SKEW PRODUCT SMALE ENDOMORPHISMS OVER
COUNTABLE SHIFTS OF FINITE TYPE
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ABSTRACT. We introduce and study skew product Smale endomorphisms over finitely ir-
reducible topological Markov shifts with countable alphabets. We prove that almost all
conditional measures of equilibrium states of summable and locally Holder continuous
potentials are dimensionally exact, and that their dimension is equal to the ratio of the
(global) entropy and the Lyapunov exponent. We also prove for them a formula of Bowen
type for the Hausdorff dimension of all fibers. We develop a version of thermodynamic
formalism for finitely irreducible two-sided topological Markov shifts with countable al-
phabets. We describe then the thermodynamic formalism for Smale skew products over
countable-to-1 endomorphisms, and give several applications to measures on natural exten-
sions of endomorphisms. We show that the exact dimensionality of conditional measures
on fibers, implies the global exact dimensionality of the measure, in certain cases. We
then study equilibrium states for skew products over endomorphisms generated by graph
directed Markov systems, in particular for skew products over expanding Markov-Rényi
(EMR) maps, and we settle the question of the ezact dimensionality of such measures. In
particular, this applies to skew products over the continued fractions transformation, and
over parabolic maps. We prove next two results related to Diophantine approximation,
which make the Doeblin-Lenstra Conjecture more general and more precise, for a different
class of measures than in the classical case. In the end, we prove exact dimensionality and
find a computable formula for the dimension of equilibrium measures, for induced maps
of natural extensions Tg of beta-maps, for arbitrary 8 > 1.
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1. INTRODUCTION

In this paper we explore the thermodynamic formalism for skew product Smale endomor-
phisms modeled on countable alphabet subshifts, and for conformal skew product Smale
endomorphisms over countable-to-1 maps. This is very different than for finitely generated
systems. Our notion of Smale space is different, although inspired by the respective notion
from [28]. We first develop a fairly complete thermodynamic formalism of two-sided shift,
building on the countable alphabet one-sided shift approach provided in [15] and [13]. Then
for Smale endomorphisms that are fiberwise conformal, we prove exact dimensionality of
equilibrium measures and find dimension formulas, and we prove a version of Bowen’s for-
mula giving a dynamical characterization of the Hausdorff dimension of every fiber. Exact
dimensionality is an important property ([35], [1]), which implies that several dimensional
quantities of the measure are equal (pointwise dimension, Hausdorff dimension, etc).

We then pass to general skew products over countable-to-1 endomorphisms. For en-
domorphisms the study of Hausdorff dimension is in general different than for invertible
systems and specific phenomena appear (for eg [31], [17]). We prove, under a condition
of p-injectivity for the coding of the base map, the exact dimensionality of conditional
measures of equilibrium measures in fibers, building on [16], [19]. Moreover in this case we
show that, if the projection to the base of the equilibrium measure p is exact dimensional,
then the initial measure p is exact dimensional globally. This will be applied to natural ex-
tensions of endomorphisms, which in certain cases can be viewed as skew products over the
respective endomorphisms. Our results apply also to natural extensions of endomorphisms
associated to iterated function systems.

We consider then graph directed Markov systems and iterated function systems with
countable alphabet ([15]), and as particular cases EMR (expanding Markov-Rényi) maps,
such as the continued fraction (Gauss) map, and Manneville-Pomeau maps (which have
parabolic points), and study skew products over all of these.

We apply our results to give a generalization of the Doeblin-Lenstra Conjecture in Dio-
phantine Approximation (see [9], [5]) to a large class of equilibrium measures on the natural
extension of the Gauss map, and we prove and use the exact dimensionality of these mea-
sures. This will extend and make the Doeblin-Lenstra Conjecture more precise than in the
classical case, namely in obtaining statistical behaviour of the asymptotic frequencies of
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Diophantine approximants with regard to singular measures. We also prove exact dimen-
sionality and find computable dimension formulas for equilibrium measures for the induced
maps of natural extensions 73 of S-transformations, for arbitrary 5 > 1.

We now summarize the results of each Section. One of our objectives is to develop first
the thermodynamic formalism on countably generated shifts. In order to do this, we recall
in Section 2 the basic notions and results of thermodynamic formalism of one-sided subsifts
of finite type modeled on a countable alphabet as developed in [15] and [13]. Passing on
to two-sided shifts in Section 3, we provide a fairly complete thermodynamic formalism
of locally Holder continuous potentials with respect to dynamical systems generated by a
two-sided subshift of finite type. This comprises topological pressure, variational principles,
equilibrium and Gibbs states. It also includes the characterization of Gibbs states in terms
of conditional measures; this has no counterpart in the context of one sided shifts.

We then define in Section 4 skew product Smale endomorphisms modeled on countable
alphabet subshifts of finite type, and we specify several significant subclasses. We show
that if a skew product Smale endomorphism is continuous and of compact type, then there
is a bijection between invariant measures for the symbol dynamics, and those for the Smale
endomorphism. Assuming the Smale endomorphism is Hélder continuous, we prove the
existence and uniqueness of equilibrium states of locally Hélder continuous potentials.

Next, we study conformal Holder continuous Smale endomorphisms modeled on countable
alphabet subshifts of finite type, defined in Section 5. In Section 6 we prove two theorems
for these Smale endomorphisms. First, in Theorem 6.2 we show that projections of a.e
conditional measures of equilibrium states of summable locally Hélder continuous potentials
are dimensional ezact, and their (pointwise) dimension equals the ratio of the global entropy
and the Lyapunov exponent. Then, we prove in Theorem 7.3 a version of Bowen’s formula
giving the Hausdorff dimension of each fiber essentially as the zero of pressure function of
a geometric potential; we deal also with the case when the pressure function has no zero.

Another primary goal is studied in Section 8, where we consider general skew product
endomorphisms F : X XY — X xY, F(x,y) = (f(z),g9(x,y)), over countable-to-1 en-
domorphisms f : X — X in the base X, where X is a general metric space (not only
ET), and Y C R% The endomorphisms f are coded by using shift spaces with countably
many symbols. We introduce a notion of u-injective coding, and we prove in Theorem 8.4
a result about exact dimensionality and pointwise dimensions of conditional measures of
equilibrium states in the fibers of the skew product; this will be used for several classes
of applications. This is building on and extending a result about exact dimensionality of
conditional measures in stable manifolds for endomorphisms from [16]. Then, in Theorem
8.7 we prove that, if the conditional measures of an equilibrium measures p, on fibers are
exact dimensional, and if the projection of y, on the base space is also exact dimensional,
then the measure pi4 itself is ezact dimensional globally.

We then study several classes of skew product Smale endomorphisms, in particular natu-
ral extensions (inverse limits) of certain endomorphisms (for eg [26], [29], [18]). In Section
9 we study skew products with the base map being given by graph-directed Markov systems
(GDMS) of [15]. We prove in Theorem 9.4 the exact dimensionality of conditional measures
for equilibrium measures. And moreover, in Theorem 9.6 we prove the global exact dimen-
stonality of equilibrium measures of locally Holder continuous summable potentials for skew
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products. We then study certain classes of one-dimensional endomorphisms f : [ — I,
including EMR (expanding Markov-Rényi) maps, and conformal skew product endomor-
phisms F' : I XY — [ xY over such maps f, in particular we consider the continued
fraction (Gauss) transformation fi(x) = {1},x € (0,1], which is coded by a countable
alphabet, and parabolic systems, such as the one given by the Manneville-Pomeau maps
f2(z) = x + 2> mod 1, z € [0,1], with a > 0 (see [24], [4], [12], [13], [14], [18], [21],
[32]). By using results of multifractal analysis, we prove in Corollary 9.14 that equilibrium
measures are exact dimensional globally on I XY, with respect to the Smale endomorphism
F over fi. And in Corollary 9.20 we prove exact dimensionality of equilibrium measures
for skew product endomorphisms over parabolic GDMS (such as the Maneville-Pomeau
maps). In this way, we settle the significant question of exact dimensionality, for equilib-
rium measures of skew product endomorphisms over a very large class of maps.

In Section 10 we apply the results obtained in previous Sections, to Diophantine Approx-
imation of irrational numbers x. We generalize the Doeblin-Lenstra Conjecture (see [2],
9], [5]) about the approximation coefficients ©,,(z) in continued fractions representation,
to equilibrium measures of geometric potentials —slog|T’|, s > I (where T denotes here
the Gauss map). We recall that if the continued fraction representation of an irrational

number x € [0,1) is x = ﬁ = [ay,ay,...], with a; > 1 integers for ¢ > 1, and if
a2+ﬁ
lay, ... a,) = ZZ—E;C; € Q,n > 1, then the approximation coefficients defined by

are very important in diophantine approximation, and have been studied intensively (for
eg [2], [9]). The original Doeblin-Lenstra Conjecture ([2], [5], [9]) gives information about
the frequency of having consecutive O (z),O,_1(z) in some set, and involves the lift of
the Gauss measure pg to the natural extension space [0,1)* of the continued fraction
transformation; thus, it is valid for Lebesgue-a.e x € [0,1). In our case, by contrast, we
generalize this to numbers x, from the complement of that set of zero Lebesgue measure.
The natural extension ([0,1)2,7) of the continued fraction transformation, is in fact a
skew product endomorphism which falls into our class, so we can apply the results from
previous Sections. Using the exact dimensionality of the lift fi; to the natural extension,
of the equilibrium measure p, of the potential —slog |T"|, s > %, we also make the Doeblin-
Lenstra Congjecture more precise. Namely, for irrational z from a subset Ay C [0,1) with
ps(As) = 1 and HD(A,) > 0 (but with Leb(Ag) = 0), we estimate the asymptotic frequency
of having the consecutive approximation coefficients (O (x), O_1(x)) r-close to arbitrary
values (z,2'), for 1 < k < n and n large. This is contained in Theorem 10.1 and Theorem
10.2.

In the short Section 11 we consider countable-to-1 transformations S associated to gen-
eralized Liiroth series with countable interval partitions Z, and their natural extensions.
Then, in Section 12 we study B-transformations T, for arbitrary > 1. The natural
extension (inverse limit) of such a transformations is denoted by 7Tz, and in general it is
defined on a stacked space which is complicated (see [6], [5]). However, by inducing to the
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square Zy = [0,1)%, we prove exact dimensionality of the conditional measures on fibers
0, 1), of equilibrium states for the induced transformation 7 z,, and then also global exact
dimensionality. This is contained in Theorems 12.2 and Theorem 12.4, in which we also
give a computable formula for the Lyapunov exponents, and therefore a computable formula
for the pointwise dimension of the measure.

Many authors studied various aspects in the thermodynamic formalism and dimension

theory for endomorphisms, skew products, countable systems, for eg as a partial list, [1],
3], 141, [7], [8], [15], [16], [17], [19], [20], [21], [23], [24], [29], [30], [31], [32], [33], etc.

2. THERMODYNAMIC FORMALISM ON ONE-SIDED COUNTABLE SHIFTS

In this section we collect some fundamental ergodic (thermodynamic formalism) results
concerning one-sided symbolic dynamics. All of them can be found, with proofs, in [15],
[13]. Let E be a countable set and let A : Ex E — {0, 1} be a matrix. A finite or countable
infinite tuple w of elements of F is called A-admissible if and only if A, = 1 for any two
consecutive elements a, b of E. The matrix A is said to be finitely irreducible provided that
there exists a finite set F' of finite A-admissible words such that for any two elements a, b
of E there exists an element v of F' such that the word a~vb is A-admissible. Throughout
the entire paper the incidence matrix A is assumed to be finitely irreducible. Given g > 0
we define the metric dg on EN by setting

d5(<wn)6rooa (Tn)aroo) = eXp(_ﬁ max{n >—1: (0 <k< n) = w, = Tk})

with the standard convention that e=> = (0. Note that all the metrics dg, 8 > 0, on
EYN are Holder continuously equivalent and they induce the product topology on EN. If a
function ¢ : BN — R is Lipschitz continuous for the metric dg on EY, then we will denote
its Lipschitz constant by Lg(v)).

Now let us set

EZ = {(Wn)goo t VneN Awwnys = 1}
Obviously E} is a closed subset of EN and we endow it with the topology and metrics dg
inherited from EY. The two-sided shift map ¢ : EZ — EZ is defined by the formula

o (@n)™) = ((nsr)i5).
Of course o(E}) C E} and o : Ef — E} is a continuous mapping. For every finite word
W= wowi . ..wWy_1 put |w| =n, the length of w and set

W] = {7 € EX : Viogjcn-1) : T3 = wi}-
The set [w] is called the cylinder generated by the finite word w. Let ¢ : E} — R be a
continuous function. The topological pressure P(v)) is defined as follows.

1
P(¢) = lim —log g::n exp(sup(Sntlu)))

and the limit exists, as the sequence log szn exp(sup (Snwhw]),n € N, is sub-additive.
The following theorem, a weaker version of the Variational Principle, was proved in [15].

Theorem 2.1. If ¢ : Ef — R is a continuous function and p is a o-invariant Borel
probability measure on E7 such that [ du > —oo, then hy(o) + fEX Pdu < P().
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We say that the function ¢ : Ef — R is summable if and only if
Zexp(sup(w[e})) < +00.
eclk

A shift-invariant Borel probability measure 1 on E7 is called a Gibbs state of ¢ provided
that there are a constant C > 1 and P € R such that

. ()
1) S G — Py =€

for all n > 1, all admissible words w of length n and all 7 € [w]. It clearly follows from
(2.1) that if ¢» admits a Gibbs state, then P = P(¢).

Definition 2.2. A function g : E; — C is said to be locally Holder continuous if there
exists 3 > 0, and a constant C' > 0, such that for all w,w' € EY} with wy = wj, we have

l9(w) — g(w)| < Cexp (= Bmaz{n > 0, with wy, = w},0 < k < n})

The following Remark is important for future applications, since it says that our results
apply to unbounded locally Holder continuous potentials.

Remark 2.3. Notice that our local Holder continuity condition is the same as what was
called “Holder continuity condition” in [13], [15]. However this is weaker than the usual
definition of Holder continuity on a symbolic space, since we do not say anything about
sequences w,w’ with wy # w,. Thus we allow also unbounded locally Holder continuous
potentials.

The proofs of the following three results are in [15] (Theorems 2.1.7-2.1.8) and [13].

Theorem 2.4. For every locally Holder continuous summable potential 1 : B — R there
exists a unique Gibbs state p,, on EX. The measure ., is ergodic.

Theorem 2.5. Suppose ¢ : E; — R is a locally Holder continuous potential. Then,
denoting by Pr(1) the topological pressure of MFZ with respect to the shift map o : Ff —
F, we have

P(¢) = sup{Pr(¢)},

where the supremum is taken over all finite subsets F' of E; equivalently over all finite
subsets F' of E such that the matriz A|pyp is irreducible.

Theorem 2.6 (Variational Principle for One-Sided Shifts). Suppose that ) : E; — R is a
locally Holder continuous summable potential. Then

sup {hu(a) + /E+ Ydp, poo ' =p and/zpdu > —oo} =P(¢) =hy,(0) + /E+ Yy,

and fiy is the only measure at which this supremum is attained.

Any measure that realizes the supremum in the above Variational Principle is called an
equilibrium state for ¢). Then Theorem 2.6 can be reformulated as follows.

Theorem 2.7. If ¢ : Ef — R is a locally Holder continuous summable potential, then the
Gibbs state g is a unique equilibrium state for 1.
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We would also like to record the following straightforward consequence of irreducibility of
the incidence matrix A.

Proposition 2.8. A locally Hélder continuous potential 1 : EX — R is summable if and
only if P(¢) < 400.

Definition 2.9. Given two locally Holder continuous functions v,¢ : Ef — R, define the
sets

Y(7,€) = {(q,t) € R? : qy+t€ is summable} and ¢ (7, €) = {(¢,t) € C*: (Req,Ret) € X(v,£)}

Note that X(v,€) and Y¢(v,€) are open connected subsets respectively of R? and C2.
Invoking Theorem 2.4.6 from [15], Kato-Rellich Perturbation Theorem, Hartogs Theorem,
and as the main ingredient, Theorem 2.6.8 from [15], plus at the end Theorem 2.3.3 from
[15], we get the following.

Theorem 2.10. Ifv,£ : Ef — R are locally Hélder continuous functions, then the function
X(v,€) 3 (¢, t) — P(gy + t&), is real-analytic.

As the result complementary to this theorem, we immediately get from Proposition 2.6.13
and Proposition 2.6.14 in [15], the following.

Proposition 2.11. Ifv,£ : EY — R are locally Hélder continuous potentials, then for all
(90, t0) € E(7,€).

) )
— P(gy+1t) = / Vb gory+tot 5% P(gy+1t€) = / IQUTIRES

9 (go.t0) T 1(q0.t0)
and
o? 9
300t e (v +18) =05, oo
where [lgoy+t0e 1S the unique equilibrium state of the potential oy + to and Uiqowtoﬁ 1s the

asymptotic covariance of the pair (v, &) with respect to the measure figy+10e (S€€ Proposi-
tion 2.6.14 in [15] for instance).

3. THERMODYNAMIC FORMALISM ON TwO-SIDED COUNTABLE SHIFTS

As in the previous section let E be a countable set and let A : E x E — {0, 1} be a finitely
irreducible matrix. Given 8 > 0 we define the metric dg on E% by setting

da((wn) 2, (12)12) = exp(—Bmax{n > 0, wy, = 7, Vk with k] < n})

—00? —0o0

with the standard convention that e=> = 0. Note that all the metrics dg, 3 > 0, on EZ
are Holder continuously equivalent and they induce the product topology on EZ. We set

Eq= {<Wn>t£ P Vnez Awpwnss = 1}.

Obviously E4 is a closed subset of E4 and we endow it with the topology and metrics
dg inherited from EZ. The two-sided shift map ¢ : EZ — EZ is defined similarly as
o((wn)¥2) = ((way1)TX). Clearly 0(E4) = E4 and 0 : E4 — Ej4 is a homeomorphism.

—00 —0o0
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Definition 3.1. A function g : E4 — C is said to be locally Holder continuous if there
exists 5 >0, and a constant C' > 0, such that for all w,w’ € E4 with wy = wy,, we have

l9(w) — g(w')] < Cexp (= Bmaz{n > 0, with wy = w},0 < k < n})
For every w € E4 and all —oo < m < n < +oo, we set
wlr = WnWmt1 - - - W
Let E% be the set of all A-admissible finite words. For 7 € E*, 7 = 7,,Ty41 - - . Ty, We set
[TIh ={we€ Es:w|) =7}
and call [7]”, the cylinder generated by 7 from m to n. The family of cylinders from m to
n will be denoted by CJ. If m = 0 we simply write [7] for [7].
Let ¢ : E4 — R be a continuous function. The topological pressure P(1)) is defined as in
the one-sided case by

(3.1) P(¢) := lim llog Z exp(sup(Snl/zhw])),

n—oo 7
wECg_l

and the limit exists due to the same subadditivity argument. Similarly we obtain:

Theorem 3.2. If ¢ : E4 — R is a continuous function and p is a o-invariant Borel
probability measure on E4 such that [ du > —oo, then

hy(o)+ [ ¢du<P(y).

Ea

A shift-invariant Borel probability measure p on Ey is called a Gibbs state of ¢ provided
that there are a constant C' > 1 and P € R such that

- p(wls™])
3.2 c'< <C
32 = exp(Suw) — Pr)
for all n > 1 and all w € E4. It clearly follows from (3.2) that if i) admits a Gibbs
state, then P = P(¢). Two functions 1; and v, are called cohomologous in a class G of
real-valued functions defined on F 4 if and only if there exists u € G such that

Yy — Yy =u—uoo.
Any function of the form v — u o ¢ is called a coboundary in G. A function ¢ : E4 — R is
called cohomologous to a constant, say b € R provided that ¥ — b is a coboundary. Notice
that any two functions on E4, cohomologous in C(E4), the class of all real-valued bounded
functions on B4, have the same topological pressure and the same set of Gibbs measures.

A function ¢ : E4 — R is called past-independent if for every 7 € C; ™ and for all
w, p € [7], we have ¥(w) = (7). In order to apply the results from the previous section,
we need the following.

Lemma 3.3. Every locally Hélder continuous function ¢ : E4 — R is cohomologous to
a past-independent locally Holder continuous function ¥ : E4 — R in the class Hg of
bounded Holder continuous functions.
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Proof. The proof is similar to the one in [3], Lemma 1.6. For every e € E, fix an arbitrary
€ € E4(—00,—1) such that As_,. = 1. Then, for every w € E4 put @ = ew|{>, note that
the mapping w +— @ is continuous and set

= > (4w (0’ (@)).

Jj=0

We check first that u is well-defined and continuous. Fix g > 0 so that v is Lipschitz

continuous with respect to the metric dg. For every j > 0, [0/ (w)|*5°] = [o7(@)|=5°].
Therefore dg(07(w), 07 (w)) < e, and consequently
(3.3) [¥(0? (w)) = (o’ @))] < Lp(y)e ™.

Hence, u : E4 — R is well-defined and continuous. If now dg(w,7) = ¢ then [w|",] =
[7I”,). Thus, for every 0 < j < n, [¢(07(w)) — (o7 (7)) < Lp(¥)ds(0? (w),07(r)) <
Lg(yp)e "9, and |y)(0? (7)) =1 (0! (@))] < Ls(e)ds(0? (7), 07 (@)) < Ly(th)e= "9, There-

fore, using also (3.3), we get

[n/2] [n/2]
u(w) — u(r)] = wa’w» W+ 3 W @)+
b Y W) - Y <aj<r>>>\
i>[n/2] J>[n/2]
[n/2] A [n/2]
< D10 ) — P+ S 60~ @+
£ Y ) - b @) " S (0 (7) — w(e (7))
J>n/2) j>ln/2]
2 | | eBE P
<L) 3 e+ 2Lu(0) B e < 0alw) ([ + 1 )
j=0 J>[n/2]

So, the function u : K4 — R is Lipschitz continuous with respect to the metric dg/, and
by (3.3) it is bounded. So, u € Hg/s. Hence ¢ = ¢ —u+woo is also Lipschitz continuous
with respect to the metric dg/,. We are therefore left to show that ¢/ is past-independent.
So, let w|{> = 7,">°. Then @ = 7 and

P (w) =Y(w) - (Z(w(aj(W)) > + Z (07 (W) = ¥(e" (@)
=0
= (@) = P(7) = ¢ (7).
—+ —+ -
In the setting of the above lemma, let ¢ be the factorization of ™ on E7, i.e. T =1 om.
As an immediate consequence of this lemma we get the following:
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Lemma 3.4. If ¢ : E4 — R is a locally Holder continuous potential, then P(¢) = P(EJF),

where, we remind, the former pressure is taken with respect to the two-sided shift o : E4 —
Ea while the latter one is taken with respect to the one-sided shift o : B — E}

If F is a subset of E, we will also denote the 2-sided shift on the symbols from F by F; .
Then, from this lemma and Theorem 2.5, we get the following:

Theorem 3.5. Suppose that v : E4 — R is a locally Holder continuous potential. Then,
denoting by Pr (1) the topological pressure 0f¢|FX* with respect to the shift map o : Ff~ —

Fi~, we have that

P() = sup{Pr(¢)},

where the supremum is taken over all finite subsets F of E; equivalently over all finite
subsets F' of E such that the matriz A|pyp is irreducible.

We say that the function ¢ : E4 — R is summable if and only if
Zexp(sup(z/}\[e})) < +00.
eck

As in the case of one-sided shift, we have the following.

Proposition 3.6. A locally Holder continuous potential v : E4 — R is summable if and
only if P(¢) < 400.

Thus from Lemma 3.3 (note that the coboundary appearing there is bounded), we get the
following.

Lemma 3.7. Every locally Holder continuous summable function v : E4 — R is cohomol-
ogous to a past-independent locally Holder continuous summable function ¥ : E4 — R in
the class Hg of all bounded Holder continuous functions.

Now, we are ready to prove the first main result of this section:

Theorem 3.8. For every locally Holder continuous summable potential b : E4 — R there
exists a unique Gibbs state iy, on Ea, and the measure ji, is ergodic.

Proof. Let 1" be the past-independent locally Holder continuous summable potential
ascribed to v according to Lemma 3.7. Treating ¥* as defined on the one-sided symbol
space E7, it follows from Theorem 2.4 that there exists a unique Borel probability shift-
invariant measure p; on Ey for which the formula (3.2) is satisfied. In addition u,) is

ergodic. Since the measure /VL:Z is shift-invariant, we conclude that the formula

pp(wli]) = pg (0™ (WIh]) = pg (157", lwl =n—m+1,
gives rise to a Borel probability shift-invariant measure p,, on E,, for which (3.2) holds.

Thus s is a Gibbs state for v, and it is ergodic since ,uj; was ergodic. Also if p is a Gibbs
state for v, then it follows from its shift-invariance and (3.2) that, Vn > 0,Vw € Ejq,

L p(wl™,])

= o0 G0 "()) — P@n) =
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So any two Gibbs states of 1) are equivalent and, as ji,, is ergodic, uniqueness follows.

O

Remark 3.9. Denote by m : Ea — EX, m(7) = 7|5°, 7 € E4, the canonical projection
from Ex onto E}. It follows from the above proof of Theorem 3.8 that if ¢ : Ef — R is a
locally Holder continuous summable potential, then

—1
Hop = Hopomry O Ty -
Let us now provide a variational characterization of Gibbs states.

Theorem 3.10 (Variational Principle for Two-Sided Shifts). Suppose that 1) : E4 — R is
a locally Holder continuous summable potential. Then

sup {hu(a) + /Ewd,u cuoot =y and /wdu > —oo} =P) =h,,(0) + /E Ydpuy,

A

and [y ts the only measure at which this supremum is attained.

Proof. The claim of this theorem is equivalent to the same claim with ¢ replaced
by the past-independent locally Holder continuous summable potential ¢" resulting from
Lemma 3.7. Since the dynamical system (o, E4), is canonically isomorphic to the Rokhlin’s
natural extension of (o, E}), the mapping p — pom~! establishes a bijection between M~

and M, which preserves entropies. Since also P(¢)) = P(zf) by Lemma 3.4, and since for
every u € M~ we have

Gdpr™ = | Y omdu= [ ¢*du,
EZ Ea Ea

we are done because of Theorem 2.6, the Variational Principle for one-sided shifts. U

Any measure that realizes the supremum value in the above Variational Principle is called
an equilibrium state for ¢». With this terminology, Theorem 3.10 can be reformulated as
follows.

Theorem 3.11. If ¢ : E4 — R is a locally Holder continuous summable potential, then
the Gibbs state v, 1s a unique equilibrium state for 1.

We will need however more characterizations of Gibbs states. Let

P ={[w|f>]:w € Ea} ={[w] : w € EL}.
Obviously P_ is a measurable partition of F4 and two elements «, 3 € E4 belong to the
same element of this partition if and only if a|f™ = B|7°°. If u is a Borel probability
measure on Fy, we let

{i" .7 € E4}

be a canonical system of conditional measures induced by partition P_ and measure p (see
Rokhlin [26]). Each 7™ is a Borel probability measure on [7]7*°] and we will frequently

write with no confusion 1%, w € E7, to denote the corresponding conditional measure on
[w]. Recall the canonical projection

7 Eqa— EY, m(7) =7[%, 7 € Ea,
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The system {fi* : w € E};} of conditional measures is entirely determined by the property

that
/gdu=/ /gdﬁ“’d(uoml)(@
E EL Jw]

for every measurable function g € L'(u) ([26]). It is evident from this characterization
that if we change such a system on a set of zero y o m; '-measure, then we also obtain a
system of conditional measures. The canonical system of conditional measures induced by
1 is uniquely defined up to a set of zero p o 7} '-measure. We say that a collection

7 we B
defines a global system of conditional measures of y if this is indeed a system of conditional

measures of y and a measure 7% is defined for every w € E}, rather than only on a set of
full ;o 7 '-measure. The first characterization of Gibbs states is the following.

Theorem 3.12. Suppose that 1 : E4 — R is a locally Holder continuous summable poten-
tial. Let p be a Borel probability shift-invariant measure on E4. Then p = p,, the unique
Gibbs state for 1 if and only if there exists D > 1 such that

(3.4) Dl < e ((re]) <D
= o (Butlp) — PO
for everyn > 1, pom t-a.e. w € Ef, i¥-a.e. 7w € Ea(—n,+00) with A, ., = 1, and

every p € o " ([tw|£°]) = [tw|d™]. Furthermore, there exists a global system of conditional
measures of [, such that

(3.5) D' < (i) <D
~ exp(Sat(p) — P(¢)n)
for every w € EL, every n > 1, every 7 € Ea(—n,—1) with A, ,,, = 1, and every

p € o ([rw|IY]) = [rwlg™].

Proof. Suppose that (3.4) holds. Also, if n = (19, ..., nn—1) is an arbitrary finite word, we
denote by 77|;C the word with elements 7, ..., 7n,_1 on the positions j, ...,k for any integers
j < k with j —k =n — 1. Then for every w € E| (note that here, for every w, although
(3.4) is assumed to hold only for y o7 '-a.e. w € E}), and every n > 1, we get

pllwls ™) = pe"([wls ™) = plwls =] = /E+ i ([wlo™ 12 dpom(7)

A

-/ 7 (ls ! Pl dno 7 ()
Ef:Aw, =1

(3.6) = /E*;A exp (S, (w|"27) = P(¥)n)dpon (1)

wp_1mo=1

<[ ol - P@mier ()
= exp(SndJ(w) - P(w)n) Z u([e])

eEE:Aw7kle:1
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Consequently,
(3.7) (i) = exp (St (w) — P(¥)n).

In order to prove the opposite inequality notice that because of finite irreducibility of the
matrix A there exists a finite set F' C E such that for every a € F there exists b € F
such that A,, = 1. Since p is a non-zero measure, there exists ¢ € E such that pu([c]) > 0.
Invoking finite irreducibility of A again, we see that for every e € FE there exists a finite
word a such that eac is A-admissible. Put k = |ea|. Tt then follows from (3.6) that

p(le]) = ulleal) = exp(Sk(p) — P(v)k)u([e]) > 0
for every p € [ea]. Hence T'= min{u([e]) : e € F'} > 0. Continuing (3.6), we obtain:
w(l 1) = Texp(Swp(w) — P(u)n).

Combining this with (3.7) we see that u is a Gibbs state for the potential ¢, and the first
assertion of our theorem is established.

Now, in order to complete the proof, we need to define a global system of conditional
measures of py, so that (3.5) holds for every w € Ef, n > 1, 7 € E4(—n,—1) with
A, 1wy =1, and every p € o7 ([rw|1°]) = [tw|¢™]. Indeed, let

Lt —R
be a Banach limit. Note that

po ([rwl®50) s ([rwls ™) _ exp (St (p) — P(4)(n + k)
(3.8) g (wl61]) i (w]5™1]) exp(Sky(a™(p) — P()k)
= exp(Spt(p) — P(¥)n) = py([r]g ),

with absolute comparability constants resulting from the Gibbs property of i, belongs to
ls. In particular, the sequence
ps ([rwl51])
k—
Hap (W|0 1]) k=1

belongs to {.. We can therefore define

T A
Dl I]) =1 (( 1y (wl§™']) >k1>

Now for every g : [w| — R and every linear combination ijl O TROWEEE the sequence
i

Hoap Z;:l aj]l[fmw&—l,] s
(39) = ,u¢ Zajll[ﬂj)}gjq R

o (wl51)

j=1
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belongs to (., with the same comparability constants as above. We can then define

5 o (Zj—l & ﬂ[r@w’inﬂ)
—w ) ) — ], J
o\ 2wl | =

iy (wI5 1)

o0

j=1
k=1
So, we have defined a function g, from the vector space V of all linear combinations as above
to R. Since the Banach limit is a positive linear operator, so is the function gy : V — R.
Furthermore, because of the monotonicity of Banach limits and of (3.9), 7 (g.) ¢ 0
whenever (g,)° is a monotone decreasing sequence of functions in V converging pointwise
to 0. Therefore, Daniell-Stone Theorem gives a unique Borel probability measure on [w],
whose restriction to V coincides with 1. We keep the same symbol 7z for this extension.

Now, it follows from Martingale’s Theorem that for u, o m; '-a.e. w € E} and every
T € Ea(—n,—1) with A, ,,, = 1 the limit

()
im "
k=00 iy (wlg "))
exists and coincides with the conditional measure of p,, on [w]. By properties of Banach
limits,

wy ([rwl®1) g ([rwl™51)

PESTRRRL L ESTINE

po(Wlo ) e gy (wlgT)

and we thus conclude that the collection
{1, :we E}}

is indeed a global system of conditional measures of . Invoking now formula (3.8) (par-
ticularly its middle line), completes the proof.

O
Similarly, let

Pi = {wl=5] rw € Ea},
and given a Borel probability measure p on Ey, let {u™ : w € E4} the corresponding
canonical system of conditional measures. As in Theorem 3.12, we prove the following.

Theorem 3.13. Suppose that v : B4 — R is a locally Holder continuous summable poten-
tial. Let p be a Borel probability shift-invariant measure on E4. Then pn = pu,, the unique
Gibbs state for ¥ if and only if there exists D > 1 such that

pre (w5
exp(Sat(p) — P(¥)n) ~

for every w € E (—o00,—1), every n > 1, every 7 € E4(0,n — 1) with A,_,, = 1, and
every p € [wr|"2].

(3.10) D' <

Noting that (¢y + t£)+ = ¢y + t?r, as an immediate consequence of Lemma 3.4 and
respectively Theorem 2.10 and Proposition 2.11, we get the following two results.
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Theorem 3.14. Ifv,£ : E4 — R are locally Holder continuous functions, then the function
X(v,€) 2 (¢, t) — Plgy + t€), is real-analytic.

Proposition 3.15. Ifv,& : B4 — R are locally Holder continuous potentials, then for all
(QO7 tO) € 2(77 5)7

0 0
aq ((IOytO) <q7+ 5) /7 MQO’Y‘f‘tOf? at (qo,to) (Q'Y‘f' f) /g MQO’Y‘i'tOf’ ,
o? )
P té) =
9qOt | (qo.to) (g7 + 1) T hgor+toe?
where [igyy+t0e @5 the unique equilibrium state of the potential goy + to§ and azqmﬁog is the

asymptotic covariance of the pair (v,§) with respect to the measure fgyti¢-

4. SKEW PRODUCT SMALE SPACES OF COUNTABLE TYPE
We keep the notation from the previous two sections.

Definition 4.1. Let (Y,d) be a complete bounded metric space, and take for every w € E}
an arbitrary set Y,, CY and a continuous injective map T, : Y,, — Y (). Define

V= |J{w} xY, CEf xY.
wEEj;
Define the map T : Y Y by the formula
T(w,y) = (0(w), Tu(y))-

The pair (}A/,T Y > f/) 1s called a skew product Smale endomorphism, if T is fiberwise
uniformly contracting, i.e I\ > 1 so that Yw € E} and all y;,y2 € Y.,

(4.1) (T (), To(y1)) < A71d(y2, 1)
Note that for every 7 € E4(—n,+00) the composition
T:L = TTltTo 9] T7'|t;o ©0...0 TTltoo . YT — }/7_|8—oo

is well-defined. Then for every 7 € F4 we define the map T := Trn|+°° = Tr\f‘f" o TTIJ:;O o

- 0T jroo 2 Y jtoo = ¥ 4. The sequence (T (Y, |i—oo))zo:0 consists of descending sets, and

T T T

(4.2) diam (77" (Ylf?)) < A "diam(Y).

T

The same is also true for the closures of these sets, so since (Y, d) is complete, we have that

(V72 (Vo)
n=1

is a singleton. Denote its only element by 72(7). So, we have defined the map
o Ey —Y,

and next define 7 : E4 — E{ x Y by the formula

(4.3) (1) = (7o, 72(7)),
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and the truncation to the elements of non-negative indices by
i Ex— EY, m(r) = 7|5
In tpe notation for m; we drop the hat symbol, as 7, is independent of the skew product
on Y. For all w € B we also define the #y-projection of the cylinder [w] C E4, namely
J, i =m(w]) €Y,
and call these sets the stable Smale fibers of the system T (or simply the fibers of the Smale
system). The global invariant set
Ji=#(Es) = | {w} x J,CEf xY,
weES

is called the Smale space induced by the Smale system 7' This is different from the
notion of Smale space of [28]. For each 7 € E4 we have 7y(7) € YT‘0+00; therefore J, C Y,
for every w € Ej. Since all the maps T;, : Y, — Y, are Lipschitz continuous with a
Lipschitz constant A~ all of them extend uniquely to continuous maps from Y, to VJ(UJ)

and these extensions are Lipschitz continuous with a Lipschitz constant A\=*. We prove the
following.

Proposition 4.2. For every w € E} we have that

(4.4) To(Jo) C Jotwys and | ) Tus(Jew) = Jo, and

ecE
Aewy=1

(4.5) To

i.e. the following diagram commutes:

>
>
Q

7

<_

Y SN Y.

Proof. First we prove formula (4.4), let y € J,. Then there exists 7 € E4(—o0,—1) such
that A,_,,, =1 and y = ﬁg(Tw). Then

{Tu(y)} =T ﬂ (Voo ﬂT (Yo ﬂT -1,))

ﬂ T (Yy,) ﬂ TI o) (Yol Leoot)

= {7T2( |—aewo(o )} C Jo(w)

Thus T,,(J.,) C Jyw) and, as {Tw(y } and {#a(7]|"iwo(c(w)))}, the respective sides of
(4.6), are singletons, we therefore get

(4.7) T, 7o(Tw) = Ty 0 o(TW),

(4.6)
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meaning that (4.5) holds. The inclusion |J 7o, (Jew) C J, holds because of (4.4). In

eckE
Aewg=1

order to prove the opposite one, let z € J,. Then z = 7(yw) with some v € F4(—o00, —1),
where A, ., = 1. Formula (4.7) then yields

z=my0 U(7|:io'7—1|0—oow) =T, wom ('7|:Zo7—1|goow) = T’Y—w(‘]v—w)
This means that J, C |J Tuw(Jew), and formula (4.4) is proved. O

eckE
Aewg=1

The proof of the following generalization of (4.4) is straightforward.

L= Tw(/w)

TEETR
Arpwg=1

for all w € E}, and n > 0. By formula (4.4) we have T'(J) C J, so we may consider the
dynamical system

T:J—J

and we call it the skew product Smale endomorphism generated by the Smale system T :
Y — Y. By formula (4.4) we have the following.

Observation 4.3. The map T : J — J is surjective.
Let us now record another straightforward but important observation.

Observation 4.4. If T Y = Y is a skew product Smale system, then the following
statements are equivalent:

(a) For every £ € J, the fiber #=1(&) C E4 is compact.
(b) For everyy €Y, the fiber 75 (y) C E4 is compact.
(c) For every & = (w,y) € J, the set {e € E: Aey =1 and y € Toy(Je,) } is finite.

If either of these three above conditions is satisfied, we call the skew product Smale system
T :J— J of compact type.

Remark 4.5. In item (a) of Observation /.J one can replace J by Y.
Observation 4.6. If for every y € Y the set

{e ceE:A,,=1land ye€ Tew(Jew)}
is finite for every w € EY, then T : J — J is of compact type.

From now on we assume T : Y — Y to be a skew product Smale system of compact

type.
If for every £ € Y (or in J), the fiber #71(£) C F4 is finite, we call the skew product
Smale system T of finite type. Let us record an easy observation.

Observation 4.7. If the skew product Smale system T : Y =Y s of finite type, then it is
also of compact type.
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The Smale system T : Y — Y is called of bijective type if, for every & € J the fiber #71(€) is
a singleton. Equivalently, the map 7 : E4 — J is injective; then also 7" : J — J is bijective.
A Smale skew product of bijective type is clearly of finite type, and thus of compact type.

Definition 4.8. We call a Smale endomorphism continuous if the global map T : J — J
is continuous with respect to the relative topology inherited from E} x Y.

Later in this section we will provide a construction giving rise to continuous Smale endo-
morphisms, in fact all of them will be Holder continuous.

Lemma 4.9. For every n > 1 and every T € E4(—n,+00), we have

(45) wa(lr) = T2(2).
Equivalently for every T € E4, we have that
(49) (75520 = T (o)

Proof. Using formula (4.5) we get TT”(JTEZO) =Tl o ([r|FX115™°) = foo™([7[5X05°°) =
T ([rI57]). O
As an immediate consequence of (4.2), we get the following
Observation 4.10. For every w € E 4, the map

W]T® 2 T To(T) € Jype C Y

1s Lipschitz continuous if E4 is endowed with the metric dy-1. In consequence, it is Holder
continuous with respect to any metric dg, B >0, on E4.

Note that for every 7 € £, n > 1

#([r) = |J {w} x .

we|[T]

Let M(E4) be the topological space of all Borel probability measures on E4 endowed
with the topology of weak convergence, and M,(E4) be its closed subspace consisting of
o-invariant measures. Likewise, let M (J) be the topological space of all Borel probability
measures on J endowed with the topology of weak convergence, and let My (J) be its closed
subspace consisting of T-invariant measures. First we recall the following fact, which is well
known in measure theory.

Lemma 4.11. Let W and Z be Polish spaces. Let i be a Borel probability measure on Z,
let i be its completion, and denote by Bu the complete o-algebra of all ji-measurable subsets
of Z. Let f : W — Z be a Borel measurable surjection and let g : W — R be a Borel
measurable function. Define the functions g.,g* : Z — R respectively by

g.(2) == inf{g(w) :w € f1(2)} and g¢*(z) :=sup{g(w) : w € f1(2)}.

Then these two functions are measurable with respect to the o-algebra Bﬂ. If in addition
the map f: W — Z is locally 1-to-1, then both g. and g* : Z — R are Borel measurable.

We now prove the following;:
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Theorem 4.12. If T : J — J is a continuous skew product Smales endomorphism of
compact type, then the map

MU(EA) S H MOﬁ'_l S MT(J)
18 surjective.

Proof. Fix u € Mr(J). Let By(E4) and By(J) be the vector spaces of all bounded Borel
measurable real-valued functions defined respectively on F4 and on J. Let B/ (E4) and
B, (J) be the respective convex cones consisting of non-negative functions. Define also:

By(E4) :={gow:geBy(J)}

Clearly Bb(EA) is a vector subspace of By(F4) and, as 7 : E4 — J is a surjection, for
each h € By(E,) there exists a unique g € By(J) such that h = g o . Thus, treating, via
integration, p as a linear functional from B,(J) to R, the formula

By(Ea) 3 go# — jigo?) :=p(g) €R,

defines a positive linear functional from Z’S’b(E 4) to R. Since, by Lemma 4.11 applied to the
map f being equal to 7 : E4 — J, for every h € By(E4), the function h, o7 : B4 — R
belongs to By(E4). Since h — h, o & > 0, thus h — h, o & € By (E4), the Riesz Extension
Theorem applies to produce a positive linear functional p* : By(E4) — R such that:

p(h) = iu(h)

for every h € By(E4). But u* restricted to the vector space Cy(E4) of all bounded contin-
uous real-valued functions on F4, remains linear and positive. We prove the following.

Claim 1% If (g,)>, is a monotone decreasing sequence of non-negative functions
in Cy(E4) converging pointwise in E,4 to the function identically equal to zero, then
lim,, . p*(gs) exists and is equal to zero.

Proof. Clearly, (g})>2, is a monotone decreasing sequence of non-negative bounded func-
tions that, by Lemma 4.11, all belong to B(.J), thus to B, (J). Fix y € J. Since our
map T : J — J is of compact type, the set 77!(y) C E4 is compact. Therefore Dini’s
Theorem applies to let us conclude that the sequence (gn|ﬁ—1(y)):o:1 converges uniformly to
zero. Since all these functions are non-negative, this just means that the sequence (g*)%,
converges to zero. In conclusion (¢g*)%°; is a monotone decreasing sequence of functions in

B, (J) converging pointwise to zero. Therefore, as also g, < g o 7, we get
0< lim p*(ga) < lim p*(g; 0 %) = lim fu(g;, o #) = Lim 4u(gy) = 0.
n—oo n—oo n—00 n—oo

So, the limit lim,, o, 1£*(g,) exists and is equal to zero. The proof of Claim 1° is complete.
O

Having Claim 1°, Daniell-Stone Representation Theorem applies to tell us that u* extends
uniquely from Cy(E4) to an element of M(E4). We denote it by the same symbol p*. Now
we shall prove the following.

Claim 2°: For every £ > 0 there exists K., a compact subset of F4 such that #7(#(K.)) =
K. and p(7(K.)) > 1— 5.
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Proof. Fix any k € Z and denote by p; : ET~ — E is the canonical projection on the kth
coordinate, i.e.
Pe((1)i2 ) = Y-

Fix ¢ > 0. In the sequel we will assume without loss of generality that £ = {1,2,...}.
Since the map T : J — J is of compact type, each set 77!(y) C E4, y € J, is compact,
and consequently, the function pj, : J — R, defined in Lemma 4.11, takes values in R.
So we have the function p; : J — E which, by Lemma 4.11, is Borel measurable; thus
ppom: Eq — Nis also Borel measurable. Hence, there exists n; > 1 such that

(4.10) w((p) " ([ + 1, +00))) < 27 k=4g,

Since the measure p is inner (closed sets) regular, by Lusin’s Theorem Borel measurability
of the function p; : J — N yields the existence of closed subsets J;, C J such that p(Jg) >
1 — 27 =% and the restriction p|;, : Jp — N is continuous. Define

Joo =) Ji.
k€EZ
Then J is a closed subset of .J,

(4.11) MUSESESS
and each map pi|s. : Joo — N is continuous. Define
. . ~1
Ko = () (Pl © Fla10)) ~ ([1 7))
kEZ
By the definition of the maps p; we have that
(4.12) FIR(KL) = K.

and

keZ

Therefore, employing (4.11) and (4.10), we get
e € €
4.1 < 1 <4+ ==,
(418) ORI < T\ ) (0 w1 o0) < 4 =5

Since all the maps pi|;., k € Z are continuous, K. is a closed subset of E4. But
K. C I]iez[1,ni) and since this Cartesian product is compact, we can conclude that K is
compact. Along with (4.12) and (4.13) this completes the proof of Claim 2°.

[

Using the T-invariance of p and Urysohn’s Approximation Method, we prove the follow-
ing:

Claim 3°: If e > 0 and K. C E,4 is the compact set produced in Claim 2°, then
prooV(K,)>1—¢
for all integers 7 > 0.



21

1

Proof. Fix € > 0 arbitrary. Fix an integer j > 0. Since the measure pu* oo/ o 771 is outer

regular, and 7(K.) is a compact set, there exists an open set U C J such that
#(K.) CU and proooa ' (U\#(K.)) <e/2.

Now, Urysohn’s Lemma produces a continuous function v : J — [0, 1] such that u|z(x.) = 1
and u(E4 \ U) C {0}. Then, by our construction of x* and by Claim 2°, we get

woo (K = pt oo ok (#(KL)) > pt ool 0k (U) — g
:,u*(]onfroaj)—g:,u*(IonTj)—EZu*(uoTjofT)—%
= i((wo V) o) =5 = pluoT’) = 5 = p(w) = 5 = p(i(K.)) =5 21—«
O
Now, for every n > 1 set
1n71
", :E;O“*OU d

It directly follows from Claim 3° that
pn(Ke) 2 1—¢

for every ¢ > 0 and all n > 1. Also, since, by Claim 2%, each set K. is compact, the
sequence of measures (p)> ; is tight with respect to the weak topology on M,(E4). There
thus exists (n4)72,, an increasing sequence of positive integers such that (u;, )32, converges
weakly, and denote its limit by v € M(FEy4). A standard argument shows that v € M, (E,).
By the definitions of i and p*, we get for every g € Cy(E4), and every n > 1, that

- « 1 . 1 i A ,
o g) = m(go®) =~ oo (god) =~ u'(goiod)
j=0 Jj=0
1 n—1 1 n—1
==Y W ((goT)ort)==> i((goT?) o)
Jj=0 n Jj=0
1 n—1 1 n—1
== ulgoT)=—> pulg) = pnlg).
=0 =0
Therefore u* o 7~ = p for every n > 1, hence,
~—1 : * ~—1 : * ~—1
s = ) 57 i o) =

Let us now record the following straightforward but important observation.
Observation 4.13. If T is a Smale endomorphism and p € My(E4), then
hyoz-1(T) = hy (o).
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Proof. 1t is standard, we include it for completeness. We have the well-known inequalities:
(4.14) hyoz-1(T) <h,(o) and h 1(0) < hyor-1(T).

port—lom”

But m : Ea — Ef, m(7) = 7|5° is the canonical projection from FE4 to EY. So, u €
M, (E,) is the Rokhlin’s natural extension of the measure o tom;* € M,(E}). Hence,
h 1(0) = h,(o). Along with (4.14) this implies that h,.z-1(T) = h,(0).

A —
pot—lom]

O

Now, we define the topological pressure of continuous real-valued functions on J with
respect to the dynamical system T : J — .J. Since the space J is not compact, there is
no canonical candidate for such definition. We choose the definition which will turn out
to behave well on the theoretical level (variational principle), and serves well for practical
purposes (Bowen’s formula). For every finite admissible word w € E}* let

[w]r =: ma(w]) C J.
If ¢ : J — R is a continuous function, we define

1
P(¢) = Pr(y) == lim —log }  exp(sup(S,¢|i,), where,

|w]=n
n—1
Sn¢:Z¢OTj, n>1
=0

The limit above exists, since the sequence log ) _cn-1 exp (sup(5n¢|[w]T),n € N, is sub-
additive. We call P7(1) the topological pressure of the potential ¥ : J — R with respect
to the dynamical system 7" : J — J. As an immediate consequence of this definition and
Definition 3.1, we get the following:

Observation 4.14. Ifvy : J — R is a continuous function, then
PT(w) = Pa(d) © ﬁ-)

The following theorem follows immediately from Theorem 3.10, Observation 4.14, Theo-
rem 4.12, and Observation 4.13.

Theorem 4.15. If ¢ : J — R is a continuous function, and u € Mry(J) is such that
Y e LY(J,p) and [ du > —oo, then h,(T) + [, du < Pr(¢).

We adopt the following two definitions.

Definition 4.16. The measure € Mr(J) is called an equilibrium state of the continuous
potential ¢ : J = R, if [ dp > —o0 and

(1) + [ ¥ d = Pa(v).
J
Definition 4.17. The potential ¢ : J — R s called summable if
ZGXP(SUP(M[e]T)) < +o00.

eclk

As an immediate observation we get the following.
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Observation 4.18. A potential i : J — R is summable if and only if ponw : E4 — R is
summable.

Definition 4.19. We call a continuous skew product Smale endomorphism T : =Y
Holder, if the projection 7 : E4 — J is Holder continuous.

We shall now first establish an important property of Holder skew product Smale endo-
morphisms of compact type, and then will describe a fairly general construction of such
endomorphisms.

Theorem 4.20. IfT : Y — Y is Holder skew product Smale endomorphism of compact type
and Y : J — R s a locally Holder summable potential, then ¢ admits a unique equilibrium
state, denoted by jiy. In addition

A1
Hop = Haporr O T

where pyor 15 the unique equilibrium state of Yo7 : B4 — R with respect to o : E4 — E4.

Proof. By our hypotheses, o7 : F4 — R is a summable locally Holder continuous poten-
tial. It therefore has a unique equilibrium state fiy0# by Theorem 2.7. By Observation 4.14
and Observation 4.4 we then have that

By (ptgor 0 71 ) + /¢ d(prgor 07 1) = holpiger) + | 0@ d(pyor) = Polth 0 7). = Pr(¥)
J Ea

Thus, in order to complete the proof we are only left to show that if p is an equilibrium

state of the potential ¢, then 1 = fiyor o 7', So, assume that u is such equilibrium. It

then follows from Theorem 4.12 that y = v o #~! for some v € M,(FE,). But then by

Observation 4.14, we get

h,(o)+ [ Yordv > h,,oﬁ_l(T)Jr/Jz/;d(uoﬁl) = hu(T)+/J¢du = Pp(¢)) = Po(o7).

Ea

Hence, v is an equilibrium state of the potential ¥ o7 : E4 — R and the dynamical system
o:FE4— E4. Thus from Theorem 2.7, v = fiypos-
O

Now we provide the promised construction of Holder Smale skew product endomor-
phisms. We start with (Y, d), a complete bounded metric space, and we assume that for
every w € E there is given a continuous closed injective map T, : Y — Y satisfying the
following two conditions:

(4.15) d(Too(y2), To(y1)) < A~ Md(y2, 1),
for all y1,y2 € Y and some A > 1 independent of w.

(4.16) oo (T, To) := sup {d(T5(€). Tu(€)) : € €Y'} < Cd(B.0)

with some constants C' € (0,+00), £ > 0, and all a, 3 € E7}.
Then let

Y = Ef xV,
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and call T : Y — Y a skew product Smale system of global character. One may assume
without loss of generality that

1
(4.17) Kk < 3 log .
We shall prove the following.

Theorem 4.21. Each skew product Smale system of global character is Holder.

Proof. Let T : Ef xY — E} x Y be such skew product Smale system of global character.
We first show that 7' : Ef x Y — E%} x Y is continuous. Clearly it is enough to show that
proT : Ef xY — Y is continuous, where py denotes here the canonical projection onto
the second coordinate. Indeed, for all «, 5 € EF and all z,w € Y, we have

d(pz o T(ev, 2), pa 0 T(B,w)) = d(Ta(2), Ts(w)) < d(Ta(2), Tp(2)) + d(T(2), Ts(w))
< dw(Tw,T3) + A d(z,w)
< Odg(a, B) + A td(z,w),

and continuity of the map pooT : E; xY — Y is proved. So the continuity of T : Ef xY —
E} x Y is proved, and thus T': J — J is continuous too. We now show that 7' : J — J is
Holder. So, fix an integer n > 0, two words o, 8 € EF4 and £ € Y. We then have

(4.18)

d(Tg—H(g)’Tg-&-l(g)) —d (To’} (TaEzH)({)),TZJ (TB|+( " (f)))
< d (T3 (T, (€) T8 Ty, (©)) + (T2 (Tape, (€0) T (Tyo
ATy (), Ty (€)) + doo (T2, TF)
< AT"Cd, (@‘Jr n+1) B (n+1)) + dOO(Tg’Tg)'

©))

(n+1)

Let p > —1 be uniquely determined by the property that
(4.19) de(a, ) = e ",
Consider two cases. First assume that

(4.20) do(a, B) > e "
Then using also (4.17), we get
(4.21) A" (af 77

nt1) BT (n+1)) < e < e (a, B).

So, assume that
(4.22) de(a, f) < e ™.
Then n < p, son+ 1 < p, whence

i ( (n+1 7ﬁ (n+1) ) = eXP(—K((n +1)+1 —|—p)) — o H(n+2) ,—kp
— e*“("”)d,ﬁ(a, 5) S eimld,f(()é,ﬁ).
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Hence, A\™"d,. ('), 817 0,y) < e7dy(, B). Inserting this and (4.21) to (4.18), in

either case, yields
d(TO’jH(f), Tg“(g)) < dy (TC’Z, Tg) + Ce ™ ™d (v, B).
Hence, taking the supremum over all £ € Y, we get
doo (T, THHY) < doo (T3, T3) 4 Ce " "d (v, B).

This in turn gives by immediate induction that

n—1 00
(4.23)  duo (T2, T3) < Cdy(a, 8) Y ™™ < Cdyp(, )Y e =C(1— e ") du(a, B)
j=0 i=0

for all o, B € E4 and all integers n > 0. Recall that the integer p > —1 is determined by
(4.19). Assume that p > 0. Then using (4.23), (4.22), and (4.2), we get

d(7y(), (ra(a)) < diam (T2(Y)) + diam(T5(Y)) + do (T2, T5)
< A Pdiam(Y) + A Pdiam(Y) + C(1 — e ") 'd.(a, B)

log A

< 2diam(Y)d, " (a, B) + C(1 — e™)"Ld, (e, B).

Since also d is a bounded metric and since d,(a, ) = e if p = —1, we now conclude that
7o . EF4 — Y is Holder continuous. Hence 7 : E4 — Y is also Holder continuous.
O

As an immediate consequence of Theorem 3.14 and Proposition 3.15 along with Obser-
vation 4.14 and Theorem 4.20, we get the following two last results of this section. We
mention that with somewhat different setting and methods, such results were proved by
Sarig [30]. Define now the set (v, &) similarly to Definition 2.9.

Theorem 4.22. Suppose that'T : Y = Y a Hélder skew product Smale system, for example
a Smale systems of global character. If~,& : J — R are locally Holder continuous functions,
then the function X(v,€) 2 (q,t) — Pr(qy + t€) is real-analytic.

Proposition 4.23. Suppose that T : Y — Y a Hélder skew product Smale system, for
axample a Smale systems of global character. If v,& : J — R are locally Holder continuous
potentials, then for all (qo,to) € X(v, ),

agq (qovto)PT(qv TH)= /Wd'uqm"'t(’g’ % (qO,to)PT(q’Y +1§) = /gdﬂqm—ktofa
and
92
dqot (qoﬂfo)PT(q,y 1) = UIQ‘qowHog’
where figyy+t0e 5 the unique equilibrium state of the potential qoy + to§ and giquOE is the

asymptotic covariance of the pair (7y,§) with respect to the measure figyy+10¢ (S€€ Proposi-
tion 2.6.14 in [15] for instance).
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5. CONFORMAL SKEW PRODUCT SMALE ENDOMORPHISMS OF COUNTABLE TYPE

In this section we keep the setting of skew product Smale endomorphisms. However we
assume more about the spaces Y, w € E;{, and the fiber maps T, : Y, — Y, (), namely:

(a) Y, is a closed bounded subset of R, with some d > 1 such that Int(Y,) = Y,,.
b) Each map T, : Y,, — Y, extends to a C' conformal embedding from Y* to Y*
(@) w

o(w)?

where Y* is a bounded connected open subset of R? containing Y,,. We keep the same

symbol T, to denote this extension and we assume that the maps 7, : Y7 — Ya*(w)

enjoy the following properties:

(c¢) Formula (4.1) holds for all y;,ys € Y.¥, perhaps with some smaller constant A > 1.

(d) (Bounded Distortion Property 1) There exist constants a > 0 and H > 0 such that
for all y, 2z € Y7 we have that

|log |T,,(y)| —log [T, ()] < Hly — ||
(e) The function E4 > 7+ log |T.(7a(w))| € R is Hélder continuous.

(f) (Open Set Condition) For every w € E| and for all a,b € F with Ay, = Apy = 1
and a # b, we have

Tow (It (Yow)) N Ty (Int(Yy,,)) = 0.
(g) (Boundary Condition) There exists a measurable function § : E} — (0, 00) so that
Jo N (Yo \ B(YS, 0(w)) #0
for all w € Ef. We mention that Open Set Condition plus the Boundary Condition
give what is called the Strong Open Set Condition.

Any skew product Smale endomorphism satisfying conditions (a)—(g) will be called in the
sequel a conformal skew product Smale endomorphism.

Remark 5.1. The Bounded Distortion Property 1, i.e (d), is always automatically satisfied
if d > 2. If d = 2, this is so because of Koebe’s Distortion Theorem and because each
conformal map in C is either holomorphic or antiholomorphic. If d > 3 this follows from
Liowville’s Representation Theorem asserting that each conformal map in RY, d > 3, is
either a Mobius transformation or similarity, see [15] for details.

A standard straightforward calculation based on (c), (d), and (e), yields in fact the follow-
ing.

(BDP2) (Bounded Distortion Property 2) Perhaps with a larger constant H than in (d),
we have that

[1og |(72)' ()] — 10 | (T7)' ()] | < Hlly — =II°,
forall 7 € Ea, y,2 € Y:\f“” and all n > 0.

An immediate consequence of (BDP2) is the following version.
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(BDP3) (Bounded Distortion Property 3) For all 7 € E4, alln > 0, and all y, 2z € Y:\f‘”’

Ty
K*l S ‘( T)/(y)} S K’
(Tr) (2)]
where K = exp(Hdiam®(Y")).
Recall also that we say that a conformal skew product Smale endomorphism is Hélder,
if the condition of Holder continuity for 7 : 4 — J is satisfied, see Definition 4.19.

Remark 5.2. Note that condition (e) is satisfied for instance if T : Y = Y is of global
character (then by Theorem /.21, it is Holder) and if in addition

(5.1) |75 — Tlleo < Cdie(ar, B)
for all o, € Ef. Actually if the conformal endomorphism T : Y — Y is of global
character, then (5.1) also automatically follows in all dimensions d > 2. For d = 2 this is

just Cauchy’s Formula for holomorphic functions, and for d > 3 it would follow from the
Liouville’s Representation Theorem, although in this case the proof is not straightforward.

As an immediate consequence of the Open Set Condition (f) we get the following:

Lemma 5.3. Let T:Y —» Y a conformal skew product Smale endomorphism. If n > 1,
a, B € Ea(—n,00), al§™ = B3>, and o|Z;, # B|Z,, then

T (Int(Y,)) N T (Int(Y)) = 0, and
T (Int(Ya)) NTg (Ys) =0 = T2 (Ya) N Tg (Int(Y)).
Now as a consequence of the Open Set Condition in fibers, we obtain:

Lemma 5.4. Let T:Y — Y be a conformal skew product Smale endomorphism. Ifn > 1
and 7 € Ea(—n,0), then

A (T2 (It (Y;)) © [7).
Proof. let v € 7y ' (T (Int(Y;))). This means that y|{™ = 7|3 and #»(y) € T (Int(Y;)) C

YT|O+oo. On the other hand, 7o(y) € Twn|+°° (Y,ﬂtoo). It therefore follows from the second

formula of Lemma 5.3 that v|°,, = 7. So, v € [7] and the proof is complete. O
We will also use the following condition:
(h) (Uniform Geometry Condition) I(R > 0) V(w € E}) 3(&, € Y,,)
B(&,, R) C Y,
The primary significance of the Uniform Geometry Condition (h) lies in:

Lemma 5.5. If T : Y — Y is a Hélder conformal skew product Smale endomorphism
satisfying Uniform Geometry Condition (h), then for every v > 1, 3T, > 0 such that:

If F C E%(—o0,—1) is a collection of mutually incomparable (finite) words, so that
A; wo =1 for some w € £ and all T € F, and so that for some £ € Y,

TI(Y) N B(Er) # 0 with v 'r < diam (T (Vo)) < 4,
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then the cardinality of F is bounded above by I',.

Proof. From the definition of conformal Smale skew product endomorphisms of Hélder type,
the family {700 (Int(Y,,)) : 7 € F} consists of mutually disjoint subsets of Y,,.
Also, from the Uniform Geometry condition (as without it, one may not guarantee the

existence of balls of radii comparable to 7 inside T (Int(Y;,,)) ), we obtain:
T (Int(Ye)) D TN B (6w B) D B(TH (6w, K R|(T) (60)])
D) B(TTLU (57'(.0)7 Kﬁ?Rﬁyilr)

Moreover, T)7) (Int(Y,,)) € B(§, (1 4+ +)r). Therefore the conclusion of the Lemma follows.
0

6. VOLUME LEMMAS

We are in the setting of Section 5. Thus let T' : Y — Y a conformal skew product
Smale endomorphism, i.e one satisfying conditions (a)—(g) of Section 5. Condition (h), the
Uniform Geometry Condition is not required in the current section, it will be used in the
next one.

First of all, we recall the definition of ezact dimensional measure, from Young [35]:

Definition 6.1. Let yu be a Borel probability measure on a metric space X. We say that u
is exact dimensional if there exists a value d,, so that, for p-a.e. v € X,

lig 108 HB@. 1) _ g log plB(x, 7))

—0 log r r—0 log r

=d

“w

Exact dimensionality of a measure is important, since it implies that all dimensions of
that measure are equal (pointwise dimension, Hausdorff dimension, box dimension); it was
studied in various dynamical settings (see for eg [35], [1], etc.)

Now if i is a Borel probability o-invariant measure on Ey4, then by x,(c) we denote its
Lyapunov exponent, defined by the formula

o) = = [ o[ (o) ) = = [ [ 10w 72 k) () ),

where m = p o ;' = 71, is the canonical projection of u onto E;. We shall prove:

Theorem 6.2. Let T :Y — Y be a Hélder conformal skew product Smale endomorphism,
and let v : Ex — R be a locally Hélder continuous summable potential. Then for the
projection = [i; o 751, of the conditional measure onto the fiber J,,, we have that

h#w (o) _ P, (¢) — f¢dﬂw
qu(a) qu<‘7)

+ _ -1 +
for mw—la.e w € Ey, where my = py om . Moreover for my-a.e w € E the measure
fiy, 0 Ty~ is exact dimensional, and its pointwise dimension is given by:

logmigo s (B.r)) (o)

r=0 log 7 X, (0)

HD (15 0 73 ') =

(6.1)
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formy-a.e. w € E} and gon;y ' -a.e. z € J, (and equivalently for pyorn-a.e. (w,z) € J).

Proof. According to Definition 6.1, we only need to show that formula (6.1) holds a.e. Since
the measure pu, is ergodic, Birkhoff’s Ergodic Theorem applied to the map o' : E4 — Ey4
produces a measurable set E4 ., C E4 such that py(Eay) = 1, and for every 7 € E4 ),

(6.2) lim nlogl (T7) (a0 ™™(7)))] = =Xy (0)
and
(63) lim —8,007"(7) = [ g

For arbitrary w € E} denote now

-1
_MwOWZ )

which is a Borel probability measure on J,. Fix 7 € FE4,. Fix also a radius r €
(0,diam (Y, () /2). Let z = #»(7), and take the least integer n = n(z,7) > 0 so that
(6.4) " (YTP_LOO) C B(z,r).

If r > 0 is small enough (depending on 7), then n > 1 and 7! (YTE?OA)) ¢ B(z,r). Since
z € TTn_l(Yﬂi(wfl))’ this implies that

(6.5) diam (777! (Ve )) 27

Tl
Write w := 7|, It follows from (6.4), Lemma 4.9, and Theorem 3.12 that
LB 2 na(a([r17) = o 75 (ra((r1%51) 2 (1)
> D exp(Suv(0~" (7)) — Po ().
By taking logarithms and using (6.5), this gives that
logv,(B(z,7)) _ —log D+ S,p(c7"(1)) — Py(¥)n

(6.6)

logr = log (diam (TTn—l (YT|+(n 1)))
So applying (BDP3), we get that
log v (B(z,7)) —log D + 5,¢(07"(7)) = Po(¢)n
logr log K + log (dlam< e >~|— log |(Tn=1) (7ta (0= (7)))]

L —lgD+Suplo(r) — Pa(w)n
~ log K + log(diam(Y")) —|—log|( -1 (& (O'_”<T)))‘
“BLD | 15,9(0~(r)) ~ P, )
IOiK + log(du:lm(Y) 1 log‘ Trn 1 (7T2(0' ”(T)))|
and by virtue of (6.2) and (6.3) this yields
—loguy(B(z,7)) _ limy, e 1S,00(0 ( ) = Po(¥)  Po(¥) = [¢duy
(6.7) 11—{% logr = lim,, o ﬁlog| (Tr=1Y (7, ( (1)) )‘ Xu, (0) '

)
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In order to establish the opposite inequality note that the set 75 ' (J,,\ B(Y5, 8(w))) is open
in [w| C FEy, is not empty by (g), and therefore

g (72 (S \ BOYZ,0(w)))) > 0
for every w € E}. In consequence p,,(Z) > 0, where
Z:= ) %' (Ju\ B(Y$,0(w)))
LI.JEEATL
Also, since § : E} — (0,+00) is measurable, there exists R > 0 so that yu,(Zg) > 0, where
Zr = |J %' (J.\ B(YS,R))
wEEzr
Consider now the set of integers
N(r):={k>0:07"%) € Zg}.

Represent the set N(7) as a strictly increasing sequence (k,(7));2;. By Birkhoff’s Ergodic
Theorem, there is a measurable set E4 ., C Ea, with py(E4 ) = 1 and for every 7/ € E4 ),

lim Card{0 <i<mn, o (') € Zp}
n— o0 n

Now we put k,(7) > n, instead of n above, and notice that Card{0 < i < k,(7), 07'(7') €
Zr} = n. Therefore as p,(Zr) > 0, we obtain for every 7 € E4, and any n large, that:
k., 1
lim (7) =
n—oo 1 1y (ZR)

= 11y(ZR)

Hence for every 7 € F A, We have

(6.8) lim Pt ()

n—00 ]{;n(T)

Fix 7 € E4,. Keep w = 7[¢™ and consider the largest n = n(r,r) > 1 such that with
kj = k;(T), j > 1, we obtain

(6.9) K=1(T50) (oo (7)) ’ R>r
Then
(6.10) K= |(T) (a0 (7)) ] R<r.

It follows from (6.9) and (BDP3) that
B(z,1) € TH (B(falo ™ (7)), R) € T (nt (V1 ) )

Hence, invoking also Lemma 5.4 and Theorem 3.12, we infer that

vo(B(z,1)) < g ([71732]) < Dexp (Sk, (07" (7)) = Po(¥)kn) -
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By taking logarithms and using (6.10), this gives that
logvy(B(z,7)) _ _ log D+ Sk, (07" (1)) = Py (¢)kn
log (1) (aloton )
S 4 LSy, (07 (1)) = Po(v)
(Tf““), (72 (0= *nt1(7))) ‘ |

—log K + log

—log K 1
e T log

By virtue of (6.2), (6.8) and (6.3), this yields
oo logr(Bler)) o limase g Se o (M) = Po(w)  Po(¥) — [wdpy
o logr (72) (3 (a—w(T)))‘ s ()

. 1
lim,, W log

Along with (6.7) and since P, (1)) — [ duy = hy, (o). this gives that formula (6.1) holds
forall 7 € E 4,0, and the proof of Theorem 6.2 is complete.
O

If 14 is now a Borel probability T-invariant measure on the fibered limit set .J, then by
X.(T") we denote its Lyapunov exponent, which is defined by the formula

W)= = [ Tog| T dnter2) = = [ [ o T 2) a2 dm(e),

1

where m = p o m ' is the canonical projection of y onto E}, and (ﬁw)w€E+ is the
A

canonical system of conditional measures of p with respect to the measurable partition
{{w} x Jw}weEj' Now we prove the following.

Corollary 6.3. Let T : Y — Y be a Holder conformal Smale endomorphism of compact
type. Let ¢ : J — R be a locally Holder continuous summable potential. Then

huw (T) _ Pr(y) — f¢duw
Xy (T) Xy (T))

for my-a.e. w € E}, where my = py 0w t. Moreover, for my-a.e. w € E} the measure
Tty is exact dimensional and

HD () =

log 2% (B(z, h, (T
(6.11) . og i (B(z,)) by, (T)
r—0 logr Xy (T)

for my-a.e. w € E} and [i-a.e. z € J, (equivalently for py-a.e. (w,z) € J).

Proof. Let 1& =1yom: Ey — R. By Theorem 4.20 py = pu, o7~ ! is the unique equilibrium
state of the potential ¢ and the shift map o : E4 — E4. By Observation 4.14, Py (1)) =
P,(¢)), and by Observation 4.13, hy, (T) = hy, (o). Since in addition x,, (T) = X, (o),
the proof of our corollary follows immediately from Theorem 6.2 applied to the potential
V:Es— R O
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7. BOWEN TYPE FORMULA

We keep the setting of Sections 5 and Section 6, so T : Y — Y is a conformal skew product
Smale endomorphism, i.e. one satisfying conditions (a)-(g) of Section 5. Furthermore we
do however emphasize that in the present section Condition (h), i.e. the Uniform geometry
Condition, is now needed and it is assumed.

For every t > 0 let ¢, : J — R be the function function given by the following formula.

i(w,y) = —tlog T (y)|-
Define F(T') to be the set of parameters ¢ > 0 for which the potential 1, is summable, i.e.
Zexp (sup(@/Jthe]T)) < +00.
ecl

This means that

> sup {|[ Tl : 7 € Ea(1,400), Aer, = 1} < +00.
eclE

For every t > 0 we abbreviate
P(t) := Pr(yy),

and call P(¢) the topological pressure of the parameter ¢. From Proposition 3.6, we have
F(T)={t>0:P(t) < +o0}.
We record the following basic properties of the pressure function [0, +00) 3 ¢t — P(t).

Proposition 7.1. The pressure function t — P(t), t € [0,00) has the following properties:

(a) P is monotone decreasing
(b) Plrr) is strictly decreasing.
(c) Plrry is convex, real-analytic, and Lipschitz continuous.

Proof. All these statements except real analyticity follow easily from definitions, plus, due
to Lemma 3.4 and Observation 4.14, from their one-sided shift counterparts. The real

analyticity assertion is an immediate consequence of Theorem 4.22.
O

Now we can define two significant numbers associated with the conformal skew product
Smale endomorphism 7"

O = inf {t >0:P(t) < —|—oo} and Br := inf {t >0:P(t) < 0}.

Br is called the Bowen’s parameter of the system T'. Clearly 6 < Br.
The main result of this section is the following.

Theorem 7.2. If T : Y — Y is a Holder conformal skew product Smale endomorphism
satisfying the Uniform Geometry Condition (h), then for every w € EY,

HD(J,) = Br.
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We first shall prove this theorem under the assumption that the alphabet E is finite. In
this case we will actually prove more. Recall that if (Z, p) is a separable metric space, then
a finite Borel measure v on Z is called Ahlfors reqular (or geometric) if and only if

o < v(B(z,1)) < Crh,

for all » > 0, with some independent constants h > 0, C' € (0, +00). It is well known and
easy to prove that there is at most one h with such property and all Ahlfors regular measures
on Z are mutually equivalent, with bounded Radon-Nikodym derivatives. Moreover

h=HD(Z) = PD(Z) = BD(Z),

the two latter dimensions being, respectively the packing and box-counting dimensions of
7. In addition, the h-dimensional Hausdorff measure Hj,, and the h-dimensional packing
measure P, on Z, are Ahlfors regular, equivalent to each other and equivalent to v. Now, if
the alphabet FE is finite, then the Smale endomorphism 7" : Y - Yisof compact type, and
in particular, for every ¢ > 0 there exists y;, a unique equilibrium state for the potential
Yy J — R. Since 0 < P(0) < +o0 it follows from Proposition 7.1 that

P(Br) =0.
We shall prove first the case of a finite alphabet FE.

Theorem 7.3. If T : Y — Y is a Hélder conformal skew product Smale endomorphism
satisfying the Uniform Geometry Condition (h) and the alphabet E is finite, then [, is
an Ahlfors reqular measure on J,,, for every w € E}. In particular, for every w € EF,

HD(J,) = Br

Proof. Put h := Br. Fix w € E and z = 7iy(7) € J,, arbitrary. Let n = n(z,r) be given

by (6.4), and let us denote

—1
V, 1= [y 0Ty .

Formula (6.6) gives, for 1) = 1y,
(7.1) Vo(B(z,7)) > D7 * exp(Sn¢(0_"(7'))) = D_l‘ (Tf)/(frg(a_"(r)))}h.

Now, since the set E4 is compact (as F is finite) and since the function E4 > 7
|T!(72(7))| € (0,400) is continuous, in fact Holder continuous, we conclude that there
exists a constant M € (0, +000 such that

(7.2) M~ <inf {|T(72(7))| : 7 € Ea} < sup {|T}(72(7))| : 7 € Ea} < M.
Having this an inserting (6.5) to (7.1), we get
(7.3) vu(B(z,1)) = (DM")~ "

In order to prove an inequality in the opposite direction, define:

F(z,r) = {7‘ B (=00, —1) : TII(Y,,) N B(z,r/2) # 0,

d1am(T|T|(Y )) <r/2and dlam(T|( e (YT[%lr\—l)“)) > T/Q}.
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By its very definition F(z,r) consists of mutually incomparable elements of £’ (—o0, —1),
so using (7.2) along with (BDP3), we get for every 7 € F(z,r), with n :=|7|, that

dlam(T” = d13um(T”|_11 T, (Y; ))) > Kt <T”|_11 > H diam(Tm(Ym))
Tl (n-1)¥ Tl—(mn-1)%/ lloo
/
> K- H Tl H 'L di > 2K‘2M‘1RH Tl
( ) | ” 1am ) ( I (n—1)% ) 00

> QK—3M_1Rd1am (Y)dlam(Tnl 1 (TTW <YT|7% 1)‘”))
(1) o

> KM~ 'Rdiam™' (Y)r.
Thus Lemma 5.5 applies with the radius equal to r/2, since #F(z,r) < I',, where
7y := max{1,2K*M R 'diam(Y)}.

Since also

i (Blzr)) | e,
TEF (z,r)
we therefore get

vo(Blzr) Smpom | | el | < Y0 modmy(Irw)

TEF (z,r) TEF (z,r)
< 30 @)L < KOS diam® (7] (Vo)) < (K)o
TEF (z,r) TEF (z,r)

Hence, along with (7.3), this shows that v, is Ahlfors regular with exponent h = Br.
[

Proof of Theorem 7.2: Fix t > By arbitrary. Then P(¢) < 0. It therefore follows from
the definition of topological pressure and of the potential ¢; that for every integer n > 1
large enough and for every w € E}, we have that

>y e (5P0n).

TEEY (—n,—1)
Ar_qwp=1

Therefore by (BDP2),

(7.4) Z diam' (T7%,(Yr)) < K'exp (

TEEY (—n,—1)
Ar_jwp=1

%P(t)n) |

Since P(t) < 0, since the family {17, (Y,.) : 7 € E}(—n,—1), A, ., = 1} is a cover of J,
and since the diameters of this cover converge to zero (diam (77, (Y,)) < A "diam(Y)),
it follows from (7.4), by letting n — oo, that Hy(J,) = 0. Therefore HD(.J,,) < t, and, by
arbitrariness of t > By,

(7.5) HD(J,) < Br.
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In order to prove the opposite inequality fix 0 <t < Bp. Then P(¢) > 0 and it thus follows
from Theorem 3.5 that Pp(t) > 0 for some finite set F' C E such that the matrix A|pyp is
irreducible. It then further follows from Theorem 7.3 that HD(J,,(F)) > ¢ for all w € FJ.
Since J,(F) C J,, this yields HD(J,) > t. Thus, by arbitrariness of ¢ < By, we get that
HD(J,) > Br. Along with (7.5) this completes the proof of Theorem 7.2

0

8. GENERAL SKEW PRODUCTS OVER COUNTABLE-TO-1 ENDOMORPHISMS. BEYOND
THE SYMBOL SPACE

We want to enlarge the class of endomorphisms of skew products for which we can prove
exact dimensionality of conditional measures on fibers. For general thermodynamic formal-
ism of endomorphisms related to our approach, one can see [28], [16], [18], [17], [20], etc.
Also our result below on exact dimensionality of conditional measures in fibers extends
a result on exact dimensionality of conditional measures on stable manifolds of hyper-
bolic endomorphisms (see [16]). We will investigate fibered systems which are at most
countable-to-1 in the base, and have fibered maps satisfying conditions (a)—(g) in Section
5. We want to apply the results obtained in the previous sections to endomorphisms of skew
products over countable-to-1 endomorphisms. This includes systems generated by confor-
mal iterated function systems, and several important classes such as [-transformations
(B8 > 1), generalized Liiroth series, EMR-maps, the continued fraction transformation, and
Manneville-Pomeau maps.

First, let us prove a general result about skew products whose base transformations are
modeled by 1-sided shifts on a countable alphabet. Assume that we have a skew product
F: X xY = X xY, where X and Y are complete bounded metric spaces, ¥ C R? for
some d > 1, and

F(x,y) = (f(v),9(z,y)),

where the map

Y 3y glz,y)
is injective and continuous for every y € Y'; we denote the map Y > y — ¢(z,y) also by
9z(y). Assume that the base map f : X — X is at most countable-to-1, and that the
dynamics of f is modeled by a 1-sided Markov shift on a countable alphabet E with the

matrix A finitely irreducible, i.e there exists a surjective Holder continuous map, called
coding,

p: B} — X suchthat poo=fop

We assume that conditions (a)—(g) from Section 5 are satisfied for the maps T,, : Y, —
Y,.,, w € Ef. Then we call F': X xY — X XY a generalized conformal skew product
Smale endomorphism.

Given the skew product F' as above, we can also form a skew product endomorphism in
the following way: define for every w € E7, the fiber map F, : Y — Y by

F(y) = 9(p(w),y).
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The system (Y, F) is called the symbolic lift of F. If Y = Ef x Y, we obtain a conformal
skew product Smale endomorphism F': Y — Y given by

A

(8.1) F(w,y) = (o(w), Fu(y)),
and the following diagram commutes,
Erxy L, Etxy
p X Idl lp « 1d

X xY i X xY.

As in the beginning of Section 4, we study the structure of fibers J,, w € E| and later of
the sets J,, © € X. From definition, J,, = T2([w]) and it is the set of points of type

ﬂ F w© FLQLlw 0...0 FT_H_.LW(Y).

n>1

Let us call n-prehistory of the point x with respect to the system (f, X), any finite sequence
of points in X:
(T, 2 1,T_9,...,0_p) € X",
where
flza)=u, flzo)=24,..., f(x0) =7 pp1.
Call a complete prehistory (or simply a prehistory) of x with respect to the system (f, X),
any infinite sequence of consecutive preimages in X, i.e.

T=(x,x 1,2 9,...),
where
flzoi) =2 i1
forall integers « > —1. The space of complete prehistories is denoted by X and is called the
natural extension (or inverse limit) of the system (f, X). We have a bijection f: X — X,

f@)=(f(z),z,z_1,...).
In this paper, we use the terms inverse limit and natural extension interchangeably, without
having necessarily a fixed invariant measure defined on the space X.
We consider on X the canonical metric, which induces the topology equivalent to the one
inhereted from the product (Tichonov) topology on X~. With respect to this topology f

becomes a homeomorphism. For more on the dynamics of endomorphisms and their inverse
limits, one can see [29], [18], [20], [17].

In the above notation, we have f(p(7_jw)) = p(w) = z, and for all the prehistories of z,
T=(r,x_1,7_9,...) € X, consider the points of type

() 9z 00s 00 0ga (V)

n>1

The set of such points is denoted by J,.
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Notice that, if §# = (19, m1, .. .) is another sequence in E} such that p(7}) = z, then for any
n_1 so that n_;7 € Ef, we have p(n_17) = 2’_, where 2/, is some 1-preimage (i.e preimage
of order 1) of z. Hence from the definitions and the discussion above, we see that

(8.2) L= U
WEEX,p(w):x
Let us denote the respective fibered limit sets for 1" and F by:
(8.3) J=J{wxJcEfxY and J(X):= | J{z} x ., C X xY

L,JeEjAL zeX

Then F(J) = J and F(J(X)) = J(X)). In addition, with the Hélder continuous projection
ps:J — J(X) defined by the formula

pJ(“a y) = (p(w>7 y)a
i.e p;j = (p x Id)|;, the following diagram commutes.

g o

ol |7

ix) g

In the sequel, 75 : B4 — Y and 7 : B4 — Ef x Y are the maps defined in Section 4, and,

(1) = (7[5°, w2(7)).
Now, it will be important to know if enough points x € X have unique coding sequences
in EF.

Definition 8.1. Let F': X XY — X XY be a generalized conformal skew product Smale
endomorphism. Let v be a Borel probability measure X. We then say that the coding
p: B} — X is p-injective, if there exists a p-measurable set G C X with u(G) = 1 such
that for every point x € G, the set p~'(x) is a singleton in E.

Denote such a set G by G, and for z € G,, the only element of p~'(x) by w(x).

Proposition 8.2. If the coding p : EX — X is p-injective, then for every x € G,,, we have
o = Jus(a)-
Proof. Take x € G, and let x_; € X be an f-preimage of z, i.e f(r_;) = =z. Since
p: B} — X is surjective, there exists n € Ef such that p(n) = z_;. But this implies that
fle—1) = fopn) =poo(n) ==

Then, from the uniqueness of the coding sequence for z, it follows that o(n) = w(x), whence
x_1 = p(w_jw(z)), for some w_; € E. Since

Jp = ﬂ 9z_1 00z _50...0 gacfn(y)v
n>1

it follows that J, = Jo(z). O
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In the sequel we work only with p-injective codings, and the measure p will be clear
from the context. Also given a metric space X with a coding p : £} — X, and a potential
¢ X — R, we say that ¢ is locally Hélder continuous if ¢ o p is locally Hoélder continuous.

Now consider a potential ¢ : J(X) — R such that the potential

gg::gbopJoﬁ:EA—)R
is locally Holder continuous and summable. For example, qg is locally Holder continuous if
¢ J(X) — Ris itself locally Holder continuous. This case will be quite frequent in certain
of our examples given later, when we will have locally Holder continuous potentials ¢ on a
set in R? containing J(X); however we will need and we will deal with the the above less
restrictive case as well.
Define now

(8.4) po = pizo (pyom) ™,

and call it the equilibrium measure of ¢ on J(X) with respect to the skew product F.

Now, let us consider the partition & of J(X) into the fiber sets {z} x J,, © € X, and
the conditional measures ji§ associated to g with respect to the measurable partition &’
(see [26]). Recall that for each w € E}, we have y([w]) = J,.

Denote by p; : X x Y — X the canonical projection onto the first coordinate, i.e.
b1 (I’, y) =T

Theorem 8.3. Let F': X XY — X XY be a generalized conformal skew product Smale
endomorphism. Let ¢ : J(X) — R be a potential such that ¢ = popyon: Eq4 — R isa
locally Hélder continuous summable potential on Ex. Assume that the coding p: EY — X
is g o p; ' ~injective, and denote the corresponding set Gu, CX by Gy. Then:

(1) Jp = Ju) for every x € Gg.

(2) With i), w € E the conditional measures 0fM$; we have for g opt-a.e. T € Gy,

wp =5 o (prof) !,

or equivalently, if pg and [Lz(m) are viewed as measures on J, and E,

ph =i o iy

Proof. Part (1) is just a copy of Proposition 8.2. We thus deal with part (2) only. By
the definition of canonical conditional measures, we have for every p,-integrable function
H: J(X)— R that

(8.5) Hdpgy = HopJoﬁdu¢—/

N HopJoﬁdﬂgdugowfl(w)
J(X) B4 Bt Jw)

and

(8.6) | oHaw= [ [ Hdwduer @)
J(X) X JHa}xJz
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But from the definitions of various projections:
(8.7) poopr' = pgo(psom) top! = pgo(propsor) ™ = pgo(pom) ™ = pgom top™t.

Therefore, remembering also that us o p; ' (G4) = 1, we get that
(8.8)

/ Hopyoddi dM(EOWl_l(w):/ / Hdﬂgo(pJoﬁ)‘ldugOWfl(w)
EF Jw] EL J{p(w)}xJpw)
— [ [ HEO e o) Ndugomtop (o)
G¢ {Z‘}XJz

= / / Hdﬁz(ac) o (pjoa) tdugopit(x).
Gd’ {I}XJI

Hence this, together with (8.5) and (8.6), gives

/ / H dyig dpg o py ' (2) = / / HAp5" o (py o %)~ djug o pr ().
G¢ {CE}XJx G¢ {CE}XJ;C

Thus, the uniqueness of the system of Rokhlin’s canonical conditional measures yields

_w(z)

pg =i o (pro#)~

for ug o py'-a.e. x € Gy. This means that the first part of (2) is established. Next, note

that py o = (pom) X 7y and thus py o T|w@) = {2} X T2|w@)-
U

As in the previous Section, define a Lyapunov exponent for an F-invariant measure p on

the fibered limit set J(X) = |J {z} x J,, by:

rzeX

Yul F) = — / ol )l itz o)

In conclusion, as an immediate consequence of Theorem 8.3, Theorem 6.2, and definition
(8.4), we obtain the following result for skew product endomorphisms over countable-to-1
maps f: X — X:

Theorem 8.4. Let F : X XY — X XY a generalized conformal skew product Smale
endomorphism. Let ¢ : J(X) — R be a potential such that

Y:=¢opsom:FEs—R

is locally Hélder continuous summable. Assume the codingp : EX — X is pgopy ' —injective.
Then, for piy o py'-a.e x € X, the conditional measure pg ts exact dimensional on Jy,

and moreover
. log pZ(B(y,T)) _ h,, (F)
r0 log r Xy (F7)

= HD(x),

for pg-a.e y € J.; hence, equivalently, for pg-a.e (z,y) € J(X).

In turn, as an immediate consequence of this theorem, we get the following.
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Corollary 8.5. Let FF : X xY — X XY a generalized conformal skew product Smale
endomorphism. Let ¢ : J(X) — R be a locally Héolder continuous potential such that

Z exp(sup(¢|ﬂ'([e])><Y)) < Q.

eck

Assume that the coding p: E4 — X is pg o py *—injective.
Then, for g op;t-a.e x € X, the conditional measure pg ts exact dimensional on Jy,

and moreover

log 1% (B(y, r h, . (F

lim gﬂqs( (y,7)) _ u¢( ) :HD(;L;),
r—0 log 7 Xy (F)

for pg-a.e y € Jy; hence, equivalently, for py-a.e (z,y) € J(X).

Remark 8.6. Note that if in the settings of this section, in particular in Theorem 8.3,
Theorem 8./, and Corollary 8.5, the “symbol” map F : J — J is assumed to be of compact
type, then

-1
He = Heop; O Py >

where fgop, 1S the unique equilibrium state (in the sense of variational principle) of the
potential popy:J — R, produced in Theorem 4.20.

By using Theorem 8.4, we will be able to prove exact dimensionality of conditional mea-
sures of equilibrium states on fibers, for many types of skew products. In the forthcoming
sections we will describe such (large) classes of applications.

First, let us prove a general result about exact dimensionality of measures on whole
fibered limit sets J(X). We want to prove that, if the conditional measures on fibers are
exact dimensional, with the same value of the dimension regardless of fiber, and if the
projection on the first coordinate is also exact dimensional, then the original measure y is
exact dimensional with its dimension equal to the sum of the above dimensions.

Theorem 8.7. Let F : X XY — X xY a generalized conformal skew product Smale
endomorphism. Assume that X C R? with some integer d > 1. Let ju be a Borel probability
F—invariant measure on J(X), and (1*)zex be the Rokhlin’s canonical sytem of conditional
measures of u, with respect to the partition ({x} X ‘]ﬂf)xex‘ Assume that:

a) There exists o > 0 such that for pop;*-a.e x € X the conditional measure ji* is evact
dimensional and HD(u,) = «,

b) The measure o p;" is evact dimensional on X.

Then the measure p is exact dimensional on J(X), and for p-a.e (z,y) € J(X),
1 B

_ —1
lim o =a+HD(pop).

Proof. Denote the canonical projection to first coordinate by p; : X x Y — X. Let then

v ::uopfl.
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Denote the Hausdorff dimension HD(v) by . From the exact dimensionality of the condi-
tional measures of p, we know that for v—a.e z € X and for y*-a.ey €Y,

i 1084 (By, 1)) _
r—0 logr

Then for any € € (0, ) and any integer n > 1, consider the following Borel set in X x Y

log pu*(B(y, 1))
log r

A(n,e) == {z:(x,y)eXxY: a—e< < a+¢e forall rE(O,l/n)}.

From definition it is clear that A(n,e) C A(n+ 1,¢) for all n > 1. Moreover, setting

X = ﬂ U A(n,e),

e>0n=1

it follows from the exact dimensionality of almost all the conditional measures of p and
from the equality of their pointwise dimensions, that

p(Xy) =1.
For € > 0 and n > 1, consider also the following Borel subset of X:
logv(B(z,r))

D(n,e) := {ZBGX: y—e<
log r

<vy+e foral re (0,1/n)}.

We know that D(n,e) C D(n+ 1,¢) for all n > 1, and from the exact dimensionality of v,
we obtain that for every € > 0, we have

v (U D(n,s)) =1

For € > 0 and an integer n > 1, let us denote now
E(n,2) = A(n,2) N pr (D(n, ).
Clearly from above, we have that for any ¢ > 0,

(8.9) nh_)n;O p(E(n,e)) = 1.

From the definition of conditional measures and the definition of A(n,e) and D(n,¢), we
have that, for any z € E(n,¢), * =m(z) and any n > 1,6 > 0,0 <r < 1/n,

WECANBEM = [ (B (X Y) N A.9) )
(8.10) < / rF dv(y) = r* " “v(D(n,e) N B(z,r))
D(n,e)NB(zx,r)
S 7,onr'yf2€.

Since p(FE(n,e)) > 0 for all n > 1 large enough, it follows from Borel Density Lemma -
Lebesgue Density Theorem that, for py-a.e z € E(n,¢), we have that

o HB(7) 0 B0, 9))

M ABGn) -
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Thus for any 6 > 1 arbitrary, there exists a subset F(n, ¢, 0) of E(n,¢), such that

N(E(n7 & 0)) = /J,(E(Tl, g))v

and for every z € E(n, ¢, 0) there exists r(z,6) > 0 so that for any 0 < r < inf{r(2,6),1/n},
we have from 8.10:

w(B(z,7)) < Ou(E(n,e) N B(z,r)) < - rotr—2
Thus for z € E(n,¢,0), we obtain
lim 08B 7))

> a+y— 2.
r—0 log r

Now, since u(E(n,e,0)) = u(E(n,e)), it follows from (8.9) that pu(U E(n,e,0)) = 1. Hence

1 (ﬂ N G E(n,s,@)) =1,

e>00>1n=1

and for points z € (] () U E(n,e,0), we have

e>00>1 n

i 108 w(B(z,7))

> o+
r—0 log r =aTy

Conversely, from the exact dimensionality of v and of the conditional measures of p, and
with = 71(2), we have that for r € (0,1/n),

w(B(z, )N E(n,e)) = / 1! (B(z,7) N A(n,e) N {y} x Y) dv(y)

D(n,e)NB(z,r)
> Ta+7+2e

(8.11)

Thus we have that u(B(z,7)) > w(B(z,7) N E(n,g)) > r*t2 for z € F(n,e) and
r € (0,1/n). Making use of (8.9) we deduce that p is exact dimensional, and for p-a.e
z € X XY we have:

i 108 H(B(z,7))

r—0 log r oty

O

By using the results of this Section, we will be able to prove in the next section exact
dimensionality of conditional measures on fibers for equilibrium measures with respect to
Smale endomorphisms on skew products over various base maps. In the next Sections
we will apply the results obtained above to skew products over systems that are modeled
by shifts with countable alphabets. We will study several classes for which we will say
more and be more specific, such as Liiroth series (GLS) and their natural extensions, beta
transformations and their natural extensions, expanding Markov Rényi maps, the Gauss
map, Manneville-Pomeau maps (which have parabolic points), etc.
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9. SKEw PRoODUCTS WITH THE BASE MAPS BEING GRAPH-DIRECTED MARKOV
SYSTEMS

In this section we consider systems for which the base map is induced by a countable
alphabet conformal graph directed Markov system (GDMS) as in [15]. Our main goal
here is to prove that equilibrium measures for skew products over the base maps are exact
dimensional. We will use among other results Theorem 8.7 and a result from [21]. A
directed multigraph consists of:

e A finite set V of vertices,

e A countable (either finite or infinite) set E of directed edges,

e Amap A: E x E — {0,1} called an incidence matriz on (V, E),
e Two functions i,t : E — V, such that A,, = 1 implies ¢(b) = i(a).

Now suppose that in addition, we have a collection of nonempty compact metric spaces
{X,}vev and a number A € (0, 1), and that for every e € E, we have a one-to-one contrac-
tion ¢ : Xye) — Xj(e) with Lipschitz constant < A. Then the collection

S = {¢e : Xo(e) = Xi(e) fecE
is called a graph directed Markov system (or GDMS). We now describe the limit set of the

system S. For every w € EY, the sets {0u, (Xt(wn))}n21 form a descending sequence of
nonempty compact sets and therefore ﬂn21 Pl (Xt(wn)) # (). Since for every n > 1,

diam (@, (Xi(wn))) < A'diam (X)) < A" max{diam(X,) : v € V},

we conclude that the intersection (7, oy @uw, (Xt(wn)) is a singleton, and we denote its only
element by m(w). In this way we have defined a map

. +
m: By — [ X,
veV

where X := [, X, is the disjoint union of the compact sets X, (v € V). The map = is
called the coding map, and the set

J:JSZW(EX)

is called the limit set of the GDMS S. The sets J, = n({w € EJ : i(w;) = v}), forv €V,
are called the local limit sets of S.

We call the GDMS S finite if the alphabet E is finite. Furthermore, we call S maximal
if for all a,b € E, we have A, = 1 if and only if ¢(b) = i(a). In [15] a maximal GDMS
was called a graph directed system (abbr. GDS). Finally, we call a maximal GDMS S an
iterated function system (or IFS) if V', the set of vertices of S, is a singleton. Equivalently,
a GDMS is an IFS if and only if the set of vertices of § is a singleton and all entries of the
incidence matrix A are equal to 1.

Definition 9.1. We call the GDMS S and its incidence matriz A finitely (symbolically)
irreducible if there exists a finite set A C E% such that for all a,b € E there exists a word
w € A such that the concatenation awb is in E%. S and A are called finitely primitive if
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the set A may be chosen to consist of words all having the same length. Note that all IFSs
are finitely primitive.
Intending to pass to geometry, we call a GDMS conformal if for some d € N, the following
conditions are satisfied:
(a) For every vertex v € V, X, is a compact connected subset of R¢, and X, = Int(X,,).

(b) There exists a family of open connected sets W, C X, (v € V) such that for every
e € E, the map ¢, extends to a C' conformal diffeomorphism from Wy into W
with Lipschitz constant < \.

(¢) (Bounded Distortion Property BDP) There are two constants L > 1 and o > 0
such that for every e € £ and every pair of points z,y € Xy,

A
|9¢ ()]
where |¢/,(z)| denotes the scaling of the derivative, which is a linear similarity map.
(d) (Open Set Condition OSC) For all a,b € E, if a # b, then
¢a(Int(Xo)) N ¢y (Int(Xp)) = 0.
(e) (Boundary Condition) There exists e € E such that
JsNIntX, # 0.

If the Open Set Condition and the Boundary Condition are both satisfied, then we
say that the Strong Open Set Condition (SOSC) is satisfied.

_ 1' < Ly - o,

Remark 9.2. By Koebe’s Distortion Theorem condition (c) is automaticallly satisfied if
d =2 and if d > 3 it is a, not too hard, consequence of Liouville’s Representation Theorem.
See [15] for details.

We define the GDMS map f = fs: Js — Js, associated to the system S, by
(9.1) f(¢e(x)) = 2

if x € Int(Xy)) (then e is uniquely determined), and f(z) to be some given preassigned
point & of Js, if 2 ¢ U.cp @ (Int(Xy(e)))-

A special class of conformal GDMSs is provided by one dimensional-systems. Precisely, if
X is compact interval in R, then the GDMSs, more precisely the derived maps fs : Js — Js,
associated to them, are sometimes called expanding Markov-Rényi) maps (EMR maps); see
[24]. A sufficient condition for (BDP), i.e. (c) is that

16 ()] }
e e { o) - len=) =

It is known as the Rényi condition.

Let us now consider a general GDMS map f : Js — Js, and a skew product F': JsxY —
Js x Y, where Y C R? is a bounded open set, with

F(r,y) = (f(x),9(z,y)).
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Recall from Section 8, that the symbolic lift of F'is F': Ef x Y — E% x Y, given by

A

Flw,y) = (0(w), g(r(w),y)).

The map p : Ef — X is now equal to the map 75 : £ — X. So, the map p x Id :
Ef xY — Js x Y is given by the formula

(p x Id)(w,y) == (ms(w),y).
Using the notation of Section 8, we denote its restriction to the set J = |J,ept{w} X Jo

by py. If the symbolic lift F'is a Holder conformal skew product Smale endomorphism,
then we say by extension that F'is a Holder conformal skew product endomorphism over
f. Recall also from (8.3) that the fibered limit set of F'is

J(Js) = | J {a} x Ja.

The first result, easy but crucial for us is the following.

Lemma 9.3. Let f : Js — Js be a finitely irreducible conformal GDMS map, let Y C R?
be an open bounded set, and let F': Js X Y — Js XY be a Holder conformal skew product
endomorphism over f. If v is a Borel probability shift-invariant ergodic measure on E}
with full topological support, then the coding p = 7s : Ef — Js isv o ng—injectz've.

Proof. Since ¢.(IntXy()) C IntXy(), we have that o~ (75" (IntX)) C 75" (IntX), where

IntX := ] IntX,)

eckE

Since the Borel probability measure v is shift-invariant and ergodic, it thus follows that
v(mg'(IntX)) € {0,1}. But since supp(v) = E}, it thus follows from the Strong Open Set
Condition (e) that v(75"' (IntX)) > 0. Hence,

v(rg'(IntX)) =1

Invoking shift-invariance of the measure v again, we thus conclude that

v (ﬂ a”(ﬂsl(lntX))> =1

Denote the set in parentheses by Int(S). Then, by the Open Set Condition (d), the map
TS| mto (s) 18 One-to—one and 7r§1 (WS(IHtOO(S))) = Int(S). Thus,

vors' (ms(Inteo(S))) = v(Intee(S)) = 1,

and for every point € ms(Intw(S)), the set m5'(z) is a singleton.

The following result follows then directly from Theorem 8.4 and Lemma 9.3.
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Theorem 9.4. Let f : Js — Js be a finitely irreducible conformal GDMS map, let Y C R¢
be an open bounded set, and let F': Js XY — Js XY be a Holder conformal skew product
endomorphism over f. Let ¢ : J(Js) — R be a potential such that

~

p=¢opjor:Ey—R

s a locally Holder continuous summable potential on E4. Then, for jis o pt-aer € X,
the conditional measure g is exact dimensional on J., and moreover

| ogyg(Bly,r)) _ by (F)
r—0 logr Xp (F)

= HD (),

for pg-a.e y € J,; hence, equivalently, for jug-a.e (z,y) € J(Js).

Proof. One only needs to notice that supp(/%o 7 1) = E} since pg s the equilibrium state

of the locally Holder continuous summable potential gg on F,4. Indeed one uses formula
(8.7) to apply Lemma 9.3 with the measure v := [ © 7!, to conlude that the coding

p=ms:Ef — X is ugo py “injective. Hence Theorem 8.4 applies to end the proof. [

Now consider the following situation. Let S, f, I, and Y be as above. Let 6 : J¢ — R be
an arbitrary potential such that 6 o s : Ef — R is a locally Holder continuous summable
potential. Let

(9.2) ¢p:=0o0p;:J(Js)— R
then we have the following.
Lemma 9.5. The potential

Go=dgopsofi: By —R
15 locally Holder continuous and summable.

Proof. Since ngﬁg = (fQoms)omy, it follows that $9 is locally Holder continuous as a composition
of two locally Holder continuous functions. From the definition of summability, the function
¢9 : E4 — R is summable, since in its composition, the function 6 o s : Ef — R is
summable. 0J

In this setting, as a result related to Theorem 9.4, we get the following.

Theorem 9.6. Let S be a finitely irreducible conformal GDMS. Let [ : Js — Js be the
corresponding GDMS map. LetY C R® be an open bounded set, and let F : JsxY — JsxY
be a Holder conformal skew product endomorphism over f. Let also 0 : Jg — R an arbitrary
potential such that 6 o ws : EX — R is a locally Holder continuous summable. Then,

a) For fgons © Tg —a.e. x € Jg, the conditional measure g, s exact dimensional on
Jz, and
Lo g, (B(y, 1) _ hug, (F)
=0 log Xpusy (F)
for pg, —a.e. y € Jp; hence, equivalently for pgy,—a.e (z,y) € J(Js).
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b) The equilibrium state jis, of ¢g : J(Js) = R for F, is exact dimensional on J(Js)
and

(F) hy,,, (F)
+ HD (ftgon. 0 T5') = 6 + )

Fy TP e 075D = T

AU‘QOWS

h
HD (M%) e

oy (

Proof. 1t follows from (8.4) that

[iby © D1 = Hagopyon © (D7 0 F) T 0 pit = ligopropyor © (propso@)

Since mg o m; = py o py o, we get from Remark 3.9 that

[igors © Tg' = Hgomsom O M1 ' O Mg = Mgopyopsor © (Props o).
Therefore,
Hoy OP1 ' = Hoons O 5

Hence, a) follows now directly from Theorem 9.4, while b) follows from a) and Theorem 8.7
since exact dimensionality of the measure fgors © 75  has been proved in [21]. Indeed in
[21] we proved, as a particular case of the random case, the exact dimensionality for all
projections of ergodic invariant measures on limit sets of countable conformal IFS with
arbitrary overlaps; and this result extends easily to GDMS. O

Remark 9.7. Writing ée =¢gops:J—=R, and defining

o ~ ~—1
Hgy *= Hggor ©T

we will have
Hoo = g, © (s 0 T)™H = p15,00 07 ops! = pg, o p3".
Note also that if the symbolic lift map F 2 J = J is assumed to be of compact type, then p;,

is the unique equilibrium state (in the usual sense of variational principle) of the potential
¢ - J — R, produced in Theorem 4.20.

An immediate consequence of Theorem 9.4 is:

Corollary 9.8. Let f : Js — Js be a finitely irreducible conformal GDMS map, let Y C R¢
be an open bounded set, and let F': Js X Y — Js XY be a Holder conformal skew product
endomorphism over f. Let ¢ : J(Js) — R be a locally Hélder continuous potential such

that p = popyom: Ex — R is summable. Then, for ji, op;t-a.e v € X, the conditional
measure (g is exact dimensional on J., and moreover

| log po(Bly,r)) _ by, (F)
r—=0 log 7 Xy (F)

= HD(M;):

for pg-a.e y € J.; hence, equivalently, for jg-a.e (z,y) € J(Js).

A Corollary of Theorem 9.6, which will be applied to EMR maps (in the sense of [24]),
is then the following:

Corollary 9.9. Let § be a finitely irreducible conformal GDMS. Let f : Js — Js be the
corresponding GDMS map. LetY C RY be an open bounded set, and let F' : JsxY — JsxY
be a Holder conformal skew product endomorphism over f. Let 6 : J¢ — R be an arbitrary
locally Holder continuous potential such that Qors : E — R is summable potential. Then,
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(a) For pigong © T5' —a.e. x € Js, the conditional measure pg is exact dimensional on
Jz;in fact
Lo g, (B(y, 1) _ hug, (F)
r=0 log r Xpg, (F)
for pg, —a.e. y € J; hence, equivalently for pgy,—a.e (z,y) € J(Js).
(b) The equilibrium state ps, of g @ J(Js) = R for F, is exact dimensional on J(Js)
and

h,,,,(F) by, (F) by,
+ HD (ptgons 0 mgt) = —22 + —5
(F) (Haors 0 757) Xitgy (F) " Xptgors
Remark 9.10. As mentioned above, it folows from the last Corollary that our results hold

if the derived map fs : I — I associated to the GDMS S, is an expanding Markov-Rényi
(EMR) map, in the sense of [24].

HD (M%) -

H“(zﬁg

Now, consider further an arbitrary conformal GDMS
S = {0 : Xi(e) = Xi(e) }eer
Let 0 : Js — R be a potential such that 6 o 7s : EX — R is locally Holder continuous and
summable. Of particular importance are then the potentials 6, : Js = R, t,q € R,
(9.3) 0q1(¢e(2)) := tlog |de(z)] + q(0(¢e(x)) — P(0))
Then
Oy, © Ts(w) = tlog |4, (1s(0(w)))| + q(0 o 7s(w) — P(¢))

In terms of the GDMS map fs : Js — Js associated to the system S, and defined by (9.1),
we have

(9:4) Og.1(z) := —tlog | f'(x)] + q(6(x) — P(9)).
Because of the Bounded Distortion Property (BDP), i.e condition (c) of the definition of

conformal GDMSs, the first summand in the above formula is Holder continuous and the
second one is Holder continuous by its very definition. Thus, we obtain the following.

Lemma 9.11. For all q,t € R the potential 6,075 : Ef — R is locally Hélder continuous.

The problem of for which parameters ¢,¢t € R the potentials §,, o 75 : Ef — R are
summable is more delicate and has been treated in detail in [8]. Here we only want to state
the following obvious.

Observation 9.12. There ezists a non-negative number (or —oo), denoted in [11] and [15]
by Os, such that the potential ¢; := 6y, o s : EX — R is summable for every t > 0s and
not summable for any t < 0s. The explicit formula for the potential (s, is

(s.i(w) = tlog |, (ts(a(w)))];
We also know that by Lemma 9.11 that this potential is locally Hélder continuous. In
addtion, we record that

Oo.1(x) = —tlog|f'(z)].
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The importance of the geometric potentials 0, o ms, and in particular the issue of their
summability, is primarily due to the fact that these are suitable for a description of geometry
of the limit set Js. Firstly, if ¢ = 0, then the parameter ¢t > 0 for which P(6y;) = 0 (if it
exists) coincides with the Hausdorff dimension HD(Js) of the limit set Js, and secondly,
these potentials play an indispensible role in multifractal analysis of the equilibrium state
[ := llgorg © M5 ; for example as in [24], [8], [15], [27].

We denote by X(S,0) the set of those pairs (¢,q) € R? for which the potential 6, o
ms : By — R is summable and by ¥4(S, 6) the set of those ¢ € R for which there exits
(necessarily at most one) a real number T'(q) such that (¢, 7(q)) € (S, ) and moreover

P(Qq,T(q) © WS) = 0.

We now are in the setting of Lemma 9.5 and Theorem 9.6. For g € ¥((S, ) abbreviate

Py 1= ¢9q7T(q) =0Gyr@qom:J(Js) = R
As an immediate consequence of Theorem 9.6, we get the folowing.

Corollary 9.13. With 6, defined in (9.3) and with notation following it, we have the
following. If g € ¥o(S,0), then

(a) For pg, 1, oms © s —a.e. x € Js, the conditional measure Iy, US exzact dimensional
on J,; in fact
o Lo g, (Bly, 7)) hy, (F)

0 log 7 X, (F)

for wi, —a.e. y € Jy: hence, equivalently for py,—a.e (x,y) € J(Js).
(b) The equilibrium state puy, of v, : J(Js) = R for F, is evact dimensional on J(Js)
and
hy,, (F)
(F)

hy.,, (F) . Do i pyoms |

HD =
(:ulﬁq) Xuio, (F) " Xu,

+HD (/“Laq,T(q)OWs © ng) =

Hag a,T(q)°"S

To be more specific, we now study two important subclasses of examples, based on the
Gauss map, and parabolic iterated function systems (see [9], [34], [12], [14], [15]).

For every integer n > 1, let g, : [0, 1] — [0, 1] be given by the formula

1

9.5 n(T) = .
(95 () = ——
The collection of maps G = {g,}22, on [0,1], forms a conformal iterated system; its
associated map G := fg : [0,1] — (0, 1] is called the Gauss map, and is defined by

1 1 1
9.6 Glz)= - —n if e( ,—],
(9.6) (@)=_-—n it we( —7

and G(z) = 0 otherwise. It is an EMR map. From Theorem 9.6, we get the following:
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Corollary 9.14. Let G : I — I be the Gauss map. Let Y C R? be an open bounded set,
and let F': I XY — I XY be a Hélder conformal skew product endomorphism over G. Let
0 : 1 — R be an arbitrary potential such that @ o g : N — [ is a locally Holder continuous
summable potential. Then,

(a) For pgorg 0mg '~

and

a.e. x € I, the conditional measure g, is exact dimensional on J,;

. Log g, (B(y,r) _ buy, (F)
r—0 logr X, (F)
for pi, —a.e. y € Jp; hence, equivalently for pgy,—a.e (x,y) € J(I).
(b) The equilibrium state g, of ¢g : J(I) = R for F, is exact dimensional on J(I) and
hum; (£) h/%g (£) + h“9°7fg

X, (F) Xhgy (F) Xhgorg .

HD(1e,) = 0 4 HD (g, 0 75") =

As a matter of fact the unit interval I = [0, 1] in the above corollary can be replaced by
the limit set Jg of the Gauss iterated system G, which is the set of irrational numbers in I.
We can take in the last Corollary, the potential 6 to be a geometric potential of type 6,;.
Also, one can choose an arbitrary subset £ of N and perform the above construction for
an arbitrary subsystem Gg = {g, : [0,1] — [[0, 1]} cp-

Since .
() = ICETIE that |gy ()] =< n?

we obtain the following well-known:

Observation 9.15. For the Gauss system we have
Og =1/2
and the potential (g /2 is not summable.

9.1. Skew Products with Conformal Parabolic GDMSs in the Base. Now we pass
to the second large class of examples. As said, this class is built on parabolic iterated
function systems.

Assume again that we are given a directed multigraph (V, E,i,t) (E countable, V finite),
an incidence matrix A : £ x E' — {0,1}, and two functions i,t : £ — V such that A, =1
implies ¢(b) = i(a). Also, we have nonempty compact metric spaces {X,},cv. Suppose
further that we have a collection of conformal maps ¢, : Xy¢) — Xj(), e € E, satisfying the
following conditions (which are more general than the above in that we don’t necessarily
assume that the maps are uniform contractions):

(1) (Open Set Condition) ¢,(Int(X)) N ¢,(Int(X)) = 0 for all a,b € E with a # b.

(2) |¢.(x)| < 1 everywhere except for finitely many pairs (e, z.), e € F, for which x; is
the unique fixed point of ¢. and |¢.(x.)| = 1. Such pairs and indices i will be called
parabolic and the set of parabolic indices will be denoted by €2. All other indices
will be called hyperbolic. We assume that A.. =1 for all e € €.
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(3) Vn > 1 Vw = (wws...w,) € EY if w, is a hyperbolic index or w,_; # w,, then ¢,
extends conformally to an open connected set Wy, C R¢ and maps Wi, into
Witun)-

(4) If e € E is a parabolic index, then
m Pen(X) = {we}
n>0
and the diameters of the sets ¢en (X) converge to 0.

(5) (Bounded Distortion Property) 3K > 1 Vn > 1Vw € E} Va,y € Wy, if w, is a
hyperbolic index or w,,_1 # w,, then
/
\¢7J(y)| <K
|94 ()]
(6) 3k < 1Vn >1Vw € EY if w, is a hyperbolic index or w;,,_1 # wy, then ||¢/ | < k.

(7) (Cone Condition) There exist «,l > 0 such that for every x € 0X C R? there
exists an open cone Con(z, «,l) C Int(X) with vertex x, central angle of Lebesgue
measure «, and altitude [.

(8) There exists a constant L > 1 such that for every e € E and every z,y € V,

|9 (¥)]
|0¢(2)]

We call such a system of maps S = {¢. : e € E} a subparabolic conformal graph directed
Markov system.

Definition 9.16. If Q # 0, we call the system S = {¢; : i € E} parabolic.

As declared in (2) the elements of the set £\ © are called hyperbolic. We extend this
name to all the words appearing in (5) and (6). It follows from (3) that for every hyperbolic
word w,

_ 1' < Ly — |l

G0 (Wiw)) € Wiy
Note that our conditions ensure that ¢/(x) # 0 for all e € F and all € X;;). It was

proved (though only for IFSs but the case of GDMSs can be treated completely similarly)
in [12] (comp. [15]) that

(9.7) lim sup {diam(¢,(Xyw)))} = 0.

n—00 weER

This implies then:

Corollary 9.17. The map 7 : B — X =@, X,
T(w) =[] bupn (X),
n>0

1s well defined, i.e. this intersection is always a singleton, and the map w is uniformly
continuous.
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As for hyperbolic (attracting) systems the limit set J = Js of S = { e }ece 18
JS = W(EX)

and it enjoys the following self-reproducing property: J = (J,cp ¢e(J). We now want to
associate to the parabolic system S a canonical hyperbolic system S*; this will be done by
using the jump transform ([32]). We will then be able to apply the ideas from the previous
section to §*. The set of edges is:

E,={"jin>1,i€Q i#j€E, Aj=1}U(E\Q) CE}.
We set
V. =t(E,) Ui(E,)
and keep the functions ¢ and 7 on E, as the restrictions of ¢ and ¢ from E%. The incidence

matrix A* : E, x E, — {0,1} is defined in the natural (the only reasonable) way by
declaring that Af, =1 if and only if ab € E. Finally

S* = {¢e . Xt(e) — Xt(e)| e & E*}

It immediately follows from our assumptions (see [12] and [15] for more details) that the
following result is true.

Theorem 9.18. The system S* is a hyperbolic (contracting) conformal GDMS and the
limit sets Js and Jg« differ only by a countable set. If the system S is finitely irreducible,
then so is the system S*.

The most important advantage of S* is that it is a an attracting conformal GDMS. On
the other hand, the price we pay by replacing the non-uniform contractions in & with the
uniform contractions in &* is that even if the alphabet E is finite, the alphabet F, of &*
is always infinite. Thus we will be able to apply our results on infinite Smale systems. We
have the following quantitative behavior around parabolic points.

Proposition 9.19. Let S be a conformal parabolic GDMS. Then there exists a constant
C € (0,400) and for every i € Q there exists some constant f; € (0, +00) such that for all
n>1and for all z € X; := U;cp 15y 95(X),
LBt e
C™'n~ 5 <|gim(2)] <Cn™ 5.
Furthermore, if d = 2 then all constants (3; are integers > 1 and if d > 3 then all constants
B are equal to 1.

From Theorem 9.6 we obtain:

Corollary 9.20. Let S be an irreducible conformal parabolic GDMS. Let S* be the cor-
responding atracting conformal GDMS produced in Theorem 9.18. Furthermore, let f :
Js« — Jg« be the corresponding GDMS map. Let Y C R? be an open bounded set, and
let F': Js« XY — Js XY be a Holder conformal skew product endomorphism over f.
Let 0 : Js« — R be an arbitrary potential such that 0 o wg« : Ef. — R is a locally Holder
continuous summable potential. Then,
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(a) For jigors © Tge —a.e. x € Js«, the conditional measure g, is exact dimensional on
Jy; in fact,
. log g, (B(y, 7))  hy,, (F)
r—0 logr X, (F)

for pg, —a.e. y € J; hence, equivalently for pgy,—a.e (z,y) € J(Js-).

(b) The equilibrium state ps, of ¢g = J(JS) = R for F, is exact dimensional on J(J§)
and
F)

hy,, (
HD(/’I’¢9) — % + HD(Maoﬂ's* [e) 7‘(‘5*1) —
%0

h#qﬁe (F) hﬂeows*
+ .
X,Uz(pe (F) X“Qows*

As an immediate consequence of Corollary 9.13, just replacing each S by &*, we get the
folowing.

Corollary 9.21. With 6,; defined in (9.3) and with notation following it, we have the
following. If ¢ € ¥o(S*,0), then we obtain for the potential g = 0y 1@ op1 : J(Js+) = R
the same conclusions (a), (b) as in Corollary 9.20.

We would like now to investigate one important concrete example. We call this system
Z. Tt is formed by two inverse maps of the two continuous pieces of the Manneville-Pomeau
map f :[0,1] — [0, 1] defined by:

f(z) =2+ 2" (mod 1),

where o > 0 is a an aribrary fixed positive number. Of course the GDMS map resulting
from Z is just, the above defined, map f.

As an immediate consequence of Corollary 9.20, we obtain the following.

Corollary 9.22. Let Y C R? be an open bounded set, and let F : Jr x Y — Jr x Y be a
Holder conformal skew product endomorphism over the Manneville-Pomeau map f.

Let 0 : Jr — R be a potential such that 0 o w7 : Nt — R is a locally Hélder continuous
summable potential. Then, the conclusions of Corollary 9.20 will hold in this case.

Also for the geometric potentials 0, 7, we obtain:

Corollary 9.23. With 0, defined in (9.3), then for ¢ € ¥o(Z,0), we obtain the same
conclusions (a), (b) as in Corollary 9.22 for the potential Oq r(q)-

Remark 9.24. In the construction of the attracting conformal GDMS of Theorem 9.18
we built on Schweiger’s jump transformation from [32]. We could instead use inducing
on each set X,, v € V\ Q, i.e. considering the system generated by the maps ¢, where
i(wr) = t(wlw) =v and i(wy) # v for allk =2,3,...,|w| —1. The “jump” construction of
Theorem 9.18 seems to be somewhat better as it usually leads to a smaller system.
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9.2. Natural Extensions of Graph Directed Markov Systems. Finally in this sec-
tion, we want to define and explore the systems we refer to which as natural extensions of
graph directed Markov systems. Precisely, let S = {¢. : Xy = Xi(e) }ecr be a conformal
finitely irreducible graph directed Markov system and let f = fs: Js — Js be the GDMS
map associated to the system S and given by formula (9.1). Fix an arbitrarily chosen point
¢ € Js. We then define the skew product map

f:Jngg-)Jngg, by

(98) F(@e(@),y) = (2, 0c(y)) = (F(e()), 0 (v)),
if € Int(X¢()) (then e is uniquely determined), and

(9.9) flzy) = (&€
)

in the case when z ¢ .. @ (Int(Xy(e))). We call it the natural extension (or inverse limit)
of the map f.
From Theorem 9.4, we obtain the following:

Corollary 9.25. Let S be a conformal finitely irreducible graph directed Markov system
and let f = fs: Js — Js be the corresponding GDMS map. Furhermore, let f : Js x Jg —
Js x Js be the natural extension of the map f, as defined above. Let ¢ : Js x Js — R be
such a potential that

~

p=¢opyjom:FEs—R

is locally Holder continuous and summable. Then, for p, op;'-a.e x € Js, the conditional
measure jig is exact dimensional on Js, and moreover,

log (Bl 7)) by (f)
Py log r XM¢(f)7

for pg-a.ey € Js; hence, equivalently, for py-a.e (v,y) € Js x Js.

As a consequence of Theorem 9.6 we obtain the following.

Corollary 9.26. Let S be a conformal finitely irreducible graph directed Markov system
and let f = fs : Js — Js be the corresponding GDMS map. Furhermore, let f : Jsx Js —
Js x Js be the natural extension of the map f. Let 6 : Jg — R be an arbitrary potential
such that 0 o s : E — Js is a locally Holder continuous summable potential. Then,

(a) For pigors 0 Tg' —a.e. x € Js, the conditional measure g, s exact dimensional on
Jz; in fact

1o log g, (Bly.m) Dy, (f)
r=0 logr Xug, (f)
for i, —a.e. y € J.; hence, equivalently for py,—a.e (z,y) € J(Js).
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(b) The equilibrium state g, of ¢g : Js xJs = R for f, is exact dimensional on Jgx Jg
and
h,, (f h,, (f) h
HD (1, ) = Buegd) HD (ptgons 0 m5") = toolS) | Prens
Xﬂ¢>@ (f) Xﬁwe (f) Xﬂﬂon—s

Thus, in the important case of the Gauss map and the continued fraction system, we have
the exact dimensionality of the conditional measures on the fibers of the natural extension,
and also the global exact dimensionality of equilibrium measures:

Corollary 9.27. Let G : I — I be the Gauss map and let G : Jg x Jg — Jg X Jg be
the natural extension of the map G. Let 0 : Jo — R be an arbitrary potential such that

6 omg: EX — R is a locally Holder continuous summable potential. Then, the conclusion
of Corollary 9.26 hold.

10. DIOPHANTINE APPROXIMANTS AND THE GENERALIZED DOEBLIN-LENSTRA
CONJECTURE

We want to apply the results about skew products to certain properties of Diophantine
approximants, making the conjecture of Doeblin and Lenstra more general and precise. Let
G be the Gauss system introduced by formula (9.5). Then the corresponding coding map
7g : NNV — [0, 1] is a bijection between NN and Jg which in this case is the set of irrational
numbers in [0, 1].

1
g(w) = [wi,ws,...] = : ,
et e ——
.4.+Wn1+”_
Recall also that the associated continued fraction (Gauss) transformation is given by:
1 1 1
10.1 Glz)= - —n if :136(—,—],
( ) () T n+1mn
and G(z) = 0 otherwise. If we truncate the representation [wy,ws,...] at an integer n > 1,

then we obtain a rational number p,,/q,, called the n-th convergent of x := mg(w), where
Pn, qn > 1 are relatively prime integers, and
Pn
dn
If needed, we shall also denote p,, and ¢, respectively by p,(w) and ¢,(w) or also by p,(x)

and ¢,(z), in order to indicate their dependence on w and z. We also sometimes write
wy () for wy,. Then, as in [2], [9], [5], one can introduce the numbers,

= [wi,...,wy)

Pn
l’—— .

n

0, = ?, n>1

nl

This number ©,, also depends on w or (equivalently) on = and will be also denoted by
O, (w) or ©,(x). Denote:

T, =T,(w) :=7mg(0"(w)) = [Wnt1, Wnt2,---], n>1,
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and by
Vo =Volw) = |wn,...,wn], n>1

We will also denote them respectively by T, (z) and V,,(x). We see that T, (z) represents
the future of x while the number V,,(z) represents the past of x. It follows directly from
the definitions that for every integer n > 1, we have that
dn—1 Vn Tn

10.2 Vi, = , O = —— d 6,=—2_
(10-2) 0 vy L+ TV,

Recall that we have started with the Gauss iterated function system G, we then associated
to it in formula (9.6) (or (10.1)) the corresponding map G' = fg : [0,1] — (0, 1]; next we
consider the natural extension G = fg : Jg x [0, 1] = Jg x [0, 1] of Subsection 9.2. It follows
from (9.8) that G is explicitely given by the formula

Glo) = (10— )

w1 (5’3) +y
It follows from this that

G0 = (1o 7). = (o )

w1 (x)

By induction, we obtain for every n > 1, that

G"(2,0) = (To(2), [wa(2), .. w1 (2)]) = (Tu(2), Va(2)

The approximation coefficients ©,, were the object of an important Conjecture originally
stated by Doeblin and reformulated in the 80’s by Lenstra (see [9], [5]), namely that for
Lebesgue-a.e x € [0, 1) the frequency of appearances of ©,,(x) in the interval [0, ], t € [0, 1],
is given by the function F': [0, 1] — [0, 1] given by

L if £t €10,1/2],
F(t) — 10%2 1 [ / ]
gl — t+log2t) if t €[1/2,1].

More precisely, the Doeblin-Lenstra Conjecture says that for Lebesgue—a.e. z € [0, 1]
and all ¢ € [0,1],
1<k<n: <t
lim #{l Sk Sn:Ox) < }:

n—0o00 n

E(t),

i.e. the above limit exists and is equal to equal to the above function F'(t). This conjecture
was solved by Bosma, Jager and Wiedijk [2] in the 1980’s. In the proof, they needed
fundamentally the natural extension (Jg x [0, 1], G, fic), of the continued fraction Gauss
dynamical system G with the classical Gauss measure p¢ defined by

1 1
A) = d
tHa(A) 1og2/Al+:v v

for every Borel set A C R. Indeed in the expression of ©,, we have both the future T,,, as
well as the past V,,, thus the natural extensions is the right construction in this case.
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Let us now apply our results on skew products for the natural extension G to the lifts
of certain invariant measures, in fact some equilibrium states. Precisely, we recall (see
Observation 9.12) the potentials

05 := 0p5(x) = —slog|T'(x)], = € [0,1).

If s > 1/2, then (see Observation 9.12 and Observation 9.15), the corresponding potential
Cg.s :=0s0ms : Ef — R is locally Holder continuous and summable. We let

s = ficg. 0 g
denote the equilibrium states of the potential 8;. We also recall that the explicit formula
for the potential (g  is

(g.s(w) = slog g, (mg(a(w)))| = 2slog(wo + mg(o(w))) = 2slog(wp + [wi,wa, .. ]).
Let us now introduce the potential 74 : Jg x [0,1] — R being by definition equal to
Ts = 05 0 p1,
as in formula (9.2). In other words, 74(z,y) = 0s(x). And consider the measure

/:\[’5 = /’LTS
to be the equilibrium measure of 7, with respect to the dynamical system G on Jg x [0,1];
more precisely, i, is the measure 14, of Corollary 9.27 applied with 6 = 0,. In particular,

(103) hﬂs<é) - h,us (G> and X[Ls = X#s'

We know from this corollary that the measure i, is exact dimensional on Jg x [0,1] and
we have a formula for its Hausdorff dimension.

Our purpose now is to describe asymptotic frequencies with which the approximation
coefficients ©,,(x) of x € [0, 1] become close to certain given arbitrary values, when z is
Lebesgue non-generic (i.e x belongs to a set of Lebesgue measure zero). In fact, these z’s
will be generic for equilibrium measures j,, which except for s = 1 are singular with respect
to the Lebesgue measure.

First let us prove the following result about the asymptotic frequency of appearance of
(T(z), V,(x)) in all squares of R? with respect to the measure fi:

Theorem 10.1. If s > 1/2, then for us-a.e x € [0,1] and for all four real numbers a < b
and ¢ < d, we have that

. #{k € {0,1,....,n—1}: (Ti(z), Vi(x)) € (a,b) x (c,d)}

n—00 n
Proof. Denote A = (a,b) x (¢, d), and for every € > 0 let
Ae) == (a,b) x (c—¢e,d+¢) and A(—¢)=(a,b) x (c+¢e,d—¢)

= ﬂS((a7b) X (C, d))

Then

A(—e) C A C A(e)
Let x € [0,1] \ Q. Then x = [w;(z),wa(x),...]. Hence, there exists an integer n. > 1 such
that for every y € [0, 1] and every integer n > n., we have that

|[wn (@), wp-1(2), ..., wi () + 4] = [wa(@), wn1(2), ..., w1 (2)]| < &
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Thus, if G*(z,y) = (T™(x), [wp (%), wp_1(x), ..., wi(x) + y] € A(—¢), then
(Tn(x), Va()) € A,
and if (T,,(z), V,.(z)) € A, then
G"(x,y) € A(e)

Therefore for every = € [0,1] \ Q and every y € [0, 1], we obtain that
(10.4)

n—1 n—1

1 . 1 .
lim — Y Lao(GF(z,y)) < lim =Y 14(G*(z,0)) <
B kEOﬁ A(—) (G (2, y)) < lim — kEO A(G"(,0))
1 n—1 1 n—1
I ~k v '“k
< lim ~ go 14(G*(2,0)) < lim — ;0 L) (G"(z,y)).

Since the equilibrium measure i, is ergodic on [0, 1]> with respect to the map G and since
[Ls Projects on pg := pg, the equilibrium state of the potential ;, it follows from Birkhoft’s
Ergodic Theorem that for us-a.e x € [0, 1] there exist y; € [0,1] and y, € [0, 1] such that
1 n—1 1 n—1
. - ~k 5 _ . - ~k S
Ji 5 D LGy = (A=), and i 55 Mg (G¥(,0) = fu(A(0)
Along with (10.4) these yield

n—1 n—1
1 ~ — 1 ~
10.5 is(A(—e)) < lm — ) L14(G¥x,0) < lim — Y L4(G*(z,0)) < f15(A
(10.5) s (E»—H%n; A(GH(a, ))_nggonkzzo A(GH(@,0)) < f1s(A(e))
Noting that fis does not charge the boundary of A and letting in the above inequality with
e >0 to 0 over a (countable) sequence, we obtain that ps-a.e z € [0,1]

o1
lim —
n—oo M,

S 1a(T(2), Vile) = fis(A)

O

We prove now that for x € A (recall that A, has zero Lebesgue measure, but p,-measure
equal to 1), the approximation coefficients ©,,(z), ©,_1(x) behave very erratically. The
following Theorem says that for irrational numbers x € A4, the behaviour of the consecutive
numbers O (x), Or_1(z) is chaotic, and we can estimate the asymptotic frequency that
O (x) is r-close to some z, while ©_;(x) is r-close to some 2’. This asymptotic frequency
is comparable to (%) regardless of the point x € A, or the numbers z, 2’ chosen.

Theorem 10.2. For every s > 1/2, there ezists a Borel set A; C [0, 1]\ Q with us(As) =1,
so that:

(1) HD(As) = by (G) /X
(2) For every x € A; we have that:

pn(I)
Gn()

1
lim —log =

n—oo N

T — s
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(3) For every x € A, and jis-a.e (z,2') € [0,1)2, we have that

#{0<k<n—1:(6k(x),041(x)) € B(Zz.7) x B(i5z.7)}

— HD(j,)

lim log lim
r—0 n— 00 n

(4)
1 (G) by (€)
Xps 2 f[071)2 log(wl ([E) + y) dﬂS("L‘7 y)

HD(4;) =

In addition, we have:
<5> {Xﬂs}5>1/2 = [X#1/27 +OO)

Proof. Formula (4) is a immediate consequence of both Corollary 9.27, applied to the
potential 6, : I — R, and formula (10.3). By [15] the function (1/2,4+00) 3 s — X, is
strictly increasing (note for example that x,, = —P'(0,(gs) > 0), and that lim, X, =
oo. Hence (5) follows. As HD(u;) = h, (G)/x,., there exists a Borel set A% C I\ @ such
that: ps(AY) =1, HD(AY) = h, (G)/x,., and each Borel subset of A} with full measure
s has Hausdorff dimension equal to h, (G)/x,..

Define now A, to be the set of all points x in A’ for which (3) holds and for which the
assertion of Theorem 10.1 holds too. From this theorem, together with a result of [24],
it follows that the set A satisfies the conditions (1), (2), and (3) above. Thus we have
to prove only condition (4). So fix x € A; and let 2,2’ € [0,1) be arbitrary. Because of
formulas (10.2), there exists a constant C' > 1 such that for all radii » > 0, we have that:

a) If for some integer k > 1, (T (x), Vi(z)) € B(z,r) x B(2',r), then

(O4(x),01_1(z)) € B (ﬁ,w) % B (1 f C’T)

)
22

b) If (Ok(2), O)-1(2)) € B (%5,7) x B (1Z5,7), then

1422"7 14227
(Ty., Vi) € B(z,Cr) x B(Z',Cr).

Therefore, it follows from Theorem 10.1 that:

(10.6)

fis(B(z,C~'r) x B(',C™'r)) <

< #{0 <k<n-1: (@k(az),@k_l(a:)) €B (—HZZZ,,?“) x B (@,r)} -

T n—oo n

< jis(B(2.Cr) x B(<',Cr))

Since by Corollary 9.27 the measure fi; is dimensional exact, we have that

. log fis(B(z,C~'r) x B(2/,C7'r)) _HD(j,) = lim log fis(B(z, Cr) x B(z',Cr))

r—0 log r r—0 log r

Along with (10.6) this finishes the proof of formula (3), and the proof of Theorem 10.2.
U
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11. GENERALIZED LUROTH SYSTEMS AND THEIR INVERSE LIMITS

We include this short section since it is needed for the full treatment of S-transformations,
for arbitrary 5 > 1, and of their natural extensions. It just collects the results of the
previous sections in the case of a special subclass of maps.

Definition 11.1. We call an iterated function system S = {¢. : I — I}ecp a Liiroth system
if the maps ¢, : [ — I, e € E, are of the form x — ax + b, and Leb (UeeE gzﬁe(f)) =1.

Let f = fs: Js — Js be the map associated to the system S and given by formula (9.1):
(11.1) f(¢e(x)) = 2
Writing
¢e(r) = aex + b, €€ FE,
with a. € (0,1), we rewrite (11.1) in the following more explicit form

a'r —a;th, if x € Int(g.(1))
0 if z¢ UeeE Int(¢pe(1)).

In particular, we took the given preassigned point & involved in (9.1) to be 0. In the sequel
we will need however mainly only the definition of f on |J,z Int(¢e(1)).

(11.2) fa) =

The natural extension f : Js X Js — Js X Jg of f is given by formula (9.8). In more
explicit terms, we have:
(11.3)

f(z,y) = (f(z),acy +bc), = € Int(ge(l)) (agtz —a;'be,acy + be), x € Int(¢e(1))
’ (0,0), @ ¢ U,ep Int(ge(1)) (0,0), & ¢ U, Int(g(1))

As consequences of Corollary 9.25, we have:

Corollary 11.2. Let S be a Luroth system system and let [ = fs : Js — Js be the
corresponding GDMS map. Furhermore, let [ : Js X Js — Js X Js be the natural extension
of the map f, as defined above. Let ¢ : Js X Js — R be such a potential that

~

p=¢opyjom:FEs—R

is locally Holder continuous and summable. Then, for p, op;t-a.e x € Js, the conditional
measure (g is exact dimensional on Js, and moreover,

log g(B(y, 1)) _ by, ()
0 logr X,w(f),

Jor pg-a.ey € Js; hence, equivalently, for po-a.e (x,y) € Js X Js.
In particular, the above conclusions hold if ¢ : Jsx Js — R is a locally Holder continuous

potential with 5 =¢opyom: Eqg— R summable. Similarly the above conclusions hold if
0:Js — R is so that 0 omg : EX — Js is a locally Holder continuous summable potential.
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12. THERMODYNAMIC FORMALISM FOR INVERSE LIMITS OF [3-MAPS, > 1

For a real number g > 1, the f-transformation is 7j : [0,1) — [0, 1), defined by
Ty(x) = B (mod 1),

and the [-expansion of x is:
[e'S) dk
=3
k=1

where dy = di(x) = [ﬁTg’l(x)], k > 1, where in general [a] denotes the integer part of

a real number a. The digits d, k > 1 are chosen from the finite set {0,1,...,[5]}. Not
all infinite series of the form %, with dy, € {0,1,...,[f]} are however S-expansions of
k=1

some number. Thus we say that a sequence of digits (dy, ds, . . .) is admissible if there exists

some z € [0,1) whose f-expansion is z = ) %. The map T does not necessarily preserve
k>1

the Lebesgue measure A, however it has a unique probability measure vz = hgdA, which is

equivalent to A and Tp-invariant. Its density hg has an explicit form (see [22], [5]).

Consider now the inverse limit of the system ([0, 1),75). First, let us take 5 = @, as
a simpler example. Define the following skew product map

Toe) = (13, ),

on a subset Z C [0,1)?, where the horizontal [0, 1) is considered as the future-axis and the
vertical [0,1) is considered as the past-axis. The inverse limit of T3 must encapsulate both

the forward iterates of T, and the backward trajectories of Ts. For 8 = 1+‘/5, take

2
Z =[0,1/8) x [0,1) |J [1/8.1) x [0,1/5).
Then the map T3 : Z — Z is well defined and bijective, and it is the inverse limit of Tj. For

g = @, the set of admissible sequences forms a subshift of finite type Ey (11), defined as

the set of sequences in E, which do not contain the forbidden word 11. In this case there

is a Holder continuous coding map 7 : Ey (11) — [0, 1), W((dl,dz, . )) = > g—z. We can
n>1

then take skew product endomorphisms over T, 5, and obtain:
2

Theorem 12.1. Let a skew product endomorphism F :[0,1) x Y — [0,1) x Y, F(z,y) =
(1+T\££E (mod 1),g(x,y)), where Y is an open bounded set in R® and g(z,-) : Y — Y is

conformal for any x € [0,1). Assume also that for any x_1,2" | € [0,1) with T\, sx_1 =

2
T%x’fl, we have g(x_1,Y)Ngy (Y) =0, and that the fiber maps g, satisfy conditions a)
-g) of Section 5. Then, for any locally Hélder continuous ¢ : [0,1) XY — R, its equilibrium
measure py has exact dimensional conditional measures pg, for iy o i -a.ex €[0,1).

Proof. This case is simpler because the coding is with a subshift of finite type on finitely
many symbols. Moreover we see that the coding 7 : Ey (11) — [0,1) over T\ 5 is in-

2
jective outside a countable set, and the associated symbolic skew product over E; (11),
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F: Ef(11) x Y — Ef (11) x Y satisfies conditions (a)-(g) in Section 5. Therefore if ¢ is
locally Holder we have also the summability condition, since we work with finitely many
symbols, thus from Theorem 8.4 we obtain the conclusion.

O

In general, if f : X — X is a measurable map on a Borel space (X, B) and p is an f-
invariant measure on (X, B), let A C X be a measurable subset with p(A) > 0. In our case,
if we work with equilibrium measures, it will be enough to take A such that int(A) # 0.
By Poincaré Recurrence Theorem it follows that u-a.e x € A is A-recurrent, i.e it returns
infinitely often to A. Define then n(z) := inf{m > 1,7™(z) € A}, to be the first return
time of x to A. This permits to define the induced map on A,

(12.1) TA:A—>A TA( ) =T""(z), € A

It is easy to prove that if ps(B) := for B C A, then the measure 4 is Tx-invariant.

A)’

It was proved (see for eg [5]) that the induced transformation of the natural extension
75 onto a certain subset, is the natural extension of a GLS system. Recall that natural

extensions are viewed only as dynamical systems, without measures. When = @, take
the partition Z = {[0, %), [%, 1)} and the associated GLS(Z)-transformation,

Tg(l’), T € [07 5)

T3(x), x € [5,1)
So if f = @, let W =10,1) x [0, %), and Tgw : W — W, the induced transformation of
Tzon W. If (z,y) € [0, %) x [0,1), we have Tz(z,y) € [0,1) x [0, B) so for such (z,y), we get
n(z,y)=1. If (z,y) € [%, 1) x [0, %), then Ts(x,y) € [0, 3) [ 1) ¢ W, but T3 (z,y) € W,

so n(z,y) = 2. Hence the induced map 75w of the natural extension Ts on W is:
(B2, ), (2,y) € [0,3) x [0, 2)

(BB — 1), 20) = (82 — 5,5, () € [1,1)  [0. 1)
Then from (11.3), the inverse limit of S is the map S : [0,1)? — [0, 1)? given by:
(B, ), (,) € 0, 1) x [0,1)

(ﬁQx - B? % + yﬁgl) (ﬁQx - 57 y—i—ﬁ)’ (l’,y) € [%7 1) X [07 1)
If ¥ :[0,1)?2 = W, ¥(z,y) = (z, %), then ¥ is an isomorphism between ([0, 1)%,S) and
([0,1) %[0, %), Ts,w). Hence, Taw is equal (mod V) with the natural extension S of GLS(Z).

S(zx) =

(12.2) Taw(z,y) =

(12.3) S(x,y) =

For general 5 > 1, not all sequences in E[E] are admissible, i.e not all sequences of

digits (dy,ds, . ..) determine a point = € [0, 1) that has S-expansion z = Y ¢ = This is an
n>1

important obstacle, since we cannot code T3 with subshifts of finite type. For general g > 1,
one needs a more complicated GLS with partition Z with countably many subintervals
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I,,n € D, and then to induce the natural extension of 7 to a subset, in order to obtain
the natural extension of the GLS(Z)-map. We will apply next Corollary 11.2 for equilibrium
states on the natural extension of the GLS(Z) expansion. The construction of the inverse
limit of T can be found in [5], [6], we recall it for completion. Let the following rectangles

1
i
Consider the space Z of the natural extension as being obtained by placing the rectangle

Ziy1 on top of Z;, for all ¢ > 0. The index ¢ indicates at what height we are in this stack. If
1 has a finite S-expansion of length n, then only n such rectangles Z; are stacked. Assume 1

Zy=1[0,1)*, Z; =[0,T31) x [0, =),i > 1

has an infinite S-expansion; the finite case follows as for g = %5 Let the S-expansion of
1bel=.bby..., of x bex = .dyds ..., and of y be y = .0...0¢;11¢;1o ... with 0 repeated
i times. If (z,y) € Z;, then d; < bi+1- Define 73 : Z — Z, Ts(x,y) = (Tp(x), y(x)), with

%1 +. + s+ Bm + y =.by...bidicip1Cia ..., ifdy < by,

(12.4) y(x) =
%7 if di = by

If (z,y) € Z; then dy < b;y1, so

Zo, it dy < big,
(12.5) Ts(z,y) €
Ziy1, if dy = by

r (z,y) € Zy, if dy < by then T(z,y) € Zp; and if d; = b;,1 <i <n—1andd, <b,, then
Ti(x,y) € Ziyi <n—1and T§(x,y) € Zy. Hence the induced map of 75 on Zy = [0,1)* is

773(1’77y)7 if dl < b17

Fo

%,ZO(IJD -
%”(x,y), ifd,=0b,1<i<n-—1, and d,, < b,

Partition Z, into subsets Z§ := {(z,y) € Zo, inf{n > 1,T3"(z,y) € Zo} = k}, and thus

(Ts(2), 5y +dv)), (w,y) € Z, if dy < by,
7/-6):Z0($7y> =

(Th(=), % + ... 7)) (v,y) € Zg, k> 2

For any n > 1, if by := 0, there exist unique mtegers k=k(n)>0and 1 <i < by, so
that n =0by + by + ... 4+ b + (¢ — 1). Define a partition Z = {I,,, n > 1} of [0,1), by

bl bk 1—1 bl bk )
(12.6) I, {bO‘i‘ﬁ‘F ﬁk 5k+1’ bo—i‘g—{— +E+Bk+l)
From the definition of 73 z, and of I,, we see that for (z,y) € I,, x [0, 1), we have:

7-ﬁ,Zo<3773/) = Tﬁkﬂ(%y) = (Tgﬂx bo + — 3 + ﬁk Bk+1 + 5k+1>

If we take the transformation S of GLS(Z) and its natural extension S, then (11.3) applies.
If x € I, then s;(z) = B! and hy(x)/s1(z) = by + %1 +. + g 5k+1 So by (11.3) we
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obtain equality between S and the induced map on Z; of the natural extension of Tp,
(12.7) S =Tz,

We can now apply (12.7) to equilibrium states of locally Holder continuous potentials, for
the induced map of the natural extension 73, in order to prove the ezact dimensionality of
their conditional measures on fibers. By (12.7) and Corollary 11.2, we obtain the following
result, for the induced map of the natural extension of the g-transformation:

Theorem 12.2. Let > 1 arbitrary and the B-transformation Tp : [0,1) — [0,1), Ts(x) =
Bx(mod 1). Let ¢:[0,1)> = R a locally Hélder continuous map with

> exp(sup |1, x(o0.1)) < o0,

n>1
where I,,n > 1 are given by (12.6), and let p, be its equilibrium state with respect to
the induced map Tgo1y2 of the natural extension Tz on [0,1)*. Denote by S the natural
extension of the GLS(Z) transformation, where I is the partition of [0,1) given by (I,)n>1-
Then for pg o nt-a.e v €]0,1), the conditional measure tg of ke is exact dimensional on
0,1), and for uf-a.e y € [0, 1), its Hausdorff and pointwise dimension are both equal to

1g(By,r))  hy,(S)

(1) = Iy log Xpus (S)

Due to the particular expression of the induced map on [0,1)? of the natural extension
75 of the beta-transformation 7, as a natural extension of a GLS-transformation, we can
say more about the Lyapunov exponent x,,,(S). This Lyapunov exponent is then used in
the formula above for the pointwise dimension of y:

Corollary 12.3. In the setting of Theorem 12.2 with 3 > 1 arbitrary, write the B-expansion
of 1 as 1 = .biby.... For arbitrary integer n > 1, define the integers k = k(n) > 0 and
1 <i=i(n) <bgss sothatn=>b+...+by+i—1. Then,

(a) with the intervals I,,n > 1 given by (12.6), we obtain the Lyapunov exponent as,
Xuo(8) =log 8-> (k(n) +1) - jis (L x [0, 1)).
n>1
Hence for pig oy ' -a.e x € [0,1), we have
h, (S
HD (1) = 26.5) :
log f 3 (k) + 1) - ig (I  [0,1))

n>1

(b) When g = 1+2\/‘?’, we obtain that the Lyapunov exponent of jus as
1++5 1
5 (1m0 x 0,1)

Hence piyomy '-a.e v € [0,1), we have

Xug (S) = log

h#¢<8)
log 1£/5 (1 + 1a([5,1) x [0, 1)))

HD(pig) =
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Proof. To prove (a) we apply (12.6), and (12.7). Let us write S(x,y) = (S(x), 9.(v)),
(x,y) € [0,1) x [0,1), where S is the GLS(Z)-transformation and § is its natural extension
(see 11.3). The derivative of the fiber map g, is constant and equal to L,, for x € I,,, where
L, is the length of the interval I,, and thus equal to # Finally, for the Hausdorff (and
pointwise) dimension of conditional measures we apply Theorem 12.2.

For (b) we apply (12.3) to get ¢.(y) = % for (z,y) € [0,%) x [0,1), and ¢.(y) = %,
(z,y) € [5,1)x[0,1), with 5 = L4Y5  Then use that p1([0, 5)x[0,1))+us([5,1)x[0,1)) = E

Now from (12.7), we know that the induced map 7z o1)2 is equal to the inverse limit
S of the GLS transformation S associated to the countable partition Z, given by (12.6).
According to (11.3), and if f is given by (11.2), then S(x,y) and Tz o1)2 can be written as

iy
(128) S($a y) = 7,16’,[0,1)2 (l'a y) = (f(l')a — + _)7 ($7y) € [07 1)2

S1 S1

We will now use the explicit form of the induced map 7w of the natural extension 73
of Tz, f > 1, and Theorem 8.7, to prove that any 7z w-invariant equilibrium measure
iy is exact dimensional globally on [0,1) x [0,1), and to compute its pointwise (and
Hausdorff) dimension. We use below the notation from (12.8) and Corollary 12.3; also
denote by m : [0,1)* — [0,1) the projection on first coordinate.

Theorem 12.4. Let an arbitrary 5 > 1, Tg(x) = Bx (mod 1),z € [0,1), Ts be the natural
extension of Ty, and Tg1)2 the induced map of Tz on [0, 1)%2. Let ¢ a locally Holder

continuous potential on [0,1)? satisfying > exp(sup @|r,x[0,1)) < 00, and pg its equilibrium
n>1
measure with respect to Ty o 1y2, and let v := 1. p14 be the projection of jie.

Then, g is exact dimensional on [0,1)?, and its pointwise (and Hausdorff) dimension is

HD (j1,) = 2itJ) .
o8+ 5 (00 + Dt % 0.1)

Proof. We recall from (12.8) that for 3 > 1 arbitrary, Tg o 12 = S. If ¢ is locally Holder
continuous and summable on [0,1)?, and if g is its equilibrium measure with respect to
T3,0,1)2, and thus also with respect to S, then its projection v = my,py is f-invariant and
ergodic on [0,1). Now, if Z denotes the countable partition (/,,),>1 from (12.6), then from
the previous Section we obtain the coding 7 : ¥F — [0,1) between (XF,0) and ([0, 1), f).
Moreover, we also have that v gives zero measure to points, and thus v is the projection
of an ergodic measure 7 on XF. The interval [0,1) can be viewed as the limit set of the
canonical iterated function system associated to the countable partition Z of [0, 1), where
the contractions are the inverses of the branches of f on the intervals I,,,n > 1.

Consider now the random system given, in the notation of [21] by: a parameter space
A = {\} with a homeomorphism 6 : A — A,0(\) = A, which preserves the Dirac measure
m = dy, and to the shift space (XF,0) with the ergodic o-invariant measure 7. Then, the
measure v is in fact the only conditional measure of the product measure dy x 7 on A x 7.
On the other hand, since our potential ¢ is summable, it follows from our results in Section
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4 and from the fact that ([0, 1), 72;,[0,1)2) is coded by a Smale space of countable type, that

the entropy hy,(73,0,1)2) is finite; therefore, since v = m1.u4, we obtain also hy(f) < oo.

But then, from Remark 3.4 of [21], H(g/\xg(ﬂ'gi (€)|my (er)) < co. So from Theorem 3.13 in
I

[21] and the discussion above, it follows that v is exact dimensional on [0, 1), and that,

D)  1elf)

Xv(f)
On the other hand, from Theorem 12.2, it follows that the conditional measures of p4 are
exact dimensional on fibers (which are all equal to [0, 1) in this case).
Now, if the f-invariant measure v is exact dimensional on [0,1), and if the conditional
measures of /i, are exact dimensional on fibers, we apply Theorem 8.7 to obtain that p,, is
exact dimensional globally on [0, 1)?. Moreover from Theorem 8.7, we have that HD(p) is
the sum of HD(v) and of the dimension of conditional measures. The last step is then to
obtain the expression of the Lyapunov exponent y,(f). In our case, from (11.2) it follows
that |f( )| = L', if x € I, where L,, denotes the length of I,,, n > 1; and from (12.6),
L, = ﬁk(n)ﬂ Also v(A) = py(A x [0,1)) for any Borel set A C [0, 1). Therefore,

=log - Z n) + 1) pg (I, x [0,1))

n>1

In addition, remark that from Shannon-McMillan-Breiman Theorem ([10]), A, (S) is equal
to h,(f), since S contracts in the second coordinate. In conclusion, from the above discus-

sion and Corollary 12.3, the pointwise dimension of ji4 is the one from the statement.
OJ
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