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Quantum Supersymmetric Cosmology and its Hidden Kac-Moody Structure
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We study the quantum dynamics of a supersymmetric squabheet$phere by dimensionally reducing (to
one timelike dimension) the action & = 4 simple supergravity for al$O(3)-homogeneous (Bianchi IX)
cosmological model. The quantization of the homogeneoasitito field leads to a 64-dimensional fermionic
Hilbert space. The algebra of the supersymmetry consgraimd of the Hamiltonian one is found to close. One
finds that the quantum Hamiltonian is built from operatorat thenerate a 64-dimensional representation of
the (infinite-dimensional) maximally compact sub-algebféhe rank-3 hyperbolic Kac-Moody algebrbFs.
Some exponentials of these operators generate a spinkteaiséon of the Weyl group oft Es which describe
(in the small wavelength limit) the chaotic quantum evantof the universe near the cosmological singularity.

PACS numbers: 98.80.Qc, 04.65.+e, 04.60.-m, 02.20.Tw

One of the key challenges of gravitational physics is tocosmological dynamics by working within a supersymmetric
understand the fate of space-time at spacelike (cosmologiminisuperspace model, namely a Bianchi IX one. Though
cal) singularities, such as the big bang singularity thatega the quantum theory of supersymmetric minisuperspace mod-
birth to our universe. A novel way of attacking this prob- els has attracted the interest of many autHdrs [9-13] , wie sha
lem has been suggested a few years ago via a conjecturgi/e here, for the first time, a complete description of ad th
correspondencédetween various supergravity theories andphysical states of the supersymmetric Bianchi X model.
the dynamics of a spinning massless particle on an infinite- Our formalism is a generalization of the formalism we used
dimensional Kac-Moody coset spate![1—4]. Evidence for sucin Ref. [14] to study the quantum dynamics of Einstein-Dirac
a supergravity/Kac-Moody link emerged through the study aBianchi universes. It differs from the formalisms used ia-pr
la Belinskii-Khalatnikov-Lifshitz (BKL) [5] of the struatre  vious works|[15] 16] in describing the gravity degrees oéfre
of cosmological singularities in string theory and supavgr dom entirely in terms of the metric componepts. We use
ity, in spacetime dimensions < D < 11 ]. For in-  the symmetry properties of Bianchi models to uniquely deter
stance, the well-known BKL oscillatory behavibr [5] of thed mine a specific vielbeimd# (with g, = Maj hd# hBu) as a
agonal components of a generic, inhomogeneous Einsteiniagcal function ofg,.,.. In other words, we Sauge-fix from the
metric in D = 4 was found to be equivalent to a billiard mo- start the six extra degrees of freedom containedp that
tion within the Weyl chamber of the rank-3 hyperbolic Kac- could describe arbitrary local Lorentz rotations. Thisggu
Moody algebrad £ [[7]. Similarly, the generic BKL-like dy- fixing of the local SO(3, 1) gauge symmetry eliminates the
namics of the bosonic sector of maximal supergravity (Conneed of the usual formalisms [15, 16] to impose the six local
sidered either inD = 11, or, after dimensional reduction, in | grentz constraints. - ~ 0.

4 < D < 10) leads to a chaotic billiard motion within the  \We start from the metric describing a time-dependent,
Weyl chamber of the rank-10 hyperbolic Kac-Moody algebraso(g)-homogeneous triaxially squash&aphere,

FEio [6]. The hidden rdle offy, in the dynamics of maxi- u 5 5

mal supergravity was confirmed to higher-approximatiops (u v 42" dz” = — N (t)dt (1)
to the third level) in the gradient expansiop < dr of its + gap(t) (T%(x) + N (t)dt)(7° (x) + NO(t)dt)
bosonic sectorl [1]. In addition, the study of the fermionic
sector of supergravity theories has exhibited a relatéel ro

of Kac-Moody algebras. At leading order in the grad|ent%0abc 7 A 7¢ with the usualSO(3) structure constants

expansion of the gravitino fielgh,, the dynamics ofy,, at o bc : . )
each spatial point was found to be given by parallel trartsporO be = Eabe: W then parametrize the metgi; (t) in terms

; g : of three diagonal degrees of freed@f(t), a = 1,2, 3 and of
with respect to a (bosonic-induced) connectipaking val- S - .
ues within the “compact” sub-algebra of the correspondin the three Euler angles®(t) describing the orthogonal matrix

bosonic Kac-Moody algebra: say(AEs) for D — 4 sim- gS“b(<pc) entering the Gauss decomposition of the symmetric

ple supergravity ands (E1o) for maximal supergravity [214]. Matixg: gee =3_, ¢ 27751, 5%. From these data, we then
However, the latter works considered only the tetimsarin  uniquely specify a vielbein cofram' = A, da# as6® =
the gravitino, and, moreover, treateg as a “classical” (i.e. N (t)dt, 0% = 3", e ()54, (o°(t)) (% (x) + N°(t)dt). The
Grassman-valued) fermionic field. corresponding (time-dependest)(3)-homogeneous) grav-
The aim of this communication is to clarify the occur- itino field is described by its 16 vielbein componerit$(t),
rence of hidden Kac-Moody structures in simple supergyavit wherea = 0, 1,2, 3 is a four vector index linked t6“, and
within a setting which goes beyond previous work both by bewhere A = 1,2, 3,4 denotes a Majorana spinor index. Fol-
ing fully quantum and by taking completely into account the lowing previous work, it is convenient to replage (¢) by
crucial nonlinearities in the fermionthat allow supergravity the rescaled gravitino field4(¢) := g'/* 2 whereg!/* =
to exist. On the other hand, our framework will simplify the exp (—1 8°) (with 8° := g* + 5% + 8°). This eliminates the

where the left-invariant one-forms®(z) = 7%(z)dz’
(which only depend on spatial coordinate satisfydr® =
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couplings~ A4 in the action. Inserting these definitions in  As in the spin% casel[14], we find that the three diffeomor-
the supergravity actiof [17,[18], and passing to its Hamilto- phism constraints are equivalent to requiring. ¥ (3, ¢) =
nian version, in terms of the bosonic momenta= 0 L/0 5* 0, i.e. that the wave functiow does not depend on the
andp,. = 9 L/0w?* (Wherew!, w? w? denote the three in- three Euler angleg®. As they’s do not appear in the other
dependent angular velocity components® of the time-  constraints, we are left with finding a spinorial wave func-
dependent rotation matris' : (SS—l)dB = €42 w®) leads  tion ¥(5*) satisfying the four supersymmetry constraints to-
to an Hamiltonian action of the form (we use units wheregether with the Hamiltonian one. This raises the usual issue
c =h=1and87G = V3 = 1672, so as to absorb the of whether, starting from the classical expressionsSgiand
volumeV; of the 3-sphere, of curvatute'4, correspondingto  H, one can define an ordering such that their quantum ver-
B =0) sionsS., H satisfy an algebra which consistently closes so
. 1 e as to allow for the existence of states satisfying Eds. (4 O
L =m0+ poew® + 5 Va 7wy (2)  of the crucial results of our work is that we have explicitly
- - verified that this is the case.
+ ‘1’6 §—NH - N"H,. Specifically, requiring that the “real” (i.e. Majorana) sfa

Here, we suppressed the spinor indicestdoror v, ¥ :=  Sical S4 be quantized so as to satisfy the same hermiticity
iWT~, denotes a Majorana conjugate aid = N/\g = condition, sa;lé.’ll = S4, than thed operators they are built
Nexp 3°. We use a Majorana (i.e. real) representatlon of thérom (&% = &9), determines aniqueordering, of the form
four Dirac gamma matrices® (satisfyingy® 75 + yB~a . 1 1 g s
21°%); see e.g. Eq. (4.6) in_[14]w/ denotes the combina- Sa=-35 D Fa®Y+ 5 > e (4P 24 (5)
tion ¥/ := W; — 747" ¥s. Eq. [2) exhibits the presence of “ ¢
three types of Lagrange multipliers appearing linearlyhie t
action : U4 (linked to local supersymmetry)y (linked to
time reparametrizations) and“ (linked to spatial diffeomor- + cycliciypg) + 5 (Scubw + gzubicT%
phisms). Their variations lead to three types of correspand
constraints: the four supersymmetry constrafifs~ 0, the 5 ._ . 0123 Al 22 &12 . &1 &2
Hamiltonian constrainfl ~ 0, and the diffeomorphism con- wherey? i= 77, fip o= 7 = 55, &= 20— 9%,

1 ~ PO PO ~
3 coth B12(S12(v*2 @'2) 4 + (2 ®'?) 4 S12)

straintsH, =~ 0. & ey LiEs 0i8a1 a2 i1.002 51
We quantize the constrained dynamics, EQl (2), by S12(®) = [(@77TH(ET 4 &%) + (2747707 (6)
first reading off the (anti)commutation relations among the n (&)2 7Oié $?) - (51 7012 $?)]

bosonic (fermionic) variableg®, m,, 0%, pye ~ pya(P5)
from the kinetic terms in{2). The quantization of the bosoni
variables is conveniently done in a Schrodinger-like espn-
tation with the wave function of the universe taken as a funcS§bic =
tion of the three logarithmic scale factof§ and the three
Euler anglesp®. Thenw, = —id/0 8%, pye = —10/0¢%,
together with the natural ordering of tig.’s as differential
operators on the&sO(3) space (see _[14]). The quantization
of the gravitino 0perator§g‘ is simplified by introducing the
new gravitino variables [199% := > ;7% .5 U2 (no sum-
mation ona), whose quantization conditions read

ooIH »PIH

> (b
2 DBt T ) + (4 ),
a,b

with U := 75 3, 7* U4 We then proved that this unique,
hermitian ordering o5, defines a corresponding unique or-
dering of the quantum Hamiltonia®/ such that the four
% dY + Y Y = G oap. (3)  Sa's satisfy a (super)algebra of the fouy S + Sp Sa =
HereG® is the inverse of the metric ii-space,; defined 4ic L?;B(ﬁ) ‘?C T %H(SAB'_ Su.ch an algebra (withc
by Gap 5% 8% = S2(8%)2 — (3 3%)2. The metricG,, (which ~ ©N the right of LG p), further implies that the commutator
also defines the kinetic term of thies), has signature- + + [S4, H] closes on theS4’s and H, and is nicely compatible
and plays a crucial role in our problem. The fermionic qixant With the Dirac quantlzat|9n of the constraints. We found the
zation conditiond(3) amount to saying thatthe 4 = 12re-  following explicit form of 1 (here written after elimination of
defined gravitino operators’, constitute a Clifford algebrain the angles>*’s)
a 12-dimensional space [with signatyre®, —*)]. The quan- R .
tization of the gravitino field is then obtained by represemt 2H = G (7t +i Ag) (o + i Ay) + i° + W(B),  (7)
the tyvelve@’s as“64 X 64 “”gamma mat.rices" which_ actona where#, — —id, (with 9, = 8/96%), and the “vec-
64-dimensional “spinorial” wave function of the universay tor potenUaI"A is ; pure gradient/:Aa ): 9, In F with

U (B, ¢*). The constraints associated to the Lagrange multi-

pliers in Eq. [2) are then imposed a la Dirac as conditions o = ¢* i (sinh B1a sinh 23 sinh f31) /. We separated
the statel: the “potential term” in the Wheeler-DeWitt-(WDW)-type

X R R equation [(¥) into two parts: (i) thé-independent operator
Sa¥V=0, HY=0, H,v=0. (4) 2, which plays the role of a spin-dependent “squared-mass”
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operator in the Klein-Gordon-like equatidd (7), and (iigth 33, a3)™ := % — B (“symmetry walls”); each one being
dependent (and spin-dependent) operHi@B) whose mean- coupled to an operator thatdgsiarticin the ®'s, namely
ing will be discussed next. Note that, as the vector potkentia

A, in equation[(¥) is a pure gradiem,, = 9, In F, it can 1 (S12(®))%2 — 1

be eliminated, without changing the other terms, by working Wi (B) = 2 Sz o™ (3) 20 () +cyclicigy,  (12)
with the rescaled wave functiod’(3) = F(8)~1¥(B), i.e.
2F " H(FU') = (G® 7,y + 0> + W () V' where thespinor operatorsS,(®), whose squares enter

One of the main results of this work concerns the Kac-Eq. [12), are exactly those defined in Eg. (6) above, which
Moody structures hidden in the (exact) quantum Hamilto-gntered thes's.
nian (7). First, let us recall that the wave function of A truly remarkable fact, which clearly shows the hid-
the universe¥(j) is (in view of Eq. [3)) a 64-component gen rple of Kac-Moody structures in supergravity, is that
spinor of Spin(8,4)1W|’12ICh3dependS on the three logarith- yhe gperators enteringl as (spin-dependent) basic blocks,
mic scale factorss*, 5%, 8°. In other words, supergrav- S19, So3, 81, 11, Jas, Jss generate (via commutators) a

ity descrtl_bles a I_3|an_ch| X unlve_lr_sae as a I’_e||atIVI59pfln- Lie-algebra which is a 64-dimensional representation of
D e o ey (e dimension) maxmaly compacr su g
P q K(AEs), of AEs. Indeed, theS’s generate thé/ = 0)

Sa¥ = (+4 ®%9, +...) ¥ = 0 (where thed?’s are four sub-algebraS0(3) of K(AEs) ([S1s, Ss] = +i 551, €fc.),

separate triplets 064 x 64 gamma matrices). As shown X Sl 7 N
above, these first-order Dirac-like equations imply thatec- ~ While we have checked that the gravitational generdior
can be identified with the crucial level-1 Lie-algebra elame

essarily satisfy the second-order, Klein-Gordon-likeatn . :
HU = (=3 G™0,0, +...) ¥ = 0. The first basic Kac- denoted/o, = Ea, — E_q, in Ref. [19]. More preqsely, we
Moody feature hidden in this dynamics of the universe is thdound that the generators,;, (a < b), andJy, (with, e.g.,
fact that the (Lorentzian-signature) metfig, definingthe ki- /12 := —3[S12,Ju1], etc.) aresecond-quantizedersions
netic term of the 8-particle” is the metric in the Cartan sub- Of the (first-quantized) leve)-and leveld K(AEs) genera-
algebra of the hyperbolic Kac-Moody algebtds [7]. Next,  tors defining the 12 dimensional vector-spinor represtmtat
we find that the potential teri/(3) in Eq. 1) is naturally ~ Of K (AE3) [2.5,[19]. [This means that their quantum com-
decomposed into three different pieces which all carry gdeemutators with the gravitino operatots!' reproduce the Lie-
Kac-Moody meaning. Namely, we have algebra-bracket actions (f;o) andJ((fb:)” on a “classical”
7 _ 11/bos 77spin 77spin vector-spinor gravitinarZ'.]
W(B) = Wy (B) + Wg" () + Wy (8) ®) Finally, let us consider thg-independent, operator-valued
Here, squared-mass contributigi¥ to the Hamiltonian[{7). This
1 . . term gathers many complicated, quartic-in-fermions dbutr
W;OS(ﬁ) =3 e 48— 7207480 L cyclicy;  (9)  tions (including the infamoug* terms in the original, second-
order supergravity action). However, at the end of the day tw
is the well-known bosonic potential describing the usual dy remarkable (Kac-Moody-related) facts emergefiipelongs
namic_s of_ Bianchi !X oscillations [5, 20]. Its _Kac—l\/loody to thecenterof the algebra generated by th§ AFs3) gener-
meaning is that it is constructed from Toda-like exponen-atorsg,,, J,, (i.e. it commutes with all of them), and (ii) the
tial potentials~ e~>*«(%) involving the following six linear  quartic operatofi2 can be expressed in terms of the square of

; e A9 . pRa b — . . 2 S
forms in thep's: ag,(8) := p* + ", a,b = 1,2,3. These 5 yery simple operator (which also commutes With, J,;),
six linear forms coincide with the six roots ofF3 located namely, we find

at level¢ = 1 (“gravitational walls”, linked to the level-

AE; “dual-graviton” coset fields,, = ¢y, of Ref. [8]). The o 1T s,
purely bosonic (spin-independent) potenﬁﬁg’(’s(ﬁ) is ac- =373 Cr (13)
companied, in supergravity, by a spin-dependent complemen _
tary piece of the form whereCr = 1 Gq ©°~12% b, As we shall discuss next,
Wepin(8, &) = e~ ) J11 (D) + %28 Jon (D) %F is ;elated to the fermion number operaf®y. by Cr =
—ad. 7 = B0
t+e 33(6)‘]33(‘1’)- (10) So far we have presented some of the main formal re-

This involves the three dominant (gravitational) Kac-Mgod Sults about our new way of quantizing the supersymmetric
rootsa?, () = 28, etc. each one being coupled to an oper-Squashed three-sphere, and their relation to Kac-Moody-str

ator that isquadraticin the gravitino variables, namely (mod- tures. In addition, we succeeded in controlling in detadl th
ulo cyclic permutations) space of solutions of this model. Let us briefly sketch our re-

B B sults. To do so (and to connect our results to previous,garti
Ji(®) = 1 [ 4317123(4@1 + 024 %)+ P2 123 $3). (11)  results on the same model), it is useful to combine the (her-
2 mitian) operator®¢ into fermionic annihilation and creation

The third contribution td¥ (3) involves the three leve)-Kac- ~ Operatorsps, = ‘?'11 +i®g, b2 = b —i df, by = B —i P,
Moody rootsa$y™(8) := 8 — B2 = Bia, ai5™(8) := 52 — b7 = &g + i d2, which satisfy{b2,b"1} = 2G4,

o) Yol
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The 64 states dfpin(8,4) can then be constructed from the tional and/or symmetry potential walls that appear both in
empty statg0)_ (annihilated by the si%2's) by acting with  the S’s, Eq. [8), and inH, Eq. [T). As in the Grassman-
a certain number of! operators. ActuallyNr = Cr +3  nian casel[19], and in the spihioy problem studied i [14],
counts this number o' operators.NF commutes withZ  we were able to show that the reflections on the various
(though not withS) and solutions can be searched for at eacvalls are given, in the small wavelength limit, by operators
fermionic level. We found the following results for the com- of the formexp (—i 5 éaabsaab) for symmetry walls (with
H Ng S —

pletel space of solutlon.s, S?% g (%f .SA\IJ 7.0 at I.evel _ €2 = 1), andexp (—i % Jaa) for the dominant gravita-
Np (i.e. Np¥ = Np¥): VO = V"’ is one-dimensional; . _ /
YO — 70 is wo-dimensionaly® — 1@ o 1@ is tional walls. This exhibits again a Kgc-Moody strug:tur_ee th

2 ' 3 1,002 (small-wavelength) quantum reflections generaspiaorial
the direct sum of a three-dimensional spé@@) and of an  extension of the Weyl grougf AE3;. On the other hand, in

infinite-dimensional spac# >, parametrized by one con- the asymptotic regime wher@ — +oo (i.e. formally, for

1,002 Lo . . .
stant and two (complex) functions of two (real) variables;'nf'n'tely sma_ll volume_s) the quall_tatlve dyna_mlcs might be
VE — v® o 1v® s the direct sum of two infinite- come essentially monitored by tisegn of the eigenvalues of
2007 2,00% the squared-mass operafot. Indeed, in this limit the bil-

dimensional spaces’, each one of which involves as free da}%rd walls become more and more separated, so thagthe
two parameters and two functions of two variables. Moreoverparticle spends more and morg®time” far from’ the walls

i i ich(Vr) .
whend < Np < G, there is a duality under which™ i.e. in a domain wher#/(3) < i* in Eq. (@). The simple re-

i o (6—Np) i _
B o e o it s, o anoi UL ) h suggess e e hee genercdat compne
b ' '(at levelsNg = 2,3,4, i.e. Cr = —1,0,+1) of the wave

however, keep in mind that our quantization scheme is some- . ) .
- . function of the universe might have very different asymp-

what different from the ones used before.] The most striky .. obo 0 C naar the sinqularity. Indeed wihen — 3

ing disagreement is that all previous authoid [9-13] agree guiarty. : -

T . . . =0, u?> = L is strictly positive so that the corresponding
on the inexistence of solutions whéeéw is odd, while we F ; 2, . . ) .
proved the existence of solutions i i 1.3 ands. Forin-  Piece of¥(3) might behave like an ordinary massive particle

stance afV 1 we found a two-dimensional space of solu (with an ultimate behavior which oscillates i, or, better in
F = - - .
tions of the formy_,, , Cofa(8) b2 0_), (o = +) wherewe # = V —G o B2 [8,121], with some power-law decay). By

- . contrast, whetlNg = 2 (Cr = —1)or Np = 4 (Cp = +1)
could compute the explicit form of the three functiofig3). 2 _ 3. : . o
Even atNp = 2 and4, where we partially confirm the claim p° = —5 is strictly negative so that the corresponding piece

. ) ; of U might behave like a tachyon. We leave to future work
of 1.1, [12] about the existence of solutions parametrized b%\ dis(cﬂu)ssign of the possible phy;/ical implications of tHese

the same amount of initial data as a Klein-Gordon (orWDW)EaviorS Let us only note here that, contrary to the shin-

equation, we found extra, discrete solutions. Moreover, a ase (or to pure gravity), where quantization generically a

Np = 0 andG, where our results qualitatively agree with lows for arbitrary ordering constants in the WDW equation,

previous ones, we find some 5|gn|f|c_ant dlfferen_ces Comln%upergravity (together with a natural hermiticity requient)
from our treatment of the diffeomorphism constraint. Efgp t . . : A
has uniquely fixed all ordering constantsdn, and thereby

unique “ground state” aVr = 0 reads , , ) .
in H. This suggests that one should seriously consider the
T = exp (—Z %) (sinh Bi2 sinh Ba3 sinh B51)%/® implication (never suggested before) of having a tachyonic
1 a u? < 0) behavior of part of the wave function of the uni-
exp (~3 2, exp(=24%) [0)- \(/erse ne)ar the singularity (located@t = +oc0). Classically,
which differs from previous results, notably by the effett o 1> < 0 would ensure an ultra-chaotic behavior; quantum me-
sinh B4 factors vanishing on the three symmetry walls. chanically, it allows one to impose the boundary conditfoat t
Finally, our results allow us to qualitatively describe the ¥(3) vanishes exponentially at the singularity.
structure of the general solution (belonging to the infinite
dimensional pieces a?(?), V() andV®)) near a cosmologi-
cal singularity. First, in the intermediate asymptoticsenen  AcknowledgmentsWe thank G. Bossard, P. Deligne, V. Kac,
8% = B! + B2 + % (which measures theologarithmof  A. Kleinschmidt, V. Moncrief, H. Nicolai, and K. Stelle foni
the volume of the universe) is large but not too large, weformative discussions. Ph. S. thanks IHES for its kind hospi
can qualitatively describe the evolution of the sté@tgs) as  tality; his work has been partially supported by “Commuiaut
a quantum fermionic billiard The spinnings-particle un-  francaise de Belgique — Actions de Recherche concersees”
dergoes a sequence of quantum reflections on the gravitéy IISN-Belgium (convention 4.4511.06).
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