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The ADM formalism for two-point-mass systems in d space dimensions is sketched.
It is pointed out that the regularization ambiguities of the 3rd post-Newtonian ADM
Hamiltonian considered directly in d = 3 space dimensions can be cured by dimensional
continuation (to complex d’s), which leads to a finite and unique Hamiltonian as d — 3.
Some so far unpublished details of the dimensional-continuation computation of the 3rd
post-Newtonian two-point-mass ADM Hamiltonian are presented.
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1. Introduction

The problem of finding the equations of motion (EOM) of a two-body system within
the post-Newtonian (PN) approximation of general relativity is solved up to the
3.5PN order of approximation for the case of compact and nonrotating bodies [by
nPN approximation we mean corrections of order (v/c)?" ~ (Gm/(rc?))" to New-
tonian gravity]. The 3PN level of accuracy was achieved only recently. There exist
two independent derivations of the 3PN EOM using distributional (Dirac delta’s)
sources: either ADM-Hamiltonian-based,? or harmonic-coordinate-based.?* There
also exists a third independent derivation of the 3PN EOM in harmonic coordinates
using a surface-integral approach.®

To cure the self-field divergencies of point particles it is necessary to use some
regularization method. It turned out that different such methods applied in d = 3
space dimensions were not able to give unique EOM at the 3PN order. Only by em-
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ploying dimensional continuation was it possible to obtain unambiguous results.*
In this note we review the dimensional-continuation-based derivation of the 3PN
two-point-mass ADM Hamiltonian.

2. ADM formalism for 2-point-mass systems in d space dimensions

We use units such that ¢c=167G4+1=1. We work in an asymptotically flat (d + 1)-
dimensional spacetime with Minkowskian coordinates 29, x=(z!,. .. ,xd). Particles
are labeled by the index a € {1, 2}; masses, positions, and momenta of the particles
are denoted by m,, x,=(z},...,2%), and pa=(pa1,-- -, pad), respectively. We also
define: v, := X — X4, 7o = |Pa|, Do = Tq/Te; T12 = X1 — Xa2, 112 = |r12| (|V]
means here the Euclidean length of the d-vector v). The canonical variables of
the theory consist of matter variables (x4, pa) and field variables (v;;, 7), where
the space metric v;; is induced by the full space-time metric on the hypersurface
x%=const; its conjugate 7% can be expressed in terms of the extrinsic curvature of
that hypersurface.

Source terms in the constraint equations written down for two-point-mass sys-
tems are proportional to the d-dimensional Dirac delta functions 6(x — x,). We use

the ADM gauge defined by the conditions (TT = transverse-traceless):

i—2 4/(d—2) o )
e (1+ 1(d - 1)¢> 0 +hy T =0. (1)

The field momentum 7% splits into a TT part w%jT and a rest 7 (traceless but

expressible in terms of a vector), 7/ = 7 + . If both the constraint equations
and the gauge conditions are satisfied, the ADM Hamiltonian can be put into its
reduced form:

H (0P 5T, ) = = [ 4% 800, Do BT ). ®)

The PN expansion of the reduced Hamiltonian is worked out up to the 3.5PN order:

2
H = Zma + Hx + Hipx + Hopn + Hospx + Hapn + Hs spn + O((v/¢)®). (3)

a=1

3. Dimensional regularization of the 3PN Hamiltonian

In Refs. 1 it was shown that the Riesz-implemented Hadamard regularization of
the 3PN two-point-mass Hamiltonian performed in d = 3 space dimensions gives
ambiguous results. The ambiguities were parametrized by two numerical coefficients
called ambiguity parameters and denoted by wyinetic and wstatic-

Dimensional continuation consists in obtaining the 3-dimensional Hamiltonian
as limy—.3 Hspn(d), where Hspn(d) is the Hamiltonian computed in d space dimen-
sions. This can be done straightforwardly if no poles proportional to 1/(d — 3) arise
when d — 3 (or if one shows that these poles can be renormalized away, as happens
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in harmonic coordinates?). Reference 2 has shown that out of all terms building
up the Hamiltonian density there are ten terms Ty (d), A =1,...,10, giving rise to
poles when d — 3. It was checked that the poles produced by these terms cancel each
other, thus limg_,5 Hspn(d) exists. Moreover, it was shown that for all other terms
the 3-dimensional regularization give the same results as dimensional continuation.

Let Hd be the 3PN Hamiltonian obtained in Refs. 1 by using an Hadamard
“partie finie” (Pf) regularization defined in d = 3 space dimensions. To correct this
Hamiltonian one needs to compute the difference AHspn := limg_3 Hspn(d) —
H?I,{Palﬂ. Only ten terms T4 contribute to AHspy, therefore

10 10
AHzpy = lim / d?z Y " Ta(d) — Pf / d*z ) " Ta(3). (4)
A=1 A=1

Below we present three different methods which we used to compute AH3spn. The
details of the 2nd and 3rd method were not published so far. Knowing AHspn one
determines the values of both ambiguity parameters: wiinetic = 41/24, wstatic = 0.
1st method. In Ref. 2 AHspn was computed by means of the analysis of the
local behaviour of the terms Ty around the particle positions x = x,.
2nd method. It is possible to compute all d-dimensional integrals in Eq. ()
explicitly. To do this one uses the Riesz formula
[t g = qon LA DATB LDl 0012 o
172 = 12 )
I'(—a/2)0(=5/2) (o + 5 + 2d)/2)
and the distributional differentiation of homogeneous functions, e.g.,
(92 1 dnénz — 5ij 47‘1"1/2
Oxigd pd=2 rd )_dF(d/Z—l)
3rd method. Instead of d-dimensional Dirac distributions § one uses d-
dimensional Riesz kernels 0., to model point particles:

(5)

- Pf((d ~9) 5:0(x —xa).  (6)

0(x —xq) = Elaigo 0e, (X —Xq), O, (X —X%4) 1= %r?d, (7)

Then one uses the formula () to calculate the integrals in Eq. (4]) and, at the end of
the calculation, one takes the limit e; — 0, €5 — 0. No distributional differentiation
is needed.

We have shown that these three methods yield the same final results.
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