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The ADM formalism for two-point-mass systems in d space dimensions is sketched.
It is pointed out that the regularization ambiguities of the 3rd post-Newtonian ADM
Hamiltonian considered directly in d = 3 space dimensions can be cured by dimensional
continuation (to complex d’s), which leads to a finite and unique Hamiltonian as d→ 3.

Some so far unpublished details of the dimensional-continuation computation of the 3rd
post-Newtonian two-point-mass ADM Hamiltonian are presented.
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1. Introduction

The problem of finding the equations of motion (EOM) of a two-body system within

the post-Newtonian (PN) approximation of general relativity is solved up to the

3.5PN order of approximation for the case of compact and nonrotating bodies [by

nPN approximation we mean corrections of order (v/c)2n ∼ (Gm/(rc2))
n

to New-

tonian gravity]. The 3PN level of accuracy was achieved only recently. There exist

two independent derivations of the 3PN EOM using distributional (Dirac delta’s)

sources: either ADM-Hamiltonian-based,1,2 or harmonic-coordinate-based.3,4 There

also exists a third independent derivation of the 3PN EOM in harmonic coordinates

using a surface-integral approach.5

To cure the self-field divergencies of point particles it is necessary to use some

regularization method. It turned out that different such methods applied in d = 3

space dimensions were not able to give unique EOM at the 3PN order. Only by em-
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ploying dimensional continuation was it possible to obtain unambiguous results.2,4

In this note we review the dimensional-continuation-based derivation of the 3PN

two-point-mass ADM Hamiltonian.

2. ADM formalism for 2-point-mass systems in d space dimensions

We use units such that c=16πGd+1=1. We work in an asymptotically flat (d + 1)-

dimensional spacetime with Minkowskian coordinates x0, x≡(x1, . . . , xd). Particles

are labeled by the index a ∈ {1, 2}; masses, positions, and momenta of the particles

are denoted by ma, xa≡(x1
a, . . . , xd

a), and pa≡(pa1, . . . , pad), respectively. We also

define: ra := x − xa, ra := |ra|, na := ra/ra; r12 := x1 − x2, r12 := |r12| (|v|

means here the Euclidean length of the d-vector v). The canonical variables of

the theory consist of matter variables (xa,pa) and field variables (γij , π
ij), where

the space metric γij is induced by the full space-time metric on the hypersurface

x0=const; its conjugate πij can be expressed in terms of the extrinsic curvature of

that hypersurface.

Source terms in the constraint equations written down for two-point-mass sys-

tems are proportional to the d-dimensional Dirac delta functions δ(x−xa). We use

the ADM gauge defined by the conditions (TT ≡ transverse-traceless):

γij =

(
1 +

d − 2

4(d − 1)
φ

)4/(d−2)

δij + hTT
ij , πii = 0. (1)

The field momentum πij splits into a TT part πij
TT and a rest π̃ij (traceless but

expressible in terms of a vector), πij = π̃ij + πij
TT. If both the constraint equations

and the gauge conditions are satisfied, the ADM Hamiltonian can be put into its

reduced form:

H
(
xa,pa, hTT

ij , πij
TT

)
= −

∫
ddx∆φ

(
xa,pa, hTT

ij , πij
TT

)
. (2)

The PN expansion of the reduced Hamiltonian is worked out up to the 3.5PN order:

H =

2∑

a=1

ma + HN + H1PN + H2PN + H2.5PN + H3PN + H3.5PN + O((v/c)8). (3)

3. Dimensional regularization of the 3PN Hamiltonian

In Refs. 1 it was shown that the Riesz-implemented Hadamard regularization of

the 3PN two-point-mass Hamiltonian performed in d = 3 space dimensions gives

ambiguous results. The ambiguities were parametrized by two numerical coefficients

called ambiguity parameters and denoted by ωkinetic and ωstatic.

Dimensional continuation consists in obtaining the 3-dimensional Hamiltonian

as limd→3 H3PN(d), where H3PN(d) is the Hamiltonian computed in d space dimen-

sions. This can be done straightforwardly if no poles proportional to 1/(d− 3) arise

when d → 3 (or if one shows that these poles can be renormalized away, as happens
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in harmonic coordinates4). Reference 2 has shown that out of all terms building

up the Hamiltonian density there are ten terms TA(d), A = 1, . . . , 10, giving rise to

poles when d → 3. It was checked that the poles produced by these terms cancel each

other, thus limd→3 H3PN(d) exists. Moreover, it was shown that for all other terms

the 3-dimensional regularization give the same results as dimensional continuation.

Let HHad
3PN be the 3PN Hamiltonian obtained in Refs. 1 by using an Hadamard

“partie finie” (Pf) regularization defined in d = 3 space dimensions. To correct this

Hamiltonian one needs to compute the difference ∆H3PN := limd→3 H3PN(d) −

HHad
3PN. Only ten terms TA contribute to ∆H3PN, therefore

∆H3PN = lim
d→3

∫
ddx

10∑

A=1

TA(d) − Pf

∫
d3x

10∑

A=1

TA(3). (4)

Below we present three different methods which we used to compute ∆H3PN. The

details of the 2nd and 3rd method were not published so far. Knowing ∆H3PN one

determines the values of both ambiguity parameters: ωkinetic = 41/24, ωstatic = 0.

1st method. In Ref. 2 ∆H3PN was computed by means of the analysis of the

local behaviour of the terms TA around the particle positions x = xa.

2nd method. It is possible to compute all d-dimensional integrals in Eq. (4)

explicitly. To do this one uses the Riesz formula
∫

ddx rα
1 rβ

2 = πd/2 Γ((α + d)/2)Γ((β + d)/2)Γ(− (α + β + d)/2)

Γ(−α/2)Γ(−β/2)Γ((α + β + 2d)/2)
rα+β+d
12 , (5)

and the distributional differentiation of homogeneous functions, e.g.,

∂2

∂xixj

1

rd−2
a

= Pf
(
(d − 2)

dni
anj

a − δij

rd
a

)
−

4πd/2

d Γ(d/2 − 1)
δijδ(x − xa). (6)

3rd method. Instead of d-dimensional Dirac distributions δ one uses d-

dimensional Riesz kernels δεa
to model point particles:

δ(x − xa) = lim
εa→0

δεa
(x − xa), δεa

(x − xa) :=
Γ((d − εa)/2)

πd/2 2εa Γ(εa/2)
rεa−d
a . (7)

Then one uses the formula (5) to calculate the integrals in Eq. (4) and, at the end of

the calculation, one takes the limit ε1 → 0, ε2 → 0. No distributional differentiation

is needed.

We have shown that these three methods yield the same final results.
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