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Abstract

We use that the gravitational Compton scattering factorizes on
the Abelian QED amplitudes to evaluate various gravitational Comp-
ton processes. We examine both the QED and gravitational Compton
scattering from a massive spin-1 system by the use of helicity am-
plitudes. In the case of gravitational Compton scattering we show
how the massless limit can be used to evaluate the cross-section for
graviton-photon scattering and discuss the difference between photon
interactions and the zero mass spin-1 limit. We show that the forward
scattering cross-section for graviton photo-production has a very pecu-
liar behaviour, differing from the standard Thomson and Rutherford
cross-sections for a Coulomb-like potential.
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1 Introduction

The treatment of electromagnetic interactions in quantum mechanics is well
known and the discussion of electromagnetic effects via photon exchange
is a staple of the graduate curriculum. In particular the photon exchange
between charged particles can be shown to give rise to the Coulomb potential
as well as to various higher order effects such as the spin-orbit and Darwin
interactions [1]. The fact that the photon carries spin-1 means that the
electromagnetic current is a four-vector and manipulations involving such
vector quantities are familiar to most physicists. In a similar fashion, graviton
exchange between a pair of masses can be shown to generate the gravitational
potential as well as various higher order effects, but in this case the fact that
the graviton is a spin-2 particle means that the gravitational “currents” are
second rank tensors and the graviton propagator is a tensor of rank four. The
resultant proliferation of indices is one reason why this quantum mechanical
discussion of graviton exchange effects is not generally treated in introductory
texts [2].

Recently, by using string-inspired methods, it has been demonstrated that
the gravitational interaction factorizes in such a way that a gravitational
amplitude can be written as the product of two more familiar vector ampli-
tudes [3–7]. This factorization property, totally obscure at the level of the
action, is a fundamental properties of gravity and has deep consequences at
loop amplitude level, since many gravitational amplitudes can be constructed
by an appropriate product of gauge theory integrand numerators [8]. This
has triggered a lot of new results in extended supergravity [9–20], but quite
remarkably these techniques can be applied as well to pure gravity [7, 21].

One remarkable property of amplitudes with emission of one or two gravi-
tons is its factorization in terms of Abelian QED amplitudes [7, 22]. This
factorization has the important consequence that the low-energy limit of the
gravitational Compton amplitude for graviton photo-production is directly
connected to the low-energy theorem for the QED Compton amplitudes [7].

In a previous paper [22] this property was used to evaluate processes such
as graviton photo-production and gravitational Compton scattering for both
spin-0 and spin-1

2
systems by simply evaluating the corresponding electro-

magnetic amplitude for Compton scattering. This permits the treatment of
gravitational effects without long tedious computations, since they are now
no more difficult than corresponding electromagnetic calculations. The sim-
plicity optioned through the factorization have important consequences for
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the computations of long-range corrections to interaction potentials contain-
ing loops of intermediate photons- or gravitons [23–26]. In this paper we
extend such considerations to electromagnetic and gravitational interactions
of spin-1 systems. These calculations are useful not only as a generalization
of our previous results but also, since the photon carries spin one, these meth-
ods can be used to consider the case of photon-graviton scattering, although
there are subtleties in this case due to gauge invariance.

In all the cases under study, we show that the low-energy limit of the
differential cross-section has an universal behaviour independent of the spin
of the matter field on which photon or graviton is scattered. We demonstrate
that this is a consequence of the well-known universal low-energy behaviour
in quantum electrodynamics (QED) and the squaring relations between grav-
itational and electromagnetic processes.

The forward differential cross-section for the Compton scattering of pho-
tons on a massive target has the well-known constant behaviour of a Thomson
cross-section

lim
θL→0

dσComp
lab,S

dΩ
=

α2

2m2
, (1.1)

and the small-angle limit of gravitational Compton scattering of gravitons on
a massive target has the expected behaviour due to a 1/r long-range potential
of a Rutherford like cross-section

lim
θL→0

dσg−Comp
lab,S

dΩ
=

16G2m2

θ4L
. (1.2)

We explain in section 6 why this formula reproduces the small-angle limit of
the classical cross-section for light bending in a Schwarzschild background.

The forward limit of the graviton photo-production cross-section has the
rather unique behaviour

lim
θL→0

dσphoto
lab,S

dΩ
=

4Gα

θ2L
. (1.3)

This limit is not only independent on the spin S but as well on the mass
m of the target. The small-angle dependence is typical of an effective 1/r2

potential. We provide an explanation for this in section 6.
It may be very difficult to detect a single graviton [27] but photons are

easily detected so it is would be interesting to be able to use the graviton
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photo-production process to provide an indirect detection of a graviton. The
cross-section in Eq. (1.3) is suppressed by a power a Newton’s constant G
but, being independent of the mass m of the target, one can discriminate
this effect when comparing to Compton scattering.

In the next section then we quickly review the electromagnetic interac-
tion and derive the spin-1 couplings. In section 3, we analyze the Compton
scattering of a spin-1 particle. The corresponding gravitational couplings
are derived in section 4 and the graviton photo-production and gravitational
Compton scattering reactions are calculated via both direct and factoriza-
tion methods. In section 5 we discuss photon-graviton scattering and sub-
tleties associated with gauge invariance. In section 6 we consider the forward
small-angle limit of the various scattering cross-section derived in the pre-
vious section. We show that Compton, graviton photo-production and the
gravitational Compton scattering have very different behaviour in each case.
We summarize our findings in a brief concluding section.

2 Brief Review of Electromagnetism

In this section we present a quick review of the electromagnetic and gravi-
tational interactions and the findings of our previous work. The electromag-
netic interaction of a system may be found by using the minimal substitution
i∂µ → iDµ = i∂µ− eAµ in the free particle Lagrangian, where Aµ is the pho-
ton field. In this way the Klein-Gordon Lagrangian

LS=0
0 = ∂µφ

†∂µφ−m2φ†φ , (2.1)

which describes a free charged spin-less field, becomes

LS=0 = (∂µ − ieAµ)φ†(∂µ + ieAµ)φ+m2φ†φ , (2.2)

after this substitution. The corresponding interaction Lagrangian can then
be identified as

LS=0
int = ieAµφ

†←→∇ µφ+ e2AµAµφ
†φ , (2.3)

where
C
←→∇D := C~∇D − (~∇D)C . (2.4)

Similarly, for spin-1
2
, the free Dirac Lagrangian

LS=
1
2

0 = ψ̄(i 6∇ −m)ψ , (2.5)
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becomes
LS= 1

2 = ψ̄(i 6∇ − e 6A−m)ψ , (2.6)

and the interaction Lagrangian is found to be

LS=
1
2

int = −eψ̄ 6Aψ . (2.7)

The resulting single-photon vertices are then

〈pf |V (1)µ
em |pi〉S=0 = −ie(pf + pi)

µ , (2.8)

for spin-0 and
〈pf |V (1)µ

em |pi〉S= 1
2

= −ieū(pf )γ
µu(pi) , (2.9)

for spin-1
2
, and in the case of spin 0 there exists also a two-photon (”seagull”)

vertex
〈pf |V (2)µν

em |pi〉S=0 = 2ie2ηµν . (2.10)

The photon propagator in Feynman gauge is

Dαβ
f (q) =

−iηαβ
q2 + iε

. (2.11)

The consequences of these Lagrangians were explored in ref. [22] and
in the present paper we extend our considerations to the case of spin-1, for
which the free Lagrangian has the Proca form

LS=1
0 = −1

2
B†µνB

µν +m2B†µB
µ , (2.12)

where Bµ is a spin one field subject to the constraint ∂µBµ = 0 and Bµν is
the antisymmetric tensor

Bµν = ∂µBν − ∂νBµ . (2.13)

The minimal substitution then leads to the interaction Lagrangian

LS=1
int = ieAµBν†

(
ηνα
←→∇ µ − ηαµ

←→∇ ν

)
Bα − e2AµAνBα†Bβ(ηµνηαβ − ηµαηνβ) ,

(2.14)
and the one, two photon vertices

〈pf , εB|V (1)µ
em |pi, εA〉S=1 = −ieε∗Bβ

(
(pf + pi)

µηαβ − ηβµpfα − ηαµpiβ
)
εAα ,

〈pf , εB|V (2)µν
em |pi, εA〉S=1 = ie2ε∗Bβ

(
2ηαβηµν − ηαµηβν − ηανηβµ

)
εAα . (2.15)
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However, Eq. (2.15) is not the correct result for a fundamental spin-1 particle
such as the charged W boson. Because the W arises in a gauge theory,
there exists an additional W -photon interaction, leading to which an “extra”
contribution to the single photon vertex

〈pf , εB|δV (1)µ
em |pi, εA〉S=1 = ieε∗Bβ

(
ηαµ(pi − pf )β − ηβµ(pi − pf )α)

)
εAα .

(2.16)
The meaning of this term can be seen by using the mass-shell Proca con-
straints pi · εA = pf · εB = 0 to write the total on-shell single photon vertex
as

〈pf , εB|(Vem + δVem)µ|pi, εA〉S=1 = −ieε∗Bβ
(
(pf + pi)

µηαβ − 2ηαµ(pi − pf )β

+ 2ηβµ(pi − pf )α
)
εAα , (2.17)

wherein we observe that the coefficient of the term −ηαµ(pi−pf )β +ηβµ(pi−
pf )

α has been modified from unity to two. Since the rest frame spin operator
can be identified via1

B†iBj −B†jBi = −iεijk〈f |Sk|i〉 , (2.19)

the corresponding piece of the non relativistic interaction Lagrangian be-
comes

Lint = −g e

2m
〈f |~S|i〉 · ~∇× ~A , (2.20)

where g is the gyromagnetic ratio and we have included a factor 2m which
accounts for the normalization condition of the spin one field. Thus the
“extra” interaction required by a gauge theory changes the g-factor from
its Belinfante value of unity [28] to its universal value of two, as originally
proposed by Weinberg and more recently buttressed by a number of argu-
ments [29, 30]. Use of g = 2 is required (as shown in [31]) in order to assure
the validity of the factorization result of gravitional amplitudes in terms of
QED amplitudes, as used below.

1Equivalently, one can use the relativistic identity

ε∗Bµq · εA − εAµq · ε∗B =
1

1− q2

m2

(
i

m
εµβγδp

β
i q
γSδ − 1

2m
(pf + pi)µε

∗
B · qεA · q

)
(2.18)

where Sδ = i
2mε

δστζε∗BσεAτ (pf + pi)ζ is the spin four-vector.
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3 Compton Scattering

The vertices given in the previous section can now be used to evaluate the
Compton scattering amplitude for a spin-1 system having charge e and mass
m by summing the contributions of the three diagrams shown in Figure 1,
yielding

AmpComp
S=1 = e2{2εA · ε∗B

[
εi · piε∗f · pf
pi · ki

−
εi · pfε∗f · pi
pi · kf

− εi · ε∗f
]

− g

[
εA · [ε∗f , kf ] · ε∗B

(
εi · pi
pi · ki

− εi · pf
pi · kf

)
− εA · [εi, ki] · ε∗B

(
εf · pf
pi · ki

−
ε∗f · pi
pi · kf

)]
− g2

[
1

2pi · ki
εA · [εi, ki] · [ε∗f , kf ] · ε∗B −

1

2pi · kf
εA · [ε∗f , kf ] · [εi, ki]ε∗B

]
− (g − 2)2

m2

[
1

2pi · ki
εA · [εi, ki] · piε∗B · [ε∗f , kf ] · pf

− 1

2pi · kf
εA · [ε∗f , kf ] · piε∗B · [εi, ki] · pi

]
} , (3.1)

with the momentum conservation condition pi + ki = pf + kf and where we
have defined

S · [Q,R] · T := S ·QT ·R− S ·RT ·Q.
We can verify the gauge invariance of the above form by noting that this
amplitude can be written in the equivalent form

AmpComp
S=1 =

e2

pi · kipi · kf
{2ε∗B · εA(pi · Fi · Ff · pi)

+ g [(ε∗B · Ff · εA)(pi · Fi · pf ) + (ε∗B · Fi · εA)(pi · Ff · pf )]

− g2

2
[pi · kf (ε∗B · Ff · Fi · εA)− pi · ki(ε∗B · Fi · Ff · εA)]

− (g − 2)2

2m2
[(ε∗B · Ff · pf )(pi · Fi · εA)− (ε∗B · Fi · pi)(pi · Ff · εA)]

}
,

(3.2)

where F µν
i = εµi k

ν
i − ενi kµi and F µν

f = ε∗µf k
ν
f − ε∗νf kµf . Since Fi,f are obviously

invariant under the substitutions εi,f → εi,f + λki,f , i = 1, 2, it is clear that
Eq. (3.1) satisfies the gauge invariance strictures

ε∗µf k
ν
i AmpComp

µν,S=1 = kµf ε
ν
i AmpComp

µν,S=1 = 0 . (3.3)
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(a) (b) (c)

Figure 1: Diagrams relevant to Compton scattering.

Henceforth in this manuscript we shall assume the g-factor of the spin-1
system to have its “natural” value g = 2, since it is in this case that the
high-energy properties of the scattering are well controlled and factorization
methods of gravity amplitudes are valid [29,30].

In order to make the transition to gravity in the next section, it is useful to
utilize the helicity formalism [32], whereby we evaluate the matrix elements
of the Compton amplitude between initial and final spin-1 and photon states
having definite helicity, where helicity is defined as the projection of the
particle spin along the momentum direction. We shall work initially in the
center of mass frame. For a photon incident with four-momentum kiµ =
pCM(1, ẑ) we choose the polarization vectors

ελii = − λi√
2

(x̂+ iλiŷ), λi = ± , (3.4)

while for an outgoing photon with kfµ = pCM(1, cos θCMẑ + sin θCMx̂) we use
polarizations

ε
λf
f = − λf√

2
(cos θCMx̂+ iλf ŷ − sin θCMẑ), λf = ± . (3.5)

We can define corresponding helicity states for the spin-1 system. In this
case the initial and final four-momenta are pi = (ECM,−pCMẑ) and pf =
(ECM,−pCM(cos θCMẑ+sin θCMx̂)) and there are transverse polarization four-
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vectors

ε±Aµ = (0,∓−x̂± iŷ√
2

) ,

ε±Bµ = (0,∓− cos θCMx̂± iŷ + sin θCMẑ√
2

) , (3.6)

while the longitudinal mode has polarization four-vectors

ε0Aµ =
1

m
(pCM,−ECMẑ) ,

ε0Bµ =
1

m
(pCM,−ECM(cos θCMẑ + sin θCMx̂)) , (3.7)

In terms of the usual invariant kinematic variables

s = (pi + ki)
2, t = (ki − kf )2, u = (pi − kf )2 ,

we identify

pCM =
s−m2

2
√
s

,

ECM =
s+m2

2
√
s

,

cos
1

2
θCM =

((s−m2)2 + st)
1
2

s−m2
=

(m4 − su)
1
2

s−m2
,

sin
1

2
θCM =

(−st) 1
2

(s−m2)
. (3.8)

The invariant cross-section for unpolarized Compton scattering is then given
by

dσComp
S=1

dt
=

1

16π(s−m2)2
1

3

∑
a,b=−,0,+

1

2

∑
c,d=−,+

|B1(ab; cd)|2 . (3.9)

where
B1(ab; cd) = 〈pf , b; kf , d|AmpComp

S=1 |pi, a; ki, c〉 , (3.10)

is the Compton amplitude for scattering of a photon with four-momentum
ki, helicity a from a spin-1 target having four-momentum pi, helicity c to a
photon with four-momentum kf , helicity d and target with four-momentum
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pf , helicity b and the sum in Eq. (3.9). The helicity amplitudes can now
be calculated straightforwardly. There exist 32 × 22 = 36 such amplitudes
but, since helicity reverses under spatial inversion, parity invariance of the
electromagnetic interaction requires that2

|B1(ab; cd)| = |B1(−a− b;−c− d)| .

Also, since helicity is unchanged under time reversal, but initial and final
states are interchanged, time reversal invariance of the electromagnetic in-
teraction requires that

|B1(ab; cd)| = |B1(ba; dc)| .

Consequently there exist only twelve independent helicity amplitudes. Using
Eq. (3.1) we can calculate the various helicity amplitudes in the center of
mass frame and then write these results in terms of invariants using Eq. (3.8),
yielding

|B1(++; ++)| = |B1(−−;−−)| = 2e2
((s−m2)2 +m2t)2

(s−m2)3(u−m2)
,

|B1(++;−−)| = |B1(−−; ++)| = 2e2
(m4 − su)2

(s−m2)3(u−m2)
,

|B1(+−; +−)| = |B1(−+;−+)| = 2e2
m4t2

(s−m2)3(u−m2)
,

|B1(+−;−+)| = |B1(−+; +−)| = 2e2
s2t2

(s−m2)3(u−m2)
,

|B1(++; +−)| = |B1(−−;−+)| = |B1(++;−+)| = |B1(−−; +−)| ,

= 2e2
m2t(m4 − su)

(s−m2)3(u−m2)
,

|B1(+−; ++)| = |B1(−+;−−)| = |B1(−+; ++)| = |B1(+−;−−)| ,

= 2e2
m2t(m4 − su)

(s−m2)3(u−m2)
. (3.11)

2Note that we require only that the magnitudes of the helicity amplitudes related by
parity and/or time reversal be the same. There could exist unobservable phases.
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and

|B1(0+; ++)| = |B1(0−;−−)| = |B1(+0; ++)| = |B1(−0;−−)| ,

= 2e2
√

2m(tm2 + (s−m2)2)
√
−t(m4 − su)

(s−m2)3(u−m2)
,

|B1(0+; +−)| = |B1(0−;−+)| = |B1(+0;−+)| = |B1(−0; +−)| ,

= 2e2
√

2mst
√
−t(m4 − su)

(s−m2)3(u−m2)
,

|B1(0+;−+)| = |B1(0−; +−)| = |B1(+0; +−)| = |B1(−0;−+)| ,

= 2e2
√

2m3t
√
−t(m4 − su)

(s−m2)3(u−m2)
,

|B1(0+;−−)| = |B1(0−; ++)| = |B1(+0;−−)| = |B1(−0; ++)| ,

= 2e2
√

2m(−t(m4 − su))
3
2

(s−m2)3t(u−m2)
,

|B1(00; ++)| = |B1(00;−−)| = 2e2
(2tm2 + (s−m2)2)(m4 − su)

(s−m2)3(u−m2)
,

|B1(00; +−)| = |B1(00;−+)| = 2e2
(m2t((s−m2)2 + 2st)

(s−m2)3(u−m2)
. (3.12)

Substitution into Eq. (3.9) then yields the invariant cross-section for unpo-
larized Compton scattering from a spin-1 target

dσComp
S=1

dt
=

e4

12π(s−m2)4(u−m2)2
[(m4−su+t2)(3(m4−su)+t2)+t2(t−m2)(t−3m2)] ,

(3.13)
which can be compared with the corresponding results for unpolarized Comp-
ton scattering from spin-0 and spin-1

2
targets found in ref. [22]—

dσComp
S=0

dt
=

e4

4π(s−m2)4(u−m2)2
[
(m4 − su)2 +m4t2

]
,

dσComp

S= 1
2

dt
=

e4 [(m4 − su)(2(m4 − su) + t2) +m2t2(2m2 − t)]
8π(s−m2)4(u−m2)2

. (3.14)

Usually such results are written in the laboratory frame, wherein the target
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is at rest, by use of the relations

s−m2 = 2mωi, u−m2 = −2mωf ,

m4 − su = 4m2ωiωf cos2
θL
2
, m2t = −4m2ωiωf sin2 θL

2
, (3.15)

and
dt

dΩ
=

d

2πd cos θL

(
− 2ω2

i (1− cos θL)

1 + ωi
m

(1− cos θL)

)
=
ω2
f

π
. (3.16)

Introducing the fine structure constant α = e2/4π, we find then

dσComp
lab,S=1

dΩ
=

α2

m2

ω4
f

ω4
i

[
(cos4

θL
2

+ sin4 θL
2

)(1 + 2
ωi
m

sin2 θL
2

)2

+
16ω2

i

3m2
sin4 θL

2
(1 + 2

ωi
m

sin2 θL
2

) +
32ω4

i

3m4
sin8 θL

2

]
,

dσComp

lab,S= 1
2

dΩ
=

α2

m2

ω3
f

ω3
i

(
(cos4

θL
2

+ sin4 θL
2

)(1 + 2
ωi
m

sin2 θL
2

) + 2
ω2
i

m2
sin4 θL

2

)
,

dσComp
lab,S=0

dΩ
=

α2

m2

ω2
f

ω2
i

(
cos4

θL
2

+ sin4 θL
2

)
. (3.17)

We observe that the nonrelativistic laboratory cross-section has an identical
form for any spin

dσComp
lab,S

dΩ

∣∣∣∣∣
NR

=
α2

2m2

[
(cos4

θL
2

+ sin4 θL
2

)(1 +O(
ωi
m

))

]
, (3.18)

which follows from the universal form of the Compton amplitude for scat-
tering from a spin S target in the low-energy (ω � m) limit, which in turn
arises from the universal form of the Compton amplitude for scattering from
a spin S target in the low-energy limit—

〈S,Mf ; εf |AmpComp
S |S,Mi; εi〉ω�m = 2e2ε∗f · εiδMi,Mf

+ . . . , (3.19)

and obtains in an effective field theory approach to Compton scattering [33].3

3That the seagull contribution dominates the non relativistic cross-section is clear from
the feature that

AmpBorn ∼ 2e2
ε∗f · pεi · p
p · k ∼ ω

m
×Ampseagull = 2e2ε∗f · εi. (3.20)
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4 Gravitational Interactions

In the previous section we discussed the treatment the familiar electromag-
netic interaction, using Compton scattering on a spin-1 target as an example.
In this section we show how the gravitational interaction can be evaluated
via methods parallel to those used in the electromagnetic case. An impor-
tant difference is that while in the electromagnetic case we have the simple
interaction Lagrangian

Lint = −eAµJµ , (4.1)

where Jµ is the electromagnetic current matrix element, for gravity we have

Lint = −κ
2
hµνT µν . (4.2)

Here the field tensor hµν is defined in terms of the metric via

gµν = ηµν + κhµν , (4.3)

where κ is defined in terms of Newton’s constant via κ2 = 32πG. The
Einstein-Hilbert action is

SEinstein−Hilbert =

∫
d4x
√−g 2

κ2
R , (4.4)

where √−g =
√
−detg = exp

1

2
trlogg = 1 +

1

2
ηµνhµν + . . . , (4.5)

is the square root of the determinant of the metric and R := Rλ
µλνg

µν is the
Ricci scalar curvature obtained by contracting the Riemann tensor Rµ

νρσ

with the metric. The energy-momentum tensor is defined in terms of the
matter Lagrangian via

Tµν =
2√−g

δ
√−gLmat

δgµν
. (4.6)

The prescription Eq. (4.6) yields the forms

T S=0
µν = ∂µφ

†∂νφ+ ∂νφ
†∂µφ− gµν(∂λφ†∂λφ−m2φ†φ) , (4.7)

for a scalar field and

T
S= 1

2
µν = ψ̄[

1

4
γµi
←→∇ ν +

1

4
γνi
←→∇ µ − gµν(

i

2
/
←→∇ −m)]ψ , (4.8)
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µν

pi

pf

pi

pf

µν

αβ

(a) (b)

Figure 2: (a) The one-graviton and (b) two-graviton emission vertices from
either a scalar, spinor or vector particle.

µν

αβ

γδ

k − q
k

q

Figure 3: The three graviton vertex
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for spin-1
2
, where we have defined

ψ̄i
←→∇ µψ := ψ̄i∇µψ − (i∇µψ̄)ψ . (4.9)

The one graviton emission vertices of figure 2(a) can now be identified as

〈pf |V (1)µν
grav |pi〉S=0 = −iκ

2

(
pµfp

ν
i + pνfp

µ
i − ηµν(pf · pi −m2)

)
, (4.10)

for spin-0,

〈pf |V (1)µν
grav |pi〉S= 1

2
= −iκ

2
ū(pf )[

1

4
γµ(pf + pi)

ν +
1

4
γν(pf + pi)

µ]u(pi) , (4.11)

for spin-1
2
, and

〈pf , εB|V (1)µν
grav |pi, εA〉S=1 = −iκ

2

{
ε∗B · εA(pµi p

ν
f + pνi p

µ
f )− ε∗B · pi(pµf ενA + εµAp

ν
f )

− εA · pf (pνi ε∗µB + pµi ε
∗ν
B ) + (pf · pi −m2)(εµAε

∗ν
B + ενAε

∗µ
B )

− ηµν
[
(pi · pf −m2)ε∗B · εA − ε∗B · piεA · pf

]}
, (4.12)

for spin-1. There also exist two-graviton (seagull) vertices shown in fig-
ure 2(b), which can be found by expanding the stress-energy tensor to second
order in hµν . In the case of spin-0

〈pf |V (2)µν,αβ
grav |pi〉S=0 = iκ2

[
Iµν,ρξI

ξ
ζ,αβ(pζfp

ρ
i + pρfp

ζ
i )−

1

2

(
ηµνIρζ,αβ + ηαβIρζ,µνpρfp

ζ
i

)
− 1

2

(
Iµν;αβ − 1

2
ηµνηαβ

)
(pf · pi −m2)

]
, (4.13)

where

Iαβ,γδ =
1

2
(ηαγηβδ + ηαδηβγ). (4.14)

For spin-1
2

〈pf |V (2)µν,αβ
grav |pi〉S= 1

2
= iκ2 ū(pf )

{
1

16
[ηµν(γα(pf + pi)

β + γβ(pf + pi)
α)

+ ηαβ(γµ(pf + pi)
ν + γν(pf + pi)

µ)]

+
3

16
(pf + pi)εγξ(I

ξφ,µνIφ
ε,αβ + Iξφ,αβIφ

ε,µν)

+
i

16
ερσηλγλγ5(I

µν,η
ζI
αβ,σζpfρ − Iαβ,ηζIµν,σζpiρ)

}
u(pi) ,

(4.15)
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while for spin-1

〈pf , εB; kf |V (2)µν,ρσ
grav |pi, εA; ki〉S=1 = −iκ

2

4
{[piβpfα

− ηαβ(pi · pf −m2)](ηµρηνσ + ηµσηνρ − ηµνηρσ)

+ ηµρ[ηαβ(piνpfσ + piσpfν)− ηανpiβpfσ − ηβνpiσpfα
− ηβσpiνpfα − ηασpiβpfν + (pi · pf −m2)(ηανηβσ + ηασηβν)]

+ ηµσ[ηαβ(piνpfρ + piρpfν)− ηανpiβpfρ − ηβνpiρpfα
− ηβρpiνpfα − ηαρpiβpfν + (pi · pf −m2)ηανηβρ + ηαρηβν)]

+ ηνρ[ηαβ(piµpfσ + piσpfµ)− ηαµpiβpfσ − ηβµpiσpfα
− ηβσpiµpfα − ηασpiβpfµ + (pi · pf −m2)(ηαµηβσ + ηασηβµ)]

+ ηνσ[ηαβ(piµpfρ + piρpfµ)− ηαµpiβpfρ − ηβµpiρpfα
− ηβρpiµpfα − ηαρpiβpfµ + (pi · pf −m2)(ηαµηβρ + ηαρηβµ)]

− ηµν [ηαβ(piρpfσ + piσpfρ)− ηαρpiβpfσ − ηβρpiσpfα
− ηβσpiρpfα − ηασpiβpfρ + (pi · pf −m2)(ηαρηβσ + ηβρηασ)]

− ηρσ[ηαβ(piµpfν + piνpfµ)− ηαµpiβpfν − ηβµpiνpfα
− ηβνpiµpfα − ηανpiβpfµ + (pi · pf −m2)(ηαµηβν + ηβµηαν)]

+ (ηαρpiµ − ηαµpiρ)(ηβσpfν − ηβµpfσ)

+ (ηασpiν − ηανpiσ)ηβρpfµ − ηβµpfρ)
+ (ηασpiµ − ηαµpiσ)(ηβρpfν − ηβνpfρ)
+ (ηαρpiν − ηανpiρ)(ηβσpfµ − ηβµpfσ)} εαA(εβB)∗ . (4.16)
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Finally, we require the triple graviton vertex of figure 3

τµναβ,γδ(k, q) = −iκ
2

{
(Iαβ,γδ −

1

2
ηαβηγδ)

[
kµkν + (k − q)µ(k − q)ν + qµqν − 3

2
ηµνq2

]
+ 2qλqσ

[
Iλσ,αβI

µν,
γδ + Iλσ,γδI

µν,
αβ − Iλµ,αβIσν,γδ − Iσν,αβIλµ,γδ

]
+ [qλq

µ(ηαβI
λν,

γδ + ηγδI
λν,

αβ) + qλq
ν(ηαβI

λµ,
γδ + ηγδI

λµ,
αβ)

− q2(ηαβI
µν,

γδ + ηγδI
µν,

αβ)− ηµνqλqσ(ηαβIγδ,λσ + ηγδIαβ,λσ)]

+ [2qλ(Iσν,γδIαβ,λσ(k − q)µ + Iσµ,γδIαβ,λσ(k − q)ν
− Iσν,αβIγδ,λσk

µ − Iσµ,αβIγδ,λσkν)
+ q2(Iσµ,αβIγδ,σ

ν + Iαβ,σ
νIσµ,γδ) + ηµνqλqσ(Iαβ,λρI

ρσ,
γδ + Iγδ,λρI

ρσ,
αβ)]

+ [(k2 + (k − q)2)
(
Iσµ,αβIγδ,σ

ν + Iσν,αβIγδ,σ
µ − 1

2
ηµν(Iαβ,γδ −

1

2
ηαβηγδ)

)
− (k2ηαβI

µν,
γδ + (k − q)2ηγδIµν,αβ)]

}
. (4.17)

We work in harmonic (de Donder) gauge which satisfies, in lowest order,

∂µhµν =
1

2
∂νh , (4.18)

with
h = trhµν , (4.19)

and in which the graviton propagator has the form

Dαβ;γδ(q) =
i

q2 + iε

1

2
(ηαγηβδ + ηαδηβγ − ηαβηγδ) . (4.20)

Then just as the (massless) photon is described in terms of a spin-1 polar-
ization vector εµ which can have projection (helicity) either plus- or minus-1
along the momentum direction, the (massless) graviton is a spin two particle
which can have the projection (helicity) either plus- or minus-2 along the
momentum direction. Since hµν is a symmetric tensor, it can be described
in terms of a direct product of unit spin polarization vectors—

helicity = +2 : h(2)µν = ε+µ ε
+
ν ,

helicity = −2 : h(−2)µν = ε−µ ε
−
ν , (4.21)

and just as in electromagnetism, there is a gauge condition—in this case
Eq. (4.18)—which must be satisfied. Note that the helicity states given in
Eq. (4.21) are consistent with the gauge requirement, since

ηµνε+µ ε
+
ν = ηµνε−µ ε

−
ν = 0, and kµε±µ = 0 . (4.22)
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With this background we can now examine reactions involving gravitons, as
discussed below.

4.1 Graviton Photo-production

We first use the above results to discuss the problem of graviton photo-
production on a target of spin-1—γ+S → g+S—for which the four diagrams
we need are shown in Figure 4. The electromagnetic and gravitational ver-
tices needed for the Born terms and photon pole diagrams—Figures 4a, 4b,
and 4d—have been given above. For the photon pole diagram we require the
graviton-photon coupling, which is found from the electromagnetic energy-
momentum tensor [34]

Tµν = −FµαFα
ν +

1

4
gµνFαβF

αβ , (4.23)

and yields the photon-graviton vertex4

〈kf , εf |V (γ)µν
grav |ki, εi〉 = i

κ

2

[
ε∗f · εi(kµi kνf + kνi k

µ
f )− ε∗f · ki(kµf ενi + εµi k

ν
f )

− εi · kf (kνi ε∗µf + kµi ε
∗ν
f ) + kf · ki(εµi ε∗νf + ενi ε

∗µ
f )

− ηµν
[
kf · kiε∗f · εi − ε∗f · kiεi · kf

]}
. (4.24)

Finally, we need the seagull vertex which arises from the feature that the
energy-momentum tensor depends on pi, pf and therefore yields a contact
interaction when the minimal substitution is made, yielding the spin-1 seagull
amplitude shown in Figure 4c.

〈pf , εB; kf , εfεf |T |pi, εA; ki, εi〉seagull =
i

2
κe
[
ε∗f · (pf + pi)ε

∗
f · εiε∗B · εA

− ε∗B · εiε∗f · pfε∗f · εA − ε∗B · piε∗f · εiε∗f · εA − εA · εiε∗f · piε∗f · ε∗B
− εA · pfε∗f · εiε∗f · ε∗B − ε∗f · εAεi · (pf + pi)ε

∗
f · ε∗B

]
. (4.25)

The individual contributions from the four diagrams in Figure 4 are given in
Appendix A and have a rather complex form. However, when added together
we find a much simpler result—the full graviton photo-production amplitude

4Note that this form agrees with the previously derived form for the massive graviton-
spin-1 energy-momentum tensor—Eq. (4.12)—in the m→ 0 limit.
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(a) (b)

(c) (d)

Figure 4: Diagrams relevant to graviton photo-production.

is found to be proportional to the already calculated Compton amplitude for
spin-1—Eq. (3.1)—times a universal factor. That is,

〈pf ; kf , εfεf |T |pi; ki, εi〉 = H ×
(
ε∗fαεiβT

αβ
Compton(S = 1)

)
, (4.26)

where

H =
κ

2e

pf · Ff · pi
ki · kf

=
κ

2e

ε∗f · pfkf · pi − ε∗f · pikf · pf
ki · kf

, (4.27)

and ε∗fαεiβT
αβ
Compton(S) is the Compton scattering amplitude for particles of

spin S calculated in the previous section. The gravitational and electromag-
netic gauge invariance of Eq. (4.26) is obvious, since it follows directly from
the gauge invariance already shown for the Compton amplitude together with
the explicit gauge invariance of the factor H. The validity of Eq. (4.26) al-
lows the calculation of the cross-section by helicity methods since the graviton
photo-production helicity amplitudes are given by

C1(ab; cd) = H ×B1(ab; cd) , (4.28)

where B1(ab; cd) are the Compton helicity amplitudes found in the previous
section. We can then evaluate the invariant photo-production cross-section
using

dσphoto
S=1

dt
=

1

16π(s−m2)2
1

3

∑
a=−,0,+

1

2

∑
c=−,+

|C1(ab; cd)|2 , (4.29)
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yielding

dσphoto
S=1

dt
= − e2κ2(m4 − su)

96πt(s−m2)4(u−m2)2
[
(m4 − su+ t2)(3(m4 − su) + t2)

+ t2(t−m2)(t− 3m2)
]
. (4.30)

Since

|H| = κ

e

(
m4 − su
−2t

) 1
2

, (4.31)

the laboratory value of the factor H is

|Hlab|2 =
κ2m2

2e2
cos2 1

2
θL

sin2 1
2
θL

, (4.32)

the corresponding laboratory cross-section is

dσphoto
lab,S=1

dΩ
= |Hlab|2

dσComp
lab,S=1

dt

= Gα
ω4
f

ω4
i

cos2
θL
2

[
(ctn2 θL

2
cos2

θL
2

+ sin2 θL
2

)(1 + 2
ωi
m

sin2 θL
2

)2

+
16ω2

i

3m2
sin2 θL

2
(1 + 2

ωi
m

sin2 θL
2

) +
32ω4

i

3m4
sin6 θL

2

]
. (4.33)

The factor |Hlab|2 can be thought of as “dressing” the photon into a gravi-
ton. We see that just as in Compton scattering the low-energy laboratory
cross-section has a universal form, which is valid for a target of arbitrary spin

dσphoto
lab,S

dΩ
= Gα cos2

θL
2

(ctn2 θL
2

cos2
θL
2

+ sin2 θL
2

)(1 +O(
ωi
m

)) . (4.34)

In this case the universality can be understood from the feature that at low-
energy the leading contribution to the graviton photo-production amplitude
comes not from the seagull, as in Compton scattering, but rather from the
photon pole term,

Ampγ−pole −→
ω�m

κ
ε∗f · εiε∗f · ki

2kf · ki
× kµi 〈pf ;S,Mf |Jµ|pi;S,Mi〉 . (4.35)
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The leading piece of the electromagnetic current has the universal low-energy
structure

〈pf ;S,Mf |Jµ|pi;S,Mi〉 =
e

2m
(pf + pi)µδMf ,Mi

(1 +O(
pf − pi
m

)) , (4.36)

where we have divided by the factor 2m to account for the normalization
of the target particle. Since ki · (pf + pi) −→

ω→0
2mω, we find the universal

low-energy amplitude

AmpNRγ−pole = κeω
ε∗f · εiε∗f · ki

2kf · ki
, (4.37)

whereby the resulting helicity amplitudes have the form

AmpNRγ−pole =
κe

2
√

2


1
2

sin θL

(
1+cos θL
1−cos θL

)
=

cos
θL
2

sin
θL
2

cos2 θL
2

++ = −− ,

1
2

sin θL

(
1−cos θL
1−cos θL

)
=

cos
θL
2

sin θ
2

sin2 θL
2

+− = −+ .

(4.38)

Squaring and averaging, summing over initial, final spins we find

dσphoto
lab,S

dΩ
−→
ω→0

Gα cos2
θL
2

(ctn2 θL
2

cos2
θL
2

+ sin2 θL
2

) . (4.39)

as found above—cf. Eq. (4.34).
The power of the factorization theorem is obvious and, as we shall see in

the next section, allows the straightforward evaluation of even more complex
reactions such as gravitational Compton scattering.

4.2 Gravitational Compton Scattering

In the previous section we observed some of the power of the factorization
theorem in the context of graviton photo-production on a spin-1 target in that
we only needed to calculate the simpler Compton scattering process rather
than to consider the full gravitational interaction. In this section we tackle
a more challenging example, that of gravitational Compton scattering—g +
S → g + S—from a spin-1 target, for which there exist the four diagrams
shown in Figure 5.
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(a) (b)

(c) (d)

Figure 5: Diagrams relevant for gravitational Compton scattering.

The contributions from the four individual diagrams can now be cal-
culated and are quoted in Appendix A. Each of the four diagrams has a
rather complex form. However, when added together the result simplifies
enormously. Defining the kinematic factor

Y =
κ2

8e4
pi · kipi · kf
ki · kf

=
κ4

16e4
(s−m2)(u−m2)

t
, (4.40)

the sum of the four diagrams is found to be given by

〈pf , εB; kf , εfεf |Ampgrav|pi, εA; ki, εiεi〉S=1

= Y × 〈pf , εB; ki, εf |Ampem|pi, εA; ki, εi〉S=1 × 〈pf ; ki, εf |Ampem|pi; ki, εi〉S=0 ,

(4.41)

where

〈pf ; ki, εf |Ampem|pi; ki, εi〉S=0 = 2e2
[
εi · piε∗f · pf
pi · ki

−
εi · pfε∗f · pi
pi · kf

− ε∗f · εi
]
,

(4.42)
is the Compton amplitude for a spinless target.

In ref. [22] the identity Eq. (4.41) was verified for simpler cases of spin-0
and spin-1

2
. This relation is a consequence of the general relations between

gravity and gauge theory tree-level amplitudes derived from string theory as
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explained in [26]. Here we have shown its validity for the much more complex
case of spin-1 scattering. The corresponding cross-section can be calculated
by helicity methods using the identity

D1(ab; cd) = Y ×B1(ab; cd)× A0(cd) , (4.43)

where B1(ab; cd) is the spin-1 Compton helicity amplitude calculated in sec-
tion 2 while

A0(++) = 2e2
m4 − su

(s−m2)(u−m2)
,

A0(+−) = 2e2
−m2t

(s−m2)(u−m2)
, (4.44)

are the helicity amplitudes for spin zero Compton scattering. Using
Eq. (4.41) the invariant cross-section for unpolarized spin-1 gravitational
Compton scattering

dσg−Comp
S=1

dt
=

1

16π(s−m2)2
1

3

∑
a=−,0,+

1

2

∑
c=−,+

|D1(ab; cd)|2 , (4.45)

is found to be

dσg−Comp
S=1

dt
=

κ4

768π(s−m2)4(u−m2)2t2
[
(m4 − su)2(3(m4 − su) + t2)(m4 − su+ t2))

+ m4t4(3m2 − t)(m2 − t)
]
. (4.46)

This form can be compared with the corresponding unpolarized gravitational
Compton cross-sections found in ref. [22]

dσg−Comp

S= 1
2

dt
=

κ4

512π

((m4 − su)3(2(m4 − su) + t2) +m6t4(2m2 − t))
t2(s−m2)4(u−m2)2

,

dσg−Comp
S=0

dΩ
=

κ4

256π2(s−m2)4(u−m2)2t2
[
(m4 − su)4 +m8t4

]
. (4.47)
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The corresponding laboratory frame cross-sections are

dσg−Comp
lab,S=1

dΩ
= G2m2

ω4
f

ω4
i

[
(ctn4 θL

2
cos4

θL
2

+ sin4 θL
2

)(1 + 2
ωi
m

sin2 θL
2

)2

+
16

3

ω2
i

m2
(cos6

θL
2

+ sin6 θL
2

)(1 + 2
ωi
m

sin2 θL
2

)

+
16

3

ω4
i

m4
sin2 θL

2
(cos4

θL
2

+ sin4 θL
2

)

]
,

dσg−Comp

lab,S= 1
2

dΩ
= G2m2

ω3
f

ω3
i

(
(ctn4 θL

2
cos4

θL
2

+ sin4 θL
2

) + 2
ωi
m

(ctn2 θL
2

cos6
θL
2

+ sin6 θL
2

)

+ 2
ω2
i

m2
(cos6

θL
2

+ sin6 θL
2

)

)
,

dσg−Comp
lab,S=0

dΩ
= G2m2

ω2
f

ω2
i

(
ctn4 θL

2
cos4

θL
2

+ sin4 θL
2

)
. (4.48)

We observe that the low-energy laboratory cross-section has the universal
form for any spin

dσg−Comp
lab,S

dΩ
= G2m2

[
ctn4 θL

2
cos4

θL
2

+ sin4 θL
2

+O(
ωi
m

)

]
. (4.49)

It is interesting to note that the “dressing” factor for the leading (++)
helicity Compton amplitude—

|Y ||A++| = κ2

2e2
m4 − su
−t

lab−→ κ2m2

2e2
cos2 θl

2

sin2 θ
2

, (4.50)

—is simply the square of the photo-production dressing factor H, as might
intuitively be expected since now both photons must be dressed in going
from the Compton to the gravitational Compton cross-section.5 In this case
the universality of the non relativistic cross-section follows from the leading

5In the case of +− helicity the “dressing” factor is

|Y ||A+−| = κ2

2e2
m2 . (4.51)

so that the non-leading contributions will have different dressing factors.
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contribution arising from the graviton pole term

Ampg−pole −→
ω�m

κ

4kf · ki
(ε∗f · εi)2(kµf kνf + kµi k

ν
i )
κ

2
〈pf ;S,Mf |Tµν |pi;S,Mi〉 .

(4.52)
Here the matrix element of the energy-momentum tensor has the universal
low-energy structure

κ

2
〈pf ;S,Mf |Tµν |pi;S,Mi〉 =

κ

4m
(pfµpiν + pfνpiµ)δMf ,Mi

(
1 +O(

pf − pi
m

)
)
,

(4.53)
where we have divided by the factor 2m to account for the normalization of
the target particle. We find then the universal form for the leading graviton
pole amplitude

Ampg−pole −→
non−rel

κ2

8mkf · ki
(ε∗f · εi)2(pi · kfpf · kf + pi · kipf · ki)δMf ,Mi

. (4.54)

Since p · k −→
ω�m

mω the corresponding helicity amplitudes become

AmpNRg−pole = 4πGm


(1+cos θL)

2

2(1−cos θL)
=

cos4
θL
2

sin2
θL
2

++ = −− ,

(1−cos θL)2
2(1−cos θL)

=
sin4

θL
2

sin2
θL
2

+− = −+ .

(4.55)

Squaring and averaging, summing over initial, final spins we find

dσg−Comp
lab,S

dΩ
−→
ω→0

G2m2(ctn4 θL
2

cos4
θL
2

+ sin4 θL
2

) , (4.56)

as found in Eq. (4.49) above.

5 Graviton-Photon Scattering

In the previous sections we have generalized the results of reference [22] to
the case of a massive spin-1 target. Here we show how these techniques can
be used to calculated the cross-section for photon-graviton scattering. In
the Compton scattering calculation we assumed that the spin-1 target had
charge e. However, the photon couplings to the graviton are identical to those
of a graviton coupled to a charged spin-1 system in the massless limit, and
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one might assume then that, since the results of the gravitational Compton
scattering are independent of charge, the graviton-photon cross-section can
be calculated by simply taking the m→ 0 limit of the graviton-spin-1 cross-
section. Of course, the laboratory cross-section no longer makes sense since
the photon cannot be brought to rest, but the invariant cross-section is finite
in this limit—

dσg−Comp
S=1

dt
−→
m→0

4πG2(3s2u2 − 4t2su+ t4)

3s2t2
, (5.1)

and it might be naively assumed that Eq. (5.1) is the graviton-photon scat-
tering cross-section. However, this is not the case and the resolution of this
problem involves some interesting physics.

We begin by noting that in the massless limit the only non vanishing
helicity amplitudes are

D1(++; ++)m=0 = D1(−−;−−)m=0 = 8πG
s2

t
,

D1(−−; ++)m=0 = D1(++;−−)m=0 = 8πG
u2

t
,

D1(00; ++)m=0 = D1(00;−−)m=0 = 8πG
su

t
, (5.2)

which lead to the cross-section

dσg−Comp
S=1

dt
=

1

16πs2
1

3

∑
a=+,0,−

1

2

∑
c=+,−

|D1(ab; cd)|2

=
1

16πs2
1

3 · 2(8πG)2 × 2×
[
s4

t2
+
u4

t2
+
s2u2

t2

]
=

4π

3
G2 s

4 + u4 + s2u2

s2t2
, (5.3)

in agreement with Eq. (5.1). However, this result demonstrates the problem.
We know that in Coulomb gauge the photon has only two transverse degrees
of freedom, having positive and negative helicity—there exists no longitudinal
degree of freedom. Thus the correct photon-graviton cross-section is actually

dσgγ
dt

=
1

16πs2
1

3

∑
a=+,−

1

2

∑
c=+,−

|D1(ab; cd)|2

=
1

16πs2
1

2 · 2(8πG)2 × 2×
[
s4

t2
+
u4

t2

]
= 2πG2 s

4 + u4

s2t2
, (5.4)

25



which agrees with the value calculated via conventional methods by Sko-
belev [35]. Alternatively, since in the center of mass frame

dt

dΩ
=
ωCM

π
, (5.5)

we can write the center of mass graviton-photon cross-section in the form

dσCM

dΩ
= 2G2ω2

CM

(
1 + cos8 θCM

2

sin4 θCM

2

)
, (5.6)

again in agreement with the value given by Skobelev [35].
So what has gone wrong here? Ordinarily in the massless limit of a spin-

1 system, the longitudinal mode decouples because the zero helicity spin-1
polarization vector becomes

ε0µ −→
m→0

1

m
(p, (p+

m2

2p
+ . . .)ẑ) =

1

m
pµ + (0,

m

2p
ẑ) + . . . (5.7)

However, the term proportional to pµ vanishes when contracted with a con-
served current by gauge invariance while the term in m

2p
vanishes in the mass-

less limit. That the spin-1 Compton scattering amplitude becomes gauge
invariant for the spin-1 particles in the massless limit can be seen from the
fact that the Compton amplitude can be written as

AmpComp
S=1 −→m→0

e2

pi · qipi · qf
[Tr(FiFfFAFB) + Tr(FiFAFfFB) + Tr(FiFAFBFf )

−1

4
(Tr(FiFf )Tr(FAFB) + Tr(FiFA)Tr(FfFB) + Tr(FiFB)Tr(FfFA))

]
,

(5.8)

which can be checked by a bit of algebra. Equivalently, one can check that the
massless spin-1 amplitude vanishes if one replaces either εAµ by piµ or εBµ by
pfµ. However, what happens when we have two longitudinal spin-1 particles
is that the product of longitudinal polarization vectors is proportional to
1/m2, while the correction term to the four-momentum pµ is O(m2) so that
the product is non-vanishing in the massless limit. That is why the multipole
D(00; ++)m=0 = D(00;−−)m=0 is non vanishing. One can deal with this
problem by simply omitting the longitudinal degree of freedom explicitly, as
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we did above, but this seems a rather crude way to proceed. Shouldn’t this
behaviour arise naturally?

The problem here is that as long as the mass of the spin-1 particle remains
finite everything is fine. However, when the spin-1 particle become massless
the theory becomes undefined. This can be seen from the neutral spin-1
(Proca) Lagrangian, which has the form

L1 = −1

4
FµνF

µν +
1

2
m2AµA

µ = −1

2
(∂µAν∂

µAν − ∂µAν∂νAµ) +
1

2
m2AµA

µ .

(5.9)
The classical equation of motion then becomes

∂µFµν +m2Aν = 0 . (5.10)

Taking the divergence of Eq. (5.10) we find

m2∂νAν = 0 , (5.11)

which yields the constraint m2∂νAν = 0. Then provided that m2 6= 0 we
have the stricture ∂νAν = 0, which is the condition that changes the number
of degrees of freedom from four to three, as required for a spin-1 particle.
However, in the massless limit, this is no longer the case. Another way to see
this is to integrate by parts, whereby Eq. (5.9) can be written in the form

L1
m=0 =

1

2
AµOµνAν , with Oµν = ηµν2− ∂µ∂ν . (5.12)

In particle physics the photon propagator is given by the inverse of this
operator—O−1µν —which is defined via OµνO−1να = δµα [1]. However, the opera-
tor Oµν does not have an inverse, since it has a zero eigenvalue, as can be seen
by operating on a quantity of the form ∂νΛ(x) where Λ(x) is an arbitrary
scalar function. The solution to this problem is well known. The Lagrangian
must be altered by adding a gauge fixing term

L1
m=0 −→ −

1

4
Fµν −

λ

2
(∂µA

µ)2 , (5.13)

where λ is an arbitrary constant. We now have Oµν = ηµν2 − (1 − λ)∂µ∂ν

which does possess an inverse—O−1µν = 1
2

(
ηµν − 1−λ

λ

∂µ∂ν
2

)
. It is this gauge

fixing term, which is required in the massless limit, and which eliminates the
longitudinal degree of freedom. This degree of freedom acts like simple scalar
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field (spin-0 particle) and must be subtracted from the massless limit of the
spin-1 result. Indeed, from ref. [22] we see that the massless limit of the ++
graviton scattering from a spin-0 target becomes

D0(++) = (2e2)2 × Y = 8πG
su

t
, (5.14)

while the +− helicity amplitude vanishes. This scalar amplitude is identical
the amplitude D1(00; ++) and eliminates the longitudinal degree of freedom
when it is subtracted from the massless spin-1 limit.

An alternative way to obtain this result is to use the Stueckelberg form
of the spin-1 Lagrangian, which involves coupling a new spin-0 field B [36]

LS = −1

4
FµνF

µν+
m2

2
(Aµ+

1

m
∂µB)(Aµ+

1

m
∂µB)−1

2
(∂µA

µ+mB)(∂νA
ν+mB) .

(5.15)
As long as m 6= 0 the fields Aµ and B are coupled. However, if we take the
massless limit Eq. (5.15) becomes

LS −→
m→0
−1

4
FµνF

µν − 1

2
∂µA

µ∂νA
ν +

1

2
∂µB∂

µB , (5.16)

and represents the sum of two independent massless fields—a spin-1 compo-
nent Aµ with the Lagrangian (in Feynman gauge λ = 1)

L1
S = −1

4
FµνF

µν − 1

2
∂µA

µ∂νA
ν = −1

2
Aµ2Aµ , (5.17)

for which we do have an inverse and an independent spin zero component
having the Lagrangian

L0
S =

1

2
∂µB∂

µB . (5.18)

It is the scattering due to the spin-1 component which is physical and leads
to the graviton-photon scattering amplitude, while the spin zero component
is unphysical and generates the longitudinal component of the massless limit
of the graviton-spin-1 scattering.

As a final comment we note that the graviton-graviton scattering ampli-
tude can be obtained by dressing the product of two massless spin-1 Compton
amplitudes [4]—

〈pf , εBεB; kf , εfεf |Amptotgrav|piεAεA; ki, εiεi〉m=0,S=2

= Y × 〈pf , εB; kf , εf |AmpComp
em |pi, εA; kiεi〉m=0,S=1

× 〈pf , εB; kf , εf |AmpComp
em |pi, εA; kiεi〉m=0,S=1 . (5.19)
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Then for the helicity amplitudes we have

E2(++; ++)m=0 = Y (B1(++; ++)m=0)
2 , (5.20)

where E2(++; ++) is the graviton-graviton ++; ++ helicity amplitude while
B1(++; ++) is the corresponding spin-1 Compton helicity amplitude. Thus
we find

E2(++; ++)m=0 =
κ2

16e4
su

t
× (2e2

s

u
)2 = 8πG

s3

ut
, (5.21)

which agrees with the result calculated via conventional methods [37]. In this
case there exist non-zero helicity amplitudes related by crossing symmetry.
However, we defer detailed discussion of this result to a future communica-
tion.

6 The forward cross-section

The forward limit, i.e., θL → 0, of the laboratory frame, Compton cross-
sections evaluated in section 3 has a universal structure independent of the
spin S of the massive target

lim
θL→0

dσComp
lab,S

dΩ
=

α2

2m2
, (6.1)

reproducing the Thomson scattering cross-section.

For graviton photo-production, the small angle limit is very different,
since the forward scattering cross-section is divergent—the small angle limit
of the graviton photo-production of section 4.1 is given by

lim
θL→0

dσphoto
lab,S

dΩ
=

4Gα

θ2L
, (6.2)

and arises from the photon pole in figure 4(d). Notice that this behaviour
differs from the familiar 1/θ4 small-angle Rutherford cross-section for scatter-
ing in a Coulomb-like potential. This divergence of the forward cross-section
indicates that a long range force is involved but with an effective 1/r2 po-
tential. This effective potential arising from the γ-pole in figure 4(d), is the
Fourier transform with respect to the momentum transfer q = kf − ki of the
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low-energy limit given in Eq. (4.37). Because of the linear dependence in the
momenta in the numerator one obtains∫

d3~q

(2π)3
ei~q·~r

1

|~q| =
1

2π2r2
, (6.3)

and that leads to the peculiar forward scattering behaviour of the cross-
section. Another contrasting feature of graviton photo-production is the
independence of the forward cross-section on the mass m of the target.

The small angle limit of the gravitational Compton cross-section derived
in section 4.2 is given by

lim
θL→0

dσg−Comp
lab,S

dΩ
=

16G2m2

θ4L
. (6.4)

The limit is, of course, independent of the spin S of the matter field. Fi-
nally, the photon-graviton cross-section derived in section 5, has the forward
scattering dependence

lim
θCM→0

dσCM

dΩ
=

32G2ω2
CM

θ4CM

. (6.5)

The behaviours in Eq. (6.4) and (6.5) are due to the graviton pole in fig-
ure 5(d), and are typical of the small-angle behaviour of Rutherford scatter-
ing in a Coulomb potential.

The classical bending of the geodesic for a massless particle in a
Schwarzschild metric produced by a point-like mass m is given by b =
4Gm/θ + O(1) [38], where b is the classical impact parameter. The asso-
ciated classical cross-section is

dσclassical

dΩ
=

b

sin θ

∣∣∣∣dbdθ
∣∣∣∣ ' 16G2m2

θ4
+O(θ−3) , (6.6)

matching the expression in Eq. (6.4). The diagram in figure 5(d) describes
the gravitational interaction between a massive particle of spin S and a gravi-
ton. In the forward scattering limit the remaining diagrams of figure 5 have
vanishing contributions. Since this limit is independent of the spin of the
particles interacting gravitationally, the expression in Eq. (6.4) describes the
forward gravitational scattering cross-section of any massless particle on the
target of mass m and explains the match with the classical formula given
above.
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Eq. (6.5) can be interpreted in a similar way, as the bending of a geodesic
in a geometry curved by the energy density with an effective Schwarzschild
radius of

√
2GωCM determined by the center-of-mass energy [39]. However,

the effect is fantastically small since the cross-section in Eq. (6.5) is of order
`4P/(λ

2 θ4CM) where `2P = h̄G/c3 ∼ 1.62 10−35 m is the Planck length, and λ
the wavelength of the photon.

7 Conclusion

In ref. [22] it was demonstrated that the gravitational interactions of a
charged spin-0 or spin-1

2
particle are greatly simplified by use of the recently

discovered factorization theorem, which asserts that the gravitational ampli-
tudes must be identical to corresponding electromagnetic amplitudes multi-
plied by universal kinematic factors. In the present work we demonstrated
that the same simplification applies when the target particle carries spin-1.
Specifically, we evaluated the graviton photo-production and graviton Comp-
ton scattering amplitudes explicitly using direct and factorized techniques
and showed that they are identical. However, the factorization methods are
enormously simpler and allow the use of familiar electromagnetic calcula-
tional methods, eliminating the need for the use of less familiar and more
cumbersome tensor quantities. We also studied the massless limit of the spin-
1 system and showed how the use of factorization permits a relatively simple
calculation of graviton-photon scattering. Finally, we discussed a subtlety in
this graviton-photon calculation having to do with the feature that the spin-
1 system must change from three to two degrees of freedom when m → 0
and studied why the zero mass limit of the spin-1 gravitational Compton
scattering amplitude does not correspond to that for photon scattering. We
noted that graviton-graviton scattering is also simply obtained by taking the
product of Compton amplitudes dressed by the appropriate kinematic factor.

We discussed the main feature of the forward cross-section for each pro-
cess studied in this paper. Both the Compton and the gravitational Compton
scattering have the expected behaviour, while graviton photo-production has
a different shape that could in principle lead to an interesting new experi-
mental signature of a graviton scattering on matter. An extension of the
present discussion at loop order and implications for the photo-production
of gravitons from stars [40,41] will be given elsewhere.
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Appendix A

Here we give the detailed contributions from each of the four diagrams con-
tributing to graviton photo-production and to gravitational Compton scat-
tering. In the case of graviton photo-production—Figure 4—we have the four
pieces

Graviton Photo-production: spin-1

Born− a : Ampa(S = 1) =
κe

pi · ki
{
εi · pi

[
ε∗B · εAε∗f · pfε∗f · pf − ε∗B · kfε∗f · pfε∗f · εA

− εA · pfε∗f · pfε∗f · ε∗B + pf · kfε∗f · εAε∗f · ε∗B
]

+ εA · εi
[
ε∗B · kiε∗f · pfε∗f · pf − ε∗B · kfε∗f · pfε∗f · ki − pf · kiε∗f · pfε∗f · ε∗B

+ pf · kfε∗f · kiε∗f · ε∗B
]

− εA · ki
[
ε∗B · εiε∗f · pfε∗f · pf − ε∗B · kfε∗f · pfε∗f · εi − εi · pfε∗f · pfε∗f · ε∗B

+ pf · kfε∗f · εiε∗f · ε∗B
]

− ε∗B · ε∗fεA · εiε∗f · pfpi · ki
}
. (7.1)

Born− b : Ampb(S = 1) = − κe

pi · kf
{
εi · pf

[
εA · ε∗Bε∗f · piε∗f · pi − ε∗B · piε∗f · piε∗f · εA

+ εA · kfε∗f · piε∗f · ε∗B − pi · kfε∗f · εAε∗f · ε∗B
]

+ ε∗B · ki
[
εA · εiε∗f · piε∗f · pi − εi · piε∗f · piε∗f · εA + εA · kfε∗f · piε∗f · εi

− pi · kfε∗f · εAε∗f · εi
]

+ εi · ε∗B
[
εA · kiε∗f · piε∗f · pi − pi · kiε∗f · piε∗f · εA + εA · kfε∗f · piε∗f · ki

− pi · kfε∗f · εAε∗f · ki
]

− εA · ε∗fε∗f · piε∗B · εipi · kf
}
.

(7.2)
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Seagull− c : Ampc(S = 1) = κe
[
ε∗f · εi(ε∗B · εAε∗f · (pf + pi)− εA · pfε∗B · ε∗f − ε∗B · piεA · ε∗f )

− ε∗B · ε∗fεA · εiε∗f · pi − εA · ε∗fε∗B · εiε∗f · pf + ε∗f · εAε∗f · ε∗Bεi · (pf + pi)
]
, (7.3)

and finally, the photon pole contribution

γ − pole− d : Ampd(S = 1) = − eκ

2kf · ki
×

{
ε∗B · εA

[
ε∗f · (pf + pi)(kf · kiε∗f · εi − ε∗f · kiεi · kf )

+ ε∗f · ki(ε∗f · εiki · (pi + pf )− ε∗f · kiεi · (pf + pi))
]

− 2ε∗B · pi
[
ε∗f · εA(kf · kiε∗f · εi − ε∗f · kiεi · kf )

+ ε∗f · ki(ε∗f · εiεA · ki − ε∗f · kiεi · εA)
]

− 2εA · pf
[
ε∗f · ε∗B(kf · kiε∗f · εi − ε∗f · kiεi · kf )

+ ε∗f · ki(ε∗f · εiε∗B · ki − ε∗f · kiεi · ε∗B)
]}

. (7.4)

In the case of gravitational Compton scattering—Figure 5—we have the four
contributions

Gravitational Compton Scattering: spin-1

Born− a : Ampa(S = 1) = κ2
1

2pi · ki
[(εi · pi)2(ε∗f · pf )2εA · ε∗B

− (ε∗f · pf )2εi · pi(εA · kiε∗B · εi + εA · εiε∗B · pi)
− (εi · pi)2ε∗f · pf (ε∗B · ε∗fεA · pf + ε∗B · kfεA · ε∗f )
+ εi · piε∗f · pfεi · pfεA · kiε∗B · ε∗f + εi · piε∗f · pfε∗f · piεA · εiε∗B · kf
+ (ε∗f · pf )2ε∗B · εiεA · εipi · ki + (εi · pi)2ε∗B · ε∗fεA · ε∗fpf · kf
+ εi · piε∗f · pf (εA · kiε∗B · kfεi · ε∗f + ε∗B · ε∗fεA · εipi · pf )
− εi · piε∗f · piε∗B · ε∗fεA · εipf · kf − ε∗f · pfεi · pfεA · εiε∗B · ε∗fpi · ki
− εi · piεA · kiε∗B · ε∗fε∗f · εipf · kf − ε∗f · pfε∗B · kfεA · εiεi · ε∗fpi · ki
+ εA · εiε∗B · ε∗fpi · kipf · kfεi · ε∗f −m2ε∗B · ε∗fεA · εiε∗f · pfεi · pi] .

(7.5)
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Born− b : Ampb(S = 1) = −κ2 1

2pi · kf
[(ε∗f · pi)2(εi · pf )2εA · ε∗B

+ (εi · pf )2ε∗f · pi(εA · kfε∗B · ε∗f − εA · ε∗fε∗B · pi)
+ (ε∗f · pi)2εi · pf (ε∗B · kiεA · εi − ε∗B · εiεA · pf )
− ε∗f · piεi · pfε∗f · pfεA · kfε∗B · εi − ε∗f · piεi · pfεi · piεA · ε∗fε∗B · ki
− (εi · pf )2ε∗B · ε∗fεA · ε∗fpi · kf − (ε∗f · pi)2ε∗B · εiεA · εipf · ki
+ ε∗f · piεi · pf (εA · kfε∗B · kiεi · ε∗f + ε∗B · εiεA · ε∗fpi · pf )
+ ε∗f · piεi · piε∗B · εiεA · ε∗fpf · ki + εi · pfε∗f · pfεA · ε∗fε∗B · εipi · kf
− ε∗f · piεA · kfε∗B · εiεi · ε∗fpf · ki − εi · pfε∗B · kiεA · ε∗fε∗f · εipi · kf
+ εA · ε∗fε∗B · εipi · kfpf · kiεi · ε∗f −m2ε∗B · εiεA · ε∗fεi · pfε∗f · pi] .

(7.6)

Seagull− c : Ampc(S = 1) = −κ
2

4
[(εi · ε∗f )2(m2 − pi · pf )εA · ε∗B

+ εA · pfε∗B · pi(εi · ε∗f )2 + εi · piε∗f · pf (2εi · ε∗fεA · ε∗B − 2εA · ε2ε∗B · ε1)
+ εi · pfε∗f · pi(2εi · ε∗fεA · ε∗B − 2εA · εiε∗B · ε∗f )
+ 2εi · piε1 · pfεA · ε∗fε∗B · ε∗f + 2ε∗f · pfε∗f · piεA · εiε∗B · εi
− 2εi · piεi · ε∗fεA · pfε∗B · ε∗f − 2ε∗f · pfεi · ε∗fεA · εiε∗f · pi
− 2εi · pfεi · ε∗fεA · ε∗fε∗B · pi − 2ε∗f · piεi · ε∗fε∗B · εiεA · pf
− 2(m2 − pf · pi)εi · ε∗f (εA · εiε∗B · ε∗f + εA · ε∗fε∗B · εi)] , (7.7)
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and finally the (lengthy) graviton pole contribution is

g − pole− d : Ampd(S = 1) = − κ2

16ki · kf
{ε∗B · εA[(εi · ε∗f )2(4ki · pipf · ki + 4kf · pikf · pf

− 2(pi · kipf · kf + pf · kipi · kf ) + 6pi · pfki · kf )
+ 4((εi · kf )2ε∗f · pfε∗f · pi + (ε∗f · ki)2εi · piεi · pf
+ εi · kfε∗f · ki(εi · piε∗f · pf + εi · pfε∗f · pi))
− 4εi · ε∗f (εi · kf (ε∗f · pipf · kf + ε∗f · pfkf · pi)
+ ε∗f · ki(εi · pipf · ki + εi · pfpi · ki))
− 4ki · kfεi · ε∗f (εi · piε∗f · pf + εi · pfε∗f · pi)− 4pi · pfεi · ε∗fεi · kfε∗f · ki]
− (pi · pfε∗B · εA − ε∗B · piεA · pf )[10(εi · ε∗f )2ki · kf + 4εi · ε∗fεi · kfε∗f · ki
− 4(εi · ε∗f )2ki · kf − 8εi · ε∗fεi · kfε∗f · ki]
+ (pi · pf −m2)[(εi · ε∗f )2(4εA · kiε∗B · ki + 4εA · kfε∗B · kf
− 2(εA · kiε∗B · kf + εA · kfε∗B · ki) + 6ε∗B · εAki · kf )
+ 4[(εi · kf )2εA · ε∗fε∗B · ε∗f + (ε∗f · ki)2εA · εiε∗B · εi
+ εi · kfε∗f · kf (εA · εiε∗B · ε∗f + εA · ε∗fε∗B · εi)]
− 4εi · ε∗f [εi · kf (εA · ε∗fε∗B · kf + ε∗B · ε∗fεA · kf )
+ ε∗f · ki(εA · εiε∗B · ki + ε∗B · εiεA · ki)
+ ki · kf (εA · εiε∗B · ε∗f + ε∗B · εiεA · ε∗f ) + εA · ε∗Bεi · kfε∗f · ki]]
− 2εA · pf [(ε∗f · εi)2[2ε∗B · kipi · ki + 2ε∗B · kfpi · kf + 3ε∗B · piki · kf
− (ε∗B · kipi · kf + ε∗B · kfpi · ki)]
+ 2(εi · kf )2ε∗B · ε∗fε∗f · pi + 2(ε∗f · ki)2ε∗B · εiεi · pi
+ 2εi · kfε∗f · ki(ε∗B · εiε∗f · pi + εi · piε∗B · ε∗f )
− 2εi · ε∗f [εi · kf (ε∗B · ε∗fpi · kf + ε∗f · piε∗B · kf )
+ ε∗f · ki(ε∗B · εipi · ki + ε∗B · kiεi · pi)]
− 2ki · kfεi · ε∗f (ε∗B · εiε∗f · pi + ε∗B · ε∗fεi · pi)− 2ε∗B · piεi · ε∗fεi · kfε∗f · ki]
− 2ε∗B · pi[(ε∗f · εi)2[2εA · kipf · ki + 2εA · kfpf · kf + 3εA · pfki · kf
− (εA · kipf · kf + εA · kfpf · kf )]
+ 2(εi · kf )2εA · ε∗fε∗f · pf + 2(ε∗f · ki)2εA · εiεi · pf
+ 2εi · kfε∗f · ki(εA · εiε∗f · pf + εi · pfεA · ε∗f
− 2εi · ε∗f [εi · kf (εA · ε∗fpf · kf + ε∗f · pfεA · kf )
+ ε∗f · ki(εA · εipf · ki + εA · kiεi · pf )]
− 2ki · kfεi · ε∗f (εA · εiε∗f · pf + εA · ε∗fεi · pf )− 2εA · pfεi · ε∗fεi · kfε∗f · ki]} .
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