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Abstract: We review the recently discovered connection be-

tween the Belinsky-Khalatnikov-Lifshitz-like “chaotic” structure of

generic cosmological singularities in eleven-dimensional supergrav-

ity and the “last” hyperbolic Kac-Moody algebra E10. This intrigu-

ing connection suggests the existence of a hidden “correspondence”

between supergravity (or even M-theory) and null geodesic motion

on the infinite-dimensional coset space E10/K(E10). If true, this

gravity/coset correspondence would offer a new view of the (quan-

tum) fate of space (and matter) at cosmological singularities.

1 Introduction

It is a pleasure to participate in the celebration of the seminal accomplish-

ments of Gabriele Veneziano. I will try to do so by reviewing a line of

research which is intimately connected with several of Gabriele’s important

contributions, being concerned with the cardinal problem of String Cosmol-

ogy: the fate of the Einstein-like space-time description at big crunch/big

bang cosmological singularities. Actually, the work, described below started

as a by-product of the string cosmology program initiated by M. Gasperini

1Contribution to “String Theory and Fundamental Interactions” – in celebration of

Gabriele Veneziano’s 65th birthday – eds. M. Gasperini and J. Maharana, Springer-Verlag,

Heidelberg, 2007.
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and G. Veneziano [1]. While collaborating with Gabriele on the possible

birth of “pre-big bang bubbles” from the gravitational-collapse instability of

a generic string vacuum made of a stochastic bath of incoming gravitational

and dilatonic waves [2], an issue raised itself : what is the structure of a

generic spacelike (i.e. big crunch or big bang) singularity within the effec-

tive field theory approximation of (super-) string theory (when keeping all

fields, and not only the metric and the dilaton). The answer turned out to be

surprisingly complex, and rich of hidden structures. It was first found [3, 4]

that the general solution, near a spacelike singularity, of the massless bosonic

sector of all superstring models (D = 10, IIA, IIB, I, HE, HO), as well as

that of M theory (D = 11 supergravity), exhibits a never ending oscillatory

behaviour of the Belinsky-Khalatnikov-Lifshitz (BKL) type [5]. However, it

was later realized that behind this seeming entirely chaotic behaviour there

was a hidden symmetry structure [6, 7, 8]. This led to the conjecture of the

existence of a hidden equivalence (i.e. a correspondence) between two seem-

ingly very different dynamical systems: on the one hand, 11-dimensional

supergravity (or even, hopefully, “M-theory”), and, on the other hand, a

one-dimensional E10/K(E10) nonlinear σ model, i.e. the geodesic motion of

a massless particle on the infinite-dimensional coset space2 E10/K(E10) [8].

The intuitive hope behind this conjecture is that the BKL-type near space-

like singularity limit might act as a tool for revealing a hidden structure, in

analogy to the much better established AdS/CFT correspondence [9], where

the consideration of the near horizon limit of certain black D-branes has

revealed a hidden equivalence between 10-dimensional string theory in AdS

spacetime on one side, and a lower-dimensional CFT on the other side. If

the (much less firmly established) “gravity/coset correspondence” were con-

firmed, it might provide both the basis of a new definition of M-theory, and

a description of the “de-emergence” of space near a cosmological singularity

(see [10] and below).

2Here K(E10) denotes the (formal) “maximal compact subgroup” of the hyperbolic

Kac-Moody group E10.
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2 Cosmological billiards

Let us start by summarizing the BKL-type analysis of the “near spacelike

singularity limit”, that is, of the asymptotic behaviour of the metric gµν(t,x),

together with the other fields (such as the 3-form Aµνλ(t,x) in supergravity),

near a singular hypersurface. The basic idea is that, near a spacelike singu-

larity, the time derivatives are expected to dominate over spatial derivatives.

More precisely, BKL found that spatial derivatives introduce terms in the

equations of motion for the metric which are similars to the “walls” of a

billiard table [5]. To see this, it is convenient [11] to decompose the D-

dimensional metric gµν into non-dynamical (lapse N , and shift N i, here set

to zero) and dynamical (e−2βa

, θa
i ) components. They are defined so that the

line element reads

ds2 = −N2dt2 +
d

∑

a=1

e−2βa

θa
i θ

a
j dxidxj . (1)

Here d ≡ D − 1 denotes the spatial dimension (d = 10 for SUGRA11, and

d = 9 for string theory), e−2βa

represent (in an Iwasawa decomposition)

the “diagonal” components of the spatial metric gij, while the “off diagonal”

components are represented by the θa
i , defined to be upper triangular matrices

with 1’s on the diagonal (so that, in particular, det θ = 1).

The Hamiltonian constraint, at a given spatial point, reads (with Ñ ≡
N/

√

det gij denoting the “rescaled lapse”)

H(βa, πa, P, Q)

= Ñ

[

1

2
Gabπaπb +

∑

A

cA(Q, P, ∂β, ∂2β, ∂Q) exp
(

− 2wA(β)
)

]

. (2)

Here πa (with a = 1, ..., d) denote the canonical momenta conjugate to the

“logarithmic scale factors” βa, while Q denote the remaining configuration

variables (θa
i , 3-form components Aijk(t,x) in supergravity), and P their

canonically conjugate momenta (P i
a, π

ijk). The symbol ∂ denotes spatial

derivatives. The (inverse) metric Gab in Eq. (2) is the DeWitt “superspace”
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metric induced on the β’s by the Einstein-Hilbert action. It endows the

d-dimensional3 β space with a Lorentzian structure Gab β̇aβ̇b.

One of the crucial features of Eq. (2) is the appearance of Toda-like

exponential potential terms ∝ exp(−2wA(β)), where the wA(β) are linear

forms in the logarithmic scale factors: wA(β) ≡ wAa βa. The range of labels

A and the specific “wall forms” wA(β) that appear depend on the considered

model. For instance, in SUGRA11 there appear: “symmetry wall forms”

wS
ab(β) ≡ βb − βa (with a < b), “gravitational wall forms” wg

abc(β) ≡ 2βa +
∑

e 6=a,b,c

βe (a 6= b, b 6= c, c 6= a), “electric 3-form wall forms”, eabc(β) ≡

βa + βb + βc (a 6= b, b 6= c, c 6= a), and “magnetic 3-form wall forms”,

ma1....a6
≡ βa1 + βa2 + ... + βa6 (with indices all different).

One then finds that the near-spacelike-singularity limit amounts to con-

sidering the large β limit in Eq.(2). In this limit a crucial role is played

by the linear forms wA(β) appearing in the “exponential walls”. Actually,

these walls enter in successive “layers”. A first layer consists of a sub-

set of all the walls called the dominant walls wi(β). The effect of these

dynamically dominant walls is to confine the motion in β-space to a fun-

damental billiard chamber defined by the inequalities wi(β) > 0. In the

case of SUGRA11, one finds that there are 10 dominant walls: 9 of them

are the symmetry walls wS
12(β), wS

23(β), ..., wS
910(β), and the 10th is an elec-

tric 3-form wall e123(β) = β1 + β2 + β3. As noticed in [6] a remarkable

fact is that the fundamental cosmological billiard chamber of SUGRA11

(as well as type-II string theories) is the Weyl chamber of the hyperbolic

Kac-Moody algebra E10. More precisely, the 10 dynamically dominant wall

forms
{

wS
12(β), wS

23(β), ..., wS
910(β), e123(β)

}

can be identified with the 10 sim-

ple roots {α1(h), α2(h), ..., α10(h)} of E10. Here h parametrizes a generic el-

ement of a Cartan subalgebra (CSA) of E10 . [Let us also note that for

Heterotic and type-I string theories the cosmological billiard is the Weyl

310 dimensional for SUGRA11; but the various superstring theories also lead to a 10

dimensional Lorentz space because one must add the (positive) kinetic term of the dilaton

ϕ ≡ β10 to the 9-dimensional DeWitt metric corresponding to the 9 spatial dimensions.
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chamber of another rank-10 hyperbolic Kac-Moody algebra, namely BE10].

In the Dynkin diagram of E10, Fig. 1, the 9 “horizontal” nodes correspond

to the 9 symmetry walls, while the characteristic “exceptional” node sticking

out “vertically” corresponds to the electric 3-form wall e123 = β1 + β2 + β3.

[The fact that this node stems from the 3rd horizontal node is then seen to

be directly related to the presence of the 3-form Aµνλ, with electric kinetic

energy ∝ giℓgjmgknȦijkȦℓmn].

α1 α2 α3 α4 α5 α6 α7 α8 α9

α10

i i i i i i i i i

i

i

Figure 1: Dynkin diagram of E10.

The appearance of E10 in the BKL behaviour of SUGRA11 revived an old

suggestion of B. Julia [12] about the possible role of E10 in a one-dimensional

reduction of SUGRA11. A posteriori, one can view the BKL behaviour as

a kind of spontaneous reduction to one dimension (time) of a multidimen-

sional theory. Note, however, that we are always discussing generic inho-

mogeneous 11-dimensional solutions, but that we examine them in the near-

spacelike-singularity limit where the spatial derivatives are sub-dominant:

∂x ≪ ∂t. Note also that the discrete E10(Z) was proposed as a U -duality

group of the full (T 10) spatial toroidal compactification of M-theory by Hull

and Townsend [13].

3 Gravity/Coset correspondence

Refs [8, 14] went beyond the leading-order BKL analysis just recalled by in-

cluding the first three “layers” of spatial-gradient-related sub-dominant walls

∝ exp(−2wA(β)) in Eq.(2). The relative importance of these sub-dominant

walls, which modify the leading billiard dynamics defined by the 10 dom-
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inant walls wi(β), can be ordered by means of an expansion which counts

how many dominant wall forms wi(β) are contained in the exponents of the

sub-dominant wall forms wA(β), associated to higher spatial gradients. By

mapping the dominant gravity wall forms wi(β) onto the corresponding E10

simple roots αi(h), i = 1, ..., 10, the just described BKL-type gradient ex-

pansion becomes mapped onto a Lie-algebraic height expansion in the roots

of E10. It was remarkably found that, up to height 30 (i.e. up to small

corrections to the billiard dynamics associated to the product of 30 leading

walls e−2wi(β)), the SUGRA11 dynamics for gµν(t,x), Aµνλ(t,x) considered

at some given spatial point x0, could be identified to the geodesic dynam-

ics of a massless particle moving on the (infinite-dimensional) coset space

E10/K(E10). Note the “holographic” nature of this correspondence between

an 11-dimensional dynamics on one side, and a 1-dimensional one on the

other side.

A point on the coset space E10(R)/K(E10(R)) is coordinatized by a time-

dependent (but spatially independent) element of the E10(R) group of the

(Iwasawa) form: g(t) = exp h(t) exp ν(t). Here, h(t) = βa
coset(t)Ha belongs

to the 10-dimensional CSA of E10, while ν(t) =
∑

α>0 να(t)Eα belongs to a

Borel subalgebra of E10 and has an infinite number of components labelled

by a positive root α of E10. The (null) geodesic action over the coset space

E10/K(E10) takes the simple form

SE10/K(E10) =

∫

dt

n(t)
(vsym|vsym) (3)

where vsym ≡ 1
2
(v + vT ) is the “symmetric”4 part of the “velocity” v ≡

(dg/dt)g−1 of a group element g(t) running over E10(R).

The correspondence between the gravity, Eq. (2), and coset, Eq. (3), dy-

namics is best exhibited by decomposing (the Lie algebra of) E10 with respect

4Here the transpose operation T denotes the negative of the Chevalley involution ω

defining the real form E10(10) of E10. It is such that the elements k of the Lie sub-algebra

of K(E10) are “T -antisymmetric”: kT = −k, which is equivalent to them being fixed under

ω : ω(k) = + ω(k).
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to (the Lie algebra of) the GL(10) subgroup defined by the horizontal line in

the Dynkin diagram of E10. This allows one to grade the various components

of g(t) by their GL(10) level ℓ. One finds that, at the ℓ = 0 level, g(t) is

parametrized by the Cartan coordinates βa
coset(t) together with a unimodu-

lar upper triangular zehnbein θa
coset i(t). At level ℓ = 1, one finds a 3-form

Acoset
ijk (t); at level ℓ = 2, a 6-form Acoset

i1i2...i6
(t), and at level ℓ = 3 a 9-index

object Acoset
i1|i2...i9

(t) with Young-tableau symmetry {8, 1}. The coset action

(3) then defines a coupled set of equations of motion for βa
coset(t), θa

coset i(t),

Acoset
ijk (t), Acoset

i1...i6(t), Acoset
i1|i2...i9

(t). By explicit calculations, it was found that

these coupled equations of motion could be identified (modulo terms corre-

sponding to potential walls of height at least 30) to the SUGRA11 equations

of motion, considered at some given spatial point x0.

The dictionary between the two dynamics says essentially that:

(0) βa
gravity(t,x0) ↔ βa

coset(t) , θa
i (t,x0) ↔ θa

coset i(t), (1) ∂t A
coset
ijk (t) corre-

sponds to the electric components of the 11-dimensional field strength Fgravity

= d Agravity in a certain frame ei, (2) the conjugate momentum of Acoset
i1...i6(t)

corresponds to the dual (using εi1i2...i10) of the “magnetic” frame compo-

nents of the 4-form Fgravity = d Agravity, and (3) the conjugate momentum of

Ai1|i2...i9(t) corresponds to the ε10 dual (on jk) of the structure constants Ci
jk

of the coframe ei (d ei = 1
2
Ci

jk ej ∧ ek).

The fact that at levels ℓ = 2 and ℓ = 3 the dictionary between supergrav-

ity and coset variables maps the first spatial gradients of the SUGRA variables

Aijk(t,x) and gij(t,x) onto (time derivatives of) coset variables suggested

the conjecture [8] of a hidden equivalence between the two models, i.e. the

existence of a dynamics-preserving map between the infinite tower of (spa-

tially independent) coset variables (βa
coset, ν

α), together with their conjugate

momenta (πcoset
a , pα), and the infinite sequence of spatial Taylor coefficients

(β(x0), π(x0), Q(x0), P (x0), ∂Q(x0), ∂2β(x0), ∂2Q(x0), . . . , ∂
nQ(x0), . . .)

formally describing the dynamics of the gravity variables (β(x), π(x), Q(x),

P (x)) around some given spatial point x0.
5

5One, however, expects the map between the two models to become spatially non-local
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It has been possible to extend the correspondence between the two models

to the inclusion of fermionic terms on both sides [15, 16, 17]. Moreover,

Ref. [18] found evidence for a nice compatibility between some high-level

contributions (height −115!) in the coset action, corresponding to imaginary

roots6, and M-theory one-loop corrections to SUGRA11, notably the terms

quartic in the curvature tensor. (See also [19] for a study of the compatibility

of an underlying Kac-Moody symmetry with quantum corrections in various

models).

4 A new view of the (quantum) fate of space

at a cosmological singularity

Let us now, following [10], sketch the physical picture suggested by the

gravity/coset correspondence. That is, let us take seriously the idea that,

upon approaching a spacelike singularity, the description in terms of a spa-

tial continuum, and space-time based (quantum) field theory breaks down,

and should be replaced by a purely abstract Lie algebraic description. More

precisely, we suggest that the information previously encoded in the spatial

variation of the geometry and of the matter fields gets transferred to an

infinite tower of spatially independent (but time dependent) Lie algebraic

variables. In other words, we are led to the conclusion that space actually

“disappears” (or “de-emerges”) as the singularity is approached7. In partic-

ular (and this would be bad news for Gabriele’s pre-big bang scenario), we

suggest no (quantum) “bounce” from an incoming collapsing universe to some

outgoing expanding universe. Rather it is suggested that “life continues” for

for heights ≥ 30.
6i.e. such that (α, α) < 0, by contrast to the “real” roots, (α, α) = +2, which enter the

checks mentionned above.
7We have in mind here a “big crunch”, i.e. we conventionally consider that we are

tending towards the singularity. Mutatis mutandis, we would say that space “appears” or

“emerges” at a big bang.
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an infinite “affine time” at a singularity, with the double understanding,

however, that: (i) life continues only in a totally new form (as in a kind of

“transmigration”), and (ii) an infinite affine time interval (measured, say, in

the coordinate t of Eq. (3) with a coset lapse function n(t) = 1) corresponds

to a sub-Planckian interval of geometrical proper time8.

Let us also comment on some expected aspects of the “duality” between

the two models. It seems probable (from the AdS/CFT paradigm) that,

even if the equivalence between the “gravity” and the “coset” descriptions

is formally exact, each model has a natural domain of applicability in which

the corresponding description is sufficiently “weakly coupled” to be trustable

as is, even in the leading approximation. For the gravity description this

domain is clearly that of curvatures smaller than the Planck scale. One then

expects that the natural domain of validity of the dual coset model would

correspond (in gravity variables) to that of curvatures larger than the Planck

scale. In addition, it is possible that the coset description should primarily

be considered as a quantum model, as now sketched.

The coset action (3) describes the classical motion of a massless particle

on the symmetric space E10(R)/K(E10(R)). Quantum mechanically, one

should consider a quantum massless particle, i.e., if we neglect polarization

effects9 a Klein-Gordon equation,

� Ψ(βa, να) = 0 , (4)

where � denotes the (formal) Laplace-Beltrami operator on the infinite-

dimensional Lorentz-signature curved coset manifold E10(R)/K(E10(R)).

Eq. (4) would apply to the case considered here of un-compactified M-theory.

In the case where all spatial dimensions are toroidally compactified, it has

been suggested [20, 21] that Ψ satisfy (4) together with a condition of period-

8Indeed, it is found that the coset time t (with n(t) = 1) corresponds to a “Zeno-like”

gravity coordinate time (with rescaled lapse Ñ = N/
√

g = 1) which tends to +∞ as the

proper time tends to zero.
9Actually, Refs. [15, 16, 17] indicate the need to consider a spinning massless particle,

i.e. some kind of Dirac equation on E10/K(E10).
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icity over the discrete group E10(Z). In other words, Ψ would be a “modular

wave form” on E10(Z)\E10(R)/K(E10(R)).

Let us emphasize (still following [10]) that all reference to space and

time has disappeared in Eq. (4). The disappearance of time is common

between (4) and the usual Wheeler-DeWitt equation in which the “wave

function(al) of the universe” Ψ[gij(x)] no longer depends on any extrinsic time

parameter. [As usual, one needs to choose, among all the dynamical variables

a specific “clock field” to be used as an intrinsic time variable parametrizing

the dynamics of the remaining variables.] The interesting new feature of (4)

(when compared to a Wheeler-DeWitt type equation) is the disappearance

of any notion of geometry gij(x) and its replacement by the infinite tower

of Lie-algebraic variables (βa, να)10. This quantum de-emergence of space,

and the emergence of an infinite-dimensional symmetry group E10
11 which

deeply intertwines space-time with matter degrees of freedom might be radical

enough to get us closer to an understanding of the fate of space-time and

matter at cosmological singularities.
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