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Abstract. We study the discrete spectrum of the Laplacian on cer-
tain pseudo-Riemannian manifolds which are quotients XΓ = Γ\X of
reductive symmetric spaces X by discrete groups of isometries Γ acting
properly discontinuously. Assuming that X admits a maximal compact
subsymmetric space of full rank, we construct L2-eigenfunctions on XΓ

for an infinite set of eigenvalues. In contrast to the classical setting
where the nonzero discrete spectrum varies on the Teichmüller space
of a compact Riemann surface, we prove that this infinite set of eigen-
values is stable under any small deformation of Γ, for a large class of
groups Γ. We actually construct joint L2-eigenfunctions for the whole
commutative algebra of invariant differential operators on XΓ.
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1. Introduction

The spectral properties of the Laplacian have been extensively studied
both on Riemannian locally symmetric spaces Γ\G/K and on reductive
symmetric spaces G/H. These are all special cases of pseudo-Riemannian
locally symmetric spaces Γ\G/H, for which the Laplacian continues to exist
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and be worthy of study. The aim of this paper is to set up a framework
for spectral theory in this general setting and to prove the first results on
the discrete spectrum of such spaces under a rank condition on G/H (which
makes them non-Riemannian if G is noncompact). In particular, we con-
struct L2-eigenfunctions for an infinite set of eigenvalues on a large class of
spaces (not necessarily compact or of finite volume) and prove some defor-
mation results that have no analogue in the classical Riemannian setting.
More precisely, we work not only with the Laplacian, but with the whole
commutative algebra of “intrinsic” differential operators on Γ\G/H, which
includes the Laplacian. Before describing our results in more detail, we first
recall the definitions of the main objects.

1.1. The main objects. A pseudo-Riemannian metric on a manifold M is
a smooth, nondegenerate, symmetric bilinear tensor g of signature (p, q) for
some p, q ∈ N. As in the Riemannian case (i.e. q = 0), the metric g induces
a second-order differential operator

(1.1) �M = div grad

called the Laplacian or Laplace–Beltrami operator. For instance, for

(M,g) = Rp,q :=
(
Rp+q,dx21 + · · ·+ dx2p − dx2p+1 − · · · − dx2p+q

)

the Laplacian is

�Rp,q =
∂2

∂x21
+ · · ·+ ∂2

∂x2p
− ∂2

∂x2p+1

− · · · − ∂2

∂x2p+q

.

In general, �M is elliptic if g is Riemannian, hyperbolic if g is Lorentzian
(i.e. q = 1), and none of these otherwise. The discrete spectrum of �M is its
set of eigenvalues corresponding to L2-eigenfunctions:

(1.2) Specd(�M ) :=
{
t ∈ C : ∃f ∈ L2(M), f 6= 0, �Mf = tf

}
,

where L2(M) is the Hilbert space of square-integrable functions on M with
respect to the Radon measure induced by the pseudo-Riemannian structure.

A reductive symmetric space is a homogeneous space X = G/H where G
is a real reductive Lie group and H an open subgroup of the group of fixed
points of G under some involutive automorphism σ. The manifold X natu-
rally carries a pseudo-Riemannian metric, induced by the Killing form of the
Lie algebra g of G when G is semisimple; therefore, X has a Laplacian �X .
Alternatively, �X is induced by the Casimir element of the enveloping alge-
bra U(g), acting on C∞(X) by differentiation (see Subsection 3.2). Let D(X)
be the C-algebra of differential operators on X that are invariant under the
natural G-action

g ·D = ℓ∗g ◦D ◦ (ℓ∗g)−1 =
(
f 7−→ D

(
f g

−1)g)
,

where we set ℓ∗g(f) = f g := f(g ·). The Laplacian �X belongs to D(X) and,
since X is a symmetric space, D(X) is commutative (see Subsection 3.1);
we shall consider eigenfunctions for �X that are in fact joint eigenfunctions
for D(X).

A locally symmetric space is a quotient XΓ = Γ\X of a reductive symmet-
ric space X = G/H by a discrete subgroup Γ of G acting properly discontin-
uously and freely. Such a quotient is also called a Clifford–Klein form of X.
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The proper discontinuity of the action of Γ ensures that XΓ is Hausdorff, and
it is in fact a manifold since the action is free. It is locally modeled on X (it is
a complete (G,X)-manifold in the sense of Ehresmann and Thurston), hence
inherits a pseudo-Riemannian structure from X and has a Laplacian �XΓ

.
Any operator D ∈ D(X) induces a differential operator DΓ on XΓ such
that the following diagram commutes, where pΓ : X → XΓ is the natural
projection.

C∞(X)
D // C∞(X)

C∞(XΓ)

p∗Γ

OO

DΓ // C∞(XΓ)

p∗Γ

OO

In particular, note that
�XΓ

= (�X)
Γ
.

The discrete spectrum Specd(XΓ) of XΓ is defined to be the set of C-algebra
homomorphisms χλ : D(X) → C such that the space L2(XΓ,Mλ) of weak
solutions f ∈ L2(XΓ) to the system

DΓf = χλ(D)f for all D ∈ D(X) (Mλ)

is nonzero. (The notation χλ will be explained in Subsection 3.1.) It is the set
of joint eigenvalues for the commutative algebra D(XΓ) := {DΓ : D ∈ D(X)},
which we think of as the algebra of “intrinsic” differential operators on XΓ.
The discrete spectrum Specd(XΓ) refines the discrete spectrum of the Lapla-
cian �XΓ

from (1.2) (see Remark 3.3).

1.2. The general problems. Let XΓ = Γ\X be a locally symmetric space.
In [KK1] we stated the following problems.

Problem A: To construct joint L2-eigenfunctions on XΓ corresponding
to Specd(XΓ).

Problem B: To understand the behavior of Specd(XΓ) under small de-
formations of Γ inside G.

By a small deformation we mean a homomorphism close enough to the
natural inclusion in the compact-open topology on Hom(Γ, G).

Problems A and B have been studied extensively in the following two cases.

• AssumeH is compact. Then X is Riemannian and the Laplacian �X

is elliptic. If XΓ is compact, then the discrete spectrum of �XΓ
is

infinite. If furthermore Γ is irreducible, then Weil’s local rigidity the-
orem [We1] states that nontrivial deformations exist only when X is
the hyperbolic plane H2 = SL2(R)/SO(2), in which case compact
Clifford–Klein forms have an interesting deformation space modulo
conjugation, namely their Teichmüller space. Viewed as a “function”
on the Teichmüller space, the discrete spectrum varies analytically
[BC] and nonconstantly (Fact 1.2 below). On the other hand, for
noncompact XΓ the discrete spectrum Specd(XΓ) may be consid-
erably different depending on whether Γ is arithmetic or not (see
Selberg [Se1], Phillips–Sarnak [PS1, PS2], Wolpert [Wp], etc.).
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• Assume Γ is trivial. Then the group G naturally acts on L2(XΓ) =
L2(X) and so representation-theoretic methods may be used. Spec-
tral analysis on the reductive symmetric space X with respect to
D(X) is essentially equivalent to finding a Plancherel-type theorem
for the irreducible decomposition of the regular representation of G
on L2(X): see van den Ban–Schlichtkrull [BS], Delorme [D], and
Oshima [Os1], as a far-reaching generalization of Harish-Chandra’s
earlier work [Ha] on the regular representation L2(G) for group man-
ifolds. Flensted-Jensen [Fl] and Matsuki–Oshima [MO] established
a necessary and sufficient condition for Specd(X) 6= ∅ in terms of
the rank of X (see (3.3)) and determined Specd(X) explicitly (see
Fact 5.5). The rest of the spectrum (tempered representations for X,
see [Br]) is constructed from the discrete spectrum of smaller sym-
metric spaces by induction.

On the other hand, Problems A and B have not been much studied when
H is noncompact, Γ is nontrivial, and Γ acts properly discontinuously on
X = G/H, except in the group manifold case when XΓ identifies with 8Γ\8G
for some reductive Lie group 8G and some discrete subgroup 8Γ. In this
paper, we give the first results that do not restrict to this case. The fact
that H is noncompact and Γ nontrivial implies new difficulties from several
perspectives:

(1) Analysis: the Laplacian on XΓ is not an elliptic operator anymore;
(2) Geometry: an arbitrary discrete subgroup Γ of G does not necessarily

act properly discontinuously on X;
(3) Representation theory: a discrete subgroup Γ of G acting properly

discontinuously on X always has infinite covolume in G; moreover,
L2(XΓ) 6= L2(Γ\G)H since H is noncompact.

In particular, point (1) makes Problem A nontrivial: we do not know a priori
whether or not Specd(XΓ) 6= ∅, even for compact XΓ.

Point (2) creates some underlying difficulty to Problem B: we need to
consider Clifford–Klein forms XΓ for which the proper discontinuity of the
action of Γ on X is preserved under small deformations of Γ in G. Not
all Clifford–Klein forms XΓ have this property (see Example 4.16), but a
large class does (see Example 4.13 and subsequent comments). The study of
small deformations of Clifford–Klein forms in the general setting of reductive
homogeneous spaces was initiated in [Ko5]; we refer to [Cn] for a recent
survey in the case of compact Clifford–Klein forms. An interesting aspect of
the case of noncompact H is that there are more examples where nontrivial
deformations of compact Clifford–Klein forms exist than for compact H (see
Subsections 2.3 and 2.4).

1.3. Our approach. In this paper we investigate Problems A and B under
the assumption (3.3) that X admits a maximal compact subsymmetric space
of full rank. This case is somehow orthogonal to the case of Riemannian
symmetric spaces of the noncompact type, where compact subsymmetric
spaces are reduced to points. Assuming that G is noncompact, the group H
is thus noncompact and X non-Riemannian under our assumption.
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We solve Problem A for a large class of Clifford–Klein forms XΓ of X.
We construct eigenfunctions for an explicit infinite set of joint eigenvalues
(Propositions 6.1 and 8.1), proving in particular that the discrete spectrum
Specd(XΓ) is nonempty. Our eigenfunctions are obtained by a natural sum-
mation process: for certain eigenfunctions ϕ on X, we consider the general-
ized Poincaré series

(1.3) ϕΓ : Γx 7−→
∑

γ∈Γ
ϕ(γ ·x)

on XΓ. The convergence and nonvanishing of this series are nontrivial since
the behavior of ϕ needs to be controlled in relation to the distribution of Γ-
orbits in the non-Riemannian space X, for which not much is known when Γ
is not a lattice in G. From a representation-theoretic viewpoint, we build on
Flensted-Jensen’s discrete series representations [Fl] forX, whose underlying
(g,K)-modules are isomorphic to certain Zuckerman–Vogan derived functor
modules Aq(λ).

We also address Problem B for a large class of Clifford–Klein forms XΓ.
We prove that our infinite subset of the discrete spectrum mentioned above is
stable under any small deformation of Γ in G. This is achieved by controlling
the convergence parameters of the series (1.3) and using recent results in the
deformation theory of proper actions on homogeneous spaces.

One special example to which our results apply is the aforementioned
classical quotients Γ\G, regarded as Γ×{e}\(G×G)/Diag(G) where Diag(G)
is the diagonal of G×G. Our geometric and analytic estimates in this case
imply that all discrete series representations of G with sufficiently regular
parameter appear in the regular representation L2(Γ\G) (Proposition 10.5).
When Γ is arithmetic, this improves the non-vanishing results that can be
deduced from the asymptotic multiplicity formulas of DeGeorge–Wallach
[DW], Clozel [Cl], and Rohlfs–Speh [RS] or the theta-lifting (see Kazhdan
[Kz], Borel–Wallach [BW], Li [Li]) in automorphic forms. Our approach
does not depend on the Arthur–Selberg trace formula or the theta-lifting
(see Remark 10.6).

We introduce three main ingredients:

(1) Uniform analytic estimates for eigenfunctions on X, including their
asymptotic behavior at infinity (Proposition 5.1) and the local be-
havior near the origin of specific eigenfunctions (Proposition 7.1);

(2) A quantitative understanding of proper actions on reductive homo-
geneous spaces (notion of sharpness — Definition 4.2);

(3) Counting estimates for points of a given Γ-orbit in X, both in large
“pseudo-balls” (Lemma 4.6) and near the origin (Proposition 8.9).

In (1), our estimates are uniform in the spectral parameter and refine results
of Flensted-Jensen [Fl] and Matsuki–Oshima [MO]. In (2), the quantitative
approach to properness that we develop builds on the qualitative interpreta-
tion of Benoist [Bn] and Kobayashi [Ko1, Ko4] in terms of a Cartan decom-
position G = KAK. In (3), we relate the natural “pseudo-distance from the
origin” in the non-Riemannian space X to the distance from the origin in
the Riemannian symmetric space G/K of G in order to use the growth rate
of Γ, the Kazhdan–Margulis lemma, and the sharpness constants of (2). Our
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counting results may be compared to those obtained by Eskin–McMullen
[EM] in a different setting, where Γ is a lattice in G (see Remark 4.8).

We now state precise results, not on our construction of joint eigenfunc-
tions (for this we refer to Propositions 6.1 and 8.1), but on the corresponding
eigenvalues, i.e. on the discrete spectrum of our locally symmetric spaces.
These results were partially announced in [KK1]. Before we state them in
full generality, we illustrate them with two simple examples of rank one (see
Sections 9 and 10 for more details); in these two examples, the commutative
C-algebra D(X) is generated by the Laplacian �X and therefore Specd(XΓ)
identifies with Specd(�XΓ

) for any Clifford–Klein form XΓ.

1.4. Two examples. Our first example is the 3-dimensional anti-de Sitter
space X = AdS3 = SO(2, 2)0/SO(1, 2)0, which can be realized as the quadric
of R4 of equation Q = 1, endowed with the Lorentzian metric induced by
−Q, where

Q(x) := x21 + x22 − x23 − x24.
It is a Lorentzian analogue of the real hyperbolic space H3, being a model
space for all Lorentzian 3-manifolds of constant sectional curvature −1 (or
anti-de Sitter 3-manifolds). The Laplacian �AdS3 is a hyperbolic operator
of signature (+ +−); it is given explicitly by

�AdS3f = �R2,2

(
x 7−→ f

(
x√
Q(x)

))

for all f ∈ C∞(AdS3), where f(x/
√
Q(x)) is defined on the neighborhood

{Q(x) > 0} of the quadric AdS3 in R4. It is equal to 4 times the Casimir
operator of g = so(2, 2) with respect to the Killing form. We construct
eigenfunctions of the Laplacian on all compact anti-de Sitter 3-manifolds, for
an infinite set of eigenvalues, and prove that this infinite set of eigenvalues
is stable under any small deformation of the anti-de Sitter structure.

Theorem 1.1. The discrete spectrum of any compact anti-de Sitter 3-manifold
is infinite. Explicitly, if M = Γ\AdS3 with −I /∈ Γ, then

(1.4) Specd(�M ) ⊃
{
ℓ(ℓ− 2) : ℓ ∈ N, ℓ ≥ ℓ0

}

for some integer ℓ0; moreover, (1.4) still holds (with the same ℓ0) after any
small deformation of the anti-de Sitter structure on M .

Here −I ∈ SO(2, 2)0 is the nontrivial element of the center of SO(2, 2)0,
acting on AdS3 = {x ∈ R4 : Q(x) = 1} by the antipodal map x 7→ −x. If
−I ∈ Γ, then half of the spectrum survives:

Specd(�M ) ⊃
{
ℓ(ℓ− 2) : ℓ ∈ 2N, ℓ ≥ ℓ0

}

for some ℓ0. We actually prove that (1.4) holds (for some explicit ℓ0) for any
complete anti-de Sitter 3-manifold M = Γ\AdS3 with Γ finitely generated
(Theorem 9.9). The stability of eigenvalues under small deformations in
Theorem 1.1 contrasts with the situation in the Riemannian case:

Fact 1.2 (see [Wp, Th. 5.14]). No nonzero eigenvalue of the Laplacian on a
compact Riemann surface is constant on its Teichmüller space.
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As we shall recall in Section 9, any compact anti-de Sitter 3-manifold M is a
circle bundle over some closed hyperbolic surface S (up to a finite covering);
the deformation space of M contains the Teichmüller space of S, and its
dimension is actually twice as large. We shall also prove the existence of
an infinite stable spectrum for a large class of noncompact complete anti-de
Sitter 3-manifolds (Corollary 9.10).

Our second example is the 3-dimensional complex manifold

X = SU(2, 2)/U(1, 2) ≃ SO(2, 4)0/U(1, 2),

which can be realized as the open subset of P3C of equation h > 0, where

h(z) := |z1|2 + |z2|2 − |z3|2 − |z4|2

on C4. The space X is naturally endowed with an indefinite Hermitian
structure of signature (2, 1) induced by −h. The imaginary part of −h
endows X with a symplectic structure, making X into an indefinite Kähler
manifold. The real part of −h gives rise to a pseudo-Riemannian metric of
signature (4, 2). The Laplacian �X has signature (++++−−) and is given
by the following commutative diagram:

C∞(C4
h>0

)

2h�
C2,2

��

C∞(X)
π∗

oo

�X

��

C∞(C4
h>0

) C∞(X),
π∗

oo

where
C4

h>0
:= {z ∈ C4 : h(z) > 0},

where π : C4
h>0
→ X is the natural projection, and where

�C2,2 := − ∂2

∂z1∂z1
− ∂2

∂z2∂z2
+

∂2

∂z3∂z3
+

∂2

∂z4∂z4

on C4. It is 8 times the Casimir operator of g = su(2, 2) with respect to
the Killing form. A natural way to construct Clifford–Klein forms of X
is to notice that X fibers over the quaternionic hyperbolic space H1

H
=

Sp(1, 1)/Sp(1) × Sp(1), with compact fiber:

{z ∈ C4 : h(z) = 1} π−−−−→
fiber U(1)

X =
{
[z] ∈ P3C : h(z) > 0

}

≃ yfiber Sp(1)/U(1)

{
u ∈ H

2 : |u1|2 − |u2|2 = 1
}
−−−−→
fiber Sp(1)

H1
H

=
{
[u] ∈ P1

H : |u1|2 − |u2|2 > 0
}
,

where H is the ring of quaternions and P1
H the quotient of H2 r {0} by

the diagonal action of H r {0} on the right. The isometry group Sp(1, 1)
of the Riemannian symmetric space H1

H
acts transitively on X, and this

action is proper since the fiber Sp(1)/U(1) ≃ S2 is compact. Any torsion-
free discrete subgroup Γ of Sp(1, 1) therefore acts properly discontinuously
and freely on X; we say that the corresponding Clifford–Klein form XΓ is
standard (see Definition 1.4).
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Theorem 1.3. The discrete spectrum of any standard Clifford–Klein form
XΓ of X = SU(2, 2)/U(1, 2) is infinite. Explicitly, for Γ ⊂ Sp(1, 1) there is
an integer ℓ0, independent of Γ, such that

(1.5) Specd(�XΓ
) ⊃

{
2(ℓ− 2)(ℓ+ 1) : ℓ ∈ N, ℓ ≥ ℓ0

}
;

moreover, (1.5) still holds after any small deformation of Γ in SU(2, 2).

We will see in Subsection 10.3 that there exist interesting small deformations
of standard Clifford–Klein forms of X = SU(2, 2)/U(1, 2), both compact and
noncompact. We will compute explicit eigenfunctions. We refer to [Ko6] for
further global analysis on X in connection with branching laws of unitary
representations with respect to the restriction SU(2, 2) ↓ Sp(1, 1).
1.5. General results for standard Clifford–Klein forms. We now state
our results in the general setting of reductive symmetric spaces X = G/H,
as defined in Subsection 1.1, under the assumption that X admits a maximal
compact subsymmetric space of full rank. For simplicity we shall assume G
to be linear throughout the paper.

An important class of Clifford–Klein forms XΓ of X that we consider is
the standard ones.

Definition 1.4. A Clifford–Klein form XΓ of X is standard if Γ is contained
in some reductive subgroup L of G acting properly on X.

This generalizes the notion introduced above for X = SU(2, 2)/U(1, 2).
When L acts cocompactly on X, we can obtain compact (resp. finite-volume
noncompact) standard Clifford–Klein forms XΓ by taking Γ to be a uniform
(resp. nonuniform) lattice in L. An open conjecture [KY, Conj. 3.3.10] states
that any reductive homogeneous space G/H admitting compact Clifford–
Klein forms should admit standard ones.

Our first main result in this general setting is the existence of an infinite
discrete spectrum for all standard Clifford–Klein forms of X.

Theorem 1.5. Let X = G/H be a reductive symmetric space and L a
reductive subgroup of G acting properly on X. Assume that X admits a
maximal compact subsymmetric space of full rank. Then #Specd(XΓ) = +∞
for any standard Clifford–Klein form XΓ with Γ ⊂ L. Moreover, if L is
simple (resp. semisimple), then there is an infinite subset of Specd(X) that
is contained in Specd(XΓ) for any (resp. any torsion-free) Γ ⊂ L.

We wish to emphasize that when L is semisimple, the discrete spectrum
that we find is universal, in the sense that it does not depend on Γ ⊂ L.
Our proof is constructive; we shall explicitly describe an infinite universal
discrete spectrum in Theorem 3.8.

For Γ = {e}, the existence of an infinite discrete spectrum was established
by Flensted-Jensen [Fl]. In this case, as mentioned above, the condition that
X admit a maximal compact subsymmetric space of full rank is actually
necessary for the existence of a nonempty discrete spectrum [MO]. This
condition can be written as rankG/H = rankK/K∩H (see Subsection 3.3).

Our second main result concerns the stability of the discrete spectrum of
standard compact Clifford–Klein forms XΓ of X under small deformations
of Γ in G. The set Hom(Γ, G) of group homomorphisms from Γ to G is
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endowed with the compact-open topology. In the following definition, we
assume that the group ϕ(Γ) acts properly discontinuously and freely on X
for all ϕ ∈ Hom(Γ, G) in some neighborhood U0 of the natural inclusion of Γ
in G (we shall call this property “stability for proper discontinuity”). Under
this assumption, Xϕ(Γ) = ϕ(Γ)\X is a manifold for all ϕ ∈ U0 and we can
consider the discrete spectrum Specd(Xϕ(Γ)); recall that it is contained in
the set of C-algebra homomorphisms from D(X) to C.

Definition 1.6. • We say that λ ∈ Specd(XΓ) is stable under small
deformations if there exists a neighborhood U ⊂ U0 ⊂ Hom(Γ, G) of
the natural inclusion such that λ ∈ Specd(Xϕ(Γ)) for all ϕ ∈ U .
• We say that XΓ has an infinite stable discrete spectrum if there exists

an infinite subset of Specd(XΓ) that is contained in Specd(Xϕ(Γ)) for
all ϕ in some neighborhood U ⊂ U0 ⊂ Hom(Γ, G) of the natural
inclusion.

We address the existence of an infinite stable discrete spectrum for stan-
dard compact Clifford–Klein forms XΓ, where Γ is a uniform lattice in some
reductive subgroup L of G. First observe that if L has real rank ≥ 2 and Γ
is irreducible, then Γ is locally rigid in G by Margulis’s superrigidity theo-
rem [Mr2, Cor. IX.5.9], i.e. all small deformations of Γ in G are obtained by
conjugation; consequently Specd(Xϕ(Γ)) = Specd(XΓ) for all small deforma-
tions ϕ, and thus XΓ has an infinite stable discrete spectrum by Theorem 1.5.
Consider the more interesting case when L has real rank 1. Then nontrivial
deformations of Γ inside G may exist (see Subsection 2.3). By [Ka2], all
compact Clifford–Klein forms XΓ with Γ ⊂ L have the stability property
for proper discontinuity; more generally, so do all Clifford–Klein forms XΓ

with Γ convex cocompact in L. We prove the existence of an infinite stable
discrete spectrum.

Theorem 1.7. Let X = G/H be a reductive symmetric space and let L be
a reductive subgroup of G of real rank 1 acting properly on X. If X admits
a maximal compact subsymmetric space of full rank, then XΓ has an infinite
stable discrete spectrum for any uniform lattice Γ of L, and more generally
for any convex cocompact subgroup Γ of L.

We recall that a discrete subgroup Γ of L is said to be convex cocompact
if it acts cocompactly on some nonempty convex subset of the Riemannian
symmetric space of L. Convex cocompact groups include uniform lattices,
but also discrete groups of infinite covolume such as Schottky groups, or for
instance quasi-Fuchsian embeddings of surface groups for L = PSL2(C).

Let us emphasize that the small deformations of Γ that we consider in
Theorem 1.7 are arbitrary inside G; in particular, in the interesting cases Γ
does not remain inside a conjugate of L. A description of an infinite stable
discrete spectrum as in Theorem 1.7 will be given in Theorem 3.11.

1.6. General results for sharp Clifford–Klein forms. The class of stan-
dard Clifford–Klein forms that we have just considered is itself contained in
a larger class of Clifford–Klein forms, namely those that we call sharp. Let
us define this notion (see Subsections 4.2 and 4.4 for more details and exam-
ples).
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Let G = KA+K be a Cartan decomposition of G, where K is a maximal
compact subgroup of G and A+ a closed Weyl chamber in a maximal split
abelian subgroup of G. Any element g ∈ G may be written as g = k1ak2
for some k1, k2 ∈ K and a unique a ∈ A+; setting µ(g) = log a defines a
continuous, proper, and surjective map µ : G→ logA+ ⊂ a := Lie(A), called
the Cartan projection associated with the Cartan decompositionG = KA+K
(see Example 4.1 for G = SLn(R)). Let ‖ · ‖ be a norm on a. We say that a
discrete subgroup Γ of G is sharp for X = G/H if there are constants c > 0
and C ≥ 0 such that

da(µ(γ), µ(H)) ≥ c ‖µ(γ)‖ − C
for all γ ∈ Γ, where da is the metric on a induced by the norm ‖·‖. This means
that the set µ(Γ) “goes away linearly from µ(H) at infinity”. This notion
does not depend on the choice of the Cartan decomposition G = KA+K nor
of the norm ‖ · ‖. By the properness criterion of Benoist [Bn] and Kobayashi
[Ko4], any sharp discrete subgroup Γ ofG acts properly discontinuously onX
(see Subsection 4.4); we say that the corresponding Clifford–Klein form XΓ

is sharp too.
Examples of sharp Clifford–Klein forms are plentiful. For instance, all

standard Clifford–Klein forms are sharp (see Subsection 4.4). Also, all known
examples of compact Clifford–Klein forms of reductive homogeneous spaces
are sharp, even when they are nonstandard. We conjecture that all com-
pact Clifford–Klein forms of reductive homogeneous spaces should be sharp
(Conjecture 4.12).

We generalize Theorem 1.5 from the standard to the sharp case and prove
the following.

Theorem 1.8. Let X = G/H be a reductive symmetric space. If X admits a
maximal compact subsymmetric space of full rank, then Specd(XΓ) is infinite
for any sharp Clifford–Klein form XΓ of X.

Recall that on a Riemannian symmetric space all eigenfunctions of the
Laplacian are analytic by the elliptic regularity theorem (see [KKK, Th. 3.4.4]
for instance). Here X is non-Riemannian, hence eigenfunctions are not au-
tomatically analytic. We are still able to prove some regularity result (see
Subsection 3.5).

1.7. Further spectral analysis in some standard cases. In the upcom-
ing paper [KK2], we examine more carefully the spectrum of the Laplacian
for standard Clifford–Klein forms XΓ when Γ is contained in some reductive
subgroup L of G acting properly and transitively on X. In this case, spec-
tral analysis on XΓ is connected with spectral analysis on the Riemannian
symmetric space of L and with the restriction to L of irreducible unitary rep-
resentations of G (branching laws for G ↓ L). Using such considerations, we
prove additional spectral results for standard Clifford–Klein forms XΓ of cer-
tain symmetric spaces X that do not necessarily admit a maximal compact
subsymmetric space of full rank (i.e. for which possibly L2(X,Mλ) = {0} for
all λ), or of certain reductive homogeneous spaces X that are not necessarily
symmetric. These include the following:

• extension of the Laplacian �XΓ
to a self-adjoint operator on L2(XΓ),
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• inclusion of analytic functions as a dense subspace of L2(XΓ,Mλ),
• infinite multiplicity of joint eigenvalues for D(XΓ),
• some relations with branching laws of unitary representations.

1.8. Organization of the paper. The paper can be divided into four parts.
Sections 2 and 3: This is a complement to the introduction. In Section 2

we give an overview of various types of examples that our main theorems
cover. In Section 3 we introduce some basic notation and give more precise
statements of the theorems by means of the Harish-Chandra isomorphism
for the ring of invariant differential operators; in particular, we describe an
explicit infinite set of eigenvalues, which in the standard case of Theorem 1.7
is both universal and stable under small deformations.

Sections 4 to 8 are then devoted to the proof of the main results, as stated
precisely in Section 3. We use a summation process as in (1.3).

Sections 4 to 6: In Section 6 we prove that for all K-finite L2-eigenfunct-
ions ϕ on X with sufficiently regular spectral parameter, the series (1.3)
converges and yields an L2-eigenfunction on XΓ. This is based on both
geometric and analytic estimates. The geometric estimates are established
in Section 4, where we quantify proper discontinuity through the new notion
of sharpness and count points of Γ-orbits in the non-Riemannian symmetric
space X when Γ is a sharp discrete subgroup of G. The analytic estimates
are given in Section 5, where we reinterpret some asymptotic estimates of
Oshima in terms of the regularity of the spectral parameter and of a “pseudo-
distance from the origin” in X.

Sections 7 and 8: In Section 8 we prove that, as soon as the spectral
parameter λ is regular enough and satisfies some integrality and positivity
condition, the series (1.3) is nonzero for some good choice of ϕ. The func-
tions ϕ that we consider are G-translates of some K-finite L2-eigenfunctions
ψλ on X introduced by Flensted-Jensen. The proof is prepared in Section 7,
where we give a finer analytic estimate for ψλ that controls its behavior, not
only at infinity, but also near the origin x0 := eH of X = G/H. To deduce
the nonvanishing of the series (1.3), it is then enough to control how the Γ-
orbit through x0 approaches x0: this is done in Section 8, after conjugating Γ
by some appropriate element of G; for uniformity for standard Γ, we use the
Kazhdan–Margulis theorem. We complete the proof of the main theorems
in Subsection 8.6.

Sections 9 and 10: We provide a detailed discussion of some examples,
designed to illustrate the general theory in a more concrete way.

Notation. In the whole paper, we use the notation R+ = (0,+∞) and
R≥0 = [0,+∞), as well as N+ = Z ∩ R+ and N = Z ∩R≥0.

Acknowledgements. We warmly thank Michael Atiyah, Alex Eskin, Livio
Flaminio, François Guéritaud, Colin Guillarmou, Toshihiko Matsuki, Amir
Mohammadi, Werner Müller, Peter Sarnak, Birgit Speh, Alexei Venkov,
Nolan Wallach, and Joseph Wolf for enlightening discussions on various as-
pects of the paper. We are grateful to the University of Tokyo for its support
through the GCOE program, and to the Institut des Hautes Études Sci-
entifiques (Bures-sur-Yvette), the Mathematical Sciences Research Institute
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ments of mathematics of the University of Chicago and Université Lille 1 for
giving us opportunities to work together in very good conditions.

2. Lists of examples to which the results apply

There is a variety of locally symmetric spaces XΓ = Γ\G/H to which
Theorems 1.5, 1.7, and 1.8 can be applied. The aim of this section is to
provide a brief overview, with an emphasis on compact XΓ in the first three
subsections. Some of the examples mentioned here will be analyzed in more
detail in Sections 9 and 10.

2.1. Symmetric spaces with standard compact Clifford–Klein forms.

We recall the following general construction from [Ko1]. Assume that there
exists a reductive subgroup L of G acting properly and cocompactly on X.
Then standard compact Clifford–Klein forms XΓ = Γ\X can be obtained
by taking Γ to be any torsion-free uniform lattice in L. Likewise, standard
Clifford–Klein forms XΓ that are noncompact but of finite volume can be
obtained by taking Γ to be any torsion-free nonuniform lattice in L. Uniform
lattices of L always exist and nonuniform lattices exist for semisimple L, by
work of Borel–Harish-Chandra, Mostow–Tamagawa, and Borel [Bo2]; they
all admit torsion-free subgroups of finite index by the Selberg lemma [Se2,
Lem. 8].

Here is a list, taken from [KY, Cor. 3.3.7], of some triples (G,H,L) where
G is a simple Lie group, X = G/H is a reductive symmetric space, and L is
a reductive subgroup of G acting properly and cocompactly on X, with the
additional assumption here that X admits a maximal compact subsymmetric
space of full rank. We denote by m and n any integers ≥ 1 with m even.

G H L
(i) SO(2, 2n) SO(1, 2n) U(1, n)
(ii) SO(2, 2m) U(1,m) SO(1, 2m)
(iii) SO(4, 4n) SO(3, 4n) Sp(1, n)
(iv) SU(2, 2n) U(1, 2n) Sp(1, n)
(v) SO(8, 8) SO(7, 8) Spin(1, 8)

Table 2.1

2.2. Group manifolds with interesting standard compact Clifford–

Klein forms. Any reductive group 8G may be regarded as a homogeneous
space under the action of 8G × 8G by left and right multiplication; in this
way, it identifies with the symmetric space X = (8G × 8G)/Diag(8G), where
Diag(8G) denotes the diagonal of 8G× 8G. The existence of a maximal com-
pact subsymmetric space of full rank in X is equivalent to the condition

(2.1) rank 8G = rank 8K,

where 8K is any maximal compact subgroup of 8G; for 8G simple, this condi-
tion is satisfied if and only if the Lie algebra of 8G belongs to the following
list, where n, p, and q are any integers ≥ 1:

so(p, 2q), su(p, q), sp(p, q), sp(n,R), so∗(2n),(2.2)

e6(2), e6(−14), e7(7), e7(−5), e7(−25), e8(−24), f4(4), f4(−20), g2(2).
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Standard Clifford–Klein forms XΓ of X = (8G×8G)/Diag(8G) can always be
obtained by taking Γ of the form 8Γ×{e} or {e} × 8Γ, where 8Γ is a discrete
subgroup of 8G. Then XΓ identifies with a usual quotient 8Γ\8G or 8G/8Γ
of 8G by a discrete subgroup on one side; in particular, XΓ has finite volume
(resp. is compact) if and only if 8Γ is a lattice (resp. a uniform lattice) in 8G.

It is worth noting that for certain specific groups 8G of real rank ≥ 2,
there is another (more general) type of standard compact Clifford–Klein
forms of X, namely double quotients 8Γ1\8G/8Γ2 where 8Γ1 and 8Γ2 are dis-
crete subgroups of 8G [Ko2]. This happens when there exist two reductive
subgroups 8G1 and 8G2 of 8G such that 8G1 acts properly and cocompactly on
8G/8G2. In this case, the group L := 8G1×8G2 acts properly and cocompactly
on X = (8G × 8G)/Diag(8G), and standard Clifford–Klein forms XΓ can be
obtained by taking Γ of the form Γ = 8Γ1 × 8Γ2 ⊂ L, where 8Γi is a discrete
subgroup of 8Gi. Such a Clifford–Klein form XΓ identifies with the double
quotient 8Γ1\8G/8Γ2; it has finite volume (resp. is compact) if and only if 8Γi

is a lattice (resp. a uniform lattice) in 8Gi for all i ∈ {1, 2}. We would like to
emphasize that this “exotic” XΓ is locally modeled on the group manifold 8G
and not on the homogeneous space 8G/8G2. The following table, obtained
from [KY, Cor. 3.3.7], gives some triples (8G, 8G1,

8G2) such that 8G satisfies
the rank condition (2.1) and 8G1 acts properly and cocompactly on 8G/8G2.
Here n is any integer ≥ 1; it does not need to be even in Example (ii), in
contrast with Example (ii) of Table 2.1. We note that neither (8G, 8G1) nor
(8G, 8G2) has to be a symmetric pair, and that 8G1 and 8G2 play symmetric
roles.

8G 8G1
8G2

(i) 8G with Lie algebra in (2.2) 8G {e}
(ii) SO(2, 2n) SO(1, 2n) U(1, n)
(iii) SO(4, 4n) SO(3, 4n) Sp(1, n)
(iv) SU(2, 2n) U(1, 2n) Sp(1, n)
(v) SO(8, 8) SO(7, 8) Spin(1, 8)
(vi) SO(4, 4) SO(4, 3) Spin(4, 1)
(vii) SO(4, 4) Spin(4, 3) SO(4, 1) × SO(3)
(viii) SO(4, 3) G2(2) SO(4, 1) × SO(2)
(ix) SO∗(8) U(3, 1) Spin(1, 6)
(x) SO∗(8) SO∗(6)×SO∗(2) Spin(1, 6)

Table 2.2

2.3. Symmetric spaces with nontrivial deformations of standard

compact Clifford–Klein forms. Theorem 1.7 applies to all the exam-
ples in Table 2.1. However, this theorem is relevant only for Clifford–Klein
forms XΓ such that Γ admits nontrivial small deformations inside G, i.e.
deformations that are not obtained by conjugation. Such deformations do
not always exist when XΓ is compact. We now point out a few examples
where they do exist.

Consider Example (i) of Table 2.1, where X = SO(2, 2n)/SO(1, 2n) is
the (2n + 1)-dimensional anti-de Sitter space AdS2n+1. The group L =
U(1, n) has a nontrivial center Z(L), isomorphic to U(1). For certain uniform
lattices Γ of L, small nontrivial deformations of Γ inside G = SO(2, 2n) can
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be obtained by considering homomorphisms of the form γ 7→ γψ(γ) with
ψ ∈ Hom(Γ, Z(L)) (see [Ko5]). By [Ra1] and [We2], any small deformation
of Γ inside G is actually of this form, up to conjugation. The Clifford–
Klein forms corresponding to these nontrivial deformations remain standard,
but the existence of a stable discrete spectrum given by Theorem 1.7 is
not obvious even in this case. We examine this example in more detail in
Subsection 10.1.

Consider Example (ii) of Table 2.1, where X = SO(2, 2m)/U(1,m) has the
additional structure of an indefinite Kähler manifold (see Subsection 10.3).
Here it is actually possible to deform certain standard compact Clifford–
Klein forms of X into nonstandard ones. Indeed, using a bending construc-
tion due to Johnson–Millson [JM], one can obtain small Zariski-dense de-
formations inside G = SO(2, 2m) of certain arithmetic uniform lattices Γ of
L = SO(1, 2m) (see [Ka2, § 6]): this yields a continuous family of compact
Clifford–Klein forms XΓ with Γ Zariski-dense in G. (Recall that a group is
said to be Zariski-dense in G if it is not contained in any proper algebraic
subgroup of G.) Here the C-algebra D(X) is a polynomial ring in [m+1

2 ]
generators; we discuss the discrete spectrum of XΓ in Subsection 10.3.

Finally, consider the “exotic” standard compact Clifford–Klein forms
8Γ1\8G/8Γ2 discussed in Subsection 2.2, for which some examples are given
in Table 2.2. Here is an analog of Theorem 1.7 in this setting (see Propo-
sition 2.2 below for noncompact Clifford–Klein forms): the novelty is the
stability of the discrete spectrum, whereas the fact that the quotient remains
a manifold under small deformations (i.e. stability for proper discontinuity,
in the sense of Subsection 1.5) is a direct consequence of [Ka2]. We refer to
Subsection 8.6 for a proof.

Proposition 2.1. Let 8G be a reductive linear Lie group and let 8G1 and 8G2

be two reductive subgroups of 8G such that 8G1 acts properly on 8G/8G2. Any
standard Clifford–Klein form

8Γ1\8G/ 8Γ2 ≃ (8Γ1×8Γ2)\(8G×8G)/Diag(8G),

where 8Γi is an irreducible uniform lattice of 8Gi for all i ∈ {1, 2}, remains a
manifold after any small deformation of 8Γ1× 8Γ2 inside 8G × 8G, and it has
an infinite stable discrete spectrum if (2.1) is satisfied.

In Examples (ii), (vii), and (viii) of Table 2.2, certain standard compact
Clifford–Klein forms 8Γ1\8G/8Γ2 admit small nonstandard deformations ob-
tained by bending, similarly to Example (ii) of Table 2.1 above. In Exam-
ple (i) of Table 2.2, there exist standard compact Clifford–Klein forms 8Γ1\8G
with nonstandard small deformations if and only if 8G has a simple factor
that is locally isomorphic to SO(1, 2n) or SU(1, n) [Ko5, Th.A].

2.4. Clifford–Klein forms of infinite volume. Most examples of Clifford–
Klein forms that we have given in Subsections 2.1 to 2.3 were compact. How-
ever, Theorems 1.5, 1.7, and 1.8 do not require any compactness assumption.
In particular, in Theorems 1.5 and 1.7 on the existence of an infinite (univer-
sal or stable) spectrum for standard Clifford–Klein forms, we remark that

• the reductive group L does not need to act cocompactly on X (it
could be quite “small”, for instance locally isomorphic to SL2(R)),
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• the discrete group Γ does not need to be cocompact (nor of finite
covolume) in L.

Also, in Theorem 1.8, the sharp Clifford–Klein form XΓ does not need to be
compact (nor of finite volume). Therefore, our theorems apply to much wider
settings than those of Tables 2.1 and 2.2; we now discuss some examples.

Firstly, as soon as rankRH < rankRG, there exist infinite cyclic discrete
subgroups Γ of G that are sharp for X = G/H [Ko1]; Theorem 1.8 applies to
the corresponding Clifford–Klein forms XΓ. Even in this case, the existence
of an infinite discrete spectrum for XΓ is new.

Secondly, for many X there exist discrete subgroups Γ of G that are
nonvirtually abelian (i.e. with no abelian subgroup of finite index) and sharp
for X; we can again apply Theorem 1.8. This is for instance the case for
X = SO(p+ 1, q)/SO(p, q) whenever 0 < p < q − 1 or p = q − 1 is odd [Bn].
Recently, Okuda [Ok] gave a complete list of reductive symmetric spacesX =
G/H with G simple that admit Clifford–Klein forms XΓ with Γ nonvirtually
abelian. For such symmetric spaces, there always exist interesting sharp
examples:

(1) on the one hand, sharp Clifford–Klein forms XΓ such that Γ is a free
group, Zariski-dense in G [Bn, Th. 1.1];

(2) on the other hand, standard Clifford–Klein forms XΓ with Γ ⊂ L for
some subgroup L of G isomorphic to SL2(R) or PSL2(R) [Ok].

In case (1), the group Γ is in some sense “as large as possible”, in contrast
with case (2), where it is contained in a proper algebraic subgroup L of G.
In case (2), we can take Γ to be a surface group embedded in L, therefore
admitting nontrivial deformations inside L. Theorem 1.8 applies to case (1)
and Theorems 1.5 and 1.7 to case (2).

Thirdly, for group manifoldsX = (8G×8G)/Diag(8G) there are many exam-
ples of standard Clifford–Klein forms of infinite volume that admit nontrivial
deformations. As in Subsection 2.2, we can take a pair of reductive subgroups
8G1,

8G2 of 8G such that 8G1 acts properly on 8G/8G2, but now we do not re-
quire anymore that this action be cocompact. We consider XΓ = 8Γ1\8G/8Γ2

where 8Γi is a discrete subgroup of 8Gi (not necessarily cocompact) and we
deform 8Γ inside 8G × 8G. Here is an analog of Theorem 1.7 that applies in
this setting; we refer to Subsection 8.6 for a proof.

Proposition 2.2. Let 8G be a reductive linear Lie group satisfying (2.1) and
let 8G1 and 8G2 be two reductive subgroups of 8G such that 8G1 acts properly
on 8G/8G2. Consider a standard Clifford–Klein form

8Γ1\8G/8Γ2 ≃ (8Γ1×8Γ2)\(8G×8G)/Diag(8G),

where 8Γi is a discrete subgroup of 8Gi for all i.

(1) If 8G1 has real rank 1 and 8Γ1 is convex cocompact in 8G1, then
there exists an infinite subset I of Specd(

8Γ1\8G/8Γ2) and a neigh-
borhood 8U ⊂ Hom(8Γ1,

8G × Z8G(
8Γ2)) of the natural inclusion such

that 8ϕ(8Γ1)\8G/8Γ2 is a manifold and I ⊂ Specd(
8ϕ(8Γ1)\8G/8Γ2) for

all 8ϕ ∈ 8U .
(2) If 8Gi has real rank 1 and 8Γi is convex cocompact in 8Gi for all

i ∈ {1, 2}, then the standard Clifford–Klein form 8Γ1\8G/8Γ2 remains
a manifold after any small deformation of 8Γ1 × 8Γ2 inside 8G × 8G
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and it has an infinite stable discrete spectrum in the sense of Defini-
tion 1.6.

3. Quantitative versions of the main results

In this section, we give some quantitative estimates of Theorems 1.5, 1.7,
and 1.8 (Subsection 3.4) and discuss the regularity of our eigenfunctions
(Subsection 3.5). We first fix some notation that will be used throughout
the paper and recall some useful classical facts (Subsections 3.1 to 3.3).

3.1. Reminder: invariant differential operators on X. In the whole
paper, G denotes a real reductive linear Lie group and H an open subgroup
of the group of fixed points of G under some involutive automorphism σ. We
denote their respective Lie algebras by g and h. Without loss of generality, we
may and will assume that G is connected; indeed, we only need to consider
the discrete spectrum of one connected component of X.

In this paragraph, we recall some classical results on the structure of the
algebra D(X) of G-invariant differential operators on X. We refer the reader
to [He1, Ch. II] for proofs and more details.

Let U(gC) be the enveloping algebra of the complexified Lie algebra gC :=
g⊗RC and U(gC)

H the subalgebra of AdG(H)-invariant elements (it contains
in particular the center Z(gC) of U(gC)). Recall that U(gC) acts on C∞(G)
by differentiation on the right, with

(
(Y1 · · · Ym) · f

)
(g) =

d

dt1

∣∣∣
t1=0

· · · d

dtm

∣∣∣
tm=0

f
(
g exp(t1Y1) · · · exp(tmYm)

)

for all Y1, . . . , Ym ∈ g, all f ∈ C∞(G), and all g ∈ G. This gives an iso-
morphism between U(gC) and the ring of left-invariant differential operators
on G. By identifying the set of smooth functions on X with the set of right-
H-invariant smooth functions on G, we obtain a C-algebra homomorphism

p : U(gC)
H −→ D(X).

This homomorphism is surjective, with kernel U(gC)hC∩U(gC)
H [He1, Ch. II,

Th. 4.6], hence it induces an algebra isomorphism

(3.1) U(gC)
H/U(gC)hC ∩ U(gC)

H ∼−→ D(X).

Let g = h + q be the decomposition of g into eigenspaces of dσ, with
respective eigenvalues +1 and −1. In the whole paper, we fix a maximal
semisimple abelian subspace j of

√
−1 q. The integer

(3.2) rankG/H := dimR j

does not depend on the choice of j. Geometrically, if x0 denotes the image
of H in X = G/H, then exp(

√
−1 j) · x0 is a maximal flat totally geodesic

submanifold of X, where “flat” means that the induced pseudo-Riemannian
metric is nondegenerate and that the curvature tensor vanishes (see [KN69,
Ch.XI, § 4]). Let W be the Weyl group of the restricted root system Σ(gC, jC)
of jC in gC, and let S(jC)W be the subalgebra of W -invariant elements in the
symmetric algebra S(jC) of jC. The important fact that we will use is the
following.
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Fact 3.1. The algebra D(X) of G-invariant differential operators on X is a
polynomial algebra in r := rankG/H generators. It naturally identifies with
S(jC)

W , and the set of C-algebra homomorphisms from D(X) to C identifies
with j∗C/W , where j∗C is the dual vector space of jC.

Let us explicit these identifications. Let Σ+(gC, jC) be a system of positive
roots in Σ(gC, jC) and let

nC =
⊕

α∈Σ+(gC ,jC)

(gC)α

be the sum of the corresponding root spaces, where

(gC)α := {Y ∈ gC, [T, Y ] = α(T )Y ∀T ∈ j}.
The complexified Iwasawa decomposition gC = hC + jC + nC holds, implying
that U(gC) is the direct sum of U(jC) ≃ S(jC) and hCU(gC) +U(gC)nC. Let
p′ : U(gC) → S(jC) be the projection onto S(jC) with respect to this direct
sum and let p′′ : U(gC)→ S(jC) be the “shifted projection” given by

〈p′′(u), λ〉 = 〈p′(u), λ− ρ〉
for all λ ∈ j∗C, where

ρ :=
1

2

∑

α∈Σ+(gC,jC)

dimC(gC)α α ∈ j∗C

is half the sum of the elements of Σ+(gC, jC), counted with root multiplicities.
The restriction of p′′ to U(gC)

H is independent of the choice of Σ+(gC, jC)
and induces an isomorphism

U(gC)
hC/U(gC)hC ∩ U(gC)

hC ∼−→ S(jC)
W

[He1, Ch. II, Th. 5.17]. If H is connected, then U(gC)
hC = U(gC)

H and, using
(3.1) above, we obtain the following commutative diagram.

D(X) U(gC)
Hpoo

��

p′′ // S(jC)
W

U(gC)
H/U(gC)hC ∩ U(gC)

H

∼
ffNNNNNNNNNNNN

∼
77ooooooooooo

Thus we have a C-algebra isomorphism Ψ : D(X)
∼→ S(jC)

W (Harish-Chandra
isomorphism). In the general case when H is not necessarily connected, we
still have an isomorphism Ψ : D(X)

∼→ S(jC)
W by the following remark.

Remark 3.2. The C-algebra D(X) is isomorphic to D(G/H0), where H0

denotes the identity component of H.

Proof. There is a natural injective algebra homomorphism D(X) →֒ D(G/H0)
induced by the natural projection G/H0 → X. To see that this homomor-
phism is surjective, it is sufficient to see that H acts trivially on D(G/H0).
This follows from the fact that the quotient field of D(G/H0) is isomorphic
to that of p(Z(gC)) [He1, Ch. III, Th. 3.16] (where p : U(gC)

H0 → D(G/H0)
is given by the diagram above for H0) and from the fact that H acts trivially
on Z(gC) and p is H-equivariant. �
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By the Harish-Chandra isomorphism Ψ : D(X)
∼→ S(jC)

W , the C-algebra
D(X) is a commutative algebra generated by r := dimR j = rankG/H ho-
mogeneous, algebraically independent differential operators D1, . . . ,Dr. If
we identify S(jC) with the ring of polynomial functions on j∗C, then any ho-
momorphism from D(X) to C is of the form

χλ : D 7−→ 〈Ψ(D), λ〉
for some λ ∈ j∗C, and χλ = χλ′ if and only if λ′ ∈ W · λ. By construction,
any D ∈ D(X) acts on the constant functions on X by multiplication by the
scalar χρ(D). From now on, we identify the set of C-algebra homomorphisms
from D(X) to C with j∗C/W ; in particular, we see Specd(X) (or Specd(XΓ)
for any Clifford–Klein form XΓ) as a subset of j∗C/W :

Specd(XΓ) =
{
λ ∈ j∗C/W : L2(XΓ,Mλ) 6= {0}

}
,

where L2(XΓ,Mλ) is the space of weak solutions f ∈ L2(XΓ) to the system

DΓf = χλ(D)f for all D ∈ D(X) (Mλ).

Remark 3.3. When r = rankG/H > 1, the space L2(XΓ,Mλ) is in general
strictly contained in the space of L2-eigenfunctions of the Laplacian �XΓ

(details will be given in [KK2]).

3.2. The Laplacian. In the whole paper, we fix a Cartan involution θ of G
commuting with σ and let K = Gθ be the corresponding maximal compact
subgroup of G, with Lie algebra k. Let g = k + p be the corresponding
Cartan decomposition, i.e. the decomposition of g into eigenspaces of dθ
with respective eigenvalues +1 and −1. We fix a G-invariant nondegenerate
symmetric bilinear form B on g with the following properties: B is positive
definite on p, negative definite on k, and p and k are orthogonal for B. If G
is semisimple, we can take B to be the Killing form κ of g.

On the one hand, since the involution σ commutes with the Cartan invo-
lution θ, the form B is nondegenerate on h× h, and induces an H-invariant
nondegenerate symmetric bilinear form on g/h. By identifying the tangent
space Tx0(G/H) at x0 = eH ∈ G/H with g/h and using left translations, we
obtain a G-invariant pseudo-Riemannian structure on X = G/H. We then
define the Laplacian �X as in (1.1) with respect to this pseudo-Riemannian
structure.

On the other hand, the form B defines an isomorphism g∗ ≃ g, yielding a
canonical element in (g⊗g)G corresponding to the identity under the isomor-
phism (g∗⊗g)G ≃ HomG(g, g). This element projects to the Casimir element
of U(gC), which lies in the center Z(gC). It gives a differential operator of
order two on X, the Casimir operator, whose actions by differentiation on
the left and on the right coincide. Since X is a symmetric space, the Casimir
operator on X coincides with �X . (We refer to [He1, Ch. II, Exer.A.4] for
the case when H is a maximal compact subgroup of G; a proof for the general
case goes similarly.)

We now explicit the eigenvalues of �X . For this we note that B is nonde-
generate on any θ-stable subspace of g. In particular, if j is θ-stable (which
will always be the case below), then B induces a nondegenerate W -invariant
bilinear form (·, ·) on j∗, which we extend to a complex bilinear form (·, ·)
on j∗C.
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Fact 3.4. If f ∈ C∞(X) satisfies (Mλ) for some λ ∈ j∗C, then

�Xf =
(
(λ, λ)− (ρ, ρ)

)
f.

Indeed, this follows from the above description of the Harish-Chandra iso-
morphism; one can also use [He1, Ch. II, Cor. 5.20] and the fact that D(X) ≃
D(Xd), where Xd is a Riemannian symmetric space of the noncompact type
with the same complexification as X (see Subsection 5.2).

3.3. Some further basic notation. We now fix some additional notation
that will be used throughout the paper.

We first recall that the connected reductive group G is the almost product
of its connected center Z(G)0 and of its commutator subgroup Gs, which
is semisimple. The group Gs itself is the almost product of finitely many
(nontrivial) connected simple normal subgroups, called the simple factors
of G. The connected center Z(G)0 is isomorphic to Ra × (S1)b for some
integers a, b ∈ N. Recall that G admits a unique maximal compact normal
subgroup Gc, which is generated by the compact simple factors of G, by the
center Z(Gs) of Gs, and by the compact part of Z(G)0. The group G is said
to have no compact factor if Gc = Z(Gs).

Flensted-Jensen [Fl] and Matsuki–Oshima [MO] proved that Specd(X) is
nonempty if and only if

(3.3) rankG/H = rankK/H ∩K,
where the rank is defined as in (3.2). This is equivalent to the fact that X ad-
mits a maximal compact subsymmetric space of full rank, namely K/H ∩K.
Under the rank condition (3.3), we may and do assume that the maximal
abelian subspace j of Subsection 3.1 is contained in

√
−1(k ∩ q). Then j is

θ-stable, all restricted roots α ∈ Σ(gC, jC) take real values on j, and the
W -invariant bilinear form (·, ·) on j∗ from Subsection 3.2 is positive definite.

We fix once and for all a positive system Σ+(kC, jC) of restricted roots of jC
in kC, which we will keep until the end of the paper; we denote by ρc half the
sum of the elements of Σ+(kC, jC), counted with root multiplicities. We now
introduce some notation Λ+, Λ, and ΛJ that will be used throughout the
paper. We start by extending j to a maximal abelian subspace j̃ of

√
−1 k. Let

∆+(kC, j̃C) be a positive system of roots of j̃C in kC such that the restriction
map α 7→ α|jC sends ∆+(kC, j̃C) to Σ+(kC, jC) ∪ {0}. We identify the set of
irreducible finite-dimensional representations of kC with the set of dominant
integral weights with respect to the positive system ∆+(kC, j̃C). As a subset,
we denote by

(3.4) Λ+ ≡ Λ+(K/H ∩K)

the set of irreducible representations ofK with nonzero (H∩K)-fixed vectors;
it is the support of the regular representation of K on L2(K/H ∩ K) by
Frobenius reciprocity.

Remark 3.5. By definition, Λ+ is a set of dominant integral elements in
the dual of j̃ = j + (̃j ∩ hC). However, we can regard it as a subset of j∗ by
the Cartan–Helgason theorem [Wa, Th. 3.3.1.1].
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We set

(3.5) Λ := Z-span(Λ+) ⊂ j∗.

For any finite subgroup J of the center Z(K) of K, let K̂/J be the set
of (highest weights of) irreducible representations of K that factor through
K/J and let

(3.6) ΛJ := Z-span
(
Λ+ ∩ K̂/J

)
.

We note that the Z-module ΛJ has finite index in Λ. Indeed, if J has car-
dinal m, then ΛJ contains mΛ = {mλ : λ ∈ Λ} since (mλ)(z) = λ(zm) = 1

for all λ ∈ Λ+ and z ∈ J . If J ⊂ J ′, then ΛJ ⊃ ΛJ ′
; in particular, for any

discrete subgroup Γ of G we have

(3.7) Λ ⊃ ΛΓ∩Z(Gs) ⊃ ΛZ(Gs),

where, as before, Z(Gs) is the center of the commutator subgroup Gs of G.

Remark 3.6. If J ⊂ H, then Λ = ΛJ . In particular, if Z(Gs) ⊂ H, then
ΛΓ∩Z(Gs) = Λ for any subgroup Γ of G.

Indeed, if J ⊂ H, then J acts trivially on K/H ∩ K, hence the regular
representation of K on L2(K/H ∩K) factors through K/J .

Any choice of a positive system Σ+(gC, jC) of restricted roots of jC in gC
containing Σ+(kC, jC) will determine:

(1) a basis {α1, . . . , αr} of Σ(gC, jC),
(2) a positive Weyl chamber

j∗+ :=
{
λ ∈ HomR(j,R) : (λ, α) > 0 for all α ∈ Σ+(gC, jC)

}
,

with closure j∗+ in j∗,
(3) an element ρ ∈ j∗+, defined as half the sum of the elements of Σ+(gC, jC),

counted with root multiplicities,
(4) a function d : j∗+ → R+ measuring the “weighted distance” from λ to

the walls of j∗+, given by

d(λ) := min
1≤i≤r

(λ, αi)

(αi, αi)
≥ 0.

The function d does not depend on the choice of the W -invariant inner
product (·, ·) that we made in Subsection 3.2; we extend it as a W -invariant
function on j∗. We note that any element of j∗ enters the positive Weyl
chamber j∗+ if we add tρ for some sufficiently large t > 0; conversely, d(λ)
measures to which extent λ− tρ remains in j∗+ for λ ∈ j∗+:

Observation 3.7. For all λ ∈ j∗+,

λ− d(λ)

mρ
ρ ∈ j∗+,

where we set

(3.8) mρ := max
1≤i≤r

(ρ, αi)

(αi, αi)
.
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Proof. For any simple root αi (1 ≤ i ≤ r),
(
λ− d(λ)

mρ
ρ, αi

)

(αi, αi)
≥ d(λ)− d(λ)

mρ
mρ = 0. �

We note that if jC is a Cartan subalgebra of gC, then d(ρ) = mρ = 1/2.

3.4. Precise statements of the main theorems. With the above no-
tation, here is a more precise statement of Theorems 1.5 and 1.8 on the
existence of an infinite discrete spectrum, which is “universal” for standard
Clifford–Klein forms. We choose a positive system Σ+(gC, jC) containing the
fixed positive system Σ+(kC, jC) of Subsection 3.3; this determines a positive
Weyl chamber j∗+ and an element ρ ∈ j∗+.

Theorem 3.8. Suppose that G is connected, that H does not contain any
simple factor of G, and that the rank condition (3.3) holds.

(1) For any sharp Clifford–Klein form XΓ with Γ∩Gc ⊂ Z(Gs), there is
a constant R ≥ 0 such that{
λ ∈ j∗+ ∩

(
2ρc − ρ+ ΛΓ∩Z(Gs)

)
: d(λ) > R

}
⊂ Specd(XΓ).

(2) The constant R can be taken uniformly for standard Clifford–Klein
forms: given any reductive subgroup L of G, with a compact center
and acting properly on X, there is a constant R > 0 such that{
λ ∈ j∗+ ∩

(
2ρc − ρ+ ΛΓ∩Z(Gs)

)
: d(λ) > R

}
⊂ Specd(XΓ)

for all discrete subgroups Γ of L with Γ ∩ Lc ⊂ Z(Gs) (this includes
all torsion-free discrete subgroups Γ of L); in particular, by (3.7),
{
λ ∈ j∗+ ∩

(
2ρc − ρ+ ΛZ(Gs)

)
: d(λ) > R

}
⊂ Specd(XΓ)

for all such Γ.

As in Subsection 3.3, we denote by Gc (resp. by Lc) the maximal compact
normal subgroup of G (resp. of L), and by Z(Gs) the center of the semisimple
part of G. The Z-modules ΛΓ∩Z(Gs) and ΛZ(Gs) have been defined in (3.6)
and the term “sharp” in Subsection 1.6.

We note that the technical assumptions of Theorem 3.8 are not very re-
strictive:

Remarks 3.9. (a) The assumption Γ ∩ Gc ⊂ Z(Gs) is automatically
satisfied if G has no compact factor (i.e. if Gc = Z(Gs)) or if Γ is
torsion-free. This assumption will be removed in Subsection 8.6 in
order to prove the theorems and propositions of Sections 1 and 2.

(b) The assumption Γ ∩ Lc ⊂ Z(Gs) is automatically satisfied if Γ is
torsion-free, or if L has no compact factor and Z(L) ⊂ Z(Gs). We
note that for Γ ⊂ L, the condition Γ ∩ Lc ⊂ Z(Gs) is stronger than
Γ ∩Gc ⊂ Z(Gs).

Constants R as in Theorem 3.8.(1) and (2) can be expressed in terms of
the geometry of X, of the sharpness constants (c, C) of Γ, and of a “pseudo-
distance” from the origin x0 = eH of X = G/H to the other points of its
Γ-orbit in X: see (8.9), (8.10), and (8.11).
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We note that our choice of a positive system Σ+(gC, jC) containing Σ+(kC, jC)

could affect the lattice condition λ ∈ 2ρc− ρ+ΛΓ∩Z(Gs), since ρ depends on
this choice. All elements λ satisfying one of these lattice conditions appear
in the discrete spectrum. We refer to (5.6) for a geometric meaning of the
choice of Σ+(gC, jC).

Remark 3.10. In Theorem 3.8.(1), we can take R = 0 if Γ = {e}. This is
the “C = 0” conjecture of [Fl] on the precise condition of the parameter λ for
the square integrability of certain joint eigenfunctions on X; this conjecture
was proved affirmatively in [MO], and the main ingredient is Fact 5.7 that
we also use below.

The following theorem gives a description of an infinite stable discrete
spectrum as in Theorem 1.7: it states that the constant R of Theorem 3.8.(2)
is stable under small deformations.

Theorem 3.11. Assume that G is connected, that H does not contain any
simple factor of G, and that the rank condition (3.3) holds. For any reductive
subgroup L of G of real rank 1 and any convex cocompact subgroup Γ of L
(in particular, any uniform lattice Γ of L) with Γ∩Gc ⊂ Z(Gs), there are a
constant R > 0 and a neighborhood U ⊂ Hom(Γ, G) of the natural inclusion
such that Xϕ(Γ) = ϕ(Γ)\X is a Clifford–Klein form of X for all ϕ ∈ U and

{λ ∈ j∗+ ∩
(
2ρc − ρ+ ΛΓ∩Z(Gs)

)
: d(λ) > R

}
⊂ Specd(Xϕ(Γ)).

In particular, for all ϕ ∈ U ,

{λ ∈ j∗+ ∩
(
2ρc − ρ+ ΛZ(Gs)

)
: d(λ) > R

}
⊂ Specd(Xϕ(Γ)).

If Γ ∩ Lc ⊂ Z(Gs) (for instance if Γ is torsion-free or if L is simple with
Z(L) ⊂ Z(Gs)), then we may take the same R (independent of Γ) as in
Theorem 3.8.(2), up to replacing U by some smaller neighborhood.

Theorems 3.8 and 3.11 will be proved in Section 8.

Remark 3.12. Our proofs depend on the rank condition (3.3). It is plau-
sible that for a general locally symmetric space, no nonzero eigenvalue is
stable under nontrivial small deformations unless (3.3) is satisfied. This is
corroborated by Fact 1.2 (in the Riemannian case, (3.3) is not satisfied). It
is also plausible that there should be no “universal spectrum” as in Theorems
1.5 and 3.8 unless (3.3) is satisfied.

3.5. Regularity of eigenfunctions obtained by summation. As men-
tioned in the introduction, the way we prove Theorems 3.8 and 3.11 is by
using a natural summation process. Consider the action of G on L2(X,Mλ)
by left translation

(3.9) g · ϕ := ϕ(g−1 · )
and let L2(X,Mλ)K be the subspace of K-finite functions in L2(X,Mλ).
We prove that for any λ ∈ j∗+ with d(λ) large enough, the operator

SΓ : L2(X,Mλ)K −→ L2(XΓ,Mλ)

mapping ϕ to

ϕΓ :=
(
Γx 7−→

∑

γ∈Γ
(γ · ϕ)(x)

)
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is well defined (Proposition 6.1). We actually prove that SΓ is well-defined
on g ·L2(X,Mλ)K for any g ∈ G and λ ∈ j∗+ with d(λ) large enough, and
that there exists g ∈ G such that for any λ ∈ j∗+ ∩ (2ρc − ρ+ΛΓ∩Z(Gs)) with
d(λ) large enough, SΓ is nonzero on g ·L2(X,Mλ)K (Proposition 8.1 and
Remark 8.2). Here is a regularity result that we obtain for the image of SΓ.

Theorem 3.13. Assume that G is connected and that the rank condition
(3.3) holds. Let XΓ be a sharp Clifford–Klein form with Γ ∩ Gc ⊂ Z(Gs)
and let R > 0 be the corresponding constant given by Theorem 3.8. For any
λ ∈ j∗+ with d(λ) > R and any g ∈ G, the image of g ·L2(X,Mλ)K under
the summation operator SΓ is contained in Lp(XΓ) for all 1 ≤ p ≤ ∞, and
in Cm(XΓ) whenever d(λ) > (m+ 1)R.

In particular, if we take m to be the maximum degree of the generators
D1, . . . ,Dr of the C-algebra D(X), then for f ∈ SΓ(g·L2(X,Mλ)K) we have

(Dj)Γ f = χλ(Dj)f

for all 1 ≤ j ≤ r in the sense of functions, not only in the sense of distribu-
tions. For certain standard Clifford–Klein forms XΓ, it is actually possible
to prove that the image of L2(X,Mλ)K under the summation operator SΓ
consists of analytic functions (see [KK2]).

4. Sharpness and counting in non-Riemannian symmetric spaces

In this section we examine in detail the new notion of sharpness, which
we have briefly defined in the introduction. We then establish some count-
ing results for the orbits of sharp discrete groups Γ in the non-Riemannian
symmetric space X = G/H (Lemma 4.6 and Corollary 4.7). We note that
these groups Γ can never be lattices of G: they have to be much “smaller”.

Counting is developed here in the perspective of spectral theory: our
results will be useful, together with the analytic estimates of Section 5, to
prove the convergence of series (1.3) of eigenfunctions. However, the counting
results we obtain might also have some interest of their own.

We first introduce some notation and briefly recall the notions of Cartan
and polar projections for noncompact, reductive G.

4.1. Preliminaries: Cartan and polar projections. We keep the nota-
tion of Section 3. In particular, θ is the Cartan involution and g = k + p

the Cartan decomposition introduced in Subsection 3.2. Let a be a maximal
abelian subspace of p and let A = exp a be the corresponding connected
subgroup of G. We consider the logarithm log : A

∼→ a, which is the inverse
of exp : a

∼→ A. We choose a system Σ+(g, a) of positive restricted roots
and let a+ and A+ = exp a+ denote the corresponding closed positive Weyl
chambers in a and A, respectively. The Cartan decomposition G = KA+K
holds [He2]: any g ∈ G may be written as g = kgagk

′
g for some kg, k′g ∈ K

and a unique ag ∈ A+. Setting µ(g) = log ag defines a map

µ : G −→ a+ := logA+,

called the Cartan projection associated with the Cartan decomposition G =
KA+K. This map is continuous, proper, surjective, and bi-K-invariant; we
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will still denote by µ the induced map on the Riemannian symmetric space
G/K of G.

Example 4.1. For G = SLn(R) and θ = (g 7→ tg−1), we have K = SO(n).
We can take A to be the group of diagonal matrices in SLn(R) with positive
entries and its subset A+ to consist of matrices with entries in nonincreasing
order; then the Cartan decomposition G = KA+K follows from the polar
decomposition in SLn(R) and from the reduction of symmetric matrices. We
have µ(g) = (12 log ti)1≤i≤n where ti is the i-th eigenvalue of tgg.

The G-invariant symmetric bilinear form B of Subsection 3.2 restricts to a
K-invariant inner product on p, which defines a Euclidean norm ‖ · ‖ on a

and a G-invariant Riemannian metric dG/K on G/K. The norm of the
Cartan projection µ admits the following geometric interpretation in terms
of distances in the Riemannian symmetric space G/K:

(4.1) ‖µ(g)‖ = dG/K(y0, g · y0)
for all g ∈ G, where y0 denotes the image of K in G/K. Using the triangular
inequality and the fact that G acts by isometries on G/K, we obtain that

(4.2) ‖µ(gg′)‖ ≤ ‖µ(g)‖ + ‖µ(g′)‖
for all g, g′ ∈ G. In fact, the following stronger inequalities hold, which can
be proved in a geometric way (see [Ka1, Lem. 2.3]):

‖µ(gg′)− µ(g)‖ ≤ ‖µ(g′)‖,(4.3)

‖µ(gg′)− µ(g′)‖ ≤ ‖µ(g)‖.(4.4)

On the other hand, recall that the group H is an open subgroup of the
set of fixed points of G under the involution σ. Let g = h + q be the
decomposition of g into eigenspaces of dσ as in Subsection 3.1. Since θ
commutes with σ, the following decomposition holds:

g = (k ∩ h) + (k ∩ q) + (p ∩ h) + (p ∩ q).

Let b be a maximal abelian subspace of p∩q and let B := exp(b). We choose
a system Σ+(gσθ, b) of positive restricted roots of b in the subspace gσθ

of fixed points of g under d(σθ), and let b+ be the corresponding closed
positive Weyl chamber and B+ := exp b+. Then the polar decomposition (or
generalized Cartan decomposition) G = KB+H holds [Sc1, Prop. 7.1.3]: any
g ∈ G may be written as g = kgbghg for some kg ∈ K, hg ∈ H, and a unique
bg ∈ B+. We refer to Sections 9 and 10 for examples. Since all maximal
abelian subspaces of p are conjugate under the adjoint action of K, we may
(and will) assume that a contains b. As above, we define a projection

(4.5) ν : G −→ b+ ⊂ a

corresponding to the polar decomposition G = KB+H. It is continuous,
surjective, and right-H-invariant; we will still denote by ν the induced map
on X. Geometrically, ‖ν(g)‖ can be interpreted as some kind of “pseudo-
distance” from the origin x0 = eH of X = G/H to the point g ·x0 ∈ X: in
order to go from x0 to g ·x0 in X, one can first travel along the flat sector
B+ ·x0, then along some (compact) K-orbit; ‖ν(g)‖ measures how far one
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must go in B+ ·x0. The set of points x ∈ X such that ν(x) = 0 is the
maximal compact subsymmetric space Xc := K ·x0 ≃ K/H ∩K.

We note that for any b ∈ B there is some w ∈W (G,A) such that µ(b) =
w · ν(b), hence

(4.6) ‖µ(b)‖ = ‖ν(b)‖.

4.2. Sharpness. We now turn to the new notion of sharpness, which quan-
tifies proper discontinuity. We first recall that not all discrete subgroups Γ
of G can act properly discontinuously on X = G/H since H is noncompact.
A criterion for proper discontinuity was established by Benoist [Bn, Cor. 5.2]
and Kobayashi [Ko4, Th. 1.1], in terms of the Cartan projection µ. This
criterion states that a closed subgroup Γ of G acts properly on X = G/H if
and only if the set µ(Γ) ∩ (µ(H) + C) is bounded for any compact subset C
of a; equivalently, if and only if µ(Γ) “goes away from µ(H) at infinity”.

In this paper, we introduce the following stronger condition.

Definition 4.2. A subgroup Γ of G is said to be sharp for X if there are
constants c ∈ (0, 1] and C ≥ 0 such that

(4.7) da(µ(γ), µ(H)) ≥ c ‖µ(γ)‖ − C
for all γ ∈ Γ, where da is the metric on a induced by the Euclidean norm ‖·‖.
If (4.7) is satisfied, we say that Γ is (c, C)-sharp.
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Figure 1. The Cartan projection of a (c, C)-sharp group Γ

We note that this definition makes sense in the more general context of a
homogeneous space X = G/H where G is a reductive group and H a closed
subgroup of G.

If Γ is sharp for X, then µ(Γ) “goes away from µ(H) at infinity” with a
speed that is at least linear. Indeed, consider the open cone

C(c) :=
{
Y ∈ a+ : da(Y, µ(H)) < c ‖Y ‖

}
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of angle arcsin(c) around µ(H). If Γ is (c, C)-sharp, then the set µ(Γ) is
contained in the C-neighborhood of a+ r C(c); in other words, it does not
meet the shaded region in Figure 1.

In particular, if Γ is sharp for X and closed in G, then the action of Γ on X
is proper by the properness criterion. The bigger c is, the “more proper” the
action is; the critical case is therefore when c gets close to 0. For Γ discrete
and sharp, we will equivalently say that the Clifford–Klein form XΓ = Γ\X
is sharp.

The following two properties will be useful.

Proposition 4.3. (1) If a subgroup Γ of G is (c, C)-sharp for X, then
any conjugate of Γ is (c, C ′)-sharp for some C ′ ≥ 0.

(2) Any reductive subgroup L of G acting properly on X admits a conju-
gate that is (c, 0)-sharp for some c > 0.

Proposition 4.3.(1) is an immediate consequence of the following inequal-
ity, which will be used several times in the paper.

Lemma 4.4. For any g, g′, g′′ ∈ G,

da
(
µ(g′gg′′), µ(H)

)
≥ da(µ(g), µ(H)) − ‖µ(g′)‖ − ‖µ(g′′)‖.

Proof. For all h ∈ H, by (4.3) and (4.4) we have

da(µ(g), µ(H)) ≤ ‖µ(g) − µ(h)‖
≤ ‖µ(g) − µ(g′gg′′)‖+ ‖µ(g′gg′′)− µ(h)‖
≤ ‖µ(g′)‖+ ‖µ(g′′)‖ + ‖µ(g′gg′′)− µ(h)‖. �

We will explain why Proposition 4.3.(2) is true in Subsection 4.4. We
refer to Subsection 4.4 for a list of examples of sharp Clifford–Klein forms
and to Subsection 4.7 for a discussion of how sharpness behaves under small
deformations.

We note that da(µ(γ), µ(H)) ≤ ‖µ(γ)‖ always holds, since da(µ(γ), µ(H))
is the norm of the projection of µ(γ) to the orthogonal of µ(H) in a; this is
why we restrict to c ≤ 1 in Definition 4.2.

4.3. Counting in the reductive symmetric space X. In order to prove
the convergence of series of eigenfunctions as in (1.3), we will need to under-
stand the growth rate of Γ with respect to the norm of ν. Given the above
geometric interpretation of ‖ν‖ as a “pseudo-distance from the origin” in the
reductive symmetric space X, this means estimating the number of points
of any given Γ-orbit in the “pseudo-ball”

(4.8) BX(R) := {x ∈ X : ‖ν(x)‖ < R}
as R tends to infinity. We note that the closure of BX(R) is compact for all
R > 0, which implies the following (by definition of proper discontinuity).

Remark 4.5. Let Γ be a discrete subgroup of G acting properly discontin-
uously on X. For any x ∈ X, the set of elements γ ∈ Γ with γ · x ∈ BX(R)
is finite.

In the case when Γ is sharp for X, we establish exponential bounds for the
growth of Γ-orbits in X: here are the precise estimates that we will need for
our theorems (a proof will be given in Subsection 4.6).
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Lemma 4.6. Let c ∈ (0, 1] and C ≥ 0.

(1) For any discrete subgroup Γ of G that is (c, C)-sharp for X and any
ε > 0, there is a constant cε(Γ) > 0 such that for any R > 0 and any
x = g · x0 ∈ X (where g ∈ G),

#
{
γ ∈ Γ : ‖ν(γ ·x)‖ < R

}
≤ cε(Γ) e(δΓ+ε)(R+‖µ(g)‖)/c.

(2) (Removing the dependence in x)
For any discrete subgroup Γ of G that is (c, C)-sharp for X and any
ε > 0, there is a constant c′ε(Γ) > 0 such that for any R > 0 and any
x ∈ X,

#
{
γ ∈ Γ : ‖ν(γ ·x)‖ < R

}
≤ c′ε(Γ) e2(δΓ+ε)R/c.

(3) (Controlling the dependence in Γ, allowing for dependence in x)
There is a constant cG > 0 depending only on G such that for any
discrete subgroup Γ of G that is (c, C)-sharp for X, any R > 0, and
any x = g · x0 ∈ X (where g ∈ G),

#
{
γ ∈ Γ : ‖ν(γ ·x)‖ < R

}
≤ #(Γ ∩K) · cG e2‖ρa‖(R+C+‖µ(g)‖)/c .

(4) (Controlling the dependence in Γ and removing the dependence in x)
There is a constant cG > 0 depending only on G such that for any
discrete subgroup Γ of G that is (c, C)-sharp for X, any R > 0, and
any x ∈ X,

#
{
γ ∈ Γ : ‖ν(γ ·x)‖ < R

}
≤ #(Γ ∩K) · cG e4‖ρa‖(R+C)/c.

As before, x0 is the image of H in X = G/H and ρa ∈ a is half the sum
of the elements of Σ+(g, a), counted with root multiplicities. We denote by

(4.9) δΓ := lim sup
R→+∞

(
1

R
log#

(
Γ·y0 ∩BG/K(R)

))

the critical exponent of Γ, which measures the growth rate of the Γ-orbits in
the Riemannian symmetric space G/K of G. Here

BG/K(R) := {y ∈ G/K : ‖µ(y)‖ < R}
is the ball of radius R centered at y0 = eK ∈ G/K for the Riemannian
metric dG/K (see (4.1)). Recall that the Poincaré series

∑
γ∈Γ e

−s‖µ(γ)‖ con-
verges for s > δΓ and diverges for s < δΓ, and that if G has real rank 1,
then δΓ is the Hausdorff dimension of the limit set of Γ in the boundary at
infinity of G/K [Pa, Su, Cr].

In X, consider the “pseudo-ball” BX(R) of radius R centered at x0, as
in (4.8). For all x = g · x0 ∈ X (where g ∈ G), the stabilizer of x in Γ is
Γ ∩ gHg−1, hence

(4.10) #
{
γ ∈ Γ : ‖ν(γ ·x)‖ < R

}
= #(Γ ∩ gHg−1) ·#

(
Γ·x ∩BX(R)

)
.

Therefore, Lemma 4.6 gives the following counting result for Γ-orbits in X.

Corollary 4.7. For any discrete subgroup Γ of G that is (c, C)-sharp for X
and any x ∈ X,

lim sup
R→+∞

(
1

R
log#

(
Γ·x ∩BX(R)

))
≤ δΓ

c
;
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if moreover Γ ∩K = {e} (for instance if Γ is torsion-free), then

#
(
Γ·x0 ∩BX(R)

)
≤ cG e2‖ρa‖(R+C)/c

and for all x ∈ X,

#
(
Γ·x ∩BX(R)

)
≤ cG e4‖ρa‖(R+C)/c.

Remark 4.8. In our setting Γ can never be a lattice in G because it acts
properly discontinuously on X = G/H and H is noncompact. (In fact Γ has
to be quite “small”: the cohomological dimension of any torsion-free finite-
index subgroup of Γ has to be ≤ dim(G/K) − dim(H/H ∩K), see [Ko1].)
Corollary 4.7 can be compared with the following results on lattices of G.

(a) Let Γ be an irreducible lattice of G such that Γ ∩ H is a lattice of H.
Here is a precise counting result, due to Eskin–McMullen [EM], for the Γ-
orbit through the origin x0: for any sequence (Bn)n∈N of “well-rounded”
subsets of X,

#
(
Γ·x0 ∩Bn

)
∼

n→+∞

vol((Γ ∩H)\H)

vol(Γ\G) · volX(Bn).

In particular (see Lemma 4.18 and (5.16), (5.17) below), there is a con-
stant C > 0, independent of Γ, such that

#
(
Γ·x0 ∩BX(R)

)
∼

R→+∞
C · vol((Γ ∩H)\H)

vol(Γ\G) · e2‖ρb‖R.

(b) Let Γ be a lattice of G. The Γ-orbit through an arbitrary point x ∈ X
can be dense in X, in which case #(Γ·x∩BX(R)) is infinite. For instance,
this is generically the case for X = SL3(R)/SO(2, 1) and Γ = SL3(Z):
see Margulis’s proof [Mr1] of the Oppenheim conjecture.

Here we denote by ‖ρb‖ the norm of half the sum of the elements of a pos-
itive system Σ+(g, b) of restricted roots of b in g; this norm does not depend
on the choice of Σ+(g, b). We note that ‖ρb‖ ≤ ‖ρa‖ (see Remark 6.7).

It would be interesting to obtain a precise counting result in our setting,
in terms of the sharpness constants and of the critical exponent of Γ. We
observe that the following lower bound holds.

Remark 4.9. Let Γ be a discrete subgroup of G whose Zariski closure in G
is semisimple or contained in a semisimple group of real rank 1. For any
ε > 0 there is a constant cε(Γ) ∈ (0, 1] such that for any x = g ·x0 ∈ X
(where g ∈ G) and any R > 0,

#
(
Γ·x ∩BX(R)

)
≥ cε(Γ)

#(Γ ∩ gHg−1)
e(δΓ−ε)(R−‖µ(g)‖)

(with the convention 1/+∞ = 0). If Γ is (c, C)-sharp, then

#(Γ ∩ gHg−1) ≤ cε(Γ)−1 e(δΓ+ε) 2 ‖µ(g)‖+C
c < +∞.

Indeed, the first formula is a consequence of (4.10), of the inequality ‖ν‖ ≤
‖µ‖ (Lemma 4.17), and of the fact that the critical exponent, defined as a
limsup, is in fact a limit [Ro, Q]. The bound on #(Γ ∩ gHg−1) for sharp Γ
comes from the fact that if γ ∈ gHg−1, then da(µ(γ), µ(H)) ≤ 2 ‖µ(g)‖ by
(4.3) and (4.4), hence ‖µ(γ)‖ ≤ 2 ‖µ(g)‖+C

c by (c, C)-sharpness.
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4.4. Examples of sharp groups. Before we prove Lemma 4.6 (in Sub-
section 4.6), we first give some examples of sharp Clifford–Klein forms to
illustrate and motivate this notion. We begin with an important example
(which holds in the more general context of a homogeneous space X = G/H
where G is a reductive group and H a closed subgroup of G).

Example 4.10. All standard Clifford–Klein forms of X are sharp.

The notion of “standard” was defined in the introduction (Definition 1.4).
To understand why Example 4.10 is true, here is a more precise statement.

Example 4.11. Let L be a reductive subgroup of G acting properly on X. If
L is stable under the Cartan involution θ, then the set µ(L) is the intersection
of a+ with a finite union of subspaces of a, which meet µ(H) only in 0. Let c
be the sine of the minimal angle between µ(L) and µ(H). Then any Clifford–
Klein form XΓ with Γ ⊂ L is (c, 0)-sharp.

Proof of Example 4.11. If L is stable under the Cartan involution θ, then
K ∩ L is a maximal compact subgroup of L and there is an element k ∈ K
such that kAk−1∩L is a maximal split abelian subgroup of L and the Cartan
decomposition

L = (K ∩ L)(kAk−1 ∩ L)(K ∩ L)
holds. The set µ(L) = µ(A∩k−1Lk) = a+∩W · (a∩Ad(k−1)(Lie(L))) is the
intersection of a+ with a finite union of subspaces of a; it meets µ(H) only
in 0 by the properness criterion [Ko1, Th. 4.1]. By definition of sharpness, L
is (c, 0)-sharp for X, and so is any subgroup Γ ⊂ L. �

This explains why Proposition 4.3.(2) is true.

Proof of Proposition 4.3.(2). The fact that any reductive subgroup L of G
acting properly on X admits a conjugate that is (c, 0)-sharp for some c > 0
follows from Example 4.11 and from the fact that any reductive subgroup L
of G admits a conjugate in G that is θ-stable. �

Proof of Example 4.10. The fact that all standard Clifford–Klein forms of X
are sharp follows from Proposition 4.3.(1) and (2). �

Additional evidence that sharpness is a fundamental concept is given by
the fact that all known examples of compact Clifford–Klein forms of reduc-
tive homogeneous spaces are sharp, even when they are nonstandard. We
conjecture that they should all be.

Conjecture 4.12. Let G be a reductive linear Lie group and H a reductive
subgroup of G. Any compact Clifford–Klein form of X = G/H is sharp.

The following particular case of Conjecture 4.12 was proved in [Ka2].

Example 4.13 [Ka2, Th. 1.1]. Let X = G/H, where G is a reductive linear
Lie group and H a reductive subgroup of G. Let Γ be a uniform lattice in
some reductive subgroup L of G of real rank 1. Any small deformation of the
standard Clifford–Klein form XΓ is sharp.

In other words, there exists a neighborhood U ⊂ Hom(Γ, G) of the natural
inclusion such that the group ϕ(Γ) is discrete in G and sharp for X for all
ϕ ∈ U . More precisely, if Γ is (c, C)-sharp, then for any ε > 0 there is a
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neighborhood Uε ⊂ Hom(Γ, G) of the natural inclusion such that ϕ(Γ) is
(c − ε, C + ε)-sharp for all ϕ ∈ Uε (and even (c − ε, C)-sharp if C > 0 or
Γ ∩ K = {e}, for instance if Γ is torsion-free). This holds more generally
whenever Γ is a convex cocompact subgroup of L, i.e. a discrete subgroup
acting cocompactly on some nonempty convex subset of the Riemannian
symmetric space of L.

In the special case of X = AdS3 = SO(2, 2)0/SO(1, 2)0, sharpness was
proved in [Ka3] for all compact Clifford–Klein forms, even for those that are
not deformations of standard ones (such forms exist by [Sa2]).

Example 4.14 [Ka3, Th. 5.1.1]. All compact Clifford–Klein forms of X =
AdS3 are sharp.

As we will see in Subsection 10.2, this is a special case of the following
recent result.

Example 4.15 [GGKW]. Let 8G be a real semisimple linear Lie group of
real rank 1. All compact Clifford–Klein forms of X = (8G×8G)/Diag(8G) are
sharp.

We note that there exist Clifford–Klein forms XΓ with Γ infinitely gen-
erated that are not sharp (see [GK]). Also, not all sharp Clifford–Klein
forms remain sharp under small deformations; it can happen that the action
actually stops being properly discontinuous.

Example 4.16. Let X = (8G × 8G)/Diag(8G) and Γ = 8Γ × {e}, where
8G is a real semisimple linear Lie group of real rank 1 and 8Γ a discrete
subgroup of 8G containing a nontrivial unipotent element 8γu (for instance
a nonuniform lattice of 8G). For any neighborhood U ⊂ Hom(Γ, 8G × 8G),
there is an element ϕ ∈ U such that the group ϕ(Γ) does not act properly
discontinuously on X.

The idea is to obtain a contradiction with the properness criterion of
Benoist and Kobayashi for some ϕ such that the first projection of ϕ(8γu, e)
to 8G is unipotent and the second projection is hyperbolic (see [GK]).

4.5. Link between µ and ν. In order to prove Lemma 4.6, we will use
the following link between the Cartan projection µ (on which the notion
of sharpness is built) and the polar projection ν (on which our counting is
based).

Lemma 4.17. For any g ∈ G,

da(µ(g), µ(H)) ≤ ‖ν(g)‖ ≤ ‖µ(g)‖ .

Proof. For g ∈ G, write g = kbh, where k ∈ K, b ∈ B+, and h ∈ H. Since H
is fixed by σ, since K is globally preserved by σ (because σ and θ commute),
and since σ(b) = b−1 ∈ B ⊂ A, we have

µ(gσ(g)−1) = µ(bσ(b)−1) = µ(b2) = 2µ(b).

Using (4.2) and the fact that ‖µ(b)‖ = ‖ν(b)‖ = ‖ν(g)‖ by (4.6), we obtain

(4.11) 2 ‖ν(g)‖ = ‖µ(gσ(g)−1)‖ ≤ ‖µ(g)‖ + ‖µ(σ(g)−1)‖.
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Since σ(K) = K and σ(A) = A (because a = (a ∩ h) + b), we have
‖µ(σ(g)−1)‖ = ‖µ(g)‖, which implies ‖ν(g)‖ ≤ ‖µ(g)‖. On the other hand,
by (4.4) and (4.6),

da(µ(g), µ(H)) ≤ ‖µ(g)− µ(h)‖
= ‖µ(bh)− µ(h)‖
≤ ‖µ(b)‖ = ‖ν(b)‖ = ‖ν(g)‖. �

The following lemma implies, together with (5.16) below, that for any se-
quence (Rn) ∈ RN

+ tending to infinity, the sequence (BX(Rn))n∈N of “pseudo-
balls” of radius Rn centered at the origin (see (4.8)) is “well-rounded” in the
sense of Eskin–McMullen [EM]: for any ε > 0 there is a neighborhood U of
e in G such that

volX
(
U · ∂BX(Rn)

)
≤ ε volX

(
BX(Rn)

)
.

Lemma 4.18. For any g, g′ ∈ G,

‖ν(g′)‖ − ‖µ(g)‖ ≤ ‖ν(gg′)‖ ≤ ‖ν(g′)‖+ ‖µ(g)‖.
Proof. Let g, g′ ∈ G. Write g′ = kbh with k ∈ K, b ∈ B+, and h ∈ H. By
Lemma 4.17 and (4.2),

‖ν(gg′)‖ = ‖ν(gkb)‖ ≤ ‖µ(gkb)‖ ≤ ‖µ(g)‖ + ‖µ(kb)‖.
But ‖µ(kb)‖ = ‖ν(kb)‖ = ‖ν(g)‖ by (4.6), hence ‖ν(gg′)‖ ≤ ‖ν(g′)‖+‖µ(g)‖.
Applying this inequality to (g−1, gg′) instead of (g, g′), we obtain ‖ν(gg′)‖ ≥
‖ν(g′)‖ − ‖µ(g)‖. �

4.6. Proof of Lemma 4.6. We now use Lemmas 4.4 and 4.17, together with
the classical growth theory for discrete isometry groups in the Riemannian
symmetric space G/K, to prove Lemma 4.6.

Proof of Lemma 4.6.(1). By Lemmas 4.4 and 4.17, for all g ∈ G and γ ∈ Γ
we have

‖ν(γg)‖ ≥ da(µ(γg), µ(H)) ≥ da(µ(γ), µ(H)) − ‖µ(g)‖.
Using the sharpness assumption, we obtain that for all g ∈ G,

(4.12) ‖ν(γg)‖ ≥ c ‖µ(γ)‖ − C − ‖µ(g)‖,
hence

#
{
γ ∈ Γ : ‖ν(γg)‖ < R

}
≤ #

{
γ ∈ Γ : ‖µ(γ)‖ < R+ C + ‖µ(g)‖

c

}
.

We conclude using the definition (4.9) of the critical exponent δΓ. �

The proof of Lemma 4.6.(3) follows rigorously the same idea, using the
following classical observation (where y0 = eK ∈ G/K as before).

Observation 4.19. There is a constant cG ≥ 1 depending only on G such
that for any discrete subgroup Γ of G and any R > 0,

#
(
Γ·y0 ∩BG/K(R)

)
≤ cG e

2 ‖ρa‖R.

In particular, δΓ ≤ 2 ‖ρa‖ and

#
{
γ ∈ Γ : ‖µ(γ)‖ < R

}
≤ cG e

2 ‖ρa‖R ·#(Γ ∩K).
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Proof. Let

(4.13) DG/K =
{
y ∈ G/K : dG/K(y, y0) ≤ dG/K(y, γ · y0) ∀γ ∈ Γ

}

be the Dirichlet domain centered at y0, and let t > 0 be the distance from y0
to the boundary of DG/K . For all R > 0 and all γ ∈ Γ with γ ·y0 ∈ BG/K(R),

γ ·BG/K(t) ⊂ BG/K(R+ t)

since G acts on G/K by isometries. Moreover, by definition of t, the balls
γ ·BG/K(t) and γ′ ·BG/K(t) (for γ, γ′ ∈ Γ) do not intersect if γ · y0 6= γ′ · y0.
Therefore,

#
(
Γ·y0 ∩BG/K(R)

)
· volBG/K(t) ≤ volBG/K(R+ t).

Observation 4.19 is then a consequence of the following volume estimate (see
[He1, Ch. I, Th. 5.8]): there is a constant c′G (depending only on G) such that

volBG/K(R′) ∼
R′→+∞

c′G e
2‖ρa‖R′

. �

We now turn to Lemma 4.6.(2) and (4). It is sufficient to give a proof for
x in some fundamental domain of X for the action of Γ. We consider the
following particular fundamental domain.

Definition-Lemma 4.20 (A pseudo-Riemannian Dirichlet domain). Let Γ
be a discrete subgroup of G acting properly discontinuously on X. The set

DX = {x ∈ X : ‖ν(x)‖ ≤ ‖ν(γ · x)‖ ∀γ ∈ Γ}
is well-defined; it is a fundamental domain of X for the action of Γ.

Proof. By Remark 4.5, for any given x ∈ X there are only finitely many
elements γ ∈ Γ such that ‖ν(γ ·x)‖ ≤ ‖ν(x)‖; in particular, there is an
element γ0 ∈ Γ such that ‖ν(γ0 ·x)‖ ≤ ‖ν(γ ·x)‖ for all γ ∈ Γ. Thus DX

is well-defined and Γ · DX = X. To see that DX is actually a fundamental
domain (which is not needed in our proof of Lemma 4.6, where we only use
Γ · DX = X), it is sufficient to see that for any γ in the countable group Γ,
the set

Hγ := {x ∈ X : ‖ν(x)‖ = ‖ν(γ · x)‖}
has measure 0 in X. But (4.1) and (4.11) imply that for any g ∈ G,

2 ‖ν(g)‖ = ‖µ(gσ(g)−1)‖ = dG/K

(
y0, gσ(g)

−1 · y0
)
.

Therefore the function ‖ν‖2 is analytic on G, hence on X = G/H. Since
x 7→ ‖ν(x)‖2−‖ν(γ ·x)‖2 is not constant on X, the setHγ has measure 0. �

The fundamental domain DX is an analogue, in the pseudo-Riemannian
space X = G/H, of the classical Dirichlet domain DG/K of (4.13). Indeed,
by (4.1) and the G-invariance of the metric dG/K ,

DG/K =
{
y ∈ G/K : ‖µ(y)‖ ≤ ‖µ(γ · y)‖ ∀γ ∈ Γ

}
.

The distance to the origin ‖µ‖ in G/K is replaced by the “pseudo-distance
to the origin” ‖ν‖ in X.

The proof of Lemma 4.6.(2) and (4) is now similar to that of Lemma 4.6.(1)
and (3): we just replace (4.12) by the following inequality.
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Lemma 4.21. Let Γ be a discrete subgroup of G that is (c, C)-sharp for X.
For any γ ∈ Γ and x ∈ DX ,

‖ν(γ ·x)‖ ≥ c

2
‖µ(γ)‖ − C.

Proof. Let γ ∈ Γ and x ∈ DX . There is an element g ∈ KB+ ⊂ G such that
x = g ·x0. If ‖µ(g)‖ ≥ c

2 ‖µ(γ)‖, then, using the definition of DX and the
fact that g ∈ KB+, together with (4.6), we have

‖ν(γg)‖ ≥ ‖ν(g)‖ = ‖µ(g)‖ ≥ c

2
‖µ(γ)‖.

If ‖µ(g)‖ ≤ c
2 ‖µ(γ)‖, then, using Lemmas 4.4 and 4.17 together with the

sharpness of Γ, we obtain

‖ν(γg)‖ ≥ da(µ(γg), µ(H))

≥ da(µ(γ), µ(H)) − ‖µ(g)‖
≥ c

2
‖µ(γ)‖ − C. �

4.7. Sharpness and deformation. We conclude this section by examining
the behavior of the sharpness constants under small deformations in the
standard case. The two results below are easy corollaries of [Ka2, Th. 1.4]
(see Example 4.13).

Lemma 4.22. Let Γ be a convex cocompact subgroup (for instance a uniform
lattice) of some reductive subgroup L of G of real rank 1 acting properly on
the reductive symmetric space X. Assume that Γ is (c, C)-sharp for X and
that ‖ν(γ)‖ ≥ r for all γ ∈ ΓrZ(Gs). For any ε > 0 there is a neighborhood
Uε ⊂ Hom(Γ, G) of the natural inclusion such that for any ϕ ∈ Uε, the group
ϕ(Γ) is discrete in G and (c− ε, C + ε)-sharp for X, with ‖ν(ϕ(γ))‖ ≥ r− ε
for all γ ∈ Γr Z(Gs).

As in Subsection 3.3, we denote by Z(Gs) the center of the commutator
subgroup of G.

Proof. Fix ε > 0 and let ε′ > 0 be small enough so that

c− ε′
1 + ε′

≥ c− ε and ε′ +
ε′

1 + ε′
≤ ε.

By [Ka2, Th. 1.4], there is a neighborhood Wε′ ⊂ Hom(Γ, G) of the natural
inclusion such that for any ϕ ∈ Wε′ , the group ϕ(Γ) is discrete in G and

‖µ(ϕ(γ)) − µ(γ)‖ ≤ ε′ ‖µ(γ)‖ + ε′

for all γ ∈ Γ (and even ‖µ(ϕ(γ))− µ(γ)‖ ≤ ε′ ‖µ(γ)‖ for all γ ∈ ΓrK). By
Lemma 4.17,

‖ν(ϕ(γ))‖ ≥ da(µ(ϕ(γ)), µ(H))

≥ da(µ(γ), µ(H)) − ‖µ(ϕ(γ)) − µ(γ)‖
≥ (c− ε′) ‖µ(γ)‖ − (C + ε′)

≥ c− ε′
1 + ε′

‖µ(ϕ(γ))‖ −
(
C + ε′ +

ε′

1 + ε′

)
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for all ϕ ∈ Wε′ and γ ∈ Γ; in particular, ϕ(Γ) is (c − ε, C + ε)-sharp for X.
Since Γ is discrete in G and µ is a proper map, the set

F :=
{
γ ∈ Γ : ‖µ(γ)‖ < r + C + ε′

c− ε′
}

is finite. For any ϕ ∈ Wε′ and γ ∈ Γr F we have

‖ν(ϕ(γ))‖ ≥ (c− ε′) ‖µ(γ)‖ − (C + ε′) ≥ r.

Let Uε be the set of elements ϕ ∈ Wε′ such that ‖ν(ϕ(γ))‖ ≥ r − ε for all
γ ∈ F rZ(Gs). Then Uε is a neighborhood of the natural inclusion since ν is
continuous and F finite, and Uε satisfies the conclusions of Lemma 4.22. �

Lemma 4.23. Suppose that G = 8G×8G for some reductive linear group 8G
and let X = (8G × 8G)/Diag(8G). Let 8G1 and 8G2 be reductive subgroups
of 8G and let Γ = 8Γ1 × 8Γ2 for some discrete subgroups 8Γ1 of 8G1 and 8Γ2

of 8G2. Assume that Γ is (c, C)-sharp for X and that ‖ν(γ)‖ ≥ r for all
γ ∈ Γr Z(Gs).

(1) Suppose that for all i ∈ {1, 2}, the group 8Γi is
• either an irreducible uniform lattice of 8Gi

• or, more generally, a convex cocompact subgroup of 8Gi if 8Gi

has real rank 1.
Then for any ε > 0 there is a neighborhood Uε ⊂ Hom(Γ, G) of the
natural inclusion such that for any ϕ ∈ Uε, the group ϕ(Γ) is discrete
in G and (c − ε, C + ε)-sharp for X, with ‖ν(ϕ(γ))‖ ≥ r − ε for all
γ ∈ Γr Z(Gs).

(2) Suppose that 8G1 has real rank 1 and that 8Γ1 is convex cocompact
in 8G1. Then for any ε > 0 there is a neighborhood 8Uε ⊂
Hom(8Γ1,

8G × Z8G(
8Γ2)) of the natural inclusion such that for any

8ϕ ∈ 8Uε, the group 8ϕ(8Γ1)
8Γ2 is discrete in G and (c − ε, C + ε)-

sharp for X, with ‖ν(ϕ(γ))‖ ≥ r − ε for all γ ∈ Γr Z(Gs).

Here Z8G(
8Γ2) denotes the centralizer of 8Γ2 in 8G.

Proof. Fix ε > 0 and let ε′ > 0 be small enough so that

c− 2ε′

1 + 2ε′
≥ c− ε and 2

√
2 ε′ +

2
√
2 ε′

1 + 2ε′
≤ ε.

By [Ka2, Th. 1.4], if 8G1 (resp. 8G2) has real rank 1 and 8Γ1 (resp. 8Γ2)
is convex cocompact in 8G1 (resp. in 8G2), then there is a neighborhood
W1,ε′ ⊂ Hom(Γ, G) (resp. W2,ε′ ⊂ Hom(Γ, G)) of the natural inclusion such
that for any ϕ ∈ W1,ε′ (resp. ϕ ∈ W2,ε′), the group ϕ(8Γ1 × {e}) (resp.
ϕ({e} × 8Γ2)) is discrete in G and

(4.14) ‖µ(ϕ(8γ1, e)) − µ(8γ1, e)‖ ≤ ε′ ‖µ(8γ1, e)‖+ ε′

for all 8γ1 ∈ 8Γ1 (resp.

(4.15) ‖µ(ϕ(e, 8γ2))− µ(e, 8γ2)‖ ≤ ε′ ‖µ(e, 8γ2)‖+ ε′

for all 8γ2 ∈ 8Γ2). If 8G1 (resp. 8G2) has real rank ≥ 2 and 8Γ1 (resp. 8Γ2) is
an irreducible lattice in 8G1 (resp. in 8G2), then 8Γ1 (resp. 8Γ2) is locally rigid
in G [Ra1, We2], and so a similar neighborhood W1,ε′ ⊂ Hom(Γ, G) (resp.
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W2,ε′ ⊂ Hom(Γ, G)) of the natural inclusion exists by (4.3) and (4.4). Since
Γ is discrete in G and µ is a proper map, the set

F :=
{
γ ∈ Γ : ‖µ(γ)‖ < r + C + 2

√
2 ε′

c− 2ε′

}

is finite. In the setting of (1), we let Uε be the set of elements ϕ ∈ W1,ε′∩W2,ε′

such that ‖ν(ϕ(γ))‖ ≥ r − ε for all γ ∈ F r Z(Gs); then Uε ⊂ Hom(Γ, G)
is a neighborhood of the natural inclusion and any ϕ ∈ Uε satisfies (4.14)
and (4.15). In the setting of (2), we set

8Wε′ :=
{
ϕ ◦ i1 : ϕ ∈ W1,ε′ , ϕ|{e}×8Γ2

= id{e}×8Γ2

}
,

where i1 : 8Γ1 →֒ 8Γ1 × {e} is the natural inclusion, and we let 8Uε be
the set of elements 8ϕ ∈ 8Wε′ such that ‖ν(8ϕ(8γ1)8γ2)‖ ≥ r − ε for all γ =
(8γ1,

8γ2) ∈ F rZ(Gs); then 8Uε ⊂ Hom(8Γ1,
8G×Z8G(

8Γ2)) is a neighborhood
of the natural inclusion and for any 8ϕ ∈ 8Uε, the homomorphism ϕ :=
((8γ1,

8γ2) 7→ 8ϕ(8γ1)
8γ2) satisfies (4.14) and (4.15).

We now consider ϕ ∈ Hom(Γ, G) satisfying (4.14) and (4.15) and prove
that the group ϕ(Γ) is discrete in G and (c − ε, C + ε)-sharp for X, with
‖ν(ϕ(γ))‖ ≥ r − ε for all γ ∈ Γ r Z(Gs). We note that a = 8a + 8a, where
8a is a maximal split abelian subspace of 8g; for i ∈ {1, 2}, let πi : a→ 8a be
the projection onto the i-th factor. Then

∥∥π1
(
µ(ϕ(8γ1,

8γ2))− µ(8γ1, 8γ2)
)∥∥ =

∥∥π1
(
µ(ϕ(8γ1,

8γ2))− µ(8γ1, e)
)∥∥

≤
∥∥π1
(
µ(ϕ(8γ1,

8γ2))− µ(ϕ(8γ1, e))
)∥∥+

∥∥π1
(
µ(ϕ(8γ1, e)) − µ(8γ1, e)

)∥∥,
where
∥∥π1
(
µ(ϕ(8γ1,

8γ2))− µ(ϕ(8γ1, e))
)∥∥ ≤

∥∥π1
(
µ(ϕ(e, 8γ2)

)∥∥
=

∥∥π1
(
µ(ϕ(e, 8γ2))− µ(e, 8γ2)

)∥∥
≤ ‖µ(ϕ(e, 8γ2))− µ(e, 8γ2)‖
≤ ε′ ‖µ(e, 8γ2)‖+ ε′

(using (4.3) applied to 8G and (4.15)) and
∥∥π1
(
µ(ϕ(8γ1, e)) − µ(8γ1, e)

)∥∥ ≤ ‖µ(ϕ(8γ1, e)) − µ(8γ1, e)‖
≤ ε′ ‖µ(8γ1, e)‖ + ε′

(using (4.14)). Therefore,
∥∥π1
(
µ(ϕ(8γ1,

8γ2))− µ(8γ1, 8γ2)
)∥∥ ≤ ε′

(
‖µ(8γ1, e)‖ + ‖µ(e, 8γ2)‖

)
+ 2ε′

≤
√
2ε′ ‖µ(8γ1, 8γ2)‖+ 2ε′.

Similarly,
∥∥π2
(
µ(ϕ(8γ1,

8γ2))− µ(8γ1, 8γ2)
)∥∥ ≤

√
2ε′ ‖µ(8γ1, 8γ2)‖+ 2ε′.

Thus
‖µ(ϕ(γ)) − µ(γ)‖ ≤ 2ε′ ‖µ(γ)‖+ 2

√
2ε′

for all γ ∈ Γ. Using the fact that Γ is discrete in G and µ is a proper map, we
obtain that ϕ(Γ) is discrete in G. We conclude as in the proof of Lemma 4.22.

�
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5. Asymptotic estimates for eigenfunctions on

symmetric spaces

Under the rank condition (3.3), Flensted-Jensen [Fl] proved that the space
L2(X,Mλ)K of K-finite elements in L2(X,Mλ) is nonzero for infinitely
many joint eigenvalues λ, by an explicit construction based on some duality
principle and the Poisson transform. Then, applying deep results of mi-
crolocal analysis and hyperfunction theory [KKM+], Oshima and Matsuki
[MO, Os2] gave a detailed analysis of the asymptotic behavior at infinity
of these eigenfunctions. In this section, we reformulate their estimates as
follows, in terms of

• the “weighted distance” d(λ) of the spectral parameter λ to the walls
of j∗ (which measures the regularity of λ),
• the “pseudo-distance from the origin” ‖ν(x)‖ of x ∈ X (which mea-

sures how x goes to infinity).

Proposition 5.1. Under the rank condition (3.3), there is a constant q > 0
such that for all λ ∈ j∗ and ϕ ∈ L2(X,Mλ)K , the function

x 7−→ ϕ(x) · eq d(λ)‖ν(x)‖

is bounded on X; in particular, ϕ ∈ L1(X) if d(λ) > 2‖ρb‖/q.
We refer to Subsection 3.3 (resp. 4.1) for the definition of d : j∗ → R≥0

(resp. ν : X → b+). As in Remark 4.8, we denote by ‖ρb‖ the norm of half
the sum of the elements of a positive system Σ+(g, b) of restricted roots of b
in g; this norm does not depend on the choice of Σ+(g, b).

As we shall see, the constant q is computable in terms of some root system
(see (5.14) in the proof of Lemma 5.8).

The proof of Proposition 5.1 will be given in Subsection 5.4. For the
reader’s convenience, we first give a brief review of the Poisson transform
on Riemannian symmetric spaces of the noncompact type (Subsection 5.1),
of the Flensted-Jensen duality (Subsection 5.2), and of the construction of
discrete series representations (Subsection 5.3). The material of these three
subsections is not new, but we will need it later. Often analysis on reductive
symmetric spaces requires a rather large amount of notation; here we try to
keep it minimal for our purpose.

In the whole section, we denote by A the sheaf of real analytic functions
and by B the sheaf of hyperfunctions; we refer to [KKK] for an introduction
to hyperfunctions.

5.1. Poisson transform in Riemannian symmetric spaces. Let Xd =
Gd/Kd be a Riemannian symmetric space of the noncompact type, where
Gd is a connected reductive linear Lie group and Kd a maximal compact
subgroup of Gd. Let P d be a minimal parabolic subgroup of Gd. We give
a brief overview of the theory of the Poisson transform as an intertwining
operator between hyperfunctions on Gd/P d and eigenfunctions on Xd (see
[He1, KKM+] for details). The notation Gd is used to avoid confusion since
the results of this paragraph will not be applied to G but to another real
form of GC.

Let j be a maximal split abelian subalgebra of gd := Lie(Gd) such that the
Cartan decomposition Gd = Kd(exp j)Kd holds. Since all minimal parabolic



DISCRETE SPECTRUM FOR LOCALLY SYMMETRIC SPACES I 37

subgroups of Gd are conjugate, we may assume that P d contains exp j and
has the Langlands decomposition P d =Md(exp j)Nd, where Md = Kd ∩P d

is the centralizer of exp j in Kd and Nd is the unipotent radical of P d. The
Iwasawa decomposition Gd = Kd(exp j)Nd holds. Let ζ : Gd → j be the
corresponding Iwasawa projection, defined by

g ∈ Kd(exp ζ(g))Nd

for all g ∈ Gd. For λ ∈ j∗C we define functions ξλ, ξ∨λ ∈ A(Gd) by

(5.1) ξλ(g) := e〈λ,ζ(g)〉 and ξ∨λ (g) := ξλ(g
−1)

for g ∈ Gd. Since ξλ is left-Kd-invariant, ξ∨λ induces a function on Xd, which
we still denote by ξ∨λ .

We choose a positive system Σ+(gC, jC), defining positive Weyl chambers
j+ in j and j∗+ in j∗. Let ρ be half the sum of the elements of Σ+(gC, jC),
counted with root multiplicities. For λ ∈ j∗C, the function ξλ is a character
of P d. Let B(Gd/P d,Lλ) be the hyperfunction-valued normalized principal
series representation of Gd associated with the character ξ−λ of P d: by
definition, B(Gd/P d,Lλ) is the set of hyperfunctions f ∈ B(Gd) such that

f( · p) = ξ−λ+ρ(p
−1)f (= f ξλ−ρ(p))

for all p ∈ P d. Here we use the character ξ−λ and not ξλ, following the
usual convention in harmonic analysis on symmetric spaces (see [BS, D, Fl,
He1, MO]) rather than in the representation theory of reductive groups (see
[Kn, Wa]). Setting

A(Gd/P d,L−λ) := A(Gd) ∩ B(Gd/P d,L−λ),

there is a natural Gd-invariant bilinear form

〈 · , · 〉 : B(Gd/P d,Lλ)×A(Gd/P d,L−λ) −→ C

given by the integration over Gd/P d. We note that ξ−λ−ρ ∈ A(Gd/P d,L−λ),
hence the left translate ξ−λ−ρ(g

−1 · ) also belongs to A(Gd/P d,L−λ) for all
g ∈ Gd. Since ξ−λ−ρ is left-Kd-invariant, we obtain a Gd-intertwining oper-
ator (Poisson transform)

Pλ : B(Gd/P d,Lλ) −→ A(Xd)

given by
(Pλf)(g) := 〈f, ξ−λ−ρ(g

−1 · )〉 .
It follows directly from the definition of the Harish-Chandra isomorphism in
Subsection 3.1 that for all f ∈ B(Gd/P d,Lλ), the function Pλf ∈ A(Xd)
satisfies the system (Mλ), defined similarly to Subsection 3.1. For Reλ ∈ j∗+,
the Helgason conjecture (proved in [KKM+]) asserts that the Poisson trans-
form

Pλ : B(Gd/P d,Lλ) −→ A(Gd/Kd,Mλ)

is actually a bijection.

Example 5.2. Assume that Gd has real rank 1. Then Gd/P d identifies
with the boundary at infinity of Xd. The function ξ∨λ is the exponential of
some multiple of the Busemann function associated with the geodesic ray
(exp j+)K

d in Xd = Gd/Kd; its level sets are the horospheres centered at
eP d ∈ Gd/P d. For λ = ρ, the Poisson operator Pλ identifies the set of
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continuous functions on Gd/P d with the set of harmonic functions on Xd

admitting a continuous extension to Xd = Xd ∪Gd/P d. (See Subsection 9.7
for the case Gd = SL2(C).)

5.2. Real forms of GC/HC and the Flensted-Jensen duality. We now
come back to the setting of Sections 1 to 4, where G is a connected reductive
linear Lie group and H an open subgroup of the group of fixed points of G
under some involutive automorphism σ. Let GC be a connected Lie group
containing G with Lie algebra gC := g ⊗R C, and let HC be the connected
subgroup of GC with Lie algebra hC := h ⊗R C. We consider three differ-
ent real forms of the complex symmetric space XC = GC/HC: our original
pseudo-Riemannian symmetric space X = G/H, a Riemannian symmetric
space XU = GU/HU of the compact type, and a Riemannian symmetric
space Xd = Gd/Kd of the noncompact type. They are constructed as fol-
lows. Let g = h + q be the decomposition of g into eigenspaces of dσ as
in Subsection 3.1, and let g = k + p be the Cartan decomposition associ-
ated with the Cartan involution θ of G of Subsection 3.2, which commutes
with σ. The maps dσ and dθ extend to automorphisms of the complex Lie
algebra gC, for which we use the same letters. We set

gd := gσθ +
√
−1 g−σθ = (h ∩ k+ q ∩ p) +

√
−1 (h ∩ p+ q ∩ k),

kd = hU := h ∩ k+
√
−1 (h ∩ p),

gU := k+
√
−1 p,

and let Gd (resp. Kd = HU , resp. GU ) be the connected subgroup of GC

with Lie algebra gd (resp. kd = hU , resp. gU). We note that Kd = HU is
the compact real form of HC. For instance, for the anti-de Sitter space X =
AdS2n+1 = SO(2, 2n)0/SO(1, 2n)0, we have XU = SO(2n+2)/SO(2n+1) =
S2n+1 and Xd = SO(1, 2n + 1)0/SO(2n+ 1) = H2n+1 (see Subsection 10.1).

Let Hd be the connected subgroup of GC with Lie algebra

hd := h ∩ k+
√
−1 (q ∩ k).

We note that Kd ∩ Hd = (H ∩K)0 and that Hd/Kd ∩Hd and K/H ∩ K
are two Riemannian symmetric spaces with the same complexification — the
first one of the noncompact type, the second one of the compact type. This
will be used in Section 7.

For any hd-module V over C, the action of hd on V extends C-linearly to
an action of kC = hd⊗RC, and the set Vhd of hd-finite vectors is equal to the
set VkC of kC-finite vectors. We define the set VK of K-finite vectors of V to
consist of vectors v ∈ Vhd = VkC such that the action of k ⊂ kC on the C-span
of k · v lifts to an action of K. Then VK is a K-module contained in Vhd .

Remark 5.3. In the definition of VK , we do not assume that the group K
acts on V . In the situation below, neither V nor Vhd = VkC can be acted on
by the group K.

The Lie algebra gd (hence its subalgebra hd) acts on A(Xd) by differenti-
ation on the left:

(5.2) (Y · ϕ)(x) = d

dt

∣∣∣
t=0

ϕ
(
exp(−tY ) · x

)
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for all Y ∈ gd, all ϕ ∈ A(Xd), and all x ∈ Xd. Since the system (Mλ) is
Gd-invariant, its space of solutions A(Xd,Mλ) is a gd-submodule of A(Xd)
for λ ∈ j∗C; thus we can define K-modules A(Xd,Mλ)K ⊂ A(Xd)K . By us-
ing holomorphic continuation, Flensted-Jensen [Fl] constructed an injective
homomorphism

η : A(X)K −֒→ A(Xd)K(5.3)

∪ ∪
A(X,Mλ)K −֒→ A(Xd,Mλ)K

for all λ ∈ j∗C. For the reader’s convenience, we now recall the construction
of η in the case when GC is simply connected.

Assume that GC is simply connected. Then the set of fixed points of GC

under any involutive automorphism is connected [Bo1, Th. 3.4]. We can
extend σ and θ to holomorphic automorphisms of GC, for which we use the
same letters σ and θ. The complex conjugation of gC = g +

√
−1 g with

respect to the real form g lifts to an anti-holomorphic involution τ of GC,
such that G = Gτ

C. Since σ, θ, and τ commute, the composition of any of
them gives involutive automorphisms of GC. We have

HC = Gσ
C, Gd = Gτσθ

C , Kd = HU = HC ∩Gd, and GU = Gτθ
C .

Moreover, setting KC = Gθ
C, we have Hd = (KC ∩ Gd)0 and the following

inclusions hold:

K ⊂ G ⊃ H

⊃ ⊃ ⊃

KC ⊂ GC ⊃ HC(5.4)

⊂ ⊂ ⊂

Hd ⊂ Gd ⊃ Kd.

The restriction of σ to Gd is a Cartan involution of Gd, and the corresponding
Cartan decomposition gd = kd + pd is obtained as the intersection of gd with
the direct sum decomposition gC = hC + qC. The restriction of θ to Gd is an
involution of Gd, and the corresponding decomposition gd = hd + qd of gd

(into eigenspaces of dθ with respective eigenvalues +1 and −1) is obtained
as the intersection of gd with the complexified Cartan decomposition gC =
kC + pC. Let b be the maximal semisimple abelian subspace of p ∩ q from
Subsection 4.1. Since pd ∩ qd = p ∩ q, we may regard B = exp b as a
subgroup of Gd, and the polar decomposition Gd = HdB+K

d holds similarly
to the polar decomposition G = KB+H of Subsection 4.1. Any function
f ∈ A(X)K extends uniquely to a function fC : KCB+HC/HC → C such
that k 7→ fC(kbHC) is holomorphic on KC for any b ∈ B+; by letting η(f) be
the restriction of fC to Xd, we get the injective homomorphism (5.3), which
is actually bijective. The homomorphism η respects the left action of U(gC)
([Fl, Th. 2.5]).

We now return to the general case, where GC is not necessarily simply con-
nected. Any G-invariant (resp. GU -invariant, resp. Gd-invariant) differential
operator on X = G/H (resp. XU = GU/HU , resp. Xd = Gd/Kd) extends
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holomorphically to XC = GC/HC, hence we have canonical C-algebra iso-
morphisms

D(X) ≃ D(XU ) ≃ D(Xd).

Therefore, for λ ∈ j∗C, a function f ∈ A(X) satisfies (Mλ) if and only if
η(f) ∈ A(Xd) does.

5.3. Discrete series representations. We continue in the setting of Sub-
section 5.2 and now assume that the rank condition (3.3) is satisfied. In this
subsection we summarize Flensted-Jensen’s construction of discrete series
representations VZ,λ using his duality (5.3). Recall that the regular repre-
sentation of G on L2(X) is unitary; an irreducible unitary representation π
of G is said to be a discrete series representation for X if there exists a
nonzero continuous G-intertwining operator from π to L2(X) or, equiva-
lently, if π can be realized as a closed G-invariant subspace of L2(X). By a
little abuse of notation, we shall also call the underlying (g,K)-module πK
a discrete series representation. It should be noted that discrete series rep-
resentations for X = G/H may be different from Harish-Chandra’s discrete
series representations for the group manifold G if H is noncompact, because
L2(X) 6= L2(G)H .

We shall parameterize the discrete series representations for X by the
spectral parameter λ and some finite set Z defined as follows. Let Pd be
the set of minimal parabolic subalgebras of gd, on which Gd acts transitively
by the adjoint action. There are only finitely many Hd-orbits in Pd; a
combinatorial description was given by Matsuki [Mt]. We set

(5.5) Z := {closed Hd-orbits in Pd}.
Here is a description of the finite set Z. Consider the maximal semisimple
abelian subspace j of

√
−1(q∩ k) from Section 3. The rank condition (3.3) is

equivalent to the fact that j is maximal abelian in pd = q ∩ p+
√
−1(q ∩ k).

Thus j is a maximal split abelian subalgebra of gd and the notation fits with
that of Subsection 5.1. All restricted roots of j in gd take real values on j and
there is a natural bijection Σ(gd, j) ≃ Σ(gC, jC); likewise, Σ(hd, j) ≃ Σ(kC, jC).
We note that j is actually contained in hd. As in Subsection 3.1, let W be
the Weyl group of the restricted root system Σ(gd, j), and let WH∩K be that
of Σ(hd, j). Any choice of a positive system Σ+(gd, j) ≃ Σ+(gC, jC) defines a
point in Pd and the Hd-orbit through this point is closed. Conversely, any
closed Hd-orbit in Pd is obtained in this way. Recall that in Subsection 3.3
we have fixed once and for all a positive system Σ+(kC, jC) ≃ Σ+(hd, j). Since
any two such positive systems are conjugate by Hd, we obtain a one-to-one
correspondence

(5.6)
{
positive systems Σ+(gd, j) containing Σ+(hd, j)

}
≃ Z.

Here is another description of the finite set Z. We fix a positive system
Σ+(gd, j) containing Σ+(hd, j); this defines a minimal parabolic subgroup P d

of Gd. The subspace pd in the Cartan decomposition gd = kd + pd should
not be confused with the Lie algebra of P d. The subset

(5.7) W (Hd, Gd) :=
{
w ∈W : w(Σ+(gd, j)) ∩ Σ(hd, j) = Σ+(hd, j)

}
.
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of the Weyl group W gives a complete set of representatives of the left coset
space WH∩K\W . Clearly, e ∈ W (Hd, Gd). We identify Pd with Gd/P d.
Then, by (5.6), the other closed Hd-orbits in Gd/P d are of the form

(5.8) Z = HdwP d for w ∈W (Hd, Gd) (≃WH∩K\W ).

Thus we have a one-to-one correspondence

(5.9) Z ≃W (Hd, Gd).

Remark 5.4. We have given two equivalent combinatorial descriptions of
the finite set Z in (5.6) and (5.9). The latter one (5.9) depends on a fixed
choice of a positive system Σ+(gd, j); it is convenient to treat different closed
orbits Z simultaneously (e.g. in Fact 5.5 below). We shall use the former
one (5.6) when we give an estimate of the asymptotic behavior of individ-
ual discrete series representations for a fixed Z ∈ Z (e.g. in the proof of
Proposition 5.1 in Subsection 5.4, or in Section 7).

We now recall from [Fl] how to construct, for any Z ∈ Z and infinitely
many λ ∈ j∗C, a subspace VZ,λ of L2(X,Mλ)K that will be a discrete series
representation for X. For Z ∈ Z and λ ∈ j∗C, we define a gd-submodule

BZ(Gd/P d,Lλ) :=
{
f ∈ B(Gd/P d,Lλ) : supp f ⊂ Z

}

of the principal series representation B(Gd/P d,Lλ) of Subsection 5.1. Similar-
ly to the definition ofA(Gd/Kd,Mλ)K , we can define the set BZ(Gd/P d,Lλ)K
of K-finite elements in BZ(Gd/P d,Lλ) even though the group K does not
act on BZ(Gd/P d,Lλ) (see Remark 5.3). For Reλ ∈ j∗+, we then have the
following commutative diagram, where Pλ is the Poisson transform of Sub-
section 5.1.

B(Gd/P d,Lλ) ∼−→
Pλ

A(Gd/Kd,Mλ)

∪ ∪
BZ(Gd/P d,Lλ)K −→ A(Gd/Kd,Mλ)K

η←−֓ A(X,Mλ)K .

We set

(5.10) VZ,λ := η−1
(
Pλ
(
BZ(Gd/P d,Lλ)K

))
.

Since BZ(Gd/P d,Lλ)K is a (g,K)-module, VZ,λ is a (g,K)-submodule of
A(X,Mλ)K , where g acts by differentiation on the left, similarly to (5.2).
We recall that the space Vλ := L2(X,Mλ)K depends only on the image
of λ in j∗C/W , hence we may assume Reλ ∈ j∗+ without loss of generality.
The following fact (which includes the “C = 0” conjecture [Fl] and the irre-
ducibility conjecture) is a consequence of the work of Flensted-Jensen [Fl],
Matsuki–Oshima [MO], and Vogan [V]. See also [BS, Th. 16.1].

Fact 5.5. Let λ ∈ j∗C satisfy Reλ ∈ j∗+.

• For any Z ∈ Z, the space VZ,λ constructed above is contained in
Vλ := L2(X,Mλ)K ; it is either zero or irreducible as a (g,K)-
module. Moreover,

Vλ =
⊕

Z∈Z
VZ,λ.
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• Let Z ∈ Z correspond to w ∈W (Hd, Gd) via (5.8).
– If VZ,λ is nonzero, then λ ∈ j∗+ and

(5.11) µwλ := w(λ + ρ)− 2ρc

belongs to the Z-module Λ defined in (3.5).
– Conversely, if λ ∈ j∗+ and if the stronger integrality condition

(5.12) µwλ ∈ Λ+

holds, where Λ+ is defined in (3.4), then VZ,λ is nonzero.

Thus there are countably many discrete series representations for X. The
discrete series representations VZ,λ for λ satisfying (5.12) were constructed
by Flensted-Jensen in [Fl]; we will give more details in Subsection 7.3.

We note that Fact 5.5 completely describes Specd(X) away from the walls
of j∗+: the following lemma states that any λ ∈ j∗+ satisfying the weak condi-
tion µwλ ∈ Λ but not the strong condition µwλ ∈ Λ+ has a bounded “weighted
distance to the walls” d(λ). On the other hand, the nonvanishing condition
for VZ,λ is combinatorially complicated for λ near the walls of j∗+; it is still
not completely settled in the literature.

Lemma 5.6. Suppose that λ ∈ j∗+ satisfies d(λ) ≥ mρ, where mρ is given by

(3.8). For w ∈W (Hd, Gd), the following conditions on λ are equivalent:

(i) µwλ ∈ Λ,
(ii) µwλ ∈ Λ+.

Proof. The implication (ii) ⇒ (i) is obvious. Let us prove (i) ⇒ (ii), namely
that if µwλ ∈ Λ, then µwλ is dominant with respect to Σ+(hd, j) = Σ+(kC, jC).
Firstly, we note that wρ is half the sum of the elements in w(Σ+(gd, j))
counted with root multiplicities, where w(Σ+(gd, j)) is a positive system
containing Σ+(hd, j) (by definition (5.7) of W (Hd, Gd)). By [VZ], 2wρ− 2ρc
is dominant with respect to Σ+(hd, j). (In fact, it occurs as the highest
weight of a representation of hd in Λ∗qd.) Secondly, Observation 3.7 and the
inequality d(λ) ≥ mρ imply that

λ− ρ =
(
λ− d(λ)

mρ
ρ
)
+
d(λ)−mρ

mρ
ρ ∈ j∗+ ;

therefore w(λ−ρ) is dominant with respect to Σ+(hd, j) since w ∈W (Hd, Gd).
Thus µwλ = 2(wρ− ρc)+w(λ− ρ) is dominant with respect to Σ+(hd, j). �

5.4. Asymptotic behavior of discrete series. We can now complete the
proof of Proposition 5.1.

By Fact 5.5, we may assume that ϕ ∈ L2(X,Mλ)K belongs to VZ,λ for
some closed Hd-orbit Z in Pd. We then use Oshima’s theorem ([Os2], see
Fact 5.7 below) that the asymptotic behavior of the eigenfunction ϕ is de-
termined by Z. This theorem requires an unavoidable amount of notation.
Before entering into technical details, let us pin down the role of two positive
systems involved:

Σ+(gd, j)
∼←→ closed Hd-orbit Z in Pd

Cayley transform Ad(k)

...
... +

W (Z)

Σ+(g, b) . . . asymptotic behavior of ϕ ∈ VZ,λ
at infinity in X = G/H
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We now enter into details, retaining notation from Subsections 4.1 and 5.3.
We first recall that in Subsection 4.1 we have chosen a positive system

Σ+(gσθ, b), determining a closed positive Weyl chamber b+ in b, a polar de-
composition G = K(exp b+)H, and a projection ν : G→ b+. Any choice of a
positive system Σ+(g, b) containing Σ+(gσθ, b) gives rise to a closed positive
Weyl chamber b++ ⊂ b+, and b+ is the union of such Weyl chambers b++

for the (finitely many) different choices of Σ+(g, b). On the other hand, by
Fact 5.5, the space Vλ = L2(X,Mλ)K is the direct sum of finitely many
subspaces VZ,λ, where Z ∈ Z is a closed Hd-orbit in Pd. Therefore, in the
rest of the subsection, we may restrict to one closed positive Weyl cham-
ber b++ (determined by some arbitrary positive system Σ+(g, b) containing
Σ+(gσθ, b)) and one Hd-orbit Z ∈ Z, and prove the existence of a constant
q > 0 such that for any λ ∈ j∗ and ϕ ∈ VZ,λ, the function

(k, Y ) 7−→ ϕ
(
k(exp Y ) · x0

)
eq d(λ)‖Y ‖

is bounded on K × b++. Since VZ,λ and d(λ) depend only on the image of
λ ∈ j∗ modulo W , we will be able to take λ in any Weyl chamber j∗+ of j∗.

Fix Z ∈ Z and consider the positive Weyl chamber j∗+ in j∗ determined
by Z via (5.6). We introduce some additional notation. Let

+j ≡ +j(Z) :=
{
Ỹ ∈ j : 〈λ, Ỹ 〉 ≥ 0 ∀λ ∈ j∗+

}

be the dual cone of j∗+ and let ρ ∈ j∗+ be given as in Subsection 3.3. Since
all maximally split abelian subspaces of gd are conjugate by Kd, there exists
k ∈ Kd such that Ad(k)b ⊂ j; the element Ad(k) may be thought of as an
analog of a Cayley transform from the upper-half plane to the hyperbolic
disk (see Subsection 9.8). We may assume that

(Ad(k)∗α)|b ∈ Σ+(g, b) ∪ {0}

for all α ∈ Σ+(gd, j); in particular, Ad(k)(b++) ⊂+j. For Y ∈ b, we write

Ỹ := Ad(k)Y ∈ j.

Let {Y1, . . . , Yℓ} be the basis of b that is dual to the set of simple roots in
Σ+(g, b). For t ∈ (R+)

ℓ, we set

Yb(t) := −
ℓ∑

j=1

(log tj)Yj ∈ b,

so that t 7→ Yb(t) is a bijection from (R+)
ℓ to b, inducing a bijection between

(0, 1]ℓ and b++. For w ∈W and λ ∈ j∗, we set

βw(λ) :=
(
〈ρ− wλ, Ỹ1〉, . . . , 〈ρ− wλ, Ỹℓ〉

)
∈ Rℓ.

We recall that W is the Weyl group of Σ(gd, j). We define

+W ≡+W (Z) :=
{
w ∈W : −w−1 ·Ad(k)(b++) ⊂+j

}
.

The set+W depends on the closed Hd-orbit Z in Pd. If rankG/H = 1, then
ℓ = 1 and+W = {w}, where w is the unique nontrivial element of W .
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With this notation, here is the asymptotic behavior, due to Oshima, that
we shall translate in terms of ν and d to obtain Proposition 5.1. We consider
the partial order on Rℓ given by

β ≺ β′ if and only if βj ≤ β′j for all 1 ≤ j ≤ ℓ.
Fact 5.7 [Os2]. Let λ ∈ j∗+ and let Iλ be the set of minimal elements in the

finite set {βw(λ) : w ∈+W} ⊂ Rℓ for ≺. For any ϕ ∈ VZ,λ, there exist real
analytic functions aβ ∈ A(K), for β ∈ Iλ, such that

∣∣ϕ
(
k(exp Yb(t))H

)∣∣ ≤
∑

β∈Iλ
aβ(k) t

β

for all k ∈ K and t ∈ (0, 1]ℓ, where we write tβ for
∏ℓ

j=1 tj
βj .

Let +Wλ := {w ∈ +W : βw(λ) ∈ Iλ}. Then Fact 5.7 has the following
immediate consequence: for any λ ∈ j∗+ and ϕ ∈ VZ,λ, there is a constant
cϕ > 0 such that

(5.13)
∣∣ϕ
(
k(exp Y )H

)∣∣ ≤ cϕ
∑

w∈+Wλ

e〈wλ,Ỹ 〉

for all k ∈ K and Y ∈ b++. Indeed, K is compact, Iλ is finite, and for all
w ∈+Wλ and t ∈ (0, 1]ℓ,

tβw(λ) = e〈wλ−ρ,Ỹb(t)〉 ≤ e〈wλ,Ỹb(t)〉.

We now bound 〈wλ, Ỹ 〉 in terms of the “weighted distance to the walls” d(λ).

Lemma 5.8. There is a constant qZ > 0 such that

〈wλ, Ỹ 〉 ≤ −qZ d(λ) ‖Y ‖
for all w ∈+W , all λ ∈ j∗+, and all Y ∈ b++.

Proof. Let {α1, . . . , αr} be the basis of Σ(gd, j) corresponding to j∗+. Recall
that for any λ ∈ j∗+,

d(λ) = min
1≤i≤r

(λ, αi)

(αi, αi)
.

Let ‖ · ‖′ be the norm on b defined by ‖∑ℓ
j=1 yjYj‖′ :=

∑ℓ
j=1 |yj| for all

y1, . . . , yℓ ∈ R. An elementary computation shows that we may take

(5.14) qZ =
q1q2
mρ

,

where mρ was defined in (3.8) and

q1 := min
{
− 〈wρ, Ỹj〉 : w ∈+W, 1 ≤ j ≤ ℓ

}
,

q2 := min
Y ∈br{0}

‖Y ‖′
‖Y ‖ . �

By (5.13) and Lemma 5.8, for any λ ∈ j∗+ and ϕ ∈ VZ,λ there is a constant
c′ϕ > 0 such that

(5.15)
∣∣ϕ
(
k(exp Y )H

)∣∣ ≤ c′ϕ e
−qZ d(λ) ‖Y ‖
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for all k ∈ K and Y ∈ b++. We now recall (see [Fl, Th. 2.6] for instance)
that the G-invariant Radon measure on X = G/H is given (up to scaling) by

(5.16) d
(
k(expY )H

)
= δ(Y ) dk dY

with respect to the polar decomposition G = K(exp b+)H, where the weight
function δ is given on b++ by

δ(Y ) =
∏

α∈Σ+(g,b)

| sinhα(Y )|dim gσθ
α | coshα(Y )|dim g−σθ

α .

When Y ∈ b++ tends to infinity,

δ(Y ) ∼ e2〈ρb,Y 〉,

where ρb ∈ b++ is half the sum of the elements of Σ+(g, b), counted with
root multiplicities. In particular, there is a constant C > 0 such that

(5.17) |δ(Y )| ≤ C e2〈ρb,Y 〉 ≤ C e2‖ρb‖ ‖Y ‖

for all Y ∈ b++. Proposition 5.1 follows from (5.15), (5.16), and (5.17),
setting

q := min
Z∈Z

qZ .

6. Construction of eigenfunctions on locally symmetric spaces

As before, X = G/H is a reductive symmetric space satisfying the rank
condition (3.3). We use the notation from Sections 3 to 5. For any Clifford–
Klein form XΓ = Γ\X and any p ≥ 1, we denote by Lp(XΓ,Mλ) the
subspace of Lp(XΓ) consisting of the weak solutions to the system (Mλ).
The group G acts on Lp(X,Mλ) by left translation: for g ∈ G and ϕ ∈
Lp(X,Mλ),

g · ϕ := ϕ(g−1 · ) ∈ Lp(X,Mλ).

The first key step in our construction of eigenfunctions on Clifford–Klein
forms of X is the following (see Definition 4.2 for the notion of sharpness).

Proposition 6.1. There is a constant RX > 0 depending only on X such
that for any c, C > 0 and any discrete subgroup Γ of G that is (c, C)-sharp
for X,

(1) the function ϕΓ : XΓ → C given by

ϕΓ(Γx) :=
∑

γ∈Γ
(γ · ϕ)(x) =

∑

γ∈Γ
ϕ(γ−1 · x)

is well-defined and continuous for all ϕ ∈ L2(X,Mλ)K with λ ∈ j∗

and d(λ) > RX/c,
(2) furthermore, ϕ 7→ ϕΓ defines a linear operator

SΓ : L2(X,Mλ)K −→ Cm(XΓ) ∩
⋂

1≤p≤∞
Lp(XΓ,Mλ)

for all λ ∈ j∗ and m ∈ N with d(λ) > (m+ 1)RX/c.
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The fact that the constant RX/c depends only on the first sharpness con-
stant c explains why we obtain a universal discrete spectrum in Theorem 1.5,
independent of the discrete subgroup Γ of L (see Proposition 4.3). We can
actually obtain a slightly weaker condition than d(λ) > (m + 1)RX/c in
Proposition 6.1 by taking into account the critical exponent δΓ of Γ (see
Subsection 6.4).

In Proposition 6.1, the function ϕΓ = SΓ(ϕ) satisfies (Mλ) (in the sense
of distributions) because ϕ does and any D ∈ D(X) is G-invariant, that is,

(6.1) D(g · ϕ) = g · (Dϕ)
for all g ∈ G. Furthermore, Proposition 6.1.(2) ensures that ϕΓ satisfies
(Mλ) in the sense of functions if λ is regular enough (i.e. d(λ) large enough).
More precisely, recall from Subsection 3.1 that D(X) is a polynomial algebra
in r := rank(G/H) generators D1, . . . ,Dr. By Proposition 6.1.(2), if we
take m to be the maximum degree of D1, . . . ,Dr, then for any λ ∈ j∗ with
d(λ) > (m + 1)R and any ϕ ∈ L2(X,Mλ)K , the function ϕΓ = SΓ(ϕ)
satisfies

(Dj)Γ ϕ
Γ = χλ(Dj)ϕ

Γ

for all 1 ≤ j ≤ r in the sense of functions.
We note that the image of L2(X,Mλ)K under the summation operator SΓ

could be trivial. In Section 8, we will discuss a condition for the nonvanishing
of SΓ (Proposition 8.1). For this we will consider the summation operator
SΓ, not only on L2(X,Mλ)K , but also on some G-translates g·L2(X,Mλ)K .

The rest of this section is devoted to the proof of Proposition 6.1, using the
geometric estimates of Section 4 (Lemma 4.6) and the analytic estimates of
Section 5 (Proposition 5.1). As a consequence of Proposition 5.1, the series∑

γ∈Γ e
−q d(λ)‖ν(γ·x)‖ will naturally appear in the proof of Proposition 6.1: it

is a pseudo-Riemannian analogue of the classical Poincaré series
∑

γ∈Γ
e−q d(λ)‖µ(γ·y)‖ =

∑

γ∈Γ
e−q d(λ) dG/K (y0,γ·y)

for y ∈ G/K.

6.1. Convergence and boundedness. Let us prove Proposition 6.1.(1).
We denote by q > 0 the constant of Proposition 5.1.

Lemma 6.2. Let Γ be a discrete subgroup of G that is (c, C)-sharp for X.

(1) For any λ ∈ j∗ with d(λ) > δΓ/qc and any ϕ ∈ L2(X,Mλ)K , the
function ϕΓ is well-defined and continuous.

(2) For any λ ∈ j∗ with d(λ) > 2δΓ/qc and any ϕ ∈ L2(X,Mλ)K , the
function ϕΓ is bounded.

Proof. Fix λ ∈ j∗ with d(λ) > δΓ/qc and ϕ ∈ L2(X,Mλ)K . We claim that

x 7−→
∑

γ∈Γ
|ϕ(γ−1 · x)|

converges uniformly on any compact subset of X. Indeed, by Proposition 5.1,
there is a constant cϕ > 0 such that for all x ∈ X,

∑

γ∈Γ
|ϕ(γ−1 · x)| ≤ cϕ

∑

γ∈Γ
e−q d(λ)‖ν(γ−1 ·x)‖,
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hence
∑

γ∈Γ
|ϕ(γ−1 · x)| ≤ cϕ

∑

n∈N
e−q d(λ)n ·#{γ ∈ Γ : n ≤ ‖ν(γ−1 · x)‖ < n+ 1}.

Fix ε > 0 such that d(λ) > δΓ+ε
qc and, as before, let x0 be the image of H in

X = G/H. By Lemma 4.6.(1), there is a constant cε(Γ) > 0 such that for
all x = g · x0 ∈ X (where g ∈ G) and all n ∈ N,

(6.2) #
{
γ ∈ Γ : ‖ν(γ−1 · x)‖ < n+ 1

}
≤ cε(Γ) e(δΓ+ε)(n+1+‖µ(g)‖)/c.

Therefore, for any compact subset C of G and any x ∈ C · x0,
∑

γ∈Γ
|ϕ(γ−1 · x)| ≤ cϕ cε(Γ) e(δΓ+ε)(1+M)/c

∑

n∈N
e−(q d(λ)− δΓ+ε

c
)n,

where

M := C +max
g∈C
‖µ(g)‖.

This series converges since d(λ) > δΓ+ε
qc , proving the claim and Lemma 6.2.(1).

The proof of Lemma 6.2.(2) is similar: we replace (6.2) by the uniform (but
slightly less good) estimate of Lemma 4.6.(2) in order to obtain a uniform
convergence on the fundamental domain D of Definition-Lemma 4.20, and
hence on the whole of X. �

6.2. Square integrability. In order to see that the image of the summation
operator SΓ is contained in L2(XΓ), it is enough to see that it is contained in
both L1(XΓ) and L∞(XΓ), by Hölder’s inequality. The case of L∞(XΓ) has
already been treated in Lemma 6.2. For L1(XΓ), we note that by Fubini’s
theorem, ∫

x∈XΓ

∣∣ϕΓ(x)
∣∣ dx =

∫

x∈X
|ϕ(x)|dx ;

using Proposition 5.1, we obtain the following.

Lemma 6.3. For any discrete subgroup Γ of G, any λ ∈ j∗ with d(λ) > 2‖ρb‖/q,
and any ϕ ∈ L2(X,Mλ)K , we have ϕΓ ∈ L1(XΓ).

Here, as in Proposition 5.1, we denote by ‖ρb‖ the norm of half the sum of
the elements of a positive system Σ+(g, b) of restricted roots of b in g, and
q > 0 is again the constant of Proposition 5.1.

Hölder’s inequality then gives the following.

Corollary 6.4. Let Γ be a discrete subgroup of G that is (c, C)-sharp for X.
For any λ ∈ j∗ with

d(λ) >
2

q
max

(
δΓ/c, ‖ρb‖

)

and any ϕ ∈ L2(X,Mλ)K , we have ϕΓ ∈ Lp(XΓ) for all 1 ≤ p ≤ ∞; in
particular, ϕΓ ∈ L2(XΓ).
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6.3. Regularity. We now complete the proof of Proposition 6.1 by exam-
ining the regularity of the image of SΓ. We set

eG := max
α∈Σ(g,a)

‖α‖.

Lemma 6.5. Let Γ be a discrete subgroup of G that is (c, C)-sharp for X.
For any m ∈ N and any λ ∈ j∗ with d(λ) > (δΓ + eGm)/qc,

SΓ
(
L2(X,Mλ)K

)
⊂ Cm(XΓ).

The idea of the proof of Lemma 6.5 is to control the decay at infinity of
the derivatives of the elements of L2(X,Mλ)K by using the action of the
enveloping algebra U(gC) by differentiation on the left, given by

(6.3) (Y · ϕ)(x) = d

dt

∣∣∣
t=0

ϕ
(
exp(−tY )·x

)

for all Y ∈ g, all ϕ ∈ L2(X,Mλ)K , and all x ∈ X. This idea works as a
consequence of Fact 5.7 and of the following well-known fact.

Fact 6.6 (See [Ba]). For any λ ∈ j∗C, the subspace L2(X,Mλ)K of A(X) is
stable under the action of g by differentiation.

Proof of Lemma 6.5. Consider λ ∈ j∗ with d(λ) > δΓ/qc and ϕ ∈ L2(X,Mλ)K .
Let {Um(gC)}m∈N be the natural filtration of the enveloping algebra U(gC).
Then any u ∈ Um(gC) gives rise to a differential operator on X of degree
≤ m by (6.3). Conversely, any differential operator on X of degree ≤ m
is obtained as a linear combination of differential operators induced from
Um(gC) with coefficients in C∞(X). Therefore, in order to prove that ϕΓ is
Cm, it is sufficient to show that for any differential operator D on X that is
induced from an element u ∈ Um(gC),

x 7−→
∑

γ∈Γ
|D(γ · ϕ)(x)|

converges uniformly on all compact subsets of X. As before, let x0 be the
image of H in X = G/H. In view of the formula

D(γ · ϕ)(x) =
(
Ad(γ−1)(u) · ϕ

)
(γ−1 · x),

we only need to prove the existence of a constant R ≥ 0 such that for any
integer m ≥ 1, any Y ∈ g⊗m, and any compact subset C of G,

x 7−→
∑

γ∈Γ

∣∣(Ad(γ)(Y ) · ϕ
)
(γ · x)

∣∣

converges uniformly on C · x0 whenever d(λ) > (m+ 1)R.
We fix a K-invariant inner product on g, extend it to g⊗m, and write

the corresponding Euclidean norms as ‖ · ‖g and ‖ · ‖g⊗m , respectively. Let
‖ · ‖End(g) be the operator norm on g. We observe that

‖T (Y )‖g⊗m ≤ ‖T‖mEnd(g) ‖Y ‖g⊗m

for all T ∈ End(g) and Y ∈ g⊗m, where T acts on g⊗m diagonally. Moreover,

(6.4) log ‖Ad(g)‖End(g) ≤ eG ‖µ(g)‖
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for all g ∈ G: indeed, the Cartan decomposition G = KAK holds and the
norm ‖ · ‖g is K-invariant. By Proposition 5.1 and Fact 6.6, we may define
a function ℓ : g⊗m → R≥0 by

ℓ(Y ) = sup
x∈X
|(Y · ϕ)(x)| eq d(λ)‖ν(x)‖.

It satisfies
ℓ(tY + t′Y ′) ≤ |t| ℓ(Y ) + |t′| ℓ(Y ′)

for all t, t′ ∈ C and Y, Y ′ ∈ g⊗m. Taking a (finite) basis of g⊗m, this implies
the existence of a constant cm > 0 such that

ℓ(Y ) ≤ cm ‖Y ‖g⊗m

for all Y ∈ g⊗m. Then for any γ ∈ Γ, any Y ∈ g⊗m, and any x ∈ X,
∣∣(Ad(γ)(Y ) · ϕ

)
(γ · x)

∣∣ ≤ cm ‖Ad(γ)‖mEnd(g) ‖Y ‖g⊗m e−q d(λ)‖ν(γ·x)‖.

Therefore we only need to prove the existence of a constant R ≥ 0 such that
for any integer m ∈ N and any compact subset C of G,

x 7−→
∑

γ∈Γ
‖Ad(γ)‖mEnd(g) e−q d(λ)‖ν(γ·x)‖

converges uniformly on C · x0 whenever d(λ) > (m + 1)R. Let us fix an
integer m ∈ N and a compact subset C of G. By (4.12),

‖ν(γ · x)‖ ≥ c ‖µ(γ)‖ −M
for all γ ∈ Γ and x ∈ C · x0, where

M = C +max
g∈C
‖µ(g)‖.

Using (6.4), we obtain that for all γ ∈ Γ and x ∈ C · x0,
∑

γ∈Γ
‖Ad(γ)‖mg e−q d(λ)‖ν(γ·x)‖ ≤ eq d(λ)M

∑

γ∈Γ
e−(q d(λ)c−eGm) ‖µ(γ)‖.

This series converges as soon as

d(λ) >
δΓ + eGm

qc
. �

6.4. The constant RX in Proposition 6.1. Lemma 6.2, Corollary 6.4,
and Lemma 6.5 show that the summation operator

SΓ : L2(X,Mλ)K −→
⋂

1≤p≤∞
Lp(XΓ,Mλ)

is well-defined and with values in Cm(XΓ) as soon as

(6.5) d(λ) >
1

q
max

(2δΓ
c
, 2‖ρb‖,

δΓ + eGm

c

)
.

We note that

• δΓ ≤ 2‖ρa‖ (Observation 4.19),
• ‖ρb‖ ≤ ‖ρa‖/c by Remark 6.7 below and the fact that c ≤ 1,
• eG ≤ 2‖ρa‖ by definition of eG.
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Therefore (6.5) is satisfied as soon as d(λ) > (m+ 1)RX/c for

(6.6) RX :=
4‖ρa‖
q

.

Remark 6.7. Suppose that the positive systems Σ+(g, a) defining ρa and
Σ+(g, b) defining ρb are compatible, in the sense that the restriction from a

to b maps Σ+(g, a) to Σ+(g, b) ∪ {0}. Then ρb is the restriction of ρa to b,
i.e. the orthogonal projection of ρa to b∗. Thus

‖ρb‖ = ‖ρa‖ · cos(Φ),
where Φ ∈ [0, π2 ) is the angle between ρa and ρb. In particular ‖ρb‖ ≤ ‖ρa‖.
This inequality is true in general since the norms ‖ρa‖ and ‖ρb‖ do not
depend on the choice of the positive systems.

7. An estimate for certain eigenfunctions near the origin

Let Γ be a discrete subgroup of G that is sharp for the reductive symmetric
space X = G/H satisfying the rank condition (3.3). In Proposition 6.1, we
saw that the summation operator

SΓ : L2(X,Mλ)K −→
⋂

1≤p≤∞
Lp(XΓ,Mλ)

mapping ϕ to ϕΓ =
(
Γx 7→∑

γ∈Γ (γ ·ϕ)(x)
)

is well-defined for all λ ∈ j∗ with
d(λ) sufficiently large. In Subsection 8.1, we are similarly going to define a
summation operator SΓ on any G-translate g·L2(X,Mλ)K . Our goal will be
to show that SΓ is nonzero on some G-translate g·L2(X,Mλ)K for infinitely
many joint eigenvalues λ ∈ j∗, namely for all

(7.1) λ ∈ j∗+ ∩
(
2ρc − ρ+ ΛΓ∩Z(Gs)

)

with d(λ) large enough (Proposition 8.1). Here j∗+ and ρ are defined with re-
spect to some choice of a positive system Σ+(gC, jC) containing the fixed posi-
tive system Σ+(kC, jC) of Subsection 3.3; the set ΛΓ∩Z(Gs) is the Z-submodule
of Λ of finite index that was defined in (3.6).

A similar argument to the one used in Section 6 for the convergence of ϕΓ

would show that for a fixed λ satisfying (7.1) with d(λ) large enough, SΓ′ is
nonzero for any finite-index subgroup Γ′ of Γ such that the index [Γ : Γ′] is
large enough, where “large enough” depends on Γ and λ. However, we wish
to prove that SΓ is nonzero without passing to any subgroup; therefore we
need to carry out some more delicate estimates in the summation process.

In preparation for Proposition 8.1, the goal of the current section is to
establish the following analytic estimate, where, as before, x0 denotes the
image of H in X = G/H.

Proposition 7.1. Under the rank condition (3.3), there exists q′ > 0 with
the following property: for any λ ∈ j∗+ ∩ (2ρc − ρ+ Λ+), there is a function
ψλ ∈ VZ,λ ⊂ L2(X,Mλ)K such that ψλ(x0) = 1, such that

(7.2) |ψλ(x)| ≤ cosh(q′‖ν(x)‖)−d(λ+ρ)

for all x ∈ X, and such that for any finite subgroup J of the center Z(K) of K
we have ψλ(g · x0) = 1 for all g ∈ J if λ ∈ 2ρc − ρ+ΛJ .
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Here Z ∈ Z denotes the closed Hd-orbit through the origin in the flag
variety Pd ≃ Gd/P d, where P d is the minimal parabolic subgroup of Gd

corresponding to the choice of the positive system Σ+(gC, jC) defining j∗+
and ρ, using (5.6). We refer to Subsection 5.3 (and more precisely to (5.10))
for the definition of VZ,λ.

The decay at infinity (i.e. when ‖ν(x)‖ → +∞) of the elements of L2(X,Mλ)K
was already discussed in Section 5. The point of Proposition 7.1 is to control
the behavior of certain eigenfunctions ψλ, not only at infinity, but also near
the origin x0 ∈ X.

We actually prove that the estimate (7.2) holds for the Flensted-Jensen
eigenfunction ψλ = ψλ,Z , given by (7.3) below. In Section 8 we shall consider
some G-translates of ψλ,Z and apply the analytic estimate of Proposition 7.1
in connection with some geometric estimates near the origin (Propositions
8.9 and 8.14).

7.1. Flensted-Jensen’s eigenfunctions. Before we prove Proposition 7.1,
we recall the definition of the Flensted-Jensen eigenfunction ψλ = ψλ,Z , in
the spirit of Section 5. We note that we may assume that H is connected, be-
cause otherwise the Flensted-Jensen function ψλ ∈ L2(G/H)(⊂ L2(G/H0))
is the average of finitely many Flensted-Jensen functions in L2(G/H0). We
will assume that H is connected for the rest of the section.

We retain the notation of Sections 3 and 5. As explained above, in the
whole section we fix a positive system Σ+(gC, jC) ≃ Σ+(gd, j) containing the
fixed positive system Σ+(kC, jC) ≃ Σ+(hd, j) of Subsection 3.3; it determines
a positive Weyl chamber j∗+ and an element ρ ∈ j∗+. Let P d be the corre-
sponding minimal parabolic subgroup of Gd. We denote by Z ∈ Z the closed
Hd-orbit through the origin in Gd/P d. For λ ∈ j∗+, we set µλ := λ+ ρ− 2ρc.
The condition on λ ∈ j∗+ that appears in Proposition 7.1 is µλ ∈ Λ+ (i.e.
(5.12) with w = e).

Let δZ be the (Kd ∩Hd)-invariant probability measure supported on Z.
For any λ ∈ j∗C, the Gd-equivariant line bundle Lλ = Gd×P d ξρ−λ over Gd/P d

is trivial as a Kd-equivariant line bundle over Kd/Kd ∩ P d(≃ Gd/P d), be-
cause the restriction of ξρ−λ to Kd ∩ P d is trivial. Thus δZ can be seen
as an element of B(Gd/P d,Lλ) via the isomorphism B(Kd/Kd ∩ P d) ≃
B(Gd/P d,Lλ). Flensted-Jensen [Fl] proved that if λ ∈ j∗+ satisfies µλ ∈ Λ+,
then δZ is K-finite (see Remark 5.3) and generates the irreducible represen-
tation of hd with highest weight µλ. The Poisson transform Pλ(δZ) is also
K-finite and moreover, viewed as an element of A(Gd/Kd,Mλ)K , it belongs
to the image of the homomorphism η of (5.3). He then set

(7.3) ψλ,Z := η−1
(
Pλ(δZ)

)
∈ A(X,Mλ)K .

We shall prove that this function ψλ = ψλ,Z satisfies (7.2). We note that
our estimate (7.2) is stronger, for this specific ψλ, than what is given in
the general theory of [Fl, MO, Os2], as it is both uniform on the spectral
parameter λ and uniform on x ∈ X near the origin.

7.2. Spherical functions on compact symmetric spaces. We first recall
some basic results concerning spherical functions on the compact symmetric
space XU = GU/HU (see Subsection 5.2 for notation). In Subsection 7.3,
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some of these results will actually be used, not only for XU = GU/HU , but
also for the compact symmetric space K/H ∩K.

Let gU = hU + qU be the decomposition of gU into eigenspaces of dσ
with respective eigenvalues +1 and −1. We note that j is a maximal abelian
subspace of qU . Similarly to (3.4), let Λ+(GU/HU ) be the set of highest
weights of finite-dimensional irreducible representations of GU with nonzero
HU -invariant vectors; we see it as a subset of j∗C by Remark 3.5. We note
that XU has the same complexification as the Riemannian symmetric space
of the noncompact type Xd = Gd/Kd. The Borel–Weil theorem (see [Kn,
Th. 5.29]) implies that

(7.4) Λ+(GU/HU ) ≃ {λ ∈ j∗C : ξλ extends holomorphically to GC},
where ξλ : Gd → C is defined by (5.1). If Oalg(GC/HC) denotes the ring of
regular functions on GC/HC, endowed with the action of GC by left transla-
tion, then we have an isomorphism

Oalg(GC/HC) ≃
⊕

λ∈Λ+(GU/HU )

Vλ

of GU -modules, where (πλ, Vλ) is the finite-dimensional irreducible represen-
tation of GU with highest weight λ. A highest weight vector of (πλ, Vλ) is
given by the holomorphic extension of ξ∨λ to GC (see Subsection 5.1), which
is denoted by the same symbol ξ∨λ . Let {α1, . . . , αr} be the basis of Σ(gC, jC)
corresponding to our choice of Σ+(gC, jC), and let ω1, . . . , ωr ∈ j∗+ be defined
by

(7.5)
(αi, ωj)

(αi, αi)
= δi,j

for all 1 ≤ i, j ≤ r, so that

(7.6) λ =
r∑

j=1

(λ, αj)

(αj , αj)
ωj

for all λ ∈ j∗; we note that ωj is twice the usual fundamental weight associ-
ated with αj . If GC is simply connected, then the Cartan–Helgason theorem
(see [Wa, Th. 3.3.1.1]) shows that

(7.7) Λ+(GU/HU ) =

r⊕

j=1

Nωj.

For any λ ∈ Λ+(GU/HU ), we fix a GU -invariant inner product (·, ·) on Vλ
with (ξ∨λ , ξ

∨
λ ) = 1. The following easy observation and lemma will be useful

in the next subsection.

Observation 7.2. For any g ∈ Gd,

ξλ(g)
2 =

(
πλ(g)ξ

∨
λ , πλ(g)ξ

∨
λ

)
.

Proof. We consider the Iwasawa decomposition Gd = Kd(exp j)Nd of Sub-
section 5.1. For any g = k(exp ζ(g))n ∈ Kd(exp j)Nd = Gd,

πλ(g)ξ
∨
λ = e〈λ,ζ(g)〉 πλ(k)ξ

∨
λ = ξλ(g) πλ(k)ξ

∨
λ .
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Since Kd = HU is contained in GU and (·, ·) is GU -invariant, we obtain
(
πλ(g)ξ

∨
λ , πλ(g)ξ

∨
λ

)
= ξλ(g)

2. �

Lemma 7.3. For λ ∈ Λ+(GU/HU ), the function ξλ ∈ O(GC) satisfies

|ξλ(g)| ≤ 1 for all g ∈ GU .

Proof. By Observation 7.2,

ξλ(g)
2 =

(
πλ(σ(g)

−1g)ξ∨λ , ξ
∨
λ

)
for all g ∈ Gd.

Since both sides are holomorphic functions on GC, this holds for all g ∈ GC.
Applying the Cauchy–Schwarz inequality, we get |ξλ(g)| ≤ 1 on GU . �

7.3. Proof of Proposition 7.1 for the Flensted-Jensen functions. We
now go back to the setting of Subsection 7.1. When λ ∈ j∗+ satisfies µλ ∈ Λ+,
the function ψλ ∈ VZ,λ of (7.3) is well-defined and extends uniquely to a
right-HC-invariant function on KCB+HC [Fl]; we keep the notation ψλ for
this extension. Directly from the definition, we have

(7.8) ψλ(ky) =

∫

H∩K
ξµλ

(kℓ) ξ−λ−ρ(y
−1ℓ) dℓ

for all k ∈ KC and y ∈ Gd [Fl, (3.13)], where ξ−λ−ρ : Gd → C is given by
(5.1) and ξµλ

: KC → C is the holomorphic extension, given by (7.4) for
the compact symmetric space K/K ∩H instead of GU/HU , of the function
ξµλ

: Hd → C given by (5.1) with respect to the Iwasawa decomposition

(7.9) Hd = (Kd ∩Hd)(exp j)(Nd ∩Hd).

We note that the restriction to Hd of any “ξ” function for Gd coincides
with the corresponding “ξ” function for Hd, which is why we use the same
notation. The fact that (7.9) is an Iwasawa decomposition of Hd relies on
the rank condition (3.3).

In order to prove Proposition 7.1, we first observe the following.

Lemma 7.4. Let J be a finite subgroup of the center Z(K) of K. For λ ∈ j∗+
with µλ ∈ Λ+ ∩ ΛJ , the Flensted-Jensen function ψλ satisfies ψλ(g · x0) = 1
for all g ∈ J .

Proof. As in Subsection 3.3, we can see the highest weight of any irreducible
representation of K with nonzero (K ∩H)-fixed vectors as an element of j∗+
(see Remark 3.5). Let λ ∈ j∗+ satisfy µλ ∈ Λ+. By construction, the highest
weight of the K-span of ψλ|K/K∩H ∈ L2(K/K ∩H) is µλ; this can be seen
directly on (7.8), using the fact that [jC, hC ∩ kC] ⊂ hC ∩ kC. If µλ ∈ ΛJ , then
by definition g · ψλ|K/K∩H = ψλ|K/K∩H for all g ∈ J (where g acts by left
translation); in particular, ψλ(g · x0) = ψλ(x0) = 1 for all g ∈ J . �

Proposition 7.1 for the Flensted-Jensen function ψλ ∈ VZ,λ is an immedi-
ate consequence of (7.8), of Lemma 7.4, and of the following lemma.

Lemma 7.5. Let λ ∈ j∗+ satisfy (5.12). Then

(1) |ξµλ
(k)| ≤ 1 for all k ∈ K;

(2) there exists q′ > 0 such that for all Y ∈ b and ℓ ∈ H ∩K,

|ξ−λ−ρ(exp(−Y )ℓ)| ≤ cosh(q′‖Y ‖)−d(λ+ρ).
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Proof of Lemma 7.5. Lemma 7.5.(1) follows immediately from Lemma 7.3
applied to the compact symmetric space K/H ∩K instead of GU/HU .

To prove Lemma 7.5.(2), we may assume that GC is simply connected,
because the Iwasawa projection for Gd is compatible with that of any cov-
ering of Gd. Then ωj ∈ Λ+(GU/HU ) for all 1 ≤ j ≤ r by (7.7). To simplify
notation, we write (πj , Vj , ξ

∨
j ) for (πωj , Vωj , ξ

∨
ωj
) and ‖ · ‖j for the Euclidean

norm on Vj corresponding to the GU -invariant inner product (·, ·) of Sub-
section 7.2. Then (7.6) and Observation 7.2 imply that for all λ ∈ j∗ and
g ∈ Gd,

|ξ−λ−ρ(g)| = e−〈λ+ρ,ζ(g)〉 =
r∏

j=1

‖πj(g)ξ∨j ‖
− (λ+ρ,αj)

(αj,αj)

j ≤
r∏

j=1

‖πj(g)ξ∨j ‖−d(λ+ρ)
j .

Therefore, in order to prove Lemma 7.5.(2), we only need to prove the exis-
tence of a constant q′ > 0 such that

(7.10) min
1≤j≤r

‖πj((exp Y )ℓ)ξ∨j ‖j ≥ 1

and

(7.11) max
1≤j≤r

‖πj((expY )ℓ)ξ∨j ‖j ≥ cosh(q′‖Y ‖)

for all Y ∈ b and ℓ ∈ H ∩ K. For any 1 ≤ j ≤ r, the Lie algebra b acts
semisimply on Vj with real eigenvalues, hence there are an orthonormal basis
(vij)1≤i≤dimVj

of Vj and linear forms βij ∈ b∗, 1 ≤ i ≤ dimVj, such that

πj(exp Y ) vij = e〈βij ,Y 〉 vij

for all Y ∈ b and 1 ≤ i ≤ dimVj . Write the matrix coefficients {bij} for the
restriction πj |H∩K as

πj(ℓ) ξ
∨
j =

dimVj∑

i=1

bij(ℓ) vij (ℓ ∈ H ∩K),

where
∑dimVj

i=1 |bij(ℓ)|2 = 1 since πj|H∩K is unitary. By [Fl, Lem. 4.6],

‖πj((exp Y )ℓ)ξ∨j ‖2j =
dimVj∑

i=1

|bij(ℓ)|2 cosh〈2βij , Y 〉

for all 1 ≤ j ≤ r, all Y ∈ b, and all ℓ ∈ H ∩K, hence (7.10) holds. Let us
prove (7.11). By a compactness argument [Fl, Th. 4.8], there is a constant
ε > 0 with the following property: for any Y ∈ b and ℓ ∈ H ∩K, there exist
j ∈ {1, . . . , r} and i0 ∈ {1, . . . ,dimVj} such that

(7.12) 〈βi0j , Y 〉 ≥ ε‖Y ‖ and |bi0j(ℓ)| ≥ ε.
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For Y ∈ b and ℓ ∈ H ∩K, let (i0, j) be as in (7.12). Then

‖πj((exp Y )ℓ)ξ∨j ‖2j =
dimVj∑

i=1

|bij(ℓ)|2 cosh〈2βij , Y 〉

≥ |bi0j(ℓ)|2 cosh〈2βi0j, Y 〉+
∑

i 6=i0

|bij(ℓ)|2

≥ ε2 cosh(2ε‖Y ‖) + (1− ε2).
By using the general inequality

t cosh(x) + (1− t) ≥
(
cosh

tx

2

)2
,

which holds for any 0 < t ≤ 1 and x ∈ R, we obtain

‖πj((exp Y )ℓ)ξ∨j ‖j ≥ cosh(ε3‖Y ‖).
This proves (7.11) for q′ := ε3 and completes the proof of Lemma 7.5. �

8. Nonvanishing of eigenfunctions on locally symmetric spaces

As explained at the beginning of Section 7, our goal now is to complete
the proof of the theorems and propositions of Sections 1 to 3 by establishing
the following key proposition.

As in Subsection 3.3, we denote by Gc (resp. Lc) the maximal compact
normal subgroup of the reductive group G (resp. L) and by Z(Gs) the center
of the commutator subgroup of G. The Z-module ΛΓ∩Z(Gs) for Γ ⊂ G has
been defined in (3.6). We choose a positive system Σ+(gC, jC) containing
the fixed positive system Σ+(kC, jC) of Subsection 3.3; this defines a positive
Weyl chamber j∗+ and an element ρ ∈ j∗+ as in Subsection 3.3.

Proposition 8.1. Suppose that G is connected, that H does not contain any
simple factor of G, and that the rank condition (3.3) holds.

(1) (Sharp Clifford–Klein forms)
For any sharp Clifford–Klein form XΓ of X with Γ ∩ Gc ⊂ Z(Gs),

there is a constant R ≥ 0 such that for any λ ∈ j∗+∩(2ρc−ρ+ΛΓ∩Z(Gs))
with d(λ) > R, the summation operator SΓ is well-defined and nonzero
on g ·L2(X,Mλ)K for some g ∈ G.

(2) (Uniformity for standard Clifford–Klein forms)
Let L be a reductive subgroup of G, with a compact center and acting
properly on X. There is a constant R > 0 with the following property:
for any discrete subgroup Γ of L with Γ∩Lc ⊂ Z(Gs) (in particular,
for any torsion-free discrete subgroup Γ of L) and for any λ ∈ j∗+ ∩
(2ρc − ρ+ ΛΓ∩Z(Gs)) with d(λ) > R, the operator SΓ is well-defined
and nonzero on g ·L2(X,Mλ)K for some g ∈ G.

(3) (Stability under small deformations)
Let L be a reductive subgroup of G of real rank 1, acting properly
on X, and let Γ be a convex cocompact subgroup of L (for instance
a uniform lattice) with Γ ∩ Gc ⊂ Z(Gs). Then there are a constant
R > 0 and a neighborhood U ⊂ Hom(Γ, G) of the natural inclusion
such that for any ϕ ∈ U , the group ϕ(Γ) acts properly discontinuously

on X and for any λ ∈ j∗+ ∩ (2ρc − ρ+ ΛΓ∩Z(Gs)) with d(λ) > R, the



DISCRETE SPECTRUM FOR LOCALLY SYMMETRIC SPACES I 56

operator Sϕ(Γ) is well-defined and nonzero on g ·L2(X,Mλ)K for
some g ∈ G.
If Γ ∩ Lc ⊂ Z(Gs) (for instance if Γ is torsion-free or if L is simple
with Z(L) ⊂ Z(Gs)), then we may take the same R (independent
of Γ) as in (2), up to replacing U by some smaller neighborhood.

Recall that L2(X,Mλ) is the space of L2-weak solutions to the system
(Mλ) of Subsection 3.3 and L2(X,Mλ)K is the subspace of K-finite func-
tions. The group G acts on L2(X,Mλ) by left translation (3.9). We define a
summation operator SΓ on any G-translate g·L2(X,Mλ)K by the same for-
mula as in Proposition 6.1: see Subsection 8.1 below. The fact that we need
to consider G-translates is linked to the geometric issue of distribution of Γ-
orbits in X and in the Riemannian symmetric space G/K (see Remark 8.4,
together with Propositions 8.9 and 8.14).

As we shall see in Subsection 8.5 (Formulas (8.9) and (8.10)), the con-
stant R of Proposition 8.1.(1) can be expressed in terms of the sharpness
constants (c, C) of Γ and of the minimal nonzero value of ‖ν‖ on the Γ-orbit
Γ·x0. Recall that ‖ν‖ measures the “pseudo-distance to the origin x0”.

We note that the technical assumptions of Proposition 8.1 are not very
restrictive: Remarks 3.9 also apply in this context.

Remark 8.2. We can make Proposition 8.1.(1), (2), and (3) more precise
with respect to G-translation: we actually prove that

(a) for d(λ) > R, the operator SΓ is well-defined on g ·L2(X,Mλ)K for
all g ∈ G;

(b) there is an element g ∈ G such that SΓ is nonzero on g·L2(X,Mλ)K
for all λ with d(λ) > R.

Statement (a) follows from Proposition 6.1 and from the fact that the first
sharpness constant is invariant under conjugation (Proposition 4.3), using
Remark 8.4 below. For Statement (b), we refer to Subsection 8.5.

Remark 8.3. We can make Proposition 8.1 more precise in terms of discrete
series representations for X. Recall from Fact 5.5 that L2(X,Mλ)K is the
direct sum of finitely many irreducible (g,K)-modules VZ,λ, where Z ∈ Z.
We have given two combinatorial descriptions of the set Z.

• In terms of positive systems: by (5.6), any Z ∈ Z corresponds to a
positive system Σ+(gC, jC), which determines a positive Weyl cham-
ber j∗+ and an element ρ ∈ j∗+. We prove that SΓ is well-defined and
nonzero on g ·VZ,λ ⊂ g ·L2(X,Mλ)K for any λ ∈ j∗+ with d(λ) > R
satisfying

µλ = λ+ ρ− 2ρc ∈ ΛΓ∩Z(Gs).

• In terms of Weyl group elements: fix a positive system Σ+(gC, jC)
containing the positive system Σ+(kC, jC) of Subsection 3.3; this de-
termines a positive Weyl chamber j∗+ and an element ρ ∈ j∗+. By
(5.9), any Z ∈ Z corresponds to an element w ∈ W (Hd, Gd), where
W (Hd, Gd) ⊂W is a complete set of representative for the left coset
space WH∩K\W . We prove that SΓ is well-defined and nonzero on
g · VZ,λ ⊂ g ·L2(X,Mλ)K for any λ ∈ j∗+ with d(λ) > R satisfying

µwλ = w(λ+ ρ)− 2ρc ∈ ΛΓ∩Z(Gs).
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Thus we get different integrality conditions on λ depending on the element
Z ∈ Z we are considering. These conditions might not be all equivalent;
it is enough for λ to satisfy one of them in order to belong to the discrete
spectrum Specd(XΓ).

8.1. The summation operator SΓ on G-translates of L2(X,Mλ)K . Let
XΓ be a Clifford–Klein form of X. We define the summation operator SΓ on
any G-translate g ·L2(X,Mλ)K as follows.

For g ∈ G, let ℓg : x 7→ g · x be the translation by g on X. The following
diagram commutes, where pΓ : X → XΓ is the natural projection.

X

pΓ

��

ℓg

∼
// X

pgΓg−1

��

x
_

��

� // g · x
_

��

XΓ
∼ // XgΓg−1 Γx � // (gΓg−1) (g · x)

Since D(X) consists of G-invariant differential operators, we obtain the fol-
lowing commutative diagram for smooth functions satisfying (Mλ).

C∞(X,Mλ) C∞(X,Mλ)
ℓ∗g

∼
oo

C∞(XΓ,Mλ)

p∗Γ

OO

C∞(XgΓg−1 ,Mλ)
∼oo

p∗
gΓg−1

OO

The space L2(X,Mλ)K is contained in C∞(X,Mλ) (see Subsection 5.3),
and

(8.1) ℓ∗g L
2(X,Mλ)K = L2(X,Mλ)g−1Kg.

For ϕ ∈ ℓ∗g L2(X,Mλ)K ⊂ C∞(X,Mλ), we set

SΓ(ϕ) = ϕΓ :=

(
Γx 7−→

∑

γ∈Γ
ϕ(γ−1 · x)

)
;

this is the same formula as the one defining SΓ on L2(X,Mλ)K in Propo-
sition 6.1. Then SΓ is well-defined on ℓ∗g L

2(X,Mλ)K if and only if SgΓg−1

is well-defined on L2(X,Mλ)K , and in this case the following diagram com-
mutes.

C∞(X,Mλ) ⊃ ℓ∗g L
2(X,Mλ)K

SΓ

��

L2(X,Mλ)K ⊂ C∞(X,Mλ)
ℓ∗g

∼
oo

SgΓg−1

��

L2(XΓ,Mλ) L2(XgΓg−1 ,Mλ)
∼oo

We note that

(8.2) g · L2(X,Mλ)K = ℓ∗g−1

(
L2(X,Mλ)K

)
.

In particular, we will use the following.



DISCRETE SPECTRUM FOR LOCALLY SYMMETRIC SPACES I 58

Remark 8.4. The operator SΓ is nonzero on g · L2(X,Mλ)K if and only if
the operator Sg−1Γg is nonzero on L2(X,Mλ)K .

The reason why we consider G-translates g ·L2(X,Mλ)K to construct
nonzero eigenfunctions on XΓ is precisely that we want to allow ourselves to
replace the groups Γ by conjugates g−1Γg (see Propositions 8.9 and 8.14).

8.2. Nonvanishing on sharp Clifford–Klein forms. We adopt the first
point of view described in Remark 8.3: for the whole section we choose a
positive system Σ+(gC, jC) containing the fixed positive system Σ+(kC, jC)
of Subsection 3.3; this defines a positive Weyl chamber j∗+ and an element
ρ ∈ j∗+ as in Subsection 3.3, as well as an element Z ∈ Z by (5.6). The key
ingredient in the proof of Proposition 8.1 is the following lemma.

Lemma 8.5. Assume that the rank condition (3.3) holds. For c, C, r > 0,
let Γ be a discrete subgroup of G such that:

(1) Γ is (c, C)-sharp for X,
(2) inf{‖ν(x)‖ : x ∈ Γ·x0 and x /∈ Xc} ≥ r,
(3) Γ·x0 ∩Xc ⊂ Z(Gs)·x0.

For any λ ∈ j∗+ ∩ (2ρc − ρ+ ΛΓ∩Z(Gs)) with d(λ) > max(mρ, RX/c) and

d(λ+ ρ) >
4‖ρa‖(r + C) + log

(
2cG #(Γ ∩K)

)

c log cosh(q′r)
,

the operator SΓ : L2(X,Mλ)K → L2(XΓ,Mλ) is well-defined and any func-
tion ψλ ∈ VZ,λ ⊂ L2(X,Mλ)K as in Proposition 7.1 satisfies SΓ(ψλ)(x0) 6= 0.

Let us recall earlier notation: ρa ∈ a is half the sum of the elements of
Σ+(g, a), counted with root multiplicities, and mρ, cG, RX , and q′ are the
constants of (3.8), Observation 4.19, Proposition 6.1, and Proposition 7.1
respectively. We denote by x0 the image of H in X = G/H and keep the
same notation for its image in XΓ = Γ\X for any Clifford–Klein form XΓ.
The set Xc = K ·x0 consists of the points x in X whose “pseudo-distance to
the origin” ‖ν(x)‖ is zero; it is a maximal compact subsymmetric subspace
of X, and identifies with K/K ∩H. Remark 4.5 implies the following.

Remark 8.6. For any discrete subgroup Γ of G acting properly discontin-
uously on X,

inf
{
‖ν(x)‖ : x ∈ Γ·x0 and x /∈ Xc

}
> 0.

Remark 8.7. For any λ ∈ j∗+ we have d(λ+ ρ) ≥ d(λ), hence for R′ > 0 the
condition d(λ+ ρ) > R′ is satisfied as soon as d(λ) > R′.

Proof of Lemma 8.5. Let λ ∈ j∗+∩ (2ρc−ρ+ΛΓ∩Z(Gs)). Assume that d(λ) >
max(mρ, RX/c); then the summation operator

SΓ : L2(X,Mλ)K −→ L2(XΓ,Mλ)

is well-defined by Proposition 6.1. Assume moreover that d(λ) ≥ mρ; then
λ ∈ 2ρc − ρ + Λ+ by Lemma 5.6 and we can apply Proposition 7.1. The
function ψλ of Proposition 7.1 has module < 1 outside of Xc. In order to
prove that ψΓ

λ(x0) 6= 0, we naturally split the sum into two: on the one hand
the sum over the elements γ ∈ Γ with γ ·x0 ∈ Xc, on the other hand the sum
over the elements γ ∈ Γ with γ · x0 /∈ Xc. We control the first summand by
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using the assumption (3) that the Γ-orbit of Γ·x0 meets Xc only inside the
finite set Z(Gs)·x0, where ψλ takes value 1: by Lemma 7.4,

∣∣∣∣∣∣
∑

γ∈Γ, γ·x0∈Xc

ψλ(γ ·x0)

∣∣∣∣∣∣
= #{γ ∈ Γ : γ ·x0 ∈ Xc} ≥ 1.

Therefore, in order to prove that ψΓ
λ (x0) 6= 0, it is sufficient to prove that

∑

γ∈Γ, γ·x0 /∈Xc

|ψλ(γ ·x0)| < 1.

The estimate (7.2) and the assumption (2) on the “pseudo-distance to the
origin” ‖ν‖ imply

∑

γ∈Γ, γ·x0 /∈Xc

|ψλ(γ ·x0)|

≤
+∞∑

n=1

cosh(q′rn)−d(λ+ρ) ·#{γ ∈ Γ : nr ≤ ‖ν(γ)‖ < (n+ 1)r},

where the constant q′ > 0 of Proposition 7.1 depends only on X. We now
use the assumption (1) that Γ is (c, C)-sharp. By Lemma 4.6.(3),

#{γ ∈ Γ : ‖ν(γ)‖ < (n+ 1)r} ≤ #(Γ ∩K) · cG e2‖ρa‖
(n+1)r+C

c ,

where the constant cG > 0 of Observation 4.19 depends only on G. Thus
∑

γ∈Γ, γ·x0∈Xc

|ψλ(γ ·x0)|

≤ #(Γ ∩K) · cGe
2‖ρa‖(r+C)

c ·
+∞∑

n=1

cosh(q′rn)−d(λ+ρ) · e(
2‖ρa‖r

c
)n,

and we conclude using the following lemma. �

Lemma 8.8. For any S, T, U > 0 with S ≥ 1,

S
+∞∑

n=1

cosh(Tn)−d eUn < 1

for all d > R := log(2S)+U
log coshT .

Proof. It is sufficient to prove that for all d > R and all n ≥ 1,

S cosh(Tn)−d eUn < 2−n,

or equivalently

d >
logS + n (log 2 + U)

log cosh(Tn)
.

One easily checks that for all n ≥ 1,

logS + n (log 2 + U) ≤ n (log(2S) + U)

and
log cosh(Tn) ≥ n log cosh T. �
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8.3. Points near the origin in the orbit of a sharp discrete group.

In this subsection and the next one we do not need the rank condition (3.3).
In Lemma 8.5 we assumed that Γ·x0 ∩Xc ⊂ Z(Gs)·x0, where Xc = K ·x0

is the maximal compact subsymmetric space of X consisting of the points x
whose “pseudo-distance to the origin” ‖ν(x)‖ is zero and Z(Gs) is the center
of the commutator subgroup of G. We now prove the following, where Gc

denotes the maximal compact normal subgroup of G (as in Section 3.3) and
GH the maximal normal subgroup of G contained in H.

Proposition 8.9. For any discrete subgroup Γ of G acting properly discon-
tinuously on X, there is an element g ∈ G such that g−1γg · x0 /∈ Xc for all
γ ∈ ΓrGcGH .

In Subsection 8.5 we shall combine Proposition 8.9 with Lemma 8.5 to
prove Proposition 8.1.(1). Recall that in Proposition 8.1.(1) we assumed that
H does not contain any simple factor of G; it has the following consequence.

Remark 8.10. If H does not contain any simple factor of G, then GH =
Z(G) ∩H and Γ ∩GcGH = Γ ∩Gc for any discrete subgroup Γ of G acting
properly discontinuously on X = G/H.

The assumption Γ ∩ Gc ⊂ Z(Gs) in Proposition 8.1.(1) is there to ensure
that if g−1γg · x0 /∈ Xc for all γ ∈ ΓrGc (as given by Proposition 8.9), then
g−1Γg · x0 ∩Xc ⊂ Z(Gs) · x0 (as required to apply Lemma 8.5).

In the rest of this subsection we give a proof of Proposition 8.9.

• The main lemma and its interpretation. We first establish the following.

Lemma 8.11. For any γ ∈ GrGcGH , there is an element g ∈ G such that
g−1γg · x0 /∈ Xc, or in other words g−1γg /∈ KH.

We note that GH is the set of elements of G that act trivially on X.
In particular, for any γ ∈ G r GH there is an element g ∈ G such that
g−1γg ·x0 6= x0. Lemma 8.11 states that if γ /∈ GcGH , then we can actually
find g such that g−1γg · x0 /∈ Xc. The condition γ /∈ GcGH cannot be
improved: if γ ∈ GcGH , then any conjugate of γ maps x0 inside Gc ·x0 ⊂ Xc,
since GcGH is normal in G.

Here is a group-theoretic interpretation.

Remark 8.12. For any subset S of G, let

G[S] :=
⋂

g∈G
gSg−1.

If S is a group, then G[S] is the maximal normal subgroup of G contained
in S. In particular, G[K] = Gc and G[H] = GH . Lemma 8.11 states that
G[KH] = G[K]G[H]. We note that this equality may fail if we replace K
by some noncompact symmetric subgroup of G, i.e. by H ′ such that G/H ′

is a non-Riemannian symmetric space.

• Preliminary Lie-theoretic remarks. Before we prove Lemma 8.11, we make
a few useful remarks. For any subspaces e, f of g, we set

(8.3) ef :=
{
Y ∈ e : [f, Y ] = {0}

}
.

Lemma 8.13. Assume that G is simple.
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(1) For any nonzero ideal k′ of k, we have pk
′
= {0}.

(2) The Lie algebra spanned by k ∩ q contains ks.
(3) The normalizer NH(k ∩ q) := {h ∈ H : Ad(h)(k ∩ q) = k ∩ q} of k ∩ q

in H is contained in K.

Proof of Lemma 8.13. (1) If k′ is an ideal of k, then the space pk
′
is glob-

ally stable under ad(k), or equivalently under Ad(K). But the adjoint
action of K on p is irreducible [KN69, Ch. XI, Prop. 7.4], hence pk

′

is either {0} or p. Since K is reductive, we can write k as the direct
sum of k′ and of some other ideal k′′. If pk

′
= p, then k′′+p is an ideal

of g, hence k′′ + p = g since g is simple; in other words, k′ = {0}.
(2) For any reductive Lie group L with Lie algebra l, we denote by ls

the Lie algebra of the commutator subgroup (or semisimple part)
of L. Proving that ks is contained in the Lie algebra spanned by
k ∩ q is equivalent to proving that (kC)s is contained in the Lie
algebra spanned by kC ∩ qC. In turn, this is equivalent to prov-
ing that (hd)s is contained in the Lie algebra spanned by hd ∩ pd,
since the complexifications of hd and pd are kC and qC, respectively
(see Subsection 5.2). But (hd)s admits the Cartan decomposition
(hd)s = (hd)s ∩ kd + (hd)s ∩ pd, and it is well-known that if l is a
semisimple Lie algebra with Cartan decomposition l = kl + pl, then
[pl, pl]+pl = l (one easily checks that [pl, pl]+pl is an ideal of l, hence
equal to l if l is simple; the general semisimple case follows from de-
composing l into a sum of simple ideals). Thus (hd)s is contained in
the Lie algebra spanned by (hd)s ∩ pd ⊂ hd ∩ pd.

(3) The group L := NH(k ∩ q) is stable under the Cartan involution θ
of G, since k ∩ q is fixed by θ. Therefore L is reductive and admits
the Cartan decomposition L = (K ∩L) exp(p∩ l). Proving that L is
contained in K is equivalent to proving that p ∩ l = {0}. We have

p ∩ l =
{
Y ∈ h ∩ p : ad(Y )(k ∩ q) ⊂ k ∩ q

}
= (h ∩ p)k∩q,

hence p ∩ l is contained in pk∩q = p〈k∩q〉, where 〈k ∩ q〉 is the Lie
algebra spanned by k ∩ q. By (1) (with k′ = ks) and (2), we have
p〈k∩q〉 = {0}. �

• Proof of Lemma 8.11. Suppose that γ satisfies

(8.4) g−1γg ∈ KH for all g ∈ G.

Let us prove that γ ∈ GcGH . We first assume that G is simple. The idea is
to work in the Riemannian symmetric space G/K of G, where we can use the
G-invariant metric dG/K . As before, we denote by y0 the image of K in G/K.

Firstly, we claim that γ ∈ K. Indeed, write γ ∈ Kh where h ∈ H.
Then (8.4) with g ∈ K implies hKh−1 ⊂ KH, i.e. hKh−1 ·y0 ⊂ H ·y0. By
considering the tangent space of G/K at x0, which identifies with g/k, we
see that Ad(h)k ⊂ h+ k, or in other words k ⊂ h+Ad(h−1)(k). This implies
Ad(h−1)(k ∩ q) = k ∩ q. By Lemma 8.13.(3), we have h ∈ K.

Secondly, we claim that γ−1 fixes pointwise the set KB+ · y0. Indeed, let
k ∈ K and b ∈ B+. By (8.4), we have γ−1kb · y0 ∈ kbH · y0. By (4.1), (4.6),
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and Lemma 4.17,

dG/K(y0, kb·y0) = ‖µ(b)‖ = ‖ν(b)‖ = ‖ν(bh)‖ ≤ ‖µ(bh)‖ = dG/K(y0, kbh·y0)
for all h ∈ H, hence kb ·y0 is the projection of y0 to the totally geodesic sub-
space kbH·y0. Since γ ∈ K fixes y0 and acts on G/K by isometries, we have

dG/K(y0, γ
−1kb · y0) = dG/K(y0, kb · y0) ≤ dG/K(y0, kbh · y0)

for all h ∈ H. But γ−1kb ·y0 belongs to kbH ·y0 by assumption, and kb ·y0 is
the projection of y0 to kbH ·y0, so γ−1kb ·y0 = kb ·y0. This proves the claim.

To prove that γ ∈ GcGH , we assume that the simple group G is noncom-
pact, so that GcGH = Z(G) (otherwise Gc = G). Then B+ 6= {e}. We have
seen that γ−1 fixes pointwise the set KB+ · y0, which is equivalent to the
fact that γ ∈ (kb)K(kb)−1 for all k ∈ K and b ∈ B+. Thus γ belongs to the
closed normal subgroup

K ′ :=
⋂

k∈K, b∈B+

(kb)K(kb)−1

of K. We note that Ad(k′)(Y ) = Y for all k′ ∈ K ′ and Y ∈ b+. Indeed,
Ad(k′)(Y )−Y ∈ p since K ′ ⊂ K, and Ad(k′)(Y )−Y ∈ k since b−1K ′b ⊂ K.
In particular, the Lie algebra k′ of K ′ satisfies pk

′ 6= {0} with the notation
(8.3). But k′ is an ideal of k, hence k′ = {0} by Lemma 8.13.(1). In other
words, K ′ is contained in the center Z(K) of K. We claim that in fact
K ′ ⊂ Z(G). Indeed, for any k′ ∈ K ′ the set gAd(k′) of fixed points of g

under Ad(k′) is a Lie subalgebra that contains both k and b+ 6= {0}. But
the Lie algebra g is generated by k and any nontrivial element of p (because
the adjoint action of K on p is irreducible [KN69, Ch. XI, Prop. 7.4]), hence
gAd(k′) = g, which means that k′ ∈ Z(G). In particular, γ ∈ Z(G) = GcGH .

In the general case where G is not necessarily simple, we write G as the
almost product of a split central torus ≃ Ra, of GcGH , and of noncompact
simple factors G1, . . . , Gm with Gi 6⊂ H for all i. Since γ is elliptic, we can
decompose it as γ = γ0γ1 . . . γm, where γ0 ∈ GcGH and γi ∈ Gi for all i ≥ 1.
For i ≥ 1, the restriction of σ to Gi is an involution; the polar decomposition
Gi = (K ∩ Gi)(B+ ∩ Gi)(H ∩ Gi) holds, with B+ ∩ Gi 6= {e}, and the
corresponding projection is the restriction of ν. By the previous paragraph,
γi ∈ Z(Gi) for all i ≥ 1. Therefore γ ∈ GcGH since Z(Gi) ⊂ GcGH . This
completes the proof of Lemma 8.11.

• Proof of Proposition 8.9. Let Γ be a discrete subgroup of G acting properly
discontinuously X. Consider the set

F := {γ ∈ Γ : da(µ(γ), µ(H)) < 1}.
For any γ ∈ F we have γ · C ∩ C 6= ∅, where C is the compact subset
of X = G/H obtained as the image of µ−1([0, 1]) ⊂ G; therefore F is
finite. For γ ∈ F , the map fγ : G → G sending g ∈ G to g−1γg is real
analytic, hence f−1

γ (KH) is an analytic submanifold of G. By Lemma 8.11,
if γ /∈ GcGH , then f−1

γ (KH) is strictly contained in G, hence it has positive
codimension. In particular, there is an element g ∈ G with ‖µ(g)‖ < 1/2
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such that g−1γg /∈ KH (i.e. g−1γg · x0 /∈ Xc) for all γ ∈ F r GcGH . By
Lemmas 4.4 and 4.17, for all γ ∈ Γr F ,

‖ν(g−1γg)‖ ≥ da
(
µ(g−1γg), µ(H)

)
≥ da(µ(γ), µ(H)) − 2‖µ(g)‖ > 0.

In particular, g−1γg · x0 /∈ Xc for all γ ∈ Γ r GcGH . This completes the
proof of Proposition 8.9.

8.4. Uniformity for standard Clifford–Klein forms. In Subsection 8.5,
we shall prove Proposition 8.1.(2) by combining Lemma 8.5 with the follow-
ing consequence of the Kazhdan–Margulis theorem, applied to some conju-
gate of L instead of G.

Proposition 8.14. Assume that the reductive group G has a compact center.
There is a constant rG > 0 (depending only on G) with the following property:
for any discrete subgroup Γ of G, there is an element g ∈ G such that

‖µ(g−1γg)‖ ≥ rG for all γ ∈ ΓrGc.

As before, Gc denotes the largest compact normal subgroup of G. The
condition γ ∈ ΓrGc cannot be improved: if γ ∈ Gc, then µ(g−1γg) = 0 for
all g ∈ G since g−1γg ∈ Gc ⊂ K. The condition that the center Z(G) of G
is compact also cannot be improved: if Lie(Z(G)) ∩ a contains a nonzero
vector Y , then for any t ∈ R+ the cyclic group generated by γt := exp(tY ) ∈
GrGc is discrete in G and ‖µ(g−1γtg)‖ = t ‖Y ‖ for all g ∈ G.

Recall that ‖µ(g)‖ = dG/K(y0, g · y0) for all g ∈ G, where y0 is the image
of K in the Riemannian symmetric space G/K. Thus Proposition 8.14 has
the following geometric interpretation: there is a constant rG > 0 such that
any Riemannian locally symmetric space M = Γ\G/K locally modeled on
G/K admits a point at which the injectivity radius is ≥ rG.

Proposition 8.14 is not new; we give a proof for the reader’s convenience.
We begin with an elementary geometric lemma in the Riemannian symmetric
space G/K, designed to treat groups Γ with torsion.

Lemma 8.15. For any g ∈ G r Gc of finite order and any R, ε > 0, there
exists r > 0 such that for any ball B of radius R in G/K,

volG/K

({
y ∈ B : dG/K(y, g ·y) < r

})
< ε.

This r depends only on the conjugacy class of g in G (and on R and ε).

Proof. For g ∈ GrGc of order n ≥ 2, let Fg be the set of fixed points of g
in G/K. We claim that the set of points y ∈ G/K with dG/K(y, g ·y) < r
is contained in an (n − 1)r-neighborhood of Fg. Indeed, for y ∈ G/K, con-
sider the “center of gravity” z of the g-orbit {y, g ·y, . . . , gn−1 ·y}, such that∑n−1

i=0 dG/K(z, gi ·y)2 is minimal. (The existence and uniqueness of such a
point were first established by É. Cartan [Ca] to prove his fixed point theo-
rem.) The point z belongs to the convex hull of {y, g ·y, . . . , gn−1 ·y}, hence
there exists 1 ≤ i0 ≤ n−1 such that dG/K(y, gi0 ·y) ≥ dG/K(y, z). Moreover,
z ∈ Fg, hence dG/K(y, z) ≥ dG/K(y,Fg). By the triangular inequality,

dG/K(y, g·y) = 1

i0

i0−1∑

i=0

dG/K(gi·y, gi+1·y) ≥ 1

i0
dG/K(y, gi0 ·y) ≥ 1

i0
dG/K(y,Fg),
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which proves the claim. Let R, ε > 0. We note that Fg is an analytic
subvariety of G/K of positive codimension since g /∈ Gc. Therefore, for any
ball B′ of radius (n+ 1)R centered at a point of Fg, there exists r > 0 such
that

volG/K

({
y ∈ B′ : dG/K(y, g ·y) < r

})
< ε.

Using the fact that the centralizer of g in G acts transitively on Fg (see [He2,
Ch. IV, § 7]), it is easy to see that this r can actually be taken uniformly for
all such balls. We conclude the proof of Lemma 8.15 by observing that
any ball of radius R meeting the (n − 1)r-neighborhood of Fg is actually
contained in a ball of radius (n+1)R centered at a point of Fg, since r ≥ R.
The fact that r depends only on the conjugacy class of g in G (and on R
and ε) follows from the fact that the metric dG/K is G-invariant. �

Proof of Proposition 8.14. We first assume that G is semisimple with no
compact factor, so that Gc = Z(G). The Kazhdan–Margulis theorem (see
[Ra2, Th. 11.8]) then gives the existence of a neighborhood W of e in G with
the following property: for any discrete subgroup Γ of G, there is an element
g ∈ G such that g−1Γg ∩W = {e}. It is enough to prove Proposition 8.14
for discrete groups Γ such that Γ ∩W = {e}.

We note that for all g, γ ∈ G, we have dG/K(y0, g
−1γg ·y0) = dG/K(y, γ ·y)

where y := g·y0. Therefore, using the interpretation (4.1) of ‖µ‖ as a distance
in the Riemannian symmetric space G/K, it is enough to prove the existence
of a constant rG > 0 with the following property: for any discrete subgroup
Γ of G with Γ ∩ W = {e}, there is a point y ∈ G/K such that for any
γ ∈ Γr Z(G),

(8.5) dG/K(y, γ · y) ≥ rG.

In order to prove this, we consider a bounded neighborhood U of e in G such
that UU−1 ⊂ W, and an integer m such that

(8.6) m · volG(U) > volG
(
K1 · U

)
,

where we set

K1 :=
{
g ∈ G : dG/K(y0, g · y0) < 1

}
.

•We claim that for any torsion-free discrete subgroup Γ of L with Γ∩W = {e},

(8.7) ‖µ(γ)‖ = dG/K(y0, γ · y0) ≥
1

m
.

Indeed, let Γ be such a group. Then γ U ∩ γ′ U = ∅ for all γ 6= γ′ in Γ, hence

volG
(
K1 · U

)
≥ #

(
Γ ∩K1

)
· volG(U).

Therefore, by (8.6),

#
(
Γ ∩K1

)
< m.

Using the fact (4.2) that ‖µ(gm)‖ ≤ m ‖µ(g)‖ for all g ∈ G, we obtain that
any element γ ∈ Γ with ‖µ(γ)‖ < 1/m has order < m; the number of such
elements γ is < m. In particular, since Γ is torsion-free, the only element
γ ∈ Γ with ‖µ(γ)‖ < 1/m is e, proving (8.7).
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• We now deal with groups Γ that have torsion. By Lemma 8.15, for any
g ∈ G r Gc of finite order there exists r ∈ (0, 1

3m ] such that for any ball B
of radius 1/3m in G/K,

(8.8) volG/K

({
y ∈ B : dG/K(y, g · y) < r

})
<

1

m
volG/K(B),

and this r depends only on the conjugacy class of g in G. Since there are only
finitely many conjugacy classes of elements of order < m in G [He2, Ch. IX,
Cor. 4.4 & Prop. 4.6], there exists a constant r = rG such that (8.8) holds
for all g ∈ G r Gc of order < m and all balls B of radius 1/3m. Let us
prove that this constant rG satisfies (8.5). Let Γ be a discrete subgroup
of G such that Γ ∩ W = {e} . The same reasoning as before shows that
any element γ ∈ Γ with ‖µ(γ)‖ < 1/m has order < m; the number of such
elements γ is < m. By (8.8), there is a point y ∈ BG/K(y0,

1
3m) such that

dG/K(y, γ · y) ≥ rG for all γ ∈ Γ r Gc with ‖µ(γ)‖ < 1/m. For all γ ∈ Γ
with ‖µ(γ)‖ = dG/K(y0, γ · y0) ≥ 1/m, we also have

dG/K(y, γ · y) ≥ dG/K(y0, γ · y0)− 2 dG/K(y, y0) ≥
1

3m
≥ rG,

which proves (8.5) and completes the proof of Proposition 8.14 in the case
when G has no compact factor.

We now consider the general case where G may have compact factors.
Let π : G → G/Gc be the natural projection. The group π(G) = G/Gc is
semisimple with a trivial center and no compact factor. It admits the Cartan
decomposition

π(G) = π(K)π(A+)π(K).

Let µπ(G) : π(G)→ log π(A+) be the corresponding Cartan projection. The
restriction of π to A is injective, hence we may identify log π(A+) with a+.
With this identification,

µπ(G)(π(g)) = µ(g)

for all g ∈ G. Therefore, Proposition 8.14 for G follows from Proposition 8.14
for π(G), given that for any discrete subgroup Γ of G the group π(Γ) is
discrete in π(G). �

Remark 8.16. If G is disconnected, with finitely many connected compo-
nents, then it still admits a Cartan decomposition G = KA+K, where K
is a maximal compact subgroup of G and A+ a positive Weyl chamber in a
maximal split torus of G, possibly smaller than the corresponding positive
Weyl chamber for the identity component of G. The corresponding Car-
tan projection µ : G → logA+ is well-defined and has the property that
‖µ(g)‖ = dG/K(y0, g · y0) for all g ∈ G, where y0 denotes the image of K in
G/K. Lemma 8.15 and Proposition 8.14 hold with the same proof.

8.5. Proof of Proposition 8.1. Recall from (6.6) that we may take RX

to be 4‖ρa‖/q in Proposition 6.1. For any subgroup Γ of G acting properly
discontinuously on X, we set

rΓ := inf
{
‖ν(x)‖ : x ∈ Γ·x0 and x /∈ Xc

}
> 0

(see Remark 8.6).
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We first consider Proposition 8.1.(1). Let XΓ be a sharp Clifford–Klein
form of X with Γ ∩ Gc ⊂ Z(Gs). If Γ · x0 ∩ Xc ⊂ Z(Gs) · x0, then, by
Lemma 8.5 and Remark 8.7, the operator SΓ is well-defined and nonzero
on VZ,λ for any λ ∈ j∗+ ∩ (2ρc − ρ+ ΛΓ∩Z(Gs)) with d(λ) larger than

(8.9) max
(
mρ ,

4‖ρa‖
qc

,
4‖ρa‖(rΓ +C) + log

(
2cG #(Γ ∩K)

)

c log cosh(q′rΓ)

)
.

Otherwise, we use Proposition 8.9, Remark 8.10, and the assumptions that
H does not contain any simple factor of G and Γ ∩ Gc ⊂ Z(Gs) to obtain
the existence of an element g ∈ G such that g−1Γg · x0 ∩Xc ⊂ Z(Gs) · x0;
then Sg−1Γg is well-defined and nonzero on VZ,λ for any λ ∈ j∗+ ∩ (2ρc − ρ+
Λg−1Γg∩Z(Gs)) with d(λ) larger than

(8.10) max
(
mρ ,

4‖ρa‖
qc

,
4‖ρa‖(rg−1Γg + C) + log

(
2cG #(g−1Γg ∩K)

)

c log cosh(q′rg−1Γg)

)
.

By Remark 8.4 (and the fact that g−1Γg∩Z(Gs) = Γ∩Z(Gs)), the operator
SΓ is well-defined and nonzero on g ·VZ,λ for any λ ∈ j∗+∩(2ρc−ρ+ΛΓ∩Z(Gs))
satisfying (8.10). This concludes the proof of Proposition 8.1.(1).

We now consider Proposition 8.1.(2). Let L be a reductive subgroup of G
acting properly on X. Assume that the center of L is compact. There
is a conjugate L′ of L in G that is stable under the Cartan involution θ;
in particular, L′ is (c, 0)-sharp for some c > 0 (Example 4.11). By Re-
mark 8.4, it is sufficient to prove Proposition 8.1.(2) for L′. Let L′

c be the
maximal compact normal subgroup of L′. Applying Proposition 8.14 to L′

instead of G, we obtain the existence of a constant rL′ > 0 (depending only
on L′) such that any discrete subgroup Γ of L′ admits a conjugate g−1Γg,
g ∈ L′, with ‖µ(g−1γg)‖ ≥ rL′ for all γ ∈ Γr L′

c. The reason why we apply
Proposition 8.14 to L′ and not G is that in this way the group g−1Γg ⊂ L′

remains (c, 0)-sharp. Lemma 4.17 then yields ‖ν(g−1γg)‖ ≥ c rL′ for all
γ ∈ Γr L′

c. In particular, g−1γg · x0 /∈ Xc for all γ ∈ Γr L′
c and rΓ ≥ c rL′ .

By Remark 8.10 and the assumptions that H does not contain any sim-
ple factor of G and Γ ∩ L′

c ⊂ Z(Gs), we have g−1Γg ∩ K ⊂ Z(Gs) and
g−1Γg ·x0 ∩ Xc ⊂ Z(Gs) ·x0, which enables us to apply Lemma 8.5. Using
Remark 8.7, we obtain that the operator Sg−1Γg is well-defined and nonzero

on VZ,λ for any λ ∈ j∗+ ∩ (2ρc − ρ+ Λg−1Γg∩Z(Gs)) with d(λ) larger than

(8.11) R := max
(
mρ ,

4‖ρa‖
qc

,
4‖ρa‖c rL′ + log

(
2cG #Z(Gs)

)

c log cosh(q′c rL′)

)
.

Proposition 8.1.(2) follows, using Remark 8.4.
We now consider Proposition 8.1.(3). Let L be a reductive subgroup

of G of real rank 1 and let Γ be a convex cocompact subgroup of L with
Γ ∩ Gc ⊂ Z(Gs). By Proposition 8.9, Remark 8.10, and the assumptions
that H does not contain any simple factor of G and Γ ∩Gc ⊂ Z(Gs), there
is an element g ∈ G such that g−1γg · x0 /∈ Xc for all γ ∈ Γ ∩ Z(Gs). By
Proposition 4.3, the group g−1Γg is (c, C)-sharp for some c, C > 0 (where
c depends only on L). Choose ε ∈ (0, rg−1Γg). By Lemma 4.22 applied to
g−1Γg ⊂ g−1Lg instead of Γ ⊂ L, there is a neighborhood U ′ ⊂ Hom(Γ, G) of
the natural inclusion such that for all ϕ ∈ U ′, the group g−1ϕ(Γ)g is discrete
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in G and (c−ε, C+ε)-sharp for X, and satisfies ‖ν(g−1ϕ(γ)g)‖ ≥ rg−1Γg−ε
for all γ ∈ Γ r Z(Gs). We now use the following fact, which holds because
there are only finitely many conjugacy classes of elements of order ≤ #Z(Gs)
in G [He2, Ch. IX, Cor. 4.4 & Prop. 4.6] and they are all closed [Bo3, Th. 9.2].

Remark 8.17. There is a neighborhood U ⊂ U ′ ⊂ Hom(Γ, G) of the natural
inclusion such that ϕ(Γ ∩ Z(Gs)) ⊂ Z(Gs) for all ϕ ∈ U .

By Remark 8.17, we have g−1ϕ(Γ)g · x0 ∩Xc ⊂ Z(Gs) · x0 and rg−1ϕ(Γ)g ≥
rg−1Γg − ε, as well as g−1ϕ(Γ)g ∩ K ⊂ Z(Gs); we can apply Lemma 8.5.
Using Remark 8.7, we obtain that for all ϕ ∈ U , the operator Sg−1ϕ(Γ)g is

well-defined and nonzero on VZ,λ for any λ ∈ j∗+∩ (2ρc−ρ+Λg−1ϕ(Γ)g∩Z(Gs))
with d(λ) larger than

R := max
(
mρ ,

4‖ρa‖
qc

,
4‖ρa‖(r + C) + log

(
2cG #Z(Gs)

)

c log cosh(q′(r − ε))
)
.

Proposition 8.1.(3) follows, using Remark 8.4. If Γ ∩ Lc ⊂ Z(Gs), then we
can conjugate Γ as in the proof of Proposition 8.1.(2) and take r = c rL′

and C = 0. Since the function d takes discrete values on j∗+ ∩ (2ρc − ρ +
Λ), by choosing ε small enough we see that we can take the same R as in
Proposition 8.1.(2). This completes the proof.

8.6. Completion of the proof of the theorems and propositions of

Sections 1 to 3. The bulk of the paper was the proof of Proposition 8.1;
now we briefly explain how the results of Sections 1 to 3 follow.

Theorem 3.8.(1) follows immediately from Proposition 8.1.(1); Theorem
3.8.(2) from Proposition 8.1.(2); Theorem 3.11 from Proposition 8.1.(3); The-
orem 3.13 from Theorem 3.8 and Proposition 6.1. In the case when 8G is
connected with no compact factor, Propositions 2.1 and 2.2 follow from Lem-
mas 4.23 and 8.5 as in the proof of Proposition 8.1.(3) (see Subsection 8.5).

In order to deduce Theorems 1.5, 1.7, and 1.8 from Theorems 3.8 and 3.11,
and to prove Propositions 2.1 and 2.2 in the general case, it is sufficient to
deal with the following three issues:

• G may be disconnected,
• some simple factors of G may be contained in H,
• G may have compact factors.

Indeed, when G has no compact factor, the condition Γ ∩ Gc ⊂ Z(Gs) of
Theorems 3.8 and 3.11 is automatically satisfied (see Remark 3.9.(a)). The
first issue is easily dealt with: ifG0 denotes the identity component ofG, then
G0/(G0 ∩H) is a connected component of X, so Specd(G0/H) is a subset of
Specd(X) (extend eigenfunctions by 0 on the other connected components).
In order to deal with the second and third issues, we consider the group G :=
G/GcGH , where GH is the maximal normal subgroup of G contained in H
(see Subsection 8.3). We note that G is reductive with no compact factor
and that none of its simple factors is contained in H := H/GcGH ∩H, hence
Theorems 3.8 and 3.11 apply to the reductive symmetric space X := G/H .
To relate X to X , we make the following elementary observation.

Observation 8.18. The natural projection π : X → X induces homomor-
phisms
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• C∞(X)
π∗

−֒→ C∞(X),

• D(X)
π∗−։ D(X),

• HomC-alg(D(X),C)
π∗

−֒→ HomC-alg(D(X),C)

such that for all D ∈ D(X), f ∈ C∞(X), and χ ∈ HomC-alg(D(X),C),

(π∗D)f = χ(π∗D)f ⇐⇒ D(π∗f) = (π∗χ)(D)π∗f.

Moreover, π∗(L2(X)) ⊂ L2(X), hence

π∗
(
Specd(X)

)
⊂ Specd(X).

Let us now consider Clifford–Klein forms. We note that if Γ is a discrete
subgroup of G acting properly discontinuously and freely on X, then the
image Γ of Γ in G is discrete and acts properly discontinuously on X, but
not necessarily freely. However, in all the previous sections we could actually
drop the assumption that Γ acts freely, allowing XΓ to be an orbifold (or V -
manifold in the sense of Satake) instead of a manifold. Indeed, let us define
L2(XΓ) to be the set of Γ-invariant functions on X that are square-integrable
on some fundamental domain for the action of Γ. If C∞

c (XΓ) denotes the
space of Γ-invariant smooth functions on X with compact support modulo Γ,
then any D ∈ D(X) leaves C∞

c (XΓ) invariant, so that for χλ : D(X) → C

we can define the notion of weak solution f ∈ L2(XΓ) to the system

Df = χλ(D)f for all D ∈ D(X) (Mλ)

with respect to integration against elements of C∞
c (XΓ). We can then define

Specd(XΓ) to be the set of C-algebra homomorphisms χλ : D(X) → C

for which the system (Mλ) admits a nonzero weak solution f ∈ L2(XΓ).
Since our construction of joint eigenfunctions is obtained by the summation
operator SΓ, Propositions 6.1 and 8.1, as well as Theorems 3.8 and 3.11,
hold in this more general setting. We conclude the proof of Theorems 1.5,
1.7, and 1.8 and Propositions 2.1 and 2.2 with the following observation.

Observation 8.19. (1) The rank condition (3.3) for X = G/H holds if
and only if that for X = G/H holds.

(2) For any discrete subgroup Γ of G acting properly discontinuously
on X, the image Γ of Γ in G is discrete and acts properly discontin-
uously on X.

(3) The projection π : X → X induces π∗(L2(XΓ)) ⊂ L2(XΓ), hence

π∗
(
Specd(XΓ)

)
⊂ Specd(XΓ).

9. The example of three-dimensional anti-de Sitter manifolds

In this section and the following one, we concentrate on a few examples to
illustrate our general theory. We first examine the case of the 3-dimensional
anti-de Sitter space X = AdS3 = SO(2, 2)0/SO(1, 2)0. Our purpose is 3-fold:

• recall the description of the Clifford–Klein forms of AdS3 in terms
of representations of surface groups, as developed since the 1980’s
(Subsections 9.1 to 9.3);
• use it to give an explicit infinite subset of the discrete spectrum of the

Laplacian on any Clifford–Klein form Γ\AdS3 with Γ finitely gener-
ated, in terms of some geometric constant CLip(Γ) (Subsection 9.4);
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• understand the analytic estimates developed in Sections 5 and 7
through concrete harmonic analysis computations on the group SL2(R)
(Subsections 9.5 to 9.9).

As mentioned in the introduction, X = AdS3 is a Lorentzian analogue
of the real hyperbolic space H3 = SO(1, 3)0/SO(3): it is a model space for
all Lorentzian 3-manifolds of constant negative curvature, or anti-de Sitter
3-manifolds. One way to see X is as the quadric of equation Q = 1 in R4

with the Lorentzian metric induced by −Q, where

(9.1) Q(x) = x21 + x22 − x23 − x24 ;
the sectional curvature of X is then −1 (see [Wo]). Another way to see X is
as the manifold SL2(R), with the Lorentzian structure induced by 1/8 times
the Killing form of sl2(R) and the transitive action (by isometries) of the
group

G := SL2(R)× SL2(R)

by left and right multiplication:

(9.2) (g1, g2) · g = g1gg
−1
2 .

We will use both realizations of X. An explicit correspondence is given by

{x ∈ R4 : Q(x) = 1} ∼−→ SL2(R) .

x 7−→
(
x1 + x4 −x2 + x3
x2 + x3 x1 − x4

)
(9.3)

The stabilizer in G of the identity element 1 ∈ SL2(R) is the diagonal H :=
Diag(SL2(R)), which is the set of fixed points of G under the involution
σ : (g1, g2) 7→ (g2, g1). Thus X = SO(2, 2)0/SO(1, 2)0 identifies with

G/H = (SL2(R)× SL2(R))/Diag(SL2(R)).

We note that the action of G on X factors through G/{±(1, 1)} ≃ SO(2, 2)0;
we have H/{±(1, 1)} ≃ SO(1, 2)0. By [Kl] and [KR], all compact anti-de
Sitter 3-manifolds are Clifford–Klein forms XΓ = Γ\X of X, up to finite
covering. We now recall how these Clifford–Klein forms (compact or not)
can be described in terms of representations of surface groups.

9.1. Description of the Clifford–Klein forms of AdS3. As in Subsec-
tion 1.4, let −I ∈ SO(2, 2)0 be the diagonal matrix with all entries equal
to −1; it identifies with (1,−1) ∈ G/{±(1, 1)} and acts on X = AdS3 by
x 7→ −x. Describing the Clifford–Klein forms of X reduces to describing
those of its quotient of order two

X := SO(2, 2)0/
(
SO(1, 2)0 × {±I}

)

≃
(
PSL2(R)× PSL2(R)

)
/Diag(PSL2(R)).

If Γ is a discrete subgroup of G acting properly discontinuously and freely
on X, then its projection Γ to PSL2(R)× PSL2(R) acts properly discontin-
uously and freely on X ; the natural projection XΓ → XΓ between Clifford–
Klein forms is an isomorphism if −I belongs to the image of Γ in SO(2, 2)0,
and a double covering otherwise.
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A fundamental result of Kulkarni–Raymond [KR] states that if a torsion-
free discrete subgroup Γ of PSL2(R)×PSL2(R) acts properly discontinuously
on X , then it is of the form

(9.4) Γ = {(j(γ), ρ(γ)) : γ ∈ π1(S)},
where S is a hyperbolic surface and j, ρ ∈ Hom(π1(S),PSL2(R)) are two
representations of the surface group π1(S), with one of them Fuchsian, i.e.
injective and discrete. The Clifford–Klein form XΓ = Γ\X is compact if
and only if S is. Pairs (j, ρ) ∈ Hom(π1(S),PSL2(R))

2 such that the group
(j, ρ)(π1(S)) acts properly discontinuously on X are said to be admissible
(terminology of [Sa1]). We note that not all pairs (j, ρ) are admissible: for
instance, if j and ρ are conjugate, then the infinite group (j, ρ)(π1(S)) does
not act properly discontinuously on X since it fixes a point. The question is
to determine which pairs are admissible.

Easy examples of admissible pairs are obtained by taking j Fuchsian and ρ
constant, or more generally ρ with values in a compact subgroup of PSL2(R):
the group Γ := (j, ρ)(π1(S)) and the Clifford–Klein form XΓ = Γ\X are then
standard in the sense of Definition 1.4. When ρ is constant, XΓ identifies
with 8Γ\8G, where 8G = PSL2(R) and 8Γ = j(π1(S)) is a discrete subgroup
of 8G; in other words, it is the unit tangent bundle to the hyperbolic sur-
face 8Γ\H2 (where H2 denotes the hyperbolic plane). The first nonstandard
examples of compact anti-de Sitter 3-manifolds were obtained by deforming
standard ones, i.e. proving that for fixed Fuchsian j, the pair (j, ρ) is admis-
sible for any ρ close enough to the constant homomorphism: this was done
by Goldman [Go] when ρ(π1(S)) is abelian, then by [Ko5] in general. Salein
[Sa2] constructed the first nonstandard compact Clifford–Klein forms that
are not deformations of standard ones. It is also easy to construct nonstan-
dard Clifford–Klein forms XΓ that are not compact but convex cocompact,
in the following sense. We refer to [Ka3, Ch. 5] and [GK] for more details.

Definition 9.1. A Clifford–Klein form XΓ is convex cocompact if, up to fi-
nite index and switching the two factors, Γ is of the form (9.4) with j injective
and j(π1(S)) convex cocompact in PSL2(R) in the sense of Subsection 1.5.

This terminology is justified by the fact that the convex cocompact Clifford–
Klein forms of X are circle bundles over convex cocompact hyperbolic sur-
faces, up to a finite covering [DGK]. We shall say that a Clifford–Klein form
XΓ of X = AdS3 is convex cocompact if its projection XΓ is.

By the Selberg lemma [Se2, Lem. 8], any finitely generated subgroup Γ of
PSL2(R)×PSL2(R) acting properly discontinuously on X has a finite-index
subgroup that is torsion-free, hence of the form (9.4). However, in order
to obtain estimates on the discrete spectrum of XΓ itself and not only of a
finite covering, we need to understand the precise structure of Γ itself. We
shall use the following result, whose proof is based on [KR].

Lemma 9.2. Let Γ be a finitely generated discrete subgroup of PSL2(R)×PSL2(R)
(possibly with torsion) acting properly discontinuously on X. Then either Γ
is standard ( i.e. Γ or σ(Γ) is contained in a conjugate of PSL2(R)×PSO(2))
or Γ is of the form

(9.4) Γ = {(j(γ), ρ(γ)) : γ ∈ π1(S)},
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where S is a 2-dimensional hyperbolic orbifold, π1(S) is the orbifold funda-
mental group of S, and (j, ρ) ∈ Hom(π1(S),PSL2(R))

2, with j or ρ Fuchsian.

Recall that a 2-dimensional hyperbolic orbifold S is a hyperbolic surface
with finitely many cone singularities, whose stabilizers are finite groups; the
orbifold fundamental group π1(S) is torsion-free if and only if S is an actual
hyperbolic surface. The point of Lemma 9.2 is that in the nonstandard case,
even if Γ has torsion, one of its projections to PSL2(R) is still discrete and
injective (not only with a finite kernel).

Proof of Lemma 9.2. For i ∈ {1, 2}, consider the restriction to Γ of the i-th
projection pri : PSL2(R)×PSL2(R)→ PSL2(R). The kernels Ker(pr1|Γ) and
Ker(pr2|Γ) are discrete. They cannot both be infinite since Γ acts properly
discontinuously on X [KR, § 5]. Therefore, after possibly conjugating and
replacing Γ by σ(Γ), we may assume that Ker(pr1|Γ) is finite and contained in
{1}×PSO(2). If Ker(pr1|Γ) = {1}, then Γ is of the form (9.4) with j injective,
and j is in fact discrete [KR, § 5]. If Ker(pr1|Γ) 6= {1}, then it is easy to see
that Γ is contained in PSL2(R)×PSO(2) since it normalizes Ker(pr1|Γ). �

9.2. Deformation of convex cocompact Clifford–Klein forms of AdS3.
The fact that the group PSL2(R) × PSL2(R) is not simple allows for a rich
deformation theory.

For instance, for any compact hyperbolic surface S, the set of admissible
pairs (j, ρ) is open in Hom(π1(S),PSL2(R))

2; the deformation space (mod-
ulo conjugation) thus has dimension 12g − 12, where g is the genus of S. In
other words, for any compact Clifford–Klein form XΓ of X = AdS3 = G/H,
the group ϕ(Γ) is discrete in G and acts properly discontinuously and co-
compactly on X for all ϕ ∈ Hom(Γ, G) in some neighborhood of the natural
inclusion of Γ in G. Indeed, this follows from the completeness of compact
anti-de Sitter manifolds [Kl] and from the Ehresmann–Thurston principle
on the holonomy of geometric structures on compact manifolds (see [Sa1,
§ 4.2.1]); a quantitative proof was also given in [Ko5].

More generally, proper discontinuity is preserved under small deforma-
tions for any convex cocompact Clifford–Klein form of X (in the sense of
Definition 9.1) [Ka3, Cor. 5.1.6], as a consequence of the following two facts
(the first one extending Example 4.13).

Fact 9.3 [Ka3, Th. 5.1.1]. All convex cocompact Clifford–Klein forms of X =
AdS3 are sharp.

Fact 9.4 [Ka3, § 5.7.2]. Let XΓ be a (c, C)-sharp, convex cocompact Clifford–
Klein form of X = AdS3 = G/H. For any ε > 0, there is a neighborhood
Uε ⊂ Hom(Γ, G) of the natural inclusion such that the group ϕ(Γ) is discrete
in G and (c− ε, C + ε)-sharp for all ϕ ∈ Uε.

(We refer to Definition 4.2 for the notion of sharpness.)
Facts 9.3 and 9.4 give the geometric estimates that we need (together with

the analytic estimates of Subsection 9.5 below) to construct an infinite stable
discrete spectrum for the convex cocompact Clifford–Klein forms of X =
AdS3 (Corollary 9.10). By [GK], sharpness actually holds for all Clifford–
Klein formsXΓ ofX with Γ finitely generated, which implies that the discrete
spectrum is infinite for all such XΓ (Theorem 9.9).
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9.3. The constant CLip(Γ). The infinite subset of the spectrum that we
shall give in Subsection 9.4 will be expressed in terms of a geometric constant
CLip(Γ). The goal of this subsection is to introduce CLip(Γ), to explain how
sharpness is determined by this constant, and to provide some explanation
of Facts 9.3 and 9.4.

• A reformulation of sharpness for X = AdS3. Let µPSL2(R) : PSL2(R)→ R≥0

be the Cartan projection mapping any element g to the logarithm of the
highest eigenvalue of tgg. We will use the following geometric interpretation:

(9.5) µPSL2(R)(g) = dH2(y0, g · y0),

where y0 is the point of H2 whose stabilizer is PSO(2). Consider a 2-
dimensional hyperbolic orbifold S and a pair (j, ρ) ∈ Hom(π1(S),PSL2(R))

2.
By [Ka1, Th. 1.3], if the group (j, ρ)(π1(S)) acts properly discontinuously on
X = AdS3, then the set of points

(
µPSL2(R)(j(γ)) , µPSL2(R)(ρ(γ))

)
∈ R2

for γ ∈ π1(S) lies on one side only of the diagonal of R2, up to a finite
number of points. Therefore, the group Γ := (j, ρ)(π1(S)) is sharp for X if
and only if, up to switching j and ρ, there exist constants c′ < 1 and C ′ ≥ 0
such that

µPSL2(R)(ρ(γ)) ≤ c′ µPSL2(R)(j(γ)) + C ′

for all γ ∈ π1(S); in this case, Γ is (c, C)-sharp for

(9.6) c := sin
(π
4
− arctan(c′)

)
=

(1− c′)√
2(1 + c′2)

and C :=
C ′
√
2

and j is Fuchsian.

• The constants CLip(j, ρ) and CLip(Γ). We denote by CLip(j, ρ) the infimum
of Lipschitz constants

Lip(f) = sup
y 6=y′ in H2

dH2(f(y), f(y′))
dH2(y, y′)

of maps f : H2 → H2 that are (j, ρ)-equivariant, i.e. that satisfy f
(
j(γ)·y

)
=

ρ(γ)·f(y) for all γ ∈ π1(S) and y ∈ H2. By the Ascoli theorem, this infimum
is a minimum if j is Fuchsian and the Zariski closure of (j, ρ)(π1(S)) is
reductive (i.e. the image of ρ does not fix a unique point on the boundary at
infinity of H2). The constant CLip(j, ρ) is clearly invariant under conjugation
of j or ρ by PSL2(R). The logarithm of CLip can be seen as a generalization
of Thurston’s “asymmetric metric” (or “Lipschitz metric”) on Teichmüller
space: see [Ka3, Ch. 5] and [GK].

Let Γ be a discrete subgroup of G acting properly discontinuously on X.
By Lemma 9.2, either Γ is standard, or its projection to PSL2(R)×PSL2(R)
is of the form (9.4). In the first case, we set CLip(Γ) := 0. In the second
case, we set

CLip(Γ) := min
(
CLip(j, ρ) , CLip(ρ, j)

)
.
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• Link between sharpness and the constant CLip. Consider a 2-dimensional
hyperbolic orbifold S and (j, ρ) ∈ Hom(π1(S),PSL2(R))

2 with j Fuchsian.
Using the geometric interpretation (9.5), we make the following easy but
useful observation.

Remark 9.5. • If the Zariski closure of (j, ρ)(π1(S)) is reductive, then
there is an element g0 ∈ PSL2(R) such that for all γ ∈ π1(S),

µPSL2(R)

(
g−1
0 ρ(γ) g0

)
≤ CLip(j, ρ)µPSL2(R)(j(γ)).

• In general, for any ε > 0 there is an element gε ∈ PSL2(R) such that
for all γ ∈ π1(S),
µPSL2(R)

(
g−1
ε ρ(γ) gε

)
≤
(
CLip(j, ρ) + ε

)
µPSL2(R)(j(γ)).

Indeed, for ε ≥ 0, let fε : H2 → H2 be a (j, ρ)-equivariant map with Lip(fε) ≤
CLip(j, ρ) + ε. We can take any gε ∈ PSL2(R) such that fε(y0) = gε ·y0,
using the fact that the metric dH2 is invariant under PSL2(R).

Let Γ be a discrete subgroup of G. Proposition 4.3.(1) and Remark 9.5 (to-
gether with the above reformulation of sharpness) imply that if CLip(Γ) < 1,
then Γ is sharp for X; in particular, Γ acts properly discontinuously on X.
The converse is nontrivial but true in the finitely generated case (based on
the existence of a “maximally stretched line” for (j, ρ)-equivariant maps of
minimal Lipschitz constant CLip(j, ρ) ≥ 1 [Ka3, GK]).

Fact 9.6 [Ka3, GK]. A finitely generated discrete subgroup Γ of G acts
properly discontinuously on X = AdS3 if and only if CLip(Γ) < 1, in which
case Γ is sharp for X.

This is how Fact 9.3 and its generalization [GK] to Clifford–Klein formsXΓ

with Γ finitely generated were obtained. Fact 9.4 is a consequence of Fact 9.6
and of the following continuity result.

Fact 9.7 [GK]. The function (j, ρ) 7→ CLip(j, ρ) is continuous over the set of
pairs (j, ρ) ∈ Hom(π1(S),PSL2(R))

2 with j injective and j(π1(S)) convex co-
compact in PSL2(R).

9.4. The discrete spectrum of the Laplacian. We note that here

q := g−dσ = {(Y,−Y ) : Y ∈ sl2(R)} ⊂ sl2(R) + sl2(R) = g.

Therefore, the symmetric space X = AdS3 has rank 1 and the C-algebra
D(X) is generated by the Laplacian �X (Fact 3.1). Let us identify X with
the quadric of equation Q = 1 in R4, where the Lorentzian structure is
induced by −Q. As mentioned in the introduction, if we set r(x) :=

√
Q(x)

for Q(x) > 0, then the Laplacian �X is explicitly given by

�Xf =
1

2
�R2,2

(
x 7−→ f

( x

r(x)

))

for all f ∈ C∞(X), where

�R2,2 =
∂2

∂x21
+

∂2

∂x22
− ∂2

∂x23
− ∂2

∂x24
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and where f(x/r(x)) is defined on the neighborhood {Q > 0} of X in R4.
The invariant measure ω on X is given by

ω = x1 dx2 dx3 dx4 − x2 dx1 dx3 dx4 + x3 dx1 dx2 dx4 − x4 dx1 dx2 dx3 ;
in other words, 1

rdr ∧ ω is the Lebesgue measure on a neighborhood of X
in R4. The full discrete spectrum of �X is well-known (see [Fa]). It is a
special case of the general theory stated in Fact 5.5, and it also follows from
Claim 9.12 below.

Fact 9.8. The discrete spectrum of the Laplacian on X = AdS3 is

Specd(�X) =
{
ℓ(ℓ− 2) : ℓ ∈ N

}
.

We now consider Clifford–Klein forms XΓ. Here is a more precise version
(and generalization) of Theorem 1.1, using the constant CLip(Γ) of Subsec-
tion 9.3.

Theorem 9.9. There is a constant R′
X > 0 depending only on X = AdS3

such that for any Clifford–Klein form XΓ with finitely generated Γ ∈ SO(2, 2)0
≃ (SL2(R)× SL2(R))/{±(1, 1)},

• if −I /∈ Γ, then

Specd(�XΓ
) ⊃

{
ℓ(ℓ− 2) : ℓ ∈ N, ℓ >

R′
X

(1− CLip(Γ))3

}
;

• if −I ∈ Γ, then

Specd(�XΓ
) ⊃

{
ℓ(ℓ− 2) : ℓ ∈ 2N, ℓ >

R′
X

(1− CLip(Γ))3

}
.

In particular, the discrete spectrum of any Clifford–Klein form XΓ with Γ
finitely generated is infinite.

Using Fact 9.7, we obtain the existence of an infinite stable discrete spec-
trum in the convex cocompact case.

Corollary 9.10. For any convex cocompact Clifford–Klein form XΓ of X =
AdS3 (in the sense of Definition 9.1), there is an infinite subset of Specd(�XΓ

)
that is stable under any small deformation of Γ.

We note that Corollary 9.10 is stronger, in the case of X = AdS3, than the
general Theorem 1.7, because it treats small deformations of Clifford–Klein
forms that may be nonstandard to start with.

For standard Clifford–Klein forms XΓ, we have CLip(Γ) = 0 and Theo-
rem 9.9 follows from the general Theorem 3.11. We now explain how to
prove Theorem 9.9 for nonstandard Clifford–Klein forms, using the precise
version (8.9) of Proposition 8.1.(1) together with the theory of Subsections
9.1 to 9.3 (in particular Lemma 9.2, Remark 9.5, and Fact 9.6). We first note
that we can identify the closed positive Weyl chamber b+ of Subsection 4.1
with R+ so that the polar projection

ν : G = SL2(R)× SL2(R) −→ R≥0

of (4.5) is given by

(9.7) ν(g) = µSL2(R)(g1g
−1
2 )
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for all g = (g1, g2) ∈ G = SL2(R) × SL2(R). Here µSL2(R) : SL2(R)→ R≥0

is the Cartan projection of SL2(R) obtained from the Cartan projection
µPSL2(R) of Subsection 9.3 by projecting SL2(R) onto PSL2(R).

Proof of Theorem 9.9 for nonstandard Clifford–Klein forms. Let Γ be a fini-
tely generated discrete subgroup of G acting properly discontinuously on
X = AdS3. Assume that Γ is nonstandard. By Lemma 9.2 and Fact 9.6, af-
ter possibly applying σ, we may assume that the projection of Γ to PSL2(R)×
PSL2(R) is of the form Γ = (j, ρ)(π1(S)) with (j, ρ) ∈ Hom(π1(S),PSL2(R))

2

and j Fuchsian, satisfying CLip(j, ρ) < 1. By Proposition 8.14, after replac-
ing j by some conjugate under PSL2(R), we may assume that µPSL2(R)(j(γ)) ≥
rPSL2(R) > 0 for all γ ∈ π1(S)r {e}, where rPSL2(R) is the constant given by
Proposition 8.14, which depends only on the group PSL2(R). In particular,
Γ∩K = {e}. Consider ε > 0 such that CLip(j, ρ)+ε < 1. By Remark 9.5 and
(9.6), after replacing ρ by some conjugate under PSL2(R), we may assume
that Γ is (c, 0)-sharp for

c :=
1− (CLip(j, ρ) + ε)√
2
(
1 +

(
CLip(j, ρ) + ε

)2) ≥
1

2

(
1− CLip(j, ρ) − ε

)

and, using (9.7) and (4.2), that

rΓ := inf
γ∈Γr{e}

ν(γ) ≥ inf
γ∈π1(S)r{e}

µPSL2(R)(j(γ))− µPSL2(R)(ρ(γ))

≥ rPSL2(R)

(
1− CLip(j, ρ) − ε

)
> 0.

We note that the function t 7→ log(cosh(t)) t−2 extends by continuity in 0
and is bounded on any bounded interval of R. We conclude by using Propo-
sition 8.1.(1) with the explicit constant (8.9), together with Remark 8.4, and
by letting ε tend to zero. �

We note that the infinite subset of Specd(�XΓ
) given by Theorem 9.9 is

largest when CLip(Γ) = 0; this condition is realized when Γ is standard, but
also when the projection of Γ to PSL2(R) × PSL2(R) is of the form (9.4)
with ρ(π1(S)) unipotent.

Remark 9.11. Assume that XΓ is a standard compact Clifford–Klein form
with Γ = 8Γ × {e} for some uniform lattice 8Γ of SL2(R). Then the Lapla-
cian �XΓ

has not only infinitely many positive eigenvalues that remain con-
stant under small deformations (given by Theorem 9.9), but also infinitely
many negative eigenvalues that vary.

Indeed, L2(8Γ\H2) embeds into L2(XΓ) = L2(8Γ\SL2(R)) and the restric-
tion to L2(8Γ\H2) of the Laplacian �XΓ

corresponds to −2 times the usual
Laplacian ∆ 8Γ\H2 on the hyperbolic surface 8Γ\H2 (see [La, Ch.X]). There-
fore �XΓ

is essentially self-adjoint and admits infinitely many negative eigen-
values coming from eigenvalues of ∆ 8Γ\H2 . All these eigenvalues vary under
small deformations of 8Γ inside SL2(R) (Fact 1.2).

9.5. Flensted-Jensen eigenfunctions and analytic estimates for AdS3.
In Subsection 9.4 we have given an explicit infinite set of eigenvalues of the
Laplacian on Clifford–Klein forms of X = AdS3 (Theorem 9.9), based on
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a geometric discussion of properly discontinuous actions on AdS3 (Subsec-
tions 9.1 to 9.3). We now make the analytic aspects of the paper more
concrete by expliciting the general estimates of Sections 5 and 7 in our ex-
ample X = AdS3. We first give an explicit formula for the Flensted-Jensen
eigenfunctions ψλ.

• Flensted-Jensen functions. It is known that, in general, the radial part of
the K-invariant eigenfunctions on a rank-one reductive symmetric space X
satisfies the Gauss hypergeometric differential equation [HS, Ch. III, Cor. 2.8].
However, it is another thing to find an explicit global formula on the whole
of X for K-finite eigenfunctions such as the Flensted-Jensen functions. We
now give such a formula for X = AdS3.

We now switch to the quadric realization of X: we identify X with the
quadric of equation Q = 1 in R4, where Q is given by (9.1). We use the
same letter Q to denote the corresponding complex quadratic form on C4.
Let ℓ be an integer. For any a = (ai) ∈ C4 with Q(a) = 0, the restriction of
the function x 7→ (

∑4
i=1 aixi)

−ℓ to X is well-defined. It is an eigenfunction
of �X with eigenvalue ℓ(ℓ− 2), as one sees from the formulas

�R2,2

( 4∑

i=1

aixi

)−ℓ

= 0

for Q(a) = 0 and

−r2�R2,2 = −
(
r
∂

∂r

)2
− 2r

∂

∂r
+�X

(where, as above, we set r(x) :=
√
Q(x) for Q(x) > 0). Let ψ+

ℓ : X → C

and ψ−
ℓ : X → C be given by

(9.8) ψ+
ℓ (x) =

(
x1 +

√
−1x2

)−ℓ
and ψ−

ℓ (x) =
(
x1 −

√
−1x2

)−ℓ
.

Then �X ψ
±
ℓ = ℓ(ℓ− 2)ψ±

ℓ and the following holds.

Claim 9.12. For any integer ℓ ≥ 2, the functions ψ±
ℓ : X → C are Flensted-

Jensen functions for the parameter λ = 2ℓ−2 ∈ R+ ≃ j∗+. The (g,K)-modules

generated by ψ+
ℓ and by ψ−

ℓ (ℓ = 2, 3, ...) form the complete set of discrete
series representations for X.

A proof of Claim 9.12 will be given in Subsection 9.9, after we explicit
the Flensted-Jensen duality, the Poisson transform, and the complexified
Iwasawa projection GC = KC(exp jC)NC in Subsections 9.6 to 9.8.

Remark 9.13. It is known that for the rank-one symmetric spaces G/H =
O(p, q)/O(p − 1, q), the radial part of the K-finite eigenfunctions is given
by hypergeometric functions with respect to the polar decomposition G =
K(exp b+)H, while the spherical part is given by spherical harmonics (see
[Fa] or [Sc2] for instance). Combining the radial and spherical parts in the
case p = q = 2, we could obtain Claim 9.12 from some nontrivial relation
between special functions [KØ, Lem. 8.1]. Instead, we will take an alternative
approach, using the explicit realization ofXC = GC/HC as a complex quadric
in C4.
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• Analytic estimates. Here are the estimates of Propositions 5.1 and 7.1 for
the Flensted-Jensen functions ψ±

ℓ of (9.8). As before, we denote by x0 the
image of H in X = G/H; in our quadric realization, x0 = (1, 0, 0, 0) ∈ R4.

Lemma 9.14. For any x ∈ X = AdS3,

(9.9) |ψ±
ℓ (x)| ≤

(cosh ν(x)
2

)−ℓ/2
≤ 2ℓ e−ℓ ν(x)/2,

and

(9.10) |ψ±
ℓ (x)| ≤ cosh

(ν(x)
2

)−ℓ/2
≤ cosh

(ν(x)
4

)−ℓ
≤ |ψ±

ℓ (x0)| = 1.

We give a direct, elementary proof of these inequalities.

Proof. By (9.7), in the realization of X = AdS3 as the group manifold
SL2(R), the polar projection ν : X → R≥0 coincides with the Cartan pro-
jection µSL2(R) : SL2(R)→ R≥0, which maps g ∈ SL2(R) to the logarithm of
the highest eigenvalue of tgg, or in other words to arcosh(tr(tgg)/2). Using
the explicit correspondence (9.3), we obtain

(9.11) ν(x) = arcosh(x21 + x22 + x23 + x24) = arcosh(2x21 + 2x22 − 1)

for all x = (x1, x2, x3, x4) ∈ X in the quadric realization. By definition
(9.8) of ψ±

ℓ , we have |ψ±
ℓ (x)| = (x21 + x22)

−ℓ/2 for all x ∈ X. Thus (9.9)
follows directly from (9.11). To obtain (9.10), we use the general inequality
1 + cosh(2s) ≥ 2 cosh(s) with 2s = ν(x). �

The rest of the section is devoted to explaining Claim 9.12. For this
purpose we explicit, in the particular case of X = AdS3, some of the notation
that was introduced in Sections 3 to 8.

9.6. The Flensted-Jensen duality for AdS3. We now realize X again as
(SL2(R)×SL2(R))/Diag(SL2(R)). Then the set of inclusions (5.4) is given by

K = SO(2)× SO(2) ⊂ G = SL2(R)× SL2(R) ⊃ H = Diag(SL2(R))

⊃ ⊃ ⊃

KC = SO(2,C)× SO(2,C) ⊂ GC = SL2(C)× SL2(C) ⊃ HC = Diag(SL2(C))

⊂ ⊂ ⊂

Hd = Φ(SO(2,C)) ⊂ Gd = Φ(SL2(C)) ⊃ Kd = Φ(SU(2)),

where Φ is the embedding of SL2(C) into SL2(C)× SL2(C) defined by

(9.12) Φ(g) =
(
g, tg−1

)

for all g ∈ SL2(C). We can see the complexified symmetric space XC either
as the 3-dimensional complex sphere of equation Q = 1 in C4 or as the group
SL2(C) with the transitive action (9.2) of SL2(C)× SL2(C) by left and right
multiplication; the correspondence is given by the complex linear extension
of (9.3). The dual space Xd can be realized either as

(9.13) Xd =
{(
x1,
√
−1x2, x3, x4

)
: xi ∈ R, x21−x22−x23−x24 = 1, x1 > 0

}

or as the set Herm(2,C)+ ∩ SL2(C) of positive definite Hermitian matrices
in SL2(C); it identifies with the 3-dimensional hyperbolic space H3. The
compact form XU of XC can be realized either as

XU =
{(
x1, x2,

√
−1x3,

√
−1x4

)
: xi ∈ R, x21 + x22 + x23 + x24 = 1

}
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or as the subgroup SU(2) of SL2(C); it identifies with the 3-dimensional real
sphere S3. The following diagram summarizes the different realizations of
X, XC, and Xd.

X = G/H ≃ SL2(R) −֒→ R4

⊂ ⊂ ⊂

XC = GC/HC
∼−→
Φ′

SL2(C)
(9.3)−֒→ C4

⊂ ⊂ ⊂

Xd = Gd/Hd ≃ Herm(2,C)+ ∩ SL2(C) −֒→ R×
√
−1R× R× R

∼ −→ Φ

∼

−−−−
→

Φ
′ ◦Φ

SL2(C)/SU(2),

Here we set
Φ′(gHC) := g1g

−1
2

for all g = (g1, g2) ∈ GC = SL2(C) × SL2(C). In the rest of the section, we

always identify Gd with SL2(C) using the isomorphism Φ of (9.12).

9.7. Eigenfunctions on Xd ≃ H3 and the Poisson transform. Let P d

be any Borel subgroup ofGd = SL2(C), letNd be the unipotent radical of P d,
and let j be any maximal split abelian subalgebra of gd with exp j ⊂ P d. For
instance, we could take P d to be the group of upper triangular matrices
of determinant 1, so that Nd is the group of unipotent upper triangular
matrices, and take j to be the set of real diagonal matrices of trace 0 (in the
next subsection we are going to make another choice).

The boundary at infinity ∂∞Xd ≃ P1C of Xd ≃ H3 identifies with Gd/P d;
we denote the image of P d by z0. Let yd0 be the image of Kd in Xd = Gd/Kd

and let L be the geodesic line (exp j) · yd0 . The Iwasawa decomposition Gd =
Kd(exp j)Nd holds; this means that any point y ∈ Xd can be reached from yd0
by first applying some translation along the line L, then traveling along some
horosphere centered at z0 ∈ ∂∞Xd. The Iwasawa projection ζd : Gd → j

measures this translation: we can identify j with R so that ζd(g) is the signed
distance between yd0 and the horosphere through g−1 · yd0 centered at z0 for
any g ∈ Gd; the sign of ζd(g) is negative if the horosphere intersects the
geodesic ray R := (exp j+) · yd0 and nonnegative otherwise. For all k ∈ Kd

and g ∈ Gd,
ζd(g−1k) = Bk·R(g · yd0),

where Bk·R : Xd → R is the Busemann function associated with the geodesic
ray k ·R. Recall that by definition

Bk·R(x) = lim
t→+∞

(
dXd

(
x, k ·R(t)

)
− t
)
,

where dXd is the metric on the Riemannian symmetric space Xd = Gd/Kd.
We note that the group Kd acts transitively on ∂∞Xd. The classical

Poisson transform, defined by

(Pf)(y) =
∫

k∈Kd/Kd∩P d

f(k ·z0) e−2Bk·R(y) dk
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for all f ∈ C(∂∞Xd) and y ∈ Xd = Gd/Kd, induces a bijection between
the continuous functions on ∂∞Xd and the harmonic functions on Xd that
extend continuously to ∂∞Xd; the function Pf is the unique solution to
the Dirichlet problem on Xd ≃ H3 with boundary condition f (see [He1,
Ch. II, § 4]). If we extend the domain of definition of P to the space of all
hyperfunctions on ∂∞Xd, then we obtain all harmonic functions on Xd in
a unique way. For λ ∈ j∗C ≃ C (where ρ ∈ j∗C corresponds to 2 ∈ C), the
“twisted Poisson transform”

Pλ : B(Kd/Kd ∩ P d)
∼−→ A(Xd,Mλ)

of Subsection 5.1 is given by

(Pλf)(y) =
∫

k∈Kd/Kd∩P d

f(k ·z0) e−(λ+2)Bk·R(y) dk

for y ∈ Xd; its image consists of eigenfunctions of the Laplacian on Xd with
eigenvalue λ(λ+ 2)/4.

The action of Hd = SO(2,C) on ∂∞Xd corresponds to the action of C∗

by multiplication on P1C, hence there are three Hd-orbits: two closed ones
Z0 = {z0} and Z∞ = {w · z0} (where w is the nontrivial element of the Weyl
group W =W (gC, jC) ≃ Z/2Z), corresponding respectively to {0} and {∞},
and an open one, corresponding to C∗.

9.8. Meromorphic continuation of the Iwasawa projection. We now
assume that j is a maximal semisimple abelian subspace of

√
−1(k ∩ q), as

in Subsection 3.3. If we still identify Gd with SL2(C) by (9.12), this means
that

j =
√
−1R

(
0 1
−1 0

)
.

Thus j is a maximal split abelian subalgebra of gd as in Subsection 9.7. It is
readily seen that

nd := C

(
1

√
−1√

−1 −1

)

is a root space for j, hence the Iwasawa decomposition Gd = Kd(exp j)Nd

holds for Nd := exp nd. This Iwasawa decomposition can be recovered from
the usual decomposition

(9.14) Gd = Kd exp

(
R

(
1 0
0 −1

))
exp

(
C

(
0 1
0 0

))

by conjugating by

(9.15) k :=
1

2

(
1 +
√
−1 1 +

√
−1

−1 +
√
−1 1−

√
−1

)
∈ Kd.

We note that

k SL2(R) k
−1 = SU(1, 1) =

{
g ∈ SL2(C) :

tg

(
0 1
1 0

)
g =

(
0 1
1 0

)}

and that Ad(k) induces an identification (“Cayley transform”) between the
upper half-plane model SL2(R)/SO(2) of H2 and the unit disk model SU(1, 1)/
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S(U(1) × U(1)). An elementary computation shows that the Iwasawa pro-
jection corresponding to (9.14) is given by

(9.16) g ∈ Gd 7−→ 1

2
log(tgg)1,1 ∈ R,

where (tgg)1,1 denotes the upper left entry of tgg ∈ SL2(C). We now go
back to the quadric realization (9.13) of Xd. Using (9.16) and the explicit
correspondence (9.3), we see that if ζd : Gd → R is the Iwasawa projec-
tion corresponding to Gd = Kd(exp j)Nd, then for λ ∈ j∗ ≃ R the map
ξ∨λ : Xd → R induced by g 7→ e〈λ,ζ

d(g−1)〉 is given by

(9.17) ξ∨λ (z) =
(
z1 +

√
−1 z2

)λ/2

for all z = (z1, z2, z3, z4) ∈ Xd ⊂ C4. When λ ∈ 2Z, the map ξ∨λ extends
meromorphically to XC = {z ∈ C4 : Q(z) = 1} and restricts to an analytic
function on X.

9.9. Proof of Claim 9.12. We now combine the elementary computations
of Subsections 9.6 to 9.8 to obtain an explicit formula of the Flensted-Jensen
functions ψλ for X = AdS3.

We choose j and Nd as in Subsection 9.8 and let P d be the Borel subgroup
of Gd ≃ SL2(C) containing exp j and Nd. By Subsection 9.7, the two closed
Hd-orbits in Gd/P d are Z0 = HdP d and Z∞ = HdwP d. If we identify
Gd/P d with Kd/Kd ∩ P d ≃ SU(2)/SO(2), then

Z0 = {Kd ∩ P d} and Z∞ = {w(Kd ∩ P d)}.
For λ ∈ j∗ ≃ R, the Flensted-Jensen function ψ0

λ : Xd → C associated
with Z0 is the Poisson transform Pλ(δZ0) of the Dirac delta function δZ0 ,
hence

ψ0
λ(gK

d) = e〈−λ−ρ,ζd(g−1)〉 = ξ∨−λ−ρ(g)

for all g ∈ Gd. Similarly, the Flensted-Jensen function ψ∞
λ : Xd → C asso-

ciated with Z∞ is given by

ψ∞
λ (gKd) = e〈−λ−ρ,ζd(g−1w)〉 = ξ∨−λ−ρ(w

−1g).

Therefore, by (9.17),

ψ0
λ(z) =

(
z1 +

√
−1 z2

)−(λ+2)/2
and ψ∞

λ (z) =
(
z1 −

√
−1 z2

)−(λ+2)/2

for all z ∈ Xd, in the quadric realization (9.13). As observed at the end of
Subsection 9.8, the functions ψ0

λ and ψ∞
λ on Xd induce analytic functions

on X as soon as (λ + 2)/2 ∈ Z, i.e. as soon as λ ∈ 2Z; this corresponds to
the integrality condition (5.12) (we have µeλ = µwλ = λ + 2). The proof of
Claim 9.12 is now complete.

10. Some other illustrative examples

In this section we present some higher-dimensional examples of non-Riem-
annian locally symmetric spaces to which our theorems apply, namely higher-
dimensional anti-de Sitter manifolds and group manifolds, as well as certain
indefinite Kähler manifolds.
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10.1. Anti-de Sitter manifolds of arbitrary dimension. As a general-
ization of Section 9, we consider the discrete spectrum of complete anti-de
Sitter manifolds of arbitrary dimension ≥ 3.

For m ≥ 2, the anti-de Sitter space X = AdSm+1 := SO(2,m)0/SO(1,m)0
is a model space for all Lorentzian manifolds of dimension m+1 and constant
negative curvature. It can be realized as the quadric of Rm+2 of equation
Q = 1, endowed with the Lorentzian structure induced by −Q, where

Q(x) = x21 + x22 − x23 − · · · − x2m+2 ;

the sectional curvature is then −1 (see [Wo]).
By the general construction of [Ko1], we see that AdSm+1 admits proper

actions by reductive subgroups L of G := SO(2,m)0 of real rank 1 such as:

• L = U(1, [m2 ]), where [m2 ] denotes the largest integer ≤ m
2 ;

• L = PSL2(R), via a real 5-dimensional irreducible representation τ5
of PSL2(R) when m ≥ 3.

Standard Clifford–Klein formsXΓ ofX can be obtained by taking Γ to be any
torsion-free discrete subgroup inside L (for instance an infinite cyclic group,
a nonabelian free group, a lattice of L, an embedded surface group, etc.).

In particular, since U(1, m2 ) acts transitively on X for m even, we can ob-
tain compact (resp. noncompact but finite-volume) standard Clifford–Klein
forms of AdSm+1 form even by taking Γ to be any torsion-free uniform (resp.
nonuniform) lattice in U(1, m2 ). This construction of compact Clifford–Klein
forms of AdSm+1 is (conjecturally) the only one for m > 2 since

• compact Clifford–Klein forms do not exist when m is odd [Ku],
• Zeghib [Z] has conjectured that for m even > 2, all compact Clifford–

Klein should be standard, with Γ ⊂ U(1, m2 ) up to conjugation (this
conjecture is still open).

We recall from Section 9 that the case m = 2 is different, as AdS3 admits
many nonstandard compact Clifford–Klein forms.

Since all compact anti-de Sitter manifolds are complete [Kl], small de-
formations of the anti-de Sitter structure on a compact Clifford–Klein form
Γ\AdSm+1 correspond to small deformations of Γ inside G = SO(2,m)0.
When Γ ⊂ L is standard, nontrivial deformations exist as soon as the first
Betti number of Γ is nonzero [Ko5], which can happen by work of Kazh-
dan [Kz]. For m > 2, small deformations of standard compact Clifford–Klein
forms of AdSm+1 can never give rise to nonstandard forms (see Subsec-
tion 2.3). However, standard noncompact Clifford–Klein forms Γ\AdSm+1

can, typically if Γ is a convex cocompact subgroup of L that is a free group
(Schottky group). By [Ka2], if Γ is an arbitrary convex cocompact subgroup
of L, then it keeps acting properly discontinuously on AdSm+1 after any
small (possibly nonstandard) deformation inside G. Nonstandard noncom-
pact Clifford–Klein forms of AdSm+1 were also constructed by Benoist [Bn]
without using any deformation.

As a symmetric space, X = AdSm+1 has rank one, hence the algebra D(X)
of G-invariant differential operators on X is generated by the Laplacian �X .
For standard Clifford–Klein forms of X, Theorem 3.8.(2) yields the following
(explicit eigenfunctions can be constructed as in Section 9).
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Proposition 10.1. There is an integer ℓ0 such that for any standard Clifford–
Klein form XΓ of X = AdSm+1 with Γ ⊂ L = U(1, [m2 ]) and Γ∩Z(L) = {e},
(10.1) Specd(�XΓ

) ⊃
{
ℓ(ℓ−m) : ℓ ∈ N, ℓ ≥ ℓ0

}
,

and (10.1) still holds after a small deformation of Γ inside G. A similar
statement holds for L = PSL2(R), embedded in SO(2,m)0 via τ5.

For the reader who would not be very familiar with reductive symmet-
ric spaces, we now explicit the notation of the previous sections for X =
AdSm+1. We seeH := SO(1,m)0 as SO(2,m)0∩SLm+1(R), where SLm+1(R)
is embedded in the lower right corner of SLm+2(R); the involution σ defin-
ing H is thus given by

σ(g) =




1
−1

. . .
−1


 g




1
−1

. . .
−1




for g ∈ G = SO(2,m)0.

• Cartan and generalized Cartan decompositions. The Cartan decomposition
G = KAK holds, where K = SO(2) × SO(m) and the Lie algebra a of A is
the set of block matrices of the form

as,t :=



Es,t 0

0 0




for s, t ∈ R, where

Es,t :=




0 s
0 t
−t 0

−s 0


 ∈ so(4).

The generalized Cartan decomposition G = KBH holds, where the Lie
algebra b of B is the set of elements as,0 for s ∈ R.

• The Flensted-Jensen duality. The set of inclusions (5.4) is given by

K = SO(2)× SO(m) ⊂ G = SO(2,m)0 ⊃ H = SO(1,m)0

⊃ ⊃ ⊃

KC = SO(2,C)× SO(m,C) ⊂ GC = SO(m+ 2,C) ⊃ HC = SO(m+ 1,C)

⊂ ⊂ ⊂

Hd = SO(1, 1)0 × SO(m) ⊂ Gd = SO(1,m+ 1)0 ⊃ Kd = SO(m+ 1).

In particular, Xd = Gd/Kd = SO(1,m+1)0/SO(m+1) is the real hyperbolic
space Hm.

• Closed Hd-orbits Z and the parameter λ of discrete series representations.
A maximal abelian subspace of

√
−1 (k∩q) is given by j :=

√
−1 so(2), where

so(2) is the first factor of k = so(2)⊕ so(m). We note that j is also maximal
abelian in

√
−1 q, hence

rankG/H = rankK/H ∩K = 1 = dim j.
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Since j is centralized by k, the restricted root system Σ(kC, jC) is empty. Let

Y be the generator
√
−1
(

0 1
−1 0

)
of j =

√
−1 so(2) and let e1 ∈ j∗ be

defined by 〈e1, Y 〉 = 1. There are two possible choices of positive systems
Σ+(gC, jC), namely {e1} and {−e1}. By (5.6), the set Z of closed Hd-orbits
in the real flag variety Gd/P d has exactly two elements. They are actually
singletons, the “North and South poles” of Gd/P d ≃ Sm. Take Σ+(gC, jC)
to be {e1} (resp. {−e1}). If we identify j with R by sending e1 (resp. −e1)
to 1, then j∗+ identifies with R+ and we have ρ = m

2 and ρc = 0, hence

µλ = λ+ ρ− 2ρc = λ+
m

2
.

Condition (5.12) on µλ amounts to λ ∈ Z. The two discrete series represen-
tations with parameter ±λ are dual to each other.

• Eigenvalues of the Laplacian. By Fact 3.4, the action of the Laplacian �X

on L2(X,Mλ) is given by multiplication by the scalar

(λ, λ)− (ρ, ρ) = λ2 − m2

4
,

which can be written as ℓ(ℓ − m) if we set ℓ := λ + m
2 . This explains

Proposition 10.1.

10.2. Group manifolds. In this subsection we consider symmetric spaces
of the form X = (8G × 8G)/Diag(8G) where 8G is any reductive linear Lie
group. As mentioned in Subsection 2.2, the rank condition (3.3) is here
equivalent to rank 8G = rank 8K, where 8K is a maximal compact subgroup
of 8G. This condition is satisfied for 8G = SL2(R), in which case X is
the 3-dimensional anti-de Sitter space AdS3 examined in Section 9. More
generally, it is satisfied for all simple groups 8G with Lie algebra in the
list (2.2). It is equivalent to the fact that the Cartan involution of 8G is an
inner automorphism.

• Infinite stable spectrum in real rank one. Assume that 8G has real rank 1.
Then the structural results of Subsection 9.1 generalize: by [Ka1, Th. 1.3]
(improving an earlier result of [Ko2]), if a torsion-free discrete subgroup Γ
of 8G×8G acts properly discontinuously on X, then it is of the form

(10.2) Γ =
{
(j(γ), ρ(γ)) : γ ∈ 8Γ

}
,

where 8Γ is a discrete subgroup of 8G and j, ρ ∈ Hom(8Γ, 8G) are two rep-
resentations with j injective and discrete (up to switching the two factors).
Moreover, the Clifford–Klein form XΓ is compact if and only if j(8Γ)\G is.
Standard Clifford–Klein forms correspond to the case when ρ(8Γ) is bounded.

There exist standard compact Clifford–Klein forms XΓ that can be de-
formed into nonstandard ones if and only if 8G has a simple factor that is
locally isomorphic to SO(1, 2n) or SU(1, n) [Ko5, Th.A]. On the other hand,
for convex cocompact Clifford–Klein forms XΓ, i.e. for Γ of the form (10.2)
with j injective and j(8Γ) convex cocompact in 8G up to switching the two
factors (see Definition 9.1), there is much more room for deformation: for
instance, Γ could be a free group of any rank m, in which case the deforma-
tion space has dimension m · 2 dim(8G). Similarly to Corollary 9.10, we can
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extend Theorem 1.7 to nonstandard convex cocompact Clifford–Klein forms
(in particular that do not identify with 8Γ\8G).

Theorem 10.2. Let 8G be a semisimple linear Lie group of real rank 1
satisfying rank 8G = rank 8K. All convex cocompact Clifford–Klein forms XΓ

have an infinite stable discrete spectrum.

We note that most semisimple groups 8G of real rank 1 satisfy the condi-
tion rank 8G = rank 8K: the only exception is if the Lie algebra 8g is so(1, n)
for some odd n up to a compact factor. Theorem 10.2 relies on the fol-
lowing two properties, which generalize Facts 9.3 and 9.4 and corroborate
Conjecture 4.12.

Fact 10.3 [GGKW]. Let 8G be a semisimple linear Lie group of real rank 1.
All convex cocompact Clifford–Klein forms of X = (8G × 8G)/Diag(8G) are
sharp.

Fact 10.4 [GGKW]. Let 8G be a semisimple linear Lie group of real rank 1
and let XΓ be a (c, C)-sharp, convex cocompact Clifford–Klein form of X =
(8G×8G)/Diag(8G). For any ε > 0, there is a neighborhood Uε ⊂ Hom(Γ, 8G×8G)
of the natural inclusion such that ϕ(Γ) is discrete in 8G×8G and (c−ε, C+ε)-
sharp for all ϕ ∈ Uε.

For 8G = SO(1, n), Facts 10.3 and 10.4 were first established in [GK],
using the Lipschitz approach of Subsection 9.3. In this case, Fact 10.3
actually holds for a larger class of Clifford–Klein forms XΓ, namely all
those that are geometrically finite (in the sense that the hyperbolic man-
ifold j(8Γ)\Hn is geometrically finite, allowing for cusps) [GK]. This implies
that the discrete spectrum of any geometrically finite Clifford–Klein form of
X = (SO(1, n)× SO(1, n))/Diag(SO(1, n)) is infinite for n even.

• “Exotic” Clifford–Klein forms in higher real rank. As we have seen in Sub-
section 2.2, for several families of groups 8G of higher real rank, the space
X = (8G× 8G)/Diag(8G) admits standard compact Clifford–Klein forms XΓ

of a more general form than 8Γ\8G. More precisely, let 8G1 and 8G2 be two
reductive subgroups of 8G such that 8G1 acts properly and cocompactly on
8G/8G2: we can then take Γ of the form Γ = 8Γ1× 8Γ2, where 8Γ1 (resp. 8Γ2) is
a uniform lattice of 8G1 (resp. of 8G2). Theorem 1.5 and Proposition 2.1 apply
to the discrete spectrum of these “exotic” standard compact Clifford–Klein
forms XΓ ≃ 8Γ1\8G/8Γ2 when rank 8G = rank 8K.

A list of examples is given in Table 2.2 of Section 2. Among them, the
example (8G, 8G1,

8G2) = (SO(2, 2n)0,SO(1, 2n)0,U(1, n)) has the property
that certain uniform lattices 8Γ1 of 8G1 admit nonstandard deformations in-
side 8G, for which there exists an infinite stable discrete spectrum by Proposi-
tion 2.1. For n = 1, manifolds of the form XΓ = 8Γ1\8G/8Γ2 have dimension 6
and are locally modeled on AdS3 × AdS3; the ring D(XΓ) is generated by
the Laplacians of the two factors. The following table, for general n, shows
that these Clifford–Klein forms XΓ = 8Γ1\8G/8Γ2 are very different from
the anti-de Sitter manifolds 8G1\8G/8Γ2 ≃ 8Γ2\8G/8G1 =

8Γ2\AdS2n+1 which
we examined in Subsection 10.1 and from the indefinite Kähler manifolds
8Γ1\8G/8G2 = 8Γ1\SO(2, 2n)0/U(1, n) which we shall examine in Subsec-
tion 10.3.
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Type of Clifford–Klein form 8Γ1\8G/8Γ2
8G1\8G/8Γ2

8Γ1\8G/8G2

Model space X SO(2, 2n)0 AdS2n+1 SO(2, 2n)0/U(1, n)
Dimension 2n2 + 3n+ 1 2n + 1 n(n+ 1)
Signature (4n, 2n2 − n+ 1) (2n, 1) (2n, n2 − n)
rank(X) n+ 1 1 n

Degrees of generators of D(X) 2, 4, . . . , 2n, n + 1 2 2, 4, . . . , 2n
#Z 2(n + 1) 2 1

More generally, whenever 8G has real rank > 1, there always exist two
nontrivial reductive subgroups 8G1 and 8G2 of 8G such that 8G1 acts properly
(but not necessarily cocompactly) on 8G/8G2 [Ko2, Th. 3.3]. When rank 8G =
rank 8K, Theorem 1.5 and Propositions 2.1 and 2.2 apply to the standard
Clifford–Klein forms (possibly of infinite volume) XΓ = 8Γ1\8G/8Γ2, where
Γ = 8Γ1 × 8Γ2 is the product of any discrete subgroup 8Γ1 of 8G1 with any
discrete subgroup 8Γ2 of 8G2.

• Link between the discrete series representations of X and 8G. We now as-
sume that 8G is connected and that rank 8G = rank 8K. Flensted-Jensen’s
construction of discrete series representations VZ,λ for X = (8G×8G)/∆(8G)
(as described in Subsection 5.3) yields all of Harish-Chandra’s discrete series
representations π8λ for 8G. This is well-known, but for the reader’s conve-
nience we briefly recall the Harish-Chandra discrete series and make the link
with our previous notation.

Let 8θ be a Cartan involution of 8G and let 8K = (8G)
8θ be the correspond-

ing maximal compact subgroup of 8G. For simplicity, suppose that 8θ extends
to a holomorphic involution of some complexification 8GC of 8G. As in Sub-
section 9.6, we define a holomorphic embedding Φ : 8GC → 8GC ×8GC by

Φ(g) :=
(
g, 8θ(g)

)
.

Then the set of inclusions (5.4) is given by

K = 8K ×8K ⊂ G = 8G×8G ⊃ H = Diag(8G)

⊃ ⊃ ⊃

KC = 8KC ×8KC ⊂ GC = 8GC ×8GC ⊃ HC = Diag(8GC)

⊂ ⊂ ⊂

Hd = Φ(8KC) ⊂ Gd = Φ(8GC) ⊃ Kd = Φ(8GU ),

where 8GU is the compact real form of 8GC defined similarly to Subsection 5.2.
As in Subsection 9.6, the group Hd identifies with 8KC and Gd/P d with the
full complex flag variety 8GC/

8BC, where 8BC is a Borel subgroup of 8GC.
Fix a Cartan subalgebra 8t of 8k and a positive system ∆+(8kC,

8tC). We
note that 8t is also a Cartan subalgebra of 8g since rank 8G = rank 8K. The
set Z of closed Hd-orbits in Gd/P d identifies with the set of positive systems
∆+(8gC,

8tC) containing the fixed positive system ∆+(8kC,
8tC). In particular,

the cardinal of Z is easily computable as the quotient of the cardinals of two
Weyl groups. For instance, for 8G = SO(1, 2n)0, we have

#Z =
#W (Bn)

#W (Dn)
= 2.
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Let 8ρc be half the sum of the elements of ∆+(8kC,
8tC). Any choice of

a positive system ∆+(8gC,
8tC) containing ∆+(8kC,

8tC) determines a positive
Weyl chamber 8t∗+ in 8t∗, an element 8ρ ∈ 8t∗+, defined as half the sum of the
elements of ∆+(8gC,

8tC), and an element Z ∈ Z. For any 8λ ∈ 8t∗+ such that

µ8λ := 8λ+ 8ρ− 28ρc

lifts to the torus 8T ⊂ 8K with Lie algebra 8t, Harish-Chandra proved the exis-
tence of an irreducible unitary representation π8λ of 8G with square-integrable
matrix coefficients, with infinitesimal character 8λ (Harish-Chandra param-
eter) and minimal 8K-type µ8λ (Blattner parameter). With the notation of
the previous sections, we can take

j = {(8Y,−8Y ) : 8Y ∈ 8t}.
For λ = (8λ,−8λ) ∈ j∗ and Y = (8Y,−8Y ) ∈ j, we have

〈λ, Y 〉 = 2 〈8λ, 8Y 〉,
and if 8d : 8t∗ → R+ denotes the “weighted distance to the walls” defined as
in Subsection 3.3, then

d(λ) = 8d(8λ).

Since K/H ∩K = (8K × 8K)/Diag(8K) ≃ 8K, the set Λ+ = Λ+(K/H ∩K)

of (3.4) is here equal to {(8λ,−8λ) : 8λ ∈ 8̂K}, which naturally identifies with
the set 8̂K of irreducible representations of 8K. For λ = (8λ,−8λ) ∈ j∗+, we
have an isomorphism of (8g, 8K)× (8g, 8K)-modules:

VZ,λ ≃ (π8λ)8K ⊠ (π∨8λ)8K .

• Regular representation on L2(8Γ\8G). Let 8Γ be a discrete subgroup of 8G.
The action of 8G on 8Γ\8G from the right defines a unitary representation
of 8G on L2(8Γ\8G). With the previous notation, here is a consequence of
Proposition 8.1.(2) applied to the special case

G = 8G×8G, H = Diag(8G), Γ = 8Γ× {e},
where the Clifford–Klein form XΓ = Γ\G/H identifies with 8Γ\8G.

Proposition 10.5. Let 8G be a reductive linear group with rank 8G = rank 8K.

(1) There is a constant R > 0 (depending only on 8G) such that for
any torsion-free discrete subgroup 8Γ of 8G and any discrete series
representation π8λ of 8G with 8d(8λ) > R,

Hom8G

(
π8λ, L

2(8Γ\8G)
)
6= {0}.

(2) The same statement holds without the “torsion-free” assumption on Γ
if 8G has no compact factor.

Proof. Consider 8λ ∈ 8t∗+ such that µ8λ lifts to a maximal torus in 8K. Then
λ := (8λ,−8λ) ∈ j∗+ belongs to 2ρc − ρ + Λ+ and d(λ) = 8d(8λ). Applying
Proposition 8.1.(2), together with (8.1) and (8.2), to

G = 8G×8G, H = Diag(8G), Γ = 8Γ× {e},
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we obtain the existence of a constant R > 0 such that if 8d(8λ) > R and 8G
has no compact factor (resp. 8G has compact factors), then for any discrete
(resp. torsion-free discrete) subgroup 8Γ of 8G, the summation operator

SΓ : L2(8G,Mλ)8K1×8K2
−→ L2(8Γ\8G,Mλ)

is well-defined and nonzero for some conjugates 8K1 = g1
8Kg−1

1 and 8K2 =

g2
8Kg−1

2 of 8K (where gi ∈ 8G). In our specific setting, for ϕ ∈ L2(8G,Mλ)8K1×8K2
,

the function SΓ(ϕ) is nothing but the Poincaré series
∑

γ∈8Γ

ϕ(γ ·) ∈ L2(8Γ\8G,Mλ)8K2 ,

and SΓ respects the action of (8g, 8K2) from the right. Therefore,

Hom(8g,8K2)

(
(π8λ)8K2

, L2(8Γ\8G)
)
8K2
6= {0}

if 8d(8λ) > R. Since π8λ is an irreducible unitary representation of 8G, this is
equivalent to

Hom8G

(
π8λ, L

2(8Γ\8G)
)
6= {0}. �

Remark 10.6. For arithmetic 8Γ, we may consider a tower of congruence
subgroups 8Γ ⊃ 8Γ1 ⊃ 8Γ2 ⊃ · · · . In the work of DeGeorge–Wallach [DW] (co-
compact case), Clozel [Cl], Rohlfs–Speh [RS], and Savin [Sv] (finite covolume
case), the asymptotic behavior of the multiplicities Hom8G

(
π8λ, L

2(8Γj\8G)
)

for a discrete series representation π8λ was studied as j goes to infinity, under
the condition rank 8G = rank 8K. Then one could deduce from their result
that any discrete series representation π8λ with 8d(8λ) large enough occurs in
L2(88Γ\8G) for some congruence subgroup 88Γ of 8Γ, where 88Γ possibly de-
pends on π8λ. The approach of [DW, Cl, Sv] uses the Arthur–Selberg trace
formula. There is another approach for classical groups 8G and arithmetic
subgroups 8Γ using the theta-lifting, see [BW, Kz, Li]. Proposition 10.5 is
stronger in three respects:

(1) 8Γ is not necessarily arithmetic and 8Γ\8G can have infinite volume,
(2) we do not need to replace 8Γ by some finite-index subgroup 88Γ,
(3) the constant R is independent of the discrete group 8Γ.

10.3. Indefinite Kähler manifolds. We now consider the symmetric space
X = SO(2, 2m)0/U(1,m) for m ≥ 2. Later we will assume m to be even for
the rank condition (3.3) to be satisfied. We see the group O(2, 2m) as the
set of linear transformations of R2m+2 preserving the quadratic form

x21 + y21 − x22 − y22 − · · · − x2m+1 − y2m+1,

and the subgroup H := U(1,m) of G := SO(2, 2m)0 as the set of linear trans-
formations of C2n+1 preserving the Hermitian form |z1|2−|z2|2−· · ·− |zm+1|2.
The involution σ of G defining H is given by σ(g) = JgJ−1, where J is the

diagonal block matrix with all diagonal blocks equal to

(
0 −1
1 0

)
.

The natural G-invariant pseudo-Riemannian metric g on X has signature
(2m,m(m − 1)). We note that here X carries some additional structures,
due to the fact that H is the centralizer of a one-dimensional compact torus
(namely its center Z(H) ≃ U(1)):
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(1) X can be identified with an adjoint orbit (namely Ad(G)v where
v is any generator of the Lie algebra of Z(H)), hence also with a
coadjoint orbit via the isomorphism g∗ ≃ g induced by the Killing
form; thus, X carries a Kostant–Souriau symplectic form ω (see [Ki,
Ch. 1, Th. 1]);

(2) X can be realized as an open subset of the flag variety GC/PC for
some maximal proper parabolic subgroup PC of GC = SO(2m+2,C),
as a generalized Borel embedding (see [KO] for instance); in partic-
ular, X has a G-invariant complex structure and g +

√
−1ω is a

G-invariant indefinite Kähler form on X if g is normalized by the
Killing form.

The existence of the complex structure can easily be seen for m = 2, since
SO(2, 4)0/U(1, 2) identifies with SU(2, 2)/U(1, 2), which can be realized as
an open subset of P3C (see Subsection 1.4).

Standard Clifford–Klein forms XΓ of X that are compact (resp. noncom-
pact but of finite volume) were constructed in [Ko1]. They can be ob-
tained by taking torsion-free uniform (resp. nonuniform) lattices Γ inside
L := SO(1, 2m)0. We note that the group L acts properly and transitively
on X. An elementary explanation for this is to observe that U(m+ 1) acts
transitively on the sphere S2m+1 = SO(2m + 2)/SO(2m + 1); by duality, so
does SO(2m + 1) on SO(2m + 2)/U(m + 1); in turn, L acts properly and
transitively on X = SO(2, 2m)0/U(1,m). (For a general argument, we refer
to [Ko3, Lem. 5.1].)

If Γ is a free discrete subgroup of L, then the noncompact standard
Clifford–Klein form XΓ has a large deformation space. There are also exam-
ples of compact standard Clifford–Klein forms that admit interesting small
deformations. Indeed, certain arithmetic uniform lattices Γ of L = SO(1,m)0
have the following property: there is a continuous 1-parameter group (ϕt)t∈R
of homomorphisms from Γ to G such that for any t 6= 0 small enough, the
group ϕt(Γ) is discrete in G and Zariski-dense in G; this 1-parameter group
can be obtained by a bending construction due to Johnson–Millson (see [Ka2,
§ 6]). As we have seen in Example 4.11, any discrete subgroup Γ of L is

(
√
2
2 , 0)-sharp for X; by [Ka2], if Γ is cocompact or convex cocompact in L,

then for any ε > 0 there is a neighborhood Uε ⊂ Hom(Γ, G) of the natural
inclusion such that for any ϕ ∈ Uε, the group ϕ(Γ) is discrete in G and

(
√
2
2 − ε, ε)-sharp for X (see Lemma 4.22).
We now assume that m = 2n is even, so that the rank condition (3.3) is

satisfied. We start by examining the case n = 1, in which we give explicit
formulas for the Flensted-Jensen eigenfunctions of Subsection 7.1; we then
explicit the notation of the previous sections for general n.

• The case n = 1. The group G = SO(2, 4)0 admits SU(2, 2) as a double
covering, and the preimage of H = U(1, 2) in SU(2, 2) is S(U(1)×U(1, 2)) ≃
U(1, 2). For an actual computation, in this paragraph we set G := SU(2, 2)
and H := S(U(1)×U(1, 2)) ≃ U(1, 2), and we consider the maximal compact
subgroup K := S(U(2)×U(2)). The symmetric space X ≃ SU(2, 2)/U(1, 2)
identifies with the open subset of P3C of equation h > 0, where

h(z) = |z1|2 + |z2|2 − |z3|2 − |z4|2
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for z = (zi)1≤i≤4 ∈ C4. The Laplacian �X has been made explicit in Sub-
section 1.4. For any ℓ ∈ N, we consider the following harmonic polynomial
of degree (ℓ, ℓ) on C2:

Pℓ(z1, z2) :=
ℓ∑

i=0

(
ℓ

i

)2

(−1)i |z1|2ℓ−2i |z2|2i.

Up to a multiplicative scalar, it is the unique harmonic polynomial of de-
gree (ℓ, ℓ) that is fixed by U(1) × U(1) ≃ H ∩ K; we normalize it so that
Pℓ(1, 0) = 1. The function

(10.3) ψℓ : z = (zi)1≤i≤4 7−→ Pℓ(z1, z2)h(z)
ℓ+1
(
|z1|2 + |z2|2

)−2ℓ−1

on C4 r {0} satisfies the following differential equation:

h(z) �C2,2 ψℓ = (ℓ+ 1)(ℓ− 2)ψℓ.

Since ψℓ is homogeneous of degree 0, we may regard it as a function on
X = {h > 0} ⊂ P3C. Using these properties, we obtain the following (we
omit the details).

Claim 10.7. For any ℓ ∈ N+, the function ψℓ : X → C is a Flensted-Jensen
function on X = SU(2, 2)/U(1, 2), with parameter λ = 2ℓ − 1 ∈ R+ ≃ j∗+
and with

�X ψℓ = 2(ℓ+ 1)(ℓ− 2)ψℓ.

The (g,K)-modules Vℓ generated by ψℓ for ℓ ∈ N+ form the complete set of
discrete series representations for X.

We note that the (g,K)-module Vℓ is irreducible and isomorphic to the
Zuckerman–Vogan derived functor module V0(2ℓ−1, 1) in algebraic represen-
tation theory, with notation as in [Ko3, § 4]; in particular, Vℓ has infinitesimal
character 1

2(2ℓ − 1, 1,−1,−2ℓ + 1) in the Harish-Chandra parameterization
and minimal K-type parameter (ℓ,−ℓ, 0, 0).

For the symmetric pair (G,H) ≃ (SU(2, 2),U(1, 2)), the polar decompo-
sition G = KBH holds, where the Lie algebra b of B is generated by

Y0 :=




0
0

1
0

1
0

0
0


 ∈ su(2, 2) ≃ g.

If we identify b with R by sending Y0 to 1, then

ν(z) = arccosh

√
|z1|2 + |z2|2

h(z)
∈ R≥0

for all z = [z1 : z2 : z3 : z4] ∈ X. Here are the analytic estimates of Proposi-
tions 5.1 and 7.1 for the Flensted-Jensen functions ψℓ of (10.3).

Lemma 10.8. For any z ∈ X = SU(2, 2)/U(1, 2),

|ψℓ(z)| ≤
(
cosh ν(z)

)−2(ℓ+1) ≤ 22(ℓ+1) e−2(ℓ+1)ν(z).
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This estimate follows immediately from the definition (10.3) of ψℓ, in light of
the inequality |Pℓ(z1, z2)| ≤ (|z1|2+ |z2|2)ℓ for all (z1, z2) ∈ C2. Using (5.16),
one can show that the function ψℓ is square integrable on X if and only if
ℓ > 1/2.

• The general case. We now consider G = SO(2, 4n)0 and H = U(1, 2n) for
an arbitrary integer n ≥ 1. The Cartan decomposition G = KAK holds,
where K = SO(2) × SO(4n) and A is the maximal split abelian subgroup
of G whose Lie algebra a is the set of elements

as,t :=




0 s 0
0 t

s 0
0 t

0
0

0 0




for s, t ∈ R. The generalized Cartan decomposition G = KBH holds, where
the Lie algebra b of B is the set of elements as,−s with s ∈ R. The set of
inclusions (5.4) is given by

K = SO(2)× SO(4n) ⊂ G = SO(2, 4n)0 ⊃ H = U(1, 2n)

⊃ ⊃ ⊃
KC = SO(2,C)× SO(4n,C) ⊂ GC = SO(2 + 4n,C) ⊃ HC = GL(1 + 2n,C)

⊂ ⊂ ⊂

Hd = SO(2)× SO∗(4n) ⊂ Gd = SO∗(2 + 4n) ⊃ Kd = U(1 + 2n).

We recall that for any m ≥ 1, the group SO∗(2m) is a real form of SO(2m,C)
with maximal compact subgroup U(m).

A maximal abelian subspace j of
√
−1(k ∩ q) is given by the set of block

matrices

Y(s1,...,sn) :=




0 0

0

snY

. .
.

s1Y

−s1Y

. .
.

−snY




for s1, . . . , sn ∈ R, where

Y :=

(
0
√
−1√

−1 0

)
.

In particular, the rank of the symmetric space X is dim j = n.
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Let {f1, . . . , fn} be the basis of j∗ that is dual to {Y(1,0,...,0), . . . , Y(0,...,0,1)}.
The set

Σ+(kC, jC) := {fi ± fj : 1 ≤ i < j ≤ n} ∪ {2fk : 1 ≤ k ≤ n}
is a positive system of restricted roots of jC in kC. There is a unique positive
system Σ+(gC, jC) that contains it, namely

{fi ± fj : 1 ≤ i < j ≤ n} ∪ {2fk : 1 ≤ k ≤ n} ∪ {fk : 1 ≤ k ≤ n}.
By (5.6), for any minimal parabolic subgroup P d of Gd, there is a unique
closed Hd-orbit in Gd/P d, i.e. the set Z has only one element. The multi-
plicities of the restricted roots ±fi± fj and ±fk are four, and those of ±2fk
are one. Identifying j∗ with Rn via the basis {f1, . . . , fn}, we obtain

j∗+ =
{
λ = (λ1, . . . , λn) : λ1 > λ2 > · · · > λn > 0},

d(λ) =
1

2
min

{
λ1 − λ2, λ2 − λ3, . . . , λn−1 − λn, 2λn

}
,

ρ =
(
4n− 1, 4n − 5, . . . , 7, 3

)
,

ρc =
(
4n− 3, 4n − 7, . . . , 5, 1

)
,

µλ = λ+ ρ− 2ρc =
(
λ1 − 4n + 5, λ2 − 4n+ 9, . . . , λn−1 − 3, λn + 1

)
.

The integrality condition (5.12) on µλ amounts to

λj + 1 ∈ 2N for all 1 ≤ j ≤ n
and λj − λj+1 ≥ 4 for all 1 ≤ j ≤ n− 1.

Since the restricted root system Σ(gC, jC) is of type BCn, the Weyl group W
is isomorphic to the semidirect product Sn⋉(Z/2Z)n and we have C-algebra
isomorphisms

D(X) ≃ C[x1, . . . , xn]
Sn⋉(Z/2Z)n ≃ C[D1, . . . ,Dn],

where D1,D2, . . . ,Dn are algebraically independent invariant polynomials of
homogeneous degrees 2, 4, . . . , 2n. If we normalize the pseudo-Riemannian
metric g on X by g(Y, Y ) = 1 for Y := d

ds |s=0 exp(as,−s) · x0 ∈ Tx0X (where
x0 denotes the image of H in X = G/H, as usual), then the Laplacian �X

is 16n times the Casimir operator defined by the Killing form (for n = 1,
this is twice the Laplacian that we defined in Subsection 1.4 with respect
to the “indefinite Fubini–Study metric” h). By Fact 3.4, the action of the
Laplacian �X on L2(X,Mλ) is given by multiplication by the scalar

(λ, λ)− (ρ, ρ) = λ21 + · · · + λ2n −
1

3
(16n3 + 12n2 − n).

We note that the center Z(SO(2, 4n)0) is contained in U(1, 2n), hence
ΛΓ∩Z(Gs) = Λ for all Γ by Remark 3.6; this shows that the choice of Γ does
not impose any additional integrality condition on the discrete spectrum for
X = SO(2, 4n)0/U(1, 2n) when we apply Theorems 3.8 and 3.11.

Remark 10.9. In Subsections 10.1 and 10.3, the isometry group of X is
in the same family O(2, 2m), with m ∈ N in Subsection 10.1 and m ∈ 2N
in Subsection 10.3. However, the representations VZ,λ of G = SO(2, 2m)0
that are involved are different: they are all highest-weight modules if X =
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AdS2m+1, and never highest-weight modules if X is the indefinite Kähler
manifold SO(2, 4n)0/U(1, 2n).
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