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Abstract

We consider possible violations of the equivalence principle through
the exchange of a light ‘dilaton-like’ scalar field. Using recent work
on the quark-mass dependence of nuclear binding, we find that the
dilaton-quark-mass coupling induces significant equivalence-principle-
violating effects varying like the inverse cubic root of the atomic num-
ber - A−1/3. We provide a general parameterization of the scalar
couplings, but argue that two parameters are likely to dominate the
equivalence-principle phenomenology. We indicate the implications of
this framework for comparing the sensitivities of current and planned
experimental tests of the equivalence principle.
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1 Introduction

At the heart of the theory of General Relativity is Einstein’s Equivalence
Principle (EP). The weak Equivalence Principle predicts the composition
independence of the accelerations of test masses in a gravitational field.
This has been probed at a present sensitivity of

∆a

a
∼ 10−13 (1)

in innovative and difficult experiments [1, 2]. Further tests of this principle
remain important and relevant for new physics [3, 4]. We are fortunate that
there are several initiatives to push the sensitivity several orders of mag-
nitude further using new space-based experiments such as MICROSCOPE
[5], the Galileo Galilei project [6] and STEP [7] as well as new types of
experiments using cold atoms [8, 9] and sub-orbital rockets [10].

One possible source of EP violation is a very light1 scalar field with
a coupling to matter that is weaker than gravitational strength. We will
refer to these generically as ‘dilatons’, although they may have origins other
than string theory or models involving dilation symmetry. As will become
clear below, we will phenomenologically define a ‘dilaton’ as a scalar field φ
whose couplings to matter effectively introduce a φ dependence in the basic
dimensionless constants of Nature (such as the fine-structure constant etc.).
String theory may have such scalars in the low energy limit ( string dilaton,
moduli), and these can naturally lead to EP violation at a sizeable level
[11, 12, 13, 14, 15]. Likewise, theories of quintessence predict a light scalar,
as do theories with continuously varying coupling constants as well as some
theories of dark matter. While scalars lead to an attractive interaction, like
usual gravity, they do not couple universally to all forms of energy in the
same way as in general relativity. Thus we expect differences in the forces
for different elements.

Additionally, independently of any specific theoretical model one might
argue (along the ‘anthropic’ approach to the issue of a possibly extremely
vast ‘multiverse’ of cosmological and/or string backgrounds) that: (i) the
‘Equivalence Principle’ is not a fundamental symmetry principle of Nature
(e.g. it is ‘violated’ in any theory containing very light scalars); (ii) the level
η ∼ ∆a/a of EP violation can be expected to vary, quasi randomly, within
some range of order unity, over the full multiverse of possible (cosmological
and/or theoretical) backgrounds; (iii) as there is probably a maximal level

1We will generally assume in the following that the scalar field we consider is essentially
massless on the scales that we discuss.
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of EP violation, say 0 < η∗ ≪ 1, which is compatible with the develop-
ment of life (and of physicists worrying about the EP), one should a priori
expect to observe, in our local environment, an EP violation η of order of
η∗. It is a challenge to give a precise estimate (or at least upper bound)
of η∗. We note, however, that this is a scientifically rather well-posed chal-
lenge. For instance, one of the necessary conditions for the existence of life
is the existence of solar-like planetary systems stable over billions of years.
A sufficiently large η 6= 0 will jeopardize this stability, notably under the
influence of external, passing stars. The current very small level of EP vio-
lation ensures that stars passing at a distance D disturb the inner dynamics
of the solar system only through tidal effects that decrease like D−3. An
EP violation η would increase this disturbing effect to a level ∝ ηR−2. It is
also a well-posed question to determine the level η which would destabilize
the solar system through internal EP-violating gravitational effects.

Independently of these various motivations, our work here will discuss
the general type of composition-dependence of EP violation that is entailed
by the existence of a light dilaton-like field. The theoretical challenge is to
connect the basic couplings of the dilaton Lagrangian to the properties of
real atomic systems.

Our work starts in Section 2 with a review of EP violations, and a general
parameterization of possible dilaton couplings, Eq. (12). Section 3 connects
dilaton coupling parameters with the other couplings of the Standard Model,
which is preparation for understanding the effects of the dilaton couplings.
Section 4 is our analysis of the effects in nuclear binding, while Section 5 is
a summary of the effects within individual nucleons, and Section 6 describes
electromagnetic effects. In Section 7, we collect the results of the previous
sections and give a complete treatment of the phenomenology of equiva-
lence principle violations, including comparisons with existing experiments.
Section 8 provides a guide to experimental sensitivities for existing and fu-
ture experiments. Experimenters who are willing to forgo the theoretical
development of Section 3-6 can go directly to Section 7-8 or can consult our
shorter paper [16] in which we have collected our most phenomenologically
useful results. In particular, Section 7.3 contains what is probably the most
useful parameterization of our results and Section 7.4 discusses the present
experimental constraints. Section 9 is a brief summary.
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2 Formalism

2.1 EP violation

Let us start by recalling that a massless dilaton φ modifies the Newtonian
interaction between a mass A and a mass B, into the form (see, e.g. [14])

V = −GmAmB

rAB
(1 + αAαB). (2)

If the dilaton mass is important the second term includes an extra exponen-
tial factor exp(−mφrAB). In this interaction potential, the scalar coupling
to matter is measured by the dimensionless factor

αA =
1

κ2mA

∂[κmA(φ)]

∂φ
. (3)

Here, κ ≡
√
4πG is the inverse of the Planck mass2 so that the product κmA

is dimensionless. This ensures that this definition of αA is valid in any choice
of units, even if these units are such that κ depends on φ (as in the so-called
‘string frame’). In the following, we shall generally assume that we work in
the ‘Einstein frame’ where the (bare) Newton constant G is independent of
φ. The above expression for the dimensionless scalar coupling αA has been
written in terms of a canonically normalized scalar field, with kinetic term
[using the signature (+,−,−,−)]

Lφ =
1

2
(∂φ)2 + · · · (4)

Evidently, a small mass term for the dilaton can readily be added if desired.
It can also be convenient to work with the dimensionless scalar field

ϕ ≡ κφ, (5)

whose kinetic term is related to the Einstein-Hilbert action via

− 1

16πG
(R− 2(∂ϕ)2) (6)

When using ϕ the definition of the dimensionless scalar coupling reads

αA =
∂ ln[κmA(ϕ)]

∂ϕ
. (7)

2We use units such that c = 1 = ~.
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In terms of the αA’s, the violation of the (weak) EP , i.e. the fractional
difference between the accelerations of two bodies A and B falling in the
gravitational field generated by an external body E, reads

(

∆a

a

)

AB

≡ 2
aA − aB
aA + aB

=
(αA − αB)αE

1 + 1
2(αA + αB)αE

≃ (αA − αB)αE . (8)

In the last (approximate) equation we have assumed that the α’s are small,
so that one can neglect the term 1

2 (αA + αB)αE in the denominator.
Our aim here is to provide a general analysis of the possible EP viola-

tions in experiments comparing the free fall accelerations of atoms (and/or
nuclei). Most of the effort needed for such an analysis is now understood
[12, 13, 15, 17], and we will use it below. However, one aspect of this analysis
has been far less well-studied and understood, namely the contribution to
EP violation coming from the possible φ-dependence of the nuclear binding
energy. The aim of this paper will mainly be to assess the form of this
contribution, coming from the quark mass contribution to nuclear binding3.
Actually, our conclusion will be that this contribution is, possibly in competi-
tion with Coulomb-binding effects, likely to dominate the atom-dependence
of the EP violation signal (8).

To motivate our general analysis, let us start by noting that the mass of
an atom can be decomposed as

m(AtomA) = mA = mrestmass
A + Ebinding (9)

where
mrestmass

A = Zmp +Nmn + Zme (10)

is the rest-mass contribution to the mass of an atom (Z denoting the atomic
number and N the number of neutrons), and where Ebinding is the binding
energy of the atom, which is dominated by the binding energy of the nu-
cleus. Ebinding ≡ E3 + E1 is the sum of a strong interaction contribution,
say E3, and of an electromagnetic one, say E1 (which is dominated by the
electromagnetic effect within the nucleus). The indices 3 and 1 are used
here as reminders of the gauge groups underlying the considered interac-
tions: namely, SU(3) and U(1). Note that the index A in mA is used here
(like in the definition of the scalar coupling αA) as a label for distinguishing
several different atoms. It should not be confused with the mass number (or
nucleon number) A ≡ Z +N which we shall use below.

3Damour [3] and Dent [17] have highlighted this need for the study of the nuclear
binding energies.
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2.2 The general dilaton Lagrangian

The basic organizing principle that we shall use in our discussion is to keep
track of the effect of all the possible φ modifications of the terms entering
the effective action describing physics at the scale of nuclei in their ground
states. We have in mind here an energy scale µ ∼ 1 GeV. At such a scale,
one has integrated out not only the effect of weak interactions, but also the
heavy quarks c, b and t. The issue of the possible φ sensitivity of effects
linked to the strange quark s is more delicate. In the Appendix we argue
that the possible EP violations linked to the φ couplings to s are expected to
be quite small. In the bulk of the text we shall therefore ignore s (assuming
that its effect is taken into account by changing some of the quantities we
discuss, notably the QCD energy scale Λ3).

In this approximation, we are therefore talking about an effective action
containing, as real particles, the electron e, the u quark, and the d quark,
with interactions mediated by the electromagnetic (Aµ) and gluonic (AA

µ )
fields. [Here we shall use a rescaled U(1) gauge potential, which incorpo-
rates the electron charge e, but an unrescaled gluonic field, which does not
incorporate the SU(3) gauge coupling g3.] Then each of the five terms in
this effective action, say

Leff = − 1

4e2
FµνF

µν − 1

4
FA
µνF

Aµν +
∑

i=e,u,d

[

iψ̄i /D(A, g3A
A)ψi −miψ̄iψi

]

,

(11)
(where D(A) denotes the Dirac operator coupled to the gauge field(s) A)
can couple to ϕ = κφ with a (dimensionless) coefficient. [We assume that
we work in the Einstein frame, with the gravity and φ kinetic terms dis-
played above.] This introduces five dimensionless dilaton coupling coeffi-
cients, say de, dg for the couplings to the electromagnetic and gluonic field
terms, and dme , dmu , dmd

for the couplings to the fermionic mass terms4.
We shall normalize these five dimensionless dilaton coupling coefficients
de, dg, dme , dmu , dmd

so that they correspond (when considering the linear
couplings to φ) to the following interaction terms

Lintφ = κφ



+
de
4e2

FµνF
µν − dgβ3

2g3
FA
µνF

Aµν −
∑

i=e,u,d

(dmi
+ γmi

dg)miψ̄iψi





(12)

4We are using here the fact that a φ−dependent coupling to the kinetic term of a
fermion, f(φ)ψ̄i /Dψ, can be absorbed in a suitable φ−dependent rescaling of ψ.
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We shall explain below the notation and our choice of normalization for
these interaction terms.

There are two equivalent ways of thinking about the computation of the
scalar-matter coupling αA, Eq. (3). One way is to think that it is given by
the matrix element (in the quantum state of an atom) of the operator in
the quantum Hamiltonian (associated to the interaction Lagrangian above)
which is linear in φ. A second way is to think that it is obtained by the
chain rule as

αA =
∂ ln[κmA(ϕ)]

∂ϕ
=

∑

a

∂ ln[κmA(ka)]

∂ka

∂ka
∂ϕ

. (13)

where κmA(ka) is the expression of the dimensionless mass ratio κmA =
mA/mPlanck as a function of the dimensionless coupling constants of Na-
ture, say ka = k1, k2, . . . , k20, entering the Standard Model. Actually, be-
cause of the limited number of terms entering the relevant low-energy action
(11), there are only five relevant dimensionless constants of Nature ka cor-
responding to the five terms in (11). As we shall see in detail below, the five
terms in the interaction terms (12) precisely correspond to introducing a φ
dependence in the five following dimensionless constants of Nature,

α, κΛ3, κme, κmu, κmd, (14)

where α = e2/(4π) is the fine-structure constant, Λ3 the QCD energy
scale, me the electron (pole) mass, and where mu and md denote some
renormalization-group-invariant measures of the light quark masses (say,
the µ-running masses taken at the multiple of Λ3 which is equal to 1 GeV).

In the next Section we shall relate our normalisation of the five dimen-
sionless dilaton coupling parameters da entering (12) to the constants (14),
and explain in more detail the dependence of the mass of an atom on the
five constants (14), and thereby on the five dilaton parameters da.

3 Relation between the dilaton coupling parame-

ters da and the ‘constants of Nature’.

By comparing the φ-interaction Lagrangian (12) to the other terms in the
effective action (11), we see that the meaning of the dilaton coupling coeffi-
cients da = de, dg, dme , dmu , dmd

seems clear for four of them. [Actually, we
shall see below that the meaning of the quark-mass couplings dmi

is more
subtle, because of the renormalization group running of the quark masses,
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which is associated with the γmi
dg term in (12).] First, the coupling de to

the electromagnetic field modifies the Maxwell action according to

LEM = −1− deκφ

4e2
FµνF

µν ≃ − 1

4(1 + deκφ)e2
FµνF

µν (15)

where the last equality is valid at the linear level in κφ (which is the level
at which we define the dilaton couplings here). As we work with a rescaled
electromagnetic field (Ahere = eAusual), the only location where the electric
charge occurs in the Lagrangian is the one explicitly shown above. This
allows the dilaton field to be absorbed into the following φ dependence of
the fine-structure constant

α(φ) = (1 + deκφ)α = (1 + deϕ)α. (16)

Second, comparing (12) to the mass terms of the electron and the light
quarks, we see that our normalization is such that dme , dmu , dmd

introduce
the following φ dependence of the e, u and d masses:

mi(φ) = (1 + dmi
κφ)mi = (1 + dmi

ϕ)mi, (i = e, u, d). (17)

On the other hand, the terms in (12) that depend on our ‘dilaton-gluon’
coupling dg call for a more subtle explanation. The choice of these coupling
terms is such that the coefficient of dg is invariant under the renormalization-
group (RG). As the coefficient of dmi

(i.e. the mass term miψ̄iψi) is also,
separately, RG-invariant, our choice of normalization of the coefficients in
(12) gives a RG-invariant meaning to both dg and the dmi

’s.5

3.1 Connection with the QCD trace anomaly

The phenomenological consequences (for the scalar coupling to hadrons) of
the RG-invariant nature of the couplings in (12) can be seen in two (equiva-
lent) ways. One way (which was used by [18] and [15]) consists in remarking
that the definition of the dg-dependent terms in (12) is such that they cou-
ple φ to the anomalous part of the trace of the gluon stress-energy tensor,
namely

Lgφ = −dgκφT anom
g (18)

5We are here talking about invariance under the QCD-driven running of the QCD gauge
coupling g3, and of the masses of fermions coupled to QCD. In view of the smallness of
the electromagnetic coupling α ≃ 1/137 ≪ α3, we are neglecting the RG-running driven
by electromagnetic effects. If one wanted to take it into account, one should add to (12)
additional terms linked to the QED trace anomaly.
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where [19]

T anom
g =

[

β3
2g3

FA
µνF

Aµν + γm
∑

i

miψ̄iψi

]

µ

(19)

Here, β3(g3) = µ∂g3/∂µ denotes the β function for the running of the
QCD coupling g3 with the (Wilsonian) sliding energy scale µ, γm(g3) =
−µ∂ lnm/∂µ (with a minus sign on the r.h.s.) is the (universal) anoma-
lous dimension giving the energy-running of the masses of the QCD-coupled
fermions, and the subscript µ at the end indicates that the operator on the
r.h.s. must be renormalized at the running scale µ. We recall that, classi-
cally, the trace of the gluonic stress-energy tensor vanishes (because of the
conformal invariance of the Yang-Mills action), but that quantum effects
linked to the necessity of regularizing the UV infinities in the product of
gluon field strengths at the same spacetime point x introduce the (finite)
‘conformal anomaly’ (19) [19]. Then, by using the quantum version of the
virial theorem6, one can see [18, 15] that the coupling (18) means that dg
measures the coupling of φ to the part of the total mass-energy of the consid-
ered hadron which is due to the (renormalized) gluonic field energy, say Mg

(where Mg can be defined by subtracting from the total mass both the non-
anomalous mass-term contributions 〈∑imiψ̄iψi〉, and the electromagnetic
one).

3.2 Renormalization group analysis

A second way of discussing the consequences (for the scalar coupling to
hadrons) of our normalization of couplings in (12) is phenomenologically
illuminating. It consists in noting that our RG-invariant definitions are
equivalent to very simple consequences for the φ dependences of both the
QCD mass scale Λ3, and the values of the quark masses at the scale µ =
Λ3. [Note that both Λ3 and mi(Λ3) are RG-invariantly defined quantities.]
Let us start by defining the QCD mass scale Λ3 as being the mass scale
at which the running QCD coupling g3(µ) reaches some fixed, reference
dimensionless number of order unity, say g∗ = 2.5. [This numerical value,
which corresponds to α∗ = g2

∗
/(4π) = 0.5, is approximately reached when

the running scale µ ≃ 1 GeV (see, e.g., the figure giving αs(µ) in the QCD
review in [20]).] This definition of Λ3 can be re-expressed in terms of the
value gc ≡ g3(Λc) of g3 at some high-energy ‘cut-off’ scale Λc (which could

6We recall that this theorem says that the space integral of the spatial components
of the total stress-energy tensor T µν

tot
= T µν

g + T µν
EM + T µν

matter
vanishes in an equilibrium

bound state.

8



be the Planck scale, or the string scale) by integrating the β equation giving
the running of g3, d ln µ = dg3/β3(g3), so that:

ln Λ3(Λc, gc) = lnΛc −
∫ gc

g∗

dg3
β3(g3)

(20)

The expression (20) defines Λ3 as a function of Λc and gc. If we assume
for simplicity that the chosen cut-off Λc does not depend (in the Einstein
frame) on φ, the result (20) shows that Λ3 will inherit a φ dependence from
any eventual φ dependence of gc according to (denoting βc ≡ β3(gc))

∂ lnΛ3

∂ϕ
= − gc

βc

∂ ln gc
∂ϕ

(21)

Similarly, the integration of the RG equation for a running fermionic mass
mi, namely d lnmi = −dg3γm(g3)/β3(g3) yields the following expression for
the value of mi at the QCD scale, lnmi(Λ3):

lnmi(Λ3) = lnmi(Λc) +

∫ gc

g∗

γm(g3)

β3(g3)
dg3 (22)

Differentiating this result w.r.t. ϕ then shows that the logarithmic deriva-
tive of mi(Λ3) w.r.t. ϕ is the sum of two separate contributions, namely
(denoting γc ≡ γm(gc))

∂ lnmi(Λ3)

∂ϕ
=
∂ lnmi(Λc)

∂ϕ
+
gcγc
βc

∂ ln gc
∂ϕ

(23)

On the other hand, by comparing7 the φ-dependent terms in (12) to the
basic action (11) (both being considered at the cut-off scale Λc), we see that
the coefficients dg and dmi

have the effect of adding some φ-dependence in
the values of gc and mi(Λc) of the form

∂ ln gc
∂ϕ

= −dg
βc
gc

,
∂ lnmi(Λc)

∂ϕ
= dmi

+ γcdg. (24)

Inserting these results in the ϕ-derivatives of Λ3 and mi(Λ3) derived above,
finally leads (thanks to the cancellation of the γc-dependent contribution in
the derivative of the masses) to the simple results

∂ lnΛ3

∂ϕ
= dg ,

∂ lnmi(Λ3)

∂ϕ
= dmi

. (25)

7In doing this comparison it is useful, as explained above for the Maxwell action, to
provisionally use a ‘geometric’ normalization of the gluon field, i.e. to absorb g3 in AA.
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Summarizing: the physical meaning of the five dilaton-coupling coeffi-
cients da = de, dg, dme , dmu , dmd

is (at the linear level in φ) to introduce a
φ-dependence in the parameters entering the low-energy physics of the form

Λ3(ϕ) = (1 + dgϕ)Λ3,

α(ϕ) = (1 + deϕ)α,

me(ϕ) = (1 + dmeϕ)me,

[mi(Λ3)] (ϕ) = (1 + dmi
ϕ)mi(Λ3), i = u, d. (26)

3.3 Ratios of dimensional parameters

Note that a consequence of these equations is that the dimensionless
ratios me/Λ3, mu(Λ3)/Λ3, md(Λ3)/Λ3 depend on ϕ through the ratios
(1 + dmi

ϕ)/(1 + dgϕ) ≃ (1 + (dmi
− dg)ϕ). In other words, the ϕ sensi-

tivity of these dimensionless ratios is

∂ ln [mi(Λ3)/Λ3]

∂ϕ
= dmi

− dg . (27)

Note that this involves only the differences dmi
− dg. In particular, when

the mass couplings dmi
are taken to be all equal to dg, the effect of the

φ couplings is equivalent to introducing a φ dependence only in Λ3 and
α. This fact can also be seen by means of the formulation (18) of the
dg coupling. Indeed, when dmi

= dg the sum of (18) and of the mass-
term couplings is equivalent to having a coupling between φ and the sum
of the anomalous, T anom

g , and of the non-anomalous, T non anom
g , parts of the

trace of the total stress-energy tensor. Therefore, modulo electromagnetic
effects, this would imply that φ couples to the trace of the total stress-energy
tensor, i.e. (using the virial theorem) that φ couples to the total mass of the
hadron. In this particular case, the only violations of the EP would come
from electromagnetic effects.

However, in view of the fact that the physics which determines (in the
Standard Model) the masses of the leptons and quarks involves the sym-
metry breaking of the electroweak sector, and, in particular, the VEV of
the Higgs field, it does not seem a priori likely that a fundamental theory
describing the high-energy couplings of the dilaton can ensure such a uni-
versal feature. From this point of view, one can consider our final results
(26) as useful general parametrizations of the low-energy dilaton couplings,
independently of the complicated physics that might connect these param-
eters to an eventual high-energy description of the φ couplings to the fields
entering the basic Lagrangian. For example, heavy quarks do not enter the
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field couplings (12), but they enter in the relation between the QCD scale Λ3

(describing the physics at scales . 1 GeV) and the high-energy boundary
conditions, Λc, gc. Therefore, the parametrization of dg in (26) implicitly
takes into account the effect of heavy quarks. [Ref. [15] showed how to ex-
plicitly take into account the effect of heavy quarks, and it is easily checked
that their results are in agreement with the first equation in (26).]

We can use the above results to rewrite the expression of the scalar
couplings to matter (3), (7) in a useful form. As the Planck scale 1/κ does
not directly enter physics at the QCD scale (besides its possible impact on
determining Λ3 via Eq.(20)), we can always write the mass of an atom as

mA = Λ3MA(
mu

Λ3
,
md

Λ3
,
me

Λ3
, α), (28)

where MA is a dimensionless quantity, which is a function of the four indi-
cated dimensionless quantities, say (for later convenience)

(ku, kd, ke, kα) ≡ (
mu

Λ3
,
md

Λ3
,
me

Λ3
, α). (29)

Using this notation, the scalar coupling to matter Eq.(7) can be rewritten
(when working in the Einstein frame) as

αA = dg + ᾱA, (30)

where dg =
∂ ln Λ3

∂ϕ is a universal (non EP-violating) contribution to αA, and
where the EP-violating part ᾱA is given by

ᾱA ≡ ∂ lnMA

∂ϕ
=

1

MA

∂MA

∂ϕ
=

1

MA

∑

a=u,d,e,α

∂MA

∂ ln ka

∂ ln ka
∂ϕ

. (31)

The logarithmic derivatives of the ka are given by Eq. (26), so that we can
write more explicitly ᾱA as the following sum of four contributions:

ᾱA =
1

MA

∂MA

∂ϕ
=

1

MA





∑

a=u,d,e

(dma − dg)
∂MA

∂ ln ka
+ de

∂MA

∂ lnα



 . (32)

3.4 Redefining the quark mass parameters

In the following, we will find it convenient to work with the symmetric and
antisymmetric combinations of the light quark masses, namely

m̂ =
1

2
(md +mu) , δm = (md −mu) (33)

11



Working in terms of m̂ and δm, means working in terms of mass terms of
the form

mdd̄d+muūu = m̂(d̄d+ ūu) +
1

2
δm(d̄d− ūu) (34)

which couple to the dilaton as

Lφ = .... − κφ

[

dm̂m̂(d̄d+ ūu) +
dδm
2
δm(d̄d− ūu)

]

(35)

These definitions are such that, for instance, the coupling of ϕ to m̂ is
equivalent to a Hamiltonian coupling of the form,

H = ....+ (1 + dm̂ϕ)m̂(ūu+ d̄d), (36)

i.e. to introducing a ϕ dependence in the average light quark mass of the
type m̂(ϕ) = (1 + dm̂ϕ)m̂.

The link between these new dilaton-coupling coefficients and the previous
ones reads

dm̂ ≡ ∂ ln m̂

∂ϕ
=
dmd

md + dmumu

md +mu
, dδm ≡ ∂ ln δm

∂ϕ
=
dmd

md − dmumu

md −mu
. (37)

In term of this notation (32) reads

ᾱA =
1

MA

[

(dm̂ − dg) m̂
∂MA

∂m̂
+ (dδm − dg) δm

∂MA

∂δm

+(dme − dg)me
∂MA

∂me

+ de α
∂MA

∂α

]

. (38)

As displayed in Eq. (38), ᾱA is naturally decomposed into a sum of four
contributions, which are linear in the four dilaton couplings: dma −dg, or de.
Another linear decomposition can also be applied to the various terms in ᾱA:
namely the one corresponding to the various terms in Eq. (9). Regrouping
some terms in these two possible linear decompositions, we shall find con-
venient in our calculations (before coming back to the more theoretically
rooted decomposition (38)) to decompose ᾱA into three contributions:

ᾱA = ᾱrmwo.EM
A + ᾱbind

A + ᾱde
A (39)

where ᾱrmwo.EM
A denotes the contribution coming from the terms linear in

the quark and electron masses in the rest-mass contribution (10) to mA

(without the electromagnetic contributions), where ᾱbind
A denotes the contri-

bution coming from the nuclear binding energy Ebind in Eq. (9), i.e.

ᾱbind
A =

1

MA

∂(Ebind(ϕ)/Λ3)

∂ϕ
(with fixed α), (40)
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and where ᾱde
A denotes the total electromagnetic contribution, coming both

from the EM contributions to the masses of the nucleons, and from the
nuclear Coulomb energy term E1, which is a part of Ebind in Eq. (9). Note
that ᾱde

A collects the terms in ᾱA which are proportional to the EM dilaton
coupling de, i.e. which come from the ϕ sensitivity of the fine-structure
constant α. This is why we have added in the definition of ᾱbind

A above the
fact that one must keep α constant when computing it. As we shall see,
the Coulomb energy term plays a special role in that it depends both on
nuclear-binding effects, and on EM ones. As a consequence it will give two
separate contributions: one to ᾱbind

A and one to ᾱde
A .

4 Analysis of scalar couplings to the binding en-

ergy of nuclei

We will first focus on the scalar coupling to the nuclear binding energy, Eq.
(40), because this term has not yet received a satisfactory treatment in the
literature.

When dealing with nuclear binding it is convenient to work with the
(half) sum and difference of the light quark8 masses, m̂ and δm, as in-
troduced above. Indeed, the quark-mass dependence of nuclear binding is
dominated by its dependence on the average light quark mass m̂ because
pion exchanges yield the dominant contribution to nuclear binding , and
pion masses are proportional to m̂, while they are insensitive to the differ-
ence in quark masses. [ The quark mass difference δm is important for the
neutron and proton masses, and will enter the computation below of the
rest-mass contribution to EP violation.]

As explained above, the ϕ dependence of dm̂ implies the following result
for the ‘nuclear binding energy’ contribution, Eq. (40), to EP violation:

ᾱbind
A =

(dm̂ − dg)

mA
m̂
∂Ebind

∂m̂
(41)

In QCD, because the pion is almost a Goldstone boson of the dynamically
broken chiral symmetry, the pion mass-squared is linear in the quark mass,
m2

π ≃ b0Λ3 m̂, where b0 is a pure number. This relation is accurate in the

8As explained above, heavy quarks are assumed to have been integrated out from the
theory, thereby producing a shift in the QCD scale Λ3, and its associated dilaton coupling
dg. The effect of the strange quark, which is intermediate between heavy and light, is
discussed in the appendix.
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physical region, so that we can translate our formula into one involving the
pion mass,

ᾱbind
A =

(dm̂ − dg)

mA
m2

π

∂Ebind

∂m2
π

(42)

Our major task then translates into knowing the dependence of nuclear
binding on the mass of the pion.

The semi-empirical mass formula describes the binding energy mA −
mrestmass

A through the following terms:

mA −mrestmass
A = Ebind, (43)

where the nuclear binding energy is approximately described as

Ebind = −avA+ asA
2/3 + aa

(A− 2Z)2

A
+ ac

Z(Z − 1)

A1/3
− δ

ap

A1/2
. (44)

The various contributions to the nuclear binding energy9 are called, re-
spectively the volume energy, the surface energy the asymmetry energy, the
Coulomb energy and the pairing energy. [In the latter, δ = 1

2 [(−)N +(−)Z ],
i.e. δ = +1 for even-even nuclei, δ = −1 for odd-odd nuclei and δ = 0 oth-
erwise.] Typical fit values for these parameters are [23] av = 16 MeV, as =
17 MeV, aa = 23 MeV, ap = 12 MeV, ac = 0.717 MeV. Note that, here
and in the following, the unit of 1 MeV is supposed to represent a fixed
fraction of the QCD mass scale, say ≃ 10−3Λ3 if we use, as indicated above,
a reference value g∗ for g3 such that Λ3 ≃ 1 GeV.]

The m̂ sensitivity of Ebind comes from the m̂ sensitivity of the various
coefficients av, as, aa, ac, ap (taken in units of Λ3). We shall discuss succes-
sively the m̂ sensitivities of: (i) av and as, (ii) aa, and (iii) ac. Concerning
the pairing interaction term ap we found that it was subdominant in our
final results because it is down by a factor of A7/6 compared to our primary
A dependence. Even when allowing for variations with quark mass compa-
rable to that of the asymmetry energy we found that it is negligible in the
end, so we drop it at this stage.

4.1 The central nuclear force terms: av and as

Let us first consider the terms proportional to av and as. They come from the
isospin symmetric central nuclear force, which is the dominant contribution

9Please be aware of a dual notation in that the letter A is used both as a label for a
certain type of atom, and, in the semi-empirical mass formula, as a notation for the mass
number A = Z +N .

14



in the binding of heavy nuclei. Our previous work [21, 22] shows that this
component has an enhanced dependence on the quark masses and hence
it has an enhanced coupling to a dilaton. This large dependence comes
because the central potential involves competing effects of an intermediate
range attractive force and a shorter range repulsive force. The cancelation
between these two effects (which are individually of order ±100 MeV per
nucleon) lead to a binding energy which is quite small on the QCD scale
(namely of order −10 MeV per nucleon). However, the attractive force is
far more sensitive to pion masses because it involves two pion exchange.
Changing the pion mass a modest amount upsets the cancelation of the two
components and leads to a larger effect than might naively be expected.

The central force is parameterized by two terms denoting the volume
energy and the surface energy,

Ebind = −avA+ asA
2/3 + residual terms (45)

The central potential is isospin symmetric, and can involve exchanges which
carry angular momentum quantum numbers 0 or 1. The work of Ref. [24]
uses a general basis of contact interactions [25] to quantify these contri-
butions to nuclear binding. This parameterization only assumes that the
interactions have a range which is smaller than the momentum in nuclei
k ∼ 200 MeV. The dominant contact interactions are found to be those of
an attractive scalar and a repulsive vector, describing the integrated effects
of the potentials. They are parameterized by strengths GS (GV ) for the
scalar (vector) channel. We can then use the results of Ref. [24] to give the
binding energy as a function of these strengths, normalized to their physical
values, by defining

ηS ≡ GS

GS |physical
, ηV ≡ GV

GV |physical
(46)

This results in

Ebind = −(120A − 97A2/3)ηS + (67A − 57A2/3)ηV + residual terms (47)

where the numbers are in units of MeV. One can see here the cancelation
between the primary terms as each is larger than their sum. Of these two
contributions, our calculations indicate that it is the scalar channel (ηS)
that has the most important effect. This is because the scalar channel is
dominated by the exchange of two pions, which is highly sensitive to the
pion mass. While the two pion contribution is often parameterized by an
effective sigma meson, the low energy exchange of two pions is required in
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chiral perturbation theory and is calculable10. This accounts for much of
the strength typically ascribed to the sigma [26]. The vector interaction has
a very small low energy contribution from three pions, and estimates of the
quark mass dependence of the mass and couplings of a massive vector boson
indicate a tiny residual contribution [21].

With these results we have argued that the main contribution is the
variation of the scalar strength with quark mass,

ᾱbind
A = −(dm̂ − dg)

mA
(120A − 97A2/3)m2

π

∂ηS
∂m2

π

(48)

We use the result of Ref. [21], displayed in Fig 1 showing the scalar strength
as a function of the pion mass. This variation arose almost entirely from the
threshold modification in the two pion effects at low energy, where the chiral
techniques are most reliable and where we expect the greatest sensitivity to
a change in the mass [28, 29]. We can use this directly to obtain

ηS

m2
π

m2

phys

0 0.5 1 1.5 2

0.2

0.4

0.6

0.8

1

1.2

Figure 1: The value of the scalar strength ηS as a function of the pion mass.

m̂
∂ηS
∂m̂

= m2
π

∂ηS
∂m2

π

= −0.35 ± 0.10 (49)

The error bar comes from uncertainties in the chiral expansion. We will
not display the error bar in subsequent formulas, but all results in the bind-
ing energy carry this level of uncertainty. Our final result for the central

10Other estimates of mass dependence [27] have not explicitly taken into account this
low energy effect.
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dependence in the dilaton coupling is

ᾱbind
A |central =

(dm̂ − dg)

mA
(42A − 34A2/3) (MeV)

≈ (dm̂ − dg) FA

(

0.045 − 0.036

A1/3

)

. (50)

In the final line we have introduced the notation

FA ≡ Amamu

mA
(51)

wheremamu = 931 MeV is the atomic mass unit (i.e. the nucleon massmN =
939 MeV minus the average binding energy per nucleon, ≃ 8 MeV). The
factor F = Amamu/mA remains quite close to one all over the periodic table
(modulo O(10−3)). Note that our result Eq. (50) for the light-quark-mass
(m̂) dependence is significantly larger (by a factor 2.2) than the estimate
used by Dent [17]. Indeed, Eq. (50) corresponds, say for the crucial surface
energy, to a logarithmic sensitivity ∂ ln as/∂ ln m̂ = −34MeV/as = −2,
while Ref. [17] estimated ∂ ln as/∂ ln m̂ ≃ −0.9.

4.2 The asymmetry energy term: aa

Let us now discuss the ϕ sensitivity of the asymmetry energy ∝ aa which is,
after the volume, surface and Coulomb terms, the fourth dominant contribu-
tion to Ebind. The asymmetry energy has two components. The first comes
from the Pauli principle which requires that, when there is an excess of neu-
trons over protons, the extra neutrons must be placed into higher energy
states than the protons. The other component is due to the nuclear force in
which the isospin dependent interactions create a stronger attraction for an
neutron and proton compared to two neutrons or two protons.

The asymmetry energy has been calculated by Serot and Walecka [30] in
the same framework that we use in our work on nuclear matter [22]. This
takes the form

aa =
k2F

6
√

M2
∗
+ k2F

+
Gρ

12π2
k3F (52)

where

M∗ = mN

(

1 +
γGSk

3
F

6π2

)

(53)

is the nucleon mass modified by interactions in nuclear matter (with GS < 0
so that M∗ < mN ). For isoscalar nuclear matter we have γ = 4. In meson
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exchange models Gρ = g2ρ/m
2
ρ and GS = −g2σ/m2

σ are the vector meson
and scalar coupling strengths. The k3F dependence in the second term in
aa comes from a calculation of the nuclear density in terms of the Fermi
momentum kF .

As mentioned above, our estimates indicate that the mass dependence of
the vector meson coupling strength is weak. However, the Fermi momentum
depends on the scalar strength, which has a sizeable mass variation. The
Fermi momentum increases as the scalar strength increases. We calculate
this through our work on nuclear matter in which we solve for the Fermi
momentum as a function of the scalar strength (e.g. see Fig. 4 of [22]). More
precisely, using our approximate analytical model, Eq. (17) of [22], with the
values GS = −355.388GeV−2 , and GS = +262.89GeV−2 (which entail the
phenomenologically good values av = 15.75MeV and kF = 1.30 fm−1) we
find that

∂ ln kF
∂ lnGS

≃ 0.525 (54)

Using that dependence we find that both components of the asymmetry
energy in Eq. (52) vary in the same direction with the scalar strength. The
kinetic contribution (first term) varies with a logarithmic rate ≃ 2.54, while
the other one varies like k3F , i.e. with a logarithmic rate 3× 0.525 = 1.575.
The combination of the two contributions then varies with a rate

∂ ln aa
∂ lnGS

≃ 2.35 (55)

Combining this variation with the logarithmic mass variation Eq. (49) of
the scalar strength GS then yields

m2
π

∂aa
∂m2

π

=
∂aa
∂GS

m2
π

∂GS

∂m2
π

= −0.82 aa = −19 MeV (56)

Note that our framework shows that ∂ ln aa/∂ ln m̂ ≃ −0.82 is rather differ-
ent from ∂ ln as/∂ ln m̂ = −2. This shows again the subtlety of quark-mass
effects in nuclear physics.

4.3 The Coulomb energy term: ac

The Coulomb energy also has a dependence on the strong interaction cou-
pling terms. Dimensionally this is because the electromagnetic coupling α
is dimensionless, so that the overall energy scale associated with ac comes
from the nuclear interactions. Physically, this dependence is also logical be-
cause the Coulomb energy depends on how tightly the nucleons are packed
together. We estimate this effect in this subsection.
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An approximate analytic expression for the coefficient of the Coulomb
contribution to the nuclear binding energy is ac ≃ (3/5)α/r0 where r0 ≃
1.2 fm is the scaled nuclear radius: rA = r0A

1/3. Writing that the total
baryonic number within the volume of the nucleus, i.e. ρB4πr

3
A/3 (with ρB =

γk3F /(6π
2)) is equal to A, one gets the link kF r0 = (9π/8)1/3. Therefore,

r0 varies inversely proportionally to kF , so that the above result shows that
ac ∝ αkF . This yields a logarithmic sensitivity of ac to variations of GS

with the same rate as kF itself, i.e. 0.525, as quoted above. Multiplying this
rate by the rate −0.35 of Eq. (49), then yields

m̂
∂E1

∂m̂
= −0.184ac

Z(Z − 1)

A1/3
= −0.13

Z(Z − 1)

A1/3
MeV (57)

4.4 The complete scalar coupling to the binding energy

Combining our partial results, we finally obtain for ᾱbind
A the following sum

ᾱbind
A = (dm̂ − dg)FA (58)

×
[

0.045 − 0.036

A1/3
− 0.020

(A − 2Z)2

A2
− 1.42 × 10−4 Z(Z − 1)

A4/3

]

.

In writing this result, we have, as above, factorized FA = Amamu/mA.

5 Scalar couplings to the rest mass of atoms

In this section we study the first term on the r.h.s. of Eq. (39), i.e. the
contribution to ᾱA coming from the ϕ sensitivity of the rest masses of the
low-energy constituents of atoms, namely protons, neutrons and electrons
(à la [12]).

In view of the expression Eq. (34) for the mass terms of the light quarks,
we can write the masses of the nucleons as [31]

mp = mN3 + σ − 1

2
δ + Cp α ,

mn = mN3 + σ +
1

2
δ + Cn α , (59)

where mN3 is the nucleon mass in the “chiral limit” of massless light11

quarks, and where the electromagnetic contributions Cp α, Cn α will be ig-
nored here and treated in the next section. The quantities σ and δ in

11In the present treatment, we absorb in mN3 ∝ Λ3 the EP non violating effect of the
strange quark; see the appendix.
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Eq. (59) denote the matrix elements of the isoscalar (∝ d̄d+ ūu) and isovec-
tor (∝ d̄d− ūu) terms in a neutron state:

σ = 〈n|m̂(d̄d+ ūu)|n〉
δ = 〈n|(md −mu)(d̄d− ūu)|n〉 (60)

These combinations of the quark mass contributions to the individual nucle-
ons are reasonably well known. The isoscalar contribution is related to the
πN sigma term and has the value σ = 45 MeV [33]. The isovector difference
can be obtained by SU(3) sum rules

δ =
md −mu

ms − m̂
[mΞ −mσ] = 3.1 MeV (61)

The ϕ sensitivity of the rest mass contribution (without the EM contribu-
tion) of an atom,

mrmwo.EM
A = AmN3

+Aσ +
1

2
(N − Z) δ + Z me , (62)

comes from the fact that σ ∝ m̂(ϕ), δ ∝ δm(ϕ), and from the ϕ dependence
of me. Using our general results above, we therefore have

ᾱrmwo.EM
A = (dm̂ − dg)

Aσ

mA
+

1

2
(dδm − dg)

(N − Z)δ

mA

+ (dme − dg)
Zme

mA
. (63)

Inserting the numerical values of σ, δ and me yields

ᾱrmwo.EM
A ≃ FA

[

0.048(dm̂ − dg) + 0.0017(dδm − dg)
A− 2Z

A

+ 5.5× 10−4(dme − dg)
Z

A

]

. (64)

6 Electromagnetic effects

In this section, we review the electromagnetic coupling, which is contained
in the Lagrangian, i.e. the contribution

α
(de)
A =

de
mA

α
∂mA

∂α
(65)
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The main electromagnetic effects in the atomic masses come from the
electromagnetic shifts in the nucleon masses and from the electromagnetic
contribution to nuclear binding, E1.

α
(de)
A =

de
mA

[

Zα
∂mp

∂α
+ (A− Z)α

∂mn

∂α
+ α

∂E1

∂α

]

(66)

We follow Gasser and Leutwyler [31] in the estimate of the electromagnetic
portions of the proton and neutron masses

α
∂mp

∂α
= Cp = 0.63 MeV α

∂mn

∂α
= Cn == −0.13 MeV (67)

The electromagnetic binding is known from the semi-empirical mass formula

α
∂E1

∂α
= ac

Z(Z − 1)

A1/3
(68)

with ac = 0.717 MeV. These combine to yield

ᾱ
(de)
A = deFA

[

−1.4 + 8.2
Z

A
+ 7.7

Z(Z − 1)

A4/3

]

× 10−4 (69)

As above, the factor FA = Amamu/mA can be replaced by one in lowest
approximation.

7 Implications for the Equivalence Principle

7.1 General parameterization

Summarizing our results, the dilaton coupling to an atom can be written as

αA = dg + ᾱrmwo.EM
A + ᾱbind

A + ᾱ
(de)
A (70)

where ᾱrmwo.EM
A is given by Eq. (64), ᾱbind

A by Eq. (58), and ᾱ
(de)
A by Eq.

(69). It will be convenient for the following to rewrite this result as

αA = dg + ᾱA (71)

with the decomposition

ᾱA = [(dm̂ − dg)Qm̂ + (dδm − dg)Qδm + (dme − dg)Qme + deQe]A (72)
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whereQka can be thought of as the ‘ dilaton charge’ coupled to the parameter
ka. These are given by

Qm̂ = FA

[

0.093 − 0.036

A1/3
− 0.020

(A − 2Z)2

A2
− 1.4× 10−4 Z(Z − 1)

A4/3

]

,

(73)

Qδm = FA

[

0.0017
A− 2Z

A

]

, (74)

Qme = FA

[

5.5 × 10−4 Z

A

]

, (75)

and

Qe = FA

[

−1.4 + 8.2
Z

A
+ 7.7

Z(Z − 1)

A4/3

]

× 10−4. (76)

Here, as above, the factor FA denotes FA ≡ Amamu/mA (it can be replaced
by one in lowest approximation).

7.2 Relation to theoretical expectations

Note that all the various contributions to the non-universal part ᾱA of αA =
dg + ᾱA contain small numerical coefficients in front of the various basic
dilaton couplings dg, de, dm̂, dδm, dme . It is therefore a priori probable that
the composition-dependent part ᾱA is small compared to the composition-
independent12 part αc.i.

A = dg.
We recall that the latter composition-independent part is, in principle,

accessible in various experimental tests of relativistic gravity. For instance,
in the notation of tests of post-Newtonian gravity, αc.i.

A = dg, is related to
the Eddington parameter γ via (see, e.g., [14])

γ − 1 = −2
d2g

1 + d2g
≃ −2d2g (77)

The most precise current test of relativistic gravity [32] constrain (γ− 1)/2,
i.e. d2g at the level

d2g ≃ 1− γ

2
< 10−5 (78)

12 Actually, if we define the composition-independent part of αA by some average over
the composition of the bodies relevant for the considered gravity tests, αc.i.

A will have,
besides dg, a contribution coming from ᾱA, and notably from terms ∼ 0.1(dm̂ − dg)
coming fron the QCD binding of nucleons, and the nuclear binding of nuclei. To simplify
our discussion we shall assume that these terms are small. It is enough to replace some
of our factors dg below by αc.i.

A = d∗g ≃ dg + 0.1(dm̂ − dg) + · · · to refine our estimates.
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Planned improved solar-system tests might improve this limit to the 10−7

level. As we are going to see, and as was pointed out by many authors
before (see, e.g. [36]), such levels are much less constraining than the ones
accessible by experimental tests of the EP.

By contrast to the composition-independent tests whose signals are pro-
portional to d2g, the EP-violation signals will all be (see Eq. (8)) proportional
to

αE(αA − αB) ≃ αc.i.(ᾱA − ᾱB) (79)

Therefore EP signals will involve the product of dg (or rather d∗g = αc.i.) by
one of the other dilaton couplings entering the ᾱA’s, i.e. they will be pro-
portional to a combination of terms involving the following four coefficients

d∗g (dm̂ − dg), d
∗

g (dδm − dg), d
∗

g (dme − dg) or d∗g de (80)

This raises several issues of direct phenomenological interest: (i) can, in
principle, EP experiments measure all four (a priori independent) parame-
ters (80) ?; (ii) are there theoretical arguments suggesting that, among all
the EP signals associated to these parameters, some of them might dominate
over the others?

Concerning the first question (which has also been addressed in [17]),
let us note that if we approximate the factor FA = Amamu/mA by one (
and Z(Z − 1) by Z2) , the composition dependence of our general dilaton
coupling above will vary, along the periodic table, according to

ᾱA = a0 +
a1
A1/3

+ a2
A− 2Z

A
+ a3

(A− 2Z)2

A2
+ a4

Z2

A4/3
(81)

where the five coefficients a0, . . . , a4 are linear combinations (which are easily
read off the results above) of the four dimensionless dilaton couplings dm̂ −
dg, dδm − dg, dme − dg, de. Here the constant offset a0 is not measurable13 in
EP experiments. By contrast, EP experiments can, in principle, measure the
coefficients of the four different composition-dependences associated with
a1, a2, a3, a4. Barring some degeneracies, this means that, in principle, a
well-devised set of ideal EP experiments could measure the four theoretical
parameters (80) [see, e.g., [3] for discussions of the related optimization
of the choice of materials in EP experiments, and [17] for an example of
the determination of four theoretical parameters from four independent EP
data].

13At least in our approximation Amamu/mA ≃ 1. If one were to keep the small fractional
(∼ 10−3) variations of the ratio Amamu/mA, one might measure part of the a0 coefficient.
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However, EP experiments will be more likely to detect signals associated
with functions of A and Z that vary significantly over the periodic table.
From this point of view, two signals, among the four ones in Eq. (81), are
likely to be more prominent: namely the ones associated to the parameters
a1 and a4. Indeed, both A−1/3 and Z2A−4/3 vary significantly along the
periodic table. By contrast, the quantities (A − 2Z)/A and ((A − 2Z)/A)2

vary only mildly. Indeed, the ‘valley’ of stable nuclei is located along a
specific line in the A,Z plane which is rather close to the A = 2Z (i.e.
N = Z) straight line. Actually, in absence of the Coulomb repulsion between
protons, the Pauli principle would favour an equal number of protons and
neutrons (cf. the discussion of the asymmetry energy above). The Coulomb
effects modify this in favouring a relatively small excess of neutrons over
protons. More precisely, the bottom of the valley of stable nuclei is around
[23]

Zstable ≃
1

2

A

1 + 0.015A2/3
(82)

Using this result we see that (2Z −A)/A ≃ (1 + 0.015A2/3)−1 − 1, which is
small and whose variation with A is reduced by the small coefficient 0.015.

In conclusion, the two EP signals that are probably most easily mea-
surable in Eq. (81) are the ones associated to A−1/3 and Z2A−4/3. In
previous work on the phenomenological consequences of dilaton couplings
[3, 12] it was suggested that the EP signal would be essentially proportional
to Z2A−4/3, i.e. related to the Coulomb energy term ∝ de in the results
above. Our analysis of the quark-mass sensitivity of nuclear binding is now
modifying this conclusion in suggesting that the ϕ dependence of atomic
masses will contain, in addition to this Coulomb-related term, another term
(related to the quark-mass dependence of nuclear binding), with a A−1/3

variation over the periodic table.
An important issue is to know whether theoretical considerations can tell

us a priori something about the relative order of magnitude of these Coulomb
and nuclear terms. In order to discuss this we need to know something about
the expected relative magnitude of d∗gde versus d

∗

g(dg − dm̂), i.e. the relative
magnitude of de versus dg − dm̂. We shall next argue that it is theoretically
plausible either that de ∼ dg − dm̂, or that de ∼ (dg − dm̂)/40.

Indeed, we have seen above that our dilaton coefficients dg, dm̂, de where
respectively defined as being the logarithmic derivatives of Λ3, m̂, α. On the
other hand, it is natural to consider (at least in string theory) that a dilaton
couples with roughly equal strengths to the various terms in the Wilsonian
action considered at some high-energy ‘cut-off’ scale Λc, near the string
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scale, i.e. probably near the Planck scale mP = 1/κ ∼ 3.44 × 1018 GeV. If
this is the case, the relative magnitudes of the low-energy dilaton couplings
dg, dm̂, de is determined by the functional dependences that relate the low-
energy quantities Λ3, m̂, α to basic couplings at the string, or Planck, scale.
In the case, of the fine-structure constant, though it does run, according to
the RG, between the IR (i.e. me) and the GUT or Planck scale, this run-
ning is relatively small because of the smallness of the factor (2α/3π) which
multiplies ln(mP /me). As a consequence, one expects that the low-energy
EM dilaton coupling de is similar to its more fundamental high-energy coun-
terpart. [This is also related to the fact that we could neglect, in our action
(12) the EM analog of the ratio β3(g3)/g3 (i.e. β3(g3)/g

3
3 with geometrically

normalized gauge fields), because βEM (e)/e3 is essentially constant.] The
situation is, however, quite different for the low-energy coupling dg to the
gluon field energy. There are two equivalent ways of seeing it. One way
(used in [15]) precisely consists in drawing the consequences of having a
factor β3(g3)/g3 in front of (FA)2 (to ensure RG invariance). When com-
paring the matching of this factor at the Planck scale, versus its meaning
at the low-scale Λ3 ∼ 1 GeV, one sees that dg differs from its high-energy
counterpart by a largish factor of order

K = fh.q.
g3(Λc)

β3(Λc)
(83)

where the additional factor fh.q. takes into account the effect of the heavy
quarks [15]. The second way (used in [12]) consists in differentiating the
expression giving Λ3 in terms of high-energy boundary conditions. We have
seen above that the definition of Λ3 coming from the integration of the RG-
running equation for g3 yields equivalent results, with the same appearance
of the largish factor g3(Λc)/β3(Λc). It is easily checked that this second
way also automatically includes the effect of heavy quarks, i.e. the factor
fh.q. in K. Actually, this second way provides a quick way to estimate the
order of magnitude of the factor K above. Indeed, the reason why Λ3 is
herarchically smaller than Λc is that solving the RG-running equation leads
to a result of the type Λ3 ∼ Λc exp(−C/g2c ). Differentiating this expression
w.r.t. ϕ immediately shows that the amplification factor between dg and
the high-energy dilaton coupling ∂ ln g2c/∂ϕ can be written as

K = ln(Λc/Λ3) (84)

Using, for instance, Λc ∼ mP = 1/κ ∼ 3.44 × 1018 GeV then yields K ∼
ln(mP /1GeV) ∼ 42.7, as in Ref. [12], and consistently with the results of

25



[15], for the MSSM case. [We note also that the presence of this logarithmic
enhancement factor in the dilaton coupling was pointed out in Ref. [11].]

When considering the low-energy dilaton coupling to the average light
quark mass m̂, the second way of computing it similarly suggests that it
will contain a large enhancement factor ∼ ln(Λc/m̂) with respect to some
high-energy counterpart that should a priori be comparable to ∂ ln g2c/∂ϕ.
Indeed, let us recall that the quark masses are of order mq ∼ fH, where H
is the Higgs’s VEV, and f a dimensionless Yukawa coupling. As we do not
know what is the mechanism which determines (from the UV) the scale of
the electroweak breaking (i.e. which allows for a negative squared mass for
the Higgs at low energies), we cannot compute the sensitivity of mq to ϕ.
However, it is plausible, as indicated by the ‘no-scale’ models [37], that H
is related to Λc, via the RG-running of (scalar) masses, by an exponential
factor similar to the one linking Λ3 to Λc: more precisely, in these models
one has H ∼ exp(−C ′/h2t ), where C

′ is a constant of order unity, and where
ht is the Yukawa coupling of the top quark. Then, the ϕ-derivative of lnmq

will also contain an enhancement factor of order ln(Λc/Λ3), i.e. of the same
order as the enhancement K above, but probably differing by a factor of
order unity.

Summarizing: it seems theoretically plausible that, starting from dilaton
couplings which are of the same order, say dc = ∂ ln g2c/∂ϕ, when considered
at the high-energy scale Λc, the low-energy coupling EM de will remain
de ∼ dc, while dg and the various dma will be enhanced by factors of order
Ka ∼ ln(Λc/ma) ∼ 40. Notably, we can expect dg ∼ Kdc, and dm̂ ∼ K ′dc.
This leaves us with the problem of estimating the difference dg − dm̂ which
enters in composition-dependent effects. It is formally of order ∼ (K−K ′)dc.
We do not know to what extent there could be a compensation between K
and K ′. If such a compensation exists, i.e. if K − K ′ ∼ 1, instead of
∼ 40, one will have dg − dm̂ ∼ dc ∼ de. On the other hand, if K and
K ′ differ by a factor of order unity (or have a different sign), we will have
dg − dm̂ ∼ 40dc ≫ de. Therefore, we can only write an approximate link
of the type de . dg − dm̂. For our discussion of the relative importance
of various EP signals, it would be too restrictive to assume that Nature
has chosen the case where de is significantly smaller than dg − dm̂. We shall
therefore continue our discussion under the general assumption de ∼ dg−dm̂.

7.3 Simplified parameterization

Our theoretical treatment of nuclear binding effects has given us some spe-
cific predictions for the numerical coefficients of the various contributions to
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the ‘dilaton charges’ Qka . To better delineate what they imply for the phe-
nomenology of EP experiments we shall henceforth make some further ap-
proximations. First, we replace the overall factor FA = Amamu/mA by one.
This is allowed because we shall see that the leading terms in the Qka ’s vary
by factor of a few over the periodic table, while FA differs from one only at
the 10−3 level. The second approximation consists in using the approximate
equation (82) to estimate various Z-dependent terms in the dilaton charges.
Namely, using this link, and taking into account the predicted numerical co-
efficients in the dilaton charges, one finds that the terms 0.020(A−2Z)2/A2

(in Qm̂), and 0.0017(A−2Z)/A (in Qδm), are numerically subdominant.[We
assume here that, e.g., dδm − dg ∼ dm̂ − dg etc.] In addition, we find that
we can replace Z/A by 1/2 in Qme and Qe. After these simplifications, we
can move some left-over composition-independent numerical coefficients out
of the Q’s, and into the general composition-independent contribution dg in
αA.

After these approximations, we end up with

αA ≃ d∗g +
[

(dm̂ − dg)Q
′

m̂ + deQ
′

e

]

A
(85)

where
d∗g = dg + 0.093(dm̂ − dg) + 0.00027de (86)

and where

Q′

m̂ = −0.036

A1/3
− 1.4× 10−4 Z(Z − 1)

A4/3
(87)

and

Q′

e = +7.7× 10−4Z(Z − 1)

A4/3
. (88)

We think that these approximate expressions capture all the potentially
dominant EP violation effects. We illustrate the variation of these approx-
imate dilaton charges over the periodic table by giving in Table 1 their
values for a sample of elements. [Our table considers many of the same
elements as Table 1 of [17], but the crucial new information we provide are
the numerical factors in the charges, as predicted from our results. We use
the (non-integer) atomic weights as an approximate way of averaging14 the
result over the natural isotopic composition. ]

The two main lessons we can draw from Eq. (85) and the numbers in
Table 1 are: (i) Contrary to what general phenomenological considerations
(of the type of Eq. (81)) could suggest, there are only two dominant EP

14Essentially we are using the approximation 〈f(A)〉 ≃ f(〈A〉), which is valid to first
order for a smooth function f(A).
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Table 1: Approximate EP-violating ‘dilaton charges’ for a sample of mate-
rials. These charges are averaged over the (isotopic or chemical, for SiO2)
composition.

Material A Z −Q′

m̂ Q′

e

Li 7 3 18.88 ×10−3 0.345 ×10−3

Be 9 4 17.40 ×10−3 0.494 ×10−3

Al 27 13 12.27 ×10−3 1.48 ×10−3

Si 28.1 14 12.1 ×10−3 1.64 ×10−3

SiO2 ... ... 13.39 ×10−3 1.34 ×10−3

Ti 47.9 22 10.28 ×10−3 2.04 ×10−3

Fe 56 26 9.83 ×10−3 2.34 ×10−3

Cu 63.6 29 9.47 ×10−3 2.46 ×10−3

Cs 133 55 7.67 ×10−3 3.37 ×10−3

Pt 195.1 78 6.95 ×10−3 4.09 ×10−3

violation effects: one, Q′

e, coming from the ϕ sensitivity of the fine-structure
constant, and the other one, Q′

m̂, coming from the ϕ sensitivity of the average
light quark mass in nuclear binding; (ii) in spite of the seemingly small
numerical coefficient entering the Q′

e term, this term can be comparable to
the Q′

m̂ one for heavy elements, such as Platinum or beyond. Actually, one
should remember that it is only the variations of the Q’s over the periodic
table which matters. From this point of view, note that the total variation
of Q′

m̂ between Li and Pt is ∼ 10−2, while the corresponding total variation
of Q′

e is ∼ 4×10−3. Moreover, while the variation of Q′

m̂ is localized around
the light elements, that of Q′

e keeps increasing for heavy elements. [Formally,
Q′

e ∝ Z2/A4/3 ∼ A2/3, while Q′

m̂ ∝ A−1/3.]
Summarizing: our theoretical framework suggests that there are two

dominant ‘directions’ for the EP-violation signals associated to a long-range
dilaton-like field, namely

(

∆a

a

)

BC

= (αB − αC)αE =
[

Dm̂Q
′

m̂ +DeQ
′

e

]

BC
(89)

where [Q]BC ≡ QB − QC , and where the ‘ dilaton charges’ are (approx-
imately) given by Eq. (73) and Eq. (76). The coefficients D are given
by

Dm̂ = d∗g (dm̂ − dg) , De = d∗g de (90)
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where
d∗g ≃ αc.i. ≃ dg + 0.093(dm̂ − dg) (91)

If we were assuming that the dilaton coupling de is much smaller than
dm̂ − dg, we could go further and conclude (in view of the numerical re-
sults indicated in Table I) that the signal Q′

e is sub-dominant w.r.t. Q′

m̂. In
that case we would end up with a uni-dimensional EP signal proportional
to [Q′

m̂]BC .

7.4 Experimental bounds

The fact that two types of EP signals are expected to dominate allow one to
derive simultaneous constraints on the two dominant theoretical parameters
Dm̂,De by using only two independent sets of EP experiments. We can use
to that effect the two current EP experiments which have reached the 10−13

level, namely the terrestrial EötWash experiment, and the celestial Lunar
Laser Ranging one

The EötWash collaboration has compared the relative acceleration of Be
and Ti in the gravitational field of the Earth [1]. The Lunar Laser Ranging
(LLR) experiments [2] measured the differential acceleration of the Earth
and the Moon towards the Sun. We can use our framework to translate
the results from these two experiments on constraints on the two theoretical
parameters Dm̂,De.

The EötWash result concerns Be (A=9, Z=4) and Ti (A=47.9, Z=22),
and reads

(

∆a

a

)

BeTi

= (αBe − αT i)αEarth = (0.3 ± 1.8) × 10−13 (92)

Working at the two-sigma level, i.e. (0.3 ± 3.6) × 10−13, and neglecting the
central value 0.3, the rewriting of this equation in terms of the theoretical
parameters Dm̂,De yields

10−3 [−7.11Dm̂ − 1.55De] = ±3.6× 10−13 (93)

The Lunar Laser Ranging measurement constrains the relative acceleration
of the Earth and the Moon towards the Sun:

(

∆a

a

)

EarthMoon

= (αEarth − αMoon)αSun = (−1.0 ± 1.4) × 10−13 (94)

In addition to the composition dependence of the matter in these objects,
it has the remarkable ability to test the equivalence of the gravitational self
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energy [34]. For dilaton models where the scalar also couples to matter, it
is the matter couplings which will be most important15, and we will not
consider here the gravitational couplings. The Moon has a very similar
composition as the Earth’s mantle, which is mostly silicate (primarily silicon
and oxygen). The composition differences between the Earth and the Moon
come primarily from the Earth’s core which is dominantly iron.

We approximate the mantle composition as being SiO2, and the Earth’
core as being iron. In addition, we follow Ref. [36] in assigning to the core a
relative mass of 32%. Working as above at the 2-sigma level, and rewriting
this constraint in terms of our theoretical parameters16 yields

0.32 × 10−3 [3.55Dm̂ + 1.0De] = ±2.8× 10−13 (95)

It is interesting to notice the origin of the various numerical coefficients
in this equation, as well as in the corresponding EötWash one above. The
r.h. sides feature the 10−13 sensitivity level. The l.h.sides have coefficients of
order a few times 10−3, which is typical for the differences of ‘dilaton charges’
listed in Table I. In addition, the LLR l.h.s. has an extra factor 0.32 due to
the fact that only 32% of the Earth differs in composition from the Moon.
Finally, we need to solve two linear equations for the two unknowns Dm̂,De

and this introduces an inverse determinant which will further increase the
result for the D’s. At the end of the day, if one denotes ǫEot = ±3.6× 10−10

and ǫLLR = ±2.8× 10−10 (i.e. the two, random two-sigma errors multiplied
by 103) the solution for Dm̂,De reads

Dm̂ = −0.625 ǫEot − 3.0 ǫLLR ,

De = 2.2 ǫEot + 14.0 ǫLLR . (96)

If ǫEot and ǫLLR were non-zero EP violation signals, this would give us
the values of the dilaton parameters in terms of EP data. In the present
situation, however, ǫEot and ǫLLR are only (independent) random errors.
This expression then shows that the LLR error is dominating the error level
in the final result. A LLR EP measurement should be about six times

15Indeed, gravitational self-energy couples to the combination ηg = 4(β − 1) − (γ − 1)
of post-Newtonian parameters [34]. However, this combination is theoretically predicted
[14] to be proportional to (1 − γ)/2 ≃ αc.i. ∼ d2g (see above). The fact that the gravita-
tional self energy is a very small fraction of the total mass then allows one to neglect the
corresponding effect.

16Strictly speaking one should take into account the fact that the EP signal involves
slightly different values for the ‘external’ αE , namely the Earth versus the Sun. For sim-
plicity, we use here the (justified) approximation where both are close to the composition-
independent part d∗g of dg.
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below the 10−13 level to contribute the same error level as a terrestrial EP
measurement at the 10−13 level. Adding the right-hand-sides of the previous
expressions in quadrature, finally leads to the following (two-sigma) error
levels on our theoretical parameters

Dm̂ = ±0.87 × 10−9, De = ±4.0× 10−9 (97)

7.5 Specific models

As we discussed above, one expects that a string-theory dilaton (or mod-
uli) will have low-energy couplings to matter of the general form dg ∼ Kdc,
dma − dg ∼ (Ka −K)dc, and de ∼ dc, where dc is some common string-scale
dimensionless dilaton coupling, where the enhancement factors K,Ka are
expected to be comparable and of order 40, and where de does not contain
any significant enhancement factor. Using the EötWash-LLR-derived con-
straints given in the preceding section, we then conclude that the string-scale
dilaton coupling dc is constrained to be d2c . 10−9/(K|K −Km̂|) ∼ 10−12.

There are two possible attitudes towards this very stringent constraint.
One is to conclude that all the dilaton-like scalar fields of string theory
that are massless at tree level must acquire, via loop effects, a large enough
mass to make them invisible in current EP experiments (i.e. m−1

φ < 0.2
mm). A second possibility (suggested in [12] ) consists in assuming that
loop effects (which depend on the VEV of the dilaton) modify the usual
tree-level dilaton dependence (∝ exp(−2ϕ)) of the various terms entering
the string-scale Lagrangian into more complicated functions of ϕ, say Bi(ϕ),
such that these coupling functions reach an extremum at a special value,
say ϕ∗ of ϕ. Indeed, under this assumption, Damour and Polyakov [12]
have shown that the cosmological evolution of the universe drives the VEV
of ϕ towards ϕ∗, thereby ensuring that the string-scale dilaton coupling dc,
which is proportional to ∂ ln g2c/∂ϕ, is naturally very small: “Least Coupling
Principle” (see also Refs. [38] and [39]). More precisely, [12] showed that,
if the extremum is located at a finite field value ϕ∗, cosmological edvolution
would reduce an initial dilaton coupling dinitc by a factor typically17 of order
Ft ∼ 10−9. Taking this attracting factor into account then suggests that
the present, late-cosmological-evolution dilaton coupling coefficients are of
order

dg ∼ dg − dma ∼ 40 de ∼ 4× 10−8dinitc (98)

17We assume here that the curvature parameter κ of the dilaton-coupling function B(ϕ)
is of order one. See [12] for the κ dependence of the total cosmological “attracting factor”
Ft(κ).
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If we insert this result into the EP violation deduced from our results
above, say

(αBe − αT i)αEarth ≃ 7× 10−3dg(dg − dm̂) (99)

we get a rough “prediction” for the level of EP violation of the order

(αBe − αT i)αEarth ∼ 10−17 (dinitc )2 , (100)

where dinitc is expected to be of order unity. We note that this result is
compatible with the current experimental tests of the EP, but that several
planned improved EP experiments [5, 6, 7, 8] will be able to probe this level
of EP violation.

In another version of this dilaton-cosmological-attractor mechanism, the
attractor point ϕ∗ is located at infinity in field space (“runaway dilaton”
model [13]). This corresponds to dilaton-dependent couplings of the form

Bi(ϕ) = Ci + bie
−ϕ + ... (101)

During the cosmological evolution, the dilaton runs towards (the strong-
coupling limit) ϕ = +∞, exponentially suppressing its coupling to matter.
Studying the effect of this runaway mechanism during slow-roll inflation
allowed Ref. [13] to relate the present value of the composition-independent
dilaton coupling αc.i. ≃ dg to the amplitude δH ∼ 5 × 10−5 of density
fluctuations generated during inflation. This leads to

dg ≃ αc.i. ∼ 3.2
bF
cbλ

δ
4/(n+2)
H (102)

where n denotes the power of the inflaton χ in the inflationary potential,
V (χ) ∝ χn. For instance, in the case of the simplest inflationary potential
V (χ) = 1

2m
2
χχ

2, i.e. n = 2, the above result leads to

d2g ∼ 2.5× 10−8

(

bF
cbλ

)2

(103)

In view of our present new results, Eq. (99), on the level of EP violation
associated to such a composition-independent coupling, this corresponds to

(αBe − αT i)αEarth ∼ 2× 10−10

(

bF
cbλ

)2

(104)

This is in conflict with the current EP tests, except if one assumes that the
combination of dimensionless parameters bF /(cbλ) (which was assumed in
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[13] to be of order unity) happens to be smaller than about 1/30. In such a
model, one would expect to see EP violations just below the currently tested
level. Alternatively, one might interpret the constraint from current EP tests
as suggesting that the (effective) power of the inflaton in the inflationary
potential V (χ) is less than n = 2. For instance, if n ≈ 0, Eq. (102) implies
d2g ≃ 6× 10−17, corresponding to ∆a/a ∼ 4× 10−19.

Finally, a recent work [40] suggests the existence of couplings of a light
scalar which are quite different from the usual string-motivated ones. In
the model of Ref. [40] the light scalar couples only to quark mass terms,
through mixing with the Higgs. At tree level, the couplings are

dmi =
A

κm2
H

(105)

where A is a very small mixing parameter and mH is the mass of the Higgs
boson. However, integrating out the heavy (t,b,c) quarks (à la [18, 15])
induces gluonic couplings

dg =
2A

9κm2
H

(106)

The constraint of this model can be then calculated to be

[

A

κm2
H

]2

< 4.0 × 10−10 . (107)

8 Experimental sensitivities

It can be useful to use a well-motivated parameterized theoretical model
as a guideline for comparing the significance, and relative sensitivities,
of different experiments. For instance, the parametrized post-Newtonian
framework [41] played a useful role in comparing the theoretical signifi-
cance of various composition-independent tests of relativistic gravity. Here,
we wish to capitalize on the better understanding, explained above, of the
coupling of a generic dilaton-like field to nuclear binding energy to pro-
pose such parametrized frameworks for comparing different composition-
dependent tests of gravity. Our proposal is intended as an update, or a
specification, of previous similar proposals (see, e.g. [12, 17]). Actually, our
proposal is two-headed.

On the one hand, if we make minimal assumptions, and essentially
no approximations, we propose to parameterize EP violations by means
of the matter coupling (71), which involves five parameters. One of
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them, dg (or more accurately d∗g = 〈αA〉) measures the composition-
independent part of the matter coupling, and can, in principle, be mea-
sured by composition-independent gravity tests. The other four parame-
ters, dm̂ − dg, dδm − dg, dme − dg, de are associated with four different types
of EP-violation signals, associated to the four different ‘dilaton charges’
Qm̂, Qδm, Qme , Qe, defined in Eqs. (73), (74), (75), and (76).

On the other hand, we have pointed out that two ‘directions’ of EP
violations are likely to dominate the measured signals. They correspond to
the two charges Qm̂ and Qe, i.e. to the two dilaton parameters dm̂− dg and
de. For brevity we shall denote the first one as

dq ≡ dm̂ − dg (108)

It measures the dilaton coupling to the ratio m̂/Λ3 of the average light-quark
mass to the QCD scale. We recall that the second one, de is associated to
the ϕ sensitivity of the fine-structure constant α = e2/(4π). In the same ap-
proximation that these charges dominate, we can simplify the expression of
the the matter coupling αA and the corresponding charges, see Eq. (85), and
the equations following it. The latter, simplified two-EP-parameter frame-
work18 is quite predictive, and could be useful as a guideline for comparing
and/or planning EP experiments. Let us briefly indicate some consequences
of our proposals.

8.1 Composition independent constraints

The first useful result in the simplified “reference dilaton model” is the
expected ratio between composition-independent effects and composition-
dependent ones. As explained above the former are essentially measured by
the Eddington parameter19

1− γ ≃ 2d2g (109)

18In all, this model contains three independent parameters: dg, dq and de. If one
could argue that the ϕ sensitivity of κm̂ is much smaller than that of κΛ3 one could
even consider a much more special one-parameter guideline model keeping only dg and
setting to zero the various mass couplings dma

as well as de. In such a model dq = −dg
would be fixed in terms of dg. However, the no-scale supergravity models (and their string
realizations) rather suggest that the dma

’s contain logarithmic amplification factors which
are comparable to the one expected to be present in dg.

19Here dg should more accurately be replaced by some average 〈αA〉 ≡ d∗g = dg + cdq ,
with a coefficient c ∼ 0.1 depending of the average composition of the considered source
bodies.
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while the latter are given, say, by Eq. (99). Note that the numerical value
7×10−3 in the latter equation comes from the Q′

m̂ charge difference between
Be and Ti. We can use instead the maximal difference of 10−2 corresponding
to Be and Pt. This yields the approximate link

∆a

a
∼ 10−2 dq

dg

1− γ

2
(110)

Note that, assuming dq ∼ dg, this differs by two orders of magnitude from the
link ∆a/a ∼ 10−4(1 − γ)/2 estimated in [12] from considering as dominant
the EM coupling de instead of dq. This suggests that current EP tests
correspond to post-Newtonian tests at the level (1 − γ)/2 ∼ 10−11, i.e. six
orders of magnitude below the current best post-Newtonian test, namely
the Cassini limit Eq. (78). [Using the results derived above from combining
Eotwash and LLR data, one actually gets a constraint at the level (1−γ)/2 ∼
10−9, where the loss of a factor 100 comes from the combination of effects
explained above.]

8.2 Test materials

Concerning the comparison among the sensitivities of different EP exper-
iments, we already gave above an example of the use of our framework
(comparison between Eotwash and LLR). Let us also mention another il-
lustrative example. Note that each EP comparison of a pair of materials,
say (B,C), corresponds, within our simplified framework, to looking for a
signal of the form D ·QBC , where D is the two-dimensional vector of dila-
ton couplings (Dm̂,De) , and Q a two-dimensional vector of dilaton-charge
differences (Q′

m̂, Q
′

e)BC = (Q′

m̂, Q
′

e)B − (Q′

m̂, Q
′

e)C . For instance, the cur-
rent best Eotwash comparison concerned Be and Ti, i.e. (using Table 1)
the ‘charge’ vector QT iBe = (7.11, 1.55) × 10−3. By contrast, the MICRO-
SCOPE experiment plans to use a pair Ti, Pt, which corresponds to the
charge vector QPtT i = (3.33, 2.04) × 10−3. We see that the two choices are
nicely complementary in that the former (using lighter elements) gives more
weight to the m̂ component of the EP violation, while the latter (with heav-
ier elements) gives approximately equal weights to the m̂ and e directions.

8.3 Atomic interferometry

Special mention should be given to the sensitivity of EP experiments based
on atomic-interferometer techniques. For instance, Ref. [8] mentions the
possibility of comparing two isotopes of Rubidium: (85Rb,87Rb). In such
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a case, we wish to warn the reader that one should not blindly use the
formulas that we have derived above, especially the approximate ones for
(Q′

m̂, Q
′

e). Indeed, the approximations used to simplify the charges employed
the average link (82) between Z and A. This approximation is acceptable
if one compares elements that are distant along the periodic table, but is
definitely invalid for isotopes of the same Z. Therefore, one should start
from our original, non-approximated expressions for the charges.

The use of our (‘exact’) dilaton charges, suggests that an EP test
comparing (85Rb,87Rb) would correspond, in the full four-dimensional
space of (m̂, δm,me, e) , to a charge vector equal to Q87Rb 85Rb =
(−3.3, 3.4,−0.55,−9.2) × 10−5. Note that the components of this vector
are significantly smaller than those of the charge vectors probed by the
other experiments. The dominant direction is along e. Note also that the
δm direction now plays a role as significant as the m̂ one, because, besides
the binding energies, a crucial effect in comparing two isotopes is evidently
a change in the number of neutrons. This also shows that such experiments
are complementary to the usual ones, in that they probe new directions in
theory space, though it comes at the cost of the overall sensitivity.

The atomic interferometer proposal of [9] suggests the comparison of 7Li
and 133Cs atoms. In contrast to the Rubidium experiment, these elements
are well separated in A, Z, and our simplified charges can be used. We
find that this comparison is quite sensitive to the dilaton couplings with
dilaton charge vector QCsLi = (11.2, 3.02) × 10−3. While the experimental
comparison of dissimilar atoms may be more difficult than the use of related
isotopes, the sensitivity to the dilaton couplings is much increased.

Let us also make some further comments relevant for comparing two
isotopes which are very close in mass. Our derivation assumed that the
semi-empirical mass formula was an accurate representation of the binding
energies. However, this mass formula is an average, which does not al-
ways accurately capture local fluctuations, and notably fluctuations linked
to varying A for a fixed Z. In addition, our derivation has neglected the
pairing term −δap/A1/2, as being subdominant. However, this term might
become very important if one were to compare isotopes with mass numbersA
differing by an odd integer. Indeed, in that case δ = 1

2 [(−)N +(−)Z ] changes
by one unit between the two isotopes, and therefore yields a full contribution
ap to their mass difference, and thereby also to the dilaton sensitivity. Ac-
tually, we would suggest to try to take advantage of this fact by using such
odd-related isotopes which are likely to have an enhanced sensitivity to EP
violations. [We are aware, however, that this proposal poses both theoreti-
cal challenges (determining the ϕ sensitivity of ap), and experimental ones
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(as the two isotopes will have a different Fermi/Bose statistics, which might
undermine the possibility of using accurate, Bose-Einstein-Condensation-
based, techniques).]

8.4 Other applications

Let us also mention that our framework can be straightforwardly applied
to comparing (weak) equivalence principle tests to atomic-clock tests of
the dependence of coupling constants on the gravitational potential. The
link between these two types of tests has been discussed by several au-
thors [41, 42, 43, 17]. Let us indicate how it is formulated in our notation.
The spacetime dependence of the dilaton field is approximately of the form:
ϕ(x, t) = ϕ0(t) + ϕloc(x, t), where ϕ0(t) is the cosmological value of ϕ, and
where

ϕloc(x, t) = −
∑

E

αE
GmE

rE
≃ −αc.i.U(x, t) (111)

gives the influence of the local matter distribution, in terms of the local grav-
itational potential U (U > 0). In the second expression, we have used the
approximation αE ≃ αc.i. = d∗g. Combining this result with our parametriza-
tion ka(ϕ) = (1 + daϕ)ka(0) of the ϕ dependence of the various constants
ka = m̂/Λ3, δm/Λ3,me/Λ3, α = e2/(4π), we see that the local gravitational
potential influences the values of the constants ka measured, say, on the
Earth, according to

kloca = (1−DaU)ka(ϕ0(t)) (112)

where the coefficients Da ≡ daα
c.i. = dad

∗

g, i.e. Dm̂ = d∗g (dm̂−dg) , . . . ,De =
d∗g de are the same dilaton coefficients that entered our discussion above of
the EP tests. Then, to compute the effect of the seasonally varying U
on, say, the frequencies of atomic clocks, one needs to know the sensitivity
of these frequencies to variations in the ka’s (see [44]). In particular, the
De = ±4× 10−9 two-sigma bound derived above on De, combined with the
yearly variation ∆U ≃ 3× 10−10 linked with the Earth’s eccentricity, shows
that EP tests constrain the yearly variation of the fine-structure constant
on the Earth to be smaller than 1.2 × 10−18 (two sigma). This is about 40
times smaller than the current best atomic-clock experimental sensitivity to
the variation of α [45]. Note, however, that clock-comparison experiments
are sensitive to different combinations of the parameters Da than EP tests
[42]. We shall not discuss here the cosmological aspects of the variation of
constants, which are more model-dependent. For instance, in the context of
the dilaton-runaway model, one can relate the present rate of variation of
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the ‘constants’ to the (square root of the) EP violation level, see Eq. (3.25)
of [13].

Let us finally remark that it would be interesting to use the recent
progress (reported in [21, 22] and here) about the quark-mass dependence
of nuclear binding to try to derive a well-justified estimate of the quark-
mass dependence of the crucial very low-energy neutron capture resonance
Er ≃ 0.1 eV = 10−7 MeV of 149Sm. Indeed, the analysis of the Oklo data
[46, 47, 48] shows that this resonance has not changed by more than about
0.1 eV since the Oklo natural fission reactor was in activity 2 billion years
ago. A naive use of our results, based on our finding that the bulk binding
energy per nucleon, av, varies with m̂ as ∆av ≃ −42∆ ln m̂/Λ3 MeV, sug-
gests that Oklo data constrain the fractional variation of m̂/Λ3 over 2 billion
years to the level ∆ ln m̂/Λ3 . 10−7/42 ∼ 2.4 × 10−9. Such a limit would
be a very significant constraint on the possible cosmological evolution of the
dilaton. However, it is not clear whether a detailed study of the specific
(unstable) energy level corresponding to Er will confirm this sensitivity to
m̂/Λ3.

9 Conclusions

We have provided a parametrized framework for the study of the equivalence
principle20 in models with light, dilaton-like scalar particles. Our general
framework contains five independent parameters, and should be applicable
to the low-energy limit of many models. The most novel aspect of our work
was to provide an estimate of the effects of the dilaton coupling to nuclear
binding energy. We have found that these couplings induce, as leading effect,
equivalence principle violations varying with the mass number as A−1/3. The
level of these EP violations is expected to be at least comparable to (and,
for lighter elements, somewhat larger than) that associated to the Coulomb
energy.

We have also provided a simplified scalar model, containing three pa-
rameters: one composition-independent parameter, and two composition-
dependent ones. This model is expected to describe the dominant effects of
the most general 5-parameter framework. We suggest to use it as a guide-
line for comparing and planning EP experiments. We used it to combine

20Here we have limited our considerations to the weak equivalence principle (tests of
the universality of free fall). However, our parametrized Lagrangian can also be used to
study the effect of dilaton couplings on other aspects of the EP: such has clock-comparison
experiments.
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Eötvos and Lunar Laser Ranging data so as to constrain its two theoreti-
cal composition-dependent parameters. We found that they are constrained
at the 10−9 level. This plausibly implies (in our model, and using some
naturality assumption) a corresponding limit on composition-independent
effects at about the same level, i.e. (1 − γ)/2 . 10−9, which is four orders
of magnitude below the best present composition-independent gravitational
tests (Cassini experiment).

In the happy future situation of several non-zero measurements of EP
violations, one could check the consistency of our simplified model, which
is quite predictive. If needed the other scalar couplings could readily be
included to make sense of subleading effects modifying the simple predictions
of this simplified model.
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10 Appendix: The strange quark mass

We are not able to provide a definitive calculation of how equivalence prin-
ciple violations depend on the strange quark couplings. This is an area
where there is no consensus and the motifs of the day change quickly. While
we cannot solve this issue, we will here argue that the the strange quark
dependence could be about or within the uncertainty that we are quoting.

When quarks are heavy, they can be integrated out with the result sim-
ply going into a modification of the gluonic coupling, dg. The u, d quarks
are light, are directly involved in nucleon couplings and are clearly active
dynamically in nucleon binding. The strange quark is intermediate in mass.
Nucleons do not explicitly contain strange quarks, so their effects are sec-
ondary. Certainly they couple to nucleons at some level through loop effects.
Initial theoretical calculations suggested that these couplings could be quite
large. However, increasingly theoretical and experimental developments are
bounding these effects to be relatively small.

Fortunately for equivalence principle violations, the leading manifesta-
tions of the strange quark mass would not have an effect in any case. For
example, the much debated contribution of the strange quark to the mass of
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neutrons and protons [49] would not lead to the violation of the equivalence
principle. This is because the effect is an isospin singlet and contributes
equally to the neutron and proton, so that the total effect in an atomic
state is proportional to A. This leads to a constant contribution to αA in-
dependent of A, and no violation of the equivalence principle. Note that the
large effects suggested for strange contributions to nucleon masses recently
have been bounded by lattice computations to be consistent with zero [50].
In nuclear binding, the leading A dependent term does not violate the equiv-
alence principle, and it is only the surface term that is relevant. Therefore
the key feature to be estimated is the strange quark contribution to the
surface binding energy.

In discussing the binding energy it is easy to be led astray. For example
early estimates used kaon loops in chiral perturbation theory to conclude
that there was a very large effect [51]. However, it has become clear from
dispersive work, such as our own, that the K̄K intermediate state enters
above the region of validity of chiral calculations [52]. There are analytic
studies that show that the reliable low energy portions from such loops are
very small [53], and lattice studies have definitively shown that the chiral
loop effects are not strongly present at such large masses [54].

The lightest intermediate states involving strangeness that can couple to
nucleons are that of a KK̄ intermediate state and also the vector ϕ meson
(an s̄s bound state, not to be confused with our notation for the dilaton). In
dispersive treatments, both of these start at 1 GeV. The coupling of the ϕ to
nucleons is highly uncertain, and depends more on the assumptions made in
a given calculation than in a unique piece of evidence in its favor. Moreover
it is highly constrained by recent experiments [55] that show smaller than
expected hidden strange couplings in nucleons. If we use a estimate which
we find to be reasonable and which is within the constraints of present
experiments [56], the ϕ effects are too small to be significant.

However, KK̄ intermediate states can contribute to the leading scalar
interaction and may have a non-trivial effect. We expect from most models
of the nuclear potential that most of the scalar strength comes from below 1
GeV. The effect ofMM̄ intermediate states must decouple as the mass of the
meson M gets large. If we estimate generously that KK̄ intermediate states
contributes 10−15% to the scalar strength, and we take a typical form factor
to account for the high mass threshold of the form (Λ2 +4m2

K)−1 (where Λ
is is some typical form factor scale) , we would estimate the strange quark
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mass dependence

ms
∂ηS
∂ms

= m2
K

∂ηS
∂m2

K

= (0.10 − 0.15)
4m2

K

Λ2 + 4m2
K

∼ 0.07 − 0.10 (113)

using Λ2 = m2
ρ. Comparison with Eq. (49) indicates that this is comparable

to the error bar that we assigned to that calculation. If the KK̄ is positive
as expected, a contribution of this size could lead to a 20-30 % increase in
the coefficient of the leading A−1/3 term in our final results. This is clearly
a crude estimate, but we don’t expect that it is grossly misleading.
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