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Abstract

This contribution tries to highlight the importance of Minkowski’s
“Raum und Zeit” lecture in a “negative” way, where negative is taken in
the photographic sense of reversing lights and shades. Indeed, we focus on
the “shades” of Minkowski’s text, i.e. what is missing, or misunderstood.
In particular, we focus on two issues: (i) why are Poincaré’s pioneer-
ing contributions to four-dimensional geometry not quoted by Minkowski
(while he abundantly quoted them a few months before the Cologne lec-
ture)?, and (ii) did Minkowski fully grasp the physical (and existential)
meaning of “time” within spacetime? We think that this “negative” ap-
proach (and the contrast between Poincaré’s and Minkowski’s attitudes
towards physics) allows one to better grasp the boldness of the revolution-

ary step taken by Minkowski in his Cologne lecture.

1 Introduction

Minkowski’s September 1908 Cologne lecture “Raum und Zeit” [1] was certainly
a landmark event which launched a new way of representing physical reality.
Yet, some physicists, and most notably Einstein himself, reacted somewhat neg-
atively to Minkowski’s 4-dimensional reformulation of Special Relativity. Actu-
ally, Albert Einstein and Jakob Laub [2] were among the firsts to react in print,
even before the Cologne lecture, to Minkowski’s first technical paper, published
in April 1908 [3]. They expressed the concern that the 4-dimensional formalism
would place “rather great demands” on the readers of Annalen der Physik [4]
(they also had technical objections to Minkowski’s definition of a non-symmetric
electromagnetic stress-energy tensor in a polarizable medium). Other physicists
(notably Planck, who had been the first leading physicist to understand the
conceptual novelty of Einstein’s 1905 Special Relativity paper) appreciated the
elegance of Minkowski’s reformulation of Special Relativity, while others (and
most notably Sommerfeld) came to comprehend Special Relativity in great part
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thanks to the 4-dimensional formalism of Minkowski. Actually, Minkowski’s
first technical paper [3] used an abstract mathematical notation1 which was not
of much help for physicists. Through the efforts of several physicists (notably
Sommerfeld and Max von Laue) Minkowski’s abstract formalism was translated
into a tensor calculus form which helped physicists to master, and use with
profit, the 4-dimensional formalism2. See [5] for a historical discussion of the
application of the 4-vector formalism to gravitation.

Anyway, after a comprehensible initial reluctance caused by the unfamiliar
notation of Minkowski, his formulation started to attract a lot of attention (both
from mathematicians and physicists), and it is clear that the dramatic tone3, and
non-technical nature of his Cologne lecture was instrumental in capturing the
imagination and interest of many scientists world-wide. In addition, the tragic
and sudden death of the still young (44) Minkowski (due to an appendicitis)
a few months after the Cologne lecture, added a further romantic aura (à la
Galois) to the last publication he completed during his lifetime. Let us also
note (as emphasized in [4]) that Minkowski’s Cologne lecture benefitted from
a large diffusion. Within a few months it was published in three periodicals,
as well as a booklet published by Teubner in 1909. In addition, French [6]
and Italian translations of his lecture appeared before the end of 1909. As an
example of the “amplification effect” that the dramatic death of Minkowski may
have had on the diffusion of his new vision of space and time, let us quote the
introductory note added by A. Gutzmer, the editor of the Teubner booklet4:

“The lecture on Space and Time delivered by Minkowski in Colo-
gne is the last creation of his genius. It was, alas, not given to him to
accomplish his bold project: to set up a Mechanics where time unites
itself with the three dimensions of space. On January 12, 1909, a
tragic fate snatched, in the prime of life, an author equally esteemed
for his human and scientific qualities, away from the affection of his
family and his friends.

The keen and well-deserved interest raised by his lecture had
greatly pleased Minkowski. He had wished to make his reflections

1For instance, he writes Maxwell’s equations as lor f = −s and lorF ∗ = 0. Here, s denotes
the current, lor a contraction with the 4-dimensional gradient operator, and ∗ the (Hodge)
dual (f ∼ (D,H); F ∼ (E,B)). This notation is very close to the modern notation, δf = s,
δ ∗F = 0, in terms of the (Hodge) dual of the Cartan exterior derivative: δ = ∗ d ∗. Moreover,
Minkowski uses the matrix calculus to express the covariance properties of the “matrices” f =
(fµν) and F = (Fµν) under a change of coordinate system. E.g. he essentially writes x = Ax′,
f ′ = A−1fA. [He uses x4 = it and an Euclidean metric e = (eµν) = (δµν): “Einheitsmatrix”.]
No wonder that such unfamiliar (and partly new) notation did not immediately appeal to
physicists.

2A later simplification was brought in by Einstein when he introduced his famous “sum-
mation convention”.

3“Henceforth space by itself, and time by itself, are doomed to fade away into mere
shadows. . .”; “[. . .] mathematics [. . .] is able [. . .] with its senses sharpened by an unham-
pered outlook to far horizons, to grasp forthwith the far-reaching consequences of such a
metamorphosis of our concept of nature.”; “Thus the essence of this postulate may be clothed
mathematically in a very pregnant manner in the mystic formula 3.105 km =

√
−1 secs.”

4I thank Ingrid Peeters for help in translating this introductory note.
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accessible to a larger audience by means of a special publication. It
is a painful duty of piety and friendship for the Teubner editions,
and the undersigned, to fullfil, by the present publication, this last
wish of the departed.

A. Gutzmer.”

But evidently, beyond the de-amplification and amplification effects caused
by the various factors recalled above (a very abstract notation in the April 1908
technical paper, the somewhat theatrical tone of Cologne’s non-technical exposé,
the romantic aura added by a sudden and untimely death), there is no doubt
that it is the conceptual novelty of Minkowski’s vision which stirred a well-
deserved attention, and launched a new way of thinking about physical reality.
We all know how fruitful Minkowski’s Space-Time concept has been. The most
brilliant successes (and puzzles!) of modern physics are rooted in the various
avatars of his concept: from General Relativity to Relativistic Quantum Field
Theory, and the difficulty of uniting them (that String Theory aims at solving).
I assume that other contributions to this commemorative issue of Annalen der
Physik will cover the legacy of Minkowski’s vision. I wish here to approach
Minkowski’s Cologne lecture from a particular angle.

Namely, I will focus on several very important aspects of what we now as-
sociate with Minkowski’s Space-Time which are missing in the Cologne lecture.
I hope that this negative approach to Minkowski’s lecture (“negative” being
taken in the photographic sense) might be useful for highlighting, by contrast,
its (positive) content, and for appreciating some of the subtleties underlying the
concept of “scientific revolution”.

2 Why are Poincaré’s contributions not quoted

by Minkowski?

The most blatant omission5 in Minkowski’s Cologne lecture is the name of
Poincaré. Indeed, while Minkowski mentions W. Voigt, [A.A.] Michelson, H.A. Lorentz,
A. Einstein, M. Planck, I.R. Schütz, A. Liénard, E. Wiechert, and K. Schwarz-
schild6, as well as his own technical paper [3], he never mentions Poincaré.
Yet, several of the key mathematical results in the 4-dimensional formulation of
Special Relativity had been obtained by Poincaré in 1905 [8, 9], notably:

(i) the fact that Lorentz transformations leave invariant the quadratic form
x2 + y2 + z2 − c2t2 (and the fact that they form a group),

5This omission has been noted and discussed in [4].
6Let us recall, in this respect, that W. Voigt, E. Wiechert and K. Schwarzschild were col-

leagues of Minkowski in Göttingen. For information concerning the scientific life in Göttingen,
we relied on the well-documented book [7] (without, however, supporting the strange complot
theory advocated by the author).
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(ii) the fact that the four electromagnetic potentials7 Aµ (in Lorenz gauge,
∂µ A

µ = 0) transform (under the Lorentz group) in the same way as xµ

and the ‘4-current’ Jµ,

(iii) the fact that Fµν F
µν and εµνρσFµν Fρσ are Lorentz-invariant,

(iv) the necessity of endowing each electron (modelled as a sphere) with an
internal tension (or negative pressure) to be compatible with the “Postu-
lat de Relativité”, i.e. the impossibility of experimentally detecting the
absolute motion,

(v) the resulting Lorentz-invariant form of the Lagrangian for the electron
dynamics, L ∝

√

1 − v
2/c2,

(vi) the introduction of a ‘Wick-rotated’ time coordinate x4 = ict (denoted
t
√
−1 by Poincaré) and the associated technical use of a ‘4-dimensional

space’ (an “espace à 4 dimensions”) in which Lorentz transformations
become Euclidean rotations around the origin of xµ (µ = 1, 2, 3, 4), and,
last but not least,

(vii) the construction of Lorentz-covariant generalizations of Newton’s 1/r2

gravitational force.

In the latter construction, Poincaré makes an essential use of 4-dimensional
geometry, both mathematically (construction of invariants and 4-vectors asso-
ciated with two separate spacetime points xµ

0
, xµ

1
and their infinitesimal dis-

placements dxµ
0

= uµ
0
dτ0, dx

µ
1

= uµ
1
dτ1), and physically (consideration, among

other Lorentz-invariant possibilities, of an action-at-a-distance propagating8 be-
tween xµ

1
and xµ

0
along the retarded light-cone ηµν(xµ

1
− xµ

0
)(xν

1
− xν

0
) = 0).

Note that we are here rephrasing the achievements of Poincaré in modern
(post-Minkowski) notation. The original text of Poincaré is somewhat less
transparent. In particular, though Poincaré explicitly introduces the infinites-
imal displacements dxµ

0
(= uµ

0
dτ0), dx

µ
1
(= uµ

1
dτ1) (linked to the 3-velocities

vi
0

= dxi
0
/dt0, v

i
1

= dxi
1
/dt1), he introduces only implicitly the proper times

dτa =
√

−ηµν dx
µ
a dxν

a =
√

1 − v
2
a dta (a = 0, 1; using, like Poincaré, c = 1 for

simplicity), and the corresponding 4-velocities uµ
0
, uµ

1
, through several normal-

ization factors. For instance, he writes the 4 basic invariant scalar products

ηµν(xµ
1
−xµ

0
)(xν

1−xν
0) , −ηµν(xµ

1
−xµ

0
)uν

0 , −ηµν(xµ
1
−xµ

0
)uν

1 , −ηµν u
µ
0
uν

1 , (2.1)

in the forms

∑

x2 − t2 ,
t−

∑

x ξ
√

1 − ∑

ξ2
,
t−

∑

x ξ1
√

1 − ∑

ξ2
1

,
1 −

∑

ξξ1
√

(1 − ∑

ξ2) (1 − ∑

ξ2
1
)
, (2.2)

7For conciseness and readability, we do not respect here the notation of Poincaré. Poincaré
writes the 4-dimensional quantities in components, xµ = (x, y, z, t); Aµ = (F,G,H,ψ); Jµ =
(ρ ξ, ρ η, ρ ζ, ρ); Fµν = (α, β, γ; f, g, h). He uses, however, a streamlined notation which makes
clear which quantities transform in the same way, and which quantities are invariant.

8Let us mention in this respect that Poincaré introduced the concept of gravitational wave
(“onde gravifique”) already in his brief June 1905 summary [8].
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where Poincaré’s (x, y, z, t) denote what we denoted xµ
1
− xµ

0
, while ξ denotes

the first component of the 3-velocity vi
0 = dxi

0/dt0 (i = 1, 2, 3), and ξ1 the first
component of vi

1
= dxi

1
/dt1.

The omission of the name of Poincaré cannot be explained by Minkowski’s
unawareness of Poincaré’s achievements. Indeed, Minkowski quoted (in a posi-
tive and detailed manner) the works of Poincaré on two occasions in 1907-1908.
First, on November, 5, 1907 (i.e. nearly one year before the lecture in Cologne)
Minkowski gave a lecture to the Göttinger Mathematischen Gesellschaft. The
written text of this lecture was published posthumously in 1915 (with the ti-
tle: “Das Relativitätsprinzip”) , through the efforts of Sommerfeld [10]. This is
the first account of Minkowski’s ideas on Special Relativity and 4-dimensional
geometry. It is striking that, in this text, Poincaré’s name is among the most
cited ones: more precisely, the three most cited names are Planck (cited eleven
times), Lorentz (cited ten times) and Poincaré (cited six times). By contrast,
Einstein’s name appears only twice! It is also interesting to note that, in this
text, Minkowski credits Poincaré (together with Einstein and Planck) for having
elaborated the “Postulat der Relativität” in a form “understandable by math-
ematicians”. He also credits Poincaré for having (after Lorentz) discovered the
invariance of the equations of electrodynamics under a group. At the end, he
explicitly mentions how Poincaré generalized Newton’s gravitational force to
a relativistic form by using several possible invariants of the Lorentz group.
However, one also finds a way of mentioning Poincaré which anticipates the fu-
ture downplaying of Poincaré contributions by Minkowski. Namely, Minkowski
writes:

“Besides the fact that they are independent of the choice of rect-
angular coordinate system in space, these fundamental [electrody-
namic] equations possess another symmetry, which has not yet been
made manifest by the usual notations. I will here expose this sym-
metry from the start (which none of the cited authors did, not even
Poincaré), by using a form of the equations which makes it absolutely
transparent [durchsichtig].”

After which, Minkowski introduces the notation x1 = x, x2 = y, x3 = z
and x4 = it (in units where c = 1) for the coordinates in space and time, and
refers to a “four-dimensional manifold” (“vierdimensionalen Mannigfaltigkeit”).
He then represents the “electrodynamic state in space at any time” (“elektro-
magnetische Zustand im Raum zu jeder Zeit”) by a “vierdimensionalen Vektor”
ψ1, ψ2, ψ3, ψ4 = iΦ (which is the electromagnetic 4-potential Aµ in the ‘Pauli
metric’ δµν). He then writes explicitly the Lorentz electrodynamic equations
(in Lorenz gauge), for instance (with, in Minkowski’s notation j = 1, 2, 3, 4 and
ρj = 4-current)

∂ ψ1

∂ x1

+
∂ ψ2

∂ x2

+
∂ ψ3

∂ x3

+
∂ ψ4

∂ x4

= 0 , (2.3)

�ψj = −ρj , (2.4)
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ψjk =
∂ ψk

∂ xj
− ∂ ψj

∂ xk
= −ψkj . (2.5)

He does not use a tensor-calculus notation, and writes explicitly the sums
over repeated indices when he needs them (as exemplified by the Lorenz-gauge
condition above). Probably, Poincaré, had he been aware of Minkowski’s Novem-
ber 1907 lecture, would not have considered that it contained any significantly
new results. Indeed, Poincaré was used to denoting a 3-dimensional vector
as an explicit triplet of successive letters, such as (f, g, h); (α, β, γ); (u, v, w);
(ξ, η, ζ). Therefore, Poincaré’s notation (see above), say, (ρ ξ, ρ η, ρ ζ, ρ) for the
(convection) electric 4-current (Jµ) was as clear to him as the 4-index notation
ρj used by Minkowski. By contrast, it seems that the fact that the use of space-
time indices j, k = 1, 2, 3, 4 led to making more “transparent” the 4-dimensional
symmetry was instrumental in psychologically convincing Minkowski that he
was breaking new ground, beyond Poincaré (see Minkowski’s citation above).
Let us note in this respect that while in France it was usual at the time to denote
vectors as triplets of letters, (x, y, z); (u, v, w); etc, Germany and England used,
at once, two different notations: the explicit one, say (X,Y, Z), together with
the abstract vector one, say E (to use a notation employed in Maxwell’s treatise
on electricity and magnetism)9. In addition to the psychologically convincing
(for Minkowski) “transparency” brought by the use of an explicit 4-dimensional
index notation, his November 1907 lecture contains one useful technical advance,
namely the concept now called a 2-form (such as F = 1

2
Fµν dx

µ ∧ dxν), which
he calls a “Traktor”, i.e. a six-component spacetime object (p) = (pjk) (with
pjk = −pkj) such that pjk x

j yk, or, as he writes explicitly,

p23(x2 y3 − x3 y2) + p31(x3 y1 − x1 y3) + · · · + p34(x3 y4 − x4 y3) , (2.6)

is invariant under 4-dimensional rotations (when xj and yj transform as 4-
vectors). In addition, he emphasizes that both the six components of the elec-
tromagnetic field ψjk, and those of the polarization tensor (entering the electro-
dynamics within electrically and magnetically polarizable media), are spacetime
‘traktors’.

Nonetheless, I find it probable that Poincaré (who did not care about nota-
tions) might have been unimpressed by Minkowski’s discussion of the specific
“tensor variance” of various quantities, such as ψjk. In this respect, let us stress
that one must distinguish between the (useful) technology of “tensor calculus”
(using, say, the index notation), and the general mathematical understanding

9This notational difference might in turn have been rooted in mathematical advances in
abstract algebra which took place mainly in England and Germany, such as the developement
of quaternions (used in England, starting with Maxwell, to write the electrodynamic equations
in compact form), and the one of Grassmann algebras. Note, however, that Einstein, in his
first papers, denote the electric and magnetic fields as explicit triplets: (X, Y,Z); (L,M,N).
By contrast, H.A. Lorentz uses, when he can, a more condensed notation, e.g. div D = ρ,
div H = 0, and denotes their components as (Dx, Dy, Dz), (Hx,Hy ,Hz), when he needs to
be explicit.
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of tensors. The (later) example of Élie Cartan suggests that French mathe-
maticians had (in keeping with their different habit about the way of denot-
ing vectors, see above) a general way of thinking about tensors which did not
need to rely on any “index notation”. For instance, É. Cartan defines a gen-
eral tensor (under any group) as a “linear representation” viewed in concrete
terms, i.e. a collection of numbers (u1, u2, . . . , ur) which transform linearly
and homogeneously under each group operation, in a way consistent with the
group law (see, e.g., chapter II in [11]). From this point of view, the work
of Poincaré (together with the previous work of Lorentz) had already shown
that the electromagnetic potentials (u1, u2, u3, u4) = (F,G,H, ψ)(= Aµ), the
4-current (u′

1
, u′

2
, u′

3
, u′

4
) = (ρ ξ, ρ η, ρ ζ, ρ)(= Jµ), and the electromagnetic field

(u′′
1
, u′′

2
, u′′

3
, u′′

4
, u′′

5
, u′′

6
) = (α, β, γ; f, g, h)(= Fµν) were tensors of SO(3, 1). The

important point to note is that this general definition needs neither to rely on
any specific index notation, nor to presuppose any tensor calculus. On the other
hand, it is true that, in the specific case of tensors under (say) a rotation group,
the index notation, together with the associated index calculus, is a useful tool
for combining some given tensors into new tensors (‘tensor calculus’ or ‘tensor
algebra’). This lack of a good associated calculus explains why the mathematical
discovery of “spinors” by É. Cartan as early as 1913 [12] (as certain fundamen-
tal representations of the rotation group) dropped into oblivion until the work
of physicists (notably Pauli and Dirac), interested in the quantum mechanics
of particles with spin, rediscovered them in the late 1920’s, together with an
associated “spinor calculus” (index notation, matrix calculus, Clifford algebra,
etc.).

The next step in Minkowski’s deepening of 4-dimensional geometrical con-
cepts10 probably happened between November 5, 1907 and December 21, 1907,
when he presented to the Göttingen Royal Society of Sciences a technical arti-
cle entitled “The fundamental equations of electromagnetic processes in moving
bodies” [3]. This work contains (among other important advances) one key new
insight: the concept of spacetime line (“Raum-Zeitlinie”, which will be called
by him worldline, “Weltlinie”, in the Cologne lecture) together with the con-
cept of proper time (“Eigenzeit”) along it. These concepts are not present in
Minkowski’s November 1907 lecture. Actually, as emphasized in Ref. [5], the
latter lecture [10] contains incorrect considerations concerning the definition of
the ‘4-velocity’ of a mass point. Indeed, in [10] Minkowski denotes the ordinary
3-velocity dx/dt as w ≡ dx/dt, states that |w| must stay smaller than unity
(using c = 1), and claims that

w1 = wx , w2 = wy , w3 = wz , w4 = i
√

1 − w
2 (2.7)

10Here, we focus on Minkowski’s conceptual achievements concerning spacetime geometry.
In addition to these, Minkowski clarified the relativistic formulation of the electrodynamics
of polarizable media (involving two different 2-forms, say Fµν = ∂µAν − ∂νAµ and fµν , such
that ∂νfµν = −Jµ), and introduced the concept of (spacetime-covariant) electromagnetic
stress-energy tensor tν

µ
= Fµσfνσ − 1

4
δν
µ
Fρσfρσ . However, the fact that this tensor was non-

symmetric within polarizable bodies initiated a long series of arguments (starting with the
work of Einstein and Laub [2] mentioned above).
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define a suitable 4-dimensional velocity vector satisfying the Lorentz-invariant
constraint

w2

1
+ w2

2
+ w2

3
+ w2

4
= −1 . (2.8)

The latter claim is, however, technically incorrect. Note, in particular, that
w2

1
+w2

2
+w2

3
+(i

√
1 − w

2)2 = w
2− (1−w

2) = −1+2w
2 is not equal to −1. It

seems probable to me that Minkowski understood his error and corrected it by
having a closer look at Poincaré’s 1906 paper (which, as said above, implicitly
contained the correct answer). Indeed, Minkowski ends his November lecture
by a few remarks on the “big question” (“grosse Frage”) of putting gravitation
in line with the Relativitätsprinzip. This final paragraph contains no equations,
but refers abundantly to the work of Poincaré [9], and ends by the promise of
giving a detailed report on this issue on another occasion. As all scientists know,
preparing and giving a lecture often forces you to come back and think about the
topic of the lecture. It is therefore quite likely that, after his November lecture,
Minkowski went back to the final section (§9) of the 1906 Poincaré paper and
put more effort in understanding what Poincaré had done, and in translating it
into a more transparent spacetime language.

At this point, I should indeed point out to the readers who have never tried
to read the 1906 Rendiconti paper of Poincaré that this article is rather long
(47 pages) and technically quite complex, especially in the final section devoted
to some “hypothèses sur la Gravitation”. Indeed, many of the key new results
of Poincaré on Relativity are contained in this final section, but in a rather un-
transparent and unpedagogical form. For instance, the crucial fact that Lorentz
transformations preserve the quadratic form x2 + y2 + z2 − t2 is asserted in
passing as if it were well known (“An arbitrary transformation of this group
can always be decomposed into [a scaling], and into a linear transformation
leaving unchanged the quadratic form x2 + y2 + z2 − t2”; and later:“We know
that. . .”, “Nous savons que. . .”), and the novel introduction of a 4-dimensional
‘Wick-rotated’ (t

√
−1) Euclidean space is also done in passing, with the brief

comment: “We see that the Lorentz transformation is just a rotation of this
space around the origin, regarded as being fixed.” Essentially, the introduction
of this 4-dimensional geometrical representation is used by Poincaré only as a
technical tool to construct Lorentz scalars and Lorentz vectors from the geo-
metrical configuration defined by the attracted point (xµ

0
) and the attracting

one (xµ
1
), together with their infinitesimal spacetime displacements (dxµ

0
, dxµ

1
),

connected to their respective velocities (dxi
0/dx

0
0 = vi

0, dx
i
1/dx

0
1 = vi

1)
11. In

reading more closely this section12, Minkowski may have then realized that the
construction of Poincaré was illuminated by extending his geometrical config-

11I am using here post-Minkowski notations instead of those used by Poincaré.
12At this stage, I would like to emphasize that, contrary to what many historians of science

seem to assume when discussing the information contained in scientific papers, many (if not
most?) scientists practically never read in detail, from the beginning to the end, any scientific
paper, even if it is central to their own interest and research. More often than not, they
just glance through the papers written by others, trying to capture fast its (generally few)
new conceptual points and technical results, and “translating” them into their usual way of
thinking or of calculating.

8



uration (xµ
0
, dxµ

0
;xµ

1
, dxµ

1
) into two full spacetime lines xµ

0
(τ0), x

µ
1
(τ1), whose

tangents at xµ
0

and xµ
1

would be proportional to the infinitesimal displacements
dxµ

0
, dxµ

1
considered by Poincaré. This also illuminated the “good” geometrical

way of normalizing the tangent vectors: namely, to use as parameters τ0, τ1 the
invariant spacetime length, dτ2

a = −ηµν dx
µ
adx

ν
a, for which Minkowski introduces

the name of proper time (“Eigenzeit”). Let us emphasize again that Poincaré
had already correctly normalized his invariants (2.2) by the factors (1−v

2
a)

−1/2

appropriate to the proper-time 4-velocity uµ
a (see the corresponding Eqs. (2.1)),

without, however, explaining in detail what he was doing13.

If this conjectural reconstruction of the way Minkowski realized, by read-
ing closely Poincaré, that the concepts of spacetime line (i.e. worldline in the
Cologne lecture) and proper time were crucial in geometrically representing the
dynamics of interacting point particles is correct, it is all the more surprising
that Minkowski started downplaying the contributions of Poincaré in his De-
cember 1907 paper [3]. While, as we said above, Minkowski frequently, and
rather warmly, quotes Poincaré in his November 1907 lecture [10], he quotes
him only twice in his December 1907 paper, and in a rather derogatory man-
ner. Indeed, at the beginning, he mentions Poincaré only for having given the
name of “Lorentz transformations” to the covariance properties of “the theory
of Lorentz”, without ever mentioning the new results of Poincaré (first proof of
the covariance of Lorentz’ theory in presence of electric currents Jµ, first proof
of the group character of the Lorentz transformations). Then, he mentions re-
sults brought by Poincaré without citing him (introduction of Euclidean time
it, proof of a “theorem of relativity”, invariance of Fµν F

µν and εµνρσFµν Fρσ ,
etc). Finally, at the end, when discussing his own (much less general than
Poincaré’s) way of reconciling gravitation with the “postulate of relativity”, he
cites Poincaré contributions only in a rather strange footnote: “In a way com-
pletely different from the one I employ here, H. Poincaré [9] has tried to adapt
the law of Newtonian attraction to the postulate of relativity.”

It seems that, somehow, Minkowski’s full realization of the elegant 4-dimen-
sional geometrical formulation of Special Relativity pioneered by Poincaré in
a more technical way, and using less transparent notations, put him in the
psychological mood of downplaying, and ultimately completely neglecting (in
the Cologne lecture) Poincaré’s contributions. This psychological reaction had
probably several different roots.

Let us first recall the general context of the relations between Germany and
France, and between German mathematicians and French ones. During the
Franco-Prussian war (July 1870-May 1871), Germany had invaded France, and

13As often, Poincaré found such technical details so easy to perform that he did not bother
to explain them at length. We note, however, that the sentence he writes before deriving his
invariants (2.2) (Eq. (5) in his text [9]) is a mathematically complete (though rather cryptic)
way of saying he uses uµ

a = dxµ

a/dτa. Indeed, he says that “one must . . . look for [those
invariant combinations of xµ

1
−xµ

0
, dxµ

0
, dxµ

1
] which are homogeneous of degree zero both with

respect to δx, δy, δz, δt [i.e. dxµ

0
] and with respect to δ1x, δ1y, δ1z, δ1t [i.e. dxµ

1
].” This is an

implicit way of saying that he uses the ratios δx/
p

δt2 − δx2 − δy2 − δz2, etc., i.e. dxµ

a/dτa.
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had taken possession of two regions of France: Alsace and a large part of Lor-
raine (the latter being the native region of Poincaré). Felix Klein (born in 1849)
was visiting (at the same time as Sophus Lie) the Paris mathematical school
in 1870, where he discovered and studied group theory in the newly published
treatise of Camille Jordan (“Traité des substitutions”). This treatise, as well
as his interaction with Lie, was crucial to the line of research later pursued
by Klein (notably his 1872 “Erlangen programme”). The Franco-Prussian war
interrupted Klein’s stay in Paris. Klein (who was prussian and extremely pa-
triotic) “rushed home to volunteer for the army” ([13] p.137) during the war
against France. In the early 1880’s, Klein engaged in a sharp (but friendly)
competition with the young Poincaré (born in 1854) about automorphic func-
tions. The final result of this competition was essentially a draw, with a slight
advantage for Poincaré. However, the mental pressure from the competition
caused a serious nervous breakdown of Klein. I am recalling this as background
material because Hilbert and Minkowski, the new stars of the Göttingen math-
ematical group in the early 1900’s, were both prussians, and had been attracted
to Göttingen by Klein. The latter had previously (circa 1885) advised Hilbert
to go to Paris because it would be “most stimulating and profitable” for him,
especially if he “could manage to get on the good side of Poincaré” [13]. When
Hilbert visits Paris, his old friend Minkowski writes to him, commenting that he
is “in enemy territory”. Let us also mention the comment of Hurwitz (a common
mentor and friend to Hilbert and Minkowski since their youth in Königsberg,
[13] p.14):

“I fear the young talents of the French are more intensive than
ours, so we must master all their results to go beyond them.” ([13],
page 21.)

The latter citation of Hurwitz14 is the closest approximation I could find to
an explanation of Minkowski’s downgrading of Poincaré’s work. When Minkow-
ski realized he could go beyond Poincaré, both technically and conceptually15,
after mastering his rather opaque technical methods, his hubris pushed him to
downplay Poincaré’s contributions.

This downplaying may have been facilitated by the following conjectural
reconstruction of the way Minkowski discovered the fact that Lorentz trans-
formations are “rotations” in space-time. Max Born, who had attended the
seminar on electron theory co-organized by Minkowski and Hilbert in the sum-
mer semester of 1905, wrote16, many years later (in 1959) [15]:

14Let us also recall that Hurwitz was professor at the Zürich Polytechnikum, where he had
attracted Minkowski (in 1896), before Klein could secure a position for him in Göttingen. Both
Hurwitz and Minkowski taught at the Polytechnikum when Einstein studied there. Though
the above remark of Hurwitz was addressed to Hilbert (before his stay in Paris), it is most
likely that he made similar remarks to Minkowski (e.g. during their common time in Zürich).

15And diagrammatically. Indeed, one of the key new results of the Cologne lecture consisted
in the first introduction of (2-dimensional) spacetime diagrams. See [14] for a discussion of
the importance of visual thinking in Minkowski’s work.

16I thank Scott Walter for giving me the original German citation of Born, and Friedrich
Hehl for advice about its translation into English.
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“ I remember that Minkowski occasionally alluded to the fact
that he was engaged with the Lorentz transformations, and that he
was on the track of new interrelationships. [Ich erinnere mich, daß
Minkowski gelegentlich Andeutungen machte, daß er sich mit den
Lorentz-Transformationen beschäftigte und neuen Zusammenhängen
auf der Spur sei.]”

My conjecture is that Minkowski, helped by his background reading of some
of the works of Lorentz and Poincaré (which, however, did not include their most
recent contributions of 1904-1905; see [7] and references therein) had discovered
by himself, in the summer of 1905 (without knowing about the 1905 papers
of Poincaré) the fact that Lorentz transformations preserve the quadratic form
−c2t2 + x2(+y2 + z2). If that reconstruction is correct, he must have been all
the more eager, when he later realized that he had been preceded by Poincaré,
to find reasons for downplaying Poincaré’s work.

Years later, some fairer scientists tried to correct this situation. In particular,
Sommerfeld added some Notes to a republication of Minkowski’s Raum und Zeit
lecture in the well-known booklet “The Principle of Relativity” [1] in which he
acknowledges (though only partially) Poincaré’s contributions. A better job was
done by the young Pauli (apparently under the insistence of Felix Klein himself
[16]) in his famous (book-size) article on the theory of relativity for Klein’s
Mathematical Encyclopedia [17].

3 Did Minkowski really think of time as a mere

shadow?

The most quoted sentences from Minkowski’s Cologne lecture are those con-
cerning the subsuming of space and time under a new, four-dimensional reality,
notably:

“Henceforth, space by itself, and time by itself, are doomed to
fade away into mere shadows, and only a kind of union of the two
will preserve an independent reality.” [...]

“Three-dimensional geometry becomes a chapter in four-dimen-
sional physics. Now you know why I said at the outset that space
and time are to fade away into shadows, and only a world in itself
will subsist.”

Far from me to try to downplay the conceptual revolution initiated by
Minkowski. However, if one reads the entire text of the Cologne lecture, one
does not go away with the feeling that Minkowski took the new spacetime con-
cept as being existentially relevant to us, as human beings. Though Minkowski
certainly went much farther than Poincaré in taking seriously the 4-dimensional
geometry as a new basis for a physico-mathematical representation of reality,
it does not seem that he went, philosophically and existentially, as far as really
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considering ‘the flow of time’ as an illusory shadow. By contrast, let us recall
that the old Einstein apparently did take seriously, at the existential level, the
idea that ‘time’ was an illusory shadow, and that the essence of (experienced)
reality was timeless. For instance, in some letters to his old (Polytechnikum)
friend Michele Besso, he writes [18]

“ . . . you do not take seriously the four-dimensionality of Rela-
tivity, but you consider the present as the only reality.” (letter 185;
13 July 1952)

“You cannot get used to the idea that subjective time, with his
“now”, has no objective meaning. See Bergson!” (letter 197; 29 July
1953)

An even clearer assertion of this idea is contained in the famous letter of
condolences written by Einstein after Besso’s death:

“Now he has departed from this strange world a little ahead
of me. That signifies nothing. For us, physicists in the soul, the
distinction between past, present and future is only a stubbornly
persistent illusion.” (letter 215; 21 March 1955)

It is an interesting question to understand how, when and through the minds
of whom, the physico-mathematical concept of Minkowski spacetime, with its
“shadowy” times and spaces, came to be existentially experienced in this way.
I am not sure of the correct answer, but I would like to offer a few thoughts.

First, I would like (after many others, see [4] and references therein) to
stress that Minkowski probably did not really comprehend the conceptual nov-
elty of Einstein’s June 1905 paper on Special Relativity, and especially the
results therein concerning time. Indeed, in his Cologne lecture Minkowski says
that, while Einstein “deposed [time] from its high seat”, “neither Einstein nor
Lorentz made any attack on the concept of space”, by which he meant that
Einstein and Lorentz did not realize (as Minkowski geometrically shows in his
two-dimensional spacetime diagrams) that the spatial slice x′ (i.e. t′ = 0) as-
sociated with a (relatively) ‘moving’ observer differed from the spatial slice x
(i.e. t = 0) associated to the originally considered observer. However, this was
precisely one of the key new insights of Einstein, namely the relativity of simul-

taneity! In addition, when Minkowski introduces the (geometrically motivated)
concept of proper time, he does not seem to fully grasp its physical meaning.
However, this is the second key new insight brought in by Einstein concerning
time, namely the fact (explicitly discussed by Einstein) that, when comparing
a moving clock to one remaining at rest (and marking the corresponding ‘rest’
coordinate time t), the moving clock will mark (upon being reconvened with the
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sedentary clock) the time17

τ =

∫

dt
√

1 − v
2/c2 , (3.1)

i.e. Minkowski’s proper time. It seems that Minkowski was not aware of this.
This is another example of a scientist misreading a paper which he knew, how-
ever, to be central to his research topic! In that case (contrary to the case of
Poincaré’s paper), Minkowski had the excuse of being a mathematician reading
a physics paper.

After these preliminary remarks aimed at showing that Minkowski did not
fully grasp the physical meaning of what he was doing, let us come back to
the question of who first “thought” the ‘block time’ of the spacetime picture
as implying a ‘timeless’ physical, and existential, ‘reality’18. One of the first
accounts I found, which goes somewhat beyond Minkowski, is contained in
Einstein’s 1916 popular book on Relativity [20]. In the Appendix II, enti-
tled, “Minkowski’s Four-dimensional Space (“World”) [Supplementary to Sec-
tion XVII]”, Einstein characterizes the change from the 3-dimensional-space-
plus-time picture to Minkowski’s “world” as follows:

“From a “happening” in three-dimensional space, physics be-
comes, as it were, an “existence” in the four-dimensional “world”.”

After this, I did not find evidence for the “sinking” of Minkowski’s picture
into the consciousness of scientists until the late 1940’s and early 1950’s. At that
time, one might mention Gödel’s thoughts about the (Kantian) ideality of time
(and its confirmation from the existence of closed time-like curves in the 1949
“Gödel universe”), Weyl’s19 1949 book “Philosophy of Mathematics” which (as
quoted in [19]) contains sentences such as

“The world does not happen, it simply is.”

17Einstein only writes (after expanding it to first order in v2/c2) τ = t
p

1 − v2/c2 because
he explicitly discusses only clocks moving with a constant |v|, though with arbitrarily varying
direction, so as to allow for a spatially closed loop, possibly along a “continuously curved
line”.

18Note that we are limiting our considerations to the ‘descendants’ of Minkowski’s work.
Another interesting question would be to consider its ‘ancestry’. In particular, whether
Minkowski was helped by some (direct or indirect) knowledge of some literary works, such as
H.G. Wells’ 1895 “Time Machine” [whose first pages are a rather clear description of (pre-
einsteinian) spacetime] or C.H. Hinton’s 1880 essay “What is the fourth dimension?” (cited
in [19] as a predecessor of the concept of ‘block time’).

19Hermann Weyl had a philosophical bend, and his famous book on Relativity contains
detailed conceptual discussions about space and time. However, I did not find there clear
statements concerning the concept of ‘block time’. The closest citation I found (which is,
however, distinct from the idea of ‘block time’) reads: “This world is a four-dimensional
continuum which is neither “space”, nor “time”; it is only the consciousness which, by moving
in a region of this world, registers as “history” a section which comes towards it, and leaves
it behind, i.e. as a process which unfolds in space and develops in time.” (end of chapter III
of [21]).
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and various texts of Einstein of the early 1950’s. Besides the letters to Besso
quoted above, one might also mention20 the fifth appendix that Einstein added
(in June 1952) to the fifteenth (English) edition of his popular book on Relativ-
ity, entitled “Relativity and the Problem of Space”. There, Einstein comments
Minkowski’s four-dimensional structure as follows:

“Since there exist in this four-dimensional structure no longer
any sections which represent “now” objectively, the concepts of hap-
pening and becoming are indeed not completely suspended, but yet
complicated. It appears therefore more natural to think of physical
reality as a four-dimensional existence, instead of, as hitherto, the
evolution of a three-dimensional existence.”

To end this rather incomplete discussion, let us mention that it would be
interesting to extend the study of the legacy of the concept of relativistic space-
time to artists. Among them, Marcel Proust’s ideas on Time, for instance, have
indeed been somewhat influenced by einsteinian (and minkowskian) ideas (see
the discussion in chapter 2 of [22]). There are probably many other examples.

4 Other remarkable omissions

Among the other omissions of Minkowski, I find two worth mentioning.

4.1 No mention of Klein’s Erlangen programme

One of the central focus of Minkowski’s Cologne lecture is the group structure
underlying Special Relativity (denoted as Gc by Minkowski), its relation to the
group structure of Newtonian mechanics (G∞ = limc→∞Gc), and the fact that
mathematicians are the best armed for detecting and exploiting such group
structures. I therefore find rather surprising that Minkowski never points out
the link between his group-approach to a 4-dimensional geometry and Klein’s
famous Erlangen programme (which consisted in defining a geometry by its
symmetry group, rather than by the ‘objects’ on which it acts). This is all
the more surprising since Klein was the organizer of the mathematics section
in which Minkowski was invited to speak. Knowing also all what Minkowski
owed to Felix Klein, I would have expected Minkowski to add at least a passing
allusion to his Erlangen Programme. For instance, Pauli’s famous article (and
book) on Relativity contains a section (§8) on how Relativity fits within Klein’s
“Erlangen Programme” [17]. Maybe one should not, however, read too much
into too little.

4.2 No spacetime triangular inequalities

I also find somewhat surprising the fact that Minkowski did not mention the is-
sue of ‘triangular inequalities’ in the 4-dimensional geometry. Indeed, Minkowski

20I am grateful to John Stachel for bringing this reference to my attention.
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was a world expert on the generalizations of the usual triangular inequality based
on convexity properties. The Lp-norm generalization of the usual (L2-norm) tri-
angular inequality, viz

∀ x, y ∈ C
N , ‖x+ y‖p ≤ ‖x‖p + ‖y‖p , 1 ≤ p ≤ ∞ (4.1)

is called “the Minkowski inequality” because of his fundamental contributions.
Minkowski was also famous for his use of convexity inequalities in various fields
of mathematics (geometry, number theory). The problem might be here that,
as I mentioned above, Minkowski had (seemingly) not fully grasped the striking
result of Einstein that the proper time along any polygonal (or curved) time-
like line between two points in spacetime is smaller than the proper time along
the straight line joining the two points. If he had realized it clearly, he would
have commented that this is just the opposite of the usual triangular inequality,
namely

‖x+ y‖ ≥ ‖x‖ + ‖y‖ (4.2)

holds for future-directed, time-like vectors x and y.

5 Conclusion: Viva la Revoluçion!

To conclude these somewhat disconnected remarks, let me try to characterize
the greatness of the conceptual leap achieved by Minkowski in his Raum und
Zeit lecture by contrasting it with the attitude of Poincaré. We recalled above
that, at the purely technical level, several (though certainly not all) of the
key mathematical structures of “Minkowski spacetime” were already, explicitly
or implicitly, contained in Poincaré’s Rendiconti paper. But, what made the
difference was that Minkowski had the boldness of realizing and publicizing
the revolutionary aspects of these structures. The draft manuscripts of his
lecture (see [14]) show that Minkowski struggled in finding an appropriate way of
conveying to a large audience his enthusiasm and his feeling of the revolutionary
nature of the spacetime concept. In particular, as pointed out in [14], one of the
first versions of the second sentence (“They [the new views of space and time]
are radical.”), reads

“Their character is mightily revolutionary, to such an extent that
when they are completely accepted, as I expect they will be, it will
be disdained to still speak about the ways in which we have tried to
understand space and time.”

By contrast with this way of assuming and welcoming a revolutionary way
of thinking, it is striking to read the introduction of the Rendiconti paper of
Poincaré. There, in a rather roundabout way, he compares the efforts of Lorentz
(and of himself) in trying to understand (without putting in doubt the usual
ideas about space and time) the key role of the velocity of light c (which would,
“if one would admit the postulate of relativity”, enter both electromagnetism and
gravitation) to the efforts of Ptolemy, who tried to “save phenomena” without
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worrying about common epicyclic frequencies in the planets. He is getting near
the (einsteinian) idea that one might need to change one’s kinematical ideas
about space and time measurements, but says:

“Maybe it would suffice to give up this definition [of the equal-
ity of two lengths], to turn upside down the theory of Lorentz as
completely as the Ptolemaic system has been turned upside down
by Copernicus. If this happens one day, this will not mean that
the efforts of Lorentz had been vain; because, whatever one might
think, Ptolemy has not been useless to Copernicus. [car Ptolémée,
quoi qu’on en pense, n’a pas été inutile à Copernic.]”

This citation clearly shows the deeply conservative bend of Poincaré in
physics. He is happy to contribute to the Lorentz-Ptolemy programme, and
he steps back from any move that might shake its kinematical foundations.
Minkowski, by contrast, had a lot of ambition and self-confidence (not to say
chutzpah), and was keen on breaking new ground in mathematical physics.
Without fully understanding what Einstein had done, nor (at least initially)
what Poincaré had already achieved, he was lucky to unearth elegant and deep
mathematical structures that were implicitly contained in their (and others’)
work, and had the boldness to embrace with enthusiasm their revolutionary
character. One must certainly admire him for this achievement, though one
might regret his unfairness towards Poincaré. However, I hope to have con-
vinced the reader that “whatever one might think, Poincaré-Ptolemy has not
been useless to Minkowski-Copernicus”.
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http://www.univ-nancy2.fr/DepPhilo/walter/ which also contains the
more detailed thesis (in French) of the author).

[5] S. Walter, “Breaking in the 4-vectors: the four-dimensional move-
ment in gravitation, 1905-1910”, in J. Renn and M. Schem-
mel (eds), The Genesis of General Relativity, Vol. 3, Gravitation
in the Twilight of Classical Physics: Between Mechanics, Field
Theory, and Astronomy, 193-252, Berlin: Springer, 2007. (See
http://www.univ-nancy2.fr/DepPhilo/walter/).

[6] H. Minkowski, “Espace et temps”, Annales Scientifiques de l’E.N.S., 3ème
série, tome 26 (1909), p. 499-517.
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