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I. CONSTRUCTION AND STABILITY

FANNY KASSEL AND TOSHIYUKI KOBAYASHI

ABSTRACT. We study the discrete spectrum of the Laplacian on cer-
tain pseudo-Riemannian manifolds which are quotients Xr = I'\X of
reductive symmetric spaces X by discrete groups of isometries I' acting
properly discontinuously. Assuming that X admits a maximal compact
subsymmetric space of full rank, we construct L2-eigenfunctions on Xr
for an infinite set of eigenvalues. In contrast to the classical setting
where the nonzero discrete spectrum varies on the Teichmiiller space
of a compact Riemann surface, we prove that this infinite set of eigen-
values is stable under any small deformation of I', for a large class of
groups I'. We actually construct joint L’-eigenfunctions for the whole
commutative algebra of invariant differential operators on Xr.
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The spectral properties of the Laplacian have been extensively studied
both on Riemannian locally symmetric spaces I'\G/K and on reductive
symmetric spaces G/H. These are all special cases of pseudo-Riemannian
locally symmetric spaces I'\G/H, for which the Laplacian continues to exist
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and be worthy of study. The aim of this paper is to set up a framework
for spectral theory in this general setting and to prove the first results on
the discrete spectrum of such spaces under a rank condition on G/H (which
makes them non-Riemannian if G is noncompact). In particular, we con-
struct L%-eigenfunctions for an infinite set of eigenvalues on a large class of
spaces (not necessarily compact or of finite volume) and prove some defor-
mation results that have no analogue in the classical Riemannian setting.
More precisely, we work not only with the Laplacian, but with the whole
commutative algebra of “intrinsic” differential operators on I'\G/H, which
includes the Laplacian. Before describing our results in more detail, we first
recall the definitions of the main objects.

1.1. The main objects. A pseudo-Riemannian metric on a manifold M is
a smooth, nondegenerate, symmetric bilinear tensor g of signature (p, q) for
some p,q € N. As in the Riemannian case (i.e. ¢ = 0), the metric g induces
a second-order differential operator

(1.1) Op = div grad
called the Laplacian or Laplace—Beltrami operator. For instance, for
(M, g) — RPY .— (Rprq’ dx% 4t dx?) — dngrl — = dx?th)
the Laplacian is
82 32 82 32
Oppoe = —=+ - — —5— — o — ———.
Ox? ox2 85[?]2) 4 63:12) +q

In general, [y is elliptic if g is Riemannian, hyperbolic if ¢ is Lorentzian
(i.e. ¢ = 1), and none of these otherwise. The discrete spectrum of Ly is its
set of eigenvalues corresponding to L2-eigenfunctions:

(1.2) Specy(Oy) :={t € C: 3f € L*(M), f#0, Ouf =tf},

where L?(M) is the Hilbert space of square-integrable functions on M with
respect to the Radon measure induced by the pseudo-Riemannian structure.

A reductive symmetric space is a homogeneous space X = G/H where G
is a real reductive Lie group and H an open subgroup of the group of fixed
points of G under some involutive automorphism ¢. The manifold X natu-
rally carries a pseudo-Riemannian metric, induced by the Killing form of the
Lie algebra g of G when G is semisimple; therefore, X has a Laplacian [x.
Alternatively, (x is induced by the Casimir element of the enveloping alge-
bra U(g), acting on C°°(X) by differentiation (see Subsection[3.2]). Let D(X)
be the C-algebra of differential operators on X that are invariant under the
natural G-action

g-D="l0Do ()™ = (f— D)),

where we set £3(f) = f7:= f(g-). The Laplacian Ux belongs to D(X) and,
since X is a symmetric space, D(X) is commutative (see Subsection BII);
we shall consider eigenfunctions for (x that are in fact joint eigenfunctions
for D(X).

A locally symmetric space is a quotient Xp = I'\ X of a reductive symmet-
ric space X = G/H by a discrete subgroup I' of G acting properly discontin-
uously and freely. Such a quotient is also called a Clifford-Klein form of X.
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The proper discontinuity of the action of I' ensures that X is Hausdorff, and
it is in fact a manifold since the action is free. It is locally modeled on X (it is
a complete (G, X )-manifold in the sense of Ehresmann and Thurston), hence
inherits a pseudo-Riemannian structure from X and has a Laplacian Ux..
Any operator D € ID(X) induces a differential operator Dp on Xr such
that the following diagram commutes, where pr : X — Xt is the natural
projection.

C=(X) —E= 0%(X)

piiT Tpl*«
C=(Xr) = C(X)

In particular, note that
Oxr = (Ox)r-
The discrete spectrum Specy(Xr) of Xt is defined to be the set of C-algebra

homomorphisms y, : D(X) — C such that the space L*(Xr, M)) of weak
solutions f € L?(Xt) to the system

Drf=xx(D)f for all D € D(X) (My)

is nonzero. (The notation y) will be explained in SubsectionB.1) It is the set
of joint eigenvalues for the commutative algebra D(Xr) := {Dr : D € D(X)},
which we think of as the algebra of “intrinsic” differential operators on Xr.
The discrete spectrum Spec;(Xr) refines the discrete spectrum of the Lapla-
cian Oy, from (L.2)) (see Remark [3.3]).

1.2. The general problems. Let Xpr = I'\ X be a locally symmetric space.
In [KK1] we stated the following problems.

Problem A: To construct joint L?-eigenfunctions on Xt corresponding
to Specy(Xr).

Problem B: To understand the behavior of Specy(Xt) under small de-
formations of I' inside G.

By a small deformation we mean a homomorphism close enough to the
natural inclusion in the compact-open topology on Hom(T', G).
Problems A and B have been studied extensively in the following two cases.

e Assume H is compact. Then X is Riemannian and the Laplacian [y
is elliptic. If Xt is compact, then the discrete spectrum of [x,. is
infinite. If furthermore I is irreducible, then Weil’s local rigidity the-
orem [Wel] states that nontrivial deformations exist only when X is
the hyperbolic plane H? = SLy(R)/SO(2), in which case compact
Clifford—Klein forms have an interesting deformation space modulo
conjugation, namely their Teichmiiller space. Viewed as a “function”
on the Teichmiiller space, the discrete spectrum varies analytically
IBC] and nonconstantly (Fact below). On the other hand, for
noncompact Xp the discrete spectrum Spec;(Xr) may be consid-
erably different depending on whether I" is arithmetic or not (see

Selberg [Sell], Phillips—Sarnak [PS1l [PS2], Wolpert [Wp], etc.).
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e Assume I is trivial. Then the group G naturally acts on L?(Xr) =
L?(X) and so representation-theoretic methods may be used. Spec-
tral analysis on the reductive symmetric space X with respect to
D(X) is essentially equivalent to finding a Plancherel-type theorem
for the irreducible decomposition of the regular representation of G
on L?(X): see van den Ban-Schlichtkrull [BS], Delorme [D], and
Oshima [Osl], as a far-reaching generalization of Harish-Chandra’s
earlier work [Ha] on the regular representation L?(G) for group man-
ifolds. Flensted-Jensen [Fl] and Matsuki-Oshima [MO] established
a necessary and sufficient condition for Specy(X) # 0 in terms of
the rank of X (see (B3])) and determined Specy(X) explicitly (see
Fact [5.5]). The rest of the spectrum (tempered representations for X,
see [Br]) is constructed from the discrete spectrum of smaller sym-
metric spaces by induction.

On the other hand, Problems A and B have not been much studied when
H is noncompact, I' is nontrivial, and I' acts properly discontinuously on
X = G/H, except in the group manifold case when Xr identifies with ‘\T'\'G
for some reductive Lie group ‘G and some discrete subgroup ‘I'. In this
paper, we give the first results that do not restrict to this case. The fact
that H is noncompact and I" nontrivial implies new difficulties from several
perspectives:

(1) Analysis: the Laplacian on Xp is not an elliptic operator anymore;

(2) Geometry: an arbitrary discrete subgroup I' of G does not necessarily
act properly discontinuously on X;

(3) Representation theory: a discrete subgroup I' of G acting properly
discontinuously on X always has infinite covolume in G; moreover,
L?*(Xr) # L*(I'\G)* since H is noncompact.

In particular, point (1) makes Problem A nontrivial: we do not know a priori
whether or not Specy(Xr) # 0, even for compact Xp.

Point (2) creates some underlying difficulty to Problem B: we need to
consider Clifford-Klein forms Xt for which the proper discontinuity of the
action of I' on X is preserved under small deformations of I' in G. Not
all Clifford—Klein forms Xp have this property (see Example [LI0]), but a
large class does (see Example .13 and subsequent comments). The study of
small deformations of Clifford-Klein forms in the general setting of reductive
homogeneous spaces was initiated in [Ko5|; we refer to [Cn| for a recent
survey in the case of compact Clifford—Klein forms. An interesting aspect of
the case of noncompact H is that there are more examples where nontrivial
deformations of compact Clifford—Klein forms exist than for compact H (see

Subsections and [2.7]).

1.3. Our approach. In this paper we investigate Problems A and B under
the assumption ([3.3]) that X admits a mazimal compact subsymmetric space
of full rank. This case is somehow orthogonal to the case of Riemannian
symmetric spaces of the noncompact type, where compact subsymmetric
spaces are reduced to points. Assuming that G is noncompact, the group H
is thus noncompact and X non-Riemannian under our assumption.
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We solve Problem A for a large class of Clifford—Klein forms Xp of X.
We construct eigenfunctions for an explicit infinite set of joint eigenvalues
(Propositions and BJ]), proving in particular that the discrete spectrum
Spec,(Xt) is nonempty. Our eigenfunctions are obtained by a natural sum-
mation process: for certain eigenfunctions ¢ on X, we consider the general-
ized Poincaré series

(1.3) o To—s Z o(v-x)
~yel'

on Xt. The convergence and nonvanishing of this series are nontrivial since
the behavior of ¢ needs to be controlled in relation to the distribution of I'-
orbits in the non-Riemannian space X, for which not much is known when I
is not a lattice in G. From a representation-theoretic viewpoint, we build on
Flensted-Jensen’s discrete series representations [FI| for X, whose underlying
(g, K)-modules are isomorphic to certain Zuckerman—Vogan derived functor
modules Ag(A).

We also address Problem B for a large class of Clifford—Klein forms Xr.
We prove that our infinite subset of the discrete spectrum mentioned above is
stable under any small deformation of I' in G. This is achieved by controlling
the convergence parameters of the series (L3) and using recent results in the
deformation theory of proper actions on homogeneous spaces.

One special example to which our results apply is the aforementioned
classical quotients I'\G, regarded as I"x {e}\ (G x G) /Diag(G) where Diag(G)
is the diagonal of G x G. Our geometric and analytic estimates in this case
imply that all discrete series representations of G with sufficiently regular
parameter appear in the regular representation L?(T'\G) (Proposition [.5]).
When T is arithmetic, this improves the non-vanishing results that can be
deduced from the asymptotic multiplicity formulas of DeGeorge—Wallach
[DW], Clozel [Cl], and Rohlfs—Speh |[RS] or the theta-lifting (see Kazhdan
IKZ], Borel-Wallach [BW], Li [Li]) in automorphic forms. Our approach
does not depend on the Arthur—Selberg trace formula or the theta-lifting

(see Remark [I0.6]).

We introduce three main ingredients:

(1) Uniform analytic estimates for eigenfunctions on X, including their
asymptotic behavior at infinity (Proposition [5]) and the local be-
havior near the origin of specific eigenfunctions (Proposition [I);

(2) A quantitative understanding of proper actions on reductive homo-
geneous spaces (notion of sharpness — Definition E2));

(3) Counting estimates for points of a given I'-orbit in X, both in large
“pseudo-balls” (Lemma [6]) and near the origin (Proposition [R9]).

In (1), our estimates are uniform in the spectral parameter and refine results
of Flensted-Jensen [F]] and Matsuki-Oshima [MO]. In (2), the quantitative
approach to properness that we develop builds on the qualitative interpreta-
tion of Benoist [Bn] and Kobayashi [Koll [Ko4] in terms of a Cartan decom-
position G = KAK. In (3), we relate the natural “pseudo-distance from the
origin” in the non-Riemannian space X to the distance from the origin in
the Riemannian symmetric space G/K of G in order to use the growth rate
of I', the Kazhdan—Margulis lemma, and the sharpness constants of (2). Our
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counting results may be compared to those obtained by Eskin—McMullen
[EM] in a different setting, where I is a lattice in G (see Remark [LJ]).

We now state precise results, not on our construction of joint eigenfunc-
tions (for this we refer to Propositions [6.Iland B1]), but on the corresponding
eigenvalues, i.e. on the discrete spectrum of our locally symmetric spaces.
These results were partially announced in [KKI]. Before we state them in
full generality, we illustrate them with two simple examples of rank one (see
Sections [@ and [I0 for more details); in these two examples, the commutative
C-algebra D(X) is generated by the Laplacian Ox and therefore Spec,(Xr)
identifies with Specy(Ox,.) for any Clifford-Klein form Xp.

1.4. Two examples. Our first example is the 3-dimensional anti-de Sitter
space X = AdSs = SO(2,2)y/SO(1,2)g, which can be realized as the quadric
of R* of equation Q = 1, endowed with the Lorentzian metric induced by

—(@, where

Q(x) := 2% + 23 — 23 — x5
It is a Lorentzian analogue of the real hyperbolic space H?, being a model
space for all Lorentzian 3-manifolds of constant sectional curvature —1 (or
anti-de Sitter 3-manifolds). The Laplacian [aqgg, is a hyperbolic operator
of signature (4 + —); it is given explicitly by

it = B 1)

for all f € C°°(AdS3), where f(z/y/Q(z)) is defined on the neighborhood
{Q(x) > 0} of the quadric AdS; in R*. It is equal to 4 times the Casimir
operator of g = s0(2,2) with respect to the Killing form. We construct
eigenfunctions of the Laplacian on all compact anti-de Sitter 3-manifolds, for
an infinite set of eigenvalues, and prove that this infinite set of eigenvalues
is stable under any small deformation of the anti-de Sitter structure.

Theorem 1.1. The discrete spectrum of any compact anti-de Sitter 3-manifold
is infinite. Explicitly, if M = T'\AdSs with —1 ¢ ", then

(1.4) Specy(Op) D {4t —2): LEN, > (y}

for some integer Ly; moreover, ([LA]) still holds (with the same {y) after any
small deformation of the anti-de Sitter structure on M.

Here —1 € SO(2,2) is the nontrivial element of the center of SO(2,2)o,
acting on AdS3 = {z € R*: Q(x) = 1} by the antipodal map = + —x. If
—I1 €T, then half of the spectrum survives:

Specy(Oar) D {46 —2): LE€2N, > ()}

for some £y. We actually prove that (L)) holds (for some explicit ¢y) for any
complete anti-de Sitter 3-manifold M = I'\AdS3 with I" finitely generated
(Theorem [0.9). The stability of eigenvalues under small deformations in
Theorem [L1] contrasts with the situation in the Riemannian case:

Fact 1.2 (see Th.5.14]). No nonzero eigenvalue of the Laplacian on a
compact Riemann surface is constant on its Teichmiiller space.
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As we shall recall in Section [, any compact anti-de Sitter 3-manifold M is a
circle bundle over some closed hyperbolic surface S (up to a finite covering);
the deformation space of M contains the Teichmiiller space of S, and its
dimension is actually twice as large. We shall also prove the existence of
an infinite stable spectrum for a large class of noncompact complete anti-de
Sitter 3-manifolds (Corollary B.10).

Our second example is the 3-dimensional complex manifold

which can be realized as the open subset of P3C of equation h > 0, where
h(z) = [z + |22 = |23]* = |24

on C* The space X is naturally endowed with an indefinite Hermitian
structure of signature (2,1) induced by —h. The imaginary part of —h
endows X with a symplectic structure, making X into an indefinite Kéhler
manifold. The real part of —h gives rise to a pseudo-Riemannian metric of
signature (4,2). The Laplacian Ox has signature (++++— —) and is given
by the following commutative diagram:

Cx(C,.,) =—— C=(X)

2h Ue2,2 l lDX

C®(C,,,) =— C=(X),

where

C! ={zeC':h(z) >0},

h>0

where 7 : (Ci‘>0—> X is the natural projection, and where
0? 0? 0? 0?
- — — — + — + —
821821 822822 (923823 824(924
on C* It is 8 times the Casimir operator of g = su(2,2) with respect to
the Killing form. A natural way to construct Clifford—Klein forms of X

is to notice that X fibers over the quaternionic hyperbolic space H%{ =
Sp(1,1)/Sp(1) x Sp(1), with compact fiber:

{z€C*:h(z) =1} m X ={[z] e P3C: h(z) > 0}

2 lﬁber Sp(1)/U(1)

Dc2,2 =

{ue H?: |uy|* — |ug|? = 1} Hi = {[u] e P'H : |u1]* — |ug|® > 0},

—
fiber Sp(1)
where H is the ring of quaternions and P'H the quotient of H? \ {0} by
the diagonal action of H ~ {0} on the right. The isometry group Sp(1,1)
of the Riemannian symmetric space Hh acts transitively on X, and this
action is proper since the fiber Sp(1)/U(1) ~ S? is compact. Any torsion-
free discrete subgroup I' of Sp(1,1) therefore acts properly discontinuously

and freely on X; we say that the corresponding Clifford-Klein form Xr is
standard (see Definition [L[4)).
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Theorem 1.3. The discrete spectrum of any standard Clifford—Klein form
Xr of X =8SU(2,2)/U(1,2) is infinite. Explicitly, for T C Sp(1,1) there is
an integer £y, independent of I', such that

(1.5) Specy(Oxp) D {2(0—2)(¢+1): LeN, £ > {y};
moreover, ([ILB) still holds after any small deformation of T' in SU(2,2).

We will see in Subsection [[0.3]that there exist interesting small deformations
of standard Clifford-Klein forms of X = SU(2,2)/U(1,2), both compact and
noncompact. We will compute explicit eigenfunctions. We refer to [Ko6] for
further global analysis on X in connection with branching laws of unitary
representations with respect to the restriction SU(2,2) | Sp(1,1).

1.5. General results for standard Clifford—Klein forms. We now state
our results in the general setting of reductive symmetric spaces X = G/H,
as defined in Subsection [[.T under the assumption that X admits a maximal
compact subsymmetric space of full rank. For simplicity we shall assume G
to be linear throughout the paper.

An important class of Clifford—Klein forms Xr of X that we consider is
the standard ones.

Definition 1.4. A Clifford-Klein form X of X is standard if T" is contained
in some reductive subgroup L of G acting properly on X.

This generalizes the notion introduced above for X = SU(2,2)/U(1,2).
When L acts cocompactly on X, we can obtain compact (resp. finite-volume
noncompact) standard Clifford—Klein forms X1 by taking I' to be a uniform
(resp. nonuniform) lattice in L. An open conjecture [KY] Conj.3.3.10] states
that any reductive homogeneous space G/H admitting compact Clifford—
Klein forms should admit standard ones.

Our first main result in this general setting is the existence of an infinite
discrete spectrum for all standard Clifford-Klein forms of X.

Theorem 1.5. Let X = G/H be a reductive symmetric space and L a
reductive subgroup of G acting properly on X. Assume that X admits a
mazximal compact subsymmetric space of full rank. Then #Specy(Xt) = +00
for any standard Clifford-Klein form Xr with I' C L. Moreover, if L is
simple (resp. semisimple), then there is an infinite subset of Specy(X) that
is contained in Specy(Xr) for any (resp. any torsion-free) I' C L.

We wish to emphasize that when L is semisimple, the discrete spectrum
that we find is universal, in the sense that it does not depend on I' C L.
Our proof is constructive; we shall explicitly describe an infinite universal
discrete spectrum in Theorem

For ' = {e}, the existence of an infinite discrete spectrum was established
by Flensted-Jensen [F]]. In this case, as mentioned above, the condition that
X admit a maximal compact subsymmetric space of full rank is actually
necessary for the existence of a nonempty discrete spectrum [MO]. This
condition can be written as rank G/H = rank K/K N H (see Subsection B.3)).

Our second main result concerns the stability of the discrete spectrum of
standard compact Clifford-Klein forms Xt of X under small deformations
of I' in G. The set Hom(I',G) of group homomorphisms from I" to G is
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endowed with the compact-open topology. In the following definition, we
assume that the group ¢(I") acts properly discontinuously and freely on X
for all ¢ € Hom(I', G) in some neighborhood Uy of the natural inclusion of I'
in G (we shall call this property “stability for proper discontinuity”). Under
this assumption, X,y = ¢(I')\X is a manifold for all ¢ € Uy and we can
consider the discrete spectrum Spec,;(X,ry); recall that it is contained in
the set of C-algebra homomorphisms from ID(X) to C.

Definition 1.6. e We say that A € Specy(Xr) is stable under small
deformations if there exists a neighborhood U C Uy C Hom(T', G) of
the natural inclusion such that A\ € Spec, (X)) for all ¢ € U.

e We say that Xt has an infinite stable discrete spectrum if there exists
an infinite subset of Spec,(Xr) that is contained in Specy (X)) for
all ¢ in some neighborhood U C Uy C Hom(I',G) of the natural
inclusion.

We address the existence of an infinite stable discrete spectrum for stan-
dard compact Clifford—Klein forms X, where I' is a uniform lattice in some
reductive subgroup L of G. First observe that if L has real rank > 2 and I’
is irreducible, then I' is locally rigid in G by Margulis’s superrigidity theo-
rem [Mr2] Cor.1X.5.9], i.e. all small deformations of I" in G are obtained by
conjugation; consequently Specy(X,r)) = Specy(Xr) for all small deforma-
tions ¢, and thus X1 has an infinite stable discrete spectrum by Theorem [L5l
Consider the more interesting case when L has real rank 1. Then nontrivial
deformations of I' inside G may exist (see Subsection 2Z3)). By [Ka2|, all
compact Clifford—Klein forms Xt with I' C L have the stability property
for proper discontinuity; more generally, so do all Clifford-Klein forms Xt
with I' convex cocompact in L. We prove the existence of an infinite stable
discrete spectrum.

Theorem 1.7. Let X = G/H be a reductive symmetric space and let L be
a reductive subgroup of G of real rank 1 acting properly on X. If X admits
a maximal compact subsymmetric space of full rank, then Xt has an infinite
stable discrete spectrum for any uniform lattice I' of L, and more generally
for any convex cocompact subgroup I' of L.

We recall that a discrete subgroup I' of L is said to be conver cocompact
if it acts cocompactly on some nonempty convex subset of the Riemannian
symmetric space of L. Convex cocompact groups include uniform lattices,
but also discrete groups of infinite covolume such as Schottky groups, or for
instance quasi-Fuchsian embeddings of surface groups for L = PSLy(C).

Let us emphasize that the small deformations of I' that we consider in
Theorem [ 7] are arbitrary inside G in particular, in the interesting cases T’
does not remain inside a conjugate of L. A description of an infinite stable
discrete spectrum as in Theorem [[.7] will be given in Theorem B.111

1.6. General results for sharp Clifford—Klein forms. The class of stan-
dard Clifford—Klein forms that we have just considered is itself contained in
a larger class of Clifford—Klein forms, namely those that we call sharp. Let
us define this notion (see Subsections .2l and 4] for more details and exam-

ples).
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Let G = KA K be a Cartan decomposition of G, where K is a maximal
compact subgroup of G and A a closed Weyl chamber in a maximal split
abelian subgroup of G. Any element ¢ € G may be written as g = kjaks
for some ki,ky € K and a unique a € A; setting u(g) = loga defines a
continuous, proper, and surjective map p : G — log A, C a := Lie(A), called
the Cartan projection associated with the Cartan decomposition G = KA, K
(see Example [Tl for G = SL,(R)). Let || - || be a norm on a. We say that a
discrete subgroup I' of G is sharp for X = G/H if there are constants ¢ > 0
and C' > 0 such that

do(u(7), p(H)) = c|lp()ll = €

for all v € T', where d, is the metric on a induced by the norm ||-||. This means
that the set u(I') “goes away linearly from p(H) at infinity”. This notion
does not depend on the choice of the Cartan decomposition G = KA K nor
of the norm || - ||. By the properness criterion of Benoist [Bn] and Kobayashi
[Kod], any sharp discrete subgroup I' of G acts properly discontinuously on X
(see Subsection [4)); we say that the corresponding Clifford—Klein form Xp
is sharp too.

Examples of sharp Clifford—Klein forms are plentiful. For instance, all
standard Clifford—Klein forms are sharp (see Subsection4]). Also, all known
examples of compact Clifford—Klein forms of reductive homogeneous spaces
are sharp, even when they are nonstandard. We conjecture that all com-
pact Clifford—Klein forms of reductive homogeneous spaces should be sharp
(Conjecture £12).

We generalize Theorem from the standard to the sharp case and prove
the following.

Theorem 1.8. Let X = G/H be a reductive symmetric space. If X admits a
mazximal compact subsymmetric space of full rank, then Specy(Xt) is infinite
for any sharp Clifford—Klein form Xt of X.

Recall that on a Riemannian symmetric space all eigenfunctions of the
Laplacian are analytic by the elliptic regularity theorem (see [KKK] Th. 3.4.4]
for instance). Here X is non-Riemannian, hence eigenfunctions are not au-
tomatically analytic. We are still able to prove some regularity result (see

Subsection [3.0]).

1.7. Further spectral analysis in some standard cases. In the upcom-
ing paper [KK2|, we examine more carefully the spectrum of the Laplacian
for standard Clifford—Klein forms Xt when I' is contained in some reductive
subgroup L of G acting properly and transitively on X. In this case, spec-
tral analysis on Xt is connected with spectral analysis on the Riemannian
symmetric space of L and with the restriction to L of irreducible unitary rep-
resentations of G (branching laws for G' | L). Using such considerations, we
prove additional spectral results for standard Clifford—Klein forms Xt of cer-
tain symmetric spaces X that do not necessarily admit a maximal compact
subsymmetric space of full rank (i.e. for which possibly L?(X, M) = {0} for
all \), or of certain reductive homogeneous spaces X that are not necessarily
symmetric. These include the following:

e extension of the Laplacian [Jx,. to a self-adjoint operator on L?(XT),
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e inclusion of analytic functions as a dense subspace of L?(Xr, M),
e infinite multiplicity of joint eigenvalues for D(Xt),
e some relations with branching laws of unitary representations.

1.8. Organization of the paper. The paper can be divided into four parts.

Sections[2land B} This is a complement to the introduction. In Section 2]
we give an overview of various types of examples that our main theorems
cover. In Section [ we introduce some basic notation and give more precise
statements of the theorems by means of the Harish-Chandra isomorphism
for the ring of invariant differential operators; in particular, we describe an
explicit infinite set of eigenvalues, which in the standard case of Theorem [[.7]
is both universal and stable under small deformations.

Sections M to B are then devoted to the proof of the main results, as stated
precisely in Section Bl We use a summation process as in ([L.3)).

SectionsE to[6} In Section[fwe prove that for all K-finite L?-eigenfunct-
ions ¢ on X with sufficiently regular spectral parameter, the series (L3)
converges and yields an L’-eigenfunction on Xpr. This is based on both
geometric and analytic estimates. The geometric estimates are established
in Section F] where we quantify proper discontinuity through the new notion
of sharpness and count points of I™-orbits in the non-Riemannian symmetric
space X when I is a sharp discrete subgroup of G. The analytic estimates
are given in Section Bl where we reinterpret some asymptotic estimates of
Oshima in terms of the regularity of the spectral parameter and of a “pseudo-
distance from the origin” in X.

Sections [Tl and [8 In Section [ we prove that, as soon as the spectral
parameter A is regular enough and satisfies some integrality and positivity
condition, the series (L3 is nonzero for some good choice of ¢. The func-
tions ¢ that we consider are G-translates of some K-finite L2-eigenfunctions
1y on X introduced by Flensted-Jensen. The proof is prepared in Section [7]
where we give a finer analytic estimate for ¢, that controls its behavior, not
only at infinity, but also near the origin xy := eH of X = G/H. To deduce
the nonvanishing of the series (IL3)), it is then enough to control how the I'-
orbit through ¢ approaches zq: this is done in Section 8 after conjugating I'
by some appropriate element of G; for uniformity for standard I', we use the
Kazhdan—Margulis theorem. We complete the proof of the main theorems
in Subsection

Sections [@ and IO We provide a detailed discussion of some examples,
designed to illustrate the general theory in a more concrete way.

Notation. In the whole paper, we use the notation Ry = (0,4+00) and
R>g = [0,+00), as well as Ny =ZNR; and N =ZNR>g.
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Flaminio, Frangois Guéritaud, Colin Guillarmou, Toshihiko Matsuki, Amir
Mohammadi, Werner Miiller, Peter Sarnak, Birgit Speh, Alexei Venkov,
Nolan Wallach, and Joseph Wolf for enlightening discussions on various as-
pects of the paper. We are grateful to the University of Tokyo for its support
through the GCOE program, and to the Institut des Hautes Etudes Sci-
entifiques (Bures-sur-Yvette), the Mathematical Sciences Research Institute
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(Berkeley), the Max Planck Institut fiir Mathematik (Bonn), and the depart-
ments of mathematics of the University of Chicago and Université Lille 1 for
giving us opportunities to work together in very good conditions.

2. LISTS OF EXAMPLES TO WHICH THE RESULTS APPLY

There is a variety of locally symmetric spaces Xr = I'\G/H to which
Theorems [ [L7, and [LY can be applied. The aim of this section is to
provide a brief overview, with an emphasis on compact X in the first three
subsections. Some of the examples mentioned here will be analyzed in more
detail in Sections @ and [0

2.1. Symmetric spaces with standard compact Clifford—Klein forms.
We recall the following general construction from [Kol]. Assume that there
exists a reductive subgroup L of G acting properly and cocompactly on X.
Then standard compact Clifford-Klein forms Xr = I'\X can be obtained
by taking I' to be any torsion-free uniform lattice in L. Likewise, standard
Clifford-Klein forms Xt that are noncompact but of finite volume can be
obtained by taking I" to be any torsion-free nonuniform lattice in L. Uniform
lattices of L always exist and nonuniform lattices exist for semisimple L, by
work of Borel-Harish-Chandra, Mostow—Tamagawa, and Borel [Bo2|; they
all admit torsion-free subgroups of finite index by the Selberg lemma [Se2]
Lem. 8|.

Here is a list, taken from [KY] Cor. 3.3.7|, of some triples (G, H, L) where
G is a simple Lie group, X = G/H is a reductive symmetric space, and L is
a reductive subgroup of G acting properly and cocompactly on X, with the
additional assumption here that X admits a maximal compact subsymmetric
space of full rank. We denote by m and n any integers > 1 with m even.

G H L
(1) SO(2,2n) SO(1,2n) U(1,n)
(i) SO(2,2m) U(1,m) SO(1,2m)
(iii) SO(4, 4n) SO(3,4n) Sp(1,n)
(iv) SU(2,2n) U(1,2n) Sp(1,n)
(v) SO(8,8) SO(7,8) Spin(1,8)
TABLE 2.1

2.2. Group manifolds with interesting standard compact Clifford—
Klein forms. Any reductive group ‘G may be regarded as a homogeneous
space under the action of ‘G x‘G by left and right multiplication; in this
way, it identifies with the symmetric space X = (‘G x'G)/Diag(‘G), where
Diag('G) denotes the diagonal of ‘G x ‘G. The existence of a maximal com-
pact subsymmetric space of full rank in X is equivalent to the condition

(2.1) rank ‘G = rank 'K,

where ‘K is any maximal compact subgroup of ‘G; for ‘G simple, this condi-
tion is satisfied if and only if the Lie algebra of ‘G belongs to the following
list, where n, p, and ¢ are any integers > 1:

(2.2) s0(p,2q), su(p,q), sp(p,q), sp(n,R), s0*(2n),
€6(2), €6(—14)s €7(7)> €7(—5)s ©7(—25), €8(—24)» J4(4)s T4(—20)s 92(2)-
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Standard Clifford-Klein forms X1 of X = (‘G x'G)/Diag(‘G) can always be
obtained by taking T" of the form 'T" x {e} or {e} x ‘I, where 'T' is a discrete
subgroup of ‘G. Then Xy identifies with a usual quotient ‘T'\'G or ‘G/'T’
of ‘G by a discrete subgroup on one side; in particular, Xt has finite volume
(resp. is compact) if and only if ‘I is a lattice (resp. a uniform lattice) in ‘G.

It is worth noting that for certain specific groups ‘G of real rank > 2,
there is another (more general) type of standard compact Clifford—Klein
forms of X, namely double quotients ‘T'1\'G/'T'y where ‘I'y and ‘T'y are dis-
crete subgroups of ‘G [Ko2|. This happens when there exist two reductive
subgroups ‘G and ‘G of ‘G such that ‘G acts properly and cocompactly on
‘G/'Gs. In this case, the group L := ‘G x 'G5 acts properly and cocompactly
on X = (‘G x'G)/Diag(‘G), and standard Clifford—Klein forms Xp can be
obtained by taking I' of the form I' = ‘I'; x ‘\I'y C L, where 'T'; is a discrete
subgroup of ‘G;. Such a Clifford-Klein form X identifies with the double
quotient ‘T'1\'G/'T'y; it has finite volume (resp. is compact) if and only if ‘T;
is a lattice (resp. a uniform lattice) in ‘G; for all i € {1,2}. We would like to
emphasize that this “exotic” X is locally modeled on the group manifold ‘G
and not on the homogeneous space ‘G/'Gs. The following table, obtained
from [KYL Cor. 3.3.7], gives some triples (‘G, Gy, 'G2) such that ‘G satisfies
the rank condition (2)) and ‘G acts properly and cocompactly on ‘G/'Gj.
Here n is any integer > 1; it does not need to be even in Example (ii), in
contrast with Example (ii) of Table 2.1. We note that neither (‘G,'G1) nor
(‘G,'G2) has to be a symmetric pair, and that ‘G; and ‘G play symmetric
roles.

‘G ‘G4 e

(i) | ‘G with Lie algebra in ([2.2)) ‘G {e}

(ii) SO(2,2n) SO(1,2n) U(1,n)

(iii) SO(4, 4n) SO(3,4n) Sp(1,n)

(iv) SU(2,2n) U(1,2n) Sp(1,n)

(v) SO(8,8) SO(7,8) Spin(1,8)
(vi) SO(4,4) SO(4,3) Spin(4,1)
(vii) SO(4,4) Spin(4, 3) SO(4,1) x SO(3)
(viii) SO(4,3) Go(2) SO(4,1) x SO(2)
(ix) SO*(8) U(3,1) Spin(1,6)

(x) SO*(8) SO*(6) x SO*(2) Spin(1,6)

TABLE 2.2

2.3. Symmetric spaces with nontrivial deformations of standard
compact Clifford—Klein forms. Theorem [[L7 applies to all the exam-
ples in Table 2.1. However, this theorem is relevant only for Clifford—Klein
forms Xt such that I' admits nontrivial small deformations inside G, 1i.e.
deformations that are not obtained by conjugation. Such deformations do
not always exist when Xr is compact. We now point out a few examples
where they do exist.

Consider Example (i) of Table 2.1, where X = SO(2,2n)/SO(1,2n) is
the (2n + 1)-dimensional anti-de Sitter space AdSs,4+1. The group L =
U(1,n) has a nontrivial center Z(L), isomorphic to U(1). For certain uniform
lattices I' of L, small nontrivial deformations of I' inside G = SO(2,2n) can
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be obtained by considering homomorphisms of the form 7 +— ~(v) with
1 € Hom(T', Z(L)) (see [Ko]). By [Ral] and [We2], any small deformation
of I' inside G is actually of this form, up to conjugation. The Clifford-
Klein forms corresponding to these nontrivial deformations remain standard,
but the existence of a stable discrete spectrum given by Theorem [[7] is
not obvious even in this case. We examine this example in more detail in
Subsection [0}

Consider Example (ii) of Table 2.1, where X = SO(2,2m)/U(1, m) has the
additional structure of an indefinite Kéhler manifold (see Subsection [10.3).
Here it is actually possible to deform certain standard compact Clifford—
Klein forms of X into nonstandard ones. Indeed, using a bending construc-
tion due to Johnson-Millson [JM], one can obtain small Zariski-dense de-
formations inside G = SO(2,2m) of certain arithmetic uniform lattices I of
L = SO(1,2m) (see [Ka2l §6]): this yields a continuous family of compact
Clifford—Klein forms Xp with " Zariski-dense in G. (Recall that a group is
said to be Zariski-dense in G if it is not contained in any proper algebraic
subgroup of G.) Here the C-algebra D(X) is a polynomial ring in [Z4]
generators; we discuss the discrete spectrum of Xt in Subsection I0.3]

Finally, consider the “exotic” standard compact Clifford-Klein forms
‘T'1\'G/'T'y discussed in Subsection Z2] for which some examples are given
in Table 2.2. Here is an analog of Theorem [[7] in this setting (see Propo-
sition below for noncompact Clifford—Klein forms): the novelty is the
stability of the discrete spectrum, whereas the fact that the quotient remains
a manifold under small deformations (i.e. stability for proper discontinuity,
in the sense of Subsection [[T)) is a direct consequence of [Ka2|. We refer to
Subsection for a proof.

Proposition 2.1. Let ‘G be a reductive linear Lie group and let ‘G and ‘G
be two reductive subgroups of ‘G such that ‘G acts properly on ‘G /'Gy. Any
standard Clifford—Klein form

\Fl\\G/ \F2 ~ (\Fl X\Fg)\(\G X\G)/Diag(\G),

where ‘T'; is an irreducible uniform lattice of ‘\G; for all i € {1,2}, remains a
manifold after any small deformation of ‘\I'y x'T'y inside ‘G x'G, and it has
an infinite stable discrete spectrum if (Z1)) is satisfied.

In Examples (ii), (vii), and (viii) of Table 2.2, certain standard compact
Clifford—Klein forms ‘I'1\'G/'TI's admit small nonstandard deformations ob-
tained by bending, similarly to Example (ii) of Table 2.1 above. In Exam-
ple (i) of Table 2.2, there exist standard compact Clifford-Klein forms ‘T'1\'G
with nonstandard small deformations if and only if ‘G has a simple factor
that is locally isomorphic to SO(1,2n) or SU(1,n) [Kod, Th. Al.

2.4. Clifford—Klein forms of infinite volume. Most examples of Clifford—
Klein forms that we have given in Subsections 2.T1to 2.3 were compact. How-
ever, Theorems LAl [[.7 and [[.8 do not require any compactness assumption.
In particular, in Theorems and [ 7 on the existence of an infinite (univer-
sal or stable) spectrum for standard Clifford—Klein forms, we remark that

e the reductive group L does not need to act cocompactly on X (it
could be quite “small”, for instance locally isomorphic to SLa(R)),



DISCRETE SPECTRUM FOR LOCALLY SYMMETRIC SPACES I 15

e the discrete group I' does not need to be cocompact (nor of finite
covolume) in L.

Also, in Theorem [[L8], the sharp Clifford—Klein form Xr does not need to be
compact (nor of finite volume). Therefore, our theorems apply to much wider
settings than those of Tables 2.1 and 2.2; we now discuss some examples.

Firstly, as soon as rankg H < rankg G, there exist infinite cyclic discrete
subgroups I of G that are sharp for X = G/H [Kol]|; Theorem applies to
the corresponding Clifford—Klein forms Xr. Even in this case, the existence
of an infinite discrete spectrum for Xt is new.

Secondly, for many X there exist discrete subgroups I' of G that are
nonvirtually abelian (i.e. with no abelian subgroup of finite index) and sharp
for X; we can again apply Theorem [[L8 This is for instance the case for
X =SO(p+1,q)/SO(p, q) whenever 0 <p <qg—1orp=gq—1isodd [Bul.
Recently, Okuda [OK] gave a complete list of reductive symmetric spaces X =
G/H with G simple that admit Clifford—Klein forms Xp with I nonvirtually
abelian. For such symmetric spaces, there always exist interesting sharp
examples:

(1) on the one hand, sharp Clifford-Klein forms Xt such that I' is a free
group, Zariski-dense in G [Bnl, Th.1.1];

(2) on the other hand, standard Clifford-Klein forms Xr with I" C L for
some subgroup L of G isomorphic to SLa(R) or PSLy(R) [OK].

In case (1), the group I' is in some sense “as large as possible”, in contrast
with case (2), where it is contained in a proper algebraic subgroup L of G.
In case (2), we can take I' to be a surface group embedded in L, therefore
admitting nontrivial deformations inside L. Theorem [[.8 applies to case (1)
and Theorems [[5] and [[7] to case (2).

Thirdly, for group manifolds X = (*GX'G)/Diag(‘G) there are many exam-
ples of standard Clifford—Klein forms of infinite volume that admit nontrivial
deformations. Asin Subsection[2.2] we can take a pair of reductive subgroups
‘G1, 'G5 of ‘G such that ‘Gy acts properly on ‘G/'Gs, but now we do not re-
quire anymore that this action be cocompact. We consider Xt = ‘TI'1\'G/'T'y
where 'T'; is a discrete subgroup of ‘G; (not necessarily cocompact) and we
deform 'I' inside ‘G x‘G. Here is an analog of Theorem [[7] that applies in
this setting; we refer to Subsection for a proof.

Proposition 2.2. Let ‘G be a reductive linear Lie group satisfying (1)) and
let ‘G and ‘G4 be two reductive subgroups of ‘G such that ‘G acts properly
on G/ Gy. Consider a standard Clifford-Klein form

\Fl\\G/\FQ >~ (\Fl X\Fg)\(\G X\G)/Diag(\G),
where ‘T'; is a discrete subgroup of ‘G for all i.

(1) If ‘Gy has real rank 1 and ‘T'y is convex cocompact in ‘Gy, then
there exists an infinite subset I of Specy(‘T'1\'G/'T'2) and a neigh-
borhood ‘U C Hom('I'1,'G x Z;(‘T'2)) of the natural inclusion such
that ‘o(‘'T'1)\'\G/'T's is a manifold and I C Specy(‘o(‘'T'1)\'G/'T'2) for
all\p € U.

(2) If ‘\G; has real rank 1 and ‘T; is convex cocompact in ‘G; for all
i € {1,2}, then the standard Clifford-Klein form ‘I'1\'G/‘T's remains
a manifold after any small deformation of ‘\I'y x ‘T'y inside ‘G x'G
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and it has an infinite stable discrete spectrum in the sense of Defini-

tion [1.0.

3. QUANTITATIVE VERSIONS OF THE MAIN RESULTS

In this section, we give some quantitative estimates of Theorems [L5] [I.7]
and (Subsection [B4]) and discuss the regularity of our eigenfunctions
(Subsection B.H). We first fix some notation that will be used throughout
the paper and recall some useful classical facts (Subsections Bl to B.3]).

3.1. Reminder: invariant differential operators on X. In the whole
paper, G denotes a real reductive linear Lie group and H an open subgroup
of the group of fixed points of G under some involutive automorphism o. We
denote their respective Lie algebras by g and §j. Without loss of generality, we
may and will assume that G is connected; indeed, we only need to consider
the discrete spectrum of one connected component of X.

In this paragraph, we recall some classical results on the structure of the
algebra D(X) of G-invariant differential operators on X. We refer the reader
to [Hell, Ch.II] for proofs and more details.

Let U(gc) be the enveloping algebra of the complexified Lie algebra gc :=
g®rC and U(gc)? the subalgebra of Adg(H )-invariant elements (it contains
in particular the center Z(gc) of U(gc)). Recall that U(ge) acts on C°(G)
by differentiation on the right, with
d d
(YY) f)(g) = TN P v W f(gexp(t1Yr) - - exp(tmYim))

for all Y1,...,Y,, € g, all f € C*°(G), and all g € G. This gives an iso-

morphism between U(gc) and the ring of left-invariant differential operators

on (G. By identifying the set of smooth functions on X with the set of right-

H-invariant smooth functions on G, we obtain a C-algebra homomorphism
p: Ulge)” — D(X).

This homomorphism is surjective, with kernel U (gc)heNU (gc ) [Hell Ch. 11,
Th. 4.6], hence it induces an algebra isomorphism
(3.1) U(sc)”/U(ac)be NU(gc)" — D(X).

Let ¢ = b 4+ g be the decomposition of g into eigenspaces of do, with
respective eigenvalues +1 and —1. In the whole paper, we fix a mazimal
semisimple abelian subspace j of v/—1¢q. The integer

(3.2) rank G/H = dimg

does not depend on the choice of j. Geometrically, if x¢ denotes the image
of H in X = G/H, then exp(v/—1j) - zo is a maximal flat totally geodesic
submanifold of X, where “flat” means that the induced pseudo-Riemannian
metric is nondegenerate and that the curvature tensor vanishes (see [KNGI|
Ch.XI, §4]). Let W be the Weyl group of the restricted root system % (gc, jc)
of jc in gc, and let S(jc)" be the subalgebra of W-invariant elements in the
symmetric algebra S(jc) of jc. The important fact that we will use is the
following.
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Fact 3.1. The algebra D(X) of G-invariant differential operators on X is a
polynomial algebra in r :=rank G/H generators. It naturally identifies with
S(ic)V, and the set of C-algebra homomorphisms from D(X) to C identifies
with j&. /W, where j¢ is the dual vector space of jc.
Let us explicit these identifications. Let 1 (gc, jc) be a system of positive
roots in X(gc,jc) and let
ne= P (90

Xt (gosjc)
be the sum of the corresponding root spaces, where
(g(C)a = {Y < gc, [T, Y] = a(T)Y VT e ]}

The complexified Iwasawa decomposition gc = e + jc + ne holds, implying
that U(gc) is the direct sum of U(jc) ~ S(jc) and hcU(gc) + U(ge)ne. Let
p : U(gc) — S(jc) be the projection onto S(jc) with respect to this direct
sum and let p” : U(gc) — S(jc) be the “shifted projection” given by

#"(w), A) = (' (u), A = p)
for all A € j;, where

1 . ik
pi=3 Z dimc(gc)a @ € i
a€X (gesic)

is half the sum of the elements of ¥ (g¢,jc), counted with root multiplicities.
The restriction of p” to U(gc) is independent of the choice of ¥ (gc,jc)
and induces an isomorphism

U(ge)™ /U(ge)he NU(gc)™ — S(ic)"
[ell, Ch.II, Th.5.17]. If H is connected, then U(gc)’ = U(gc)* and, using

B0 above, we obtain the following commutative diagram.

/1

Ulge)? ——— S(ic)"
T~ T

U(ge)? /U (ac)he N U (gc)?

D(X)

Thus we have a C-algebra isomorphism ¥ : D(X) = S(ic)V (Harish-Chandra
isomorphism). In the general case when H is not necessarily connected, we
still have an isomorphism W : D(X) = S(ic)" by the following remark.

Remark 3.2. The C-algebra D(X) is isomorphic to ID(G/Hy), where H
denotes the identity component of H.

Proof. There is a natural injective algebra homomorphism D(X) < D(G/Hy)
induced by the natural projection G/Hy — X. To see that this homomor-
phism is surjective, it is sufficient to see that H acts trivially on D(G/Hy).
This follows from the fact that the quotient field of ID(G/Hj) is isomorphic
to that of p(Z(gc)) [Hell, Ch.III, Th. 3.16] (where p : U(gc)™o — D(G/Hyp)
is given by the diagram above for Hy) and from the fact that H acts trivially
on Z(gc) and p is H-equivariant. O
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By the Harish-Chandra isomorphism ¥ : D(X) = S(jc)", the C-algebra
D(X) is a commutative algebra generated by r := dimgj = rank G/H ho-
mogeneous, algebraically independent differential operators D,...,D,. If
we identify S(jc) with the ring of polynomial functions on j§, then any ho-
momorphism from D(X) to C is of the form

Xx: D (¥(D),\)

for some A € j&, and xn = x if and only if X € W - A. By construction,
any D € D(X) acts on the constant functions on X by multiplication by the
scalar x,(D). From now on, we identify the set of C-algebra homomorphisms
from D(X) to C with j&./W ; in particular, we see Specy(X) (or Specy(Xr)
for any Clifford-Klein form Xr) as a subset of j¢/W:

Specg(Xr) = {A €j2/W : L*(Xr, My) # {0}},
where L?(Xt, M) is the space of weak solutions f € L?(Xr) to the system
Drf =xx(D)f for all D € D(X) (M)).

Remark 3.3. When r = rank G/H > 1, the space L*(Xr, M) is in general
strictly contained in the space of L2-eigenfunctions of the Laplacian [y,

(details will be given in [KK2]).

3.2. The Laplacian. In the whole paper, we fiz a Cartan involution 0 of G
commuting with o and let K = GY be the corresponding mazimal compact
subgroup of G, with Lie algebra €. Let g = € 4+ p be the corresponding
Cartan decomposition, i.e. the decomposition of g into eigenspaces of df
with respective eigenvalues +1 and —1. We fix a G-invariant nondegenerate
symmetric bilinear form B on g with the following properties: B is positive
definite on p, negative definite on £, and p and £ are orthogonal for B. If G
is semisimple, we can take B to be the Killing form & of g.

On the one hand, since the involution ¢ commutes with the Cartan invo-
lution @, the form B is nondegenerate on h x b, and induces an H-invariant
nondegenerate symmetric bilinear form on g/h. By identifying the tangent
space T,,(G/H) at oy = eH € G/H with g/ and using left translations, we
obtain a G-invariant pseudo-Riemannian structure on X = G/H. We then
define the Laplacian (x as in (L)) with respect to this pseudo-Riemannian
structure.

On the other hand, the form B defines an isomorphism g* ~ g, yielding a
canonical element in (g®g)® corresponding to the identity under the isomor-
phism (g*®g)% ~ Homg(g, g). This element projects to the Casimir element
of U(gc), which lies in the center Z(gc). It gives a differential operator of
order two on X, the Casimir operator, whose actions by differentiation on
the left and on the right coincide. Since X is a symmetric space, the Casimir
operator on X coincides with Ox. (We refer to [Hell Ch.II, Exer. A.4] for
the case when H is a maximal compact subgroup of G; a proof for the general
case goes similarly.)

We now explicit the eigenvalues of [lx. For this we note that B is nonde-
generate on any f-stable subspace of g. In particular, if j is #-stable (which
will always be the case below), then B induces a nondegenerate W-invariant
bilinear form (-,-) on j*, which we extend to a complex bilinear form (-,-)
on jg.
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Fact 3.4. If f € C™(X) satisfies (M)) for some X € j§, then
Oxf = ((AA) = (p,0) I

Indeed, this follows from the above description of the Harish-Chandra iso-
morphism; one can also use [Hell Ch.II, Cor.5.20] and the fact that D(X) ~
D(X d), where X? is a Riemannian symmetric space of the noncompact type
with the same complexification as X (see Subsection [(.2)).

3.3. Some further basic notation. We now fix some additional notation
that will be used throughout the paper.

We first recall that the connected reductive group G is the almost product
of its connected center Z(G)p and of its commutator subgroup Gg, which
is semisimple. The group Gj itself is the almost product of finitely many
(nontrivial) connected simple normal subgroups, called the simple factors
of G. The connected center Z(G)g is isomorphic to R* x (S')? for some
integers a,b € N. Recall that G admits a unique maximal compact normal
subgroup G, which is generated by the compact simple factors of G, by the
center Z(Gy) of G, and by the compact part of Z(G)g. The group G is said
to have no compact factor if G, = Z(Gs).

Flensted-Jensen [Fl] and Matsuki-Oshima [MO] proved that Specy(X) is

nonempty if and only if
(3.3) rank G/H =rank K/H N K,

where the rank is defined as in (8:2)). This is equivalent to the fact that X ad-
mits a maximal compact subsymmetric space of full rank, namely K/H N K.
Under the rank condition ([33]), we may and do assume that the mazimal
abelian subspace i of Subsection [31 is contained in /—1(E N q). Then j is
O-stable, all restricted roots a € X(gc,jc) take real values on j, and the
W-invariant bilinear form (-, -) on j* from Subsection 3.2]is positive definite.

We fiz once and for all a positive system X1 (bc,jc) of restricted roots of jc
in o, which we will keep until the end of the paper; we denote by p. half the
sum of the elements of ¥ (£c,jc), counted with root multiplicities. We now
introduce some notation A, A, and A’ that will be used throughout the
paper. We start by extending j to a maximal abelian subspace?of vV/—1¢& Let
AT (tc,jc) be a positive system of roots of jc in €c such that the restriction
map a — alj. sends At (tc,jc) to BT (kc,jc) U {0}. We identify the set of
irreducible finite-dimensional representations of £¢ with the set of dominant
integral weights with respect to the positive system A™(Ec,jc). As a subset,
we denote by

(3.4) A=A (K/HNK)

the set of irreducible representations of K with nonzero (HNK)-fixed vectors;
it is the support of the regular representation of K on L?(K/H N K) by
Frobenius reciprocity.

Remark 3.5. By definition, A is a set of dominant integral elements in

the dual of?z i+ (J~ﬂ hc). However, we can regard it as a subset of j* by
the Cartan—Helgason theorem [Wal Th.3.3.1.1].
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We set
(3.5) A :=Z-span(Ay) Cj*.

For any finite subgroup J of the center Z(K) of K, let f/J be the set
of (highest weights of) irreducible representations of K that factor through
K/J and let

(3.6) A = Z-span (A4 N I?/\J)
We note that the Z-module A’ has finite index in A. Indeed, if J has car-
dinal m, then A/ contains mA = {m\ : X\ € A} since (m\)(z) = A\(z™) =1

forall A € Ay and z € J. If J C J', then AY D A”; in particular, for any
discrete subgroup I' of G we have

(3.7) A D ATNZ(Gs) 5 AZ(Gs)
where, as before, Z(G5) is the center of the commutator subgroup G, of G.

Remark 3.6. If J C H, then A = A/, In particular, if Z(G,) C H, then
ATNZ(Gs) = A for any subgroup I' of G.

Indeed, if J C H, then J acts trivially on K/H N K, hence the regular
representation of K on L?(K/H N K) factors through K/J.

Any choice of a positive system X7 (gc,jc) of restricted roots of j¢ in g¢
containing X7 (¢¢,jc) will determine:

(1) a basis {a1,...,a} of X(gc,ic),
(2) a positive Weyl chamber

i% := {\ € Homg(j,R) : (\,&) > 0 for all & € X" (gc,jc)},

with closure E in j*,

(3) anelement p € j*, defined as half the sum of the elements of X (gc, jc),
counted with root multiplicities,

(4) a function d :j* — Ry measuring the “weighted distance” from \ to
the walls of j* , given by

d(X\) := min (A, ) > 0.
1<i<r (ag, o)

The function d does not depend on the choice of the W-invariant inner
product (-, -) that we made in Subsection B.2} we extend it as a W-invariant
function on j*. We note that any element of j* enters the positive Weyl
chamber j% if we add tp for some sufficiently large ¢t > 0; conversely, d(\)
measures to which extent A\ —#p remains in j% for A € j%:

Observation 3.7. For all )\ € E,

d(X) —
A N7 *
m, J2NSES W
where we set
(3.8) my := max (0 )

Ca<i<r (a4, )
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Proof. For any simple root a; (1 <i <),

A— Mp’ai
S )_d(A)—@mp:o. O
(v, i) mp

We note that if jc is a Cartan subalgebra of gc, then d(p) =m, =1/2.

3.4. Precise statements of the main theorems. With the above no-
tation, here is a more precise statement of Theorems and on the
existence of an infinite discrete spectrum, which is “universal” for standard
Clifford-Klein forms. We choose a positive system X" (gc,jc) containing the
fixed positive system X7 (€c,jc) of Subsection B3} this determines a positive
Weyl chamber j and an element p € j% .

Theorem 3.8. Suppose that G is connected, that H does not contain any
simple factor of G, and that the rank condition ([3.3) holds.
(1) For any sharp Clifford-Klein form Xr with NG, C Z(Gs), there is
a constant R > 0 such that

{)\ €N (20 —p+ AFmZ(GS)) cd(AN) > R} C Specy(Xr).

(2) The constant R can be taken uniformly for standard Clifford—Klein
forms: given any reductive subgroup L of G, with a compact center
and acting properly on X, there is a constant R > 0 such that

{Meqin(2pe—p+ ATZE)) - d()) > R} C Specy(Xr)

for all discrete subgroups T' of L with T'N L. C Z(Gy) (this includes
all torsion-free discrete subgroups I' of L); in particular, by B.1),

{)\ €% (20 — p+ AZE)) - d(\) > R} C Specy(Xr)
for all such T'.

As in Subsection B3] we denote by G. (resp. by L.) the maximal compact
normal subgroup of G (resp. of L), and by Z(G5) the center of the semisimple
part of G. The Z-modules A'M4(%s) and AZ(%s) have been defined in (B.8)
and the term “sharp” in Subsection

We note that the technical assumptions of Theorem are not very re-
strictive:

Remarks 3.9. (a) The assumption I' N G. C Z(Gs) is automatically
satisfied if G has no compact factor (i.e. if G, = Z(Gs)) or if T is
torsion-free. This assumption will be removed in Subsection B.Gl in
order to prove the theorems and propositions of Sections [Il and 2l

(b) The assumption I' N L, C Z(Gy) is automatically satisfied if T" is
torsion-free, or if L has no compact factor and Z(L) C Z(G4). We
note that for I' C L, the condition I' N L. C Z(Gj) is stronger than
I'nG. C Z(Gs).

Constants R as in Theorem B8 (1) and (2) can be expressed in terms of
the geometry of X, of the sharpness constants (¢, C') of I', and of a “pseudo-
distance” from the origin g = eH of X = G/H to the other points of its

I-orbit in X: see (89), (8I0), and [BIT).
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We note that our choice of a positive system X7 (gc, jc) containing X7 (¢c,ic)
could affect the lattice condition A € 2p, — p+ A'"Z(Cs) since p depends on
this choice. All elements A satisfying one of these lattice conditions appear
in the discrete spectrum. We refer to (5.0) for a geometric meaning of the
choice of X% (gc,jc).

Remark 3.10. In Theorem B.8 (1), we can take R = 0 if I' = {e}. This is
the “C' = 0” conjecture of [Fl] on the precise condition of the parameter A for
the square integrability of certain joint eigenfunctions on X; this conjecture
was proved affirmatively in [MO], and the main ingredient is Fact 571 that
we also use below.

The following theorem gives a description of an infinite stable discrete
spectrum as in Theorem [T} it states that the constant R of Theorem B.8(2)
is stable under small deformations.

Theorem 3.11. Assume that G is connected, that H does not contain any
simple factor of G, and that the rank condition [B.3) holds. For any reductive
subgroup L of G of real rank 1 and any conver cocompact subgroup I' of L
(in particular, any uniform lattice T of L) with T'NG,. C Z(Gs), there are a
constant R > 0 and a neighborhood U C Hom(T', G) of the natural inclusion
such that Xy = p(I)\X is a Clifford-Klein form of X for all ¢ € U and

{Aeitn (200 — p+ ATZE)) 1 d(X) > R} C Specy(Xyr)-
In particular, for oll ¢ € U,
(A eitn (200 — p+AZC)) 1 d(N) > R} C Specy(Xyr))-

If'N L. C Z(Gy) (for instance if T is torsion-free or if L is simple with
Z(L) C Z(Gy)), then we may take the same R (independent of I') as in
Theorem [Z8.(2), up to replacing U by some smaller neighborhood.

Theorems and B.I1] will be proved in Section

Remark 3.12. Our proofs depend on the rank condition ([B3). It is plau-
sible that for a general locally symmetric space, no nonzero eigenvalue is
stable under nontrivial small deformations unless (B3] is satisfied. This is
corroborated by Fact (in the Riemannian case, (3.3)) is not satisfied). It

is also plausible that there should be no “universal spectrum” as in Theorems
and B8 unless ([B3)) is satisfied.

3.5. Regularity of eigenfunctions obtained by summation. As men-
tioned in the introduction, the way we prove Theorems B.8 and BTl is by
using a natural summation process. Consider the action of G on L*(X, M)
by left translation

(3.9) g o= ")
and let L?(X, M)k be the subspace of K-finite functions in L?(X, M,).
We prove that for any A € j* with d()) large enough, the operator

Sp: LA(X, M)k — L*(Xr, M,)
mapping ¢ to

o= (Te— Y (v 9)@))

yel
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is well defined (Proposition [6.1]). We actually prove that St is well-defined
on g-L*(X, M)k for any g € G and X € j* with d()\) large enough, and
that there exists g € G such that for any A € j% N (2p. — p+ ATNZ(G9)) with
d()\) large enough, St is nonzero on g-L?(X, My)k (Proposition and
Remark B2)). Here is a regularity result that we obtain for the image of Sr.

Theorem 3.13. Assume that G is connected and that the rank condition
B3) holds. Let Xt be a sharp Clifford-Klein form with I' N G, C Z(Gs)
and let R > 0 be the corresponding constant given by Theorem[38. For any
A €% with d(\) > R and any g € G, the image of g-L*(X, M)k under
the summation operator Sr is contained in LP(Xt) for all 1 < p < oo, and
in C™(Xr) whenever d(\) > (m + 1)R.

In particular, if we take m to be the maximum degree of the generators
D1, ..., D, of the C-algebra D(X), then for f € Sp(g-L*(X, M)k ) we have

(Dj)r f=xa(D;)f
for all 1 < j < r in the sense of functions, not only in the sense of distribu-
tions. For certain standard Clifford—Klein forms X, it is actually possible
to prove that the image of L?(X, M,)x under the summation operator Sp
consists of analytic functions (see [KK2]).

4. SHARPNESS AND COUNTING IN NON-RIEMANNIAN SYMMETRIC SPACES

In this section we examine in detail the new notion of sharpness, which
we have briefly defined in the introduction. We then establish some count-
ing results for the orbits of sharp discrete groups I' in the non-Riemannian
symmetric space X = G/H (Lemma and Corollary 7). We note that
these groups I' can never be lattices of G: they have to be much “smaller”.

Counting is developed here in the perspective of spectral theory: our
results will be useful, together with the analytic estimates of Section [ to
prove the convergence of series ([L3]) of eigenfunctions. However, the counting
results we obtain might also have some interest of their own.

We first introduce some notation and briefly recall the notions of Cartan
and polar projections for noncompact, reductive G.

4.1. Preliminaries: Cartan and polar projections. We keep the nota-
tion of Section Bl In particular, # is the Cartan involution and g = €+ p
the Cartan decomposition introduced in Subsection Let a be a maximal
abelian subspace of p and let A = expa be the corresponding connected
subgroup of G. We consider the logarithm log : A = a, which is the inverse
of exp : @ = A. We choose a system X" (g,a) of positive restricted roots
and let oy and A, = expa; denote the corresponding closed positive Weyl
chambers in a and A, respectively. The Cartan decomposition G = KA, K
holds [He2]: any g € G’ may be written as g = kjagk, for some k¢, k, € K
and a unique a, € A;. Setting p(g) = log a, defines a map

p:G —ay:=logA,,

called the Cartan projection associated with the Cartan decomposition G =
KA, K. This map is continuous, proper, surjective, and bi- K-invariant; we
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will still denote by p the induced map on the Riemannian symmetric space

G/K of G.

Example 4.1. For G = SL,(R) and § = (g~ g~ '), we have K = SO(n).
We can take A to be the group of diagonal matrices in SL,(R) with positive
entries and its subset Ay to consist of matrices with entries in nonincreasing
order; then the Cartan decomposition G = KA, K follows from the polar
decomposition in SL,(R) and from the reduction of symmetric matrices. We
have p(g) = (% log t;)1<i<n where t; is the i-th eigenvalue of 'gg.

The G-invariant symmetric bilinear form B of Subsection restricts to a
K-invariant inner product on p, which defines a Euclidean norm || - || on a
and a G-invariant Riemannian metric dg/x on G/K. The norm of the
Cartan projection p admits the following geometric interpretation in terms
of distances in the Riemannian symmetric space G/K:

(4.1) (D = da/x (Yo, g - yo)

for all g € G, where yy denotes the image of K in G/K. Using the triangular
inequality and the fact that G acts by isometries on G/K, we obtain that

(4.2) (gDl < [l + [l1(g")]

for all g,¢’ € G. In fact, the following stronger inequalities hold, which can
be proved in a geometric way (see [Kall Lem. 2.3]):

(4.3) (g9 — @Il < [lu(d)l,
(4.4) (gg") = (@Il < [lu9)ll-

On the other hand, recall that the group H is an open subgroup of the
set of fixed points of G under the involution o. Let g = h + q be the
decomposition of g into eigenspaces of do as in Subsection Bl Since 6
commutes with o, the following decomposition holds:

g=(Nnh) +(ENqg) +(pnNh +(pnNa).

Let b be a maximal abelian subspace of pNq and let B := exp(b). We choose
a system Y7 (g?? b) of positive restricted roots of b in the subspace g°?
of fixed points of g under d(c#), and let by be the corresponding closed
positive Weyl chamber and B, := exp b,. Then the polar decomposition (or
generalized Cartan decomposition) G = K B, H holds [ScIl Prop. 7.1.3]: any
g € G may be written as g = kybyhy for some ky € K, hy € H, and a unique
by, € B,. We refer to Sections [@ and for examples. Since all maximal
abelian subspaces of p are conjugate under the adjoint action of K, we may
(and will) assume that a contains b. As above, we define a projection

(4.5) v:G—b, Ca

corresponding to the polar decomposition G = KB, H. It is continuous,
surjective, and right- H-invariant; we will still denote by v the induced map
on X. Geometrically, ||v(g)| can be interpreted as some kind of “pseudo-
distance” from the origin xyg = eH of X = G/H to the point g-z9p € X: in
order to go from zg to g-zg in X, one can first travel along the flat sector
B, -1, then along some (compact) K-orbit; [v(g)| measures how far one
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must go in By -xg. The set of points # € X such that v(z) = 0 is the
maximal compact subsymmetric space X.:= K-zo~ K/HNK.

We note that for any b € B there is some w € W (G, A) such that p(b) =
w - v(b), hence

(4.6) (O] = v (O)]]-

4.2. Sharpness. We now turn to the new notion of sharpness, which quan-
tifies proper discontinuity. We first recall that not all discrete subgroups I
of G can act properly discontinuously on X = G/H since H is noncompact.
A criterion for proper discontinuity was established by Benoist [Bnl, Cor.5.2]
and Kobayashi [Ko4, Th.1.1], in terms of the Cartan projection p. This
criterion states that a closed subgroup I' of G acts properly on X = G/H if
and only if the set p(I") N (u(H) + C) is bounded for any compact subset C
of a; equivalently, if and only if u(T") “goes away from p(H) at infinity”.
In this paper, we introduce the following stronger condition.

Definition 4.2. A subgroup I' of G is said to be sharp for X if there are
constants ¢ € (0,1] and C' > 0 such that

(4.7) da(p(7), u(H)) = c ||l - C

for all v € I', where d, is the metric on a induced by the Euclidean norm ||-||.

If ([@7) is satisfied, we say that I' is (¢, C)-sharp.

arcsin(c)

(H)

FIGURE 1. The Cartan projection of a (¢, C')-sharp group T’

We note that this definition makes sense in the more general context of a
homogeneous space X = G/H where G is a reductive group and H a closed
subgroup of G.

If T is sharp for X, then u(T') “goes away from p(H) at infinity” with a
speed that is at least linear. Indeed, consider the open cone

C(e) = {Y € qy : da(Y, u(H)) < c |V}
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of angle arcsin(c) around pu(H). If I' is (¢, C)-sharp, then the set p(I') is
contained in the C-neighborhood of @y ~\ €(c); in other words, it does not
meet the shaded region in Figure 1.

In particular, if I' is sharp for X and closed in G, then the action of I' on X
is proper by the properness criterion. The bigger c is, the “more proper” the
action is; the critical case is therefore when ¢ gets close to 0. For I' discrete
and sharp, we will equivalently say that the Clifford—Klein form Xp = T'\ X
is sharp.

The following two properties will be useful.

Proposition 4.3. (1) If a subgroup T' of G is (c,C)-sharp for X, then
any conjugate of T is (¢, C")-sharp for some C" > 0.
(2) Any reductive subgroup L of G acting properly on X admits a conju-
gate that is (c,0)-sharp for some ¢ > 0.

Proposition 31 (1) is an immediate consequence of the following inequal-
ity, which will be used several times in the paper.

Lemma 4.4. For any g,¢',q9" € G,

da (11(9'99")s n(H)) > da(pu(9), n(H)) = (gl = ll(g")]-
Proof. For all h € H, by (3] and ([@4]) we have

da(p(g), n(H)) < lu(g) — u(h)|l
< lulg) — ulg'gg")l + l(g'gg") — n(h)||
< NI+ g+ luld'gg”) — u()]l. O

We will explain why Proposition [3](2) is true in Subsection @4l We
refer to Subsection 4] for a list of examples of sharp Clifford—Klein forms
and to Subsection 7] for a discussion of how sharpness behaves under small
deformations.

We note that dg(s(y), s(H)) < u(7)]| always holds, since dy(s(), ji(H))
is the norm of the projection of x(y) to the orthogonal of u(H) in a; this is
why we restrict to ¢ < 1 in Definition

4.3. Counting in the reductive symmetric space X. In order to prove
the convergence of series of eigenfunctions as in ([L3)), we will need to under-
stand the growth rate of I with respect to the norm of v. Given the above
geometric interpretation of ||| as a “pseudo-distance from the origin” in the
reductive symmetric space X, this means estimating the number of points
of any given I'-orbit in the “pseudo-ball”

(4.8) Bx(R) :={x € X : |lv(z)| < R}

as R tends to infinity. We note that the closure of Bx(R) is compact for all
R > 0, which implies the following (by definition of proper discontinuity).

Remark 4.5. Let I' be a discrete subgroup of G acting properly discontin-
uously on X. For any x € X, the set of elements v € I" with v -z € Bx(R)
is finite.

In the case when I' is sharp for X, we establish exponential bounds for the
growth of I'-orbits in X: here are the precise estimates that we will need for
our theorems (a proof will be given in Subsection [L.0]).
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Lemma 4.6. Let c € (0,1] and C > 0.

(1) For any discrete subgroup T' of G that is (¢, C')-sharp for X and any
e > 0, there is a constant c.(I') > 0 such that for any R > 0 and any
x=g-x9 € X (where g € G),

#{yeT: |v(y-a)|| < R} < () elrtelErliu@/e,

(2) (Removing the dependence in x)
For any discrete subgroup T' of G that is (¢, C)-sharp for X and any
e > 0, there is a constant c.(T') > 0 such that for any R > 0 and any
r e X,

#{’y el: vy < R} < () o2(0r+e)R/c.

(3) (Controlling the dependence in T', allowing for dependence in x)
There is a constant cg > 0 depending only on G such that for any
discrete subgroup T' of G that is (¢, C)-sharp for X, any R > 0, and
anyx =g-x9 € X (where g € G),

#{7 el: |viy-a2)| < R} <H#TNK)-cq e2llpall(R+C+lu(g)l)/c

(4) (Controlling the dependence in T’ and removing the dependence in x)
There is a constant cg > 0 depending only on G such that for any
discrete subgroup T' of G that is (¢, C)-sharp for X, any R > 0, and
any x € X,

#{veTl: |v(ya)| < R} <#CNK)-cgellealBr)/e,

As before, xq is the image of H in X = G/H and p, € a is half the sum
of the elements of X (g, a), counted with root multiplicities. We denote by

1
(4.9) or := limsup (E log #(I'-yo N B(;/K(R))>
R—+oc0

the critical exponent of I'; which measures the growth rate of the I'-orbits in
the Riemannian symmetric space G/K of G. Here

Beyk(R) :={y € G/K : ||p(y)ll < R}
is the ball of radius R centered at yp = eK € G/K for the Riemannian
metric dg/x (see [@.I)). Recall that the Poincaré series } e~ slrMI con-

verges for s > dr and diverges for s < dr, and that if G has real rank 1,
then dr is the Hausdorff dimension of the limit set of I' in the boundary at

infinity of G/K [Pal [Sul [Cr].

In X, consider the “pseudo-ball” Bx(R) of radius R centered at zg, as
in (£]). For all z = g - xyp € X (where g € G), the stabilizer of z in I is
I'NgHg™ ', hence
(410) #{y€T: [vlr-a)l < R} = #(C 1 gHg™") - #(Ta N Bx(R)).
Therefore, Lemma gives the following counting result for I'-orbits in X.

Corollary 4.7. For any discrete subgroup T' of G that is (c,C)-sharp for X
and any x € X,

1 1)
lim sup (— log#(P-m N BX(R))> < el :
R—+00 R C
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if moreover I' N K = {e} (for instance if ' is torsion-free), then
#(T-29 N Bx(R)) < cg e?lPell(RTC)/e

and for all x € X,
#(I-z N Bx(R)) < ca elpall(R+C) /e

Remark 4.8. In our setting I' can never be a lattice in G because it acts
properly discontinuously on X = G/H and H is noncompact. (In fact I" has
to be quite “small”: the cohomological dimension of any torsion-free finite-
index subgroup of T" has to be < dim(G/K) — dim(H/H N K), see [Koll.)
Corollary 7] can be compared with the following results on lattices of G.
(a) Let T" be an irreducible lattice of G such that I' N H is a lattice of H.
Here is a precise counting result, due to Eskin-McMullen [EM], for the I'-
orbit through the origin zg: for any sequence (B, ),en of “well-rounded”

subsets of X,
vol(CN H)\H)
I B,) ~
#( o : ) n—+oo VOl(F\G)

In particular (see Lemma [LI8 and (5.10)), (5I7) below), there is a con-
stant C' > 0, independent of I', such that

vol(TNH)\H) ,

T B ~ . . 2llovl B

#( Zo N X(R)) Restoo VOI(P\G) €

(b) Let I" be a lattice of G. The I'-orbit through an arbitrary point z € X
can be dense in X, in which case #(I'"xNBx (R)) is infinite. For instance,
this is generically the case for X = SL3(R)/SO(2,1) and I' = SL3(Z):
see Margulis’s proof [Mr1] of the Oppenheim conjecture.

-volx (By,).

Here we denote by ||pp|| the norm of half the sum of the elements of a pos-
itive system X7 (g, b) of restricted roots of b in g; this norm does not depend
on the choice of X7 (g,b). We note that ||pp|| < ||pal (see Remark [6.7)).

It would be interesting to obtain a precise counting result in our setting,
in terms of the sharpness constants and of the critical exponent of I'. We
observe that the following lower bound holds.

Remark 4.9. Let I' be a discrete subgroup of G whose Zariski closure in G
is semisimple or contained in a semisimple group of real rank 1. For any
e > 0 there is a constant c¢.(I') € (0,1] such that for any z = g-zg € X
(where g € G) and any R > 0,

ce(I) (o) (B (o))
T. B > r n(g
#(l-en Bx(R) 2 #(T NgHg 1) ©
with the convention 1/4+00 =0). If I' is (¢, C')-sharp, then
(with th / ). If I'is (¢, C')-sharp, th

2n@l+C
(&

#(CNgHg™) < e (D)1 elr+e) +00.

Indeed, the first formula is a consequence of (AI0), of the inequality ||v|| <
||| (Lemma [I7]), and of the fact that the critical exponent, defined as a
limsup, is in fact a limit [Rol [Q]. The bound on #(I' N gHg~ ') for sharp T'
comes from the fact that if v € gHg™!, then dy(u(v), u(H)) < 2||u(g)|| by

(E3) and [@4), hence ||u(y)]] < w by (¢, C')-sharpness.
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4.4. Examples of sharp groups. Before we prove Lemma (in Sub-
section [L0)), we first give some examples of sharp Clifford—Klein forms to
illustrate and motivate this notion. We begin with an important example
(which holds in the more general context of a homogeneous space X = G/H
where G is a reductive group and H a closed subgroup of G).

Example 4.10. All standard Clifford—Klein forms of X are sharp.

The notion of “standard” was defined in the introduction (Definition [[4]).
To understand why Example .10l is true, here is a more precise statement.

Example 4.11. Let L be a reductive subgroup of G acting properly on X. If
L is stable under the Cartan involution 0, then the set u(L) is the intersection
of ay with a finite union of subspaces of a, which meet p(H) only in 0. Let ¢
be the sine of the minimal angle between (L) and w(H). Then any Clifford—-
Klein form Xp with T' C L is (¢, 0)-sharp.

Proof of Example[{.11 If L is stable under the Cartan involution 6, then
K N L is a maximal compact subgroup of L and there is an element k € K
such that kAk~'NL is a maximal split abelian subgroup of L and the Cartan
decomposition
L=(KNL)(kAE ' NL)(KNL)

holds. The set u(L) = u(ANk~'Lk) =a;NW-(anAd(k~1)(Lie(L))) is the
intersection of @y with a finite union of subspaces of a; it meets p(H) only
in 0 by the properness criterion [Koll Th.4.1]. By definition of sharpness, L
is (¢, 0)-sharp for X, and so is any subgroup I' C L. O

This explains why Proposition €.3](2) is true.

Proof of Proposition[{.3 (2). The fact that any reductive subgroup L of G
acting properly on X admits a conjugate that is (¢, 0)-sharp for some ¢ > 0
follows from Example L. 11] and from the fact that any reductive subgroup L

of G admits a conjugate in G that is 0-stable. O
Proof of Example[4.10 The fact that all standard Clifford-Klein forms of X
are sharp follows from Proposition 3} (1) and (2). O

Additional evidence that sharpness is a fundamental concept is given by
the fact that all known examples of compact Clifford—Klein forms of reduc-
tive homogeneous spaces are sharp, even when they are nonstandard. We
conjecture that they should all be.

Conjecture 4.12. Let G be a reductive linear Lie group and H a reductive
subgroup of G. Any compact Clifford—Klein form of X = G/H is sharp.

The following particular case of Conjecture L12] was proved in [Ka2].

Example 4.13 [Ka2, Th.1.1]. Let X = G/H, where G is a reductive linear
Lie group and H a reductive subgroup of G. Let I' be a uniform lattice in
some reductive subgroup L of G of real rank 1. Any small deformation of the
standard Clifford—Klein form Xr is sharp.

In other words, there exists a neighborhood & C Hom(I', G) of the natural
inclusion such that the group ¢(T") is discrete in G and sharp for X for all
@ € U. More precisely, if ' is (¢, C)-sharp, then for any € > 0 there is a
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neighborhood Y. C Hom(I',G) of the natural inclusion such that p(I") is
(¢ —&,C + ¢)-sharp for all ¢ € U. (and even (¢ — ¢,C)-sharp if C > 0 or
I' N K = {e}, for instance if I' is torsion-free). This holds more generally
whenever I' is a convex cocompact subgroup of L, i.e. a discrete subgroup
acting cocompactly on some nonempty convex subset of the Riemannian
symmetric space of L.

In the special case of X = AdS; = SO(2,2)7/SO(1,2)g, sharpness was
proved in [Ka3| for all compact Clifford—Klein forms, even for those that are
not deformations of standard ones (such forms exist by [Sa2]).

Example 4.14 [Ka3l Th.5.1.1]. All compact Clifford-Klein forms of X =
AdS3 are sharp.

As we will see in Subsection [[0.2] this is a special case of the following
recent result.

Example 4.15 [GGKW]. Let ‘G be a real semisimple linear Lie group of
real rank 1. All compact Clifford-Klein forms of X = (\G x'G)/Diag(‘G) are
sharp.

We note that there exist Clifford—Klein forms Xp with I' infinitely gen-
erated that are not sharp (see |[GK]). Also, not all sharp Clifford—Klein
forms remain sharp under small deformations; it can happen that the action
actually stops being properly discontinuous.

Example 4.16. Let X = (‘G x'G)/Diag(\G) and T' = 'T' x {e}, where
‘G is a real semisimple linear Lie group of real rank 1 and ‘T a discrete
subgroup of ‘G containing a nontrivial unipotent element ‘v, (for instance
a nonuniform lattice of ‘G). For any neighborhood U C Hom(T','G x‘G),
there is an element ¢ € U such that the group ¢(I') does not act properly
discontinuously on X.

The idea is to obtain a contradiction with the properness criterion of
Benoist and Kobayashi for some ¢ such that the first projection of ¢(‘vy,e€)
to ‘G is unipotent and the second projection is hyperbolic (see [GK]).

4.5. Link between p and v. In order to prove Lemma [L0 we will use
the following link between the Cartan projection p (on which the notion
of sharpness is built) and the polar projection v (on which our counting is

based).
Lemma 4.17. For any g € G,

da(p(g), u(H)) < v(g)ll < [lu(g)]l-

Proof. For g € G, write g = kbh, where k € K, b€ B, and h € H. Since H
is fixed by o, since K is globally preserved by o (because o and § commute),
and since o(b) = b~ € B C A, we have

wlga(g)™") = u(ba(b) ™) = u(b®) = 2 u(b).
Using ([42) and the fact that ||u(b)| = [[v(b)|| = |lv(g)]| by (@8], we obtain

(4.11) 2[[v(9)ll = llulgo () DI < llulg)ll + lu(a(g) ™I
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Since 0(K) = K and o(A) = A (because a = (a N h) + b), we have
(e (9)~ M)l = lln(g)ll, which implies [lv(g)[| < ||u(g)[l. On the other hand,
by @) and (D),
da(p(9), p(H)) < |lulg) — p(R)||
= (o)~ u(w)]

< @)l = llv®) = llv(9)ll. O

The following lemma implies, together with (5.16]) below, that for any se-
quence (R,) € RIE tending to infinity, the sequence (Bx (Ry,))nen of “pseudo-
balls” of radius R,, centered at the origin (see (48)) is “well-rounded” in the

sense of Eskin-McMullen [EM]: for any € > 0 there is a neighborhood U of
e in G such that

volx (U - 9Bx (Ry)) < evolx (Bx(Ry)).

A

Lemma 4.18. For any 9,4’ € G,

() = (@)l < llv(gg)ll < v(g)] + ll(a)]l-
Proof. Let g,¢' € G. Write ¢’ = kbh with k € K, b€ B,, and h € H. By
Lemma .17 and (£2)),
[v(g9g")Il = lv(gkd)|| < [|u(gkd)|l < llp(g)ll + [l (kD).

But [|u(kb)[| = [lv(kd)|| = [[v(g)|| by E8), hence [|v(gg")|| < [lv(g")[[+]u(9)]l
Applying this inequality to (¢, g¢’) instead of (g, ¢’), we obtain ||v(gg")|| >

lv (g = [l O

4.6. Proof of Lemmal4.6l We now use Lemmas[Z4land E.17] together with
the classical growth theory for discrete isometry groups in the Riemannian
symmetric space G/K, to prove Lemma

Proof of Lemma[]-6 (1). By Lemmas [£4 and 17 for all g € G and 7 € T

we have

(Y9Il = da(p(vg), m(H)) = da(p(v), p(H)) = [[1(9)]]-
Using the sharpness assumption, we obtain that for all g € G,

(4.12) lv(vg)ll = cllp()l = C = llu(9)ll;
hence
#{veT: |v(vg)ll < R} < #{7 e )l < EF CJ; o)l }

We conclude using the definition ([@3]) of the critical exponent dr. O

The proof of Lemma [0l (3) follows rigorously the same idea, using the
following classical observation (where yo = eK € G/K as before).

Observation 4.19. There is a constant c¢g > 1 depending only on G such
that for any discrete subgroup I' of G and any R > 0,

#(0-yo N Bayi(R)) < cge?leelR,
In particular, or < 2||p4|| and

#{y e |ut)| < R} < cgeleel® . (0 K).
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Proof. Let

(413)  Dgx ={y € G/K : dg/k(y,y0) <dg/k(y,7-y0) VyeT}

be the Dirichlet domain centered at yg, and let ¢ > 0 be the distance from g
to the boundary of D¢ /. For all R > 0 and all v € I with v-yo € Bg /g (R),

7 Bk (t) C Be/k (R +1t)
since G acts on G/K by isometries. Moreover, by definition of ¢, the balls
v Bg/k(t) and 7' - Bk (t) (for v,7" € T') do not intersect if v - yo # 7' - yo.
Therefore,

#(F-yoﬂBg/K(R)) -VolBGv/K(t) < VolBg/K(R+t).

Observation 19 is then a consequence of the following volume estimate (see
[Hell Ch.I, Th. 5.8]): there is a constant ¢, (depending only on G) such that

vol Bg/x(R') ~ g Aleall®
R/ﬁ+oo
We now turn to Lemma [£.61(2) and (4). It is sufficient to give a proof for
z in some fundamental domain of X for the action of I'. We consider the
following particular fundamental domain.

Definition-Lemma 4.20 (A pseudo-Riemannian Dirichlet domain). Let I’
be a discrete subgroup of G acting properly discontinuously on X. The set

Dx ={zreX: [v@<|viy-2)l vyel}
18 well-defined; it is a fundamental domain of X for the action of T.

Proof. By Remark [L.3] for any given x € X there are only finitely many
elements v € I such that ||v(y-2)| < |lv(z)|; in particular, there is an
element 79 € I" such that ||v(yo-2)|| < ||v(y-2)| for all v € T'. Thus Dx
is well-defined and I' - Dx = X. To see that Dx is actually a fundamental
domain (which is not needed in our proof of Lemma [L.6] where we only use
I' - Dx = X), it is sufficient to see that for any ~ in the countable group T,
the set

Hy={zeX: |[v@)]=Iviy-2)l}
has measure 0 in X. But (@I) and ([@II]) imply that for any g € G,

2|v(9)ll = llu(go(9)™)l = da/x (y0.99(9) ™" - yo)-

Therefore the function ||v|? is analytic on G, hence on X = G/H. Since
x> |lv(x)||?>—|v(y-2)|? is not constant on X, the set H., has measure 0. [

The fundamental domain Dx is an analogue, in the pseudo-Riemannian
space X = G/H, of the classical Dirichlet domain D¢,k of (ZI3). Indeed,
by (4I)) and the G-invariance of the metric dg

Dok ={y € G/K : |u@)|l < llutv-y)ll Yy eTl}.

The distance to the origin ||| in G/K is replaced by the “pseudo-distance
to the origin” ||v|| in X.

The proof of LemmalL6] (2) and (4) is now similar to that of Lemmal[L0l (1)
and (3): we just replace (£I2]) by the following inequality.
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Lemma 4.21. Let T be a discrete subgroup of G that is (¢, C)-sharp for X.
For any v € I" and x € Dy,

lv(r-a)ll = 5 k()] = C.

Proof. Let v € I' and = € Dx. There is an element g € KB, C G such that
x = g-xo. If [[u(g)|l = §lu(y)], then, using the definition of Dx and the
fact that g € KB, together with (&6)), we have

lv(vg)ll = vl = lug)ll > %HM(’Y)H-

If [[u(g)ll < 5 llw(y)|l, then, using Lemmas B4l and BIT together with the
sharpness of I', we obtain

vl = da(p(rg), n(H))
> do(pu(), u(H)) — lln(9)|l
> Sl -c o

4.7. Sharpness and deformation. We conclude this section by examining
the behavior of the sharpness constants under small deformations in the
standard case. The two results below are easy corollaries of [Ka2, Th.1.4]

(see Example E.T3]).

Lemma 4.22. Let T be a convex cocompact subgroup (for instance a uniform
lattice) of some reductive subgroup L of G of real rank 1 acting properly on
the reductive symmetric space X. Assume that T is (c,C)-sharp for X and
that [|[v(y)|| > r for ally € '\ Z(Gs). For any e > 0 there is a neighborhood
U. C Hom(T', G) of the natural inclusion such that for any ¢ € U, the group
o(T") is discrete in G and (¢ —e,C +¢)-sharp for X, with ||v(p(y))|| >r—¢
for ally € '\ Z(Gy).

As in Subsection B3] we denote by Z(Gs) the center of the commutator
subgroup of G.

Proof. Fix e > 0 and let ¢’ > 0 be small enough so that

c— 8/ /
/
1+512c—6 and 6+1+€I§6.
By [Ka2l, Th.1.4], there is a neighborhood W., C Hom(I', G) of the natural
inclusion such that for any ¢ € W./, the group (I") is discrete in G and
l(e(7) = n(NI < lp(y)ll +

for all v € I' (and even [[u(p(7)) — p(V)[| < & [|u(v)| for all v € I' \ K). By
Lemma E17]

v > da(u(e(7)), u(H))
> do(p(v), p(H)) = ([l (7)) — p()l
> (c—&)[pM] - (C+£)
> TSl - (C+e + )
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for all ¢ € W, and « € I'; in particular, ¢(I") is (¢ — ¢, C + ¢)-sharp for X.
Since I" is discrete in G and p is a proper map, the set

r+C+¢
Fi={yer: |um)l < =——=}
is finite. For any ¢ € W and v € I' \ F' we have

v = (=€) lu()| = (C+€) >

Let U be the set of elements ¢ € W, such that ||v(¢(7))|| > r — ¢ for all
v € FNZ(Gs). Then U. is a neighborhood of the natural inclusion since v is
continuous and F finite, and U. satisfies the conclusions of Lemma O

Lemma 4.23. Suppose that G ="'G x'G for some reductive linear group ‘G
and let X = (‘G x'G)/Diag('G). Let ‘Gy and ‘Gy be reductive subgroups
of ‘G and let T' = ‘I'y x ‘T'y for some discrete subgroups ‘I'y of ‘G1 and ‘T'y
of ‘\Go. Assume that T is (¢,C)-sharp for X and that |v(y)]] > r for all
veTl N Z(Gs).
(1) Suppose that for all i € {1,2}, the group ‘T; is
e cither an irreducible uniform lattice of ‘\G;
e or, more generally, a conver cocompact subgroup of ‘G; if ‘G
has real rank 1.
Then for any € > 0 there is a neighborhood U, C Hom(I',G) of the
natural inclusion such that for any ¢ € U, the group ¢(T') is discrete
in G and (¢ — e,C + €)-sharp for X, with ||[v(p(7))|| > r — e for all
veTl' N Z(Gs).
(2) Suppose that ‘G has real rank 1 and that ‘T'y is convexr cocompact
in ‘\Gi1. Then for any € > 0 there is a neighborhood ‘U. C
Hom('T'1,'\G x Zi(\T'2)) of the natural inclusion such that for any
‘o € U, the group ‘p('T'1)'Ty is discrete in G and (¢ —&,C + ¢€)-
sharp for X, with |[v(p(y))|| =7 —¢ for all vy € T\ Z(Gy).

Here Z.;('T's) denotes the centralizer of ‘I's in ‘G.

Proof. Fix e > 0 and let ¢’ > 0 be small enough so that

/ /

i_i_;i/ >c—e and  2V2& 4+ 12\152{; <

By [Ka2l Th.1.4|, if ‘Gy (resp. ‘G2) has real rank 1 and ‘I'y (resp. 'I's)
is convex cocompact in ‘G (resp. in ‘Gg), then there is a neighborhood
Wi o C Hom(I', G) (resp. Wa oo C Hom(I', G)) of the natural inclusion such
that for any ¢ € Wj o (resp. ¢ € Wh ), the group (‘' x {e}) (resp.
o({e} x 'T'y)) is discrete in G and

(4.14) (1, e)) — u(yse)ll <& lluCye)ll +€
for all ‘v, € 'I'y (resp.
(4.15) [u(ple, v2)) — ule, )|l <& |lule, )|l +€

for all ‘yo € ‘T'g). If ‘G (resp. ‘G2) has real rank > 2 and ‘T’ (resp. 'T'3) is
an irreducible lattice in ‘G (resp. in ‘Ga), then ‘T'y (resp. ‘T'2) is locally rigid
in G [Rall, We2], and so a similar neighborhood W, .» C Hom(I', G) (resp.
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W, oo C Hom(I', G)) of the natural inclusion exists by {.3]) and (4. Since

I" is discrete in G and p is a proper map, the set

r+C+2V2¢
F = {7 el :fu(y)l < C_—%,}

is finite. In the setting of (1), we let U. be the set of elements ¢ € Wy oW, o
such that |[v(e(7))]] > r —e for all v € '\ Z(Gs); then Y. C Hom(T', G)
is a neighborhood of the natural inclusion and any ¢ € U. satisfies (L14)
and ([@I5). In the setting of (2), we set

Weri={poir: ¢ € Wi, @liersr, =idgersor, )

where i1 : 'I'1 < 'T'y x {e} is the natural inclusion, and we let ‘U. be
the set of elements ‘¢ € ‘W, such that |[v(‘o(*y1)"72)|| > r — ¢ for all v =
(‘v1,'2) € FNZ(G5); then ‘U € Hom('T'y, G x Zi('T'2)) is a neighborhood
of the natural inclusion and for any ‘¢ € ‘U., the homomorphism ¢ :=
(1, 2) - () satisfies (ETE) and (EI5)

We now consider ¢ € Hom(I', G) satisfying (£I14]) and (£I5) and prove
that the group ¢(I') is discrete in G and (¢ — €,C + ¢)-sharp for X, with
lv(e(y))]| = r—¢e for all v € T' \ Z(Gs). We note that a = ‘a +'a, where
‘a is a maximal split abelian subspace of ‘g; for i € {1,2}, let 7; : a — ‘a be
the projection onto the i-th factor. Then

71 (n(o( 71, 72)) = (s 2)) || = w1 (e 2)) — (s e) ||
|71 (271, 72)) = (eCrns e)) || + [ (e (s e)) — uyise))

)

where

71 ((o( 1, 2)) — (e, e)) || < [Jma (lele, y2)) ||
|71 ((ole, " y2)) — ple, 12)) ||
Hu( (e,'72)) — ple, 72|

e e, )|l + €

IA A

(using (A3)) applied to ‘G and ([@IH)) and

|71 (1 (s ) = uCyise)) || (e, e)) — u(y,e)l

el o)l + ¢

IN A

(using (@I4))). Therefore,

71 (e (1. 92)) = ()| <0 € (lrCas el + e y2)ll) + 2€°
V2 |, o)l + 2¢.

IN

Similarly,

|72 (171, " 2)) — wCya, 92)) || < V2 |y, o)l + 2€”.
Thus
I1(e(7)) = (I < 2¢" ()| + 2v/2¢’

for all v € I'. Using the fact that I" is discrete in G and p is a proper map, we
obtain that ¢(I") is discrete in G. We conclude as in the proof of Lemma [.22]
O
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5. ASYMPTOTIC ESTIMATES FOR EIGENFUNCTIONS ON
SYMMETRIC SPACES

Under the rank condition (3.3)), Flensted-Jensen [F| proved that the space
L*(X, M)k of K-finite elements in L?(X, M,) is nonzero for infinitely
many joint eigenvalues A, by an explicit construction based on some duality
principle and the Poisson transform. Then, applying deep results of mi-
crolocal analysis and hyperfunction theory [KKM-], Oshima and Matsuki
MOl [0s2] gave a detailed analysis of the asymptotic behavior at infinity
of these eigenfunctions. In this section, we reformulate their estimates as
follows, in terms of

e the “weighted distance” d(\) of the spectral parameter A to the walls
of j* (which measures the regularity of \),

e the “pseudo-distance from the origin” ||v(x)|| of x € X (which mea-
sures how x goes to infinity).

Proposition 5.1. Under the rank condition [B.3)), there is a constant ¢ > 0
such that for all X € §* and p € L?>(X, M)k, the function

is bounded on X ; in particular, ¢ € LY(X) if d(\) > 2|/l /q.

We refer to Subsection B3] (resp. 1)) for the definition of d : j* — Rxq
(resp. v : X — by). As in Remark IL8] we denote by ||pp|| the norm of half
the sum of the elements of a positive system X7 (g, b) of restricted roots of b
in g; this norm does not depend on the choice of X7 (g, b).

As we shall see, the constant ¢ is computable in terms of some root system
(see (BI4) in the proof of Lemma [B.8]).

The proof of Proposition B.1] will be given in Subsection B4l For the
reader’s convenience, we first give a brief review of the Poisson transform
on Riemannian symmetric spaces of the noncompact type (Subsection [B.]]),
of the Flensted-Jensen duality (Subsection [B.2]), and of the construction of
discrete series representations (Subsection [B.3]). The material of these three
subsections is not new, but we will need it later. Often analysis on reductive
symmetric spaces requires a rather large amount of notation; here we try to
keep it minimal for our purpose.

In the whole section, we denote by A the sheaf of real analytic functions
and by B the sheaf of hyperfunctions; we refer to [KKK] for an introduction
to hyperfunctions.

5.1. Poisson transform in Riemannian symmetric spaces. Let X% =
G?/K? be a Riemannian symmetric space of the noncompact type, where
G? is a connected reductive linear Lie group and K¢ a maximal compact
subgroup of G¢. Let P% be a minimal parabolic subgroup of G%. We give
a brief overview of the theory of the Poisson transform as an intertwining
operator between hyperfunctions on G¢/P¢ and eigenfunctions on X¢ (see
[Hell for details). The notation G is used to avoid confusion since
the results of this paragraph will not be applied to G but to another real
form of G¢.

Let j be a maximal split abelian subalgebra of g¢ := Lie(G?) such that the
Cartan decomposition G = K%(expj)K? holds. Since all minimal parabolic
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subgroups of G are conjugate, we may assume that P% contains expj and
has the Langlands decomposition P4 = M%(expi)N?, where M? = K% P?
is the centralizer of expj in K% and N? is the unipotent radical of P?. The
Iwasawa decomposition G¢ = K% expj)N¢ holds. Let ¢ : G¢ = j be the
corresponding Iwasawa projection, defined by

g € K%exp((g))N*
for all g € G4. For A € j& we define functions &,,&) € A(G?) by

(5.1) &lg) i=eMand  (g) =69
for g € G?. Since &) is left- K%invariant, &) induces a function on X ¢ which
we still denote by &)

We choose a positive system X (gc,jc), defining positive Weyl chambers
j+ inj and j% in j*. Let p be half the sum of the elements of X7 (gc,jc),
counted with root multiplicities. For A € jg, the function &) is a character
of P1. Let B(G?/P? L)) be the hyperfunction-valued normalized principal

series representation of G¢ associated with the character £_5 of P% by
definition, B(G?/P%, Ly) is the set of hyperfunctions f € B(GY) such that

FCp) =Enio0™ ) (= fE0-p(p)
for all p € P%. Here we use the character £_, and not &, following the

usual convention in harmonic analysis on symmetric spaces (see [BS, D] [F1,
[Hell MO]) rather than in the representation theory of reductive groups (see

[Knl Wal). Setting
AGYPT L ) = AGHNB(GY/ P, L)),
there is a natural G%invariant bilinear form
(-,-) : B(GYPL Ly) x AGY/ P L_y) — C

given by the integration over G%/P%. We note that £_\_, € A(G4/P4, L_)),
hence the left translate £_5_,(g~!-) also belongs to A(G?/P?,L£_)) for all
g € G Since £_y_ p is left-K d_invariant, we obtain a G%intertwining oper-
ator (Poisson transform)

Py : B(GY/PL L)) — A(X?)
given by

(PAf)(g) = {fr € plg™"-))-
It follows directly from the definition of the Harish-Chandra isomorphism in
Subsection Bl that for all f € B(G?/P% L)), the function Pyf € A(X?)
satisfies the system (M), defined similarly to Subsection Bl For Re \ € E,
the Helgason conjecture (proved in ) asserts that the Poisson trans-
form

P B(GY/PY L)) — AGY/ K, M)

is actually a bijection.

Example 5.2. Assume that G has real rank 1. Then G%/P? identifies
with the boundary at infinity of X®. The function &) is the exponential of
some multiple of the Busemann function associated with the geodesic ray
(expip ) K4 in X4 = GY/KY; its level sets are the horospheres centered at
eP? ¢ GY/PY. For A\ = p, the Poisson operator Py identifies the set of
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continuous functions on G¢/P% with the set of harmonic functions on X
admitting a continuous extension to X4 = X3UG?/P?. (See Subsection [T
for the case G* = SLy(C).)

5.2. Real forms of G¢/Hc and the Flensted-Jensen duality. We now
come back to the setting of Sections [ toHdl where G is a connected reductive
linear Lie group and H an open subgroup of the group of fixed points of G
under some involutive automorphism o. Let G¢ be a connected Lie group
containing G' with Lie algebra gc := g ®r C, and let H¢ be the connected
subgroup of G¢ with Lie algebra he := h ®r C. We consider three differ-
ent real forms of the complex symmetric space X¢ = G¢/Hc: our original
pseudo-Riemannian symmetric space X = G/H, a Riemannian symmetric
space Xy = Gy /Hy of the compact type, and a Riemannian symmetric
space X% = G4/K? of the noncompact type. They are constructed as fol-
lows. Let g = b + q be the decomposition of g into eigenspaces of do as
in Subsection B] and let g = € + p be the Cartan decomposition associ-
ated with the Cartan involution 6 of G of Subsection B2 which commutes
with o. The maps do and df extend to automorphisms of the complex Lie
algebra gc, for which we use the same letters. We set

gd = 9‘794—\/—_19"’9:(hﬂfé+qﬂp)+\/—_1(f)ﬂp+qﬂ’3),
e =phy = hnE+v/—1(hNp),
gu = t+V-1p,

and let G¢ (resp. K¢ = Hy, resp. Gy) be the connected subgroup of G¢

with Lie algebra g? (resp. £ = by, resp. gy). We note that K¢ = Hy is

the compact real form of H¢. For instance, for the anti-de Sitter space X =

AdSa,+1 =S0(2,2n)9/SO(1,2n)y, we have Xy = SO(2n+2)/SO(2n+1) =

S?+l and X4 = SO(1,2n + 1)o/SO(2n + 1) = H?**! (see Subsection [IILT]).
Let H? be the connected subgroup of G¢ with Lie algebra

b :=hNe+v—1(qNe).

We note that K4N H? = (H N K)y and that HY/KYN H and K/H N K
are two Riemannian symmetric spaces with the same complexification — the
first one of the noncompact type, the second one of the compact type. This
will be used in Section [

For any h%-module V over C, the action of h% on V extends C-linearly to
an action of ¢c = h¢ ®g C, and the set Viya of he-finite vectors is equal to the
set V. of £c-finite vectors. We define the set Vi of K-finite vectors of V' to
consist of vectors v € Vja = Vi, such that the action of £ C ¢ on the C-span
of & v lifts to an action of K. Then Vk is a K-module contained in Vhd.

Remark 5.3. In the definition of Vi, we do not assume that the group K
acts on V. In the situation below, neither V' nor Vi« = Vi can be acted on
by the group K.

The Lie algebra g¢ (hence its subalgebra h?) acts on A(X?) by differenti-
ation on the left:

) Vo)) = | elexp(-17) )



DISCRETE SPECTRUM FOR LOCALLY SYMMETRIC SPACES I 39

for all Y € g4, all ¢ € A(X?), and all z € X¢. Since the system (M) is
G-invariant, its space of solutions A(X%, M,) is a g?-submodule of A(X?)
for A € j&; thus we can define K-modules A(X%, M))x C A(X%) k. By us-
ing holomorphic continuation, Flensted-Jensen [FI| constructed an injective
homomorphism

(5.3) n:  AX)xk —  AXYg
U U
AX, Mg — -A(Xd7M>\)K

for all A € ji.. For the reader’s convenience, we now recall the construction
of 1 in the case when G is simply connected.

Assume that G¢ is simply connected. Then the set of fixed points of G¢
under any involutive automorphism is connected [Boll, Th.3.4]. We can
extend o and 6 to holomorphic automorphisms of G¢, for which we use the
same letters o and 6. The complex conjugation of gc = g + /—1g with
respect to the real form g lifts to an anti-holomorphic involution 7 of G,
such that G = G¢. Since o, 0, and 7 commute, the composition of any of
them gives involutive automorphisms of G¢. We have

H(C = %, Gd = Géoe, Kd = HU = H(C ﬂ Gd’ and GU = Gée

Moreover, setting K¢ = G%, we have H? = (K¢ NG9y and the following
inclusions hold:

K cG D H

N N N
(5.4) K¢ C Ge D He
U U U

HY ¢ G* 5 K¢,

The restriction of o to G¢ is a Cartan involution of G%, and the corresponding
Cartan decomposition g? = €4 4 p? is obtained as the intersection of g¢ with
the direct sum decomposition gc = he 4 qc. The restriction of 6 to G? is an
involution of G%, and the corresponding decomposition g¢ = h? + q? of g¢
(into eigenspaces of df with respective eigenvalues +1 and —1) is obtained
as the intersection of g¢ with the complexified Cartan decomposition gc =
tc + pc. Let b be the maximal semisimple abelian subspace of p N g from
Subsection @Il Since p¢ N q? = p N q, we may regard B = expb as a
subgroup of G, and the polar decomposition G = H¥B, K% holds similarly
to the polar decomposition G = KB, H of Subsection -1l Any function
f € A(X)k extends uniquely to a function fc : KcByHe/He — C such
that k +— fc(kbHc) is holomorphic on K¢ for any b € By ; by letting n(f) be
the restriction of fc to X¢, we get the injective homomorphism (53], which
is actually bijective. The homomorphism 7 respects the left action of U(gc)
([EL Th.2.5]).

We now return to the general case, where G is not necessarily simply con-
nected. Any G-invariant (resp. Gy-invariant, resp. G%invariant) differential
operator on X = G/H (resp. Xy = Gy /Hy, resp. X¢ = G¢/K?) extends
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holomorphically to X¢ = G¢/Hc, hence we have canonical C-algebra iso-
morphisms

D(X) ~ D(Xy) ~ D(XY).

Therefore, for A € j¢, a function f € A(X) satisfies (M) if and only if
n(f) € A(X?) does.

5.3. Discrete series representations. We continue in the setting of Sub-
section [0.21 and now assume that the rank condition (3.3)) is satisfied. In this
subsection we summarize Flensted-Jensen’s construction of discrete series
representations Vy \ using his duality (B.3). Recall that the regular repre-
sentation of G on L?(X) is unitary; an irreducible unitary representation 7
of G is said to be a discrete series representation for X if there exists a
nonzero continuous G-intertwining operator from 7 to LQ(X ) or, equiva-
lently, if 7 can be realized as a closed G-invariant subspace of L?(X). By a
little abuse of notation, we shall also call the underlying (g, K )-module 7
a discrete series representation. It should be noted that discrete series rep-
resentations for X = G/H may be different from Harish-Chandra’s discrete
series representations for the group manifold G if H is noncompact, because
LY(X) # L2(G)H.

We shall parameterize the discrete series representations for X by the
spectral parameter A and some finite set Z defined as follows. Let P? be
the set of minimal parabolic subalgebras of g¢, on which G¢ acts transitively
by the adjoint action. There are only finitely many H¢%orbits in P¢; a
combinatorial description was given by Matsuki [Mt]. We set

(5.5) Z := {closed H%-orbits in P%}.

Here is a description of the finite set Z. Consider the maximal semisimple
abelian subspace j of /=1(qN€) from Section Bl The rank condition (B.3)) is
equivalent to the fact that j is maximal abelian in p¢ = qNp +/—1(qN ).
Thus j is a maximal split abelian subalgebra of g¢ and the notation fits with
that of Subsection .1l All restricted roots of j in g? take real values on j and
there is a natural bijection X (g%, ) ~ X(gc, ic); likewise, 3(h%,j) ~ (e, ic).
We note that j is actually contained in h?. As in Subsection B let W be
the Weyl group of the restricted root system % (g?,j), and let Wxnx be that
of ¥(h%,j). Any choice of a positive system YT (g%, i) ~ X ¥ (gc,ic) defines a
point in P? and the H%orbit through this point is closed. Conversely, any
closed H%orbit in P? is obtained in this way. Recall that in Subsection
we have fixed once and for all a positive system 7 (¢c,jc) ~ £+ (h?,j). Since
any two such positive systems are conjugate by H?, we obtain a one-to-one
correspondence

(5.6) {positive systems >+ (g?,j) containing E+(hd,j)} ~ Z.

Here is another description of the finite set Z. We fix a positive system
¥+ (g?,j) containing £+ (h?,j); this defines a minimal parabolic subgroup P?
of G¢. The subspace p¢ in the Cartan decomposition g? = ¢4 + p¢ should
not be confused with the Lie algebra of P¢. The subset

(5.7)  W(H G = {weW: wE(ghi)Nn(h%j) =ET(b%i)}.
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of the Weyl group W gives a complete set of representatives of the left coset
space Wynx\W. Clearly, e € W(H?, G?%). We identify P? with G¢/P?.
Then, by (58], the other closed H%orbits in G¢/P? are of the form

(5.8) Z = H%WwP? for we W(HY G (~ Wyng\W).
Thus we have a one-to-one correspondence
(5.9) Z ~W(HYGY.

Remark 5.4. We have given two equivalent combinatorial descriptions of
the finite set Z in (5.6 and (B.9). The latter one (5.9) depends on a fixed
choice of a positive system E*(gd, j); it is convenient to treat different closed
orbits Z simultaneously (e.g. in Fact below). We shall use the former
one (0.6) when we give an estimate of the asymptotic behavior of individ-
ual discrete series representations for a fixed Z € Z (e.g. in the proof of
Proposition [0l in Subsection [5.4] or in Section [7]).

We now recall from [Fl] how to construct, for any Z € Z and infinitely
many A € j¢, a subspace Vz ) of L?(X, M) that will be a discrete series
representation for X. For Z € Z and A € ji, we define a g%-submodule

Bz(GY/P?, L)) = {f € B(G'/P? L)) : supp f C Z}

of the principal series representation B(G?/P?, L)) of Subsection5.1l Similar-
ly to the definition of A(G?/ K% M)), we can define the set Bz (G?/P?, L)
of K-finite elements in Bz(G%/P%, L)) even though the group K does not
act on Bz(G?/P? L)) (see Remark [3). For ReA € j%, we then have the

following commutative diagram, where P, is the Poisson transform of Sub-

section b1l
B(Gd/Pdaﬁ)\) 7: A(Gd/Kd’MA)
A

U U
B (GY/PL L)k — AGUKL Mg o AX, My)k.
We set
(5.10) VZ,)\ = ?771 <7D)\(Bz(Gd/Pd,£)\)K)).

Since Bz(G?/P4, L))k is a (g, K)-module, V7, is a (g, K)-submodule of
A(X, M)k, where g acts by differentiation on the left, similarly to (5.2]).
We recall that the space Vy := L?*(X, My)x depends only on the image
of X\ in j&/W, hence we may assume Re A € E without loss of generality.
The following fact (which includes the “C' = 0” conjecture [FI] and the irre-

ducibility conjecture) is a consequence of the work of Flensted-Jensen [F]],
Matsuki-Oshima [MOJ, and Vogan [V]. See also [BS, Th. 16.1].

Fact 5.5. Let \ € ji satisfy Re A € E

e For any Z € Z, the space Vz \ constructed above is contained in
Vy = L3(X,M))k; it is either zero or irreducible as a (g, K)-

module. Moreover,
Vy = @ VA
zZeZ
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e Let Z € Z correspond to w € W(HY, G%) via (55).
— If V7 \ is nonzero, then X € j’, and

(5.11) py = w(A+p) = 2pc

belongs to the Z-module A defined in ([3.3]).
— Conversely, if X € j% and if the stronger integrality condition

(5.12) uy € Ay
holds, where Ay is defined in ([34), then Vz x is nonzero.

Thus there are countably many discrete series representations for X. The
discrete series representations Vy y for X satisfying (512]) were constructed
by Flensted-Jensen in [Fl]; we will give more details in Subsection

We note that Fact completely describes Specy(X) away from the walls
of i’ the following lemma states that any A € j7} satisfying the weak condi-
tion p{ € A but not the strong condition p{ € A4 has a bounded “weighted
distance to the walls” d(\). On the other hand, the nonvanishing condition
for Vz \ is combinatorially complicated for A near the walls of j% ; it is still
not completely settled in the literature.

Lemma 5.6. Suppose that X € j% satisfies d(X) > m,, where m, is given by
BR). Forw € W(H? G?), the following conditions on \ are equivalent:
(i) €A,

Proof. The implication (ii) = (i) is obvious. Let us prove (i) = (ii), namely
that if p§ € A, then pY is dominant with respect to ¥+ (he,5) = Bt (kc,ic).
Firstly, we note that wp is half the sum of the elements in w(X*(g%,j))
counted with root multiplicities, where w(X* (g% j)) is a positive system
containing X1 (h?,j) (by definition (57) of W (H?, G9)). By [VZ], 2wp — 2p.
is dominant with respect to Xt (h?% ). (In fact, it occurs as the highest
weight of a representation of h% in A*q?.) Secondly, Observation B7 and the
inequality d(\) > m, imply that

_ d()) d(A) —my, =
A—p—</\— m, p)+ ") p € it

therefore w(A—p) is dominant with respect to X (h%,j) since w € W (H?, G9).
Thus pY = 2(wp — pe) +w(A — p) is dominant with respect to Yt(pdj). O

5.4. Asymptotic behavior of discrete series. We can now complete the
proof of Proposition .11

By Fact (.5 we may assume that ¢ € L*(X, M)k belongs to Vz  for
some closed H%orbit Z in P¢. We then use Oshima’s theorem ([Os2], see
Fact [5.7] below) that the asymptotic behavior of the eigenfunction ¢ is de-
termined by Z. This theorem requires an unavoidable amount of notation.
Before entering into technical details, let us pin down the role of two positive
systems involved:

Y (gdj) closed H%orbit Z in P?
Cayley transform Ad(k) +W(Z)
¥t (g,b) ... asymptotic behavior of p € Vz )

at infinity in X = G/H
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We now enter into details, retaining notation from Subsections 1] and

We first recall that in Subsection 1] we have chosen a positive system
»*(g??,b), determining a closed positive Weyl chamber b, in b, a polar de-
composition G = K (exp by )H, and a projection v : G — b, . Any choice of a
positive system ¥+ (g, b) containing X7 (g?%, b) gives rise to a closed positive
Weyl chamber by, C by, and b is the union of such Weyl chambers b, |
for the (finitely many) different choices of ¥ (g,b). On the other hand, by
Fact 5.5 the space V\ = L?(X, M)k is the direct sum of finitely many
subspaces V7, where Z € Z is a closed H d_orbit in P%. Therefore, in the
rest of the subsection, we may restrict to one closed positive Weyl cham-
ber b, ; (determined by some arbitrary positive system X (g, b) containing
¥ (g?% b)) and one H%orbit Z € Z, and prove the existence of a constant
q > 0 such that for any A € j* and ¢ € Vz ,, the function

(k,Y) — Lp(k:(exp Y) 'xO) ed AN

is bounded on K x b, . Since V7 and d(\) depend only on the image of
A €% modulo W, we will be able to take A in any Weyl chamber j% of j*.

Fix Z € Z and consider the positive Weyl chamber j* in j* determined
by Z wia (5.6]). We introduce some additional notation. Let

H=%Z)={Yei: \Y)>0 vreiji}

be the dual cone of j% and let p € j% be given as in Subsection 3.3l Since
all maximally split abelian subspaces of g? are conjugate by K¢, there exists
k € K% such that Ad(k)b C j; the element Ad(k) may be thought of as an
analog of a Cayley transform from the upper-half plane to the hyperbolic
disk (see Subsection @.8). We may assume that

(Ad(k)"a)lp € = (g,b) U {0}
for all a € £*(g?,j); in particular, Ad(k)(b; ) CTj. For Y € b, we write
Y = Ad(k)Y €.

Let {Y7,...,Ys} be the basis of b that is dual to the set of simple roots in
¥F(g,b). For t € (R})", we set

l
Yy(t) === (logt;)Y; € b,
j=1

so that t +— Yy (t) is a bijection from (R )¢ to b, inducing a bijection between
(0,1) and by ,. For w € W and X € j*, we set

Buw(A) = ((p — WA, ﬁ), o (p—wA, %>) e R’
We recall that W is the Weyl group of X(g?,j). We define
TW=tW(Z)={weW: —w - Ad(k)(bi1) CTi}.

The set VW depends on the closed H%orbit Z in P?. If rank G/H = 1, then
¢=1and W = {w}, where w is the unique nontrivial element of W.
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With this notation, here is the asymptotic behavior, due to Oshima, that
we shall translate in terms of v and d to obtain Proposition .11 We consider
the partial order on R given by

B =< B if and only if @gﬂé forall 1 <j <.
Fact 5.7 [Os2]. Let A € i% and let Iy be the set of minimal elements in the

finite set {Buy(A) : w € YW} C RE for <. For any ¢ € V., there exist real
analytic functions ag € A(K), for B € Iy, such that

‘gp( (exp Yp(t { < Zaﬁ(k:)tﬁ
Bely

for allk € K and t € (0,1]%, where we write t° for H§:1 t%.
Let TWy = {w € W : B,(\) € I,}. Then Fact [5.1 has the following

immediate consequence: for any A € j% and ¢ € Vg ), there is a constant
¢, > 0 such that

(5.13) lo(k(exp V)H)| < ¢ Y MY
wetWy

for all k € K and Y € byy. Indeed, K is compact, I, is finite, and for all
w €tW)y and t € (0, 1),

P = (wA—p 1) < (WA Y ®)
We now bound (w),Y) in terms of the “weighted distance to the walls” d()).
Lemma 5.8. There is a constant qz > 0 such that
(WA, Y) < —qzdN) Y|
for allw €W, all A €%, and all Y € b .

Proof. Let {a1,...,a,} be the basis of ¥(g%,j) corresponding to j*. Recall
that for any A € j7,

(N
d(A) N 1%1% (ai,ai) ’

Let || - ||" be the norm on b defined by || Zle y; Y = 25:1 ly;| for all

Y1, .-,y € R. An elementary computation shows that we may take
q192

(514) 9z = —»
mp

where m, was defined in (3.8)) and
g1 :=min { — <wp,17j> rwetW, 1< <1},
Y

= min . |
veo{o} [[Y]|

By (£.I3) and Lemma 5.8 for any A € i and ¢ € Vz ) there is a constant
c/, > 0 such that

(5.15) lo(k(expY)H)| < ¢, etz dV IV
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for all k € K and Y € b;;. We now recall (see [Fl, Th.2.6] for instance)
that the G-invariant Radon measure on X = G/H is given (up to scaling) by

(5.16) d(k(expY)H) = §(Y) dkdY

with respect to the polar decomposition G’ = K (exp b )H, where the weight
function ¢ is given on by by

5(v)= [ Isinha(y)[ ¥ |cosha(y)dime""
aceXt(g,b)

When Y € b, tends to infinity,
§(Y) ~ 62<Pb7Y>’

where p, € by, is half the sum of the elements of 3" (g,b), counted with
root multiplicities. In particular, there is a constant C' > 0 such that

(5.17) 16(Y)| < Ce2enY) < ¢ 2lellIY
for all Y € byy. Proposition 1] follows from (EI5), (BI6), and (GI7),
setting

¢ :=min qz.

6. CONSTRUCTION OF EIGENFUNCTIONS ON LOCALLY SYMMETRIC SPACES

As before, X = G/H is a reductive symmetric space satisfying the rank
condition ([33]). We use the notation from SectionsBlto [l For any Clifford—
Klein form Xpr = I'\X and any p > 1, we denote by LP(Xp, M,) the
subspace of LP(Xr) consisting of the weak solutions to the system (M ).
The group G acts on LP(X, My) by left translation: for ¢ € G and ¢ €
LP(X, M),

g-p:=p(g ) e LP(X, My).
The first key step in our construction of eigenfunctions on Clifford—Klein
forms of X is the following (see Definition for the notion of sharpness).

Proposition 6.1. There is a constant Rx > 0 depending only on X such
that for any ¢,C > 0 and any discrete subgroup T' of G that is (c,C)-sharp
for X,

(1) the function o' : Xr — C given by

P'(Ta) =Y (v o)) => oy ')

yel yel’

is well-defined and continuous for all ¢ € L*(X, My)x with A € j*
and d(\) > Rx/c,
(2) furthermore, ¢ — @' defines a linear operator

Spo: (X, Myg — C™(Xp)n [ LP(Xp, M)

1<p<oo

for all X € * and m € N with d(X\) > (m + 1)Rx /c.
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The fact that the constant Rx /c depends only on the first sharpness con-
stant ¢ explains why we obtain a universal discrete spectrum in Theorem [[5]
independent of the discrete subgroup I' of L (see Proposition [L3]). We can
actually obtain a slightly weaker condition than d(\) > (m + 1)Rx/c in
Proposition by taking into account the critical exponent dp of I' (see
Subsection [6.4)).

In Proposition B.1] the function ¢! = Sp(yp) satisfies (M) (in the sense
of distributions) because ¢ does and any D € D(X) is G-invariant, that is,

(6.1) D(g-¢)=g- (D)
for all g € G. Furthermore, Proposition [61(2) ensures that ¢! satisfies
(M) in the sense of functions if X is regular enough (i.e. d()\) large enough).
More precisely, recall from Subsection 3] that ID(X) is a polynomial algebra
in r := rank(G/H) generators Di,...,D,. By Proposition G.1(2), if we
take m to be the maximum degree of Dq,...,D,, then for any A € j* with
d(\) > (m+ 1)R and any ¢ € L*(X, M)k, the function ¢ = Sp(p)
satisfies

(Dj)r¢" = xa(Dy) "
for all 1 < 7 < r in the sense of functions.

We note that the image of L?(X, M) under the summation operator S
could be trivial. In Section 8, we will discuss a condition for the nonvanishing
of Sp (Proposition B]). For this we will consider the summation operator
Sr, not only on L?(X, M)k, but also on some G-translates g-L*(X, M) k-

The rest of this section is devoted to the proof of Proposition[6.1], using the
geometric estimates of Section @] (Lemma [.6]) and the analytic estimates of
Section [ (Proposition G.1]). As a consequence of Proposition [B.] the series
Zyer e 1Mol will naturally appear in the proof of Proposition it
is a pseudo-Riemannian analogue of the classical Poincaré series

Z e~ 1dNltryll — Z e~ 14N da/k (Yo,7-y)
yel’ yel’
fory € G/K.
6.1. Convergence and boundedness. Let us prove Proposition [6.11(1).
We denote by ¢ > 0 the constant of Proposition 511
Lemma 6.2. Let I be a discrete subgroup of G that is (¢, C)-sharp for X.
(1) For any X\ € i* with d(\) > or/qc and any ¢ € L*(X, M)k, the
function o' is well-defined and continuous.

(2) For any \ € i* with d(\) > 26r/qc and any ¢ € L*(X, M))k, the
function @' is bounded.

Proof. Fix X € j* with d()\) > ér/qc and ¢ € L?(X, M) . We claim that
z— > oty )|
~yel'

converges uniformly on any compact subset of X. Indeed, by Proposition[5.1]
there is a constant c, > 0 such that for all z € X,

Do le(r T a)] < ep Yot dNITl,

yel yel’
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hence
Dty a) <ep Y eV gy eTin < u(y ha)| <n+ 1}
yel neN

Fix & > 0 such that d(\) > 51:1+€ and, as before, let o be the image of H in

X = G/H. By Lemma [0l (1), there is a constant ¢.(I') > 0 such that for
al z =g -z9€ X (WheregeG) and all n € N,

62)  #{veT: vt o)l <n+1} < e (T) elr /e

Therefore, for any compact subset C of G and any « € C - x,

Z‘gp ‘ < C Ce ( )6(6F+6)(1+M)/C Ze_(qd(A)_ﬁ‘%)n’

vyel neN

where

M = .
C+mgcxllu(g)ll

This series converges since d(\) > ‘Srq+€, proving the claim and Lemmal[6.2 (1).

The proof of Lemmal[6.2] (2) is similar: we replace ([6.2]) by the uniform (but
slightly less good) estimate of Lemma [.0l(2) in order to obtain a uniform
convergence on the fundamental domain D of Definition-Lemma [£20], and
hence on the whole of X. (]

6.2. Square integrability. In order to see that the image of the summation
operator St is contained in L?(XT), it is enough to see that it is contained in
both L'(Xt) and L>(Xr), by Hélder’s inequality. The case of L>(Xt) has
already been treated in Lemma For L'(Xt), we note that by Fubini’s

theorem,
[ le@lan= [ jew)ds;
T€Xr reX

using Proposition 5.1l we obtain the following.

Lemma 6.3. For any discrete subgroup I of G, any X € j* with d(\) > 2||ps]|/q,
and any ¢ € L*(X, M)k, we have o' € L' (X7).

Here, as in Proposition 5.1} we denote by ||pp|| the norm of half the sum of
the elements of a positive system X1 (g, b) of restricted roots of b in g, and
g > 0 is again the constant of Proposition [B.11

Hélder’s inequality then gives the following.

Corollary 6.4. Let T be a discrete subgroup of G that is (¢, C)-sharp for X.
For any A € j* with

d(\) > 2 max (dr/c, ||po|)

and any ¢ € L*(X, M))k, we have o' € LP(Xy) for all 1 < p < o0; in
particular, ' € L*(Xr).
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6.3. Regularity. We now complete the proof of Proposition by exam-
ining the regularity of the image of St. We set

eq = max |«of.
g = max ]

Lemma 6.5. Let I" be a discrete subgroup of G that is (c,C)-sharp for X.
For any m € N and any X\ € j* with d(\) > (0r + eqm)/qc,

Sp (L*(X, M))k) C C™(Xr).

The idea of the proof of Lemma is to control the decay at infinity of
the derivatives of the elements of L?(X, M)k by using the action of the
enveloping algebra U(gc) by differentiation on the left, given by

(63) ¥ ) = 3| elexn(-1v)2)

for all Y € g, all ¢ € L?(X, M))k, and all 2 € X. This idea works as a
consequence of Fact 5.7 and of the following well-known fact.

Fact 6.6 (See [Bal). For any X € j%, the subspace L*(X, M)k of A(X) is
stable under the action of g by differentiation.

Proof of Lemma 63 Consider A € j* with d()\) > ér/qcand ¢ € L*(X, M))k.
Let {Un(gc) }men be the natural filtration of the enveloping algebra U(gc).
Then any u € U,,(gc) gives rise to a differential operator on X of degree
< m by (@3). Conversely, any differential operator on X of degree < m
is obtained as a linear combination of differential operators induced from
U (gc) with coefficients in C°°(X). Therefore, in order to prove that ¢! is
C™, it is sufficient to show that for any differential operator D on X that is
induced from an element u € U,,(gc),

r— 3 D(y- o))
yel’

converges uniformly on all compact subsets of X. As before, let xg be the
image of H in X = G/H. In view of the formula

D(y-¢)(z) = (Ad(y ) (u) - 9) (v 2),

we only need to prove the existence of a constant R > 0 such that for any
integer m > 1, any Y € g®™, and any compact subset C of G,

z— Y [(Ad)(Y) @) (7 - )]
yel’

converges uniformly on C - 29 whenever d(\) > (m + 1)R.

We fix a K-invariant inner product on g, extend it to g®™, and write
the corresponding Euclidean norms as || - || and [ - ||gem, respectively. Let
| lEnd(g) e the operator norm on g. We observe that

IT(Y)llgem < 1T llEhag) 1Y llgem
for all T € End(g) and Y € g®™, where T acts on g©™ diagonally. Moreover,
(6.4) log || Ad(9)|lEna(e) < ec lln(g)l
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for all g € G: indeed, the Cartan decomposition G = K AK holds and the
norm || - [|q is K-invariant. By Proposition b1l and Fact [6] we may define
a function ¢ : g®™ — Rx( by

UY) = sup (Y - o) ()] ed ¥V @I
reX

It satisfies
(Y +1Y) <t Y) + || e(Y")

for all t,#/ € C and Y, Y’ € g®™. Taking a (finite) basis of g®™, this implies
the existence of a constant ¢, > 0 such that

UY) < em [[Y ][ gom
for all Y € g®™. Then for any v € ', any Y € g®™, and any = € X,
(A - 9) (- 2)] < e | A gy 1Y lgom €1 IO,

Therefore we only need to prove the existence of a constant R > 0 such that
for any integer m € N and any compact subset C of G,

T Z I Ad(V)H;]nnd(g) e~ 14N [v(v-2)|l
~yel’

converges uniformly on C - zp whenever d(\) > (m + 1)R. Let us fix an
integer m € N and a compact subset C of G. By ([@I2),

[v(y - o)l = cllp(I — M
for all v € I and x € C - xg, where

M=C .
+I;1€aCXHM(9)H

Using ([6.4]), we obtain that for all vy € I" and x € C - x,
Z | Ad(y)[|m e~ 1INl < gdNM Ze*(qd(/\)cfecm) I
yel yel’
This series converges as soon as
or +eagm
qgc
6.4. The constant Rx in Proposition Lemma [62] Corollary [6.4]

and Lemma show that the summation operator

Sp : LZ(X,M)\)K — ﬂ Lp(X[‘,./\/l)\)

1<p<oo

() > O

is well-defined and with values in C"(Xt) as soon as
1 20 0

(6.5) A0 > = max (2, 2] gy, TG,
q c c

We note that

o Or < 2||pall (Observation A19)),
o ||pv]] < |lpall/c by Remark [67] below and the fact that ¢ <1,
e ¢ < 2|pg|| by definition of eq.
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Therefore (6.0) is satisfied as soon as d(A) > (m + 1)Rx /c for

_ 4llpal

: .

Remark 6.7. Suppose that the positive systems X (g,a) defining p, and
% (g, b) defining p, are compatible, in the sense that the restriction from a
to b maps X7 (g, a) to 7 (g,b) U{0}. Then py is the restriction of p, to b,
i.e. the orthogonal projection of p, to b*. Thus

(6.6) Rx

o]l = llpall - cos(®),
s

where ® € [0, ) is the angle between p, and py. In particular ||pp|| < ||pa]|-
This inequality is true in general since the norms || p.|| and ||pp| do not

depend on the choice of the positive systems.

7. AN ESTIMATE FOR CERTAIN EIGENFUNCTIONS NEAR THE ORIGIN

Let I" be a discrete subgroup of G that is sharp for the reductive symmetric
space X = G/H satisfying the rank condition ([B3]). In Proposition 6.1} we
saw that the summation operator

Sp : LZ(X,M)\)K — ﬂ Lp(X[‘,./\/l)\)

1<p<oo

mapping ¢ to @' = (T'z — > er (v-¢)(x)) is well-defined for all X € j* with
d()) sufficiently large. In Subsection BJ] we are similarly going to define a
summation operator Sp on any G-translate g-L?(X, My)x. Our goal will be
to show that St is nonzero on some G-translate g-L?(X, M, ) for infinitely
many joint eigenvalues \ € j*, namely for all

(7.1) A€} N (20 — p+ ATTZ(E)

with d(\) large enough (Proposition B1]). Here j* and p are defined with re-
spect to some choice of a positive system X1 (gc, jc) containing the fixed posi-
tive system X1 (¢, jc) of Subsection B3} the set ATNZ(E5) is the Z-submodule
of A of finite index that was defined in (3:6]).

A similar argument to the one used in Section [l for the convergence of ¢
would show that for a fixed A satisfying (1) with d(\) large enough, Sp is
nonzero for any finite-index subgroup I of I" such that the index [I": I'] is
large enough, where “large enough” depends on I" and A\. However, we wish
to prove that Sr is nonzero without passing to any subgroup; therefore we
need to carry out some more delicate estimates in the summation process.

In preparation for Proposition B, the goal of the current section is to
establish the following analytic estimate, where, as before, xy denotes the
image of H in X = G/H.

Proposition 7.1. Under the rank condition [B3), there exists ¢ > 0 with
the following property: for any X\ € i% N (2pc — p+ AL), there is a function
Yy €Vz ) C L?(X, M) such that 1y (xg) = 1, such that

(7.2) [¢x ()| < cosh(q[|v(z)]) ")

forallz € X, and such that for any finite subgroup J of the center Z(K) of K
we have Yx(g-xo) =1 for all g € J if X € 2p. — p + A7
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Here Z € Z denotes the closed H%-orbit through the origin in the flag
variety P ~ G9/P?, where P? is the minimal parabolic subgroup of G¢
corresponding to the choice of the positive system X*(gc,jc) defining j%
and p, using (B.6]). We refer to Subsection (and more precisely to (G.10]))
for the definition of Vz ,.

The decay at infinity (i.e. when ||v(z)|| — 4+0o0) of the elements of L*(X, M)k
was already discussed in Section[Bl The point of Proposition [1]is to control
the behavior of certain eigenfunctions 1y, not only at infinity, but also near
the origin xg € X.

We actually prove that the estimate (2] holds for the Flensted-Jensen
eigenfunction 1\ = 1y z, given by ([Z3]) below. In Section [8we shall consider
some G-translates of 1) 7z and apply the analytic estimate of Proposition [Z.1]
in connection with some geometric estimates near the origin (Propositions

B.9 and B.14).

7.1. Flensted-Jensen’s eigenfunctions. Before we prove Proposition [I.1]
we recall the definition of the Flensted-Jensen eigenfunction ¢, = 9, 7, in
the spirit of SectionBl. We note that we may assume that H is connected, be-
cause otherwise the Flensted-Jensen function 1, € L?(G/H)(C L*(G/Hy))
is the average of finitely many Flensted-Jensen functions in L?(G/H,). We
will assume that H is connected for the rest of the section.

We retain the notation of Sections Bl and Bl As explained above, in the
whole section we fix a positive system ¥ (g¢,ic) ~ X7 (g% ) containing the
fixed positive system X7 (Ec,ic) ~ X7 (h?%,j) of Subsection B3 it determines
a positive Weyl chamber j% and an element p € j%. Let P? be the corre-
sponding minimal parabolic subgroup of G¢. We denote by Z € Z the closed
H%orbit through the origin in G¢/P?. For A € it, we set py == A+ p—2p..
The condition on A € j% that appears in Proposition [[Tlis puy € Ay (i.e.
BEI2) with w = e).

Let 6z be the (K% N H%)-invariant probability measure supported on Z.
For any A € jg, the G?-equivariant line bundle £) = G X pa §p— over G?/P?
is trivial as a K%equivariant line bundle over K¢/K% N P4(~ G/P%), be-
cause the restriction of §,  to K9n P? is trivial. Thus d can be seen
as an element of B(GY/P?, L) via the isomorphism B(K?/K? N P%) ~
B(G?/P?, L,). Flensted-Jensen [F]] proved that if A € j* satisfies uy € A4,
then 0y is K-finite (see Remark [0.3]) and generates the irreducible represen-
tation of h? with highest weight . The Poisson transform Py(dz) is also
K-finite and moreover, viewed as an element of A(G?/K% M), it belongs
to the image of the homomorphism 7 of (53]). He then set

(7.3) Uaz =1 (Pr(dz)) € AX, M))k.

We shall prove that this function 1 = 1) 7z satisfies (L2]). We note that
our estimate (2)) is stronger, for this specific 1), than what is given in
the general theory of [Fl, MOl [Os2], as it is both uniform on the spectral
parameter A and uniform on x € X near the origin.

7.2. Spherical functions on compact symmetric spaces. We first recall
some basic results concerning spherical functions on the compact symmetric
space Xy = Gy /Hy (see Subsection for notation). In Subsection [T.3]
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some of these results will actually be used, not only for Xy = Gy /Hy, but
also for the compact symmetric space K/H N K.

Let gy = by + qu be the decomposition of gy into eigenspaces of do
with respective eigenvalues +1 and —1. We note that j is a maximal abelian
subspace of qy. Similarly to (B4), let A4 (Gy/Hy) be the set of highest
weights of finite-dimensional irreducible representations of Gy with nonzero
Hy-invariant vectors; we see it as a subset of ji. by Remark We note
that Xy has the same complexification as the Riemannian symmetric space
of the noncompact type X¢ = G4/K?. The Borel-Weil theorem (see [Knl
Th.5.29]) implies that

(7.4) AL (Gy/Hy) ~{X €j: &\ extends holomorphically to G¢},

where &) : G4 — C is defined by (). If Oa(Ge/He) denotes the ring of
regular functions on G¢/Hc, endowed with the action of G¢ by left transla-
tion, then we have an isomorphism

Oalg(G(C/H(C) ~ @ V)\

XeAy (Gy/Hy)

of Gy-modules, where (7, Vy) is the finite-dimensional irreducible represen-
tation of Gy with highest weight A\. A highest weight vector of (my, V) is
given by the holomorphic extension of &) to G (see Subsection B.1]), which
is denoted by the same symbol &Y. Let {a,. .., o} be the basis of ¥(gc, jc)

corresponding to our choice of ¥ (gc,jc), and let wy, ..., w, € j% be defined
by
(aiv wj)
7.5 —— =
( ) (OC“ ai) 2y

for all 1 <i,5 <r, so that
¢ ()"aj)

(7.6) A=

Wi

for all A € j*; we note that w; is twice the usual fundamental weight associ-
ated with o;. If G is simply connected, then the Cartan-Helgason theorem
(see [Wal, Th.3.3.1.1]) shows that

(7.7) +(Gy/Hy) = @ Nw;.

For any A € AL (Gy/Hy), we fix a GU—invariant inner product (-,-) on V)
with (£),&Y) = 1. The following easy observation and lemma will be useful
in the next subsection.

Observation 7.2. For any g € G%,
E\(9)* = (mA(9)€, mr(9)€X)-

Proof. We consider the Iwasawa decomposition G¢ = K%(expj)N? of Sub-
section 5.1l For any g = k(exp ((g))n € K%(expi)N? = G4,

A€ = MO Ty (k)EY = Exlg) mA(k)EY.
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Since K% = Hy is contained in Gy and (-,-) is Gy-invariant, we obtain
(mA(9)&, mA(9)€X) = &n9)?. O

Lemma 7.3. For A € A, (Gy/Hy), the function £, € O(Gc) satisfies
[a(g)] <1 for all g € Gy.

Proof. By Observation [.2]

E\(9)% = (ma(o(9)'9)&),&Y) forall g € G°.
Since both sides are holomorphic functions on G¢, this holds for all g € G¢.
Applying the Cauchy—Schwarz inequality, we get [£x(g)| < 1 on Gy. O

7.3. Proof of Proposition [Z.1] for the Flensted-Jensen functions. We
now go back to the setting of Subsection [.Il When A € j* satisfies uy € Ay,
the function ¢ € Vz of (3] is well-defined and extends uniquely to a
right- He-invariant function on K¢ By He |Fl]; we keep the notation 1)y for
this extension. Directly from the definition, we have

(78) aky) = /H a0l

for all k € K¢ and y € G¢ [FL, (3.13)], where {5, : G¢ — C is given by
EI) and &,, : Kc — C is the holomorphic extension, given by (Z4) for
the compact symmetric space K/K N H instead of Gy /Hy, of the function
;| 4 — C given by (B.) with respect to the Iwasawa decomposition

(7.9) H? = (K'n H)(expi) (NN HY).

We note that the restriction to H? of any “¢” function for G? coincides
with the corresponding “£” function for H¢, which is why we use the same
notation. The fact that (ZJ) is an Iwasawa decomposition of H? relies on

the rank condition (B3)).
In order to prove Proposition [Tl we first observe the following.

Lemma 7.4. Let J be a finite subgroup of the center Z(K) of K. For X\ € j7,
with py € Ay N A7, the Flensted-Jensen function vy, satisfies (g - x9) = 1
forall g € J.

Proof. As in Subsection B3] we can see the highest weight of any irreducible
representation of K with nonzero (K N H)-fixed vectors as an element of E
(see Remark [33]). Let A € j% satisfy py € A;. By construction, the highest
weight of the K-span of Yx|x/xnp € L?(K/K N H) is py; this can be seen
directly on (Z8), using the fact that [ic, bc N€c] C be NEc. If py € A7, then
by definition g - |k /knr = ¥alk/knw for all g € J (where g acts by left
translation); in particular, (g - o) = ¥a(xg) =1 for all g € J. O

Proposition [Tl for the Flensted-Jensen function ¢y € V7 ) is an immedi-
ate consequence of (), of Lemma [[.4] and of the following lemma.
Lemma 7.5. Let A € j* satisfy (512). Then

(1) €, (k)| <1 forallk € K;
(2) there exists ¢ > 0 such that for allY € b and ¢ € HN K,

|€_x—p(exp(=Y)0)| < cosh(q'|[Y[|)~ ¥+,
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Proof of Lemmal[Z3. Lemma [[5(1) follows immediately from Lemma
applied to the compact symmetric space K/H N K instead of Gy /Hy .

To prove Lemma [[51(2), we may assume that G¢ is simply connected,
because the Iwasawa projection for G¢ is compatible with that of any cov-
ering of G¢. Then w; € A1 (Gy/Hy) for all 1 < j <7 by (7). To simplify
notation, we write (7, V;, &) for (m,, Vio;, &) and || - ||; for the Euclidean
norm on V; corresponding to the Gy-invariant inner product (-,-) of Sub-
section Then (Z6) and Observation imply that for all A € j* and
g€ G,

_ (Atpiey)

_ (o) —d(\
€2 p(g)] = e~ RS Huwj ey |, <Huw] 134 s

Therefore, in order to prove Lemma [Z.5l(2), we only need to prove the exis-
tence of a constant ¢’ > 0 such that

(7.10) min {|7;((exp V)¢ )& 1 > 1
1<5<

and

(7.11) max |7 ((exp Y)0)¢] [|; > cosh(q[[Y]])

forall Y €e band / € HN K. For any 1 < j < r, the Lie algebra b acts
semisimply on V; with real eigenvalues, hence there are an orthonormal basis
(Uz‘j)lgigdimvj of Vj and linear forms f3;; € b*, 1 <14 < dim V}, such that

mi(exp V) v = ePiirY) gy,

forall Y € b and 1 < i < dimVj. Write the matrix coefficients {b;;} for the
restriction 7| gk as

dim V;
f;/z Z bij(é)vij (KEHQK),

dim V;

where Y. 7 |b;;(€)|? = 1 since 7| g is unitary. By [Fl Lem.4.6],

dim V;

[ ((exp Y)O)E] |17 = Z b3 (£) [ cosh(28,5, )

forall1 <j<r allY € b, and all £ € HN K, hence (CI0) holds. Let us
prove (ZII)). By a compactness argument [El, Th.4.8], there is a constant
€ > 0 with the following property: for any Y € b and £ € H N K, there exist
je{l,...,r} and ip € {1,...,dimV;} such that

(7.12) (Bigj, Y) Z ellY]| and  [big;(£)] > e.
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For Y e band ¢ € HN K, let (ip,j) be as in (ZIZ). Then
dim Vj

I ((exp Y)0)&] |5 = Z i (£)? cosh(28;,Y)

> |big; (€ )| cosh( (2Bi05,Y) + Z |b;(€)
1#10
> &% cosh(2e||Y ) + (1 — 2).

By using the general inequality
tcosh(z) + (1 —t) > (cosh %)2,
which holds for any 0 <t <1 and = € R, we obtain
I ((exp Y)O)E] || = cosh(e®|[Y]).
This proves (1) for ¢’ := ¢® and completes the proof of Lemma O

8. NONVANISHING OF EIGENFUNCTIONS ON LOCALLY SYMMETRIC SPACES

As explained at the beginning of Section [7, our goal now is to complete
the proof of the theorems and propositions of Sections [ to Bl by establishing
the following key proposition.

As in Subsection B3] we denote by G, (resp. L.) the maximal compact
normal subgroup of the reductive group G (resp. L) and by Z(Gj) the center
of the commutator subgroup of G. The Z-module AT"2(Cs) for T' ¢ G has
been defined in ([B.6). We choose a positive system X (gc,jc) containing
the fixed positive system X7 (£c,jc) of Subsection B3} this defines a positive
Weyl chamber j* and an element p € j% as in Subsection 3.3l

Proposition 8.1. Suppose that G is connected, that H does not contain any
simple factor of G, and that the rank condition ([3.3) holds.

(1) (Sharp Clifford-Klein forms)
For any sharp Clifford-Klein form Xp of X with ' NG, C Z(Gs),
there is a constant R > 0 such that for any A € jiﬂ(?pc—p—i-AmZ(Gs))
with d(X) > R, the summation operator St is well-defined and nonzero
on g-L*(X, My for some g € G.

(2) (Uniformity for standard Clifford-Klein forms)
Let L be a reductive subgroup of G, with a compact center and acting
properly on X. There is a constant R > 0 with the following property:
for any discrete subgroup T' of L with T'N L. C Z(Gs) (in particular,
for any torsion-free discrete subgroup I' of L) and for any X € i} N
(20e — p 4+ APy with d(N) > R, the operator St is well-defined
and nonzero on g-L*(X, My) for some g € G.

(3) (Stability under small deformations)
Let L be a reductive subgroup of G of real rank 1, acting properly
on X, and let T' be a convexr cocompact subgroup of L (for instance
a uniform lattice) with I' N G. C Z(Gs). Then there are a constant
R > 0 and a neighborhood U C Hom(I', G) of the natural inclusion
such that for any ¢ € U, the group (I") acts properly discontinuously
on X and for any X € i% N (2p. — p + AYVZ(CE)) with d(\) > R, the
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operator Syry s well-defined and nonzero on g-L*(X, M)k for
some g € G.

IfT'N L. C Z(Gy) (for instance if T is torsion-free or if L is simple
with Z(L) C Z(Gs)), then we may take the same R (independent
of T') as in (2), up to replacing U by some smaller neighborhood.

Recall that L?(X, M,) is the space of L?-weak solutions to the system
(M) of Subsection B3l and L?(X, My)x is the subspace of K-finite func-
tions. The group G acts on L?(X, M) by left translation (3.9). We define a
summation operator Sp on any G-translate g-L?(X, M) by the same for-
mula as in Proposition see Subsection Bl below. The fact that we need
to consider G-translates is linked to the geometric issue of distribution of I'-
orbits in X and in the Riemannian symmetric space G/K (see Remark B.4]
together with Propositions and B14)).

As we shall see in Subsection (Formulas (89) and (8I0))), the con-
stant R of Proposition BJl(1) can be expressed in terms of the sharpness
constants (¢, C') of I and of the minimal nonzero value of ||v|| on the I'-orbit
I'-zp. Recall that ||v| measures the “pseudo-distance to the origin zp”.

We note that the technical assumptions of Proposition are not very
restrictive: Remarks also apply in this context.

Remark 8.2. We can make Proposition BI1(1), (2), and (3) more precise
with respect to G-translation: we actually prove that
(a) for d(\) > R, the operator St is well-defined on g-L?(X, M) for
all g € G;
(b) there is an element g € G such that Sr is nonzero on g-L?*(X, M)
for all A\ with d(\) > R.

Statement (a) follows from Proposition and from the fact that the first
sharpness constant is invariant under conjugation (Proposition A.3]), using
Remark B4 below. For Statement (b), we refer to Subsection

Remark 8.3. We can make Proposition BRIl more precise in terms of discrete
series representations for X. Recall from Fact that L?(X, M)k is the
direct sum of finitely many irreducible (g, K)-modules Vz \, where Z € Z.
We have given two combinatorial descriptions of the set Z.

e In terms of positive systems: by (B.0), any Z € Z corresponds to a
positive system Y7 (gc,jc), which determines a positive Weyl cham-
ber j% and an element p € j% . We prove that Sr is well-defined and
nonzero on g-Vz\ C g-L*(X, M)k for any A € j% with d(\) > R
satisfying

= A+ p—2p, € ATNZ(Gs),

e In terms of Weyl group elements: fix a positive system X1 (gc,jc)
containing the positive system X7 (¢c,jc) of Subsection B3} this de-
termines a positive Weyl chamber j% and an element p € ji. By
(B3), any Z € Z corresponds to an element w € W(H?, G9), where
W(H?,G%) C W is a complete set of representative for the left coset
space Wgng \W. We prove that St is well-defined and nonzero on
g-Vz C g-L*(X, M)k for any X € j* with d(\) > R satisfying

1Y =w(\+ p) — 2p, € ATNZ(Gs),
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Thus we get different integrality conditions on A depending on the element
Z € Z we are considering. These conditions might not be all equivalent;
it is enough for A to satisfy one of them in order to belong to the discrete
spectrum Specy(XT).

8.1. The summation operator Sr on G-translates of L?(X, M,)x. Let
Xr be a Clifford-Klein form of X. We define the summation operator Sr on
any G-translate g-L?(X, My )k as follows.

For g € G, let {4 : x — g - x be the translation by g on X. The following
diagram commutes, where pr : X — Xr is the natural projection.

¢
X . X r ——— gz
1 e 1
Xp —= Xypg— Tz — (gTg™!)(g-x)

Since D(X) consists of G-invariant differential operators, we obtain the fol-
lowing commutative diagram for smooth functions satisfying (M).

*

4
COO(X,MA) j COO(XaM)\)

piiT T”ngl

~

C=(Xp, My) ~ C%(X,pg-1, M))

The space L?(X, M) is contained in C*°(X, M,) (see Subsection [.3)),
and

(8.1) @Z L2(X,M)\)K = L2(X,M)\)g—1Kg.
For ¢ € £3 L*(X, M\)k C C®(X, M), we set

Sr(p) = ¢ = <Fm — el x)> ;

this is the same formula as the one defining Sr on L?(X, M)k in Propo-
sition Then Sr is well-defined on L?(X, M) if and only if Sgrg-1
is well-defined on L?(X, M)k, and in this case the following diagram com-
mutes.

*

4
C®(X, My) D L LAX, M)k <~—— L* (X, M)k C C®(X,M,)

Srl lsgrgl

LQ(XF,MA) ~ LQ(XgFg_laM)\)

We note that
(8.2) g-LQ(X,M)\)K 252_1 (LQ(X,M)\)K).

In particular, we will use the following.
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Remark 8.4. The operator Sr is nonzero on g - L?(X, M, ) if and only if
the operator S,-1p, is nonzero on L?(X, M) k.

The reason why we consider G-translates g-L?(X, M))xk to construct
nonzero eigenfunctions on Xt is precisely that we want to allow ourselves to
replace the groups I' by conjugates g~ 'T'g (see Propositions and B14).

8.2. Nonvanishing on sharp Clifford—Klein forms. We adopt the first
point of view described in Remark for the whole section we choose a
positive system X1 (gc,jc) containing the fixed positive system X7 (€c,jc)
of Subsection B.3} this defines a positive Weyl chamber j* and an element
p € j% as in Subsection [3.3] as well as an element Z € Z by (&.0]). The key
ingredient in the proof of Proposition is the following lemma.

Lemma 8.5. Assume that the rank condition [B3) holds. For ¢,C,r > 0,
let T' be a discrete subgroup of G such that:

(1) T is (c,C)-sharp for X,

(2) inf{||lv(z)|| :x € -xg and v ¢ X .} > r,

(8) T-zg N X. C Z(Gs)-xp.

For any X € 3% N (2p. — p + ATNZ(G9)) with d(\) > max(m,, Rx /c) and
4)lpall(r + C) +log (2cq #(I' N K))
¢ log cosh(q'r)
the operator St : L*(X, M)k — L*(Xr, M) is well-defined and any func-
tiony € Vz\ C L?(X, My as in Proposition[Z1 satisfies Sr(1y)(xo) # 0.

dA+p) >

)

Let us recall earlier notation: p, € a is half the sum of the elements of
Y% (g, a), counted with root multiplicities, and m,, ¢g, Rx, and ¢ are the
constants of (B.8]), Observation [£19 Proposition 6.1l and Proposition [7.1]
respectively. We denote by x¢ the image of H in X = G/H and keep the
same notation for its image in Xp = I'\X for any Clifford—Klein form Xr.
The set X. = K -xg consists of the points x in X whose “pseudo-distance to
the origin” ||v(z)|| is zero; it is a maximal compact subsymmetric subspace
of X, and identifies with K/K N H. Remark 5] implies the following.

Remark 8.6. For any discrete subgroup I' of G acting properly discontin-
uously on X,
inf {||v(z)|| : # € T-zp and = ¢ X} > 0.

Remark 8.7. For any A € j we have d(A+ p) > d()), hence for R > 0 the
condition d(A + p) > R/ is satisfied as soon as d(\) > R'.

Proof of Lemma 8. Let X € j* N (2p. — p+ AT"2(G5)). Assume that d()\) >
max(m,, Rx/c); then the summation operator

Sp : L2(X,M>\)K — L2(X[‘,./\/l)\)

is well-defined by Proposition Assume moreover that d(A) > m,; then
A€ 2p. — p+ Ay by Lemma and we can apply Proposition [[.Il The
function 1 of Proposition [[1] has module < 1 outside of X.. In order to
prove that ¢§(m0) # 0, we naturally split the sum into two: on the one hand
the sum over the elements v € I' with v-xg € X, on the other hand the sum
over the elements v € T" with v - xg ¢ X.. We control the first summand by
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using the assumption (3) that the I'-orbit of I'-xy meets X, only inside the
finite set Z(Gy)-xg, where 1) takes value 1: by Lemma [T.4]

> alywo)| = #{y el ympe X} > 1.
’YEF, 'Y'xOEXc

Therefore, in order to prove that ¢§($0) = 0, it is sufficient to prove that

Y. lym) < L.

VEL, y-wo¢Xe
The estimate (7.2)) and the assumption (2) on the “pseudo-distance to the
origin” |lv|| imply

> [ay-xo)l

€L, yxoEXe

400
< Zcosh(q’rn)_d(’\+p) H{y el :nr <|v(y)| < (n+1)r},

n=1

where the constant ¢’ > 0 of Proposition [.]] depends only on X. We now
use the assumption (1) that I' is (¢, C')-sharp. By Lemma [.6l(3),

n+1)r+C
c

(
By €T v < (n+ r} < £LAK) - cg el
where the constant c¢g > 0 of Observation depends only on G. Thus

> [ealy-xo)|

vel, yxo€Xe

+o0o
<#(I'NK)- cGe2”pa”c(T+C) : Z cosh(q'rn)~4AFP) . e(QHPCGHT)n’
n=1

and we conclude using the following lemma. O

Lemma 8.8. For any S, T,U > 0 with S > 1,

+oo
S Zcosh(Tn)*d eVn <1

n=1

for all d > R := 525

Proof. 1t is sufficient to prove that for all d > R and all n > 1,
S cosh(Tn) 4elm < 27,

or equivalently

log S +n(log2+U)
log cosh(T'n)

One easily checks that for all n > 1,

log S +n(log2+U) < n(log(25)+U)

d>

and
log cosh(Tn) > n logcoshT. O
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8.3. Points near the origin in the orbit of a sharp discrete group.
In this subsection and the next one we do not need the rank condition (B.3)).

In Lemma B we assumed that I'zo N X. C Z(Gy)-xg, where X, = K -z
is the maximal compact subsymmetric space of X consisting of the points x
whose “pseudo-distance to the origin” ||v(z)]| is zero and Z(Gy) is the center
of the commutator subgroup of G. We now prove the following, where G,
denotes the maximal compact normal subgroup of G (as in Section B3] and
Gy the maximal normal subgroup of G contained in H.

Proposition 8.9. For any discrete subgroup ' of G acting properly discon-
tinuously on X, there is an element g € G such that g~ '~yg-xo ¢ X, for all
yeI'NG.Gy.

In Subsection we shall combine Proposition with Lemma to
prove Proposition[811(1). Recall that in Proposition Bl (1) we assumed that
H does not contain any simple factor of GG; it has the following consequence.

Remark 8.10. If H does not contain any simple factor of G, then Gy =
Z(G)NH and T'NG.Gyg =T NG, for any discrete subgroup I' of G acting
properly discontinuously on X = G/H.

The assumption I' N G. C Z(G,) in Proposition BJl(1) is there to ensure
that if g~ 1yg-xo ¢ X, for all v € I' . G, (as given by Proposition B9), then
g 'Tg- 20N X, C Z(Gy) - 29 (as required to apply Lemma [BH)).

In the rest of this subsection we give a proof of Proposition B9l

e The main lemma and its interpretation. We first establish the following.

Lemma 8.11. For any v € G~ G.Gp, there is an element g € G such that
g vg - x0 & X, or in other words g~'vg ¢ KH.

We note that G is the set of elements of G that act trivially on X.
In particular, for any v € G ~ G there is an element g € G such that
g g - w9 # 0. Lemma states that if v ¢ G. Gy, then we can actually
find g such that g~'vg - 29 ¢ X.. The condition v ¢ G.Gy cannot be
improved: if v € G. G, then any conjugate of v maps xg inside G.-xo C X,
since G. Gy is normal in G.

Here is a group-theoretic interpretation.

Remark 8.12. For any subset S of G, let
G[S] = ﬂ gSg~ L.
geG

If S is a group, then G[S] is the maximal normal subgroup of G contained
in S. In particular, G[K] = G, and G[H| = Gy. Lemma states that
G[KH| = G[K|G[H]. We note that this equality may fail if we replace K
by some noncompact symmetric subgroup of G, i.e. by H' such that G/H’
is a non-Riemannian symmetric space.

e Preliminary Lie-theoretic remarks. Before we prove Lemma [RI1] we make
a few useful remarks. For any subspaces e, f of g, we set

(8.3) o ={Y ee:[},Y]={0}}.

Lemma 8.13. Assume that G is simple.
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(1) For any nonzero ideal ¥ of &, we have p* = {0}.

(2) The Lie algebra spanned by €N q contains €.

(3) The normalizer N (¢Nq) :={h € H : Ad(h)(¢Nq) =¢tNq} of tNqg
wn H is contained in K.

Proof of Lemmal813 (1) If ¥ is an ideal of €, then the space p¥ is glob-
ally stable under ad(t), or equivalently under Ad(K). But the adjoint
action of K on p is irreducible [KN69, Ch. XI, Prop.7.4], hence p¥
is either {0} or p. Since K is reductive, we can write ¢ as the direct
sum of ¥ and of some other ideal €. If p* = p, then ¢’ +p is an ideal
of g, hence ¥’ 4+ p = g since g is simple; in other words, ¢ = {0}.

(2) For any reductive Lie group L with Lie algebra [, we denote by [,
the Lie algebra of the commutator subgroup (or semisimple part)
of L. Proving that £, is contained in the Lie algebra spanned by
€ N q is equivalent to proving that (fc)s is contained in the Lie
algebra spanned by £c N qc. In turn, this is equivalent to prov-
ing that (h?%)s is contained in the Lie algebra spanned by h? N p?,
since the complexifications of h? and p? are ¢ and qc, respectively
(see Subsection [.2)). But (h?)s admits the Cartan decomposition
(hh)s = (h%)s N € + (h9), N p?, and it is well-known that if [ is a
semisimple Lie algebra with Cartan decomposition [ = ¢ + p;, then
[pr, pi] +pr = I (one easily checks that [pr, p] +p; is an ideal of [, hence
equal to [if [ is simple; the general semisimple case follows from de-
composing [ into a sum of simple ideals). Thus (h?), is contained in
the Lie algebra spanned by (h%) Np? C h? N pc.

(3) The group L := Ny (N q) is stable under the Cartan involution 6
of G, since €N q is fixed by 6. Therefore L is reductive and admits
the Cartan decomposition L = (K N L) exp(pNI). Proving that L is
contained in K is equivalent to proving that p N[ = {0}. We have

pNl={Y ehnp:ad(Y)(eng) Ctngl = (hnp),

hence p N [ is contained in p'® = p(*19 where (€N q) is the Lie
algebra spanned by €N q. By (1) (with ¢ = &) and (2), we have
pltna) — (0}, O

e Proof of Lemmal811. Suppose that v satisfies
(8.4) g 'vge KH forall g€ G.

Let us prove that v € G. Gp. We first assume that G is simple. The idea is
to work in the Riemannian symmetric space G/K of G, where we can use the
G-invariant metric dg k. As before, we denote by yo the image of K in G/ K.

Firstly, we claim that v € K. Indeed, write v € Kh where h € H.
Then (84) with g € K implies hKh™' € KH, i.e. hRKh™'-yg C H-yo. By
considering the tangent space of G/K at xy, which identifies with g/¢, we
see that Ad(h)t C b +§, or in other words € C h+ Ad(h~!)(¥). This implies
Ad(h~1)(ENgq) = €N gq. By LemmaBI3l(3), we have h € K.

Secondly, we claim that y~! fixes pointwise the set KB, - yo. Indeed, let

k€ K and b € By. By (84), we have v~ 'kb-yg € kbH - yo. By @), ([E8),
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and Lemma .17,
de /i (Yo, kb-yo) = [ln(B)[| = [[v(B)[| = [lv(bh)|| < lu(bh)|| = deyx (yo, kbh-yo)

for all h € H, hence kb- g is the projection of yg to the totally geodesic sub-
space kbH -yg. Since v € K fixes yo and acts on G/K by isometries, we have

dayic (0,7 kb - o) = day i (Yo, kb - y0) < deyxc(yo, kb - yo)

for all h € H. But v~ kb-yo belongs to kbH -yo by assumption, and kb-yq is
the projection of yg to kbH -yg, so v kb-yo = kb-1y. This proves the claim.

To prove that v € G. G, we assume that the simple group G is noncom-
pact, so that G.Gy = Z(G) (otherwise G, = G). Then B, # {e}. We have
seen that y~! fixes pointwise the set KB, - 19, which is equivalent to the
fact that v € (kb)K (kb)~! for all k € K and b € B,. Thus v belongs to the
closed normal subgroup

K= () (kb)EK(kb)™
keK, beBy

of K. We note that Ad(K’)(Y) =Y for all ¥ € K’ and Y € by. Indeed,
Ad(K')(Y)—Y € psince K’ C K, and Ad(K')(Y)—Y € Esince b 'K'b C K.
In particular, the Lie algebra € of K’ satisfies p* # {0} with the notation
[®3). But ¢ is an ideal of ¢, hence ¢ = {0} by Lemma RI3l(1). In other
words, K’ is contained in the center Z(K) of K. We claim that in fact
K' ¢ Z(G). Indeed, for any k' € K’ the set g*d*) of fixed points of g
under Ad(k’) is a Lie subalgebra that contains both € and by # {0}. But
the Lie algebra g is generated by ¢ and any nontrivial element of p (because
the adjoint action of K on p is irreducible [KNG9, Ch. XI, Prop. 7.4]), hence
g2d(¥) = g which means that ¥’ € Z(G). In particular, v € Z(G) = G.Gg.

In the general case where GG is not necessarily simple, we write G as the
almost product of a split central torus >~ R%, of G. Gy, and of noncompact
simple factors Gy, ...,G,, with G; ¢ H for all 4. Since 7 is elliptic, we can
decompose it as v = 71 - . . Ym, Where v € G. Gy and ~; € G; for all ¢ > 1.
For ¢ > 1, the restriction of ¢ to G is an involution; the polar decomposition
G; = (KN G)(ByNGy)(HNG;) holds, with By N G; # {e}, and the
corresponding projection is the restriction of v. By the previous paragraph,
vi € Z(G;) for all ¢ > 1. Therefore v € G. Gy since Z(G;) C G.Gg. This
completes the proof of Lemma

e Proof of Proposition[84. Let I" be a discrete subgroup of G acting properly
discontinuously X. Consider the set

F={y el :da(pu(y), u(H)) < 1}.

For any v € F we have v-C NC # (0, where C is the compact subset
of X = G/H obtained as the image of p~'([0,1]) C G; therefore F is
finite. For v € F, the map f, : G — G sending g € G to g 'yg is real
analytic, hence f° (K H) is an analytic submanifold of G. By Lemma BIT]
if v ¢ G. Gy, then f;l(KH) is strictly contained in G, hence it has positive
codimension. In particular, there is an element g € G with ||u(g)|| < 1/2



DISCRETE SPECTRUM FOR LOCALLY SYMMETRIC SPACES I 63

such that g~'yg ¢ KH (i.e. g"'vg-x9 ¢ X.) for all v € F ~ G.Gpy. By
Lemmas [£4] and [£T7] for all v € T'\\ F,

(g™ v9)l = da(pelg™" v9), n(H)) > da(pa(v), p(H)) = 2||p(g)|| > 0.

In particular, g~ tyg - g ¢ X, for all ¥ € '\ G.Gpy. This completes the
proof of Proposition

8.4. Uniformity for standard Clifford—Klein forms. In Subsection 85l
we shall prove Proposition BJ1(2) by combining Lemma with the follow-
ing consequence of the Kazhdan—Margulis theorem, applied to some conju-
gate of L instead of G.

Proposition 8.14. Assume that the reductive group G has a compact center.
There is a constant rg > 0 (depending only on G ) with the following property:
for any discrete subgroup I' of G, there is an element g € G such that

(g vg)ll = re for all y € T\ G.

As before, GG, denotes the largest compact normal subgroup of G. The
condition 7 € I' \ G, cannot be improved: if v € G, then u(g~'vg) = 0 for
all g € G since g~ 1yg € G. C K. The condition that the center Z(G) of G
is compact also cannot be improved: if Lie(Z(G)) N a contains a nonzero
vector Y, then for any ¢t € Ry the cyclic group generated by 74 := exp(tY) €
G\ G, is discrete in G and ||u(g 'yg)|| =t ||Y]| for all g € G.

Recall that [|u(g)|l = dg/x (Y0, 9 - yo) for all g € G, where y is the image
of K in the Riemannian symmetric space G/K. Thus Proposition has
the following geometric interpretation: there is a constant rg > 0 such that
any Riemannian locally symmetric space M = I'\G/K locally modeled on
G /K admits a point at which the injectivity radius is > r¢.

Proposition is not new; we give a proof for the reader’s convenience.
We begin with an elementary geometric lemma in the Riemannian symmetric
space G/ K, designed to treat groups I" with torsion.

Lemma 8.15. For any g € G~ G, of finite order and any R,e > 0, there
exists r > 0 such that for any ball B of radius R in G/ K,

Volg/K({y € B:dg/k(y,9y) < 7“}) < €.
This v depends only on the conjugacy class of g in G (and on R and ).

Proof. For g € G\ G, of order n > 2, let F,; be the set of fixed points of g
in G/K. We claim that the set of points y € G/K with dg/k(y,9-y) <
is contained in an (n — 1)r-neighborhood of F,. Indeed, for y € G/K, con-
sider the “center of gravity” z of the g-orbit {y,g-y,...,¢" -y}, such that
Z:‘L;ol da/k (2, g'-y)? is minimal. (The existence and uniqueness of such a
point were first established by E. Cartan [Ca) to prove his fixed point theo-
rem.) The point z belongs to the convex hull of {y,g-y,...,¢" -y}, hence
there exists 1 < ig < n— 1 such that dg/K(y,giO y) > dg/k(y, 2). Moreover,
z € Fg, hence dg/k (y,2) > dak(y, Fy). By the triangular inequality,

i9—1

- 1 A 1
deyi(v:99) = 7 > deyr(ghy. gt y) > oy 9°y) = = dayic(y, Fy),
=0
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which proves the claim. Let R,e > 0. We note that F; is an analytic
subvariety of G/K of positive codimension since g ¢ G.. Therefore, for any
ball B of radius (n 4+ 1)R centered at a point of F,, there exists r > 0 such
that

VOlg/K({y e B da/k (Y, 9y) < 7“}) < e.

Using the fact that the centralizer of g in G acts transitively on F, (see [He2l
Ch.1V, §7]), it is easy to see that this r can actually be taken uniformly for
all such balls. We conclude the proof of Lemma by observing that
any ball of radius R meeting the (n — 1)r-neighborhood of F, is actually
contained in a ball of radius (n+ 1)R centered at a point of Fg, since r > R.
The fact that r depends only on the conjugacy class of g in G (and on R
and ¢) follows from the fact that the metric dg,/k is G-invariant. O

Proof of Proposition [8.14 We first assume that G is semisimple with no
compact factor, so that G. = Z(G). The Kazhdan-Margulis theorem (see
[Ra2l Th.11.8]) then gives the existence of a neighborhood W of e in G with
the following property: for any discrete subgroup I' of G, there is an element
g € G such that g7 ''g N W = {e}. It is enough to prove Proposition
for discrete groups I' such that ' N W = {e}.

We note that for all g,y € G, we have dg/K(yo,g_lwg-yO) =da/k(Y,7Y)
where y := g-yg. Therefore, using the interpretation (L)) of ||u|| as a distance
in the Riemannian symmetric space G/ K, it is enough to prove the existence
of a constant rg > 0 with the following property: for any discrete subgroup
I of G with ' N W = {e}, there is a point y € G/K such that for any
veI' N\ Z(G),

(8.5) da k(Y. - y) > ra.
In order to prove this, we consider a bounded neighborhood U of e in G such
that YU~ C W, and an integer m such that
(8.6) m - volg(U) > volg (K -U),
where we set
Ki:={g€G: dg/k(yo.g 1) <1}.
e We claim that for any torsion-free discrete subgroup I' of L with T'NW = {e},

1

(8.7) Il = da/x (Yo, Y - yo) = p—

Indeed, let T" be such a group. Then YU N~'U = ) for all v # +" in T', hence
volg (K1 -U) > #(I' N Ky) - volg(U).
Therefore, by (8.6]),
#(I'NKy) <m.

Using the fact [@2) that ||u(¢™)|| < m||u(g)| for all g € G, we obtain that
any element v € I" with [[u(7)|| < 1/m has order < m; the number of such
elements v is < m. In particular, since I' is torsion-free, the only element

v € I' with ||u(y)]] < 1/m is e, proving (7).
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e We now deal with groups I' that have torsion. By Lemma RI5l for any
g € G\ G, of finite order there exists r € (0, ﬁ] such that for any ball B
of radius 1/3m in G/K,

1
(8.8) volg/k({y € B: dgyk(y,9-y) <r}) < EVOIG/K(B)a

and this r depends only on the conjugacy class of g in G. Since there are only
finitely many conjugacy classes of elements of order < m in G [He2, Ch.IX,
Cor.4.4 & Prop.4.6], there exists a constant r = rg such that (8] holds
for all ¢ € G~ G, of order < m and all balls B of radius 1/3m. Let us
prove that this constant r¢ satisfies (85]). Let I' be a discrete subgroup
of G such that 'MW = {e} . The same reasoning as before shows that
any element v € I' with [|u(7)]| < 1/m has order < m; the number of such
elements 7 is < m. By (8.8), there is a point y € Bg/x (vo, B%m) such that
da/k(y,7 - y) > rg for all v € T'\ G with ||u(y)|| < 1/m. For ally € T

with [[u(y)|| = da /i (Yo,7 - yo) > 1/m, we also have

1
da/k Y,y - y) = dayi (Yo, v - yo) — 2da/k (Y, yo) = 3 276

which proves (X)) and completes the proof of Proposition B4l in the case
when G has no compact factor.

We now consider the general case where G may have compact factors.
Let 7 : G — G/G. be the natural projection. The group n(G) = G/G. is
semisimple with a trivial center and no compact factor. It admits the Cartan
decomposition

m(G) = n(K)m(AL) m(K).
Let pir(q) : m(G) — log 7(A4) be the corresponding Cartan projection. The

restriction of 7 to A is injective, hence we may identify log (A ) with a;.
With this identification,

i) (m(9)) = 1(g)

for all g € G. Therefore, Proposition B4l for G follows from Proposition R4
for (@), given that for any discrete subgroup I' of G the group =(I') is
discrete in 7(G). O

Remark 8.16. If G is disconnected, with finitely many connected compo-
nents, then it still admits a Cartan decomposition G = KA, K, where K
is a maximal compact subgroup of G and A, a positive Weyl chamber in a
maximal split torus of G, possibly smaller than the corresponding positive
Weyl chamber for the identity component of G. The corresponding Car-
tan projection p : G — log A, is well-defined and has the property that
11(9)Il = dayx (o, 9 - yo) for all g € G, where yo denotes the image of K in
G/K. Lemma and Proposition hold with the same proof.

8.5. Proof of Proposition Bl Recall from (6.6]) that we may take Rx
to be 4||p4||/q in Proposition For any subgroup I' of G acting properly
discontinuously on X, we set

rp = inf {|[v(2)] : 2 € T and @ ¢ X} >0
(see Remark [B.6]).
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We first consider Proposition Bl (1). Let Xr be a sharp Clifford-Klein
form of X with 'NG. C Z(Gs). If I' - 29N X. C Z(Gs) - zo, then, by
Lemma and Remark BT the operator St is well-defined and nonzero
on Vz, for any A €% N (2p. — p + ATNZ(9)) with d(\) larger than

Allpall  4llpall(rr + C) + log (2¢ #(I' N K)) )

8.9 < : ’
(8.9) max | m, qc ¢ log cosh(¢'rr)

Otherwise, we use Proposition B9, Remark B.I0] and the assumptions that
H does not contain any simple factor of G and I' N G, C Z(Gs) to obtain
the existence of an element g € G such that g~ 'T'g - 20 N X. C Z(G) - x0;
then Sy -1p, is well-defined and nonzero on Vz  for any A € j% N (2p. — p +

A9~ T9nZ(C)Y with d(A) larger than

4pall Hlpall(rg-11g + C) +log (2cq #(g7'Tg N K)) )

8.10 < , ,
(8.10) mavx {m, qc c log cosh(q'rg-11g)

By Remark B4l (and the fact that g 'T'gN Z(Gs) = T'NZ(Gy)), the operator
St is well-defined and nonzero on g-Vz » for any A € j* N (2p. — p+ATNZ(Gs))
satisfying (8I0). This concludes the proof of Proposition RI1(1).

We now consider Proposition [B11(2). Let L be a reductive subgroup of G
acting properly on X. Assume that the center of L is compact. There
is a conjugate L' of L in G that is stable under the Cartan involution 6;
in particular, L’ is (¢,0)-sharp for some ¢ > 0 (Example ET1]). By Re-
mark 7] it is sufficient to prove Proposition B1(2) for L'. Let L. be the
maximal compact normal subgroup of L’. Applying Proposition to L'
instead of G, we obtain the existence of a constant r7, > 0 (depending only
on L') such that any discrete subgroup I' of L' admits a conjugate g~ 'I'g,
g € L, with ||u(g~'vg)|| > 7 for all v € I' . L. The reason why we apply
Proposition to L' and not G is that in this way the group ¢~ 'I'g C L’
remains (c,0)-sharp. Lemma I then yields ||v(g~'vg)| > crp for all
v €'~ L.. In particular, g~ 'vg 20 ¢ X, for all y € I' \ L, and rp > crp.
By Remark and the assumptions that H does not contain any sim-
ple factor of G and I' N L., C Z(Gs), we have ¢7'T'g N K C Z(Gs) and
g 'Tg-20 N X. C Z(Gs) -z, which enables us to apply Lemma Using
Remark B7] we obtain that the operator S;-1p, is well-defined and nonzero

on Vz  for any A € i% N (2pc — p + A9~ 'T9NZ(G5)) with d()) larger than

(8.11) R := max <mp, 4| pall : 4llpallerr, +log (QCG #Z(GS)))_
qc ¢ log cosh(q’cry)

Proposition BJ1(2) follows, using Remark

We now consider Proposition BI1(3). Let L be a reductive subgroup
of G of real rank 1 and let I' be a convex cocompact subgroup of L with
I'NnG. C Z(Gs). By Proposition B9, Remark B0l and the assumptions
that H does not contain any simple factor of G and I' N G, C Z(Gj), there
is an element g € G such that g~ 'vg- 29 ¢ X, for all v € ' N Z(Gs). By
Proposition 3] the group ¢~ 'T'g is (¢, C)-sharp for some ¢,C > 0 (where
c depends only on L). Choose ¢ € (0,7,-1p,). By Lemma applied to
g 'T'g C g~'Lginstead of I' C L, there is a neighborhood U’ ¢ Hom(T', G) of
the natural inclusion such that for all ¢ € U, the group g~ 'p(I')g is discrete
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in G and (c—e¢,C +¢)-sharp for X, and satisfies |[v(g~ o(7)g)|| = ry-1r, —¢
for all v € I' \ Z(G5). We now use the following fact, which holds because
there are only finitely many conjugacy classes of elements of order < #7Z(Gy)
in G [He2, Ch.IX, Cor. 4.4 & Prop. 4.6] and they are all closed [Bo3l Th.9.2].

Remark 8.17. There is a neighborhood & C U’ € Hom(T', G) of the natural
inclusion such that p(I' N Z(Gs)) C Z(Gs) for all p € U.

By Remark BIT, we have g~ 1p(I')g - 20 N X, C Z(Gy) - 7o and Tg—1p(T)g =
rg-1rg — €, as well as g lo(M)gN K C Z(Gs); we can apply Lemma
Using Remark B.7] we obtain that for all ¢ € U, the operator Sy-1,r), is

well-defined and nonzero on Vz » for any A € j% N (2p. — p+A971€"(F)9r‘Z(GS))

with d()) larger than
4llpall - Allpall(r + C) +log (2cc #Z(Gs)) )

R = max (m,, =0
A e qc ¢ log cosh(¢/(r —¢))

Proposition 1 (3) follows, using Remark IfI'nL. C Z(Gs), then we
can conjugate I' as in the proof of Proposition B1l(2) and take r = crp,
and C' = 0. Since the function d takes discrete values on ji N (2p. — p +
A), by choosing ¢ small enough we see that we can take the same R as in
Proposition [81(2). This completes the proof.

8.6. Completion of the proof of the theorems and propositions of
Sections [l to Bl The bulk of the paper was the proof of Proposition 8.1}
now we briefly explain how the results of Sections [ to B follow.

Theorem B8 (1) follows immediately from Proposition 811(1); Theorem
3.8 (2) from Proposition811(2); Theorem B.ITlfrom Proposition 81l (3); The-
orem [3.13] from Theorem B.8 and Proposition In the case when ‘G is
connected with no compact factor, Propositions 2.1 and follow from Lem-
mas and [R5l as in the proof of Proposition B11(3) (see Subsection BH]).

In order to deduce Theorems[I.3] .7, and [[.8 from Theorems and B.1T1
and to prove Propositions 2] and in the general case, it is sufficient to
deal with the following three issues:

e (G may be disconnected,
e some simple factors of G may be contained in H,
e (G may have compact factors.

Indeed, when G has no compact factor, the condition I' N G, C Z(Gs) of
Theorems and BI1]is automatically satisfied (see Remark B9l(a)). The
first issue is easily dealt with: if Gy denotes the identity component of G, then
Go/(GoN H) is a connected component of X, so Spec;(Go/H) is a subset of
Specy(X) (extend eigenfunctions by 0 on the other connected components).
In order to deal with the second and third issues, we consider the group G :=
G/G.Gp, where G is the maximal normal subgroup of G contained in H
(see Subsection B3)). We note that G is reductive with no compact factor
and that none of its simple factors is contained in H := H/G.Gy N H, hence
Theorems and B.I0] apply to the reductive symmetric space X := G/H.
To relate X to X, we make the following elementary observation.

Observation 8.18. The natural projection 7 : X — X induces homomor-
phisms
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o C®(X) s 0(X),
o D(X) = D(X),
o Home.ag(D(X), C) < Home.ag(D(X), C)
such that for all D € D(X), f € C*°(X), and x € Homc a4(D(X), C),
f

(mD)f =x(mD)f = D(@'f)=(r"x)(D)w
Moreover, 7*(L?(X)) C L?*(X), hence

7" (Specy(X)) C Specy(X).

Let us now consider Clifford—Klein forms. We note that if I' is a discrete
subgroup of G acting properly discontinuously and freely on X, then the
image I' of ' in G is discrete and acts properly discontinuously on X, but
not necessarily freely. However, in all the previous sections we could actually
drop the assumption that I' acts freely, allowing X to be an orbifold (or V-
manifold in the sense of Satake) instead of a manifold. Indeed, let us define
L?(Xr) to be the set of I'-invariant functions on X that are square-integrable
on some fundamental domain for the action of I'. If C'¢°(Xt) denotes the
space of I-invariant smooth functions on X with compact support modulo T',
then any D € D(X) leaves C°(Xr) invariant, so that for y, : D(X) — C
we can define the notion of weak solution f € L?(Xr) to the system

Df =xx(D)f for all D € D(X) (M)

with respect to integration against elements of C2°(Xt). We can then define
Specy(Xr) to be the set of C-algebra homomorphisms xy : D(X) — C
for which the system (M) admits a nonzero weak solution f € L?(Xr).
Since our construction of joint eigenfunctions is obtained by the summation
operator St, Propositions and Bl as well as Theorems B.8 and B.11]
hold in this more general setting. We conclude the proof of Theorems [Tl
[C7 and [L8 and Propositions 2.1 and with the following observation.

Observation 8.19. (1) The rank condition ([B.3]) for X = G/H holds if
and only if that for X = G/H holds.

(2) For any discrete subgroup I' of G acting properly discontinuously

on X, the image T of T'in G is discrete and acts properly discontin-

uously on X. o o
(3) The projection 7 : X — X induces 7*(L?(Xy)) C L*(Xr), hence

7 (Specy (X)) C Specy(Xr).
9. THE EXAMPLE OF THREE-DIMENSIONAL ANTI-DE SITTER MANIFOLDS

In this section and the following one, we concentrate on a few examples to
illustrate our general theory. We first examine the case of the 3-dimensional
anti-de Sitter space X = AdS3 = SO(2,2)/SO(1,2)p. Our purpose is 3-fold:

e recall the description of the Clifford—Klein forms of AdSs in terms
of representations of surface groups, as developed since the 1980’s
(Subsections to @.3);

e use it to give an explicit infinite subset of the discrete spectrum of the
Laplacian on any Clifford—Klein form I'\AdSs with I" finitely gener-
ated, in terms of some geometric constant Cr;,(I") (Subsection [.4);
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e understand the analytic estimates developed in Sections Bl and [
through concrete harmonic analysis computations on the group SLy(R)

(Subsections to @.9).

As mentioned in the introduction, X = AdSs is a Lorentzian analogue
of the real hyperbolic space H? = SO(1,3)o/SO(3): it is a model space for
all Lorentzian 3-manifolds of constant negative curvature, or anti-de Sitter
3-manifolds. One way to see X is as the quadric of equation Q = 1 in R*
with the Lorentzian metric induced by —(@), where

(9-1) Q(x) = 2§ + 23 — 2§ — ;

the sectional curvature of X is then —1 (see [Wo]). Another way to see X is
as the manifold SLy(R), with the Lorentzian structure induced by 1/8 times
the Killing form of sly(R) and the transitive action (by isometries) of the
group

G .= SLQ(R) X SLQ(R)

by left and right multiplication:

(9:2) (91,92) - 9 = 91995 -
We will use both realizations of X. An explicit correspondence is given by
{reR: Qz) =1} = SLy(R)
T1+T4 —x2+ 23
(9.3) T — <x2 Vas m -4 )

The stabilizer in G of the identity element 1 € SLo(R) is the diagonal H :=
Diag(SL2(R)), which is the set of fixed points of G under the involution
o:(g91,92) — (g2,91). Thus X = S0O(2,2)7/SO(1,2)( identifies with

G/H = (SLa(R) x SLy(R))/Diag(SL2(R)).

We note that the action of G on X factors through G/{£(1,1)} ~ SO(2,2)o;
we have H/{£(1,1)} ~ SO(1,2)p. By [KI| and [KR], all compact anti-de
Sitter 3-manifolds are Clifford—Klein forms Xp = I'\X of X, up to finite
covering. We now recall how these Clifford-Klein forms (compact or not)
can be described in terms of representations of surface groups.

9.1. Description of the Clifford—Klein forms of AdSs;. As in Subsec-
tion [L4] let —1 € SO(2,2)p be the diagonal matrix with all entries equal
to —1; it identifies with (1,—-1) € G/{%(1,1)} and acts on X = AdS3 by
x — —x. Describing the Clifford-Klein forms of X reduces to describing
those of its quotient of order two

X = 50(2,2)0/(S0(1,2)¢ x {£I})
~ (PSLy(R) x PSLy(R)) /Diag(PSLs(R)).

l

If ' is a discrete subgroup of G acting properly discontinuously and freely
on X, then its projection T to PSLy(R) x PSLy(R) acts properly discontin-
uously and freely on X; the natural projection Xr — Yf between Clifford—
Klein forms is an isomorphism if —I belongs to the image of I in SO(2,2)o,
and a double covering otherwise.
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A fundamental result of Kulkarni-Raymond [KR] states that if a torsion-
free discrete subgroup I' of PSL2(R) x PSL2(R) acts properly discontinuously
on X, then it is of the form

(9.4) T={(G(),p(7)) : v € m(9)},

where S is a hyperbolic surface and j,p € Hom(m(S),PSL2(R)) are two
representations of the surface group m1(.S), with one of them Fuchsian, i.e.
injective and discrete. The Clifford Klein form Xy = I'\X is compact if
and only if S is. Pairs (j, p) € Hom(m;(S), PSL2(R))? such that the group
(4,p)(71(S)) acts properly discontinuously on X are said to be admissible
(terminology of [Sal]). We note that not all pairs (j,p) are admissible: for
instance, if j and p are conjugate, then the infinite group (4, p)(m1(S)) does
not act properly discontinuously on X since it fixes a point. The question is
to determine which pairs are admissible.

Easy examples of admissible pairs are obtained by taking j Fuchsian and p
constant, or more generally p with values in a compact subgroup of PSLy(R):
the group I := (j, p)(m1(S)) and the Clifford-Klein form X7 = '\ X are then
standard in the sense of Definition [[4l When p is constant, YF identifies
with ‘T'\'G, where ‘G = PSLy(R) and 'T' = j(m;(S)) is a discrete subgroup
of ‘G; in other words, it is the unit tangent bundle to the hyperbolic sur-
face ‘T'\H? (where H? denotes the hyperbolic plane). The first nonstandard
examples of compact anti-de Sitter 3-manifolds were obtained by deforming
standard ones, i.e. proving that for fixed Fuchsian j, the pair (j, p) is admis-
sible for any p close enough to the constant homomorphism: this was done
by Goldman [Go| when p(71(9)) is abelian, then by [Ko5| in general. Salein
[Sa2|] constructed the first nonstandard compact Clifford-Klein forms that
are not deformations of standard ones. It is also easy to construct nonstan-
dard Clifford-Klein forms Yf that are not compact but conver cocompact,
in the following sense. We refer to [Ka3l Ch.5| and [GK] for more details.

Definition 9.1. A Clifford-Klein form YF is convex cocompact if, up to fi-
nite index and switching the two factors, T is of the form (@.4)) with j injective
and j(m1(5)) convex cocompact in PSLy(R) in the sense of Subsection

This terminology is justified by the fact that the convex cocompact Clifford—
Klein forms of X are circle bundles over convex cocompact hyperbolic sur-
faces, up to a finite covering [DGK]. We shall say that a Clifford-Klein form
Xr of X = AdSj is convex cocompact if its projection YF is.

By the Selberg lemma [Se2l Lem. 8], any finitely generated subgroup I' of
PSLy(R) x PSLy(R) acting properly discontinuously on X has a finite-index
subgroup that is torsion-free, hence of the form (@.4). However, in order
to obtain estimates on the discrete spectrum of X itself and not only of a
finite covering, we need to understand the precise structure of I itself. We
shall use the following result, whose proof is based on [KR].

Lemma 9.2. Let T be a finitely generated discrete subgroup of PSLa(IR)xPSLy(RR)
(possibly with torsion) acting properly discontinuously on X. Then either T

is standard (i.e. T or o(T') is contained in a conjugate of PSLa(R) x PSO(2))

or T is of the form

(9-4) T ={({(),p0)) : v € m(9)},
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where S is a 2-dimensional hyperbolic orbifold, w1 (S) is the orbifold funda-
mental group of S, and (j, p) € Hom(71(S), PSL2(R))?, with j or p Fuchsian.

Recall that a 2-dimensional hyperbolic orbifold S is a hyperbolic surface
with finitely many cone singularities, whose stabilizers are finite groups; the
orbifold fundamental group 71 (S) is torsion-free if and only if S is an actual
hyperbolic surface. The point of Lemma [0.2]is that in the nonstandard case,
even if T has torsion, one of its projections to PSLy(R) is still discrete and
injective (not only with a finite kernel).

Proof of Lemma[@2. For i € {1,2}, consider the restriction to I of the i-th
projection pr; : PSLa(R) x PSLy(R) — PSLy(R). The kernels Ker(pry|x) and
Ker(pr,|r) are discrete. They cannot both be infinite since I' acts properly
discontinuously on X [KR] §5]. Therefore, after possibly conjugating and
replacing I" by o(I"), we may assume that Ker(pr;|r) is finite and contained in
{1}xPSO(2). If Ker(pr;|z) = {1}, then I is of the form (@4) with j injective,
and j is in fact discrete [KR] §5]. If Ker(pr;|p) # {1}, then it is easy to see
that T is contained in PSLy(R) x PSO(2) since it normalizes Ker(pr,|g). O

9.2. Deformation of convex cocompact Clifford—Klein forms of AdSs.
The fact that the group PSLy(R) x PSLy(R) is not simple allows for a rich
deformation theory.

For instance, for any compact hyperbolic surface S, the set of admissible
pairs (j, p) is open in Hom(m;(S), PSLa(R))?; the deformation space (mod-
ulo conjugation) thus has dimension 12¢g — 12, where ¢ is the genus of S. In
other words, for any compact Clifford—Klein form Xt of X = AdS; = G/H,
the group ¢(T") is discrete in G and acts properly discontinuously and co-
compactly on X for all ¢ € Hom(T", G) in some neighborhood of the natural
inclusion of I in GG. Indeed, this follows from the completeness of compact
anti-de Sitter manifolds [KI|] and from the Ehresmann-Thurston principle
on the holonomy of geometric structures on compact manifolds (see [Sall
§4.2.1]); a quantitative proof was also given in [Koj].

More generally, proper discontinuity is preserved under small deforma-
tions for any convex cocompact Clifford—Klein form of X (in the sense of
Definition @) [Ka3l Cor.5.1.6], as a consequence of the following two facts
(the first one extending Example [L13)).

Fact 9.3 [Ka3, Th.5.1.1|. All convex cocompact Clifford-Klein forms of X =
AdS3 are sharp.

Fact 9.4 [Ka3| §5.7.2]. Let Xt be a (¢, C)-sharp, convex cocompact Clifford—
Klein form of X = AdSs = G/H. For any € > 0, there is a neighborhood
U. C Hom(T', G) of the natural inclusion such that the group o(I") is discrete
in G and (¢ —e,C + ¢)-sharp for all p € Ue.

(We refer to Definition for the notion of sharpness.)

Facts[@.3 and [0.4] give the geometric estimates that we need (together with
the analytic estimates of Subsection @5l below) to construct an infinite stable
discrete spectrum for the convex cocompact Clifford—Klein forms of X =
AdS3 (Corollary @I0). By [GK], sharpness actually holds for all Clifford—
Klein forms Xt of X with I finitely generated, which implies that the discrete
spectrum is infinite for all such Xp (Theorem [0.9).
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9.3. The constant Cp;,(I'). The infinite subset of the spectrum that we
shall give in Subsection @4 will be expressed in terms of a geometric constant
ClLip(T'). The goal of this subsection is to introduce Cp;,(I"), to explain how
sharpness is determined by this constant, and to provide some explanation
of Facts and

e A reformulation of sharpness for X = AdS3. Let pipgr,(r): PSL2(R) — R>g
be the Cartan projection mapping any element ¢ to the logarithm of the
highest eigenvalue of ‘gg. We will use the following geometric interpretation:

(9.5) sty ®) (9) = diz (Yo, 9 - Yo),

where yo is the point of H? whose stabilizer is PSO(2). Consider a 2-
dimensional hyperbolic orbifold S and a pair (j, p) € Hom(71(S), PSLa(R))?.
By [Kall, Th. 1.3|, if the group (4, p)(m1(S)) acts properly discontinuously on
X = AdS?, then the set of points

(1psra@ (7)) ppsia@ (0())) € R?

for v € m1(S) lies on one side only of the diagonal of R up to a finite
number of points. Therefore, the group T := (j, p)(71(S)) is sharp for X if
and only if, up to switching j and p, there exist constants ¢ < 1 and C’' >0
such that

psLo®) (P(7)) < € ppsry @) (7(7)) + €
for all v € 71(9); in this case, T is (¢, C)-sharp for

_I
(1-d) and C:=

(9.6) ¢ :=sin (% - arctan(c’)) = m %

and j is Fuchsian.

e The constants Crip(j, p) and Cri,(I'). We denote by Cri,(7, p) the infimum
of Lipschitz constants

COp = du2(f(y), ("))
Lip(f) = y;ﬁysfuilz H2 dy2(y,y')

of maps f : H? — H? that are (4, p)-equivariant, i.e. that satisfy f(j(v)-y) =
p(v)-f(y) for all v € 71 (S) and y € H2. By the Ascoli theorem, this infimum
is a minimum if j is Fuchsian and the Zariski closure of (7, p)(m1(S)) is
reductive (i.e. the image of p does not fix a unique point on the boundary at
infinity of H?). The constant C;,(j, p) is clearly invariant under conjugation
of j or p by PSLy(R). The logarithm of Cr;, can be seen as a generalization
of Thurston’s “asymmetric metric” (or “Lipschitz metric”) on Teichmiiller
space: see [Ka3l Ch.5] and |GK].

Let I" be a discrete subgroup of GG acting properly discontinuously on X.
By Lemma[0.2] either I' is standard, or its projection to PSLy(R) x PSLy(R)
is of the form (@4). In the first case, we set Cp;y(I') := 0. In the second
case, we set

CrLip(T) :=min (CLip(4,p) , CLip(p, 7))
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o Link between sharpness and the constant Cp;,. Consider a 2-dimensional
hyperbolic orbifold S and (j, p) € Hom(m(S), PSL2(R))? with j Fuchsian.
Using the geometric interpretation (Q.5]), we make the following easy but
useful observation.

Remark 9.5. o If the Zariski closure of (j, p)(71(S)) is reductive, then
there is an element gy € PSLy(R) such that for all v € m1(5),

1psta®) (901 P(Y) 90) < CLin(d, p) ipsLar) (3(7))-

e In general, for any € > 0 there is an element g. € PSLo(RR) such that
for all v € m1(9),

ppsro®) (921 p(Y) 92) < (CLip(ds p) + €) tipsra @) (5(7))-

Indeed, for ¢ > 0, let f. : H2 — H? be a (j, p)-equivariant map with Lip(f.) <
CLip(j,p) + €. We can take any g. € PSLy(R) such that f-(yo) = g:-vo,
using the fact that the metric dye is invariant under PSLa(RR).

Let I" be a discrete subgroup of G. Proposition[43l(1) and Remark 0.5 (to-
gether with the above reformulation of sharpness) imply that if Cr;,(I") < 1,
then I' is sharp for X; in particular, I' acts properly discontinuously on X.
The converse is nontrivial but true in the finitely generated case (based on
the existence of a “maximally stretched line” for (j, p)-equivariant maps of

minimal Lipschitz constant Cr,(7,p) > 1 [Ka3l [GK]).

Fact 9.6 |[Ka3, [GK|. A finitely generated discrete subgroup T' of G acts
properly discontinuously on X = AdSs if and only if Cp,(I') < 1, in which
case I' is sharp for X.

This is how Fact @3 and its generalization [GK] to Clifford—Klein forms Xp
with T finitely generated were obtained. Fact[@.4lis a consequence of Fact
and of the following continuity result.

Fact 9.7 [GK|. The function (j,p) — CrLip(J, p) is continuous over the set of
pairs (4, p) € Hom(my(S), PSLa(R))? with j injective and j(m1(S)) convex co-
compact in PSLa(R).

9.4. The discrete spectrum of the Laplacian. We note that here
=g Y ={(Y,-Y):Y €5(R)} C sh(R)+sk(R)=ag.

Therefore, the symmetric space X = AdS3 has rank 1 and the C-algebra
D(X) is generated by the Laplacian Ox (Fact B]). Let us identify X with
the quadric of equation @ = 1 in R* where the Lorentzian structure is
induced by —@Q. As mentioned in the introduction, if we set r(z) := \/Q(x)
for Q(z) > 0, then the Laplacian [y is explicitly given by

Y )

for all f € C>°(X), where
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and where f(x/r(z)) is defined on the neighborhood {Q > 0} of X in R*.

The invariant measure w on X is given by
w = z1darydrsdry — rodry drsdry + x3de drsdry — x4 dzy das das

in other words, %dr A w is the Lebesgue measure on a neighborhood of X
in R*. The full discrete spectrum of Cx is well-known (see [Fal). It is a
special case of the general theory stated in Fact 2.5l and it also follows from
Claim below.

Fact 9.8. The discrete spectrum of the Laplacian on X = AdSs is
Specy(Ox) = {£({ —2): £ e N}.

We now consider Clifford—Klein forms Xr. Here is a more precise version
(and generalization) of Theorem [[T], using the constant Cf;,(I") of Subsec-
tion

Theorem 9.9. There is a constant Ry > 0 depending only on X = AdS;
such that for any Clifford—Klein form Xt with finitely generated T' € SO(2,2)q
~ (SLa(R) x SLy(R))/{£(1, 1)},

o if —1¢T, then

Specy(Oxy.) D {5(6 —2): LeN, [> Q—C}'%LW} ;

o if —1 eI, then

Rl
S O ((0—2): LE2N, 0> — X 1
pecalOxe) 5 {16 =2): e, 0> ]
In particular, the discrete spectrum of any Clifford—Klein form Xt with T’
finitely generated is infinite.

Using Fact [@.7] we obtain the existence of an infinite stable discrete spec-
trum in the convex cocompact case.

Corollary 9.10. For any convex cocompact Clifford—Klein form Xr of X =
AdSs (in the sense of Definition[d1)), there is an infinite subset of Specy(Ox.)
that is stable under any small deformation of T'.

We note that Corollary [@.I0lis stronger, in the case of X = AdSs, than the
general Theorem [L.7] because it treats small deformations of Clifford-Klein
forms that may be nonstandard to start with.

For standard Clifford-Klein forms Xt, we have Cp;,(I') = 0 and Theo-
rem follows from the general Theorem B.II] We now explain how to
prove Theorem for nonstandard Clifford-Klein forms, using the precise
version (89) of Proposition Bl (1) together with the theory of Subsections
@.Ito@.3 (in particular Lemma[0.2] Remark [@.5] and Fact [@.6]). We first note
that we can identify the closed positive Weyl chamber b of Subsection E.I]
with R, so that the polar projection

v: G= SLQ(R) X SLQ(R) — RZO
of (43 is given by
(9.7) v(g) = HSLy(R) (9195 ")
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for all g = (g1,92) € G = SLa(R) x SL2(R). Here pgr,r) : SL2(R) = Rxg
is the Cartan projection of SLy(R) obtained from the Cartan projection
HPSL,y(R) Of Subsection by projecting SLa(R) onto PSLo(R).

Proof of Theorem [9Q for nonstandard Clifford—Klein forms. Let I be a fini-
tely generated discrete subgroup of G acting properly discontinuously on
X = AdS3. Assume that I' is nonstandard. By Lemma and Fact [@.6] af-
ter possibly applying o, we may assume that the projection of I' to PSLy(R) x
PSL»(R) is of the form T = (4, p)(1(S)) with (4, p) € Hom(m;(S), PSLa(R))?
and j Fuchsian, satisfying Cr,(j,p) < 1. By Proposition B.I4] after replac-
ing j by some conjugate under PSLz(R), we may assume that upgr,, &) (7 (7)) >
TpsLy®) > 0 for all v € 71 (S) N {e}, where rpgy, ) is the constant given by
Proposition 814} which depends only on the group PSLy(R). In particular,
I'NK = {e}. Consider ¢ > 0 such that Cp;,(j, p)+¢ < 1. By Remark[@.5land
@), after replacing p by some conjugate under PSLy(R), we may assume
that T is (c, 0)-sharp for

1— C 7 -7 te 1 ]
. (CLip(j, p) +¢) : > 5(1 — CLip(j,p) —¢)
\/2(1 + (CLip(ja p) + 5) )
and, using (@1) and ([#2]), that
rp:= inf wv(y) > inf HPSL, (R) () = HPSLa(R) (p())

yers{e} vEm(S)~{e}
> rpsLy®) (1 — CLip(j, p) —€) > 0.

We note that the function ¢ ~— log(cosh(t))t~2 extends by continuity in 0
and is bounded on any bounded interval of R. We conclude by using Propo-
sition 81 (1) with the explicit constant (89), together with Remark 84} and
by letting € tend to zero. O

We note that the infinite subset of Specy(Cx,.) given by Theorem is
largest when C7,;,(I") = 0; this condition is realized when I is standard, but
also when the projection of I' to PSLa(R) x PSLy(R) is of the form (@.4)
with p(71(S)) unipotent.

Remark 9.11. Assume that Xt is a standard compact Clifford—Klein form
with I' = 'T" x {e} for some uniform lattice 'T" of SLy(R). Then the Lapla-
cian [x,. has not only infinitely many positive eigenvalues that remain con-
stant under small deformations (given by Theorem [0.9), but also infinitely
many negative eigenvalues that vary.

Indeed, L?(‘T'\H?) embeds into L?(Xr) = L?(‘I'\SLy(R)) and the restric-
tion to L2(‘'T'\H?) of the Laplacian [y, corresponds to —2 times the usual
Laplacian Apg2 on the hyperbolic surface ‘T'\H? (see [Lal, Ch.X]). There-
fore Ox,. is essentially self-adjoint and admits infinitely many negative eigen-
values coming from eigenvalues of A\p\pz. All these eigenvalues vary under
small deformations of 'I" inside SLy(R) (Fact [L2]).

9.5. Flensted-Jensen eigenfunctions and analytic estimates for AdSs.
In Subsection we have given an explicit infinite set of eigenvalues of the

Laplacian on Clifford-Klein forms of X = AdSs (Theorem [0.9), based on
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a geometric discussion of properly discontinuous actions on AdSs (Subsec-
tions to @3). We now make the analytic aspects of the paper more
concrete by expliciting the general estimates of Sections [ and [ in our ex-
ample X = AdS3. We first give an explicit formula for the Flensted-Jensen
eigenfunctions ).

e Flensted-Jensen functions. It is known that, in general, the radial part of
the K-invariant eigenfunctions on a rank-one reductive symmetric space X
satisfies the Gauss hypergeometric differential equation [HS| Ch.III, Cor. 2.8].
However, it is another thing to find an explicit global formula on the whole
of X for K-finite eigenfunctions such as the Flensted-Jensen functions. We
now give such a formula for X = AdSs.

We now switch to the quadric realization of X: we identify X with the
quadric of equation @ = 1 in R*, where Q is given by (@I). We use the
same letter @ to denote the corresponding complex quadratic form on C*.
Let ¢ be an integer. For any a = (a;) € C* with Q(a) = 0, the restriction of
the function x +— (Z?:l a;z;) "¢ to X is well-defined. Tt is an eigenfunction
of Ox with eigenvalue ¢(¢ — 2), as one sees from the formulas

4 —£
DRQ’Q < Z (Zixi) =0
=1

for Q(a) = 0 and

(where, as above, we set r(z) := \/Q(z) for Q(z) > 0). Let ¢/ : X — C
and v, : X — C be given by

(9.8) V) (z) = (z1+ V-1 $2)_£ and ¢, (z) = (z; — V-1 $2)_€.
Then Oy 1F = (¢ — 2)¢F and the following holds.

Claim 9.12. For any integer £ > 2, the functions 1/);5 : X — C are Flensted-
Jensen functions for the parameter A = 20—2 € Ry ~j* . The (g, K)-modules
generated by Q,Z)Z and by, (0 = 2,3,...) form the complete set of discrete
series representations for X.

A proof of Claim @.12] will be given in Subsection 0.9 after we explicit
the Flensted-Jensen duality, the Poisson transform, and the complexified
Iwasawa projection G¢ = K¢ (expjc)Nc in Subsections to

Remark 9.13. It is known that for the rank-one symmetric spaces G/H =
O(p,q)/O(p — 1,q), the radial part of the K-finite eigenfunctions is given
by hypergeometric functions with respect to the polar decomposition G =
K(expby)H, while the spherical part is given by spherical harmonics (see
[Fa] or [Sc2| for instance). Combining the radial and spherical parts in the
case p = q¢ = 2, we could obtain Claim from some nontrivial relation
between special functions [KO| Lem. 8.1]. Instead, we will take an alternative
approach, using the explicit realization of X¢ = G¢/Hc as a complex quadric
in C*.
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e Analytic estimates. Here are the estimates of Propositions [5.1] and [.T] for
the Flensted-Jensen functions ¢Et of (@8). As before, we denote by x the
image of H in X = G//H; in our quadric realization, 2o = (1,0,0,0) € R*.

Lemma 9.14. For any x € X = AdSs,

h —0/2
9.9 )] < (AN < gttt

)

and

(9.10)  |WiE(z) < cos,h(@)g/2 < cosh (@)Z < | (wo)| = 1.

We give a direct, elementary proof of these inequalities.

Proof. By ([@1), in the realization of X = AdSs as the group manifold
SLa2(R), the polar projection v : X — R>q coincides with the Cartan pro-
jection pigr, ) : SL2(R) — Rx>q, which maps g € SLa(RR) to the logarithm of
the highest eigenvalue of ‘gg, or in other words to arcosh(tr(‘gg)/2). Using
the explicit correspondence (@.3]), we obtain

(9.11) v(z) = arcosh(x? + 23 + 23 + x3) = arcosh(22% + 223 — 1)

for all © = (z1,22,23,24) € X in the quadric realization. By definition
@3] of 1@&, we have |¢f(m)| = (22 4+ 23)7%2 for all x € X. Thus ([@J)
follows directly from (@II)). To obtain (@.I0), we use the general inequality
1 + cosh(2s) > 2cosh(s) with 2s = v(z). O

The rest of the section is devoted to explaining Claim 0121 For this
purpose we explicit, in the particular case of X = AdSs, some of the notation
that was introduced in Sections Bl to

9.6. The Flensted-Jensen duality for AdS3;. We now realize X again as
(SL2(R) xSLa(R))/Diag(SL2(R)). Then the set of inclusions (5.4]) is given by

K =80(2) xSO(2)  C G=SLy(R)xSLy(R) > H = Diag(SLy(R))
N

N N
Ke = SO(2,C) x SO(2,C) € Gg = SLs(C) x SLo(C) > He = Diag(SLa(C))
U U U
He = ®(S0(2,0C)) C G? = ®(SLy(C)) > K%=®(SU(2)),
where @ is the embedding of SLy(C) into SLa(C) x SLy(C) defined by
(9.12) ©(9) = (9,771

for all g € SLy(C). We can see the complexified symmetric space X¢ either
as the 3-dimensional complex sphere of equation @ = 1 in C* or as the group
SLo(C) with the transitive action ([@.2)) of SLy(C) x SLy(C) by left and right
multiplication; the correspondence is given by the complex linear extension
of ([@3). The dual space X7 can be realized either as

(9.13) X4 = {(#1,V—-1a2,23,24) : 7; € R, ot —ad—ai—xi=1, x> 0}

or as the set Herm(2,C); N SLa(C) of positive definite Hermitian matrices
in SLy(C); it identifies with the 3-dimensional hyperbolic space H?. The
compact form Xy of X¢ can be realized either as

Xy = {(x1,ﬂ:2,\/—1x3,\/—1x4) rx; € R, xf+x§+x§+xi: 1}
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or as the subgroup SU(2) of SLy(C); it identifies with the 3-dimensional real
sphere S?. The following diagram summarizes the different realizations of
X, Xc, and X

X =G/H ~ SL,(R) s R*
N N N
Xe=Go/He STy (C) £3 c
U U U
X4 =Gl/H ~  Herm(2,C); NSLy(C) ——» Rxy—IRxRxR
zTe %
SLy(C)/SU(2),

Here we set

®'(gHc) := gig; '
for all g = (g1,92) € Gc = SL2(C) x SLy(C). In the rest of the section, we
always identify G with SLy(C) using the isomorphism ® of (L12).

9.7. Eigenfunctions on X% ~ H? and the Poisson transform. Let P?
be any Borel subgroup of G = SLy(C), let N be the unipotent radical of P?,
and let j be any maximal split abelian subalgebra of g? with expj C P¢. For
instance, we could take P? to be the group of upper triangular matrices
of determinant 1, so that N¢ is the group of unipotent upper triangular
matrices, and take j to be the set of real diagonal matrices of trace 0 (in the
next subsection we are going to make another choice).

The boundary at infinity 9, X¢ ~ P1C of X ~ H? identifies with G/ P,
we denote the image of P% by zg. Let yg be the image of K¢ in X? = G¢/K?
and let £ be the geodesic line (expj) -yg. The Iwasawa decomposition G% =
K%expj)N? holds; this means that any point y € X? can be reached from yg
by first applying some translation along the line £, then traveling along some
horosphere centered at zy € 95 X?. The Iwasawa projection (¢ : G — j
measures this translation: we can identify j with R so that ¢%(g) is the signed
distance between yg and the horosphere through ¢—!- yg centered at zq for
any g € G the sign of ¢%(g) is negative if the horosphere intersects the
geodesic ray R := (expj4) -yg and nonnegative otherwise. For all k € K¢
and g € G¢,

¢"(g7'k) = Brr(g-46),
where Bi.z : X¢ — R is the Busemann function associated with the geodesic
ray k-R. Recall that by definition

Brr(x) = t—lg-noo (dxa(z,k-R(t)) —t),

where dya is the metric on the Riemannian symmetric space X¢ = G/ K.
We note that the group K¢ acts transitively on 0o X¢. The classical
Poisson transform, defined by

(Ph)y) = / Flk-z0) - 2Bem )
keKd/Kdnpd
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for all f € C(9,0X?) and y € X% = G?/K?, induces a bijection between
the continuous functions on 9., X% and the harmonic functions on X that
extend continuously to 9, X% the function Pf is the unique solution to
the Dirichlet problem on X% ~ H? with boundary condition f (see [Hell
Ch.1II, §4|). If we extend the domain of definition of P to the space of all
hyperfunctions on 9., X%, then we obtain all harmonic functions on X9 in
a unique way. For X\ € ji ~ C (where p € ji corresponds to 2 € C), the
“twisted Poisson transform”

Py B(KYKIN P =5 AXE M,y)
of Subsection 1] is given by

(Paf)(y) = / F(k-20) e~ OFDBrr®) g,

keKd/Kinpd

for y € X% its image consists of eigenfunctions of the Laplacian on X¢ with
eigenvalue A(A + 2)/4.

The action of H% = SO(2,C) on 9, X¢ corresponds to the action of C*
by multiplication on P'C, hence there are three H%orbits: two closed ones
Zy ={z0} and Zo, = {w- 29} (where w is the nontrivial element of the Weyl
group W = W (gc,jc) ~ Z/27Z), corresponding respectively to {0} and {oco},
and an open one, corresponding to C*.

9.8. Meromorphic continuation of the Iwasawa projection. We now
assume that j is a maximal semisimple abelian subspace of v/—1(¢ N q), as
in Subsection If we still identify G¢ with SLy(C) by (@I2), this means
that

j:mR<o 1>‘

-1 0
Thus j is a maximal split abelian subalgebra of g¢ as in Subsection It is

readily seen that
1 V-1
d._
n":=C ( Vo1 -1 >
is a root space for j, hence the Iwasawa decomposition G¢ = K%(expj)N¢

holds for N := expn?. This Iwasawa decomposition can be recovered from
the usual decomposition

oa - ceten (= 5))en(2(g o))

by conjugating by

1/ 14+v—-1 14++y—1
(9.15) k::§<_1+\/_—1 1_\/_—1>6Kd.

We note that
kSLo(R) k™! = SU(1, 1) = {g € SLy(C) : <‘1) é) 9= <‘1) é) }

and that Ad(k) induces an identification (“Cayley transform”) between the
upper half-plane model SL2(R)/SO(2) of H? and the unit disk model SU(1,1)/
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S(U(1) x U(1)). An elementary computation shows that the Iwasawa pro-
jection corresponding to ([@.I4]) is given by

1
(9.16) gEG— 3 log(‘gg)1,1 € R,

where (Ygg)11 denotes the upper left entry of ‘gg € SLy(C). We now go
back to the quadric realization (@13 of X¢. Using (@.I6) and the explicit
correspondence ([@.3), we see that if (¢ : G — R is the Iwasawa projec-
tion corresponding to G¢ = K%(expj)N¢, then for A € j* ~ R the map
¢y : X4 — R induced by g eA ¢ 9™) is given by

(9.17) & (2) = (=1 + \/—_122)>\/2

for all z = (21,22, 23,24) € X% C C*. When \ € 2Z, the map &) extends
meromorphically to X¢ = {z € C*: Q(z) = 1} and restricts to an analytic
function on X.

9.9. Proof of Claim We now combine the elementary computations
of Subsections to[@.8 to obtain an explicit formula of the Flensted-Jensen
functions ¥y for X = AdSs.

We choose j and N as in Subsection and let P¢ be the Borel subgroup
of G4 ~ SLy(C) containing expj and N¢. By Subsection 0.7 the two closed
H%orbits in G?/P? are Zyg = HP? and Z,, = H%wP?. If we identify
G?/P? with K¢/K?n P4 ~ SU(2)/SO(2), then

Zo={K‘NP¥ and  Z, = {w(KIn P}
For A € j* ~ R, the Flensted-Jensen function 1/19\ : X4 — C associated

with Zy is the Poisson transform Py(dz,) of the Dirac delta function dz,,
hence

WK = el =V, (g)
for all g € G¢. Similarly, the Flensted-Jensen function Yo X 4 C asso-
ciated with Z., is given by
VR (gh) = el A<l
Therefore, by (@.17]),
P(z) = (21 + \/—_122)_()‘+2)/2 and  Y°(z) = (21 — \/—_122)_(>\+2)/2

for all z € X9, in the quadric realization ([@I3). As observed at the end of
Subsection [@.8] the functions 1/)9\ and 9° on X @ induce analytic functions
on X as soon as (A +2)/2 € Z, i.e. as soon as \ € 2Z; this corresponds to
the integrality condition (TI2)) (we have p§ = uy = A +2). The proof of
Claim is now complete.

1

W =gY, L (wlg).

10. SOME OTHER ILLUSTRATIVE EXAMPLES

In this section we present some higher-dimensional examples of non-Riem-
annian locally symmetric spaces to which our theorems apply, namely higher-
dimensional anti-de Sitter manifolds and group manifolds, as well as certain
indefinite Kéhler manifolds.
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10.1. Anti-de Sitter manifolds of arbitrary dimension. As a general-
ization of Section [ we consider the discrete spectrum of complete anti-de
Sitter manifolds of arbitrary dimension > 3.

For m > 2, the anti-de Sitter space X = AdS,,,+1 := SO(2,m)/SO(1,m)o
is a model space for all Lorentzian manifolds of dimension m+ 1 and constant
negative curvature. It can be realized as the quadric of R™*2 of equation
Q =1, endowed with the Lorentzian structure induced by —@Q, where

2, 2 2 2
Q(z) =21 +25 — o3 — - — Ty 105

the sectional curvature is then —1 (see [Wa]).
By the general construction of [Koll, we see that AdS,,+1 admits proper
actions by reductive subgroups L of G := SO(2,m)( of real rank 1 such as:

o L =U(1,[%]), where [%5] denotes the largest integer < ;
e [ = PSLy(R), via a real 5-dimensional irreducible representation 75
of PSLy(R) when m > 3.

Standard Clifford-Klein forms Xt of X can be obtained by taking I' to be any
torsion-free discrete subgroup inside L (for instance an infinite cyclic group,
a nonabelian free group, a lattice of L, an embedded surface group, etc.).

In particular, since U(1, %) acts transitively on X for m even, we can ob-
tain compact (resp. noncompact but finite-volume) standard Clifford—Klein
forms of AdS,,,;+1 for m even by taking I" to be any torsion-free uniform (resp.
nonuniform) lattice in U(1, ). This construction of compact Clifford-Klein
forms of AdS,,,+1 is (conjecturally) the only one for m > 2 since

e compact Clifford—Klein forms do not exist when m is odd [Kul,

e Zeghib |Z] has conjectured that for m even > 2, all compact Clifford-
Klein should be standard, with I' € U(1, %) up to conjugation (this
conjecture is still open).

We recall from Section [ that the case m = 2 is different, as AdS3 admits
many nonstandard compact Clifford-Klein forms.

Since all compact anti-de Sitter manifolds are complete [KI|, small de-
formations of the anti-de Sitter structure on a compact Clifford—Klein form
I"\AdS,,4+1 correspond to small deformations of I' inside G = SO(2,m)g.
When I' C L is standard, nontrivial deformations exist as soon as the first
Betti number of T' is nonzero [Ko5|, which can happen by work of Kazh-
dan [KZ]. For m > 2, small deformations of standard compact Clifford-Klein
forms of AdS,,+1 can never give rise to nonstandard forms (see Subsec-
tion 23). However, standard noncompact Clifford-Klein forms I'\AdS,, 41
can, typically if I' is a convex cocompact subgroup of L that is a free group
(Schottky group). By [Ka2], if " is an arbitrary convex cocompact subgroup
of L, then it keeps acting properly discontinuously on AdS,,.; after any
small (possibly nonstandard) deformation inside G. Nonstandard noncom-
pact Clifford—Klein forms of AdS,,;1 were also constructed by Benoist [Bul
without using any deformation.

As a symmetric space, X = AdS;,+; has rank one, hence the algebra D(X)
of G-invariant differential operators on X is generated by the Laplacian Ox.
For standard Clifford—Klein forms of X, Theorem 3.8l (2) yields the following
(explicit eigenfunctions can be constructed as in Section [)).
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Proposition 10.1. There is an integer £y such that for any standard Clifford—
Klein form Xv of X = AdS,,41 withT' C L = U(L, [%]) and 'NZ(L) = {e},
(10.1) Specy(Oxp) D {l(l —m): LeN, (> ly},

and [IOJ) still holds after a small deformation of T' inside G. A similar
statement holds for L = PSLy(R), embedded in SO(2,m)q via 7.

For the reader who would not be very familiar with reductive symmet-
ric spaces, we now explicit the notation of the previous sections for X =
AdS, 1. Wesee H := SO(1,m)g as SO(2,m)oNSLy,+1(R), where SLy,41(R)
is embedded in the lower right corner of SL,,12(R); the involution o defin-
ing H is thus given by

for g € G =SO(2,m)p.

e Cartan and generalized Cartan decompositions. The Cartan decomposition
G = KAK holds, where K = SO(2) x SO(m) and the Lie algebra a of A is

the set of block matrices of the form

for s,t € R, where

Esy = YL € s0(4).

The generalized Cartan decomposition G = KBH holds, where the Lie
algebra b of B is the set of elements a, o for s € R.

e The Flensted-Jensen duality. The set of inclusions (5.4) is given by
K =S0(2) x SO(m) C G =850(2,m)g D H =S0(1,m)o

N N N
Kc =S0(2,C) x SO(m,C) C Ge=S0(m+2,C) > He=S0(m+1,C)
U U U

HY=80(1,1)g x SO(m) C G?=8S0(1,m+1)y > K?=80(m+1).
In particular, X4 = G4/K% = SO(1,m+1)o/SO(m+1) is the real hyperbolic

space H™.

e Closed H%-orbits Z and the parameter \ of discrete series representations.
A maximal abelian subspace of v/—1 (£Nq) is given by j := /—1s50(2), where
50(2) is the first factor of £ = s0(2) & so(m). We note that j is also maximal
abelian in v/—1 ¢, hence

rank G/H =rank K/H N K = 1 = dim)j.
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Since j is centralized by £, the restricted root system X(€c,jc) is empty. Let
Y Dbe the generator /—1 (_01 (1) of j = v/—=1s0(2) and let e; € j* be
defined by (e1,Y) = 1. There are two possible choices of positive systems
Y*(gc,ic), namely {e;} and {—e;}. By [&0), the set Z of closed H%orbits
in the real flag variety G¢/P? has exactly two elements. They are actually
singletons, the “North and South poles” of G¢/P? ~ S§™. Take ¥+ (gc,ijc)
to be {e1} (resp. {—e1}). If we identify j with R by sending ey (resp. —eq)

to 1, then j* identifies with Ry and we have p = % and p. = 0, hence

m

Condition (5:I2) on uy amounts to A € Z. The two discrete series represen-
tations with parameter -\ are dual to each other.

e Figenvalues of the Laplacian. By Fact 3.4 the action of the Laplacian [Jx
on L?(X, M,) is given by multiplication by the scalar

m2

(A A) = (pp) =N = =,
which can be written as (¢ — m) if we set £ := X\ +
Proposition [T0.1]

. This explains

10.2. Group manifolds. In this subsection we consider symmetric spaces
of the form X = (‘G x'G)/Diag('G) where ‘G is any reductive linear Lie
group. As mentioned in Subsection 2] the rank condition ([B.3) is here
equivalent to rank‘G = rank‘'K, where ‘K is a maximal compact subgroup
of 'G. This condition is satisfied for ‘G = SL2(R), in which case X is
the 3-dimensional anti-de Sitter space AdS3 examined in Section @ More
generally, it is satisfied for all simple groups ‘G with Lie algebra in the
list (22). It is equivalent to the fact that the Cartan involution of ‘G is an
inner automorphism.

e Infinite stable spectrum in real rank one. Assume that ‘G has real rank 1.
Then the structural results of Subsection generalize: by [Kall, Th.1.3]
(improving an earlier result of [Ko2]), if a torsion-free discrete subgroup I’
of ‘G x'G acts properly discontinuously on X, then it is of the form

(10.2) L= {((v),p(v) : v €T},

where ‘T" is a discrete subgroup of ‘G and j,p € Hom('I','G) are two rep-
resentations with j injective and discrete (up to switching the two factors).
Moreover, the Clifford-Klein form Xp is compact if and only if j(\T')\G is.
Standard Clifford-Klein forms correspond to the case when p(‘T") is bounded.

There exist standard compact Clifford—Klein forms Xr that can be de-
formed into nonstandard ones if and only if ‘G has a simple factor that is
locally isomorphic to SO(1,2n) or SU(1,n) [Kob, Th. A]. On the other hand,
for conver cocompact Clifford-Klein forms Xr, i.e. for I' of the form (I0.2))
with j injective and j('T") convex cocompact in ‘G up to switching the two
factors (see Definition [0.]]), there is much more room for deformation: for
instance, I' could be a free group of any rank m, in which case the deforma-
tion space has dimension m - 2dim(‘G). Similarly to Corollary @10 we can
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extend Theorem [ 7 to nonstandard convex cocompact Clifford-Klein forms
(in particular that do not identify with ‘T'\'G).

Theorem 10.2. Let ‘G be a semisimple linear Lie group of real rank 1
satisfying rank ‘G = rank ‘K. All convex cocompact Clifford—Klein forms Xp
have an infinite stable discrete spectrum.

We note that most semisimple groups ‘G of real rank 1 satisfy the condi-
tion rank ‘G = rank ‘K the only exception is if the Lie algebra ‘g is so(1,n)
for some odd n up to a compact factor. Theorem relies on the fol-
lowing two properties, which generalize Facts and and corroborate
Conjecture

Fact 10.3 [GGKW]. Let G be a semisimple linear Lie group of real rank 1.
All convex cocompact Clifford-Klein forms of X = (‘G x'G)/Diag(‘G) are
sharp.

Fact 10.4 [GGKW]. Let ‘G be a semisimple linear Lie group of real rank 1
and let Xt be a (c,C)-sharp, convex cocompact Clifford—Klein form of X =
(‘\GX'Q)/Diag('G). For anye > 0, there is a neighborhood U. C Hom(T','Gx'G)
of the natural inclusion such that p(T') is discrete in ‘G X'G and (c—e,C+e¢)-
sharp for all v € Ue.

For ‘G = SO(1,n), Facts and [[0.4] were first established in [GK],
using the Lipschitz approach of Subsection In this case, Fact
actually holds for a larger class of Clifford-Klein forms Xr, namely all
those that are geometrically finite (in the sense that the hyperbolic man-
ifold j('T")\H" is geometrically finite, allowing for cusps) [GK]. This implies
that the discrete spectrum of any geometrically finite Clifford—Klein form of
X = (SO(1,n) x SO(1,n))/Diag(SO(1,n)) is infinite for n even.

e “Bxotic” Clifford—Klein forms in higher real rank. As we have seen in Sub-
section 2.2 for several families of groups ‘G of higher real rank, the space
X = (‘G x'G)/Diag('G) admits standard compact Clifford-Klein forms Xp
of a more general form than ‘T'\'G. More precisely, let ‘G; and ‘G5 be two
reductive subgroups of ‘G such that ‘G acts properly and cocompactly on
‘G /'Ga: we can then take I' of the form I' = 'T'y X 'T'y, where ‘T'y (resp. ‘T'9) is
a uniform lattice of ‘G (resp. of ‘G3). Theorem[LHland Proposition ZIlapply
to the discrete spectrum of these “exotic” standard compact Clifford—Klein
forms Xp ~ ‘T'1\'G/'T's when rank ‘G = rank ‘K.

A list of examples is given in Table 2.2 of Section 2l Among them, the
example (‘\G,‘'G1,'Ga) = (SO(2,2n)0,S0(1,2n)0,U(1,n)) has the property
that certain uniform lattices ‘I'; of ‘G admit nonstandard deformations in-
side ‘G, for which there exists an infinite stable discrete spectrum by Proposi-
tion[ZJl For n = 1, manifolds of the form X1 ='I'1\'G/'T'y have dimension 6
and are locally modeled on AdSs x AdSs; the ring D(Xr) is generated by
the Laplacians of the two factors. The following table, for general n, shows
that these Clifford-Klein forms Xp = ‘T'1\'G/'T'y are very different from
the anti-de Sitter manifolds ‘\G1\'G/'T's ~ 'T'5\'G/'G1 = 'T'3\ AdSs,,+1 which
we examined in Subsection [[0.I] and from the indefinite Kéhler manifolds
‘T1\'G/'G2 = 'T'1\SO(2,2n)p/U(1,n) which we shall examine in Subsec-
tion
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| Type of Clifford-Klein form || 'T1\'G/'Ty  ['Gi\'G/'T; | ‘T1\'G/'G, |
Model space X SO(2,2n) AdSon41 | SO(2,2n)p/U(1,n)
Dimension 2n% +3n + 1 2n 41 n(n+1)
Signature (4n,2n* —n +1) (2n,1) (2n,n? —n)
rank(X) n+1 1 n
Degrees of generators of D(X) || 2,4,...,2n,n+ 1 2 2,4,...,2n
£z 2(n+ 1) 2 1

More generally, whenever ‘G has real rank > 1, there always exist two
nontrivial reductive subgroups ‘G7 and ‘G5 of ‘G such that ‘G acts properly
(but not necessarily cocompactly) on ‘G /G2 [Ko2l, Th. 3.3]. When rank'G =
rank ‘'K, Theorem and Propositions 2.1] and apply to the standard
Clifford—Klein forms (possibly of infinite volume) Xp = 'T';\'G/'T'y, where
I' ='T'; x 'I'y is the product of any discrete subgroup ‘I'y of ‘G with any
discrete subgroup ‘I's of ‘Gs.

o Link between the discrete series representations of X and ‘G. We now as-
sume that ‘G is connected and that rank‘'G = rank‘'K. Flensted-Jensen’s
construction of discrete series representations Vy ) for X = (‘G x'G)/A('G)
(as described in Subsection [0.3)) yields all of Harish-Chandra’s discrete series
representations my for ‘G. This is well-known, but for the reader’s conve-
nience we briefly recall the Harish-Chandra discrete series and make the link
with our previous notation.

Let ‘0 be a Cartan involution of ‘G and let ‘K = (\G)'? be the correspond-
ing maximal compact subgroup of ‘G. For simplicity, suppose that ‘0 extends
to a holomorphic involution of some complexification ‘G¢ of ‘G. As in Sub-
section [0.6, we define a holomorphic embedding ® : ‘\G¢ — ‘G¢ x'G¢ by

®(g) = (9.'0(9))-
Then the set of inclusions (5.4]) is given by
K=Kx'K < G='Gx'G D> H=Diag('G)

N N N
Kc ="Kc x'\Ke C Ge='Ge x\Ge D Hce = Diag('\Ge)
U U U

H'=®(Kc) < GI=d(Ge) > K¢=a(Gy),

where ‘G is the compact real form of ‘G¢ defined similarly to Subsection 5.2
As in Subsection [0.6] the group H? identifies with ‘K¢ and G?/P? with the
full complex flag variety ‘Gc/'Bc, where ‘Be is a Borel subgroup of ‘Gc.
Fix a Cartan subalgebra ‘t of ‘t and a positive system AT(‘ec,‘tc). We
note that ‘t is also a Cartan subalgebra of ‘g since rank'G = rank‘K. The
set Z of closed H%orbits in G?/P? identifies with the set of positive systems
AT (‘ge, ‘te) containing the fixed positive system AT (‘ec, ‘t¢). In particular,
the cardinal of Z is easily computable as the quotient of the cardinals of two
Weyl groups. For instance, for ‘G = SO(1,2n)g, we have
_ #W(Bn)

#E = WD, ~
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Let ‘p. be half the sum of the elements of A*(‘c, tc). Any choice of
a positive system A" (‘gc, ‘tc) containing A1 (‘ec, ‘tc) determines a positive
Weyl chamber ‘t in ‘t*, an element ‘p € ‘t%, defined as half the sum of the
elements of AT (‘gc, ‘tc), and an element Z € Z. For any ‘X € 't such that

) = \)\ =+ \p — 2\pc

lifts to the torus ‘T' C ‘K with Lie algebra ‘t, Harish-Chandra proved the exis-
tence of an irreducible unitary representation my of ‘G with square-integrable
matrix coefficients, with infinitesimal character ‘A (Harish-Chandra param-
eter) and minimal ‘K-type ) (Blattner parameter). With the notation of
the previous sections, we can take

i={(Y,='Y):'Y €'t}
For A= ('\,='\\) €j* and Y = ('Y, -'Y) €, we have
NY)Y =20\,

and if \d : ‘t* — R, denotes the “weighted distance to the walls” defined as
in Subsection [3.3] then

d(\) ="d(‘N).
Since K/HNK = (‘K x'K)/Diag('K) ~ ‘K, the set A, = AL (K/H N K)
of (34 is here equal to {(‘\, —'\) : '\ € 'K'}, which naturally identifies with

the set ‘K of irreducible representations of ‘K. For A = (‘A\, ='A) € j%, we
have an isomorphism of (‘g,'K) x (‘g, K )-modules:

Vza =~ (ma)ix B (73 ) k.

o Regular representation on L2(‘\T'\'G). Let ‘T be a discrete subgroup of ‘G.
The action of ‘G on 'T'\'G from the right defines a unitary representation
of ‘G on L?('I'\'G). With the previous notation, here is a consequence of
Proposition B1(2) applied to the special case

G ='G x'G, H=Diag('G), T ='T x {e},
where the Clifford-Klein form Xt = I'\G/H identifies with ‘T'\'G.

Proposition 10.5. Let ‘G be a reductive linear group with rank ‘G = rank ‘K.

(1) There is a constant R > 0 (depending only on ‘G) such that for
any torsion-free discrete subgroup ‘T’ of ‘G and any discrete series
representation my of ‘G with \d(*\\) > R,

HOHI\G (7‘(‘\)\, L2(\F\\G)) 7§ {O}

(2) The same statement holds without the “torsion-free” assumption on T’
if ‘\G has no compact factor.

Proof. Consider ‘X € ‘! such that yuny lifts to a maximal torus in ‘K. Then
A= ("\,='\) €% belongs to 2p. — p+ Ay and d(\) = ‘d(‘\). Applying
Proposition B11(2), together with (81]) and (&2), to

G ='G x'G, H =Diag('G), T ='T x {e},
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we obtain the existence of a constant R > 0 such that if ‘d(‘\\) > R and ‘G
has no compact factor (resp. ‘G has compact factors), then for any discrete
(resp. torsion-free discrete) subgroup ‘T of ‘G, the summation operator

Sr: L2(‘\G, M)k, iy, — L2('T\'G, M)

is well-defined and nonzero for some conjugates ‘\K; = g;'\Kg;* and ‘Ko =
92'K gy ' of 'K (where g; € 'G). In our specific setting, for ¢ € L2(\G, My)\k,x k>
the function St(y) is nothing but the Poincaré series

3 o(v) € LA(T\'G, My) k.,
~ve'l’

and St respects the action of (‘g,'K>3) from the right. Therefore,
Homg1c) () sz L(TV'G)) o, # {0}

if \d(*A) > R. Since my is an irreducible unitary representation of ‘G, this is
equivalent to

Hom¢ (my, L*('T\'G)) # {0}. O

Remark 10.6. For arithmetic 'T', we may consider a tower of congruence
subgroups 'I' D '’y D '’y D -+ -. In the work of DeGeorge-Wallach [DW] (co-
compact case), Clozel [Cl], Rohlfs-Speh [RS], and Savin [Sv] (finite covolume
case), the asymptotic behavior of the multiplicities Hom\ g (71'\)\, L2(‘Fj\‘G))
for a discrete series representation my, was studied as j goes to infinity, under
the condition rank‘G = rank‘K. Then one could deduce from their result
that any discrete series representation my with ‘d(*A) large enough occurs in
L?(“T'\'G) for some congruence subgroup “I' of 'I', where “I" possibly de-
pends on my. The approach of [DWL [Cl [Sv] uses the Arthur—Selberg trace
formula. There is another approach for classical groups ‘G and arithmetic
subgroups ‘T" using the theta-lifting, see [BW| [KZ, [Li]. Proposition [[0.5] is
stronger in three respects:

(1) 'T' is not necessarily arithmetic and ‘I'\'G can have infinite volume,
(2) we do not need to replace ‘T by some finite-index subgroup “'T,
(3) the constant R is independent of the discrete group ‘T'.

10.3. Indefinite Kdhler manifolds. We now consider the symmetric space
X =80(2,2m)p/U(1,m) for m > 2. Later we will assume m to be even for
the rank condition ([B.3]) to be satisfied. We see the group O(2,2m) as the
set of linear transformations of R?™+2 preserving the quadratic form

2, 2 2 9 2 2
TI+Y1 = 22— Y2 =~ Tyl — Yt 1o

and the subgroup H := U(1,m) of G := SO(2,2m), as the set of linear trans-
formations of C2"*! preserving the Hermitian form |z; |2 —|2|2— - -— |21 |%.
The involution o of G defining H is given by o(g) = JgJ !, where .J is the
0 -1
1 0

The natural G-invariant pseudo-Riemannian metric g on X has signature
(2m,m(m — 1)). We note that here X carries some additional structures,

due to the fact that H is the centralizer of a one-dimensional compact torus
(namely its center Z(H) ~ U(1)):

diagonal block matrix with all diagonal blocks equal to
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(1) X can be identified with an adjoint orbit (namely Ad(G)v where
v is any generator of the Lie algebra of Z(H)), hence also with a
coadjoint orbit wia the isomorphism g* ~ g induced by the Killing
form; thus, X carries a Kostant—Souriau symplectic form w (see [Kil,
Ch. 1, Th.1]);

(2) X can be realized as an open subset of the flag variety G¢/Pc for
some maximal proper parabolic subgroup Pc of G¢ = SO(2m+2,C),
as a generalized Borel embedding (see [KO] for instance); in partic-
ular, X has a G-invariant complex structure and g + v/—1w is a
G-invariant indefinite Kéhler form on X if g is normalized by the
Killing form.

The existence of the complex structure can easily be seen for m = 2, since
SO(2,4)9/U(1,2) identifies with SU(2,2)/U(1,2), which can be realized as
an open subset of P3C (see Subsection [[4)).

Standard Clifford—Klein forms Xt of X that are compact (resp. noncom-
pact but of finite volume) were constructed in [Kol]. They can be ob-
tained by taking torsion-free uniform (resp. nonuniform) lattices T' inside
L := SO(1,2m)y. We note that the group L acts properly and transitively
on X. An elementary explanation for this is to observe that U(m + 1) acts
transitively on the sphere S?™*1 = SO(2m + 2)/SO(2m + 1); by duality, so
does SO(2m + 1) on SO(2m + 2)/U(m + 1); in turn, L acts properly and
transitively on X = SO(2,2m)/U(1,m). (For a general argument, we refer
to [Ko3l, Lem. 5.1].)

If ' is a free discrete subgroup of L, then the noncompact standard
Clifford—Klein form Xt has a large deformation space. There are also exam-
ples of compact standard Clifford—Klein forms that admit interesting small
deformations. Indeed, certain arithmetic uniform lattices I" of L = SO(1,m)g
have the following property: there is a continuous 1-parameter group (¢;)ier
of homomorphisms from I' to G such that for any ¢t # 0 small enough, the
group ¢;(I') is discrete in G and Zariski-dense in G this 1-parameter group
can be obtained by a bending construction due to Johnson-Millson (see [Ka2l
§6]). As we have seen in Example [LT1] any discrete subgroup I' of L is

(4, 0)-sharp for X; by [Ka2|, if I' is cocompact or convex cocompact in L,
then for any £ > 0 there is a neighborhood Y. C Hom(T", G) of the natural
inclusion such that for any ¢ € U., the group ¢(T') is discrete in G and
(4 — ¢,¢)-sharp for X (see Lemma [4.27]).

We now assume that m = 2n is even, so that the rank condition B3] is
satisfied. We start by examining the case n = 1, in which we give explicit
formulas for the Flensted-Jensen eigenfunctions of Subsection [I} we then
explicit the notation of the previous sections for general n.

e The case n = 1. The group G = SO(2,4)p admits SU(2,2) as a double
covering, and the preimage of H = U(1,2) in SU(2,2) is S(U(1) x U(1,2)) ~
U(1,2). For an actual computation, in this paragraph we set G := SU(2,2)
and H := S(U(1) xU(1,2)) ~ U(1, 2), and we consider the maximal compact
subgroup K := S(U(2) x U(2)). The symmetric space X ~ SU(2,2)/U(1,2)
identifies with the open subset of P3C of equation h > 0, where

hz) = |21 + |z — |23)* — |2af?
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for z = (2i)1<i<a € C*. The Laplacian Ox has been made explicit in Sub-
section [[4l For any ¢ € N, we consider the following harmonic polynomial

of degree (£,¢) on C%
4

I\ , , ,
P, — 1) 20—21 22.
(o) i= 3 (1) (1 P
=0
Up to a multiplicative scalar, it is the unique harmonic polynomial of de-
gree (¢£,¢) that is fixed by U(1) x U(1) ~ H N K; we normalize it so that
Py(1,0) = 1. The function

(10.3) Yo 2= (Zi)1§i§4 — Pg(zl,ZQ) h(z)“l (’21‘2 + ’22‘2)7%71

on C* \ {0} satisfies the following differential equation:
h(z) Ocz2 ¢pg = (£ + 1)(€ — 2) Y.

Since vy is homogeneous of degree 0, we may regard it as a function on
X = {h > 0} Cc P3C. Using these properties, we obtain the following (we
omit the details).

Claim 10.7. For any ¢ € Ny, the function vy : X — C is a Flensted-Jensen
function on X = SU(2,2)/U(1,2), with parameter X = 20 —1 € Ry ~ j*
and with

Ox e =2(¢+ 1)(£ — 2) Yy
The (g, K)-modules Vy generated by vy for £ € Ni form the complete set of
discrete series representations for X.

We note that the (g, K)-module Vy is irreducible and isomorphic to the
Zuckerman—Vogan derived functor module V,(2¢—1, 1) in algebraic represen-
tation theory, with notation as in [Ko3l § 4]; in particular, V; has infinitesimal
character %(26 —1,1,-1,—2¢ + 1) in the Harish-Chandra parameterization
and minimal K-type parameter (¢,—/¢,0,0).

For the symmetric pair (G, H) ~ (SU(2,2),U(1,2)), the polar decompo-
sition G = K BH holds, where the Lie algebra b of B is generated by

0
Y 1= | roeeeeeedrenneens € su(2,2) ~g.

If we identify b with R by sending Yy to 1, then

2112 + |20

v(z) = arccosh 8

S RZO

for all z =[z1: 22 : 23 : z4] € X. Here are the analytic estimates of Proposi-
tions 5.1] and [l for the Flensted-Jensen functions vy of (I0.3).

Lemma 10.8. For any z € X = SU(2,2)/U(1,2),

le(2)] < (coshw(z)) 7Y < 920D =204 1(z),
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This estimate follows immediately from the definition (I0.3]) of ¢y, in light of
the inequality |Py(21, z0)| < (|21]? 4| 22|?)" for all (21, 22) € C2. Using (5.10),
one can show that the function vy is square integrable on X if and only if
0> 1/2.

o The general case. We now consider G = SO(2,4n)p and H = U(1,2n) for
an arbitrary integer n > 1. The Cartan decomposition G = K AK holds,
where K = SO(2) x SO(4n) and A is the maximal split abelian subgroup
of G whose Lie algebra a is the set of elements

I 1

for s,t € R. The generalized Cartan decomposition G = K BH holds, where
the Lie algebra b of B is the set of elements a,_, with s € R. The set of
inclusions (B.4]) is given by

K =80(2)xS0(4n) C G=S0(2.4n)y >  H=TU(1,2n)
N N N
Kc =80(2,C) x SO(4n,C) C G¢=80(2+4n,C) > He=GL(1+2n,C)
U U U

H?=350(2) x SO*(4n) C G?=80"(2+4n) D K?=U(1+2n).

We recall that for any m > 1, the group SO*(2m) is a real form of SO(2m, C)
with maximal compact subgroup U(m).

A maximal abelian subspace j of \/—1(£ N q) is given by the set of block
matrices

}/(517---75n) =

for s1,...,s, € R, where

(0 V-1
e (25)

In particular, the rank of the symmetric space X is dimj = n.
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Let {f1,..., fu} be the basis of j* that is dual to {Y(1 0.0}, -+, Y(0,...0,1) }-
The set

St(ec,ic) = {fit fi:1<i<j<n}U{2fp:1<k<n}

is a positive system of restricted roots of jc in £c. There is a unique positive
system X (gc,jc) that contains it, namely

By (5.6), for any minimal parabolic subgroup P? of G?, there is a unique
closed H%orbit in G?/P?, i.e. the set Z has only one element. The multi-
plicities of the restricted roots & f; = f; and =+ f; are four, and those of £2f},
are one. Identifying j* with R™ wvia the basis {f1,..., fn}, we obtain

==L A A > A > > A, > 0}
d(\) = %min {)\1 — X, A2 — A3, A1 —)\n,2)\n},
p=(4n—1,4n—5,...,7,3),
Pe = (4n—3,4n—7,...,5,1),
A =A+p—2p.= (M —4n+5X —4n+9,..., A1 — 3, A, + 1).
The integrality condition (5.I12) on ) amounts to

Aj+1€2N forall 1 <j<n
and A\j—Aj;1 >4 foralll1<j<n-—1

Since the restricted root system 3 (gc,jc) is of type BC,,, the Weyl group W
is isomorphic to the semidirect product S,, X (Z/27Z)"™ and we have C-algebra
isomorphisms

D(X) ~ Clay, ...,z E2D" ~ C[Dy,..., Dy,

where D1, Do, ..., D, are algebraically independent invariant polynomials of
homogeneous degrees 2,4, ...,2n. If we normalize the pseudo-Riemannian
metric gon X by g(Y,Y)=1for Y := %\5:0 exp(as,—s) - xg € Ty, X (where
xo denotes the image of H in X = G/H, as usual), then the Laplacian Ox
is 16n times the Casimir operator defined by the Killing form (for n = 1,
this is twice the Laplacian that we defined in Subsection [[L4] with respect
to the “indefinite Fubini-Study metric” h). By Fact B4l the action of the
Laplacian Ox on L?(X, M,) is given by multiplication by the scalar

1
(MA) = (p,p) = A2 4+ X2 — 3(16n3+12n2 —n).

We note that the center Z(SO(2,4n)y) is contained in U(1,2n), hence
ATNZ(Gs) = A for all T by Remark B8} this shows that the choice of T’ does

not impose any additional integrality condition on the discrete spectrum for
X =8S0(2,4n)¢/U(1,2n) when we apply Theorems B.8 and B.11]

Remark 10.9. In Subsections [0 and 03] the isometry group of X is
in the same family O(2,2m), with m € N in Subsection [[0.1] and m € 2N
in Subsection However, the representations Vyz ) of G = SO(2,2m)g
that are involved are different: they are all highest-weight modules if X =
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AdSqy, 11, and never highest-weight modules if X is the indefinite Kéahler
manifold SO(2,4n)y/U(1,2n).
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