyx + 2z = 0, where 6> = 1. '
Note that while P; for 1 < j < 4 are infinite if K is infinite, P5; and Pg are finite. More

specifically, Ps is empty if K* has no elements of order 9 and contains 6 sets of relations otherwise.
Furthermore these 6 algebras are one and the same since the permutations of the variables act
transitively on the 6-element set of algebras defined in P5. Similarly, if K* has no elements of order
3, Pg contains just one set of relations, while if K* has elements of order 3, Pg contains three sets
of relations. Two of them change one into another under swapping of y and z, thus leaving us with
two (non-isomorphic) algebras. All in all there are at least one and at most three algebras in Ps
and 7)6.

Theorem 6.4. Assume that K is algebraically closed and let A be a generalized Sklyanin algebra.
Then A satisfies Ha(t) = (1—t)73 if and only if the defining relations of A can be turned into that of
an algebra from Pj; for some 1 < j < 6 by means of a permutation of the variables, a scaling of the
variables and a normahzatzon of the relations (multiplying each relation by a non-zero constant).
Furthermore, A is Koszul if j <5 and A is non-Koszul if j = 6.

In other words, Theorem 6.4 says algebras in P; with j < 5 are Koszul PSAs, algebras in Pg are
PSA but non-Koszul, while the classes P; for 1 < j < 6 cover all generalized Sklyanin PSAs up to
a permutation and scaling of the variables.

6.1 Proof of Theorem 6.4

Lemma 6.5. Let K be algebraically closed, & = (p1,p2,p3,q1,q2,G3,71,72,73) € K and & =
(p1,p2,P3,q1, G2, 43,7, 75, 15) € K be such that rirors = rirory and for each j € {1,2,3}, ei-
ther r; :Ar;- = OAOT' rﬂ& % 0. Then there is a scaling of the variables providing an isomorphism
between Q¢ and QS .

Proof. For «, 8,7 € K*, under the scaling substitution z = au, y = fv, z = yw, the defining
relations of Q§ (in terms of u, v and w after a suitable normahzatlon) take form

r1a

prow + qruwv + uu =0, powu + guw + 25 vo =0, p3uv + qzvu + T” ww = 0.

Thus in order to prove that a scaling providing an isomorphism between @5 and @\5/, it suffices to
show that

2 2 2
ne P, rof =¢ and Y _ ' for some a, B,v € K*. (6.8)
By oy of
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First, assume that at least two of r; are non-zero. Without loss of generality, ror3 # 0. Then

102
rhrh # 0. Since K is algebraically closed, there is 3 € K* such that 8% = 7;33% Now we choose
2
a=1and y= TQT'?Q. Now it is routine to verify that (6.8) is satisfied.
2

The case 1 = 72 = r3 = 0 is trivial. It remains to consider the case when exactly one of r; is
zero. Without loss of generality, my = 72 = 0 and r3 # 0. Then ] = 75 = 0 and r§ # 0. Now
choosing 3 =y =1 and a = 73, we see that (6.8) is satisfied. O
3

Lemma 6.6. Let 1 < j <5 and A€ P;. Then A is a Koszul PSA.

Proof. By Remark 1.4, we can without loss of generality assume that K is algebraically closed.
The case A € P; follows from Theorem 0.1. In the case A € P; with 2 < j < 4, it is routine to
verify that the defining relations of A form a Grdébner basis of the ideal they generate. Thus A
is PBW and therefore Koszul. By Proposition 1.5, A is a PSA. It remains to consider the case
A € Ps. Let § € K be such that ° = 1 # 63. Then 6% + 63 +1 = 0. This equality yields
(62 + 63)(0% + 0°)(—6% — 6°) = 5. By Lemma 6.5, A is isomorphic to the algebra given by the
generators x, y and z and the relations gy = g2 = g3 = 0, where

g=yz+0zy+ (0> +63zx, gy =20+ 02+ (0 +6%yy, g3=ay+0Tyz— (0 +6°)2z.

A direct computation yields that there are exactly two degree 3 elements of the Grébner basis of the
ideal these relations generate (with the leading monomials yyy and yyz). It follows dim Az = 10.
Consider the substitution z = v +v+w, y = u + 030 + 0w, 2 = —02(u + 0% + 03w) and let hy,
ho and hs be g1, go and g3 written in terms of u, v and w. First, it is easy to see that uu does not
feature in any of h;. Next, the leading monomial of h; is uv. Next, the 2 x 2 matrix of the uv and
uw coefficients in hy and ho is non-degenerate and therefore, there is a € K such that the leading
monomial of hy + ahy is uw. Finally, one easily checks that the leading monomial of hg + he + hq is
vw (actually, the only other monomial featuring in hs + he + hy is wv). By Lemma 1.5, B is PBW
with PBW-basis u, v, w and PBW-generators hy, ho + ahy, hg + ho + h1 and B is a PSA. Since A
is isomorphic to B, A is a Koszul PSA. O

Lemma 6.7. Let A € Ps. Then A is a non-Koszul PSA.

Proof. By definition of Py, the defining relations of A read zx = 0, 0%zz+z2+yy = 0, 2y+Oyr+22 =
0, where 3 = 1. Now the non-commutative Buchberger algorithm provides a Grébner basis for the
ideal generated by these relations. Namely, this basis comprises these relations together with two
degree 3 elements yyz — #?zyy and Oyzz — zyy. Now, exactly as in one of the cases for Sklyanin
algebras, the normal words are 2*(yz)'y™a® with k,I,m € Z, and ¢ € {0,1} and the number of

normal words of degree n is %Q(TIH) Hence H4(t) = (1 —t)~2 and therefore A is a PSA.

The dual algebra A' is given by the relations yz = 0, zy = 0, yy = Ozz, xz = Ozx, vy = 22
and yx = 0zz. The non-commutative Buchberger algorithm provides a Grébner basis for the ideal
generated by these relations. Namely, this basis comprises these relations together with three degree
3 elements zxz, zzx and zzz. The normal words are y, z, zz, zx and " for every n € N, which
gives H 41(t) = 143t + 3t + 3 + ¢t +t* + ... Hence the equality Ha(—t)H 4 (t) = 1 fails and A is
non-Koszul. O

In order to complete the proof of Theorem 6.4 it remains to show that if K is algebraically closed
and let A generalized Sklyanin PSA, then A falls into one of the families P; for 1 < j < 6 after
suitable permutation and scaling of variables (together with normalization of relations, of course).
The consideration splits into cases according to how zeros are distributed among the coefficients.
We can assume from the start that none of the defining relations of A vanishes. Indeed, otherwise
dim Ay > 6 and A is not a PSA. The six cases pjqpr; # 0 for {j,k,l} = {1,2,3} are obtain
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from one another by suitable permutations of variables. If p;qr; = 0 for every j, k,[ satisfying
{j,k,1} ={1,2,3}, then the matrix

P1 g1 T
b2 G2 T2
p3 g3 T3

has either a zero column or a zero 2 x 2 submatrix (the case of a zero row is excluded by the
assumption that none of the relations is zero). Thus up to a permutation of the variables, we have
only to deal with the cases

p3qar1 # 05

® 1 =q=q3=0;

° 7“1:7“227‘3:0;

e q1=qg3=r1=r3=0;
epi=p2=q=q=0.

First, we deal with easier cases. If py = p2 = q1 = g2 = 0 is satisfied, the relations of A (up to a
normalization) take shape zx = 0, yy = 0 and psxy + qsyx + 322z = 0. Regardless which monomial
is leading in the last relation, computing the degree 3 elements of the Grébner basis, we easily see
that dim A3 > 11 (it is actually either 11 or 12). Hence dim Az # 10 and A is not a PSA.

If ¢ = g3 = r1 = r3 = 0 is satisfied, the relations of A (up to a normalization) take shape yz = 0,
zy = 0 and pozx + gaxz + r2yy = 0. Regardless which monomial is leading in the last relation,
computing the degree 3 elements of the Grobner basis, we again see that dim As > 11 (it is 11, 12
or 13). Hence dim Az # 10 and A is not a PSA.

If r1 = r9 = r3 = 0 is satisfied, then either A belongs to P2 or A is a monomial algebra satisfying
dim A3 = 12. In the latter case A is not a PSA.

The case 1 = g2 = g3 = 0 is slightly more involved. If at least two of r; equal 0, we can without
loss of generality assume that 11 = ro = 0. The relations of A take the shape yz = 0, zx = 0
and p3xy + r3zz = 0. Again, it is easy to see that dim A3 > 11 and therefore A is not a PSA.
It remains to consider the case when at least two of r; are non-zero. Without loss of generality
riro # 0. First, consider the case p; = 0. Then the relations take shape xx = ayz, yy = fzx and
2z = 0 with a = —% and 8 = —%. If a8 = 0, then we have dim A3 > 10 and A is not a PSA. If
af # 0, Lemma 6.5 allows us by means of a scaling of variables to bring the relations to zx = yz,
yy = zx and zz = 0. It is a tedious enough but a doable exercise to check that dim Ag = 31 # 28
and this implies that A is not a PSA (actually j = 6 is the first degree for which dim A; deviates
(j+1)2(j+2))

from . It remains to consider the case r17rop3 # 0. Then the relations of A take shape

zr = ayz, yy = Pzx and xy = yzz with a = —% = —% and v = —;—2. If at leat two of
the numbers «, 8 and v are 0, dim A3 > 11 and A is not a PSA. If a = 0, By # 0 or 8 = 0,
ay # 0, then by a permutation and scaling of the variables (using Lemma 6.5), we get the familiar
relations xx = yz, yy = zx and zz = 0. We already know that then dim Ag = 31 and therefore
Ais not a PSA. If v = 0, af # 0, by Lemma 6.5, a scaling of the variables turns the relations
into xx = yz, xy = 0, yy = zx. In this case, using the Grobner basis technique, one easily checks
that dim A4 = 17 # 15 and therefore A is not a PSA. Finally, if a7y # 0, using the fact that K is
algebraically closed, we can find r € K* such that 73 = aiﬁ Now Lemma 6.5 provides a scaling of
the variables, which turns the relations into yz — rax = 0, za& — ryy = 0 and xy — rzz = 0. These
are the relations of Ql’o’_r € P;.

It remains to consider the main (and most involved) case p3gari # 0. We treat in more detail.
In this case we can write the relations of A as xx = ayz+ azy, xy = byr+ fzz and zz = cyy +yzzx,
where a = =24 b= -2 c= -2 a= -1 3= —2, = —P2 " The leading monomials zx,
zy and xz of the relations admit 3 overlaps zzx, xxy and zxz. Resolving these, we find that the
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degree 3 part of the Grobner basis of the ideal of the relations comprises of

&1 = clab+ a)yyy + alby — Vyzo + a(by — Dzya + Blay + )22,
& = (ab® + cB)yyz + (ab” — a)yzy + (cBy — a)zyy + B(b+°)zzx,
&3 = (b + y)yyz + (bef — a)yzz + (av? — a)zyz + (ay? + ¢B)zzy.

Since there are exactly 12 degree 3 monomials, which do not contain any of xz, xy and xz as a
submonomial, dim As = 12 — d, where d is the dimension of the space spanned by &1, & and &3.
Thus A can not be a PSA unless d = 2. Since no monomial features in more than one of ¢;, d equals
2 precisely when exactly one of §; equals 0. Now, solving the corresponding systems of algebraic
equations, we see that

& =0 < by—1=ab+a=0 OR by—1=F=c=0 OR a=a=0,
£y =0 < a=a=P=0 OR b+y’=a=a=c=0 OR 7' +1=b+y’=a—cfy=a—cf7°=0,
£3 =0 <= a=a=c=0 OR b*+y=a=a=F=0 OR v’ +1=b*+y=a—cBb=a—cBb>=0.

Using the above display, it is easy to see that

E3=0, &1 #0, &3# 0 <= ) +1=b+y =a—cBy=a—cBy =0 and cB(73+1) # 0.
£3=0, & #0, & #0 <= V+1=b’+y=a—cfb=a—cBb°=0 and cB(b>+1) # 0.
£ =0, & #0, & #0 < a=a=0%cS OR by—1=F=c=0#ac

OR by—1=ab+a=0%#aa and (b>+1,cf—av)#(0,0).

Since dim A3 = 10 precisely when exactly one of £; is 0, we can restrict ourselves to this case.
If only & vanishes or only &3 vanishes, the above display yields that there is § € K such that
62 = 1 # 62 and after a permutation of the variables, the relations of A take shape yz+6zy + s1zx,
2z + 0*zz + soyy and xy + 07yx + s3zz with s1s2s3 = 6%, Now Lemma 6.5 implies that a scaling
of the variables brings the relations to that of an algebra in Pg. It remains to consider the case
& =0, & # 0 and & # 0. By the above display, a =a=0#c ORby—1==¢c=0 # a«a
ORby—1=ab+a=0%#aaand (b>+1,¢8 — ay) # (0,0). In the case by — 1 = 8 = ¢ = 0 # aq,
Lemma 6.5 provides a scaling of the variables bringing the relations to that of an algebra from Ps3.
Now assume that by —1 = ab+a = 0 # aa and (b +1,¢8 —avy) # (0,0). If 3 = ¢ = 0, we fall into
the previous case. Thus we can assume that (3, c) # (0,0). The equality by — 1 =ab+a =0 # a«x
yields that after a normalization the relations take shape yz — bzy + s1xx, zox — bxz + ssyy and
xy — byx + s3zz, where s1 = —%, So = %, s3 = —f. Moreover, at least two of s; are non-zero. If
there is j with s; = 0, then after a permutation and a scaling of the variables (use Lemma 6.5),
we bring the relation to Py. If s1s253 # 0, we use algebraic closeness of K to find ¢ € K* such that
t3 = 515983 = % By Lemma 6.5, we can turn the relations into yz — bzy + tzx, zo — bxz + tyy
and zy — byx + tzz, which are the relations of Q1 %%, Since (b% + 1,¢8 — ay) # (0,0), the equality
1 = —b3 =13 fails. Since bt # 0, we have fallen into the class P;.

It remains to consider the case a = o = 0 # ¢fS. In this case after a scaling provided by
Lemma 6.5, the defining relations of A take form xx = 0, xy —byx+ 2z =0 and xz+yy — yzx = 0.
Computing the Grobner basis up to degree 4, we get dim Ay = 14 # 15 (and therefore A is not a
PSA) unless b3 = —1 and v = b?. On the other hand, if b> = —1 and = b?, these relations fall
into Pg. This concludes the proof of Theorem 6.4.

6.2 Proof of Theorems 6.1 and 6.2

Lemma 6.8. Assume that charK € {3,5}. Then the generalized Sklyanin algebra A given by the
relations xx+zy = 0, xy+2yr+22 = 0 and xz+zx+yy = 0 satisfies Ha(t) = 1+ 3t 4612 +9t3 + 9t
and H 4 (t) = 1 4 3t + 3t
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Proof. The proof is a matter of a direct computation of the Grobner bases. Whatever the charac-
teristic of K except for 2, the Grobner basis of the ideal of relations of A' is

Tx — 2Y, TY — 2%, TZ — 2T, YT — 222, Yy — 2x, Yz, 22T, Z2Y, 2ZZ,

which yields H 4 = 1 + 3t + 3¢2.
If char K = 3, then the Grobner basis of the ideal of relations of A is

rz+yy+zr, xYy —yr + 2z, xT + 2Y, Y2z + 2yz, yyz —yzy + 22x, yyy — 2Yyr — 222,
YRYZ — ZRZYY — ZZZX, YZYY — ZYRZT + 2222, YZYT — 2YYT — 222Y, 22222, ZZZZY,
ZRZZZX, RRRZYZ, ZZZYY, ZZZYT, ZRYRY, ZRYZT, ZZYYT.

If char K = 5, then the Grobner basis of the ideal of relations of A is

xz+yy+ zx, xy +2yx + 2z, xx + 2y, yyz +yzy + 22x, Yyyy — 2yr — 222, Yyyr — Yz — 2zyz,
2Yzx + 222y, Yzzz + 2yzz — 2222y, yzzy + 2yzy + 2zzyy — 2zzzx, yzyz + 2yzy + 2z2yy,

YZYY — YZZXT + 2YZT — ZRYT — 2222, YZYT + Y222 — 22Y22 — 22Y2 — Z2YZ — Z22Y, RZRZZ, ZZZZY,
ZZZZT, ZZZYZ, ZZZYY, ZZZYT, ZIZYZZ, ZZYZY, ZYZZT.

In both cases it follows that H4(t) = 1 + 3t 4 6t> + 93 + 9t O

It is worth mentioning that in the above lemma, the condition char K € {3,5} can be significantly
relaxed. For instance, the same conclusion holds if char K € {0,11,13,17}. On the other hand, the
conclusion of Lemma 6.8 fails if charK € {2,7,19, 23}.

Lemma 6.9. Let a € K be such that

a#0,a#1,a?+3#0,a>+3a—1+#0,a* —a®>+3a>—2a+1+#0,
2a* — a® +2a® +3a -3 #0, a5 — 3a® 4+ 4a* — 5a% +10a%2 — 3 #0, a® — a® + 5a* — 7a® +8a% — 12a + 6 #£ 0
and a” — 2a% + 4a® — 8a* +7a® —a® —2a +1#0.
(6.9)
Then the generalized Sklyanin algebra A given by the relations o = zy, vy = zz and xz = yy+azx
satisfies Ha(t) = 1+ 3t + 6t + 93 + 9t* and H 4 (t) = 1 + 3t + 3t>.

Proof. The Grébner basis of the ideal of relations of A' is
rx + zy, Y + 22, axrz + 2x, Yyr, ayy + 2x, Yz, 22T, 22Y, ZZZ,

which yields H 41 = 1 + 3t + 3t2. The only conditions needed here are a # 0 and a # 1. Using the
same two restrictions, we compute the Grébner basis of the ideal of relations of A up to degree 4:

TT — 2Y, TY — 22, TZ — YY — QZX, yyaz—%zyz—i—a“

Z2Y, Yyyy — Zyx +azzz, yyz + (a — 1)zzy + a2z,

YZYT — ayzzz + aH 122Y% + Mzzzy, zyzx — (a+ 1)zzyx + a’zz2z2z,
yzyy + aafiyzz:v + 2 +“+1 2zyr — a(g_—?) zzzz, 2yzy + (a2 —a — V) zzyy + a’zzzz,
2
yzyz — (a® + Dyzzy —|— a(a —a—1)zzyy + a*(a® + V)zzzw, zyzz + “Hazyz — “(Zjl)zzzy.

(6.10)
The degree 3 and 4 elements in the above list are obtained by resolving the overlaps zzz, xzz,
TTY, YYyyy, yyyz, yyyr, yyxx, yyry and yyxrz. Resolving the overlaps zyzxx, zyzyz, zyzzy, zyzyx,
zyzxz and zyzyy respectively, we obtain that the following equalities hold in A:

(2—a—a*)zzzyy = (a® +a® +a—1)zzzze, (34 3a—4a® + a® — a*)zzzyy = a3(a® + 3) 2222z,

(a% + 3)z2zyz = a(a® + 3) 2222y, (a® — a® + 3a* — 3a® + 3a® — 2a — 1)zz2yz = (a% — a® + 5a'* —
(3a — 1)zzzyr = (a® + a® + a — 1)zzz222, (a* — 20 + 3a® — 3a — 1)zzzyr = —(a* — a® +2a%> — a + 1)zz2
(6.11)
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It is easy to see that the conditions a® +3 # 0, a® — 3a® + 4a* — 5a® 4+ 10a® —3 # 0, a® — a® + 5a* —
7a +8a® —12a +6 # 0 and a” — 2a% +4a® — 8a* 4+ 7a® — a® — 2a + 1 # 0, which are satisfied due to
(6.9), are equivalent to the linear independence of the equations in each line of (6.11). Hence the
equalities (6.11) yield that

ZZZYY = ZZZZX = Z22Yz = 2222y = 222yt = 22222 =0 (6.12)

in A. Resolving the overlaps yzyxx, yzyyz, yzyxy, yzyyz, yzyrz and yzyyy respectively by means
of (6.10) and (6.12), we obtain that the following equalities hold in A:

ayzzzx = (a? + 1)yzzyy, a’yzzze = (1 — 2a)yzzyy,
ayzzzy = (a® + 1)yzzyz, (@ —a?® - 1Dyzzzy = (a — 1)yzzyz, (6.13)
2ayzzzz = (a® +a+ 1Vyzzyzr, a(l —2a)yzzzz = (a — 1)yzzyr.

Conditions a® +3a — 1 # 0, a* — a® +3a® — 2a +1 # 0 and 2a* — a® + 2a® + 3a — 3 # 0 from (6.9)
imply that the linear independence of the equations in each line of (6.13). Hence the equalities
(6.13) yield that

YRZZX = YR2YY = Y222y = YReyz = yzzzz = yzzyxr =0 (6.14)
in A. From (6.10), (6.12) and (6.14) it now follows that H4(t) = 1 + 3t + 6t2 + 93 + 9t*, which
completes the proof. O

Lemma 6.10. If K # Z, then there is o € K8 such that Ha(t) = 1+ 3t + 6t% + 93 + 9t* and
H i (t) = 1+ 3t + 3t2, where A = QF with £ = (ay,...,a6,1,1,1).

Proof. If charK € {3,5}, the result follows from Lemma 6.8. For the rest of the proof we assume
that charK ¢ {3,5}. By Lemma 6.9, it suffices to find a € K for which (6.9) is satisfied. If
charK ¢ {2,3,5}, then a = —1 satisfies (6.9). Thus it remains to consider the case char K = 2. In
this case, one easily verifies that (6.9) is equivalent to

a#0, a#1, a®>4+a+1#0, a®>+a®>+1#£0. (6.15)

The total number of «a failing (6.15) never exceeds 10. Thus a required a does exist provided K has
more than 10 elements. This leaves us with two options to consider: |K| =4 and |[K| = 8. If K is
the 4-element field, there is a € K satisfying a? + a + 1 = 0. Such an a also satisfies (6.15). If K is
the 8-element field, there is a € K satisfying a® + a? + 1 = 0. Again, such an a satisfies (6.15). [

Lemma 6.11.

Proof of Theorem 6.1. For a € KO, let &, = (al,...,a6,1,1A,1) € K. Example 6.15 provides
a € KO for which the spaces By and B:!,, vanish, where B = Q% . By Lemma 1.6, there is a non-
empty Zarissky open subset V of K® such that A7 = A} = {0} for A = Q% with a € V. Now
let

_ 9. &4 & & &1 &8 &
U—{fEK '5152{37&07 (ﬁaéaéaéaiyi)e‘/}.

Clearly, U is non-empty and Zarissky open in K and {@5“ ae V)= {@5 : £ € U}. Hence for
A= Q\S with € € U both A and A' are finite dimensional. This completes the proof of Theorem 6.1.

Now assume that the characteristic if K is different from 2. Obviously, for each a € K®, dim Ay =
dim A = 1, dim A; = dim A} = dim A}, = 3 and dim Ay = 6 for A = Q% . The Golod-Shafarevich
theorem gives a lower estimate for the dimensions of the graded components of a quadratic algebra
in terms of the numbers of generators and relations. In our case it yields dim A3 > 9 and dim A4 > 9.
By Lemma 6.14, there is 3 € K such that for B = Q%, Hp(t) = 1 + 3t + 6t2 + 9t3 + 9t*, Hp(t) =
1+3t+3t2. Now, Proposition 1.6 provides a non-empty Zarissky open subset V of K® such that for
each a € V, the first 6 terms of the Hilbert series of A = @50‘ are 1+ 3t+ 6t% 4+ 9t3 +9t* +0t°, while
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the first 4 terms of the Hilbert series of A' are 143t+3t2+0t%. Hence H(t) = 143t+6t2+9t3 +9t*,
H 4 (t) = 1+ 3t+3t? for a € V. Now for the Zarissky open set U in K? defined in the above display
(with the new V') we have that the algebra @5 for &€ € U has the Hilbert series 1+ 3t + 6t2+9¢3 +9t*
while its dual has the Hilbert series 1 + 3t 4 3t2. O
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We need specific examples. Assume that the ideal of the relations of a quadratic Q-algebra A,
given by generators x1,...,x, and relations rq,...,r, with integer coefficients, possesses a finite
Grobner basis g1, ..., gx with respect to some ordering on the monomials (we do not divide by
integers at all while producing g; even if all coefficients in a g; have a common factor). Let also p
be a prime number, which is not a factor of any leading coefficient of a g;. Then for the Z,-algebra
B given by the relations r; considered as members of Zy(z1,...,%n), g1, ..., gk treated as members
of Zy(z1,...,zy) form a Grébner basis of the relations of B as well. Moreover the set of leading
monomials of the basis does not change. Hence the Hilbert series of A and B are the same for any
p except finitely many: the potential exceptions are the divisors of the leading coefficients of g;.
Now it is a straightforward matter of applying the algorithm to determine the Hilbert series of A
and the set of exceptional primes. The following examples are obtained with an aid of Grébner
basis calculating software.

Example 6.12. For { = (-1,-1,-1,1,0,—1,1,1,1) € K°, the generalized Sklyanin algebra A =
QS satisfies Ha(t) = 1+ 3t + 6t + 9t3 + 9t* and H 4 (t) = 1 + 3t + 3t% provided the characteristic
p of K satisfies p ¢ {2,5,11,13,41}.

Example 6.13. For { = (-1,-1,-1,2,0,—1,-2,8,1) € K°, the generalized Sklyanin algebra
A = QF satisfies Ha(t) = 1+3t+6t2+9t34+9t* and H 41 (t) = 143t +3t% provided the characteristic
p of K satisfies p ¢ {2,3,17,47}.

Note that the exceptional characteristics listed in the above examples are exceptional indeed:
the Hilbert series becomes different. Combining Examples 6.12 and 6.13, we immediately obtain
the following result.

Lemma 6.14. If charK # 2, then there is € € K° such that A = @5 satisfies Ha(t) = 1+ 3t +
6% + 9t3 + 9t* and H 4 (t) = 1+ 3t + 3t2.

In the case char K = 2, we can not claim this much. At least, if K is the 2-element field, the
conclusion of Lemma 6.14 fails. The next best thing is provided by the following example.

Example 6.15. Let { = (-1,-1,-1,0,0,1,1,1,1) € KY. Then the generalized Sklyanin algebra
A = Q¢ satisfies Ha(t) = 143t +6t2 + 93+ 9t* + 5t +1° and H 41 (t) = 1+ 3t + 3t (no exceptional
characteristics this time).

Proof of Theorems 6.1 and 6.2. For a € K, let &, = (—1, -1, —La,...,a6) € K°. Example 6.15
provides o € K° for which the spaces By and Bé vanish, where B = Q% . By Lemma 1.6, there is a
non-empty Zarissky open subset V' of K® such that A; = Ag = {0} for A = Q% with o € V. Now
let

_ 9. & & & &1 &8 &
U={eK :&&66#£0, (&, 2,28 & &) eVl

Clearly, U is non-empty and Zarissky open in K and {@5“ cae V)= {@5 : £ € U}. Hence for
A= Q\f with ¢ € U both A and A' are finite dimensional. This completes the proof of Theorem 6.1.

Now assume that the characteristic if K is different from 2. Obviously, for each a € K®, dim Ay =
dim A = 1, dim A; = dim A} = dim A}, = 3 and dim A = 6 for A = Q% . The Golod-Shafarevich
theorem gives a lower estimate for the dimensions of the graded components of a quadratic algebra
in terms of the numbers of generators and relations. In our case it yields dim As > 9 and dim A4 > 9.
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By Lemma 6.14, there is 8 € K® such that for B = Q%, Hp(t) = 1+ 3t + 612 + 93 + 9t*, Hpi(t) =
1+ 3t+3t%. Now, Proposition 1.6 provides a non-empty Zarissky open subset V of Kb such that for
each a € V, the first 6 terms of the Hilbert series of A = @5‘1 are 1+ 3t+ 6t% 4+ 9t3 + 9t* + 0t°, while
the first 4 terms of the Hilbert series of A' are 1+3t+3t2+0t3. Hence Ha(t) = 1+3t+6t>+9¢3+9¢4,
H 41 (t) = 143t +3t? for a« € V. Now for the Zarissky open set U in K? defined in the above display
(with the new V) we have that the algebra Q¢ for & € U has the Hilbert series 143t + 6t2 4 9¢3 4 9¢4
while its dual has the Hilbert series 1 + 3t + 3t%. ]
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