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We improve and generalize a resummation method of post-Newtonian multipolar waveforms from
circular compact binaries introduced in Refs. [1, 2]. One of the characteristic features of this
resummation method is to replace the usual additive decomposition of the standard post-Newtonian
approach by a multiplicative decomposition of the complex multipolar waveform hℓm into several
(physically motivated) factors: (i) the “Newtonian” waveform, (ii) a relativistic correction coming
from an “effective source”, (iii) leading-order tail effects linked to propagation on a Schwarzschild
background, (iv) a residual tail dephasing, and (v) residual relativistic amplitude corrections fℓm.

We explore here a new route for resumming fℓm based on replacing it by its ℓ-th root: ρℓm = f
1/ℓ
ℓm . In

the extreme-mass-ratio case, this resummation procedure results in a much better agreement between
analytical and numerical waveforms than when using standard post-Newtonian approximants. We
then show that our best approximants behave in a robust and continuous manner as we “deform”
them by increasing the symmetric mass ratio ν ≡ m1m2/(m1 + m2)

2 from 0 (extreme-mass-ratio
case) to 1/4 (equal-mass case). The present paper also completes our knowledge of the first post-
Newtonian corrections to multipole moments by computing ready-to-use explicit expressions for the
first post-Newtonian contributions to the odd-parity (current) multipoles.

PACS numbers: 04.25.Nx, 04.30.-w, 04.30.Db

I. INTRODUCTION

One of the prime targets for the currently operating
network of laser interferometer gravitational wave (GW)
detectors is the inspiral and merger of binary black hole
systems. To detect and interpret the GW signals from
such systems one will need accurate templates to match
theoretically computed signals to the noisy output of
the detectors. The prime analytical framework allowing
one to compute (within General Relativity) the GW sig-
nal emitted by a comparable mass binary system in the
mildly relativistic regime1 x ∼ (v/c)2 ∼ GM/(c2R) ≪ 1
is the post-Newtonian (PN) approximation scheme (see
Ref. [3] for a review). This raises the issue of the con-
vergence of the PN expansion, or, in practical terms, of
the largest value of the PN-expansion parameter x for
which the currently known PN expansions yield accu-
rate enough GW templates. Note that, when speak-
ing of “convergence” in this paper we shall not have
in mind the mathematical question of whether the full
PN expansion of, say, the (Newton-normalized) GW

radiation flux, F̂Taylor(x) =
∑+∞

n=0 fn(ν; log x)xn is a
mathematically point-wise convergent series (for some

1 Our notation is: M ≡ m1 + m2, µ ≡ m1m2/M , ν ≡ µ/M =
m1m2/(m1 + m2)2, Ω ≡ orbital frequency, v ≡ (GMΩ)1/3, x ≡
v2/c2 ≡ (GMΩ/c3)2/3. We shall generally use x as PN ordering
parameter, and often use (without warning) units where either
c = 1 or G = 1. We recall that a term xn ∼ v2n/c2n is said to
belong to the n-PN approximation.

fixed x belonging to some range) as n → +∞, but
the more practical question of how small is the numer-
ical difference (say in the supremum, L∞, norm) be-
tween the currently known truncated PN expansions, say,

F̂Taylor
N ≡ TaylorN F̂ (x) =

∑N
n=0 fn(ν; log x)xn, for N =

3 (3PN approximation), and the “exact” flux F̂Exact(x)
in some physically relevant interval 0 < x < xmax, where
xmax is equal or close to the value corresponding to the
Last Stable (circular) Orbit (LSO). We shall then con-
sider that some resummation method, which transforms

F̂Taylor
N (x) into F̂Resummed

N (x) (say for N = 3) is, ef-

fective if supx<xmax

∣

∣

∣
F̂Resummed

N (x) − F̂Exact(x)
∣

∣

∣
is signif-

icantly smaller than supx<xmax

∣

∣

∣
F̂Taylor

N (x) − F̂Exact(x)
∣

∣

∣

when xmax corresponds to the LSO (i.e., xmax = 1/6 in
the extreme-mass-ratio limit ν → 0).

It was pointed out by Cutler et al. [4] and Poisson [5]
that the convergence (in the sense just explained) of
the PN series is rather poor, especially near the LSO
(i.e. when x ≃ 1/6) in the extreme-mass-ratio case that
they considered. It was then suggested by Damour, Iyer,
Sathyaprakash [6], to use resummation methods to ex-
tend the numerical validity of the PN expansions (at
least) up to the LSO. They used several resummation
techniques, and in particular Padé approximants. New
resummation methods, aimed at extending the validity of
suitably resummed PN results beyond the LSO, and up
to the merger, were later introduced in the “Effective-
One-Body” (EOB) approach and used to estimate the
complete GW signal emitted by inspiralling, plunging,
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merging and ringing binary black hole systems [7, 8].
The EOB method has been recently improved, notably
by the introduction of a new, resummed, 3+2PN accu-
rate2 waveform for the ℓ = m = 2 case [1, 2]. For sev-
eral, comparable-mass cases, such a waveform (married
to the EOB dynamics) has been shown to agree remark-
ably well, both in phase and in modulus, with Numerical
Relativity data (see [9] for review of binary black hole
numerical simulations). For instance, Ref. [10] found a
phase difference smaller than ±0.025 radians with Jena
data all over the inspiral and plunge up to merger, while
Ref. [2] found a remarkable amplitude agreement with
published Caltech-Cornell data over the inspiral and part
of the plunge. Let us note in this respect that the use
of a theoretically less accurate waveform (Newtonian-
accurate multipolar waveform) still allows for a rather
small phase difference, but leads to significantly larger
differences in the modulus [11].

The main aim of this paper is to further improve
the type of resummed multipolar waveform introduced
in [1, 2]. More precisely, we shall achieve here two goals:
(i) on the one hand, we shall generalize the resummed
ℓ = m = 2 waveform of [1, 2] to higher multipoles by
using the most accurate currently known PN-expanded
results [12–14] as well as the higher PN terms which
are known in the test-mass limit [15, 16], and (ii), on
the other hand, we shall introduce a new resummation
procedure which consists in considering a new theoreti-
cal quantity, denoted below as ρℓm(x), which enters the
(ℓ, m) waveform (together with other building blocks, see

below) only through its ℓ-th power: hℓm ∝ (ρℓm(x))
ℓ
. In

this paper we shall primarily use the small-mass-ratio
limit (ν → 0), in which one knows both high PN expan-
sions of ρℓm(x) [15, 16] and the “exact” value of ρℓm(x)
from numerical studies of test particles around black
holes [4, 5, 17], to study the quality of the convergence of

ρTaylor
ℓm (x). Then we shall explore the robustness and con-

sistency of our new approximats in the comparable-mass
case.

Though we leave to later sections the precise defini-
tion of the various building blocks of our new, resummed
waveform, let us already sketch here its structure. The
basic idea is to write the (ℓ, m) multipolar waveform
emitted by a circular3 compact binary as the product

2 The notation 3+2PN refers to a “hybrid” expression which in-
corporates both the comparable-mass (ν 6= 0) 3PN terms and
the extreme-mass ratio (ν = 0) 4PN and 5PN terms. See below
for the precise definition of the “hybridization” procedure we use
here.

3 In this paper, we focus on the waveform emitted by exactly cir-
cular orbits. We leave to future work the study of “non-quasi-
circular” corrections that must be introduced in the realistic case
of inspiralling and plunging orbits (such corrections have already
been introduced in the EOB approach, see [10, 18]).

of several factors, namely

h
(ǫ)
ℓm =

GMν

c2R
n

(ǫ)
ℓmcℓ+ǫ(ν)x(ℓ+ǫ)/2Y ℓ−ǫ,−m

(π

2
, Φ

)

× Ŝ
(ǫ)
eff Tℓmeiδℓmρℓ

ℓm. (1)

Here ǫ = 0 for “even-parity” (mass-generated) multi-
poles (ℓ + m even), and ǫ = 1 for “odd-parity” (current-

generated) ones (ℓ+m odd); n
(ǫ)
ℓm and cℓ+ǫ(ν) are numer-

ical coefficients; Ŝ
(ǫ)
eff is a µ-normalized effective source

(whose definition comes from the EOB formalism); Tℓm is
a resummed version [1, 2] of an infinite number of “lead-
ing logarithms” entering the tail effects [19, 20]; δℓm is
a supplementary phase (which corrects the phase effects
not included in the complex tail factor Tℓm), and, finally,

(ρℓm)
ℓ

denotes the ℓ-th power of the quantity ρℓm which
is the new building block introduced and studied in this

paper. [In previous papers [1, 2] the quantity (ρℓm)
ℓ

was
denoted as fℓm.]

We shall discuss in quantitative details below the var-
ious facts showing that the new ingredient ρℓm(x) is a
useful quantity to consider (mainly because its PN expan-
sion has better convergence properties than the straight-
forward PN expansion of hℓm itself). In this introductory
section, we shall whet the appetite of the reader by com-
paring the performance of our new resummed method,
to some of the previously considered PN-based methods.
For definiteness, we shall do this initial comparison at
the level of the total energy flux, say F , which is related
to the individual waveforms via

F (ℓmax) =

ℓmax
∑

ℓ=2

ℓ
∑

m=1

Fℓm =
2

16πG

ℓmax
∑

ℓ=2

ℓ
∑

m=1

|Rḣℓm|2

=
2

16πG

ℓmax
∑

ℓ=2

m=ℓ
∑

m=1

(mΩ)2|Rhℓm|2. (2)

Note that Fℓm = Fℓ|m| denotes the sum of two equal
contributions corresponding to +m and −m (m 6= 0 as
Fℓ0 vanishes for circular orbits). This explains the ex-
plicit factor two in the last two equations above, which
relate Fℓm to hℓm. It is convenient to consider the total
flux F for continuity with previous studies of the “con-
vergence” of PN-expansions that focussed on F [4–6, 17]
and because of its physical importance as a measure of
the radiation reaction that acts on inspiralling binaries.
To be fully precise, we shall consider here the (rather ac-
curate) approximation F (6) obtained by truncating the
sum over ℓ in Eq. (2) beyond ℓ = 6, and we normalize
the result onto the “Newtonian” (i.e., quadrupolar) re-
sult FN

22 = 32/5(µ/M)2x5. In other words, we consider

here the quantity F̂ ≡ F (6)/FN
22 .

Fig. 1 compares and contrasts four different ways of
using the same PN information about the total Newton-
normalized GW flux function F̂ (v) = F (v)/F22(v) (i.e.,
the same finite set of coefficients {fk(log x); 1 ≤ k ≤ n}
of the n-PN expansion of the Newton-normalized flux
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(a) (b)

(c) (d)

FIG. 1: Extreme-mass-ratio limit (ν = 0). Comparing various resummations of the (Newton-normalized) gravitational wave
energy flux: (a) standard Taylor expansion; (b) Padé resummation as proposed in Ref. [6] with vpole = 1/

√
3; (c) Padé

resummation flexing vpole according to the discussion of Sec. II of Ref. [2]; (d) new resummation technique based on the ρℓm

functions discussed in this paper.

Taylorn(F̂ (x)) =
∑n

k=0 fk(log x)xk of the GW flux). As
in many previous works, we use the extreme mass ratio
limit ν → 0 as a laboratory for devising and testing re-
summation procedures. Indeed, in that case, the quasi-
circular adiabatic description of inspiralling binaries is
expected to hold up to the LSO (xLSO(ν = 0) = 1/6) and
one can compare PN-based analytical results [15, 16, 21]
to numerical estimates of the GW flux, based on the
numerical integration of some (Regge-Wheeler-Zerilli or
Teukolsky) wave equation [4, 17].

Panel (a) of the figure recalls the results of Refs. [4, 5],
namely the rather poor convergence of the standard Tay-
lor approximants of F̂ (x) in the full interval 0 < x < xLSO

where one might hope to tap the PN information. For
clarity, we selected only three Taylor approximants: 3PN
(v6), 3.5PN (v7) and 5.5PN (v11). These three values suf-
fice (by contrast with the other panels) to illustrate the

rather large scatter among Taylor approximants, and the
fact that, near the LSO, the convergence towards the ex-
act value (solid line) is rather slow, and non monotonic.
[See Fig. 1 in Ref. [5] and Fig. 3 of Ref. [6] for fuller il-
lustrations of the scattered and non monotonic way in
which successive Taylor expansions approach the numer-
ical result.]

On the other hand, panel (b) recalls the results of [6],
namely the significantly better (and monotonic) way in
which successive Padé approximants approach (in L∞

norm on the full interval 0 < x < xLSO) the numerical
result. Ref. [6] also showed that the observationally rele-
vant overlaps (of both the “faithfulness” and the “effec-
tualness” types) between analytical and numerical adia-
batic signals were systematically better for Padé approx-
imants than for Taylor ones. Note that our present panel
(b) is slightly different from the corresponding results in
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TABLE I: Errors in the flux of the two (untuned or tuned)
Padé resummation procedures. From left to right, the
columns report: the PN-order; the difference between the re-
summed and the exact flux, ∆F̂ = F̂Resummed − F̂Exact, at
the LSO, and the L∞ norm of ∆F̂ , ||∆F̂ ||∞ (computed over
the interval 0 < v < vLSO), for vpole = 1/

√
3; the flexed value

of vpole used here; ∆̂F at the LSO and the corresponding L∞

norm (over the same interval) for the flexed value of vpole.

PN-order ∆F̂
1/

√
3

LSO ||∆F̂ ||1/
√

3
∞ vpole ∆F̂

vpole

LSO ||∆F̂ ||vpole
∞

3 (v6) -0.048 0.048 0.5334 7.06 × 10−5 0.00426

3.5 (v7) -0.051 0.051 0.5425 5.50 × 10−5 0.00429

5.5 (v11) -0.022 0.022 0.5416 2.52 × 10−5 0.000854

FIG. 2: Extreme-mass-ratio limit (ν = 0). Complement to
panel (d) of Fig. 1. Difference between the resummed and
exact energy flux, for different approaches to the resummation
of the ρ22 function. See text for explanations.

panel (b) of Fig. 3 in [6] (in particular, the present panel
(b) exhibits a better “convergence” of the v11 curve).
This difference is due to the new treatment of the loga-
rithmic terms ∝ log x. Instead of factoring them out in
front as proposed in [6], we consider them here (follow-
ing [2]) as being part of the “Taylor coefficients” fn(log x)
when Padéing the flux function. Note also that panel (b)
follows Ref. [6] in introducing a pole in the resummed

flux F̂ (v) located at the value v
(ν=0)
pole = 1/

√
3.

By contrast, panel (c) of the figure illustrates the re-
markable improvement in the (L∞) closeness between

F̂Padé-resummed(v) and F̂Exact(v) obtained, as recently
suggested by Damour and Nagar [2] (following ideas orig-
inally introduced in Ref. [22]), by suitably flexing the
value of vpole. As proposed in Ref. [2], vpole is tuned
until the difference between the resummed and the ex-
act flux at the LSO is zero (or at least smaller than

10−4). The resulting closeness between the exact and
tuned-resummed fluxes is so good (compared to the pre-
vious panels, where the differences were clearly visible)
that we need to complement panel (c) of Fig. 1 with Ta-
ble I. This table compares in a quantitative way the re-
sult of the “untuned” Padé resummation (vpole = 1/

√
3)

of Ref. [6] to the result of the “vpole-tuned” Padé resum-

mation of Ref. [2]. Defining the function ∆F̂ (v; vpole) =

F̂Resummed(v; vpole)− F̂Exact(v) measuring the difference
between a resummed and the exact energy flux, Table I
lists both the values of ∆F̂ at v = vLSO and its L∞ norm
on the interval 0 < v < vLSO for both the untuned and
tuned cases. Note, in particular, how the vpole-flexing ap-
proach permits to reduce the L∞ norm over this interval
by more than an order of magnitude with respect to the
untuned case. Note that the closeness between the tuned
flux and the exact one is remarkably good (4.3 × 10−3)
already at the 3PN level.

Finally, panel (d) of Fig. 1 illustrates the even
more remarkable improvement in the closeness between
F̂New-resummed and F̂Exact obtained by means of the new
resummation procedure proposed in this paper. More
precisely, panel (d) plots two examples of fluxes obtained
from our new ρℓm-representation, Eq. (1), for the individ-
ual multipolar waveforms hℓm in the sum Eq. (2). These
two examples differ in the choice of approximants for the
ℓ = m = 2 partial wave. One example uses for ρ22 its
3PN Taylor expansion, T3[ρ22], while the other one uses
its 5PN Taylor expansion, T5[ρ22]. All the other partial
waves are given by their maximum known Taylor expan-
sion. Note that the fact that we use here for the ρℓm’s
some straightforward Taylor expansions does not mean
that our new procedure is not a resummation technique.
Indeed, the defining resummation features of our proce-
dure have four sources: (i) the factorization of the PN
corrections to the waveforms into four different blocks,

namely Ŝ
(ǫ)
eff , Tℓm, eiδℓm and ρℓ

ℓm in Eq. (1); (ii) the fact

the Ŝ
(ǫ)
eff is by itself a resummed source whose PN expan-

sion would contain an infinite number of terms; (iii) the
fact that the tail factor is a closed form expression (see
Eq. (19) below) whose PN expansion also contains an
infinite number of terms and (iv) the fact that we have
replaced the Taylor expansion of fℓm ≡ ρℓ

ℓm by that of
its ℓ-th root, namely ρℓm.

Even more so than in the vpole-tuned case of panel
(c), the closeness between analytical and exact results
exhibited by the “new-resummed” case of panel (d) is so
good that it is undistinguishable by eye. We therefore
complement panel (d) by displaying in Fig. 2 the resid-

ual differences ∆F̂ (v) = F̂New−resummed(v) − F̂Exact(v).
We included in Fig. 2 a third curve corresponding to the
case where we further resum our “new-resummed” flux
by using for (the 5PN accurate) ρ22 its near-diagonal
(2, 3) Padé approximant, say P 2

3 {T5[ρ22(x)]}, instead
of its Taylor expansion. [The other ρℓm’s being still
used in Taylor expanded form]. Note that the difference

∆F̂ at the LSO is ≈ 4.5 × 10−4 when using T3[ρ22], is
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−5.7× 10−3 when using T5[ρ22] and is +1.6× 10−3 when
using P 2

3 {T5[ρ22(x)]}. Note that these numbers are in
the same ball park than the v11-accurate vpole-tuned re-
sult (8.5 × 10−4) quoted in Table I. Discarding the very
small difference corresponding to the 3PN-accurate T3

case as being probably accidental we conclude that us-
ing the normal, near-diagonal4 Padé resummation of only
the leading multipolar contribution ρ22 has the effect of
significantly improving the agreement with the exact re-
sult (compare the two 5PN-accurate curves, T5[ρ22] and
P 2

3 {T5[ρ22(x)]}, in Fig. 2). We therefore expect that
Padéing some of the higher multipoles will further im-
prove the agreement between the energy fluxes. Note
also, in passing, that the new resummation procedure
explored here is more “predictive” than the vpole-flexing
technique in that it does not need to rely on the knowl-
edge of the exact answer. We will also show below that
it is “robust” under the deformation brought about by
increasing the symmetric mass ratio ν from 0 up to its
maximal value 1/4.

This paper is organized as follows: in Sec. II we ex-
plicitly define the building blocks entering the resumma-
tion of the gravitational waveform. Section III analyzes
the performance of this resummation procedure in the
extreme-mass-ratio (ν → 0) case, while Sec. IV consid-
ers the comparable mass case (6= 0). We present some
concluding remarks in Sec. V. The paper is completed
by three Appendices which collect many useful formulas
that complete the discussion of the main text. In partic-
ular, Appendix A provides the first explicit, ready-to-use
expression for the 1-PN corrections to the Symmetric-
Trace-Free (STF) current-multipole moments and to the
corresponding spherical-harmonics odd-parity multipoles
for arbitrary ℓ and m.

II. DEFINING THE BUILDING BLOCKS OF
THE RESUMMATION OF THE MULTIPOLAR

GRAVITATIONAL WAVEFORM

Let us now explicitly define each of the building blocks
of our new resummed waveform, Eq. (1). Note that our
methodology differs from the PN-methodology in a basic
way. The PN approach consists in writing any relativistic
quantity as a sum of various contributions starting with
the so-called Newtonian approximation. In other words,
a PN-expanded multipolar waveform has the structure
hℓm = hN

ℓm + h1PN
ℓm + h1.5PN

ℓm + . . . . By contrast to
this additive approach we will use here, as advocated
in Refs. [1, 2], a multiplicative approach in which any
relativistic quantity is decomposed as a product of vari-
ous contributions5. One of the factors of this multiplica-

4 We will explore other Padé approximants of ρ22 below.
5 This multiplicative approach can be naturally applied to the mul-

tipolar waveform hℓm which is a complex number.

tive decomposition will be the Newtonian waveform, hN
ℓm.

Some of the other factors are chosen so as to best capture
part of the essential physics contained in the waveform.
The remaining factors will then resum the subleading ef-
fects that have not been included in the previous ones.
First of all, it is convenient to introduce the following
notation

hℓm = h
(N,ǫ)
ℓm ĥ

(ǫ)
ℓm, (3)

where h
(N,ǫ)
ℓm represents the Newtonian contribution and

ĥ
(ǫ)
ℓm the product of all the other factors in our multi-

plicative decomposition. As all these other factors repre-
sent resummed version of PN corrections (of the type
1 + O(x)) their product will also have the structure
ˆh(ǫ)

ℓm = 1 + O(x).

A. The Newtonian multipolar waveform

Though all the work in this paper will focus on the

resummation of the PN-correcting factor ĥ
(ǫ)
ℓm, let us, for

completeness, recall the well-known [12, 14, 23] structure
of the Newtonian multipolar waveform6, here considered
for the adiabatic circular case. The Newtonian contribu-
tion for circular orbits is, for given (ℓ, m), a function of
x ≡ (GMΩ/c3)2/3 and the two mass ratios X1 = m1/M
and X2 = m2/M

7

h
(N,ǫ)
ℓm =

GMν

c2R
n

(ǫ)
ℓmcℓ+ǫ(ν)x(ℓ+ǫ)/2Y ℓ−ǫ,−m

(π

2
, Φ

)

. (4)

Here, ǫ denotes the parity of the multipolar waveform,
i.e., even (ǫ = 0) for mass-generated multipoles and odd
(ǫ = 1) for current-generated ones. In the circular case,
ǫ is equal to the parity of the sum ℓ + m: ǫ = π(ℓ + m).
In other words ǫ = 0 when ℓ+m is even, and ǫ = 1 when
ℓ+m is odd. The Y ℓm(θ, φ) are the usual scalar spherical

6 We mostly follow here the conventions of Refs. [12, 23], except
that we take into account some of the simplifications used in [14].
Note the presence of a factor 1/

√
2 in the relation between the

(ℓ, m) Newtonian waveform and the corresponding (ℓ, m) radia-

tive multipoles: Rheven
ℓm = (G/

√
2)Uℓm = (G/

√
2)I

(ℓ)
ℓm for mass

multipoles and Rhodd
ℓm = −i(G/

√
2)Vℓm = −i(G/

√
2)S

(ℓ)
ℓm for cur-

rent multipoles.
7 Note that: X1 + X2 = 1, X1X2 = ν where ν is the symmetric

mass ratio ν ≡ m1m2/(m1 + m2)2, while X1 − X2 = sign(m1 −
m2)

√
1 − 4ν, where the sign depends whether m1 > m2 or the

reverse.
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harmonics8 while

n
(0)
ℓm = (im)ℓ 8π

(2ℓ + 1)!!

√

(ℓ + 1)(ℓ + 2)

ℓ(ℓ − 1)
, (5)

n
(1)
ℓm = −(im)ℓ 16πi

(2ℓ + 1)!!

√

(2ℓ + 1)(ℓ + 2)(ℓ2 − m2)

(2ℓ − 1)(ℓ + 1)ℓ(ℓ − 1)
,

(6)

are (ν-independent) numerical coefficients. Fi-
nally, the ν-dependent coefficients cℓ+ǫ(ν) (such that
|cℓ+ǫ(ν = 0)| = 1), can be expressed in terms of ν (as
in Ref. [12, 14]), although it is more conveniently written
in terms of the two mass ratios X1 and X2 in the form9

cℓ+ǫ(ν) = Xℓ+ǫ−1
2 + (−)ℓ+ǫXℓ+ǫ−1

1

= Xℓ+ǫ−1
2 + (−)mXℓ+ǫ−1

1 . (7)

In the second form of the equation we have used the fact
that, as ǫ = π(ℓ + m), π(ℓ + ǫ) = π(m).

B. The first three factors in the multiplicative

decomposition of the PN fractional correction ĥ
(ǫ)
ℓm

Let us recall that, in the comparable mass case (ν 6=
0), the ĥ

(ǫ)
ℓm PN-correction can be computed within the

perturbative multipolar-post-Minkowskian (MPM) for-
malism [3, 19, 20], while in the test-mass limit (ν →
0) it can be obtained by black hole perturbation the-
ory [15, 16, 24, 25].

The final result is that ĥ
(ǫ)
ℓm is given by a PN expansion

of the form ĥℓm = 1 + h1x + h1.5x
3/2 + . . . . For

comparable-mass circularized compact binaries, the par-
tial wave which is known with the highest PN accuracy

is the leading even-parity quadrupolar wave ĥ22, which
is known to fractional 3PN accuracy [2, 12, 14, 26].
Note that Ref. [14] provides hℓm half a PN order more
accurately than Ref. [12] for multipolar orders (ℓ, m) =
(2, 1), (3, 3), (3, 2), (3, 1), (4, 3), (4, 1), (5, 5), (5, 3) and
(5, 1). This information is fully employed in this work.
In the extreme-mass-ratio case, the partial waves are
known with even higher PN accuracy. For instance,

ĥ22 is known to 5.5PN [15, 16] and other multipoles to

8 We use the Yℓm’s defined in Eqs. (2.7) and (2.8) of Ref. [23], or
equivalently by the s = 0 case of Eqs. (4) and (5) of Ref. [12].

9 When expressing cℓ+ǫ(ν) as an explicit function of ν, as in
Ref. [12], it is useful to note that cℓ+ǫ(ν) vanishes in the equal
mass case when ℓ + ǫ is odd, which is equivalent (given that
ǫ = π(ℓ + m) for circular orbits), to m being odd. In such
cases one can factor out, as in Ref. [12, 14], from cℓ+ǫ(ν) a
factor ∆ ≡ X1 − X2 = sign(m1 − m2)

√
1 − 4ν. The cℓ(ν)

in this paper are the same as the sℓ(ν) in [14]. Note how-
ever that in Appendix A of Ref. [12], in the second line above
Eq. (A7), the definition of dℓ should include a supplementary
factor m/δm = 1/(X1 − X2) on the right hand side.

accuracies consistent with 5.5PN GW flux. As explained
later, this information is also appropriately exploited in
our construction.

As indicated above, the resummation method we shall
use here consists in: (i) decomposing the PN-correction

factor ĥ
(ǫ)
ℓm = 1 + h1x + h1.5x

3/2 + . . . into the product of
four factors, each of which has a similar PN expansion,
1 + O(x), namely

ĥ
(ǫ)
ℓm = Ŝ

(ǫ)
eff Tℓmeiδℓmρℓ

ℓm, (8)

and then (ii), resumming separately each factor.
The choice of these various factors is based on our phys-

ical intuition of the main physical effects entering the fi-
nal waveform. The first factor is motivated by thinking
about the form of the equation satisfied by each partial
wave in the (circular) test-mass limit: indeed in this limit

ĥℓm is the asymptotic value (at spatial infinity) of a solu-
tion of a (frequency-domain) wave equation of the Regge-
Wheeler-Zerilli type (see e.g. Ref. [27]). The source term
appearing on the r.h.s. of this equation is a linear combi-
nation of terms linear in the stress-energy tensor Tµν of
a test-particle of mass µ moving around a black hole of
mass M . As the Effective-One-Body method has shown
that the dynamics of comparable-mass black holes can
be mapped onto the dynamics of an effective particle of
mass µ moving in some effective metric (which reduces
to the Schwarzschild metric of mass M when ν → 0), it
is natural to introduce (both when ν → 0 and ν 6= 0)
effective source terms in the partial waves made up from
the important dynamical characteristics of the EOB dy-
namics, namely the effective EOB Hamiltonian Heff and
the EOB angular momentum J . This motivates us to

define as first factor in ĥℓm an effective source term S
(ǫ)
eff

proportional either to Heff or J . Note that this idea of
factoring Heff or J from the wave amplitude is similar
to the suggestion of Ref. [6] of factoring out a pole in
the energy flux. Indeed, the analytical continuation in x
of the flux function F (x) below the LSO inherits, in the
ν → 0 limit, a simple pole from the fact that F (x) is pro-
portional to the square10 of the energy of the “rotating
source” (see discussion p. 893 of [6]).

Our second factor is motivated by thinking about
the structure of the “transfer” function relating (in the
comparable mass case) the far-zone GW amplitude hℓm

to the near zone one. If we keep, in the full Ein-
stein equations considered outside the binary system,
only the terms coupling the instantaneous “monopo-
lar” Arnowitt-Deser-Misner (ADM) mass of the system,
MADM = M + binding energy = Hreal, to the multi-
polar wave amplitude, we get (in the circular approxi-
mation and in the Fourier domain) a Schrödinger-type

10 Note that in the ν → 0 limit both Heff and J have a square-root
singularity ∝ 1/

√
1 − 3x at the light-ring. See e.g. Eqs. (56)-(58)

below.
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equation, for each multipole order ℓ, containing a poten-
tial Vℓ(r) whose leading behavior as r → ∞ is dominated
by two effects: (i) the ℓ(ℓ + 1)/r2 centrifugal barrier,
and (ii) a more slowly decreasing term ∼ −4MADMω2/r
coming from the coupling to a curved (Schwarzschild-
like) “monopolar” background metric. One can solve this
leading-order equation by means of Coulomb wave func-
tions. When doing this, it is found that each asymptotic
partial wave is related to its corresponding near-zone ex-
pression by a certain “tail” factor Tℓm. It can be checked
that, in the comparable mass case, this tail factor rep-
resents the resummation of the infinite number of lead-
ing logarithms (see Eqs. (7)-(9) in [2]) that appear when
computing asymptotic multipolar waves in the MPM for-
malism [3, 19, 20]. Having so factorized two of the main

physical effects entering ĥℓm, we define the two other
factors as the phase, eiδℓm and the modulus, fℓm of the
remaining quotiented Newton-normalized waveform. In
this subsection we discuss in detail the first three factors,
postponing to the following one the last one, namely the
modulus fℓm.

Let us start by discussing the structure of the Ŝ
(ǫ)
eff and

Tℓm factors. In the even-parity case (corresponding to
mass moments), since the leading order source of grav-
itational radiation is given by the energy density, it is
natural to define

Ŝ
(0)
eff (x) = Ĥeff(x) ℓ + m even. (9)

Here, Ĥeff is the effective EOB Hamiltonian (per unit
µ mass), that we shall restrict here along the sequence

of EOB circular orbits. When ν → 0, Ĥeff reduces
to the usual conserved energy of a test-mass µ in a
Schwarzschild background of mass M (see Eq. (56) be-
low).

The explicit expression of Ĥeff , along circular orbits,
as a function of the frequency parameter x, cannot be
written in closed form [7, 8]. However, it can be written
in parametric form in terms of the EOB inverse radius
parameter11 u = 1/r. More precisely, we have

Ĥeff =
Heff

µ
=

√

A(u)(1 + j2u2) (circular orbits),

(10)
where u = 1/r, and where A(u)(≡ −geffective

00 (r)) is the
crucial EOB radial potential and j = J /(µGM) is the
(dimensionless) angular momentum along circular orbits.
We recall that the PN expansion of A(u) has the form

ATaylor(u) =1 − 2u + 2νu3 +

(

94

3
− 41

32
π2

)

νu4 + a5νu5

+ O(νu6), (11)

11 As usual in EOB work, we use dimensionless variables, notably
r = Rc2/GM , where R is the EOB Schwarzschild-like radial
coordinate.

where the u4 term corresponds to 3PN contributions to
the EOB dynamics [28] and where we have parametrized
the presence of yet uncalculated 4PN (and higher) contri-
butions to A(u) by adding a term +a5(ν)u5 with the sim-
ple form a5(ν) = a5ν. As in previous EOB work, we shall
not use the Taylor-expanded function ATaylor(u), but re-
place it by a suitably Padé resummed function A(u).

The circular orbits in the EOB formalism are deter-
mined by the condition ∂u

{

A(u)[1 + j2u2]
}

= 0, which
leads to the following parametric representation of the
squared angular momentum:

j2(u) = − A′(u)

(u2A(u))′
(circular orbits), (12)

where the prime denotes d/du. Inserting this u-
parametric representation of j2 in Eq. (10) defines the
u-parametric representation of the effective Hamiltonian
Ĥeff(u). We can then obtain (at least numerically) Ĥeff

as a function of x by eliminating u between Ĥeff(u) and
the corresponding u-parametric representation of the fre-
quency parameter x = (GMΩ/c3)2/3 obtained by the
angular Hamilton equation of motion in the circular case

MΩ(u) =
1

µ

∂Hreal

∂j
=

MA(u)j(u)u2

HrealĤeff

, (13)

where Hreal denotes the real EOB Hamiltonian

Hreal = M

√

1 + 2ν
(

Ĥeff − 1
)

. (14)

While in the even-parity case we shall factor out
Ĥeff(x) as a “source term”, in the odd-parity one we ex-
plored two, equally motivated, possibilities. The first one
consists simply in still factoring Ĥeff(x); i.e., in defining

Ŝ
(1,H)
eff = Ĥeff(x) ℓ + m odd. (15)

The second one consists in factoring the angular mo-
mentum J . Indeed, the angular momentum density
ǫijkxjτ0k enters as a factor in the (odd-parity) current
moments, and J occurs (in the small-ν limit) as a fac-
tor in the source of the Regge-Wheeler-Zerilli odd-parity
multipoles. This leads us to define as second possibility

Ŝ
(1,J)
eff = ĵ(x) ≡ x1/2j(x) ℓ + m odd, (16)

where ĵ denotes what can be called the “Newton-
normalized” angular momentum, namely the ratio ĵ(x) =
j(x)/jN (x) with jN (x) = 1/

√
x. [This Newtonian nor-

malization being such that ĵ(x) = 1 + O(x).] We will
discuss below the relative merits of these two possible
choices. Note that the PN expansions of these two pos-
sible sources start as

Ĥeff(x) = 1 − 1

2
x + O(x2), (17)

ĵ(x) = 1 +

(

3

2
+

ν

6

)

x + O(x2). (18)
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The second building block in our factorized decomposi-
tion is the “tail factor” Tℓm (introduced in Refs. [1, 2]).
As mentioned above, Tℓm is a resummed version of an in-
finite numbers of “leading logarithms” entering the trans-
fer function between the near-zone multipolar wave and
the far-zone one, due to tail effects linked to its propa-
gation in a Schwarzschild background of mass MADM =
Hreal. Its explicit expression reads

Tℓm =
Γ(ℓ + 1 − 2i

ˆ̂
k)

Γ(ℓ + 1)
eπ

ˆ̂
ke2i

ˆ̂
k log(2kr0), (19)

where r0 = 2GM and
ˆ̂
k ≡ GHrealmΩ and k ≡ mΩ. Note

that
ˆ̂
k differs from k by a rescaling involving the real

(rather than the effective) EOB Hamiltonian, Eq. (14).
The tail factor Tℓm is a complex number which already

takes into account some of the dephasing of the partial
waves as they propagate out from the near zone to infin-
ity. However, as the tail factor only takes into account
the leading logarithms, one needs to correct it by a com-
plementary dephasing term, eiδℓm , linked to subleading
logarithms and other effects. This subleading phase cor-
rection can be computed as being the phase δℓm of the

complex ratio between the PN-expanded ĥ
(ǫ)
ℓm and the

above defined source and tail factors. In the comparable-
mass case (ν 6= 0), the 3PN δ22 phase correction to the
leading quadrupolar wave was computed in Ref. [2] (see
also Ref. [1] for the ν = 0 limit). For the subleading
partial waves, we computed the other δℓm’s to the high-
est possible PN-accuracy by starting from the currently
known 3PN-accurate ν-dependent waveform [14]. Our
explicit results read

δ22 =
7

3
y3/2 +

428π

105
y3 − 24νȳ5/2, (20)

δ21 =
2

3
y3/2 − 493ν

42
ȳ5/2, (21)

δ33 =
13

10
y3/2 − 80897

2430
νȳ5/2, (22)

δ32 =
10 + 33ν

15(1 − 3ν)
y3/2, (23)

δ31 =
13

30
y3/2 − 17ν

10
ȳ5/2, (24)

δ44 =
112 + 219ν

120(1 − 3ν)
y3/2, (25)

δ43 =
486 + 4961ν

810(1 − 2ν)
y3/2, (26)

δ42 =
7(1 + 6ν)

15(1 − 3ν)
y3/2, (27)

δ41 =
2 + 507ν

10(1 − 2ν)
y3/2, (28)

δ55 =
96875 + 857528ν

131250(1− 2ν)
y3/2. (29)

Here, following Ref. [2], we define y ≡ (HrealΩ)2/3, which
gathers together relativistic corrections (like those enter-
ing the tail) that depend on the instantaneous ADM mass

of the system, namely Hreal, rather than the total “me-
chanical mass”M . Concerning the last ȳ5/2 corrections,
it is not clear whether they are more linked to the ADM
mass or to the mechanical mass. This is why we use
the notation ȳ, meaning that it could be replaced either
by x or y [note that in Ref. [2] we chose ȳ = x inside
the −24νȳ5/2 correction to δ22, Eq. (11) there ]. Indeed,
these 2.5PN terms are not known to 1PN fractional ac-
curacy because we rely here on the available 3PN (and
not 3.5PN) accurate results of [14].

In the extreme-mass-ratio limit ν → 0, the informa-
tion needed to compute some of the higher-order PN
corrections to the δℓm’s is contained in the results of
Ref. [15]. We leave to future work the task of exploit-
ing this information to complete the above ν-dependent
δℓm’s with higher-order ν = 0 corrections. In addition
we shall leave here the δℓm’s in Taylor-expanded form.
We leave to future work an eventual comparison between
numerically determined phases and (possibly resummed)
analytic ones.

C. The fourth factor in the multiplicative

decomposition of the PN fractional correction ĥ
(ǫ)
ℓm

The fourth and last factor in the multiplicative decom-
position, Eq. (8), can be computed as being the modulus

fℓm of the complex ratio between the PN-expanded ĥ
(ǫ)
ℓm

and the above defined source and tail factors. In the com-
parable mass case (ν 6= 0), the f22 modulus correction to
the leading quadrupolar wave was computed in Ref. [2]
(see also Ref. [1] for the ν = 0 limit). For the subleading
partial waves, we compute here the other fℓm’s to the
highest possible PN-accuracy by starting from the cur-
rently known 3PN-accurate ν-dependent waveform [14].
In addition, as originally proposed in Ref. [2], to reach
greater accuracy the fℓm(x; ν)’s extracted from the 3PN-
accurate ν 6= 0 results are complemented by adding
higher order contributions coming from the ν = 0 re-
sults [15, 16]. In the particular f22 case discussed in [2],
this amounted to adding 4PN and 5PN ν = 0 terms. This
“hybridization” procedure is here systematically pursued
for all the other multipoles, using the 5.5PN accurate
calculation of the multipolar decomposition of the grav-
itational wave energy flux done in Refs. [15, 16]. It is
worth emphasizing at this stage that our hybridization
procedure is not equivalent to the straightforward hybrid

sum ansatz, h̃ℓm = h̃known
ℓm (ν) + h̃higher

ℓm (ν = 0) (where

h̃ℓm ≡ hℓm/ν) that one may have chosen to implement.
The detailed definition of the hybridization procedure
that we use, as well as the reasons why we think that
our procedure is better than others, will be explained
below.

In the even-parity case, the determination of the mod-
ulus fℓm is unique. In the odd-parity case, it depends
on the choice of the source which, as explained above,
can be either connected to the effective energy or to the
angular momentum. We will consider both cases and dis-
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tinguish them by adding either the label H or J of the
corresponding fℓm. Note, in passing, that, since in both
cases the factorized effective source term (Heff or J ) is a
real quantity, the phases δℓm’s are the same.

The above explained procedure defines the fℓm’s as
Taylor-expanded PN series of the type

fℓm(x; ν) = 1+cfℓm

1 (ν)x+cfℓm

2 (ν)x2+cfℓm

3 (ν, log(x))x3+. . .
(30)

Note that one of the virtues of our factorization is to
have separated the half-integer powers of x appearing in

the usual PN-expansion of h
(ǫ)
ℓm from the integer powers,

the tail factor, together with the complementary phase
factor eiδℓm , having absorbed all the half-integer powers.

We have computed all the fℓm’s (both for the H and
J choices) up to the highest available (ν-dependent or
not) PN accuracy. In the formulas for the fℓm’s given
below we “hybridize” them by adding to the known ν-
dependent coefficients cfℓm

n (ν) in Eq. (30) the ν = 0 value

of the higher order coefficients: cfℓm

n′ (ν = 0). The 1PN-
accurate fℓm’s for ℓ + m even and – thanks to the new
results for 1PN current multipoles obtained in Appendix
A for arbitrary ℓ – also for ℓ+m odd can be written down
for all ℓ. In Appendix B we list the complete results for
the fℓm’s that are known with an accuracy higher than
1PN. Here, for illustrative purposes, we quote only the

lowest f even
ℓm and fodd,J

ℓm up to ℓ = 3 included.

f22(x; ν) = 1 +
1

42
(55ν − 86)x +

(

2047ν2 − 6745ν − 4288
)

1512
x2

+

(

114635ν3

99792
− 227875ν2

33264
+

41

96
π2ν − 34625ν

3696
− 856

105
eulerlog2(x) +

21428357

727650

)

x3

+

(

36808

2205
eulerlog2(x) − 5391582359

198648450

)

x4 +

(

458816

19845
eulerlog2(x) − 93684531406

893918025

)

x5 + O(x6), (31)

fJ
21(x; ν) = 1 +

(

23ν

42
− 59

28

)

x +

(

85ν2

252
− 269ν

126
− 5

9

)

x2 +

(

88404893

11642400
− 214

105
eulerlog1(x)

)

x3

+

(

6313

1470
eulerlog1(x) − 33998136553

4237833600

)

x4 + O(x5), (32)

f33(x; ν) = 1 +

(

2ν − 7

2

)

x +

(

887ν2

330
− 3401ν

330
− 443

440

)

x2 +

(

147471561

2802800
− 78

7
eulerlog3(x)

)

x3

+

(

39 eulerlog3(x) − 53641811

457600

)

x4 + O(x5), (33)

fJ
32(x; ν) = 1 +

320ν2 − 1115ν + 328

90(3ν − 1)
x +

39544ν3 − 253768ν2 + 117215ν − 20496

11880(3ν − 1)
x2

+

(

110842222

4729725
− 104

21
eulerlog2(x)

)

x3 + O(x4), (34)

f31(x; ν) = 1 +

(

−2ν

3
− 13

6

)

x +

(

−247ν2

198
− 371ν

198
+

1273

792

)

x2

+

(

400427563

75675600
− 26

21
eulerlog1(x)

)

x3 +

(

169

63
eulerlog1(x) − 12064573043

1816214400

)

x4 + O(x5). (35)

For convenience and readability, we have introduced the
following “eulerlog” functions eulerlogm(x)

eulerlogm(x) = γE + log 2 +
1

2
log x + log m, (36)

which explicitly reads, when m = 1, 2, 3,

eulerlog1(x) = γE + log 2 +
1

2
log x, (37)

eulerlog2(x) = γE + 2 log 2 +
1

2
log x, (38)

eulerlog3(x) = γE + log 2 + log 3 +
1

2
log x, (39)
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where γE is Euler’s constant, γE = 0.577215 . . . and
log(x) denotes, as everywhere else in this paper, the nat-
ural logarithm function.

D. Resumming the modulus factor fℓm

The decomposition of the total PN-correction factor

ĥ
(ǫ)
ℓm into several factors is in itself a resummation pro-

cedure which has already improved the convergence of
the PN series one has to deal with: indeed, one can see
that the coefficients entering increasing powers of x in
the fℓm’s tend to be systematically smaller than the co-

efficients appearing in the usual PN expansion of ĥ
(ǫ)
ℓm.

The reason for this is essentially twofold: (i) the factor-
ization of Tℓm has absorbed powers of mπ which con-

tributed to make large coefficients in ĥ
(ǫ)
ℓm, and (ii) the

factorization of either Ĥeff or ĵ has (in the ν = 0 case)
removed the presence of an inverse square-root singu-
larity located at x = 1/3 which caused the coefficient
of xn in any PN-expanded quantity to grow as 3n as
n → ∞. To prevent some potential misunderstandings,
let us emphasize that we are talking here about a singu-
larity entering the analytic continuation (to larger values
of x) of a mathematical function h(x) defined (for small
values of x) by considering the formal adiabatic circular
limit. The point is that, in the ν → 0 limit, the ra-
dius of convergence and therefore the growth with n of
the PN coefficients of h(x) (Taylor-expanded at x = 0),
are linked to the singularity of the analytically contin-
ued h(x) which is nearest to x = 0 in the complex x-
plane. In the ν → 0 case, the nearest singularity in the
complex x-plane comes from the source factor Ĥeff(x)

or ĵ(x) in the waveform and is located at the light-ring
xLR(ν = 0) = 1/3. In the ν 6= 0 case, the EOB for-
malism transforms the latter (inverse square-root) sin-
gularity in a more complicated (“branching”) singularity

where dĤeff/dx and dĵ/dx have inverse square-root sin-
gularities located at what is called [2, 8, 11, 18, 29] the
(Effective)12 “EOB-light-ring”, i.e., the (adiabatic) max-

imum of Ω, xadiab
ELR (ν) ≡

(

MΩadiab
max

)2/3
& 1/3.

Despite this improvement, the resulting “convergence”
of the usual Taylor-expanded fℓm(x)’s quoted above does
not seem to be good enough, especially near or below the
LSO, in view of the high-accuracy needed to define grav-
itational wave templates. For this reason, Refs. [1, 2]
proposed to further resum the f22(x) function via a Padé
(3,2) approximant, P 3

2 {f22(x; ν)}, so as to improve its
behavior in the strong-field-fast-motion regime. Such a
resummation gave an excellent agreement with numeri-

12 Beware that this “Effective EOB-light-ring” occurs for a circular-
orbit radius slightly larger than the purely dynamical (circular)
EOB-light-ring (where Heff and J would formally become infi-
nite).

cally computed waveforms, near the end of the inspiral
and during the beginning of the plunge, for different mass
ratios [1, 10, 18]. Here, however, we wish to explore a new
route for resumming fℓm, based on replacing fℓm by its
ℓ-th root, say

ρℓm(x; ν) = [fℓm(x; ν)]1/ℓ. (40)

Our basic motivation for replacing fℓm by ρℓm is the
following: the leading “Newtonian-level” contribution

to the waveform h
(ǫ)
ℓm contains a factor ωℓrℓ

harmvǫ where
rharm is the harmonic radial coordinate used in the MPM
formalism [30, 31] . When computing the PN expan-
sion of this factor one has to insert the PN expansion
of the (dimensionless) harmonic radial coordinate rharm,
rharm = x−1(1 + c1x + O(x2)), as a function of the
gauge-independent frequency parameter x. The PN re-
expansion of [rharm(x)]ℓ then generates terms of the type
x−ℓ(1+ℓc1x+ ....). This is one (though not the only one)
of the origins of 1PN corrections in hℓm and fℓm whose
coefficients grow linearly with ℓ. As we shall see in de-
tail below, these ℓ-growing terms are problematic for the
accuracy of the PN-expansions. Our replacement of fℓm

by ρℓm is a cure for this problem.
More explicitly, the investigation of 1PN corrections to

GW amplitudes [12, 30, 31] has shown that, in the even-
parity case (but see also Appendix A for the odd-parity
case),

c
feven

ℓm

1 (ν) = −ℓ
(

1 − ν

3

)

+
1

2
+

3

2

cℓ+2(ν)

cℓ(ν)
− bℓ(ν)

cℓ(ν)

− cℓ+2(ν)

cℓ(ν)

m2(ℓ + 9)

2(ℓ + 1)(2ℓ + 3)
, (41)

where cℓ(ν) is defined in Eq. (7) and, consistently with
the notation of Appendix A,

bℓ(ν) ≡ Xℓ
2 + (−)ℓXℓ

1. (42)

As we shall see below, the ν dependence of cfℓm

1 (ν) is
quite mild. For simplicity, let us focus on the ν = 0 case,
where the above result shows that the PN expansion of
fℓm starts as

f even
ℓm (x; 0) = 1−ℓx

(

1 − 1

ℓ
+

m2(ℓ + 9)

2ℓ(ℓ + 1)(2ℓ + 3)

)

+O(x2).

(43)
The crucial thing to note in this result is that as ℓ gets
large (keeping in mind that |m| ≤ ℓ), the coefficient of
x will be negative and will approximately range between
−5ℓ/4 and −ℓ. This means that when ℓ ≥ 6 the 1PN
correction in fℓm would by itself make fℓm(x) vanish be-
fore the (ν = 0) LSO x = 1/6. For example, for the
ℓ = m = 6 mode, one has f1PN

66 (x; 0) = 1 − 6x(1 +
11/42) ≈ 1−6x(1+0.26) which means a correction equal
to −100% at x = 1/7.57 and larger than −100% at the
LSO, namely f1PN

66 (1/6; 0) ≈ 1 − 1.26 = −0.26. This is
definitely incompatible with the numerical data we shall
quote below. Similar results hold also for the odd-parity
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fℓm’s, especially in the case where we factorize the J
source (which happens to have close similarities to the
H-factored even-parity fℓm). Indeed, we have extended
the result of Eq. (43) to the odd-parity case, i.e. we have
computed, (using the comparable mass 1PN results of
Ref. [31]) the 1PN correction in fℓm and ρℓm. In the
ν → 0 limit, we found that (see Appendix A for more
details and for a discussion of the comparable-mass case)

fJ
ℓm(x; 0) = 1 − ℓx

×
(

1 +
1

ℓ
− 2

ℓ2
+

m2(ℓ + 4)

2ℓ(ℓ + 2)(2ℓ + 3)

)

+ O(x2),

(44)

which is structurally similar to the even-parity expression
quoted above.

Let us now see how the replacement of fℓm by the
newly defined ρℓm, Eq. (40), cures this problem of abnor-
mally large 1PN corrections to the waveforms for large
values of ℓ. Indeed, the Taylor expansion of ρℓm now
starts as (say for simplicity in the ν = 0, even-parity
case)

ρeven
ℓm (x; 0) = 1−x

(

1 − 1

ℓ
+

m2(ℓ + 9)

2ℓ(ℓ + 1)(2ℓ + 3)

)

+O(x2).

(45)
Note that for large ℓ and arbitrary m the coefficient of
x now approximately ranges between −5/4 and −1. We
shall see below that the nice behavior of ρℓm expected
from this 1PN estimate indeed holds for the exact ρℓm,
at least in the ν = 0 case. In addition, the same struc-
ture is found in the odd-parity ρJ

ℓm’s. In particular, from
Eq. (44) above one finds

ρJ
ℓm(x; 0) = 1 − x

×
(

1 +
1

ℓ
− 2

ℓ2
+

m2(ℓ + 4)

2ℓ(ℓ + 2)(2ℓ + 3)

)

+ O(x2),

(46)

where, for ℓ ≫ 1, the coefficient of x again approximately
ranges between −5/4 and −1.

We have computed all the ρℓm’s (both for the H and
J choices) up to the highest available (ν-dependent or
not) PN accuracy. In the formulas for the ρℓm’s given
below we “hybridize” them by adding to the known ν-
dependent coefficients cρℓm

n (ν) in the Taylor expansion of
ρℓm’s,

ρℓm(x; ν) = 1+cρℓm

1 (ν)x+cρℓm

2 (ν)x+cρℓm

3 (log(x); ν)x3+. . . .
(47)

the ν = 0 value of the higher order coefficients
cρℓm

n′ (ν = 0). Beware that this definition of an hybrid
ρℓm is not equivalent to that displayed in Eqs (31)-(35)
above of an analogous hybrid fℓm (nor is it equivalent to
a straightforward hybridization of hℓm). The primary hy-
bridization procedure that we advocate (and use) in this
paper is the one based on ρℓm (i.e., replacing cρℓm

n′ (ν) by
cρℓm

n′ (0) when n′ is beyond the maximal ν-dependent PN
knowledge). The 1PN-accurate ρℓm’s for ℓ + m even and
– thanks to the new results for hℓm for ℓ + m odd in Ap-
pendix A – also for ℓ+m odd are explicitly known for all
ℓ. For the 1PN coefficient of the ρℓm’s we explicitly have

c
ρeven

ℓm

1 (ν) = −
(

1 − ν

3

)

+
1

2ℓ
+

3

2ℓ

cℓ+2(ν)

cℓ(ν)
− 1

ℓ

bℓ(ν)

cℓ(ν)

− m2(ℓ + 9)

2ℓ(ℓ + 1)(2ℓ + 3)

cℓ+2(ν)

cℓ(ν)
, (48)

c
ρJ

ℓm

1 (ν) = −
(

1 − ν

3

)

− 1

2ℓ

(

5 − ν

3

)

− ν

2ℓ2

+
2ℓ + 3

2ℓ2

bℓ+1(ν)

cℓ+1(ν)
+ 2ν

ℓ + 1

ℓ2

bℓ−1(ν)

cℓ+1(ν)

+
1

2

ℓ + 1

ℓ2

cℓ+3(ν)

cℓ+1(ν)
− m2(ℓ + 4)

2ℓ(ℓ + 2)(2ℓ + 3)

cℓ+3(ν)

cℓ+1(ν)
.

(49)

For definiteness, we give in Appendix B the complete
results, for ρℓm (even-parity) and ρJ

ℓm (odd-parity), up to
ℓ = 8 included. Here, for illustrative purposes, we quote
only some of the lowest multipole results up to ℓ = 3
included.

ρ22(x; ν) = 1 +

(

55ν

84
− 43

42

)

x +

(

19583ν2

42336
− 33025ν

21168
− 20555

10584

)

x2

+

(

10620745ν3

39118464
− 6292061ν2

3259872
+

41π2ν

192
− 48993925ν

9779616
− 428

105
eulerlog2(x) +

1556919113

122245200

)

x3

+

(

9202

2205
eulerlog2(x) − 387216563023

160190110080

)

x4 +

(

439877

55566
eulerlog2(x) − 16094530514677

533967033600

)

x5 + O(x6),

(50)
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ρJ
21(x; ν) = 1 +

(

23ν

84
− 59

56

)

x +

(

617ν2

4704
− 10993ν

14112
− 47009

56448

)

x2

+

(

7613184941

2607897600
− 107

105
eulerlog1(x)

)

x3 +

(

6313

5880
eulerlog1(x) − 1168617463883

911303737344

)

x4 + O(x5), (51)

ρ33(x; ν) = 1 +

(

2ν

3
− 7

6

)

x +

(

149ν2

330
− 1861ν

990
− 6719

3960

)

x2 +

(

3203101567

227026800
− 26

7
eulerlog3(x)

)

x3

+

(

13

3
eulerlog3(x) − 57566572157

8562153600

)

x4 + O(x5), (52)

ρJ
32(x; ν) = 1 +

320ν2 − 1115ν + 328

270(3ν − 1)
x +

3085640ν4 − 20338960ν3 − 4725605ν2 + 8050045ν − 1444528

1603800(1− 3ν)2
x2

+

(

5849948554

940355325
− 104

63
eulerlog2(x)

)

x3 + O(x4), (53)

ρ31(x; ν) = 1 +

(

−2ν

9
− 13

18

)

x +

(

−829ν2

1782
− 1685ν

1782
+

101

7128

)

x2 +

(

11706720301

6129723600
− 26

63
eulerlog1(x)

)

x3

+

(

169

567
eulerlog1(x) +

2606097992581

4854741091200

)

x4 + O(x5). (54)

III. RESULTS FOR THE
EXTREME-MASS-RATIO CASE (ν = 0)

A. Extracting the ρExact

ℓm multipoles from black-hole
perturbation numerical data

To test our new resummation procedure based on the
ρℓm’s we shall compare the analytical results defined by
our multiplicative decomposition Eq. (8) to the “exact”
results obtained by numerical analysis of black hole per-
turbation theory. For most of the comparisons discussed
below we will rely on data kindly provided by Emanuele
Berti, who computed the multipolar decomposition of the
GW flux from stable circular orbits above the LSO with
a frequency-domain code which solves numerically the
Teukolsky equation with a point-particle source. (see for
example Ref. [17] and references therein). In addition, we
have complemented Fig. 5 by computing the quadrupolar
GW energy flux F22 from a sample of unstable circular
orbits with radius between 6M and 3.1M .

The result of the numerical computation is expressed in
terms of the multipolar pieces Fℓm of the total “exact”
flux, Eq. (2). We shall only consider multipoles up to
ℓ = 6 included. The “exact” ν → 0 version of our new
quantities ρℓm(x; ν)’s are then obtained from the “exact”

partial fluxes FExact
ℓm as

ρ
Exact,(ǫ)
ℓm (x; 0) =







√

FExact
ℓm /FNewton

ℓm

|Tℓm|Ŝ(ǫ)
eff







1/ℓ

, (55)

where, for ν = 0, we explicitly have

Ŝ
(0)
eff (x) =

1 − 2x√
1 − 3x

, (56)

and either

Ŝ
(1,H)
eff (x) =

1 − 2x√
1 − 3x

, (57)

or

Ŝ
(1,J)
eff (x) =

1√
1 − 3x

. (58)

Still in the ν → 0 limit, we have Hreal → M , and, from
well-known properties of the Γ function, the square mod-
ulus of the tail factor Tℓm reads

|Tℓm|2 =
1

(ℓ!)2
4π

ˆ̂
k

1 − e−4π
ˆ̂
k

ℓ
∏

s=1

[

s2 + (2
ˆ̂
k)2

]

, (59)

where now
ˆ̂
k = mMΩ = mx3/2 = mv3.
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FIG. 3: Extreme-mass-ratio limit (ν = 0). The “exact” functions ρℓm(x) for 0 < x < 1/6 extracted from E. Berti’s numerical
fluxes. Multipoles up to ℓ = 6 are considered. Each panel corresponds to one value of ℓ and shows the even-parity partial
amplitudes (black online) together with the odd-parity ones (red online).

B. Finding structure in the ρExact

ℓm multipoles
extracted from numerical data

Let us first consider the properties of the “exact” ρℓm’s.
In the odd-parity case we shall focus here on the J -

normalized quantity ρJ
ℓm. We shall see that the ρℓm’s

convey interesting information about the x dependence
of the multipolar GW amplitudes. Fig. 3 exhibits the
numerical ρℓm functions for ℓ ≤ 6, versus x = (MΩ)2/3
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(where we recall that Ω denotes the orbital frequency)
up to the ν = 0 LSO, x = 1/6. Each panel of the figure
displays, for each given 2 ≤ ℓ ≤ 6, the partial ρℓm’s for
the various possible m’s, 1 ≤ m ≤ ℓ (we do not plot the
negative m’s since they correspond to the same value of
ρℓm). The even-parity (ℓ+m even, black online) and odd-
parity (ℓ +m odd, red online) modes are shown together
for comparison.

Fig. 3 displays the following noticeable facts: (i) to a
good approximation, all the ρℓm(x) are straight lines13

(see below); (ii) for each value of ℓ, the (negative) slopes
of the dominant m = ℓ (even-parity), and subdominant
m = ℓ−1 (odd-parity) multipole modes are very close to
each other; and these slopes become closer and closer as
the value of ℓ increases (note in particular that for ℓ = 6
ρ66(x) and ρ65(x) are practically coincident); (iii) for a
given value of ℓ, and a given parity (even or odd), the
absolute value of the (negative) slope decreases mono-
tonically as |m| decreases. This “order” in the “exact”
data can be analytically understood.

The property (i) means that the 1PN correction is al-
ready capturing most of the physical information, which
might turn out to be a useful fact to know (see below).
We illustrate this result in Fig 4 which focuses on the
quadrupolar (ℓ = 2) partial waves, and exhibits the ex-
act ρ22 and ρJ

21 (solid and dashed lines) together with
their 1PN approximations (dotted lines). Note, for in-
stance, that the difference between the 1PN accurate,
ρ1PN
22 , that we shall denote14 T1[ρ22] ≡ ρ1PN

22 = 1+ cρℓm

1 x,
and the “exact” one ρExact

22 is equal, at the LSO, to
ρ1PN
22 − ρExact

22 = 0.8294 − 0.8143 = 0.0151, which is only
1.9% of the exact result 0.8143. The other multipoles
exhibit a similar agreement between the exact ρℓm and
their analytical 1PN representations. To understand an-
alytically what underlies this agreement, let us consider
the ℓ = m = 2 case. Numerically, from Eq. (50) we have,
near the LSO (for simplicity, we replace the log(x) terms
present in the coefficients by their numerical values at
x = 1/6)

ρ22(x; 0) ≈ 1 − 1.024x− 1.942x2

+ 8.384x3 + 2.038x4 − 21.690x5

≈ 1 − 0.171(6x)− 0.054(6x)2

+ 0.039(6x)3 + 0.0016(6x)4 − 0.0028(6x)5.
(60)

We see that the successive coefficients of the PN-
expansion of ρ22 are such that, even at the LSO, the

13 In the odd-parity case, ℓ + m odd, this quasi-linear behavior
up to the LSO, is particularly clear for the functions ρJ

ℓm(x)’s.

By contrast, the H-normalized functions ρH
ℓm(x) have a more ℓ-

dependent shape that the reader can figure out by noting the
link between them: ρH

ℓm = ρJ
ℓm/(1 − 2x)1/ℓ.

14 Here and in the following we shall denote the truncated n-PN-
accurate expansion of any function f(x) as Tn[f(x)] ≡ f0+f1x+
· · · + fnxn.

FIG. 4: Extreme-mass-ratio limit (ν = 0). Comparison be-
tween the “exact” leading and subleading quadrupolar ampli-
tudes ρ22 and ρ21 and the corresponding 1PN-accurate ana-
lytical ones.

magnitudes of the PN-corrections beyond the 1PN one
are rather small. They are significantly smaller than
the corresponding terms in the usual PN-expansion of
the total flux. For instance, by contrast to the coeffi-
cient −21.69 which enters the 5PN-correction in ρ22, let
us recall that the coefficient (including the log(x) esti-
mated at the LSO) of the 5PN correction in the usual
PN-expanded flux is ≈ −1321.402 (see e.g. [6]). Note
that the latter 5PN contribution to the PN-expanded flux
considered at the LSO is −1321.40/65 ≈ −0.17 which is
as large as the 1PN contribution to ρ22 and about sixty
times larger than the corresponding 5PN correction to
ρ22. In addition, as the signs in Eq. (60) fluctuate, there
are compensations between the higher PN contributions,
as it will be clear from further results presented below.

Property (ii) can be analytically understood by means
of the 1PN-accurate closed formulas, Eqs. (45)-(46). In-
deed, it is easily checked that the difference between the
coefficients of x Eq. (45) for m = ℓ and Eq. (46) for
m = ℓ − 1 is of order O(1/ℓ2) when ℓ gets large.

Finally, property (iii) is understood by noting that
the coefficients of x in Eqs. (45)-(46) have the structure
−(a(ℓ) + m2b(ℓ)) where a(ℓ) and b(ℓ) are positive.

C. Comparing Taylor and Padé approximants of ρ22

Let us now compare and contrast the “convergence” of
various PN-approximants towards the “exact” (numer-
ical) ρ22. We first focus on the values of various ap-
proximants to ρ22(x) at the LSO, i.e. at xLSO = 1/6 or
actually the last point in the numerical data computed
by E. Berti, xlast = 1/6.00001. At the point x = xlast

the numerical value of the Newton-normalized ℓ = m = 2



15

TABLE II: Closeness of various resummed approximants to
ρ22 at the LSO, xLSO = 1/6, or actually xlast = 1/6.00001.
The rightmost column lists the difference ∆ρ22 between the
resummed approximant and the exact value at x = xlast

Approximant ρ22(xlast) ∆ρ22(xlast)

ρExact
22 0.8143372247 0

T1[ρ22] 0.8293653638 0.0150281391

T2[ρ22] 0.7754188106 -0.0389184141

T3[ρ22] 0.8142342355 -0.0001029892

T4[ρ22] 0.8158069452 0.0014697205

T5[ρ22] 0.8130176477 -0.0013195770

P 4
1 {T5[ρ22]} 0.8148012716 0.0004640469

P 1
4 {T5[ρ22]} 0.8146954164 0.0003581917

P 3
2 {T5[ρ22]} 0.8132320684 -0.0011051563

P 2
3 {T5[ρ22]} 0.8146954104 0.0003581857

partial flux is F̂22 ≡ F22/FN
22 = 0.8927266028. This cor-

responds to ρExact
22 (xlast) = 0.8143372247. In Table II we

compare this value to several PN-based approximants:
both Taylor approximants, from 1PN to 5PN (T1[ρ22]
to T5[ρ22]) and several of the “around the diagonal”
5PN-accurate Padé approximants, namely, P 4

1 {T5[ρ22]},
P 1

4 {T5[ρ22]}, P 3
2 {T5[ρ22]} and P 2

3 {T5[ρ22]}. Note how the
sequence of Taylor approximants to ρ22 nicely approaches
the exact value, especially starting with the 3PN approx-
imation. Probably by accident, the Taylor 3PN approx-
imant, T3[ρ22], happens to be closer to the exact value
than the higher order approximants T4 and T5. Besides
this accidental closeness of T3, the important thing to
note is the very small dispersion (within ±1.8 × 10−3)
of T3, T4 and T5 around the correct value. This excel-
lent behavior of the Taylor approximants of ρ22 should be
contrasted with the much worse behavior of the standard
Taylor approximants either of the flux or of the wave-
forms (see for example Fig. 1 in Ref. [5], Fig. 3 in Ref. [6]
and Fig. 6 below, where we directly compare the usual
Taylor approximants to the waveform to our new ρℓm-
based approximants). Note that when considering “Tay-
lor approximants to ρ22” we are actually speaking of a

specifically resummed approximant to the waveform ĥ22.
This approximant has the factorized form of Eq. (8), and
is made of the product of several resummed constituents.
Even the last factor f22 of this product is not used in
Taylor-expanded form (which would be T5[f22]), but in
the minimally resummed way fResummed

22 = (T5[ρ22])
2.

We have also explored several ways of further resum-
ming ρ22, i.e., of replacing its PN-expanded form T5[ρ22]
by various non-Taylor approximants. In view of the good
closeness of the 1PN approximation to ρ22 to the exact re-
sult we explored, in particular, some “factorized” approx-
imants (similar to those considered for the A(u) func-
tion in Ref. [32]) of the type ρ22(x) = (1 + cρ22

1 x)ρ̄22(x).
We will not show our results for these approximants

TABLE III: Newton-normalized energy flux, and partial am-
plitudes f22 and ρ22, for a sample of unstable circular orbits
computed via the time-domain code of Ref. [33]. These val-
ues of ρ22 are represented as empty circles in Fig. 5. The
case r = 6 is shown here only for comparison with frequency-
domain-based results.

r x F̂ time
22 f time

22 ρtime
22

6 0.1666 0.897 0.665 0.815

5 0.2000 0.995 0.615 0.784

4 0.2500 1.378 0.562 0.750

3.5 0.2857 2.202 0.539 0.734

3.1 0.3226 6.665 0.513 0.716

here. Instead, let us discuss the use of Padé approxi-
mants for representing T5[ρ22] as a rational function15

of x. As an example, we present in Table II the val-
ues of ρ22(xlast) predicted by using the four “around
the diagonal” 5PN accurate Padé approximants, namely
P 4

1 {T5[ρ22]}, P 1
4 {T5[ρ22]}, P 3

2 {T5[ρ22]} and P 2
3 {T5[ρ22]}.

The important thing to note is that all these approxi-
mants are both consistently clustered among themselves,
as well as closely centered around the correct numerical
value (within ±1.3×10−3). Note also that, apart from T3,
all the Padé approximants are closer to the exact value
than the T4 and T5. [Though the a priori less-accurate
T3 approximant happens to be closer to the exact value
than all other approximants, we consider that this is co-
incidental because the subsequent Taylor approximants
T4 and T5 do not exhibit such a close proximity.]

We display in Fig. 5, the various 5PN-accurate approx-
imants discussed above (together with the 1PN-accurate
T1[ρ22] for comparison) to ρ22(x) over the larger inter-
val 0 ≤ x ≤ xLR, where xLR = 1/3 is the value of the
frequency parameter x at the (ν = 0) “light-ring”. Note
that, while all the 5PN approximants stay very close to
each other (and to the “exact” numerical value, red on-
line) up to the LSO, they start diverging from each other
when x & 0.2. This motivated us to extend the nu-
merical data of E. Berti beyond the LSO, i.e. to con-
sider the GW flux emitted by unstable circular orbits of
Schwarzschild radii 3GM ≤ R ≡ GMr ≤ 6GM , corre-
sponding to 1/6 ≤ x ≤ 1/3. See Table III for results
obtained for such a sample of sub-LSO orbits (they also
appear in Fig. 5 as empty circles). These numbers have
been computed with the time-domain code described in
Ref. [33]. A resolution of ∆r∗ = 0.01 was used. To test
the accuracy of our numerical procedure we computed the
energy flux F̂22 at r = 6 and compared it with the value

15 As in Ref. [2] we consider in this work the logarithmic terms (of
the type eulerlogm(x) in Eqs. (50)-(54)) as part of the coefficients
when Padeing ρℓm(x)
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FIG. 5: Extreme-mass-ratio limit (ν = 0). Resummation of
the function ρ22(x) on the interval 0 ≤ x ≤ 1/3: compari-
son between various Taylor and Padé approximants and the
“exact” function obtained from (both frequency-domain and
time-domain) numerical calculations. The time-domain data
points (see Table III) are indicated as empty circles.

obtained via Berti’s frequency domain code (at the very

close value r = 6.00001). We obtained F̂ time
22 = 0.897342

to be contrasted with F̂ freq
22 = 0.892726, which yields a

fractional difference ∆F̂ /F̂ freq ≈ 0.005. This gives an
indication of the accuracy of our time-domain results,
though we expect, for various numerical reasons, that
the accuracy degrades as r gets below 4.

We do not wish to give too much weight to the indi-
cation given by our sub-LSO results on the behavior of
the function ρ22(x) below the LSO. Indeed, on the one
hand, the GW flux along sub-LSO circular orbits does
represent the analytic continuation of the function F (x)
yielding the GW flux along (stable) super-LSO circular
orbits. As such, the empty circles in Fig. 5 do provide
correct mathematical information about the analytical
continuation of the function ρ22(x) that we are trying to
best approximate. On the other hand, we are evidently
aware that the real dynamics of the “plunge” strongly
deviates from the sequence of unstable circular orbits be-
low the LSO and that the GW flux emitted by a plung-
ing test-mass (or effective source) will not be correctly
represented by this mathematical continuation of F (x).
However, we expect, especially on the basis of the EOB
formalism which has shown that plunging orbits remain
approximately quasi-circular, that, in view of the present
approach where we decompose the GW amplitude into
several different factors having different physical origin,
the mathematical continuation of the ρ22 part is likely
to continue to capture important aspects of the nonlin-
ear relativistic corrections to the waveform [note that we
have in mind using our factorized waveform Eq. (8) along
the EOB quasi-circular plunge together with the correct

instantaneous source Ŝ
(ǫ)
eff and tail corrections Tℓm]. How-

ever, we are also aware that some aspects of the EOB
plunge do physically differ, near the end of the plunge,
in a relevant way from the physics included in the math-
ematical continuation of ρ22(x): namely, the fact that
the ratio (mΩ)2/Vℓ(r) (where Vℓ(r) is the Zerilli poten-
tial) stays always small along the real plunge, while it
increases more along unstable circular orbits and ends
up reaching values of order unity. In other words the
part of ρ22(x) which takes into account the filtering of
Vℓ(r) will be different in the two cases for orbits near the
light-ring. However, with due reserve we think that the
first three empty circles on Fig. 5 do provide a guide-
line for selecting among the various diverging PN ap-
proximants the ones which are likely to provide, within
the EOB formalism, a good zeroth-order approximation
to the wave-amplitude emitted by real plunging orbits.
But, we expect that it will be necessary to correct such a
zeroth-order quasi-circular wave-amplitude by non-quasi-
circular corrections of the type which has already been
found necessary in Refs. [1, 18] to obtain a close agree-
ment between EOB waveforms and numerical waveforms.

If we use such a guideline, Fig. 5 suggests that the
best continuations of ρ22(x) below the LSO are given by
the three particular Padé approximants, P 1

4 , P 4
1 and P 2

3 .
However, as P 4

1 develops a spurious pole (which is barely
visible on the left upper corner of the figure because it
is very localized) at x ≈ 0.038 we will discard it. By
contrast, the other two are robust against the presence
of spurious poles in the useful regime x . 1/3 (although
they develop poles for higher values of x, namely below
the formal “event horizon” value x = 1/2). In the follow-
ing, we shall choose P 2

3 as our current best-bet approx-
imant to the ρ22 function (notably because this is the
natural near-diagonal default Padé approximant). Note
finally, in Fig. 5, how the simple 1PN-accurate Taylor ap-
proximant of ρ22(x) succeeds in providing a reasonably
good representation of ρExact

22 (x) over a very large range
of x values.

D. Comparing resummed waveforms to
Taylor-expanded and exact ones

Up to now, we focussed on the “convergence” of various
PN-based approximants towards the numerically deter-
mined value of the fourth technical building block ρ22

entering the dominant quadrupolar wave.
In this subsection we shall investigate instead the “con-

vergence” of various possible PN-based approximant to-
wards the more physically relevant Newton-normalized

GW amplitudes ĥℓm. On the one hand, we shall con-
sider not only the dominant ℓ = m = 2 wave, but
also a selection of subdominant partial waves. On the
other hand, we shall consider other PN-based approxi-
mants than those considered above. In particular, we

shall compare and contrast the exact moduli |ĥℓm| both
with standard high-accuracy Taylor-expanded waveforms
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(a) (b)

(c) (d)

FIG. 6: Extreme-mass-ratio limit (ν = 0): Various representations of the |ĥ22| waveform modulus. Left panels: standard
PN-expanded amplitudes. Right panels: Various resummed amplitudes. See text for details.

(|ĥℓm| = 1 + c1x + c1.5x
3/2 + c2x

2 + . . . ), and with our

new “resummed with Taylor[ρ]” waveforms ( |ĥℓm| =

Ŝeff |Tℓm|ρℓ
ℓm with ρℓm = 1 + c′1x + c′2x

2 + c′3x
3 + . . . ).

We shall also analyze the performance of our new “re-

summed with Padé[ρ]” waveforms ( |ĥℓm| = Ŝeff |Tℓm|ρℓ
ℓm

with ρℓm = P q
p [1 + c′1x + c′2x

2 + c′3x
3 + . . . ]), at least

for the ℓ = m = 2 dominant mode.16 For definiteness,
we discuss here only, besides the dominant even-parity

quadrupole mode |ĥ22|, the first subdominant odd-parity

mode |ĥ21|, as well as the dominant ℓ = 4 mode |ĥ44|.

Fig. 6 focusses on |ĥ22|. The left panels, (a) and (c),

16 In view of the remarkable agreement, displayed in panel (d) of

Fig. 1, between the exact total flux F̂ (x) and the results ob-
tained by using only “resummed with Taylor[ρ]” approximants,
we will not discuss here the probable improvements that a further
Padéing of the subdominant ρℓm’s might bring in.

display the standard Taylor-expanded |ĥ22| = 1 + c1x +
c1.5x

3/2 + c2x
2 + . . . . More precisely, panel (a) consid-

ers the standard Taylor-expanded amplitudes up to 3PN
accuracy included, while panel (c) displays the standard
Taylor-expanded amplitudes from 3PN to 5.5PN accu-
racy. By contrast, the right panels, (b) and (d), dis-
play our new “resummed with Taylor[ρ]” approximants:
panel (b) exhibits the 1PN, 2PN and 3PN approximants,
while panel (d) contrasts the 3PN, 4PN and 5PN approx-
imants.17 Consistently with previous studies [5, 6] (done
at the level of the flux) there is evidently more scatter in
the standard Taylor-expanded amplitudes than in the re-
summed ones. In particular, note that the standard 1PN-

17 Note that because our tail factor (together with eiδℓm) has conve-
niently resummed all the half-integer powers of x, the left panels
have to include half-integer PN-approximants, while the right
panels have only integer-power approximants.
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FIG. 7: Extreme-mass-ratio limit (ν = 0). Resummation

of the |ĥ22| waveform modulus: contrasting “resummed with
Taylor[ρ]” approximants with some 5PN-accurate “resummed
with Padé[ρ]” approximants. See text for definitions and ex-
planations.

accurate Taylor approximant gives a grossly inaccurate

representation of ĥ22 as soon as x & 0.05 (building up
to −40% at the LSO), while our new-resummed T1[ρ22]-
based waveform not only captures the qualitative behav-
ior of the exact waveform, but also reproduces it quan-
titatively within ∼ 4% even at the LSO. On the other
hand, for 3PN and higher accuracies the resummed wave-
forms exhibit a very close agreement (within ±1× 10−3)
with the exact one.18 In previous work [1, 2], we had

proposed to resum ĥ22 by Padé (P 3
2 ) approximating

f22 = (ρ22)
2 instead of ρ22. For completeness, we com-

pare in Fig. 7 our previous best proposal to the cluster of
our current best proposals (based on various Taylor and
Padé approximants of ρ22). In first approximation, this
figure shows a rather close agreement between all these
approximants. In second approximation, one can note
that some of our new approximants, namely P 2

3 , P 1
4 and

P 4
1 , are closer to the exact numerical results. From the

pragmatic point of view, our current best-bet approxi-
mants are therefore our two new, pole-free, Padé approx-
imants based on P 2

3 {T5[ρ22]} and P 1
4 {T5[ρ22]}. We have

a slight preference for P 2
3 {T5[ρ22]} which is the normal

sub-diagonal Padé (admitting a simple continuous frac-
tion representation) and which was close to the sub-LSO
numerical results (see Fig 5).

Fig. 8 exhibits the results for |ĥ21|. We compare and
contrast: (i) standard Taylor-expanded amplitudes (top

18 As before, the fact that the resummed T3[ρ22] approximant is
closer to the exact result than the T4[ρ22] and T5[ρ22] ones is
probably coincidental. It is more important to note that panel
(d) exhibits much less scatter than panel (c).

FIG. 8: Extreme-mass-ratio limit (ν = 0): various represen-

tations of the |ĥ21| waveform modulus. Top panel: standard
PN-expansion. Middle panel: resummation factoring the an-
gular momentum J . Bottom panel: resummation factoring
the energy Heff .

panel), (ii) new-resummed amplitudes when factoring J
(middle panel) and (iii) new-resummed amplitude when
factoring Heff (bottom panel). For brevity, the “standard
Taylor-expanded” top panel exhibits only the integer-
order PN-approximants. Note again, as in the case of

|ĥ22| discussed above, how the use of a standard 1PN-
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FIG. 9: Extreme-mass-ratio limit (ν = 0): various representation of the |ĥ44| waveform modulus. Left panel: standard
PN-expansion. Right panel: our new resummation.

accurate Taylor-expanded waveform leads to a grossly in-
accurate approximation to the exact result, building up
to −22% at the LSO. By contrast, our new-resummed
T1[ρ

J
21]-based approximant (middle panel) or, for that

matter, the T1[ρ
H
21]-based one (bottom panel), captures

both qualitatively and quantitatively the correct behav-
ior of the exact waveform.19 Ultimately, for 3PN and
4PN-accuracies, the resummed waveforms exhibit a very
close agreement (within ∼ 3× 10−3 for the J case) with
the exact one. The standard Taylor-expanded ones are
also close to the exact results, but visibly less close than
our new approximants.

Finally, Fig. 9 exhibits the results for the |ĥ44| wave-

forms. Note that ĥ44 and ĥ42 are the last partial
multipoles for which the analytical ν = 0 result is
known to 3PN accuracy. The comparisons between stan-
dard Taylor-expanded and new resummed waveforms
displayed in Fig. 9 leads to essentially the same con-
clusions as above. In particular, the standard Taylor-
expanded 1PN accurate waveform is even more grossly
inaccurate20 than before, as the difference builds up to

about −90% at the LSO (i.e. |ĥ1PN
44 (xLSO)| ≈ 0.0793

instead of |ĥExact
44 |(xLSO) = 0.8334)! Let us also em-

phasize that, as we could have already pointed out for

|ĥ22| and for |ĥ21|, the new resummed approximant based
on the 2PN-accurate Taylor-expanded ρℓm’s is systemat-

19 The fact that the resummed T1[ρH
21]-based approximant is ex-

tremely close to the exact result (see bottom panel) is proba-
bly coincidental. We do not expect this coincidence to hold for
higher-order partial waves.

20 This is the consequence of the analytical fact noted above that
the 1PN correction to the waveform is negative and grows linearly
with ℓ. We recall that this fact was one of our motivations for
introducing the new quantities ρℓm.

ically less good than the one based on the 1PN-accurate
Taylor-expanded ρℓm’s. This suggests that for wave-
forms which are subdominant with respect to h44 and
h42 (for which one does not know the 3PN expansion of
the waveform) one will be better off, if one intends to use
Taylor-expanded ρℓm’s, in employing only the 1PN accu-
rate ρℓm’s. However, as we have shown in the ℓ = m = 2
case (see Table II and Fig. 7), we expect that a suitable
Padé resummation of the highest accuracy available re-
sults will yield better agreement than simply using the
Taylor 1PN-accurate ρℓm’s. In this respect, let us recall
that, as exhibited in Eqs. (45)-(46), the 1PN corrections
for all even and odd-parity multipoles are known. In the
ν → 0 limit they are given by Eqs. (45) and (46); in
the comparable-mass case the even-parity result is given
by Eq. (41) while the odd-parity result is given in Ap-
pendix A.

IV. RESULTS FOR THE COMPARABLE MASS
CASE (NOTABLY THE EQUAL MASS CASE,

ν = 0.25)

Let us continue to test our resummation procedure by
considering the comparable mass case ν 6= 0, and no-
tably the equal-mass case, ν = 1/4 = 0.25. In this case,
we cannot rely on the knowledge of the “exact” multi-
polar waveforms from comparable mass circular orbits.
Indeed, though this problem can in principle be numer-
ically investigated for binary black hole systems by con-
sidering the helical Killing-vector approach (see Ref. [34]
and references therein), there are no presently available
results where one goes beyond the conformally flat ap-
proximation to Einstein equations. (But see Ref. [35] for
the case of binary neutron star systems). For what con-
cerns the available numerical results on coalescing black
holes, previous work has shown that the deviations from
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the adiabatic-quasi-circular approximation were far from
being negligible near the LSO, so that they cannot be
directly compared to the circular waveforms investigated
in this paper. We leave to future work a comparison
between suitably non-quasi-circular corrected analytical
waveforms and the results of numerical simulations of
coalescing black holes.

In absence of exact waveforms to be compared to, we
shall content ourselves here by investigating the inner
consistency and robustness of our current best-bet ana-
lytical approximants as suggested by the ν = 0 results
reported above. More precisely, we shall study the de-
pendence of ρℓm and the corresponding new resummed

waveform |ĥℓm| on the two EOB deformation parameters

ν and a5.

A. Mild dependence of ρℓm on ν

To motivate the study of the ν-dependence of ρℓm let
us start by having a close look at the general structure
of ρℓm, i.e.

ρℓm(x; ν) = 1+cρℓm

1 (ν)x+cρℓm

2 (ν)x+cρℓm

3 (log(x); ν)x3+. . . .
(61)

For concreteness, let us display here ρ44(x; ν) (given to-
gether with our results in Appendix C)

ρ44(x; ν) =1 +
2625ν2 − 5870ν + 1614

1320(3ν − 1)
x

+
1252563795ν4 − 6733146000ν3 − 313857376ν2 + 2338945704ν − 511573572

317116800(1− 3ν)2
x2

+

(

16600939332793

1098809712000
− 12568

3465
eulerlog4(x)

)

x3. (62)

We see on the example of ρ44 that the ν-dependence of
the coefficient cρℓm

n (ν) is not polynomial in ν, but rather
given by a rational fraction. The denominator of this ra-
tional fraction in the case of ρ44 is proportional to some
power of 1−3ν. The denominator 1−3ν decreases signif-
icantly (from 1 to 1/4) as ν increases from the extreme-
mass-ratio case, ν = 0, to the equal mass case, ν = 1/4.

From Eq. (7), for the general multipole ρ
(ǫ)
ℓm this denom-

inator would be proportional to a power of

dℓm(ν) =
cℓ+ǫ(ν)

X2 + (−)mX1
=

Xℓ+ǫ−1
2 + (−)mXℓ+ǫ−1

1

X2 + (−)mX1
.

(63)
This ratio is expressible as a polynomial in ν. For in-
stance, for ρ54, it would be d54 = 1 − 5ν + 5ν2, which
decreases from 1 down to 1/16 as ν goes from 0 to 1/4.
More generally, dℓm(ν) decreases, as ν varies from 0 to
1/4, from 1 down to 1/2ℓ+ǫ−2 when π(m) = 0 and to
(ℓ+ ǫ− 1)/2ℓ+ǫ−2, when π(m) = 1. The presence of such
“small denominators” raises the issue of a possible large
increase of the coefficients cρℓm

n (ν) as ν increases from 0 to
1/4. If that were true, this would undermine the applica-
bility to the comparable mass case of the conclusions that
we have drawn above from the ν → 0 limit. Therefore, we
have studied the ν-dependence of the known coefficients
cρℓm

n (ν) to check whether the presence of these “small
denominators” might cause them to grow uncontrollably
when ν increases. In Table IV we list the fractional dif-
ferences ∆̄cρℓm

n (ν) = cρℓm

n (ν)/cρℓm

n (0)−1 at ν = 1/4 (and
at log(x) = log(1/6) for the logarithms contained in the
higher coefficients) for a sample of the ρℓm’s whose ν-

TABLE IV: Analysis of the fractional variation
∆̄cρℓm

n (ν) = cρℓm
n (ν)/cρℓm

n (0) − 1 of the coefficients cρℓm
n (ν)

in Eq. (61) for a selected sample of values of (ℓ, m).

(ℓ, m) ∆̄cρℓm

1 (1/4) ∆̄cρℓm

2 (1/4) ∆̄cρℓm

3 (1/4, log(1/6))

(2,2) -0.159884 0.185947 -0.100421

(4,4) -0.230328 0.46265 . . .

(5,4) -0.176295 . . . . . .

dependence is analytically known. The good news is that
Table IV indicates that the fractional variation of the co-
efficients cρ22

n (ν) when going from the extreme-mass ratio
case to the equal-mass ratio one is typically of the order
of 20%.

This mild dependence of the coefficients cρℓm

n (ν) on ν
is the basis of the proposal [2] of improving the accuracy
of known ν-dependent ρℓm’s by adding the ν → 0 limit
of higher order PN-corrections (“hybridization”). [For
instance, in the case of ρ22(x; ν), where the ν-dependent
terms are known up to 3PN, we have added the 4PN and
5PN ν = 0 corrections]. Indeed, this procedure consists
in using, for some higher corrections, the approximation21

21 Note that our results on the mild ν-dependence of c
ρℓm
n (ν) show

that, a contrario, a naive hybridization of the waveform of the
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FIG. 10: Equal-mass case (ν = 1/4): contrasting vari-

ous methods for resumming the waveform modulus |ĥ22| for
a5 = 0. Note the presence of a localized spurious pole in
P 4

1 {T5[ρ22]} at x ≈ 0.038.

cρℓm

n (ν) ≈ cρℓm

n (0).

We have validated this approximate completion of
known ν-dependent terms in the following way. In view
of the results of Table IV, we have tested our procedure
by modifying the 4PN coefficient for ν = 0, cρ22

4 (0), by
multiplying it by the factor (1+0.8ν), in order to mimic a
possible 20% increase of this coefficient when ν increases
up to 1/4. We then found that such a modification of the
4PN coefficient yielded a corresponding modification of
T5[ρ22(x; ν)] equal to T5[ρ22(x; ν)]modified/T5[ρ22(x; ν)] =
1.00038 when evaluated for ν = 0.25 at x = 1/6. Even
at x = 1/3 we find that such a modification yields
T5[ρ22(x; ν)]modified/T5[ρ22(x; ν)] = 1.013. In the ρ44

case, where the ν-dependent corrections are known only
up to 2PN accuracy, a similar modification of the 3PN
term for ν = 0 by a factor (1 + 0.8ν) yields a corre-
sponding fractional change of ρ44 between ν = 0 and
ν = 0.25 equal to 1.0099 at x = 1/6 and 1.079 at x = 1/3.
These results confirm the reliability of the hybridization
procedure adopted here, and give us an idea of the re-
lated small uncertainty. For instance, for the dominant
quadrupolar wave, we can anticipate that our hybridiza-
tion procedure introduces an uncertainty in the waveform
h22(x) ∝ (ρ22(x))

2
of order 8 × 10−4 at the LSO. This

level of uncertainty is comparable to the fractional differ-
ence between our best-bet quadrupolar amplitude based
on P 2

3 [ρ22(x, ν = 0)] and the exact result (see Table II).

type h̃hybrid
ℓm = h̃known

ℓm (ν) + h̃higher
ℓm (ν = 0) would probably be

rather unreliable, especially for ℓ ≥ 3, because it would not in-
corporate the overall strong decrease approximately proportional
to the “small denominator” dℓm(ν), Eq. (63).

FIG. 11: Equal-mass case (ν = 1/4): Same as Fig. 10, but
focussing on only the “best” (3+2PN-accurate) Padé approx-
imants to the waveform.

B. Mild sensitivity of |ĥℓm| to ν

In Fig. 5 we had put together, in the extreme-mass-

ratio case, the predictions for |ĥ22| made by all the
higher-order approximants within our new resummation
method. Let us now “deform” the results of Fig. 5 by
turning on ν and increasing it up to ν = 1/4. Fig. 10
is the “ν = 1/4-deformed” version of Fig. 5. In con-
structing this figure we have used the value a5 = 0
for the 4PN EOB parameter entering Eq. (11), and
we have defined the EOB radial potential A(u) as be-
ing P 1

4 [ATaylor(u; a5)]. The horizontal axis has been ex-
tended up to the location of xLSO(a5, ν) as predicted
by the corresponding adiabatic EOB dynamics, namely
xLSO(0, 1/4) = 0.2112. Some of the lessons we might
draw from comparing the ν = 1/4-deformed Fig 10 to
its ν = 0 counterpart, Fig. 5, are the following: (i)
apart from P 4

1 {T5[ρ22]} (which still has a spurious pole)
and our old P 3

2 {f22}, the relative stacking order of all
the other approximants is maintained in the deforma-
tion between ν = 0 and ν = 1/4; (ii) our old prescrip-
tion [1, 2] based on P 3

2 {f22}, which in the ν = 0 case
was clustered together with the other approximants (as
well as with the exact curve), seems now to have drifted
apart from the cluster of the other ones; (iii) indeed,
all the new approximants are rather well clustered to-
gether, with a dispersion which reaches only about 2%
at xLSO(0, 1/4) = 0.2112.

One of the results of the ν = 0 study above, partic-
ularly in the dominant ℓ = m = 2 case, was to select,
among the array of new approximants, a small sample
of “best approximants”. This sample was made of the
approximants based on P 2

3 {T5[ρ22]} and P 1
4 {T5[ρ22]}. In

Fig. 11 we extracted from the previous figure the ν = 1/4-
deformed version of only these two “best approximants”.
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FIG. 12: Equal-mass case (ν = 1/4): Effect of varying a5 (be-
tween 0 and 25) on the “best” Padé approximants displayed
in Fig. 11.

Remembering that in the ν = 0 case these two curves
were both extremely close (within 6 × 10−9 at x = 1/6!)
to each other, as well as being very close to the cor-
rect answer, we note that their ν = 1/4-deformed ver-
sions are still very close to each other (within 3.2× 10−3

at xLSO(0, 1/4) = 0.2112 ). We therefore expect that
this doublet of curves is a good indication of where the
currently unknown (circular, adiabatic) correct ν = 1/4
curve might lie.

C. Weak dependence of |ĥℓm(x)| on a5.

Finally, we study in Fig. 12 the sensitivity of our new
resummed circular waveform to the 4PN EOB parameter
a5. This sensitivity comes from several sources. Both the

source term S
(ǫ)
eff in Eq. (1) and the tail term Tℓm depend

on the EOB dynamical quantities H and J . Therefore,
when expressing the waveform as a function of the fre-
quency parameter x, obtained by solving Eq. (13) above,
the a5-dependent radial potential A(u) comes in at sev-
eral different places.

For concreteness, we shall study the “deformation” of
our two best approximants when a5 increases from 0 to 25
(such a range is motivated by recent work [2, 10, 11, 18] ).
The a5-deformed version of Fig. 11 is plotted as Fig. 12.
This figure compares two doublets of curves: our two
best Padé approximants (P 2

3 {T5[ρ22]}, P 1
4 {T5[ρ22]}) for

a5 = 0 versus the same Padé approximants when a5 = 25.
The main thing to note is that the a5 deformation is

continuous and monotonic. The displacement of each
curve is only of order 2 × 10−3 at x = 0.2112 =
xLSO(0, 1/4) (the horizontal axis of the figure has been
extended up to xLSO(25, 1/4) = 0.2236). In addition, the
separation of the a5-deformed doublet of Padé curves is

about the same as it was before deformation.

V. CONCLUSIONS

In this paper we have explored the properties of a
new resummation method of post-Newtonian multipo-
lar waveforms from circular compact binaries. The two
characteristic features of this method are: (i) the multi-

plicative decomposition of the (complex) h
(ǫ)
ℓm waveform

into the product of several factors corresponding to var-
ious physical effects, and (ii) the replacement of the last
(real) factor, fℓm, in this decomposition, by its ℓ-th root

ρℓm(x) = (fℓm(x))1/ℓ.

To test this resummation method we have first con-
sidered the extreme-mass-ratio limit (ν → 0), for which
“exact” results for the waveform can be obtained by nu-
merical analysis of black hole perturbation theory. We
first noted (see Fig. 3) that the new quantity that we
introduced, ρℓm(x), has a remarkably simple quasi-linear
behavior as a function of the orbital frequency parame-
ter x = (GMΩ/c3)2/3. We related the simple properties
of the function ρℓm(x) (including those concerning its
dependence on (ℓ, m)), to analytical results on the 1PN
corrections to multipole moments. In this regard, we ex-
plicitly computed new expressions for the 1-PN source
current multipoles for arbitrary ℓ and in consequence the
coefficient of the 1PN correction in the odd-parity wave-
form (and ρℓm). The quasi-linear behavior of the func-
tions ρℓm(x) also means that 2PN and higher-order cor-
rections to them are smaller than analogous corrections
in usual quantities, like the waveform.

We have shown that, even if one uses only (without
any further resummation) the successive Taylor approx-
imants to ρℓm, this defines a sequence of new resummed
approximants to the waveform which “converges” to-
wards the exact waveform much less erratically than the
standard PN approximants. Moreover, for all the wave-
forms for which 3PN corrections are known (at least when
ν → 0), our results show that the new resummed wave-
form nearly coincide with the exact results starting with
the 3PN approximation (see Figs. 6, 8, 9). We have
also shown that we can further improve the quality of
our new approximants by suitably Padé-resumming the
function ρℓm(x) before using it to construct the wave-

form h
(ǫ)
ℓm(x) ∝ (ρℓm(x))ℓ. In particular, two Padé ap-

proximants to ρ22, namely P 2
3 {T5[ρ22]} and P 1

4 {T5[ρ22]},
stand out as defining the most accurate representation of
the exact waveform (see Fig. 7).

We have finally explored the robustness of our approx-
imants when considering a finite mass ratio. We have
checked that the ν-dependence of the coefficients entering
the Taylor expansion of the function ρℓm(x; ν) is rather
mild in spite of the presence of ν-dependent denomina-
tors that decrease very significantly as ν increases from
0 to 1/4. This justifies the proposal of completing the
known ν-dependent ρℓm’s by adding the ν → 0 limit of
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higher order PN corrections. We have also shown that
the relative stacking order of all the best approximants
is maintained in the “ν-deformation” between ν = 0 and
ν = 1/4. In addition, our new approximants are rather
well clustered together, with a dispersion which reaches
only about 2% at the Last Stable Orbit.

Let us finally note that we have compared in the four
panels of Fig. 1 four different resummation approaches
to the total (Newton-normalized) GW energy flux F̂ (x)
(for ν → 0): (a) the standard post-Newtonian (Tay-
lor) expansion, (b) the Padé resummation advocated long
ago [6], (c) the improved vpole-tuned Padé resummation
advocated in [2], and (d) our present new resummation
method (using only Taylor expanded ρℓm’s). The vpole-
flexed technique, panel (c), is clearly superior to the re-
sults of the first two techniques, panels (a) and (b). It
has however the disadvantage that it needs to rely on
some external knowledge (such as the exact value of the
flux at the LSO) to determine the optimal value of vpole.
On the other hand, our new resummation procedure not
only stands out, among all other proposals, as yielding
the best agreement with the exact flux (when ν = 0), but
it has also the further advantage of being parameter-free.
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APPENDIX A: RESULTS FOR ODD-PARITY
(CURRENT) 1PN-ACCURATE MULTIPOLES

The 1PN-accurate results for the source current (i.e.,
odd-parity) moments (of any multipolar order ℓ) were ob-
tained long ago in Eqs. (5.18) and/or (5.21) of Ref. [31].
Alternatively, we can use as starting point for the explicit
determination of the 1PN-accurate source current multi-
pole moment Eqs. (4.3) and (4.4) in [36]. Recalling the
notation γ = GM/Rc2 and (consistently with Eq. (7))
using the notation

bℓ(ν) ≡ Xℓ
2 + (−)ℓXℓ

1 (A1)

cℓ(ν) ≡ Xℓ−1
2 + (−)ℓXℓ−1

1 (A2)

cY
L
b (y1,y2) ≡

∂

∂yc
1

∂

∂yb
2

Y L(y1,y2) (A3)

Y L(y1,y2) ≡
r12

ℓ + 1

ℓ
∑

p=0

y
〈L−P
1 y

P 〉
2 , (A4)

at 1PN accuracy the “compact” terms for the source cur-
rent multipole moment JL can be explicitly evaluated, in
the circular orbit case, for a general value of ℓ (as in the
ℓ + m even case). They read

Jcompact
L = STFL νMǫabiℓ

xavb

{

xL−1

[

cℓ+1(ν)+

γ

(

bℓ+1(ν) + 2νbℓ−1(ν) +

(

1

2
− (ℓ − 1)(ℓ + 4)

2(ℓ + 2)(2ℓ + 3)

)

cℓ+3(ν)

) ]

+
r2

c2
xL−3viℓ−2

viℓ−1

(ℓ − 1)(ℓ − 2)(ℓ + 4)

2(ℓ + 2)(2ℓ + 3)
cℓ+3(ν)

}

.

(A5)

In addition to the above “compact terms”(generated by
compact-support terms in the effective stress-energy ten-
sor τµν), there exist three “non-compact” contributions
that make the 1PN current moments more involved than
the corresponding 1PN mass moments. These noncom-
pact contributions can be expressed in terms of the Y L

objects introduced in [31], so as to obtain,

Jnoncompact
L = STFL νMǫabiℓ

GM

c2

×
[

2X1v
c

cY
L−1a
b +

3

2
X2v

c
cY

L−1a
b

− 2ℓ + 1

2(ℓ + 2)(2ℓ + 3)

d

dt

(

aY L−1cb
c

)

+ 1 ↔ 2

]

(A6)

More explicit expressions for these non-compact con-
tributions can be provided for a general value of ℓ by
straightforward but slightly long computations. For cir-
cular orbits one can check that the last term does not
contribute and the final result for the other two terms can
be simply re-expressed in terms of the polynomials bℓ(ν)
and cℓ(ν), Eqs. (A1)-(A2), as for the compact terms. The
final result (for circular orbits) is given by

Jnoncomp
L = STFL νMγǫabiℓ

xavbx
L−1

×
[

cℓ+3(ν) + 3bℓ+1(ν)

2ℓ
+ ν

4bℓ−1(ν) − cℓ+1(ν)

2ℓ

]

.

(A7)
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TABLE V: List of the bℓ(ν) and cℓ(ν) functions that appear in the text for some values of ℓ. In the following formulas, we have
introduced the notation X12 ≡ X1 − X2 = sign(m1 − m2)

√
1 − 4ν.

ℓ bℓ(ν) cℓ(ν)

1 −X12 0

2 1 − 2ν 1

3 −X12(1 − ν) −X12

4 1 − 4ν + 2ν2 1 − 3ν

5 −X12(1 − 3ν + ν2) −X12(1 − 2ν)

6 1 − 6ν + 9ν2 − 2ν3 1 − 5ν + 5ν2

7 −X12(1 − 5ν + 6ν2 − ν3) −X12(1 − 4ν + 3ν2)

8 1 − 8ν + 20ν2 − 16ν3 + 2ν4 1 − 7ν + 14ν2 − 7ν3

9 −X12(1 − 7ν + 15ν2 − 10ν3 + ν4) −X12(1 − 6ν + 10ν2 − 4ν3)

10 1 − 10ν + 35ν2 − 50ν3 + 25ν4 − 2ν5 1 − 9ν + 27ν2 − 30ν3 + 9ν4

11 −X12(1 − 9ν + 28ν2 − 35ν3 + 15ν4 − ν5) −X12(1 − 8ν + 21ν2 − 20ν3 + 5ν4)

In the test-mass limit (ν → 0) this expression reduces to

Jnoncomp
L = STFL 2νMγǫabiℓ

xavbx
L−1 (−1)

ℓ

ℓ+1

. (A8)

Thus, in the circular orbit case, the 1PN-accurate current
multipole for a general value of ℓ finally reads:

JL =STFL νMǫabiℓ
xavb

{

xL−1

[

cℓ+1(ν) + γ

(

− ν

2ℓ
cℓ+1(ν) +

2ℓ + 3

2ℓ
bℓ+1(ν) + 2ν

ℓ + 1

ℓ
bℓ−1(ν)+

1

2

(

ℓ + 1

ℓ
− (ℓ − 1)(ℓ + 4)

(ℓ + 2)(2ℓ + 3)

)

cℓ+3(ν)

) ]

+
r2

c2
xL−3viℓ−2

viℓ−1

(ℓ − 1)(ℓ − 2)(ℓ + 4)

2(ℓ + 2)(2ℓ + 3)
cℓ+3(ν)

}

. (A9)

Adapting the reasoning line of Ref. [12], recalling the
additional velocity dependence of the current moments
that leads to (v/c)ℓ+1 and noting that γ = x to this
order of accuracy, one can finally show that, for circular

orbits, the 1PN-accurate odd-parity ĥ
(1)
ℓm’s read

ĥ
(1)
ℓm(x; ν) = 1 − x

{

(ℓ + 1)
(

1 − ν

3

)

+
ν

2ℓ

− 2ℓ + 3

2ℓ

bℓ+1(ν)

cℓ+1(ν)
− 2ν

ℓ + 1

ℓ

bℓ−1(ν)

cℓ+1(ν)
(A10)

− 1

2

ℓ + 1

ℓ

cℓ+3(ν)

cℓ+1(ν)
+

m2(ℓ + 4)

2(ℓ + 2)(2ℓ + 3)

cℓ+3(ν)

cℓ+1(ν)

}

+ O(x2),

where we have not simplified on purpose in order to allow
the reader to explicitly track the origin of each single con-
tribution. In the extreme-mass-ratio limit, M ≡ m1 ≫
µ ≡ m2 (ν ≡ µ/M → 0), one has cℓ(0) = bℓ(0) = (−1)ℓ,
and so this equation simply reduces to

ĥ
(1)
ℓm(x; 0) = 1−x

(

ℓ − 1

2
− 2

ℓ
+

m2(ℓ + 4)

2(ℓ + 2)(2ℓ + 3)

)

+O(x2).

(A11)
When computing the amplitude fJ

ℓm(x; ν) (where

Ŝ
(1,J)
eff ≡ ĵ is factorized), an additional contribution of

−(3/2 + ν/6)x (see Eq. (18)) comes in, so that the 1PN-
accurate fJ

ℓm(x; ν)’s read

fJ
ℓm(x; ν) =1 − x

{

(ℓ + 1)
(

1 − ν

3

)

+
3

2
+

ν

6
+

ν

2ℓ
− 2ℓ + 3

2ℓ

bℓ+1(ν)

cℓ+1(ν)
− 2ν

ℓ + 1

ℓ

bℓ−1(ν)

cℓ+1(ν)
−

1

2

ℓ + 1

ℓ

cℓ+3(ν)

cℓ+1(ν)
+

m2(ℓ + 4)

2(ℓ + 2)(2ℓ + 3)

cℓ+3(ν)

cℓ+1(ν)

}

+ O(x2). (A12)
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In the test-mass limit, this equation becomes

fJ
ℓm(x; 0) = 1−x

(

ℓ + 1 − 2

ℓ
+

m2(ℓ + 4)

2(ℓ + 2)(2ℓ + 3)

)

+O(x2).

(A13)
These results lead to the 1PN-accurate ρJ

ℓm’s, Eqs. (46)
and (49), that we have used in this paper.

For completeness, we conclude this Appendix by quot-
ing the ν-dependent, 1PN-accurate fℓm’s for ℓ + m even
and a ready-reckoner of the bℓ(ν) and cℓ(ν) functions for
ℓ-values relevant for this work, Table V. From Eq. (C5)

of Ref. [12], the general expression of ĥ
(0)
ℓm at 1PN reads

ĥ
(0)
ℓm(x; ν) = 1 − x

{

ℓ
(

1 − ν

3

)

− 3

2

cℓ+2(ν)

cℓ(ν)
+

bℓ(ν)

cℓ(ν)
+

cℓ+2(ν)

cℓ(ν)

m2(ℓ + 9)

2(ℓ + 1)(2ℓ + 3)

}

+ O(x2). (A14)

From this expression, the even-parity fℓm’s follow as

fℓm(x; ν) = 1 − x

{

ℓ
(

1 − ν

3

)

− 1

2
− 3

2

cℓ+2(ν)

cℓ(ν)
+

bℓ(ν)

cℓ(ν)
+

cℓ+2(ν)

cℓ(ν)

m2(ℓ + 9)

2(ℓ + 1)(2ℓ + 3)

}

+ O(x2). (A15)

which reduces to Eq. (43) in the test-mass limit.

APPENDIX B: EXPLICIT FORM OF THE fℓm’S
WITH HIGHER PN ACCURACY

In this Appendix we complete the information given
in the text by explicitly listing the fℓm’s that are known
at an accuracy higher than 1PN. This means considering
multipoles up to ℓ = 5 for even-parity modes (ℓ+m even)

and ℓ = 4 for odd-parity modes (ℓ+m odd). We consider
separately the even-parity fℓm’s and the odd-parity fJ

ℓm’s
and fH

ℓm’s.

1. Even-parity fℓm’s

The even-parity fℓm’s (with ν 6= 0 and ν = 0 contri-
butions) are given by

f22(x; ν) = 1 +
1

42
(55ν − 86)x +

2047ν2 − 6745ν − 4288

1512
x2

+

(

114635ν3

99792
− 227875ν2

33264
+

41

96
π2ν − 34625ν

3696
− 856

105
eulerlog2(x) +

21428357

727650

)

x3

+

(

36808

2205
eulerlog2(x) − 5391582359

198648450

)

x4 +

(

458816

19845
eulerlog2(x) − 93684531406

893918025

)

x5 + O(x6), (B1)

f33(x; ν) = 1 +

(

2ν − 7

2

)

x +

(

887ν2

330
− 3401ν

330
− 443

440

)

x2 +

(

147471561

2802800
− 78

7
eulerlog3(x)

)

x3

+

(

39 eulerlog3(x) − 53641811

457600

)

x4 + O(x5), (B2)

f31(x; ν) = 1 +

(

−2ν

3
− 13

6

)

x +

(

−247ν2

198
− 371ν

198
+

1273

792

)

x2

+

(

400427563

75675600
− 26

21
eulerlog1(x)

)

x3 +

(

169

63
eulerlog1(x) − 12064573043

1816214400

)

x4 + O(x5), (B3)
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f44(x; ν) = 1 +
2625ν2 − 5870ν + 1614

330(3ν − 1)
x +

23740185ν3 − 106831480ν2 + 50799672ν − 4536144

1801800(3ν − 1)
x2

− 2

(

1132251120

156080925
eulerlog4(x) − 5992751383

156080925

)

x3 + O(x4), (B4)

f42(x; ν) = 1 +
285ν2 − 3530ν + 1146

330(3ν − 1)
x − 2707215ν3 + 28154560ν2 − 26861688ν + 5538096

1801800(3ν − 1)
x2

−
(

1132251120

312161850
eulerlog2(x) − 5180369659

312161850

)

x3 + O(x4), (B5)

f55(x; ν) = 1+
512ν2 − 1298ν + 487

78(2ν − 1)
x+

50569

6552
x2+O(x3),

(B6)

f53(x; ν) = 1+
176ν2 − 850ν + 375

78(2ν − 1)
x+

69359

10920
x2 +O(x3),

(B7)

f51(x; ν) = 1 +
8ν2 − 626ν + 319

78(2ν − 1)
x +

28859

4680
x2 + O(x3),

(B8)

2. Odd-parity fJ
ℓm’s

Let us focus now on the odd-parity case and list the
fJ

ℓm in which the Newton-normalized angular momentum

ĵ has been factorized as an effective source. We have

fJ
21(x; ν) = 1 +

(

23ν

42
− 59

28

)

x +

(

85ν2

252
− 269ν

126
− 5

9

)

x2 +

(

88404893

11642400
− 214

105
eulerlog1(x)

)

x3

+

(

6313

1470
eulerlog1(x) − 33998136553

4237833600

)

x4 + O(x5), (B9)

fJ
32(x; ν) = 1 +

320ν2 − 1115ν + 328

90(3ν − 1)
x +

39544ν3 − 253768ν2 + 117215ν − 20496

11880(3ν − 1)
x2

+

(

110842222

4729725
− 104

21
eulerlog2(x)

)

x3 + O(x4), (B10)

fJ
43(x; ν) = 1 +

(

160ν2 − 547ν + 222
)

44(2ν − 1)
x +

225543

40040
x2 + O(x3), (B11)

fJ
41(x; ν) = 1 +

(

288ν2 − 1385ν + 602
)

132(2ν − 1)
x +

760181

120120
x2 + O(x3). (B12)

3. Odd-parity fH
ℓm’s

We finally list the odd-parity fH
ℓm in which the effective

energy Ĥeff has been factorized as an effective source. We

have
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fH
21(x; ν) = 1 +

(

5ν

7
− 3

28

)

x +

(

79ν2

168
− 485ν

126
− 97

126

)

x2 +

(

70479293

11642400
− 214

105
eulerlog1(x)

)

x3

+

(

107

490
eulerlog1(x) +

9301790917

1412611200

)

x4 + O(x5), (B13)

fH
32(x; ν) = 1 +

365ν2 − 590ν + 148

90(3ν − 1)
x +

16023ν3 − 93976ν2 + 612ν + 6192

3960(3ν − 1)
x2

+

(

96051082

4729725
− 104

21
eulerlog2(x)

)

x3 + O(x4), (B14)

fH
43(x; ν) = 1 +

524ν2 − 1135ν + 402

132(2ν − 1)
x − 1667

3640
x2 + O(x3), (B15)

fH
41(x; ν) = 1 +

332ν2 − 879ν + 338

132(2ν − 1)
x +

145021

120120
x2 + O(x3). (B16)

APPENDIX C: COMPLETE EXPRESSIONS OF
THE ρℓm’S FOR 2 ≤ ℓ ≤ 8

We finally list the “hybridized” expressions of all the
even- and odd-parity ρℓm’s obtained from the corre-
sponding fℓm’s [with the proviso explained above that
the ℓ-th power of the “hybridized” ρℓm presented here

would generate some specific ν-dependent higher-order

coefficients cfℓm

n′ (ν) which differ from the cfℓm

n′ (ν = 0)
listed in, e.g. the equations of Appendix B. In the odd-
parity case, we only list the J -normalized ρJ

ℓm’s obtained
from the fJ

ℓm’s. For completeness and future reference we
present the ρℓm’s explicitly up to ℓ = 8 included.
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ρ22(x; ν) = 1 +

(

55ν

84
− 43

42

)

x +

(

19583ν2

42336
− 33025ν

21168
− 20555

10584

)

x2

+

(

10620745ν3

39118464
− 6292061ν2

3259872
+

41π2ν

192
− 48993925ν

9779616
− 428

105
eulerlog2(x) +

1556919113

122245200

)

x3

+

(

9202

2205
eulerlog2(x) − 387216563023

160190110080

)

x4 +

(

439877

55566
eulerlog2(x) − 16094530514677

533967033600

)

x5 + O(x6), (C1)

ρJ
21(x; ν) = 1 +

(

23ν

84
− 59

56

)

x +

(

617ν2

4704
− 10993ν

14112
− 47009

56448

)

x2

+

(

7613184941

2607897600
− 107

105
eulerlog1(x)

)

x3 +

(

6313

5880
eulerlog1(x) − 1168617463883

911303737344

)

x4 + O(x5), (C2)

ρ33(x; ν) = 1 +

(

2ν

3
− 7

6

)

x +

(

149ν2

330
− 1861ν

990
− 6719

3960

)

x2 +

(

3203101567

227026800
− 26

7
eulerlog3(x)

)

x3

+

(

13

3
eulerlog3(x) − 57566572157

8562153600

)

x4 + O(x5), (C3)

ρJ
32(x; ν) = 1 +

320ν2 − 1115ν + 328

270(3ν − 1)
x +

3085640ν4 − 20338960ν3 − 4725605ν2 + 8050045ν − 1444528

1603800(1− 3ν)2
x2

+

(

5849948554

940355325
− 104

63
eulerlog2(x)

)

x3 + O(x4), (C4)

ρ31(x; ν) = 1 +

(

−2ν

9
− 13

18

)

x +

(

−829ν2

1782
− 1685ν

1782
+

101

7128

)

x2 +

(

11706720301

6129723600
− 26

63
eulerlog1(x)

)

x3

+

(

169

567
eulerlog1(x) +

2606097992581

4854741091200

)

x4 + O(x5), (C5)

ρ44(x; ν) = 1 +
2625ν2 − 5870ν + 1614

1320(3ν − 1)
x

+
1252563795ν4 − 6733146000ν3 − 313857376ν2 + 2338945704ν − 511573572

317116800(1− 3ν)2
x2

+

(

16600939332793

1098809712000
− 12568

3465
eulerlog4(x)

)

x3 + O(x4), (C6)

ρJ
43(x; ν) = 1 +

160ν2 − 547ν + 222

176(2ν − 1)
x − 6894273

7047040
x2 + O(x3), (C7)

ρ42(x; ν) = 1 +
285ν2 − 3530ν + 1146

1320(3ν − 1)
x

+
−379526805ν4 − 3047981160ν3 + 1204388696ν2 + 295834536ν − 114859044

317116800(1− 3ν)2
x2

+

(

848238724511

219761942400
− 3142

3465
eulerlog2(x)

)

x3 + O(x4), (C8)

ρJ
41(x; ν) = 1 +

288ν2 − 1385ν + 602

528(2ν − 1)
x − 7775491

21141120
x2 + O(x3), (C9)
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ρ55(x; ν) = 1 +
512ν2 − 1298ν + 487

390(2ν − 1)
x − 3353747

2129400
x2 + O(x3), (C10)

ρJ
54(x; ν) = 1 +

33320ν3 − 127610ν2 + 96019ν − 17448

13650(5ν2 − 5ν + 1)
x + O(x2), (C11)

ρ53(x; ν) = 1 +
176ν2 − 850ν + 375

390(2ν − 1)
x − 410833

709800
x2 + O(x3), (C12)

ρJ
52(x; ν) = 1 +

21980ν3 − 104930ν2 + 84679ν − 15828

13650(5ν2 − 5ν + 1)
x + O(x2), (C13)

ρ51(x; ν) = 1 +
8ν2 − 626ν + 319

390(2ν − 1)
x − 31877

304200
x2 + O(x3), (C14)

ρ66(x; ν) = 1 +
273ν3 − 861ν2 + 602ν − 106

84 (5ν2 − 5ν + 1)
x + O(x2), (C15)

ρJ
65(x; ν) = 1 +

220ν3 − 910ν2 + 838ν − 185

144 (3ν2 − 4ν + 1)
x + O(x2), (C16)

ρ64(x; ν) = 1 +
133ν3 − 581ν2 + 462ν − 86

84 (5ν2 − 5ν + 1)
x + O(x2), (C17)

ρJ
63(x; ν) = 1 +

156ν3 − 750ν2 + 742ν − 169

144 (3ν2 − 4ν + 1)
x + O(x2) (C18)

ρ62(x; ν) = 1 +
49ν3 − 413ν2 + 378ν − 74

84 (5ν2 − 5ν + 1)
x + O(x2), (C19)

ρJ
61(x; ν) = 1 +

124ν3 − 670ν2 + 694ν − 161

144 (3ν2 − 4ν + 1)
x + O(x2), (C20)

ρ77(x; ν) = 1 +
1380ν3 − 4963ν2 + 4246ν − 906

714 (3ν2 − 4ν + 1)
x + O(x2), (C21)

ρJ
76(c; ν) = 1 +

6104ν4 − 29351ν3 + 37828ν2 − 16185ν + 2144

1666 (7ν3 − 14ν2 + 7ν − 1)
x + O(x2), (C22)

ρ75(x; ν) = 1 +
804ν3 − 3523ν2 + 3382ν − 762

714 (3ν2 − 4ν + 1)
x + O(x2), (C23)

ρJ
74(c; ν) = 1 +

41076ν4 − 217959ν3 + 298872ν2 − 131805ν + 17756

14994 (7ν3 − 14ν2 + 7ν − 1)
x + O(x2), (C24)
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ρ73(x; ν) = 1 +
420ν3 − 2563ν2 + 2806ν − 666

714 (3ν2 − 4ν + 1)
x + O(x2), (C25)

ρJ
72(x; ν) = 1 +

32760ν4 − 190239ν3 + 273924ν2 − 123489ν + 16832

14994 (7ν3 − 14ν2 + 7ν − 1)
x + O(x2), (C26)

ρ71(x; ν) = 1 +
228ν3 − 2083ν2 + 2518ν − 618

714 (3ν2 − 4ν + 1)
x + O(x2), (C27)

ρ88(x; ν) = 1 +
12243ν4 − 53445ν3 + 64659ν2 − 26778ν + 3482

2736 (7ν3 − 14ν2 + 7ν − 1)
x + O(x2), (C28)

ρJ
87(x; ν) = 1 +

38920ν4 − 207550ν3 + 309498ν2 − 154099ν + 23478

18240 (4ν3 − 10ν2 + 6ν − 1)
x + O(x2), (C29)

ρ86(x; ν) = 1 +
2653ν4 − 13055ν3 + 17269ν2 − 7498ν + 1002

912 (7ν3 − 14ν2 + 7ν − 1)
x + O(x2), (C30)

ρJ
85(x; ν) = 1 +

6056ν4 − 34598ν3 + 54642ν2 − 28055ν + 4350

3648 (4ν3 − 10ν2 + 6ν − 1)
x + O(x2), (C31)

ρ84(x; ν) = 1 +
4899ν4 − 28965ν3 + 42627ν2 − 19434ν + 2666

2736 (7ν3 − 14ν2 + 7ν − 1)
x + O(x2), (C32)

ρJ
83(x; ν) = 1 +

24520ν4 − 149950ν3 + 249018ν2 − 131059ν + 20598

18240 (4ν3 − 10ν2 + 6ν − 1)
x + O(x2), (C33)

ρ82(x; ν) = 1 +
3063ν4 − 22845ν3 + 37119ν2 − 17598ν + 2462

2736 (7ν3 − 14ν2 + 7ν − 1)
x + O(x2), (C34)

ρJ
81(x; ν) = 1 +

21640ν4 − 138430ν3 + 236922ν2 − 126451ν + 20022

18240 (4ν3 − 10ν2 + 6ν − 1)
x + O(x2). (C35)
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