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Luca Baiotti} Thibault Damouf 2 Bruno Giacomazz6,> Alessandro Nagarand Luciano Rezzolfa’

institute of Laser Engineering, Osaka University, Suitapah
?|nstitut des Hautes Etudes Scientifiques, Bures-sur-&,vEtance
%|CRANet, Pescara, Italy
‘Department of Astronomy, University of Maryland, Collegek® MD USA
SGravitational Astrophysics Laboratory, NASA Goddard Sp&tight Center, Greenbelt, MD USA
®Max-Planck-Institut fur Gravitationsphysik, Albert#&itein-Institut, Potsdam, Germany
"Department of Physics and Astronomy, Louisiana State WsitydBaton Rouge, LA, USA

Binary neutron-star systems represent one of the most piegnsources of gravitational waves. In order
to be able to extract important information, notably abdt équation of state of matter at nuclear density, it
is necessary to have in hands an accurate analytical modleé @xpected waveforms. Following our recent
work [1], we here analyze more in detail two general-relatig simulations spanning aboR0 gravitational-
wave cycles of the inspiral of equal-mass binary neutrors stéth different compactnesses, and compare them
with a tidal extension of the effective-one-body (EOB) atiabl model. The latter tidally extended EOB model
is analytically complete up to the 1.5 post-Newtonian legatl contains an analytically undetermined parameter
representing a higher-order amplification of tidal effedtfe find that, by calibrating this single parameter, the
EOB model can reproduce, within the numerical error, the humerical waveforms essentially up to the
merger. By contrast, analytical models (either EOB, or dgifl4) that do not incorporate such a higher-order
amplification of tidal effects, build a dephasing with resie the numerical waveforms of several radians.

PACS numbers: 04.25.dk, 04.25.Nx, 04.30.Db, 04.40.D@®5f, 97.60.Jd

I. INTRODUCTION a brief review) and the first merger to a hypermassive neu-

tron star (HMNS) was computed more than ten years ago [3].
owever, it is only in recent years and with the use of more
dvanced and accurate numerical algorithms that it has been

possible to obtain a more precise and robust descriptidrisf t

Binary neutron-star inspirals are among the most promisin
and certain target sources for the advanced versions ofithe ¢
rently operating ground-based gravitational-wave (GW) de ) = Jos .
tectors LIGO/Virgo/GEO. These detectors will be maximally process and to include additional physical ingredienth sisc

sensitive during the inspiral part of the signal (around a Gv\;nagn_etic fields an_d realistic EO.SS' In particular the_ use OT
frequency ofl00 Hz, i.e. significantly below the typical GW adaptive mesh refinement techniques [2, 4, 5] made it possi-

frequencies at merger, which are arourt0 Hz). The in- ble to use very high resolutions, increasing not only thellev
spiral part of the signal will be influenced by tidal inteiiact of accuracy, but giving the possibility, for example, to com

between the two neutron stars (NSs), which, in turn, encoddd!te the full evolution of the HMNS up to black hole for-

important information about the equation of state (EOS) Ofmation [2], or to investigate in detail the development of hy

matter at nuclear densities. In other words, the detectfon Odrodynamlcal instabilities at the time of the merger [2].€Th

GWs emitted from inspiralling NS in the LIGO/Virgo band- numerical convergence properties of BNS §ir_nu|ations have
width could enable us to acquire important information @bou "’.‘ISO bec_—zn studied only very recently [6], p“’"'?"F‘g for theti .
the EOS of NS matter. However, two conditions must be ful-ime eV|de_‘nce _Of the level Of_ accuracy that it is now possi-
filled (besides getting sufficiently accurate GW data from ad ble to achieve in the generation of GW templates from these

vanced detectors) for the success of this program: (i) nbtai SOU'°€s: _Seyeral groups are now able to simulate BNSs .using
: ) prog -() iondore realistic EOSs (see,g, [7-9] and references therein)

and to assess the possibility to measure their effects in the
GW signals. In the last two years three different groups were
also able to perform for the first time the simulations of mag-

ulations to the multi-parameter space of possible GW tem[1etized BNSs [10-12]. One conclusion already reachedis tha

plates. Extending the work recently reported in [1], we herd© effect of the magnetic field can be measured in the inspi-

address issues and provide useful progress on both of tinem. jal waveforms [12], while the role of the _magn_etic fiel_d in the
essence, we will present the results of general-relat\ssn- post-merger phase has been recently investigated in [13] as

ulations spanning abo@0 gravitational-wave cycles of the well as its role in the emission of relativisticjetg aftee gol- .
inspiral of equal-mass BNSs and show how a suitably Cali_Iapse to black hole [14]. Because of their possible conascti

brated effective-one-body (EOB) analytical model of tigal with the production of short gamma-ray bursts (GRBs), nu-

interacting BNS systems enables us to accurately reproduche”Cal 5|mullat|ons_ have aIsp investigated in deta||. ”.'?‘m
the numerically simulated inspiral waveform. tion of massive tori and their dependence on the initial mass

N ical simulati ¢ ina BNSS in full el and mass ratio of the binarg.gsee [15]) as well as on the
Jumerical simulations ormerging S In Ul generairel £ 65 ysed (see [8, 9] and references therein).
ativity have a long history (see the Introduction of [2] for

of inspiralling binary neutron stars (BNS); (ii) possegsin
sufficiently accuratanalytical modebf inspiralling BNS, al-
lowing the extrapolation of the finite set of numerical sim-


http://arxiv.org/abs/1103.3874v1

On the other hand, the program of developing an analytiplicitly said otherwise) a system of units in which= G =
cal description within general relativity of tidally-im&cting M. = 1. Greek indices are taken to run frdrto 3, Latin
binary systems has been initiated only very recently [1§-22 indices from1 to 3.

Overall, this work has brought to light two surprising ressul
First, that the dimensionless expressign(Love number)

in the (gravito-electric) tidal polarizability paramet@y, = II. NUMERICAL-RELATIVITY SIMULATIONS
2k, R?'*+1/(2¢ — 1)!! measuring the relativistic coupling (of
multipolar order’) between a NS of radiug and the external A. Numerical setup

gravitational field in which it is embedded strongly dece=as
with the compactness parametér= GM/(c*R) of the

NS [18, 19}. Second, a recent comparison between a numer The numerical simulations were performed with the set of

ical computation of the binding energy of quasi-equililoniu codesCact us-Car pet -Wi sky [32-36]. The reader is re-

circular sequences of BNS systems [23] and the EOB descrip];?rred to the references for the description of the detdilse

tion of tidal effects [21] suggest that high-order (beyoh t implementations and of the tests of the c_odes. Since in this
first order) post-Newtonian (PN) corrections to tidal ef§ec work we use the same gauges and numerical methods already

tend to significantly increase (typically by a factor of arde applied and explained in [2, 6], we also refer the reader to
two) the effective tidal polarizability of NSs. these articles for more detailed explanations of the setlyp o

briefly recalled below.

~ The main aim of this paper is to present a detailed compar- | essence, we evolve a conformal-traceléss ‘1” formu-

ison between waveforms computed from the tidal-completeghtion of the Einstein equations in which the spacetime is de

EOB analytical model of Ref. [21] and waveforms from BNS composed into three-dimensional spacelike slices, destri

simulations comprising betweer 20 and 22 GW cycles  y a metricy;;, its embedding in the full spacetime, speci-

of inspiral [1]. More specifically, we will follow Ref. [21],  fied by the extrinsic curvatur&,;;, and the gauge functions

which has proposed a new way of analytically describing, (japse) and3? (shift) that specify a coordinate frame (see

the dynamics of tidally interacting BNSs, whose validity is Ref. [34] for details on the latest implementation of the-Ein

not a priori limited (like the purely PN-based descriptionsstein equations in the code). For the evolution of the mat-

used in,e.g.[16]) to the low-frequency part of the GW sig- ter, thewhi sky code implements the flux-conservative for-

nal, but may be extended to higher frequencies, essentialjpylation of the general-relativistic hydrodynamics edpra

up to the merger. The proposal of Ref. [21] consists in exproposed by the Valencia group [37]. Its important features

tending the EOB method [24—-26], which has recently showryre that the set of conservation equations for the stresspen

itS ab|l|ty to aCCUI‘ately describe the GW WaVeformS emit'tensorTﬂV and for the matter current densiwl are Writ_

ted by inspiralling, merging, and ringing binary black t®le ten in hyperbolic, first-order, and flux-conservative fosed

(BBHs) [27, 28], by incorporating tidal effects in it. We $ha  Ref. [2] for details on the latest implementation of the rydr

improve the tidally-extended EOB model of Ref. [21] (which dynamics equations in the code).

incorporating the 1PN contributions to the waveform (fromith the multi-domain spectral-method coHERENE devel-

[29]), as well as the waveform tail effects (from [30, 31]).  gped at the Observatoire de Paris-Meudon [38]. For more in-
The paper is organized as follows. In Sec. Il we presenformation on the code and its methods, the reader is refeared

in detail our numerical simulations, briefly reviewing our-n  theLORENE web pages [39]. In particular, we use irrotational

merical setup, discussing the dynamics of the binaries, andonfigurations, defined as having vanishing vorticity and ob

presenting the main features of the waveforms. Section lltained under the additional assumption of a conformally flat

deals instead with the analytical models of the binary dy-spacetime metric [38]. The EOS assumed for the initial data

namics and of waveforms that include tidal interaction (ei-is in all cases the polytropic EOS

ther PN-based or EOB-based ones). Sec. IV introduces some

tools, notably a certain intrinsic representation of theei p=Kp", (1)

evolution of the GW frequency, which is useful for doing

the numerical-relativity/analytical-relativity (NR/ARcom- ~ Wherep andp are the pressure and the rest-mass (baryonic-

parison. Section V discusses the various errors that afiect mass) density, respectively. The chosen adiabatic index is

NR phasing. The NR/AR comparison is carried outin Sec. VII' = 2, while the polytropic constant i&” ~ 123.6 (in units

We finally present a summary of our findings in Sec. VII. TwoWherec = G = My = 1). For this particular EOS,
appendices give additional technical details on the uskef t the allowed maximum baryonic mass for an individual sta-
waveforms from the numerical-relativity simulations. ble NS is2.00 M, thus leading to a maximum compactness

M,,./R ~ 0.25. The initial coordinate separation of the
stellar centers in all casesds= 60 km.

The physical properties of the two binaries considered here
are summarized in Table |, where we have adopted the follow-
. . : O
1 As a consequence, for a given EOS, the Love numbers of a tydlce ing naming conventionh4C#, with /Obemg replaced by the

. b i .
0.15) NS are found to be about time smaller than their corresponding rounded total baryonic masd, ;""" of the binary NS Sys-
Newtonian estimates, that assuthe 0. tem and# by the compactness. As an exampl@, 9C. 12 is

We use a spacelike signature, +, +, +) and (unless ex-



TABLE I: Properties of the binary NS initial data. From leét tight the columns show: the name of the model, the total dricymass
MPAYerie of the system, the total (initial) Arnowitt-Deser-Misnéd@M) massM, ,,, of the system, the total (initial) angular momentum
the initial orbital frequency.,,, the initial maximum rest-mass densjiy...., the mean radius; of each star, the axis ratid; of each star, the
individual ADM massM *° of each star as considered in isolation at infinity, the catEsL> = Mys /R of each star as considered
in isolation at infinity, the corresponding (quadrupolaimensionless Love numbés and tidal constark? as defined in Ref. [21] (see also
Eq. (13) below). The mean radius is definedas (r- + r4 + r1 + rp01)/4, Wherer andr are the (coordinate) radii of the star parallel
to the line connecting the stars, is the radius in the equatorial plane perpendicular to that Bndr,. is the radius perpendicular to the
equatorial plane. The axis ratio is defined as the ratio bevilee mean radius parallel to the line connecting the stasthe mean radius
in the plane perpendicular to that line, namély = (v, + rp01)/ (7 + 7). The values obe.,, 7, A, M°°, andC> are computed with the
LORENE code, the values afi/[tljj‘t"y"““, wpne s @ndpmay are instead measured on the Cartesian grid byMtiesky code, and those of
k2 (andx¥) are computed according to Ref. [18].

Model MPETYOMe £ J/10%9 Vorb Prmax /1014 7 A M c> ko &7
(Mo) (Mo) _ (gem?/s)  (Hz) (g/cm®) (km) (M)

M2. 9C. 12 2.8899 2.6925 7.1747 188.52 4.60 142 097 1359 01196  0.09719  496.09

MB. 2C. 14 3.2504 2.9966 8.5558 197.03 5.93 132 097 1514 01399  0.07894  183.81

the binary with total baryonic mase/>2"°"¢ = 2.8899 M, In the results presented below we have ugelévels of

and compactness = 0.1196. We note that at least as far as mesh refinement with the finest grid resolutionf,;, =
the tidal effects are concerned, the most important diffeee  0.12 M, = 0.177 km and the coarsest (or wave-zone) grid
in the two sets of initial data is represented by the compactresolution ofA,,,.x = 3.84 M, = 5.67 km. Each star is com-
ness, which is smaller in the bina2. 9C. 12 thaninthe bi- pletely covered by the finest grid, so that the high-density r
naryM3. 2C. 14. Note that the dimensionless EOB parametergions of the stars are tracked with the highest resolutiail-av
k% measuring the strength of the (conservative) quadrupolaable. The refined grids are then moved by tracking the po-
interaction is nearly three times larger whén= 0.12, than  sition of the maximum of the rest-mass density as the stars
whenC = 0.14. orbit, and are finally merged when they overlap. In addi-
The initial data is then evolved either using the (isenttppi tion, a set of refined but fixed grids is set up at the cen-
polytropic EOS (1), or using the (non-isentropic) “idealid’ ter of the computational domain so as to capture the details

EOS defined by the condition of the Kelvin-Helmholtz instability (cf. [2]). The finest of
these grids extends to = 7.5 Ms; = 11km = 5.52M
p=pel —1), (2)  for modelM2. 9C. 12 and= 4.95M for modelVB. 2C. 14

(here and in the following/ denotes the gravitational mass

the total energy density. Although these EOSs are idealize(ﬁ)]c the system at infinite separation, namely the sum of the

they provide a reasonable approximation of the dynamics Ogravnatmnal masses of each NS as computed individually in

NSs during the inspiral, so that we expect that the use of re'§0|atl0n’ he. M = 2My in the notation of Table I). A

o R single grid-resolution covers then the region betweer-
alistic EOSs (with similar compactnesses) would not changei50 M. — 9291 5km andr — 514.56 M. — 755.94 k
the main qualitative conclusions of this work. A detailed-di (or r © g78 63M %lr MR rgc_ 12 éndr © _339 87.M fg;
CUSSi%n ofSthe consequences of using either EOS will be P'YB. 2¢ 14) .in which our Wavé extraction is carr'ied out. The
sented in Sec. V. S ! :

. . ' resolution is here\ = 3.84 M, = 5.67 km and thus more
As mentioned above, the use of adaptive mesh-refineme - L
. : .. “than sufficient to accurately resolve the gravitational evav
techniques allows us to reach a considerable level of poecis

and for this we use th€ar pet code [33] that implements forms that have initially a wavelength of abat) km.
a vertex-centered adaptive-mesh-refinement scheme adopti
nested grids with & : 1 refinement factor for successive grid 4. ar-symmetry conditiohacross the: — 0 plane are used.

!evels. We center the_highest resolution_level around t&pe A nhumber of tests have been performed to ensure that both
in the rest-mass density of each star. This representsierra cige hierarchy of the refinement levels described above and

wheree = (e — p)/p is the specific internal energy, ands

A reflection symmetry condition across the= 0 plane

basic form of adaptive-mesh refinement. The timestep on eacRe resolutions used yield results that are numericallysissn
grid is set by the Courant condition (expressed in terms o

. X X : ent although not always in a convergent regime at the time of
the speed of light) and so by the spatial grid resolution formerger(see the detailed discussion in Ref. [6]).
that level; the typical Courant coefficient is set to (85.
The time evolution is carried out using fourth-order acteira
Runge-Kutta integration steps. Boundary data for finerggrid

are calculated with spatial prolongation operators emplpy » Stated differently, we evolve only the regiqa: > 0, = > 0} applying

Tifth'order polynomials and.With prolongationin time emplo a 180-degrees rotational-symmetry boundary conditionsacthe plane at
ing second-order polynomials. z=0.



4

B. Overall matter-dynamics and gravitational waveforms so that the instantaneous (curvature) GW frequency is sim-
ply defined asvs,, = ¢en. After the initial junk radiation

We next briefly recall the physical properties of BNS in- (cf. Ref. [46]) that is responsible for a spike in the modulus
spiral and merger as discussed in Refs. [2, 6]. The inspiragdroundt = 2001/ together with high-frequency oscillations
proceeds at higher and higher frequencies until the timeeof t in the frequency, the complei;? waveform becomes circu-
merger, just before which the stars decompress because of tirly polarized (as expected for circularized inspiral)thna
tidal force. At the time of the merger, a Kelvin-Helmholtz modulus that grows monotonically in time up to the merger
instability develops in the shearing layer formed by the col (S€€ upper panels of Fig. 1). . _
liding stars, which may be of great relevance for the growth The matter-dynamics is reflected in the behavior of the fre-
of the magnetic fields [12, 40-42], thought to be present irfluéncy: for both models we clearly see thag grows mono-
such systems, but notincluded in the present work. If tha tot tonically during the inspiral phase, until it reaches a maxi
mass of the system is sufficiently large, the merged object immum around the “merger”. In this work, we phenomeno-
mediately collapses to a Kerr BH, while, for smaller massedogically define the “NR merger” as the instant when the
(as those considered here), the merger remnant is a HMN@odulus of the metric waveform,, (see below) reaches
in a metastable equilibrium. Because of the excess anguld$ (first) maximum. Roughly speaking, in our simulations
momentum, the HMNS is also subject to a dynamical barthe “dynamic range” of the dimensionless GW frequency pa-
mode instability, being responsible for a copious emissibn fameterMws, during inspiral (i.e. before the merger) is
gravitational radiation with peak amplitudes that are camp 0.015 S Mwz < 0.15. Note that, if we were consider-
rable or even larger than those at the mergéRef. [2]). As  Ing a conventional .4 M, + 1.4 M, BNS system, we would
the bar-deformed HMNS loses energy and angular momentuien have the correspondenfgy /100Hz ~ 115.4M w3 SO
via GWSs, it contracts and spins up, thus further increasieg t thatMwss = 0.015 corresponds tgaw ~ 173.1 Hz, while
losses. The process terminates when the threshold to the cdl/w22 = 0.15 corresponds tgaw ~ 1731 Hz.
lapse to BH is crossed and the HMNS then rapidly produces !N order to perform direct comparisons with (resummed)
a rotating BH surrounded by a torus of hot and high-densit)ﬁnalyt'cal waveforms and since the resummations use_d in the
material. Although this post-merger evolution of the binar EOB method have been developed (and tested) mainly for
is of great interest and is likely to yield a wealth of physica Mmetric waveforms, we derived the metric waveform by a (dou-
information, it will not be further considered in the presen ble) time-integration of the), waveform. (The so-obtained
work, which is instead focussed on the analytical modellingmetric waveform was found to be more accurate than the out-
of the inspiral phase, up to merger. put of the ga_uge-mvarlant_ perturbation schgme.)_ We_recall

The GW signal is extracted at different surfaces of constanihat the metric waveform is also expanded in spin-weighted
coordinate radius by means of two distinct methods. The SPherical harmonics with the following convention
first one is based on the measurements of the non-spherical -
gauge-invariant perturbations of a Schwarzschild BH [413, 4 .

The second and independent one uses instead the Newman- hy =i = Z Z hm —2Yem (0, ) ()
Penrose formalism so that the GW (metric) polarization am-
plitudesh., andh, are then related t@, by (see Sec. IV of g5 that the metric multipole,,, at time¢ can be obtained
Ref. [2] for details of the Newman-Penrose scalar extractio from 4t by double time-integration as

in our setup)

— ‘ ' / ! 1,10 "
hi —ih=va=3 Y " 2Yin(6,9), () em (1) =/_OO dt /_OO dt" " (1), (6)

(=2 m=—/4

=2 m=—1

This expression assumes that one knows the curvature wave-
form on the infinite time interval—oco, ¢|]. Since, however,

the simulated curvature waveform does not start at an iafinit
time in the past, but at a finite (conventional) time= 0,

one has to find a way of determining two (complex) integra-
tion constants accounting from the GW emission from infinite
time to our present starting time. To do so, we use here an
improved version of the fit procedure of Ref. [47], which is
gfesented in detail in Appendix A. Figure 2 shows the re-
Sult of this process, with the left panels referring to model
M2. 9C. 12, and the right ones to modsB. 2C. 14. To be
Xlear, note that the waveforms displayed in these figures are
obtained from simulations with: (i) the non-isentropice@d
fluid) EQS; (ii) the highest available resolution; and (&iy
extraction radius 0500 M,. These will be taken as our fidu-
cial “target” waveforms for our NR/AR comparisons, and we
fm — Jopfm|e~idem, (4)  shall refer to them in the following with the lab# g 500.

where we have introduced the (multipolar) expansion.pin
spin-weighted spherical harmonics [45] of spin-weight
—2. The coordinate extraction radius ig,s = 500 Mg

for both models, which correspondsitg,s/M = 184.3 for
M2. 9C. 12 and torqh,s /M = 165.1 for MB. 2C. 14. The top
panels of Fig. 1 summarizes most of the information related t
the curvature waveformg?? for the M2. 9C. 12 model (left
panels) and for th&B. 2C. 14 model (right panels). The top
panels of the figures show together the modulus and the re
part of the/ = m = 2 waveform; the bottom ones, illustrate
the behavior of the instantaneous GW (curvature) frequenc
Mwsyo. Note that the inspiral waveform @&f2. 9C. 12 con-
tains about 22 GW cycles, while thatB. 2C. 14 contains
about20 GW cycles. To fix conventions, let us recall that we
write the waveform as a complex number according to



X107
3 ——
7935
- Rirud,)
ok
1k

AN

Iy

|y

1
ST ANAWE AN ] ,
oF T R Y Y AV AVATATAY AR
T REREIA
g
[y
~1r W
il
Sl
i
I
[}
b Y B
o
I
l
\ y
0.4 t t t t t t =
035 T

M2.9C.12

I I
2000 2500

t/M

I I I
500 1000 1500

I
3000

I
3500

x10°

‘
L — i)
- W)

05

M3.2C.14

I I I
1500 2000 2500

t/M

I
1000

I
500

FIG. 1: Curvaturerys, gravitational waveform (upper panels) and the instantaseé®W curvature frequency/ws: (lower panels) for
the M2. 9C. 12 (left) andM3. 2C. 14 (right) models. In both cases, the observer’s (coordinexé&gaction radius i$.,s = 500 M); this
corresponds to.ns/M = 184.3 for M2. 9C. 12 androns/M = 165.1 for MB. 2C. 14.

|rhaol /v
0.8 — — ~R[rhas] /v

Y

uo \
\’,\’v,‘!\f\"\

I

|
| [N
Pt
[RERARTEN]

o [ |
| ‘M‘u‘,\,\

ot !
IR
by
v

H”‘H‘?
i

I
it
v

IR
iy

I
2000

t/M

I I
1000 1500 2500

[rhao| /v
08F — — ~R[rho] /v 7

L6 T
(Rl
I L
M‘H”"\ﬁ
N ‘HHH‘
|
[ HH‘M

|
[T RN

03 ‘E
0.25- M3.2C.14 |

Afu)gg

0.5 ‘
\

\
0.(;5— v_/_,_,_—/—/—/—J :
L

0.1

I
1500

t/M

I
0 500 1000

FIG. 2: Gravitational metric (complex) waveformé.> and frequencies obtained from integration of the curvawmeeforms of Fig. 1.
The left panels refer to mod&R. 9C. 12, the right panels to mod&B. 2C. 14. The fact that the waveform modulus grows monotonically
without evident spurious oscillations is the indicatiorttod reliability of the determination of the integration stemts. See text for details.

The numerical uncertainty on these target waveforms will becs and waveforms that include tidal effects. We follow here

estimated in Sec. V below.

I11. ANALYTICAL MODELS

We recall below some basic information relative to the

the general discussion of Ref. [21], to which we refer the
reader for more details. We consider successively: (i)¢he r
summed EOB description of the conservative dynamics, (ii)
the resummed EOB description of the waveform, and (iii) one
of the non-resummed (i.e. PN expanded) descriptions of the
phasing.

EOB-based and PN-based descriptions of the binary dynam-



A. Effective-one-body description of the conservative The proposal of Ref. [21] for including dynamical tidal ef-
dynamics fects in the conservative part of the dynamics consistanm si
ply using Eqgs. (7)-(8) with the following tidally-augmeudte
The EOB formalism [24—-26] replaces the PN-expandedadial potential
two-body interaction Lagrangian (or Hamiltonian) by a re- 0 tidal
summed Hamiltonian, of a specific form, which depends only A(u) = A%(u) + A" (w). (11)
on the relative position and momentum of the binary systen?_|ere 40
(g,p). For a non spinning BBH system, it has been shown
that its dynamics, up to the 3PN level, can be described by th
following EOB Hamiltonian (in polar coordinates, withingh

plane of the motion) Atidal _ Z — ka2 AN () (12)

/ N £>2
HEOB(Ta Dr. 7pkp) = MC2 1+ 2V(HCH - 1) (7)

where the terms:? «*2 represent the leading-order (LO),

(u) is the point-mass potential defined in Eg. (10),
hile A%d2l(y) is a supplementary “tidal contribution” of the

where i.e. Newtonian order, tidal interaction. The dynamical EOB
R 2 " tidal coefficients:] are functions of the two massés,, Mz,
Heg = /p2. + A(r) (1 + 2 42z TQ) (8)  ofthe two compactnessé€s g = GMa,g/Ra, g, and of the
- r r ' ’

two (relativistic) Love numberkf"B of the two objects [18—

HereM = M+ Mp isthe total mass; = M4 Mp/(Ma+ 20]

2 i i = —
Mp)* is the symmetric mass ratio ang = 2v(4 — 3v). In My M2 kA

addition we are using rescaled dimensionless (effectiag) v ) +{4 « B}
ables, namely = rapc?/GM andp, = P,c/(GMaMpg), (Ma + Mp)?t 3!

andp,., is canonically conjugated to a “tortoise” modification 1 ke

of r [48]. = 9201 20+ (13)

A remarkable feature of the EOB formalism is that the ] )
complicated, original 3PN Hamiltonian (which contains man Where the second line refers to an equal-mass binary, as the
corrections to the basic Newtonian Hamiltoniap? — 1/r) ~ Ones considered here. Note in Table | the rather large numer-
can be replaced by the simple structure (7)-(8), whose twdfal values for the! = 2 tidal coefficients:x3 (C = 0.12) =~

crucial ingredients are: (i) a “double square-root” stuet 496 andr; (C = 0.14) ~ 184. In our EOB modelling we also
) . o use the higher multipolar tidal coefficient§ andx], which
Hgop ~ \/1++/p?+--- and (i) the “condensation” of 516 even larger tham! (e.g.x? (C = 0.12) ~ 20318) though
most of the nonlinear relativistic gravitational intei@als in  their effect is subdominant in view of the higher powernof
one function of the (EOB) radial variable: the basic “radial ,2¢+2 \ith which they enter thel(r) potential.
p_otential"A(r). The structure of the functiod(r) is rather The additional factoﬂ‘;idal(u) in Eq. (12) represents the
simple at 3PN, being given by effect of higher-order relativistic contributions to thgném-
3PN/ 1 _ 3 4 ical tidal interactions: next-to-leading—order (NLO) ¢on
AT = 1= 2u s vt Hag v, ©) butions, next-to-next-to-leading—order (NNLO) conttibus,
where a; = 94/3 — (41/32)7%, andu = 1/r =  etc. Here we will consider a “Taylor-expanded” expression
GM/(c*rag). It was recently found that an excellent de- o
scription of the dynamics of BBH systems is obtained [27] Al ) =1 4 6% + alPu? | (14)
by: (i) augmenting the presently computed terms in the PN
expansion (9) by additional 4PN and 5PN terr{i§; Padé- wherea!! are functions of\/4, C., andk;! for a general bi-

resumming the corresponding 5PN “Taylor” expansion of thenary, The analytical value of thé & 2) 1PN coefficient!”
A function. In other words, the BBH (or “point mass”) dy- has been reported in [21] (and recently confirmed in [49]). In
namics is well described by a function of the form the equal-mass case, it yields = 1.25. By contrast, there

A°(r) = P} [1—2u+ 2003 + agut + aspu’ + GGWG} are no analytical calculations available for the 2PN tidadfe

7 ’ ficientsal”. One of the main aims of the present work will
(10) 2
where P" denotes an(n,m) Padé approximant. It was be to constrain the value ﬁff) by comparing the EOB pre-
found in Ref. [27] that a good agreement between EOB andlictions to numerical data.

numerical-relativity BBH waveforms is obtained in an ex-
tended “banana-like” region in theus, ag) plane approxi-

mately spanning the interval between the poifis, as) = B. Effective-one-body description of the waveform and
(0, —20) and(as, ag) = (—36,4520). In this work we will radiation reaction
select the valueass = —6.37, ag = -+50 which lie within

this good region (we have checked that the use of other values Let us first recall that the EOB formalism defines the radia-
within the “good BBH fit” region would have no measurable tion reaction from the angular momentum flux computed from
influence on our discussion below). the waveform. Concerning the waveform, in the case of BBH



systems, the EOB formalism replaces the PN-expanded muparameter should be allowed to depend on the mass ratio and
tipolar (metric) waveformhEN by a specifically resummed the compactnesses, in the equal-mass case that we consider
“factorized waveform” [31, 50], say.),, (where the super- here, it is a pure number. We shall use below the comparison
script0 is added to signal the absence of tidal effects). Thishetween NR simulations and EOB predictions to constrain the
tidal-free multipolar wavefornk!, = includes resummed ver- value of the effective higher-order parameter

sions of very high-order PN effects in the phase and the mod-

ulus, and notablyail effects Actually, in the present work, we

have used a factorized waveform which includes in the modu- C. PN-expanded Taylor-T4

lus (but not in the phase) the new (5PN accurate) 0 terms

recently computed in [51]. [As in Ref. [50] we resum the Tidal effects can be accounted for also via modifications
¢ = 2,m = 2 modulus by using the Padé-resummed functionof one of the non-resummed “post-Newtonian” description of
Tz 0) = P3fo2' (x;v)).] We also included ik, the  the dynamics of inspiralling binaries [7, 16, 20]. Ref. [20]
two next-to-quasi- C|rcular parametérs , as) as in Ref. [27].  in particular, has recently suggested to use as baselingea ti
[Since bothM2. 9C. 12 andMB. 2C. 14 are equal-mass bi- domain T4-type incorporation of tidal effects. We recalitth

naries, we fixa; = —0.0439 andas = 1.3077, accordingto  the phasing of the T4 approximant is defined by the following
the EOB/NR comparison (for a BBH equal-mass system) okquations
Ref. [27]].

When considering tidally interacting binary systems, one % — 9,3/2
needs to augment the BBH waveforif},, by tidal contribu- dt ’
tions. Similarly to the additive tidal modification (11) dfe dr 64 5 [ Taylor tidal
A potential, we shall here consider additive modification a5 v {a3 5 (¢)+a (I)} ’ (16)
of the waveform, having the structure

wherea; 2" is the PN expanded expression describing point-

hom = hY,, + hidal, (15)

This is slightly different from the factorized form introded
in Eq. (71) of [21] and used in [1]. The above additive form Taylor( y=1-— (E + Ey> T+ Arg3/?

mass contnbutions, given by

turns out to be more convenient for incorporating highefeor 336 4

relativistic corrections to the tidal waveform. Using tleeent 34103 = 13661 59 5\ o 4159 189 5/2
computation [29] of the 1PN-accurate Blanchet-Damour mass’™ <m T 5016 Y T 1Y ) T (ﬁ + ?V) T
quadrupole_moment [52] of_ a tidally interacting binary gyst {16447322263 1712 56193639 541
(together with the Newtonian-accurate spin quadrupold, an + — T v+ —v

mass octupole), and transforming their symmetric-traee-f 139708800 105 217728 896

tensorial results into oufm-multipolar form, we have com- 5605 5 856

puted the corresponding 1PN-accurate vabfé:tidal aswell  ~ 2592" T 4_8(256 +451v) — 105 1n(16x)}

tion, using the general analysis of tail effects in Refs, B,

and the resummation of tails introduced in Refs. [31, 54], we
were able to further improve the accuracy of these waveform
by incorporating (in a resummed manner) the effect of tall
(to all orders inM). From a PN point of view, this means, in
\?VZ(};L:)I?;; itgit.g;ethgzé\Lﬁ(r)gtter}l.butlon we use to the totakric atldal(I) _ Z aro(X7)z* (1 + a1 (X7)z) (18)

In summary, the EOB tidal model that we use here is analyt-

ically complete at the 1.5 PN level and contains only one (yetvhere
undertermined) higher-order flexibility parameter, nanagl,

(17)

as the OPN-accurate values/gi'®!, niidal andniidal. In addi-
+ (_4032 T 0as U 12

4415 358675 91495 2) R
s

and where:tida! is the tidal contribution. From [29] the latter
Ss given at 1PN accuracy by

I=A,B

taken as common value of the variamg), =1{2,3,4,...} aro(Xy) = 414512T11X1 (19)
in Eqg. (14). Note that though this parameter is formally of I

2PN order, itis used here as effectiveparametrization of all  gng

the higher-order effects not covered by the current aryti

knowledge (both in the conservative dynamics and in the radi a1(X) = 4421 — 12263X + 26502X> — 18508X3. (20)

ation reaction). Note also that, while in the general cash au 336(12 — 11X)

In the particular case when the two stars have equal masses,
X4 =Xp =X =1/2,and same compactness, = Cp =

; i1t tidal
3 We leave a detailed presentation of our results to futuréiet us, how- C, the tidal contribution (I) has the form

ever, mention that, notwithstanding some statements iméde 4 of [29], tidal T 5 T4

the 1PN-accurate (circular) quadrupolar waveform exagtBtches the a (I) =26ry (1 + ay I), (21)
form given in Eq. (71) of [21] (which was expressed in termfefuency-

related gauge-invariant quantities). with a4 = 5203 /4368 ~ 1.19.
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Similarly to the inclusion of yet uncalculated higher-arde

effects in the tidally-augmented EOB formalism via the effe 400
tive parameteti,, we shall consider below agffectivemodi-
fication of the 1PN result (21) of the form 3s0f 200 .
a4l (z) = 26 k125 (1 4 a2 + al*2?), (22) 3007 ~
? 150 N
with an effective higher-order parameter]* that we shall £ =

constrain by comparing NR data to the T4-predicted phasing. =, |

Let us mention that, in the case of inspiralling BBH sys- <
tems, several studies [31, 47, 55] have shown that the nonre- 1o
summed Taylor-T4 description of the GW phasing was signif-
icantly less accurate than the EOB description, espediaily 1oor
mass ratios different from one. Ref. [21] has also shown that

100
0.042 0.044 0.046 0.048 0.05 0.052 0.054 0.056 0.058

in the presence of tidal effects, it was predicting GW phases |~ Log: point-mass e T
that differed by more than a radian with respect to the tidal- L=~ EOB:C =012, ‘ ‘ ‘ L

n N A 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1 0.11 0.12
completed EOB model. Below, we will investigate how the Muw [metric]

T4 phasing based on Eq. (16) differs from the EOB one, both
in the absence (Eqg. (21)), and in the presence (Eq. (22)kof thriG. 3: Exploring the properties @., curves computed within the
higher-order parametes *. EOB model for three binary systems. Tidal interactions @grex-
imated at LO. The insets show a magnification, in order toliggh
the differences among the curves.
IV. CHARACTERIZING THE PHASING: THE Q. (w)
FUNCTION

. . L Stated differently, the functiof,, (w) measures the number
In ord_er to measure the mfluen_cg of tidal effects;t is uQsefuIOf GW cycles spent by the binary system within an octave of
to consider the “phase acceleratiah’= dw/dt = d*¢/dt

: ) - ) the GW frequencyw (it is therefore analogous to the “quality
as a function ofv, sayw = a(w) (herew = wy; can be either 107 ) of 2 damped oscillator). Let us also note that, in the

the curvature or the metric instantaneous GW frequency). INstationary phase approximati ., enters as an amplification
deed, as emphasized in [31], the functigi) is independent ;.o of %/hg. signal?go that thg@squared signal-to-rrl)oim i
of the two “shift ambiguities” that affect the GW phasg), equal to [58]

namely the shifts in time and phase. Te) diagnostics (es-

pecially in its Newton-reduced form,, = a(w)/(c,w'/3) Q. (w) A2(w)
with ¢, = 1221/3y is a useful intrinsic measure of the qual- 2= 4/d1n w W ;
ity of the waveform and it has been used extensively in recent "

analyses of BBHs [47, 54, 56, 57]. where A denotes the amplitude of the time-domain metric
Here we will use another dimensionless measure of th@aveform, and wheres,,(f) denotes the one-sided noise
phase acceleration: the functigh, (w) which is defined as  power spectral density anfl= w/(2m).
the derivative of the (time-domain) phase with respect @ th | view of its definition,Q., is a usefulquantitative indi-
logarithm of the (time-domain) frequency cator of the physics driving the variation af. Indeed, a
P i6/d 9 ) change of),, (w) of the ordert1 during a frequency “octave”
Qu(w) = ¢ _v ¢/dt _ w_ v (23)  In(wz2/wi) = 1 corresponds to a local dephasing (around
dlnw  dw/dt @  aw) of A¢ ~ +1. Because such a dephasing (if it occurs within
the sensitivity band of the detector) can be expected to sig-
nificantly affect the measurability of the signal, it is padiby
necessary to modé),, with an absolute accuracy of abatt
(see Ref. [56] for a quantitative discussion of the admissib

(25)

Note that, as a consequence of this definition, the (time
domain) GW phase.,, .,,) accumulated between frequen-
cies(w1,w2) is given by the following integral:

ws error level onQ),, in the BBH context).
Dwor wa) = Qudlnw. (24) We start our analysis by comparing thk, functions (as
w1 predicted by the EOB formalism) for the (metric) gravitatid

waveformshqs generated by three (equal-mass) binary mod-
els, namely a BBH and the two BNS systems discussed in
Sec. Il A. To simplify the discussion, these functions anmeo

4 We found that the 1.5PN fractional contributia)@/‘ggnf’/2 to atidal(z), puted with the LO tidal interactionié(u) = 1. [We shall

predicted by our 1.5PN-accurate EOB waveform, has (likelfAN con- separately study below the effect of changjcﬁgu).]
tribution) only a small effect on the phasing compared toltinge ampli- Figure 3 compares the properties of e functions b
fication that we shall need to agree with NR data. This is whyowly g_ p prop : . _y
consider here, for simplicity, and for easier comparisotnwie 2PN EOB ~ Showing together the curves for the three binaries versis th

parametefiz, the formally 2PN parameter} *. corresponding GW frequency. A number of remarks are worth
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FIG. 4: Obtaining the),, diagnostic from a suitable fitting procedure of the GW phdseloth curvature and metric waveforms). The two
vertical lines on the left panels indicate the time interdgl/M = [1000, 2290] where we fit the NR phase with Eq. (27). For complete-
ness we also display the real part of the metric waveform. Herright panels, the (light) dashed lines refer to €he obtained by direct
numerical differentiation of the raw data; the solid lines mstead obtained from the fitted phase. Although the cutigplayed here refer to
modelMB. 2C. 14, similar results are obtained also for the bink®. 9C. 12.

making. First,Q,, is a large number that diverges in the fourth order accurate finite differencing algorithm hasrbee
small-frequency limit. This follows from the fact that in used to compute the derivatives. Similar results have been
the limit w — 0 one hasa(w) ~ c,w''/?, and then, via obtained also for the binaiy2. 9C. 12.

Eq. (23),Q. = 1/(c,w®?) ~ (c/v)®. Second, the pres- We see on this Figure that the time-differentiations in-
ence of tidal interactiondecreaseghe “point-mass” value of  volved in the definition o)., (w) amplify very much the high-

Q. by an amount that is (essentially) proportionaktp. In  frequency noise contained in the NR phase evolution, and
other words, tidal effects “accelerate” the inspiral byueidg  make it impossible to extract a reliable value@f (w) from

the number of cycles spent around a given frequency. In paisuch adirect numerical attack. To tackle this problem, one
ticular, BBHs (which have vanishing tidal constants [18])19 needs to filter out the high-frequency numerical errors & th
are effectively the binaries that spend the largest timengt a time-domain phase before effecting any time-differerdrat
given frequency. Finally, note that sin€g, is a large num-  To do this, we found useful to “clean” the phagg) by fit-

ber, the fact that the curves look relatively close on thgdar ting the NR phase to an analytic expression that is modeled on
scale plot can be misleading, since the corresponding accumthe PN expansion. More precisely, after introducing a fdrma
lated relative phase difference can actually be large (s, “coalescence” timé., and defining the quantity

which shows that the absolute differences between theusrio
Q. (w) is of order10, corresponding to integrated dephasings

~1/8
of order10 radians.). } ; (26)

T = [g(tc —t)

Although the calculation of the phase “quality-fact@)is e fitted the time-domain NR phag&®(¢) to an expression
straightforward within the EOB framework, thisis nottheea f the form
when@,, is to be calculated from the NR (either curvature
or metric) waveforms. Indeed, the direct computation of the
Q. functions from raw data is in general made difficult by
the presence of both high-frequency noise{n) and of low-
frequency oscillations probably due to a residual ecceibyri
This is illustrated in the right-panel of Fig. 4, where wewho In this expression, we have set the lower coefficiente,

2 _
O(tite, P2, D3, pa do) = G0 + —— 27"
X (14 poa® + psa® + paz) . (27)

with (light) dashed lines the raw NR,, functions obtained
by direct time-differentiation of the NR curvature (top e8n
or metric phase (bottom panel) for the binafy. 2C. 14. A

topo = 1 andp; = 0, as suggested by the corresponding
lowest-order PN expression (seggEqg. (234) of [59]), but
we leftt., ¢g, and the higher-PN;’s as free coefficients to
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be determined from the NR data. The basic idea is that of
using a simple analytical form that incorporates the legdin
trend of ., to remove the influence of the numerical errors
while leaving some flexibility in the subleading part of the
phase evolution that is influenced by tidal effects. We view
the fitting parameter$p-, ps, p4} as effective parameters for
describing tidal-phasing effects.

Such a fit of the phase evolution can be reliably done only
in a limited time interval. Indeed, one has to cut off both the
early phase of the inspiral (where the numerical data are too
noisy), and the last few cycles before the merger (where the
PN-based fit is no longer a good approximation). We present
in Appendix B a detailed discussion of the optimal choice of
the time interval where to make the fit, as well as a series
of consistency checks. See also the discussion at the end ol
Sec. VB.

Let us start by discussing the application of this procedure A | s ‘ ‘ ‘ ‘
to the GW phase (both curvature and metric) of the binary 500 ) T 2000 2500
modelMB. 2C. 14. The result of this fitting is shown by the
solid lines in the right-panels of Fig. 4 (top, curvature géa
bottom, metric phase). The time interval on which we couldr|G. 5: Comparing waveforms from isentropic (dashed) and-no
reliably apply the fitting procedure i5 /M = [1000,2290].  isentropic (solid) evolution for BNS modéVB. 2C. 14. Wave-
This time window is indicated by the dashed lines in the topforms are computed with the highest resolution and extdaete
left panel of Fig. 4, were we show together the time evolutionvons = 500 M. The corresponding phase differeng im0 —
of both the curvature (dashed, red online) and metric (solid¢"**" is displayed in Fig. 6.

GW frequencies. For completeness, the lower-left pandlef t

same figure translates this information in terms of GW cycles

of the metric waveform. Note that this time interval misses . .

the first 4 GW cycles (whose NR frequency is indeed seen hangeon the _analy'ucal parameteyrepresenting the not-yet-
be quite noisy), but covers about 10 GW cycles, and ends u alculated, high-PN-order tidal effects entering the E@B d
around 2 GW cycles before the merger (i.e. the maximum o cription of th_e pha5|_ng. ) _

the modulus of the metric waveform). [Note that the modulus Ve shall discuss in turn the numerical errors entailed by
of the metric waveform is indicated by a dashed line on thdhree different effects: (i) the choice of EOS (isentropesus
left-bottom panel of the figure]. The corresponding frequen Non-isentropic evolution); (ii) the finiteness of the extran
interval can be visualized on the right panels, and is ligted radlus;_ (iii) the finite of the_ resolution. We_ shall p_erforhls _
the third row of Table I1I. Similar results are obtained alep ~ @nalysis both by comparing waveforms in the time domain

theM2. 9C. 12 data (see Fig. 9 below). In this case, the time@nd Py means of the,, diagnostic.
interval we use i, /M = [1300, 3366], with the correspond-
ing frequencies listed in the tenth row of Table Ill. Notettha

x10°

——Non iséntropic (TF) @500]¥ﬂg ‘ ‘ ‘ ;“‘ |
[ - - -Isentropic (poly) @500M, il

for this model the inspiral is longer than in the previousecas A. Time-domain analysis
and so this interval actually corresponds to 14 GWs cyctes. |
addition, similarly to the other case, our choice of fittimg i 1. Non-isentropic evolutions

terval misses the first 5.5 GW cycles, and ends about 2 GW

cyi\les befo;]e Irlnergerl;) | thouah the f ind As discussed in Sec. Il A, we have evolved the binaries us-
S we shall see below, thoug € frequency win 0Ws’lng either a (isentropic) polytropic EOS or a (non-isenicpp
where our cleaning procedure allowed us to compute an eslgeal-fluid EOS. We recall that, in the absence of largeescal

mate of t?e NtRQ“ (L'LIJI) fl_mctlons do notthverthte futII_lr;splraIt,_ shocks (like those taking place at the merger), the two EOSs
ese estimates will give us access to important intormatio , .o equivalent and should therefore yield evolutions tlifat d

for performing quantitative comparisons with the predint fer only at machine precision. In practice, however, when us

of the EOB (and Taylor T4) analytical models. ing the ideal-fluid EOS small shocks are produced in the very
low-density layers of the stars as these orbit [2]. Thesdlsma
shocks channel some of the orbital kinetic energy into ireer

V. NUMERICAL ERROR-BUDGET energy, leading to small ejections of mattee (~ 10~611),
and are thus responsible for slight differences even duhiag
The aim of this section is to discuss the various errors afinspiral. Since we are here presenting the results of simula

fecting the numerical waveforms extracted (for both modelstions that are considerably longer than any presented so far

at 500 M and computed with the highest resolution. Suchand in particular of those in Refs. [2, 6], it is important to

a discussion will in turn allow us to estimate an uncertaintyquantify the influence of these non-isentropic effects. -Con
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centrating on modeéVB. 2C. 14, we show in the top-panel of
Fig. 5 the real parts of they3? waveforms computed with
the two EOSs as extracted af,s = 500Ms5 = 165.1M.

The bottom panel displays the corresponding instantaneous,|
frequencies for completeness. As customary in comparing
waveforms in the time domain, one allows for arbitrary rel- .|
ative time and phase shiffs, «). These quantities can be

T

: M3.2C.14
|
|
)
|
{
i
|
ne and ph |
determined in various ways, for example by means of the two- o !
j
!
|
|
I
!
|
|
:
!
|
|
j

frequency pinching technique of Ref. [60]. In this paper we
find it useful to use the method used in Ref.[55] to compute 2-
(1, ). More precisely, given two numerical phase time series
{#1(t:), 92(t;)} defined on a given time intervél,, t | that ar
is covered byV numerical pointg;, withi = 1,2,..., N, we
define the quantity

|
— — —IF: Radius extrapolated
—1IF xtrapolated @200 M

Ag(ti, 7, ) = gt +7) — P1(t;) — (28) T ‘

t/M

- - Po Mg
~ — ~Poly: radius extrapolated
| h

and determine anda such that they minimize the “reduced”
x? quantity

0.2

N
1

~2 ) 2
X = 2 (Ad(ti 7)) (29) e

i=1 .9C.
The minimization ony is done analytically, while that onis
done numerically. Note in addition that the square root ef th
minimum value of Eq. (29), say

|
|
|
|
|
|
|
:l:“

N 05+

_ 1 2
OAp = N E (A¢(tiv7—v a))min (30)
=1

~~~~~~~~

has the meaning of a root-mean-square deviation of the phase
differenceA¢ over the intervalt,, t]; as such, it can also
be employed to give a quantitative measure of a phase dif-
ference (and thereby of some phase errorghe phase dif-
ferenCeA(b(t) = ¢2 (t) - ¢1 (t) = ¢pOIYHR500 - ¢IFHR5OO 0"0 500 10‘00 1500 2000 2500 30‘00 3500
(least-square minimized on the time interVal, tg]/M = t/M
[300,2540]) is represented as a dash-dotted line (solid light
blue) in Fig. 6. One sees that the instantaneous phase-diffefIG. 6: Estimate of the phase uncertainty in the time domain f
ence varies roughly between +0.2 rad and -0.1 rad on this tim@odelVB. 2C. 14 (top) andV2. 9C. 12 (bottom). The figure shows
interval, which corresponds to a two-sided phase unceytain the phase difference between different “post-processedienical
of the orderA¢ = +0.15 rad. The information of Fig. 6 is curvature wav_eform%_z/u (in particular, extr_apolatgd in resolution
completed by Table II, where we list both t# norm of the and/or extraction radius) and the one obtained with the IISB@d

) extracted atons = 500 Mg .
phase difference, labellefA¢||>°, and the root-mean-square
oas as computed above [as well as the corresponding time
interval [t1,, tr] that is used to computéy, 7)]. Note that
oag gives a measure of the phase difference which is alwaygme variation ofA¢(t) is dominated by low-frequency ef-
significantly smaller than thé> norm (i.e. the maximum fects (which can be roughly modelled as power laws), the av-
absolute value oR\¢(1)). Indeed, these two quantities mea- eraging involved in the definition afa,, will lead to a small-
sure different aspects of a phase difference, and, when thgp, ratio oas/l|A¢||* < 1 linked to integrals of the type

fydtt>™ =1/(2n+1).

5 We note in passing that the alignment procedure also higfslithe weak
dependence on the EOS of the late part of the waveform: ajthobe 2. Finite-radius extraction
inspiral of the non-isentropic waveform is abali0M longer than the
corresponding isentropic one, the growth\dtu22 (and the corresponding . . .
phasing) is qualitatively and quantitatively very closelioth models until We next discuss the phasing error introduced by the fact

Muwaz peaks for the first time. that our high-resolution target waveforms, for both models
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. . ) ) 3. Finite-resolution error
TABLE II: Uncertainty estimates on the phase (in radiansy$,,

computed in the time domain, for both BNS models. From left to . . . .
right, the columns report: the EOS, the coordinate extaatadius, Finite-resolution errors have already been discussed-in de

the type of extrapolation that is performed on the wavefaithéerin il in our previous work [6], which used the same numeri-
extraction radius or resolution), the time interval on whibey” of ~ cal setupi(e. the same resolution and grid structure) adopted
the phase difference is minimized, ti€ norm of the phase differ- here. Skipping the details, we recall that it was shown there
ence over this interval, the root-mean-square of the phiffeeesice.  that, at the resolution that we are using in this work, the dy-
namics and waveforms are in the convergence regime, with
MB. 2C. 14 a convergence rate that is~ 1.8 during the inspiral phase
and drops to~ 1.2 after the merger and when large-scale

ECS robs Extrap?Iat|on ltr,tr]  [|AB|”  oae shocks appear. As the computational cost of the calcukation
IF @500 Mo radius  [400,2650]  0.17  0.035  nyresented here is already at the limit of what can be reason-
IF @200Mo  resolution [400,2650] 1.29 031  aply afforded, we have decided to estimate the truncation-
poly @500 Mg [300,2540] 0.21  0.057  error of our present waveform by assuming that the inspiral
poly @500 Mg radius [300,2550]  0.43 0.08 convergence rate ~ 1.8 found in our previous work [6] ap-

M. 9C. 12 proximately holds in the present (numerically similar) esas
EOS 7o Extrapolation [tz,tr]  ||AG|®  oas and by using only two simulations, which we have performed

for the more compact binanyB. 2C. 14. More specifically,

we have considered a “high-resolution” simulation, where
the finest refinement level has a resolutitp = 0.12 M,

and a “low-resolution” simulation, wittAy, = 0.15 Mg,

For this particular comparison the waveforms are extracted
at rops = 200 Mg. When comparing the low and high-
resolution curvature waveforms, after suitalfte «) align-
ment, one discovers that the phase difference accumulated b
tween the two resolutions over 2300M of the inspiral, is
about0.45 rad (corresponding to a relative erroref0.36%).
Using the convergence rate measured in [6], we can now

IF @500 M, radius [250, 3650] 0.31  0.035

are extracted at the finite coordinate radiys, = 500 M.
Note that, when expressed in units of the gravitational méss
g ;he bf]ag 4a£t)]|\r/}f|?c;trelvsl2ep§ Cr:atllc;ﬂi,n?;s vaIEelzcgrrﬁjp%r;ds Richardson-extrapolate the results obtained with the &ge r
VB OSSC_14 i 'e for one 'mod'el waves oa};Se gctualiy extractedomtions and obtain an estimate of the “infinite-resolution
slightly farther than for the other. For both models we have a}’é’)?v\{e;?][jn;{i M?éioﬁt?igﬁeIf)]/'agveee?o(ﬁtei(!_):]zeassuItab ly aligned,
our disposal several extraction radii, so that we can estima 9 P

Ithe ph?)si\r/\\? errordlir;]ked to1/t)r212e (fjinite extracti%n radité; ds fo ba, (1) = ¢o(t) + E(t)AT, (31)
ows: (i) We used the raw;* data extracted at radii = 1) = bo(t) - k(H)AZ 32
{400, 450, 500} My; (ii) We time-shifted them so that this 92:(1) (bo(.) o (t)Az, _ (32)
triplet of time series is expressed as a function of the (@ieor Where ¢o(t) represents the infinite-resolution phask -
nate) retarded time = t —r—2Mapy In [r/(2Mapy) — 1; AO_: 0). From t_he_a_bove equa_mons, we obtz_;un the following
(iii) We separated each curvature waveform in phase and angstimate of the infinite-resolution extrapolation of theapé
plitude as functions of;; (iv) We fitted each resulting triplet evolution

of time series to a linear polynomial in the triplet of invers AZPn, (t) — AT P, (t

extraction radii: ¢>(u) + ¢ (u)/r. The quantities:™ (u) do(t) = == i(z — A‘l’ Uy (33)

(i.e. A(u) and ¢>(u)) yield estimates of the amplitude >0

and phase of the infinite-radius extrapolationof. We then We performed the same extrapolation also on the waveform

compare the radius-extrapolated pha¥gu) to the phase ex- modulus, so to have access to the complete extrapolated cur-
tracted at the outermost radius, allowing for additionaleti ~ vature waveform. The solid line in Fig. 6 displays the phase
and phase shifts (which are determined by the least-squaftifference¢i >0 — ¢!"1=500, This indicates a phase uncer-
minimization discussed above). tainty of A¢ ~ +0.5 radians ong'Fu=>00 a5 measured up

to aboutl00M before the maximum of/ws>. See Table Il

for the corresponding global measute&¢||>, oae, of the

The time evolution of the phase differences computed irphase uncertainty. Note that these uncertainty estimages a

this way are shown in Fig. 6 for modeB. 2C. 14 (top panel, much larger than that normally computed for binary black-
dash-line) and fohR. 9C. 12 (bottom panel). This local in- hole simulations for the same computational costs (see, for
formation is completed by the “global” quantitative infaam instance, [61]). It is, however, the natural consequence of
tion (||A¢||>°, oae) listed in the fifth and last row of Table II.  the smaller resolution employable here and of the loweeiword
On the basis of this analysis, we estimate that, for both modeonvergence that is possible to achieve when solving the hy-
els, the phase uncertainty due to to finite extraction isdéor drodynamics equations. Since this error is dedwardy after
A¢ =~ £0.05 rad almost up to merger, say aba00 M before  assuming certain convergence order (obtained within a sim-
the peak of the GW frequency. ilar numerical setup), it must be used with a grain of saltl an



13

220° - — —IFgr: @500Mg , 4l 1
% - - , M3.2C.14
——1IF: @200M¢. Resolution extrapolated
L 4 3F 4
200 --—IFygr: Radius extrapolated -
_ -~ ~Polynr @500M; 2 1
@ 180F &
; ~ — Polynr: Radius extrapolated L’f
=3 1
g 160 @
= I
; <3 0
_© 1400 < -
3 ([ >4<//>,,//7>""7/
& 3 T
120 o S
A et
1001 737/”’ e mmm e T T T T
M3.2C.14 R
8ot o o
0.045 0.05 0.055 0.06 0.065 0.07 0.046 0.048 0.05 0.052 0.054 0.056 0.058 0.06 0.062 0.064 0.066
Muw [curvature] Muw [curvature]

FIG. 7: Left panel: span of).,’s due to the various approximations to the curvature wawve$ofrom modelVB. 2C. 14. Right panel: the
corresponding differences@., = QX — QL 1R petween the various curves and the fiducial one obtainedtherphase computed at the
highest resolution and extracted>a0 M .

TABLE IlI: Uncertainty estimates on theys phase of théFur500 fiducial simulations obtained from integration of the diéfeces between
Q.'s. From left to right the columns report: the EOS, the cooatl extraction radius, the type of extrapolation that i$gomed on the
waveform, the frequency intervdl, where the cleaning procedure is applied, the corresportdimginterval . /M, the accumulated phase
differenceAg¢y, = ¢~ — ¢ 1R on acommorfrequency intervals, the number of GW cycles on the same frequency interval amd th
relative phase diﬁeren@ = Aoy, /Py, We choose the common interval of integration tdpe= [0.045, 0.067] for modelVB. 2C. 14
andIg = [0.037, 0.054] for modelM2. 9C. 12.

MB. 2C. 14
Data Tobs Extrapolation L, I,/M Agy, [rad] Dy, /(27) A/cm\,4 (%]
IF @500 Mo, .. [0.041, 0.068] [1000, 2290] .. 9.14 ...
IF @500 Mo radius [0.044, 0.069] [1000, 2130] -0.39 8.99 -1.61
IF @200 M, resolution [0.046, 0.072] [1000, 2145] 1.28 9.34 2.24
poly @500 M, . [0.041, 0.069] [1000, 2290] -0.92 9.07 -0.69
poly @500 M radius [0.044,0.072] [1000, 2030] -1.24 8.94 -2.16
M2. 9C. 12
EOS Tobs Extrapolation L, I,/M Agy, [rad] Dy, [ (27) A/gh; (%]
IF @500 M, e [0.036, 0.058] [1300, 3366] e 13.02 e
IF @500 M, radius [0.037,0.054] [1300, 3070] -0.18 13.00 -0.2

we will use it below only to estimate a rough uncertainty ng olution, andoa s ~ £0.32 rad when including it. Clearly the

on the value of the higher-order EOB tidal correction param+esolution-extrapolation error is dominating the erroddet.

etera,. We shall comment more on this in the next sections. In view of the uncertainty in estimating this source of error

we shall not directly use these time-domain phase-errer lev

One possible strategy at this stage would be to add toels in estimating the uncertainties in the comparison betwe

gether, in quadrature, the various uncertainties compstted the EOB, T4, and NR phasings. As we shall discuss next, we

far to obtain a total error bar on the phases of tigr500  prefer to express the information gathered above on nualeric

data for theM3. 2C. 14 model. This procedure would then errors in terms of the correspondify, curves.

give a (two-sided) time-domain phase uncertaidty -~

v/0.15%2 +0.052 ~ =+0.16 rad, when excluding the uncer-

tainty due to the finiteness of the resolution, A ~

V0.152 1 0.052 + 0.52 ~ +0.52 rad when including it. Al- B. Q. analysis
ternatively, if we add in quadrature the root-mean-squafes
the corresponding phase errors we fing, ~ =+0.07 rad, In Sec. IV we have introduced,, = w?/w as a convenient,

when excluding the uncertainty due to the finiteness of the re intrinsic diagnostics to describe the phasing of the wavefo
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1 that can be compared to our previous time-domain resuts (i.
. --n=6 | Fig. 6). The result of this integration is given in the fifthl-co
N M2.9C.12 ] umn of Table Ill. Note that thé\¢,,, computed in this way
A is typically significantly larger than what was estimatedwad
in the time domain. For instance, regarding the comparison
with the resolution extrapolated waveform, t9g-based pro-
cedure indicates a phase difference of about 1.3 rad Gver
. ] by contrast, inspecting Fig. 6, where the vertical (redheds
] line correspond td;, in the time-domain, we read from the
. plot an accumulated phase difference on this interval ofiabo
2% 0 B O e feumvature] 0.8 rad, i.e. about0% smaller. Similar results hold for the
‘ ‘ ‘ ‘ ‘ other phase comparisons. This increase in the estimatee pha
20N = errors is probably due to the additional uncertainty braigh
AN M3.2C.14 ] the necessity to use a phase-cleaning procedure to compute
’ eachQX (w) (see below). This is the price we have to pay to
be able to have the convenience ofiatrinsic diagnostic of
the phase evolution.
A separate discussion is needed when comparing isentropic
and non-isentropi@),, curves. Figure 7 indicates that the
e curve corresponding to the ideal-fluid EOS is “pushed up”
‘ ‘ ‘ ‘ T with respect to the polytropic one, indicating then that the
0.045 0.05 0.055 0.06 0.065 . . . .
Muw [curvature] tidal interaction appearseakerin the former case than the
latter (because the IF curve is closer to the point-mass one

FIG. 8: Sensitivity of theQ., to the phase model used in the fitting than the polytropic one, see below). This effect, during the

procedure. Note that the = 4 andn = 6 curves are barely distin- INSPiral, is likely due to the small shocks that are formed by
guishable on the plot. See text for further explanations. the interaction between the outer layer of the stars and the

external atmosphere. The polytropic EOS should yield a pri-
ori a more accurate evolution during the inspiral, when the
stars are far apart, but should become progressively imatu
and inconsistent when the two stars become closer and closer
with mass shedding and the formation of actual shocks tleat ar
ot simply due to the weak interaction with the atmosphere.
his discussion is meant to warn us that, if it is true that the
non-isentropia),,’s are probably slightly too high because of
the influence of the atmosphere, the corresponding poligtrop
nes are probably too low because of the intrinsic inconsis-
ency in the polytropic EOS when the stars get closer and
closeP. For this reason we shall not use the isentrapigs
as a lower bound in our analysis, but we shall focus only on

that were selected to apply the cleaning procedure. For-a be{gon?s?rr:troplc evoll.:cuons, tho;}gh keeping in mind thatehe
ter quantitative assessment of the differences betweef the IS a further source ot error on them.

curves, we present in the right panel of the figure the quantit A natural question that comes at this stage is: what is the
AQX (w) = QX (w) — QIFur500(y) where the labellingy ~ ©Or barog,, on the@, (w) function that is due to the phase-

indicates any other curve than our fidudiBkr 500 one. Al-  cleaning (i.e. phase-fitting) procedure? A partial way of ad
though the information conveyed by this figure is qualitiijv dressing to thls.|ssue is to measure the quantitative edffiect
analogous to the time-domain analysis, Fig. 6, it is made her@w(w) of changing our fiducial fitting function, Eq. (27). Fo-
both more intrinsic (i.e. independent of any phase-alignme €USsing, for both models, only on our basit;r500 data,
procedure), and quantitatively sharper. First of all, tige fi W& computed the cleaned frequency using, besides our fidu-
ure shows that the extrapolations in radius and in resalutio €8l 7 = 4 fitting polynomial, Eq. (27), both a shorter poly-
act in different directions: the first pushes the curve dowr’0Mial, truncated ab = 3, and a longer one, extended up
(i.e., less GW cycles accumulated on a given frequency-intefl® 7 = 6.” The results of these computations are displayed in
val, tidal effects look stronger), while the second pusihes t

curve up (i.e., more GW cycles accumulated and tidal effects—

look weaker). This result is qualitatively compatible witte

correspondingw curves in Fig. 6, whose slopes have oppo- 6 Remember that we obtain the curves out of a global fit, so treatdaw-

. . L. . . frequency and high-frequency behavior are actually caieel
site signs. In addition, by Integrating OVhr(w) the AQ., 7 Note thatn = 5 is not meaningful as the correspondipgterm is exactly

curves on th@ommlorfrequency interval; = [0.045,0.067] degenerate witkpo. (The use of:® In z does not help, as the correspond-
one obtains an estimate of an actual accumulated phase erroing term is nearly degenerate with.)

Q. [curvature]
B e e e
5 & B B
L —2 2 =

H
5
=

In particular, it allows us to better visualize the influerafe
tidal effects on the phasing as well to quantitatively cotepu
the intrinsically defined dephasing accumulated on a give
frequency interval. It is then useful to recast the varidmet
domain phase uncertainties on the high-resolution wawefor
extracted a500 M, discussed above, in terms@f,. In prac-
tice, we apply the cleaning procedure on each waveform o
Table Il so as to obtain fou),, curves. These curves are
displayed together in the left panel of Fig. 7, while thedhir
column of Table Il lists the specific frequency intervdls
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450

Fig. 8 formodeMR. 9C. 12 (top panel) and/B. 2C. 14 (bot- —_EOB: point-mass
tom). The results are qualitatively analogous in both cases | - EOB: Q)
First, we see that the low polynomial order= 3 is clearly

too small, and fails to capture (when comparing it to the PN s
- or EOB - curves which are accurate on the low-frequency
side) the low-frequency behaviour €f, (w). By contrast, the 300¢
fact that then = 6 curve is barely distinguishable (on the
scale of the figure) from the = 4 one, is an indication of a

sort of “convergence” of our fitting procedure as the number %mf

o
=
= 2501
5}

of ™ powers is increased. We can therefore usalifierence <
betweenQ”=%(w) andQ"=*(w) as an estimate of the uncer- 150
tainty o, (w) entailed by the cleaning procedure. Computing

this difference, we find that it remains of order unity all ove 1001

the fitting frequency interval,,. More precisely, we estimate
that the error level due to the cleaningig, = +£0.5. Note
that this error level is rather small compared to the varinus . ‘ ‘ ‘ ‘ ‘
merical errors o), (w) displayed in Figure 7, but it may be 003 004 005 Mo i’;fetric] 007 008 009
only a lower bound o, as we have not investigated in de- o

tail other sources of uncertainty associated with our étean
procedure.

50

FIG. 9: Subtraction of tidal effects: shown as a solid linthespoint-
mass EOB curve, while shown as a dashed line isgfiecurve ob-
tained by inserting in Eq. (35) the tidally-modified E@B, curves
shown in Fig. 3.
VI. COMPARISON OF ANALYTICAL AND

NUMERICAL-RELATIVITY RESULTS

A. Characterizingtidal effectsfrom NR simulations ) ]
estimate the two separate functigp$(w) and@? (w) as

Before proceeding with the NR/AR comparison it is useful
to discuss a procedure by means of which it is possible to ef- T’ T’
fectively subtract the tidal interaction from the NRR, curves 0 (w) = (r3 ) 1Qu(w; J) — (K3 ) s Qu(w; I) (35)
obtained so far. This procedure will then allow us to obtain (k3)r = (k1) '
a phase diagnosti@® that, within some approximation, rep- ) Qu(w;I) — Qu(w; J)
resents a non-tidally interacting binary, namely a binafry o Quw) = D)7 — kD),
two point-particles. As pointed out in Ref. [21], the bindin 20
energy of a binary systerfi,(Q2) is approximately linear in

kT an_d.it is t.herefore possib_le to subtract the tidal eff(_acts bYrom the decomposition (34), we see that, by definition, the
combining d|ff(_erent sets of_blndlng—energy curves coming o functionQ® denotes the)., diagnostic of two non-tidally in-
of NR calculations. In particular, Ref. [21] computed seer teracting neutron stars, namely of two point-like (reliatic)

‘tidal-free” binding energy curves (one curve for each COM-aqqes (and also two black holes [18, 19]). Hence, the func-
bination of two different data sets) that were compared with; - 02 (w) is seen to represent, within the present approxi-

the corresponding point-mass curve computed within the EOR, tion the effect of the tidal interaction on thie, function.
approach or within non-resummed PN theory. This procedurgpg ca|cyation of both functions contains therefore impor
allowed both for the identification (and thus subtractioh) 0 (ot information about the analytical representationdslty-
systematic uncertainties in the NR data, and for the disgove interacting binary systems. In the following we shall onig-d

of higher-order tidal amplification effects. cuss the computation of the tidal-free p@4 (w), leaving a

Here we shall generalize the approach introduced inyiscyssion of the properties G (w) to a future publication.
Ref. [21] to theQ,, curve. In particular we assume that the

functionQ,,(w) is approximately linear in the (leading) tidal ~ This subtraction procedure for computiidf,(w) can be
parameter?’, at least during part of the inspiral, say up to first tested by using the EOB metric waveforms computed
some maximum frequeney,,., (we will usewy.x ~ 0.07). from binaries with compactnessés= 0.12 andC = 0.14.
As a result of this assumption, we can approximately writeThe result of the subtraction is displayed in Fig. 9, where we
Q. (w), for each binary, as compare the point-mass (i.e. BBH) EQB, curve (solid
line), to the@® curve (dashed line) obtained by inserting in
Qu(w; ) = Q%(w) + (k7)1 Q% (w) + O ((k3)?), (34) EQq.(35)theC = 0.12andC = 0.14 data of Fig. 3. The fact
that the curves are barely distinguishable up\fay = 0.07
wherel! is an index labelling some binary system. As a con-(where the difference iAQ, ~ 1) gives us confidence that
sequence of this structure, given t@e, diagnostics of two the procedure will be effective also with actual NR data.sThi
different binaries with label$I, .J), we can (approximately) will indeed be shown in the next Section.

(36)
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003 oy oois 003 e Y 06 FIG. 11: Comparison of the EO., curves for different choices of
Mw [curvature] the effective tidal amplification factod 59! (u) = 1+ ayu + asu?,
with the corresponding NR ones (dashed lines with openesijcl
FIG. 10: Subtraction of tidal effects from numerical refati for the two binaries considered. The dotted line correspdndhe
(curvature)Q., curves according to Eq. (35). Note the excellent ‘tidal free” (or “point-mass”) EOB, namely, when ignoringdal
agreement with the point-mass EOB curve in the frequency win ffects. The figure also includes the tidal-free Taylor-Tédel.
dow whereM2. 9C. 12 andMB. 2C. 14 data overlap. The relative The good visual agreement between the analytic and the maher

EOB-NR phase difference accumulated over this overlapiatés curves foraz = 100 provides evidence of the need for large NNLO
AquOBNR = —0.03 rad. tidal corrections. The corresponding phase differentes,, =
4

PO — pNE are listed in Table IV.

B. Inspiral: subtractingtidal effectsfrom NR data

(cf. Fig. 9), that the NR tidal effects are approximately linear
in k1" atleast in the early p&rbf the waveform, and thus that
they can be efficiently subtracted. Third, it illustrates fhct
that the tidal interaction between the two objects is imgutrt

For all the comparisons carried out here we have limited Ouralready in the early-inspiral part of the waveform, sincéhbo
selves to using the curvature waveforms, although simdar r - T :
g g theM2. 9C. 12 andMB. 2C. 14 curves are significantly dis-

sults can be obtained from the corresponding metric wave=- . .
forms P g placed (byAQ. ~ 10) with respect to the point-mass one.

The results are shown in Fig. 10, which reports four differ—lF?.urtF’ sudchl a gh(?or? agretemegt with tttwe point-r?a}ss EOBdana-
entq),, curves: the two tidally-modified NB),, curves for the ﬁ'ca m<|) e (WB'EHwas. lljdne S.O(?S 0 '.itjccurahe ykrefprho uce
binariesM2. 9C. 12 andMB. 2C. 14 (with the asterisks and the equal-mass s) yields an independent check of the con-

triangles highlighting a sample of the data on the commorsistency and accuracy of our numerical simulations. Fmnall

frequency window), the subtracted curve (with empty V& note thatin Ref. [2.1] the procedure Qf _subtraction, fﬂ_mb"
cirgles), gnd the p)oint-mass-E%Pg% a soli(§ line). TF;uys there to the NR binding energy, was giving a curve slightly

figure illustrates at once several of the central resultisf t dls_plac_:ed with respect to the point-mass .EOB (or PN) curve.
paper. First of all, it highlights the excellent agreemeet b This displacement was interpreted as evidence of systemati

tween the cleaned NR? and the analytical EOB onef( the er‘fors in the ,l'\lR simulation a_nd prompteo_l the introduction of
red solid curve and the empty circles). This gives evidenc correcting” procedure, which however is not necessary fo
both for the validity of the EOB description, and for the ro- he present NR data.

bustness of our cleaning procedure. When we compute the

relative phase difference over the common frequency inter-

val é%gﬁ%{ 0'055};’0\};\@ obl\t%in the remarkably -Sma” value of 22 and of the cleaning of the phase, we carried out the samelatém
A¢w4 =¢ — ¢ = —0.03 rad, which translates aléo for the metric waveform, finding a differencepZOBNE = 10.05
into a relative diﬁerenceﬁgbg?BNR/ng?BNR = 0.02% 8. rad, which is consistent with the estimated error-bay = 4-0.02 rad on

Second, it confirms, independently of our EOB-based check the EOBNR point-mass waveform during inspiral [27].
91n the following, we shall refer to the frequency domaifiu < 0.06 as
the “early-inspiral”. Note that for a fiducial.4 M + 1.4 M system
Mw = 0.06 corresponds tdgw = 690 Hz. Note also that in the case,
for instance, of ou€ = 0.14 system the frequency/w = 0.06 is reached

8 To cross-check the consistency of both the recovery proesafihoo from at timet ~ 2000M, i.e. only about5 GW cycles before merger.

We start our NR/AR comparison by computifrgm ac-
tual NR datathe Q° function, as defined by Eq. (35) (using
our two modeld$vR. 9C. 12 andMB. 2C. 14 asl, J binaries).



17

220

—r az‘gg%;[mhm. extrapolated waveform, and radiation reaction, that we use here is $ight
== —1lgr @00M

A\ ,’,’,Eggim.ﬁ?@iﬂo ] different with respect to the one of [1], which was based on

N\ RORNNLO! 4, 2100 Ref. [21] and thus did not incorporate the waveform 1PN cor-
rections [29], nor the tail effects. This explains why in [1]
we were quoting, forn, = 130, different phase differences
(A;@POBNR ~ 0.1 rad) over the same interval. However, we
prefer here the smaller value, = 100 because the corre-
sponding@,, curve is, on average, closer to the NR one on
thelarger frequency interval = [0.041,0.068] on which we
succeeded to clean the NR phase.

At this stage, one should remember that, in the previous
Section, we have shown that various numerical errors af-
fect the computation of the N, curves, and thereby af-
fect the quantitative determination of the effective NNL& p
rametera,. For example, we have seen that the resolution-
sop ‘ ‘ ‘ 1 extrapolation (which seemed to be the dominant source of

. o Mo [ourvature] oo o uncertainty) has the practical effect of pushing the nucaéri
Q., curveupwards This suggests that the valag ~ 100
FIG. 12: Magnitude of NNLO tidal effects: span of E@B, curves ~ Obtained from using finite-resolution NR data is too large.
(red) varyinga: so to be compatible with the various (numerical) To have a rough idea of the error range ap entailed
Q. curves (black). by using finite-resolution NR data, we compare in Fig. 12
various NR and EOB curves. More precisely, this figure
shows two numerical),, curves (black): (1) the one derived
from our fiducial highest-resolution and largest-exti@eti

C. Earlyinspiral: evidencefor large NNLO tidal effects radiusIFyg 500, and (2) the one derived from the resolution-
extrapolated NR data (as discussed above); as well as three
analytical curves (red): namely the EOB predictions for the
three valuesa, = 0,40,100. We see on this figure that
the resolution-extrapolatégd,, curve is close to the analytical
curve corresponding to the valag ~ 40, which is more than
twice smaller than the valug, ~ 100 suggested by our fidu-

180
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Q. |curvature|
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We continue our analysis by focussing on the influence o
LO tidal effects on the early-frequency part @f, curves.
We already know from Fig. 10 that tidal effects are impor-
tant in such early-frequency part of the simulations, siwvee
found a significant difference (of ordéd) between the point- ™" ) : >n X
mass curve and the NR ones. Can these differences be df@: highest-resolution NR data. Itis interesting to nibiat
counted just by the LO tidal effects? Figure 11 shows quité"'€ Valuéxz ~ 40 agrees with the preferred valuewf (when
clearly that this is not the case and that the LO descrigtion YSIN9a1 = 1.25) found in the work [21] that found the first
not sufficiento match the corresponding NR curves (dashecfvidence for the need of large NNLO effects. Let us also note
line with open circles). Note that this is the case for both th that, independently of the precise valuengf Fig. 12 clearly
M2. 9C. 12 (upper panel) and theB. 2C. 14 binaries (lower shows the need for large NNLO effects, namely> 40. )
panel). The difference with NR data (on the frequency irgkrv Let us also recall that the other (probably subdominant)

I where theVR. 9C. 12 andMB. 2C. 14 simulations overlap, SOUrces of numerical error act in various directions. Fer in
I = [0.043,0.057)) is quantified in the first line of Table Iv Stance, non-isentropic effects actually act so as to effeyt
and is rather large, namely several radians. reduce the magnitude of the tidal interactiyrwhile the ex-

We next turn to analyzing the effect of NLO and NNLO trapo lation to infinite extraction radlps actsin the pptmdl—
o ; rection, namely effectively increasing the magnitude @ th
tidal interactions. Here, we shall regroup under the lalbel o

NLO both 1PN and 1.5PN effects. As seen on Figure 11?Id2|tltnht§raglsoenn.t stage, in view of our incomplete knowledge

the inclusion of the NLO tidal effectsi = 1.25 [21], 1PN of all the?sources ofger’ror intervening in ourFl)\lR Waveformgs

tidal-radiation effects [29], and 1.5PN tail effects) hadyca . ) 9! '
we cannot zoom in on a precise valuenef The best we can

barely noticeable effect on th@,, curve. This clearly indi- do is to estimate a rough range for. From the various com-
cates the need for large NNLO (2PN and higher) tidal effects 9 9 '

: : arisons we did (including some that we do not discuss here in
that we chose to parametrize by means of the effective paranriJ- . e . .
eteray introduced in Eq. (14). We then found that choosingdeta")’ we think it probable that, is approximately between

: < dg < ' '
0k goomtch bewecn hs R ans £05 1 72 = 11, i ndersiandingnt e o e
curves (solid line, EOBNLO), especially for thd/B. 2C. 14, 2 P P P

for which the analytical curve is on top of the NR data. See

also Table IV for the corresponding phase differences. The

Table also indicates that if we ugse = 130, as we did in |/ _ _ , .

Ref [1] the accumulated dephasing on the frequency iaterv Indeed the non-isentropi@., curve is also pushed up with respect to the
: ! . p 9 . a y ) isentropic one. This is certainly a source of error durirgyéhrly-inspiral,

I = 10.043,0.057] is further reduqed toa fraCt!On of aradian  \here the isentropic description is a priori more accutaiésome energy

for both models. Note that the implementation of the EOB s channelled by shocks due to the interaction with the apinere.



18

a better representation of our fiducial NR data, especially i
waveforms and analytic ones (from both EOB and Taylor T4 mod- view of the large uncertainties discussed above on the lactua

els). The phase differences are computed on the frequetewanh value of the@,, (w) functions. On the qther han_d. we con-
I = [0.043,0.057) common to bothQ., numerical curves. From left sider that the need of a much larger tidal-amplification fac-

to right, the columns report: the type of analytical modeé mag-  tor in the T4 case is an indication that the analytical mod-
nitude of the effective parameters; yielding NNLO tidalremtions; ~ €lling of (LO, NLO and NNLO) tidal effects within the EOB-
and the dephasingd¢,, = ¢~ — ¢ (with X being either EOB  resummed framework might be more robust than the corre-
or T4) for bothM2. 9C. 12 andMB. 2C. 14 data obtained by direct sponding one based on Taylor-expanded approximants. In-
integration of the correspondir@..'s of Figs. 11 and 13 ovef. deed, in both cases the parametrization of NNLO effects in-
volves multiplying tidal effects by a factor having a simi-

TABLE IV: Measuring the phase difference between NR (curke)

Model NNLO params A¢':**2 [rad] A2 [rad] Iardsltructure Atldal(EOB)( )T4 21 + dgl)u.—i-— dy)u2 versus
EOBL0 G — 0 504 174 _“ aly) = 1+ ai*r + ad In addition, the quanti-

NLO - tiesu andz are numencally close to each other (both being
EOB Gz =0 4.62 1.58 iyttt ot

NNLO o 100 106 017 close to(Mw/2) ~ v /c*). At the end of the inspiral,
EOBNNLO @z = ' : Muw reaches numerical values of ordet (i.e. 1154 Hz for
EOB a2 = 130 0.056 -0.25 a fiducial BNS system), corresponding@o~ z ~ 0.136.
T4-© az'=0 6.64 2.33 For such a value one sees that the EOB amplification fac-
T4NLO a3t =0 6.42 2.25 tor (with @z = 100) remains relatively moderate namely
TANNLO Tt — 350 153 0.15 ALRIEOB) () — 141950+ 100u? ~ 1 +0.17 + 1.85 ~ 3,

while the T4 one (withad* = 350) gets suspiciously large,
and is completely dominated by the last, 2PN contribution,
namelyatida!(u) = 1+ 1.192 + 35022 = 1 + 0.16 + 6.47 =
the truncation error in the numerical simulations. More nu-7.63. Another way to phrase this is to notice that the large
merical simulations with a more detailed estimate of the nuT4 valuea3* = 350 is such that the 2PN contributiar 2>
merical error budget will be needed in the future to redu th starts dominating the LO term at= 1/1/350 ~ 1/18.7, i.e.
error range ofavs. at large separations ~ 18.7M corresponding to rather low
Let us conclude this section by briefly discussing the comfrequencies\/w = 22%/2 = 0.025, i.e. 285 Hz for a fiducial
parison between the NR,, diagnostics with those obtained BNS system. However, in view of the large current uncertain-
using several versions of the Taylor-T4 approximant. Moreties on th&),, NR curve, more work will be needed to confirm
precisely, Fig. 13 displays the followin@,, curves: the tidal- this provisional conclusion. In particular, more accurdi
free T4 model T'Y, upper dashed line), the LO Taylor-T4 simulations, encompassing more compactnesses and differe
model (dashed-line), the NLO (i.e. 1PN) one (dash-dottednass ratios will be needed to assess the relative meriteof th
line), and finally the effective NNLO one (solid line), asrit =~ EOB versus the Taylor-T4 description of tidally interagtin
duced in Sec. Il C above. Let us recall that the NNLO modelBNS systems.
contains an effective 2PN parameter, caltdd, which is a
rough T4 analog of the NNLO EOB parametey, and which
enters the T4 tidal amplification factor Eq. (22). Similatdy
the EOB case, one finds that a suitably large value of the ef-
fective 2PN tidal parameter} , is able to provide curves that
are close to the numerical ones. The integrated dephasingsSo far our NR/AR comparison based on the frequency-
»T* — ¢FOB corresponding to Fig. 13 are listed in Table IV. dependent functioi)),,(w) has been limited to a frequency
A few comments are worth making on the comparison beinterval which did not cover the last octave of frequency-evo
tween the EOB and T4 results. Let us first recall that, in thdution, though, when viewed in the time domain, this intérva
BBH case, it has been shown that the EOB description is deficovered most of the cycles of the inspiral. In this sectioriiwe
nitely more accurate than the Taylor-T4 one, especiallynwhe nally focus on a phasing comparison in the time domain which
considering unequal mass ratios [47], or spin effects [62]coversthe full inspiral and plunge phasep to the merger of
However, as we are considering here an equal-mass case, dhé two NSs. Our strategy here will not be to explore from
frequencies that are smaller (when considering the dimensi scratch a good range of values of the tidal NNLO parameter
less frequencied/w) than in the BBH case, the tidal-free T4 @ values, but instead to use the valug = 100 suggested
phasing is quite close to the EOB one (see Fig. 11. Concerninlgy our previous?),, (w)-analysis, and to explore to what ex-
tidal-extended models, we see that both EOB and T4 highlightent it succeeds in providing a waveform which agrees with
the need for adding large, higher-order tidal-amplificafmc- ~ our fiducial (highest-resolution) NR waveform over the full
tors. When choosing one such amplification factor for bothinspiral. Anticipating our conclusion, we shall find thaeth
BNS systems (sagtz = 100 for EOB, andai* = 350 for
T4), a close look at the comparison of the corresponding
curves suggests that the EOB-predicted curves are somewhat
closer than the T4-predicted one to the NR curves. Howeve Fora, = 40, this amplification factor becomed! @ ) () = 1 +
this, by itself, would only be a weak indication that EOB give  1.25u 4+ 40u? ~ 1 +0.17 + 0.74 ~ 1.91

D. EOB/NR phasing



19

‘ ‘contact” between the two NSs. Such a formal contact mo-
1 ment was introduced in Eqgs. (72) and (77) of Ref. [21], by
a condition expressing that the EOB radial separatioe-

el comes equal to the sum of the tidally-deformed radii of the
o+ T e T | two NSs, namely
B Tl
M2.9C.12 Ne_* -l
s Te-% B
A Rt = (1+ hy ca(R) Ra+{a ¢ 5},
‘ ‘ ‘ ‘ ‘ e
r Taylor T4™
- = =Taylor T4%%: aT* = aJ* =
\~\ — — Taylor T4NL0; T4 =0 3 3 i . .
- Taylor TN o] = 330 whereey = MpR3/(R°My) is the dimensionless parame-

. ter controlling the (LO) strength of the tidal deformatioh o
the NS labeled4 by its companion3 and WherszA’B is the
shape Love number [18, 63]. The recent study of the tidally-
induced shape deformation of black holes [63] has shown that
the BH shape Love numbeér, was a function of the sep-
ool oom ooi 0o 005 oo 001 oose 005 006 arationR (i.e. ofu = M/R), which increased a® de-

Mw [curvature] creased (and increased). This behaviour is similar to the be-

_ _ haviour of the (effective) quadrupole Love numisf (u) =
FIG. 13: Comparison of the Taylor-T4)., curves for different

choices of the effective tidal amplification factofid®!(u) = 1+  ~2(1 + o u + ‘?‘9“2)’ where both{? [21] andaég) were
aTz + aT42?, with the corresponding NR ones (dashed lines withfound to be positive. One would need a special study devoted
open circles) for the two binaries considered. The dotteel torre-  t0 the comparison of the EOB-predicted NS shape deforma-
sponds to the “tidal free” (or “point-mass”) T4, namely, whgnor-  tion to NR data to investigate in detail thedependence of
ing tidal effects. Note that the vfalu@T4 = 350 of the dimension-  the analogou®s™ (u) = ha(1 + %Q)U + ﬁ§2)u2). Leaving
less NNLO effective tidal correction parameter that besiimes the g future work such a study, we shall content ourselves here
(T'\:]Be' Czof'rels‘l)olr\]lgndat?};g%?;gg;ﬁ; 'afgeé;';aj (;’L}{hgrgﬁse%asewith using a coarse approach where theependent effective
in Table |Vp gp Ya = shape Love numbersf () is replaced by a constant, chosen
' such that the EOB-predicted contact happeefrethe NR-
defined merger for the two BNS systems we consider. We
found thathsf = 3 works, and this is the value we shall use
EOB waveform witha, = 100 does closely agree (both in to replaceh‘z4 andh¥ in the contact condition written above.
phase and modulus) with the NR waveform essentially up t¢A similar approach was taken in [21], with a less conserva-
merger. tive valuehs™ = 1. Let us recall that the computation of
This is shown in Fig. 14, which compares the (real partthe infinite-separation shape Love number= h5"(u = 0)
of the) EOB and NR metrich,, waveforms for the case in- Of NSs has given values of order unity [18].] An important
cluding NNLO effects witha, = 100. The left panels refer Point to note is that our (EOB-based) analytical definitién o
to theM2. 9C. 12 binary, while the right panels refer to the contact allows one to analytically predict a complete irepi
MB. 2C. 14 one. The top panels show the real parts of bothwaveform, including its termination just before merger.

the EOB and NRu,; waveforms (divided by the symmetric  Figyre 14 shows that the agreement in the time domain
mass ratiov); the middle panels display the correspondingpetween the analytic EOB description and the fully numer-
phase differenced 0PN (1) = ¢FOP(t) — ¢"(t), both  jcal one is extremely good essentially up to merger. More
for metric (solid line) and curvature (dashed line) for COM-precisely, the match between the two descriptions is excel-
pleteness; the bottom panel compare the EOB (dashed lingdnt poth in modulus and in phase, with a dephasing of or-
and NR (solid Iing) instantaneous GW frequency. The !eaS'FderA¢ = £0.1 during most of the long inspiral phase. It
squares phase alignment has been performed on the time i-only during the last00M before contact that the dephas-
terval[tz, tr] = [250,3300] for the M2. 9C. 12 binary and  ing grows significantly. One should note that this excellent
[tr,tr] = [250,2250] for theMB. 2C. 14 one. EOB/NR agreement holds fdroth binariesMB. 2C. 14 and

The two vertical lines (dot-dashed and dashed) indicate thgp. 9C. 12, and has been obtained by tuningiagletidal-
“end of the inspiral phase”, as defined either within the EOBampilification parameter.

analytical framework (dot-dashed line), or by using NR in- _ )
formation (dashed line). Note that we call here simply “in- Cléarly the results presented here give only a first cut at
spiral” what was called “insplunge” in previous EOB studies these issues. More NR/AR comparisons are needed to con-
namely the union of the inspiral and (when it is reached teefor firm our findings and to determine the most effective value
merger) of the plunge. More precisely, the dashed line indi®f @2- With sufficiently accurate NR data one can hope
cates the NR-defined “merger”, i.e. the time (computed fronf© determine not only the effective tidal-amplification tiac

the NR data) at which the modulus of the metric waveformA®® (u) = 1 +A@§2)U + ay?u?, but the precise separation-
reaches its first maximum. On the other hand, the verticatlependence ol («). This would allow one to extend the EOB
dash-dotted line, indicates (an estimate of) the EOB-définedescription right up to merger.

M3.2C.14

T 7
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FIG. 14: Comparison between EOB and NR phasing forNM3e9C. 12 (left panels) andvB. 2C. 14 (right panels) binaries. The top
panels show the real parts of the EOB and AR waveforms, the middle panels display the correspondingeliferenceg\ ¢°BNF —

— ¢~F, both metric (solid line) and curvature (dashed line). THLID corrections to the radial potential are carried out vifth
paramete: = 100. Note the agreement reached with the numerical wavefornostlop to the time of the merger as defined in terms of
the maximum of the GW amplitude (vertical dashed line) orhaf tontact position (dot-dashed line; see the text and E@%.apd (77) of
Ref. [21] for explanations).
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VIlI. CONCLUSIONS

We have presented the first comprehensive NR/AR compar-
ison of the gravitational waveforms emitted during the iredp
of relativistic binary neutron stars as computed via stdte-
the-art numerical-relativity simulations and as modeNéa
state-of-the-art analytical approaches. Overall, thekwer
ported here and our findings can be summarized as follows.

1.

We have considered the longest to date numerical sim-
ulations of inspiralling and coalescing equal-mass BNS
modeled either with an ideal-fluid or a polytropic EOS.
Because tidal effects are most sensitive to the stellar
compactness, we have considered two binaries with ei-
ther a small compactness©f= 0.1199 or with a large
compactness of = 0.1396. The parts of the wave-
forms relative to the inspiral cover betwe2t and22

2.

3.

cycles and have been studied to isolate possible sources

of error, such as non-isentropic evolutions, finite-radii
GW extractions, and the use of finite resolutions. For
the model with the highest compactness, the first two
sources of errors lead to a total error-bar in the GW
phase ofA¢ ~ +0.15 rad. When compared to an
estimate of the resolution-extrapolated data, the high-
resolution waveforms seem to contain an accumulated

phase error oAA¢ ~ +0.54 rad.

We have used the functiad, (w) = w?/w as a use-
ful diagnostic of the physics driving the evolution of
the GW frequencyw. The calculation of this quan-
tity is however challenging when made from the early-
inspiral part of the NR waveforms, as the latter is af-
fected by a series of contaminating errors. We have
filtered out these errors by fitting the NR phase evolu-
tion ¢(t) with a simple analytical expression that re-
produces at lower order the behavior expected from
the PN approximation. We have compared the various
Q.'s obtained from different data to estimate the er-
ror range entailed by comparing analytical predictions
to our highest-resolution, largest-extraction-radius NR
data.

Using the estimated),,(w) function we have shown
that it is possible, at least for frequencitgv < 0.06
(i.e. faw < 700 Hz for a fiduciall.4 M BNS sys-
tem), tosubtract the tidal-effect contributiofiom the
NR waveforms and consistently match this with the ex-
pected EOB model for point particles which has been
successfully matched to BBH simulations. The ability
to perform this match accurately provides us with an

independent validation of the quality of our numerical
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results as well as with a confirmation that the functiondensities'?.
Q. (w) is approximately linear in the (leading) tidal pa-
rameter<Z.
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Appendix A: Computing metric waveforms from 4
6. Finally, we have also compared the NR phasing with the
one predicted by a non-resummed Taylor-T4 PN expan- e discuss here the details of how to accurately derive the
sion, completed by additional tidal terms. If one usesmetric waveformg:, . from the numerically computed cur-
only the currently known analytic T4 tidal terms, the T4 yature waveforms),. We first recall that the procedure out-
model dephases (whe&h= 0.12) by more thar2w rad  |ined in Ref. [47] consisted essentially of three stepsFifi3t
already at the GW frequency/w = 0.057, which is  one performs the double integrationf™ starting att = 0

about twice smaller than the GW frequency at mergefyith zero integration constants; this amounts to defining
(we recall thatMw = 0.057 corresponds t®58 Hz

for a fiduciall.4 M + 1.4 Mg, system). On the other . i

hand, a good match (for both compactnesses) with the ho™(t) = / dt'yy™ (t'), (A1)
. . . . 0

NR phasing is possible if one allows for a T4 analog of ;

the EOBay, parameteri.e. an (effective) 2PN amplifi- hE™(t) = / dt' & (t). (A2)

cation of tidal effects. However, the corresponding pa- 0

rameter]* ~ 350 is suspiciously large, and dominates o ) . . i
the amplification of tidal effects already at frequenciesThe provisional metric waveforr,™ differs from the “exact
Mw = 0.025 (corresponding t@85 Hz). This seems metric waveform (6) (integrated from past infinity) by a lare
to suggest that the EOB-based representation of tiddHnction ofz, say
effects is more reliable than the Taylor-T4 one.

y hém (t) = hlm (t) + acxactt + chact- (A3)

In summary, the work presented here opens new avenug®) The second step consists in obtaining an estimate of the
to the important synergy between numerical and analytic depyo (complex) integration constants-esxact, —Bexact) that
scriptions of inspiralling compact-object binaries in geal  enter the exact metric waveform (6) (integrated from past in
relativity. For the first time we have shown that an analyticfinity) by fitting over the full simulation time interval (sep
modelling is possible also for objects which cannot be &®at rately for the real and imaginary parts) the> 0)-integrated
as poin_t-particles and fo_r which, therefore, tidal effe®s- |, aveform (A2) to a linear function af sayh!i" At = ot + 3,
resent important corrections. Although the results peen \yhere, andg are complex quantities. (iii) The third and final
needed on both the namencal and the analytcal ses. Ofcr,C| e procedure of Ref, [47) consisted n subiraciiey

Ok ) o )
the numerical side, higher resolutions and better meagiires mzag;u?octtlﬁgo%t: ﬁ_]:Oo)r:ri]n}tlggr;fejsr;gtgffwaevgpoﬁﬁprsogy
the convergence rates (which are particularly challenging ol (1) = him (t) __hlin—ﬁt(t>_ ’
non-vacuum simulations) are needed to decrease the numerig”Bly contrg\st to thig “old” procedure, in this paper we will

cal phase errors to and reach firm conclusions about the tidalse 3 «new” (three-step) procedure, which starts with thessa
contributions to the phasing. On the analytical S|c_zle, highe step (i), but modifies both steps (i) and (iii) so as to get a
order PN calculations are needed to better determine the for

of the NNLO corrections. Both of these goals will be the sub-
ject of our future work. Hopefully, progress on both fronts
will enable us to determine the crucial tidal-induced depha ;, Simple estimates based on the scalifg o< R> suggest that one needs to

. . 'd, 1 . . e H .
Ing funC“QnAtl _d P(w) W_|th an accuracy sufficiently highto  know Atidal g(w) with a fractional accuracy better thaa% to constrain
extract reliable information on the EOS of matter at nuclear NS radii to a relative precision @R/ R ~ 4%.
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FIG. 15: Testing the fit of the GW phase . 9C. 12 simulation. The top-left panel shows the time evolutiontaf frequency, computed
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better approximation to the exact metric waveform. First ofimproved linear fitat + S from the ¢ > 0)—integrated metric
all, we define an “adiabatic-like” approximation to the nietr waveformhf™ (t).

waveform,

~ B Im (t
) =

~—

and then we use this to define

RE™ () = hE™(t) — hem (1)

(A4)

(A5)

As h'™(t) is approximately equal th*"(t) (because of the

approximately adiabatic nature of the inspiral), we seenfro

Eq. (A3) thath§™(t) = hum(t) — hem(t) + Qexactt + Bexact
will be closer to the unknown linear functi@nactt + Bexact

thanh{™(t) was. Therefore, the next step is to perform the

linear fit on thish™ instead than onf™ (t)

itself. Then, the

last step (iii) consists, as above, in subtracting the tiegul

In addition, let us note that we perform the fit not on the
whole time interval, but rather on a restricted time intérva
that cuts away the first cycles of the waveform. Finally, afte
doing several tests, we realized that the entire procedauts|
to a physically more reliable metric waveform (see below) if
h&™(¢) is fitted not to a simple linear function, but rather to a

quadratié® one,h 3"~ (1) = 412 + at + .

13 We think that such a quadratic fitis needed for absorbingrakeéects that
“pollute” the waveform, notably finite-extraction-radiedfects, remnant
junk radiation, etc. In this respect, we also mention th&t Ré], in the
context of non-spherical star oscillations, found thatadyatic polynomial
used in the recovery dfzg from wﬁo was a necessary choice to find a good
agreement with both Abrahams-Price metric extraction aerupbative
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FIG. 16: The same as Fig. 15 but for thB. 2C. 14 simulation.
As it was emphasized in Ref. [47], we accept the inte- Appendix B: Cleaning the GW phaseand Q., curves

grated waveform if and only if its modulus exhibits a rather

definite and clean monotonic growth in time during the in-  The purpose of this Appendix is to provide more detailed
spiral, consistently with the expected circularly poladde-  information about the cleaning procedure of the NR GW
havior of the metric waveform (as well as the curvaturephase advocated in Sec. IV and used to drive NR/AR compar-
one}“. Figure 2 displays the metric waveforms (for both jsons. As we said in the main text, the final goal is to fit away
theM2. 9C. 12 (left) and theMB. 2C. 14 (right) models) ob-  the high-frequencies oscillations in the GW phasso as to
tained using this improved procedure. The time intervalsyet a clean and smootf,, curve, Eq. (23). We recall here
where we fit the waveforms to g&f"*!~""(¢) start respec- ~ for convenience that the idea is toditt) with an analytic ex-
tively at¢, /M = 294 (modelM2. 9C. 12) and att; /M =  pression that is modeled on the PN expansion. Defining the
677 (modelVB. 2C. 14). Note how the modulus of both mod- quantity

els exhibits a smooth monotonic behavior in time.

v

#(t,00) = { £t —t)}il/g, (B1)

waveforms. one then fits the NR phase with an expression of the form

14 Note however that small-amplitude, high frequency “rigplare still 2
present in the modulus. Their origin is however essentialignerical, as ¢p=—=a° (1 + pox? + psa® + pazt + .. ) + ¢o, (B2)
they are also present in th2 modulus. v
wheret,., ¢, and thep;’s are free coefficient to be determined

by the fit. Note that. can be thought of as defining a for-
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mal “coalescence” time. There are two delicate (correfated 3. For a fixed time window, the inspection AfpCleanRaw
points: (i) how many powers af [possibly including also is also crucial for choosing the order of the polynomial
2™ In(z) terms] one has to include in Eq. (B2), and (ii) on in x. As said above, this is done so that the oscillations
which (time) interval(¢,, ¢2) the approximate description of in AgCleanRaw gyerage to zero. We use this rationale to
¢ given by Eq. (B2) (and consequently@f,) is reliable. The select a fourth-order polynomial infor our fit. A 3rd-
procedure to select the “best” time interval and to constite order one is clearly not enough to get the right trend
assess the quality of our cleaned curves can be summarized as  of the frequency (and thus @) up to the end of our
follows: preferred interval (see text). By contrast, as discussed
in the text, we have found small differences between
n = 4 andn = 6 for some waveforms of our data
sample.

1. The initial timet;, is chosen so to eliminate as much as
possible the noisiest part of the curvature frequency. In
practical terms, this meant cuttingtat/M = 1200 for
M2. 9C. 12 data and /M = 1000 for M3.2C.14 data.
This fact is illustrated in the top-left panels of Fig. 15
(for M2. 9C. 12 data) and of Fig. 16 (fonMB3. 2C. 14
data), which show the curvature (dashed line) and met-
ric (solid line) instantaneous GW frequengy in both
plots, the first vertical line identifies the locationigf.

4. In addition, to better select the engd of the time win-
dow, we found useful to monitor the difference between
the curvature and metri@),,’s, namely AQS™ =
Qcurvature _ gmetric  \We typically choose the value
of tg in such a way thatAQ¢ ™ is always smaller
than 0.2 on the frequency interval corresponding to
[t1,tr]. This value can be estimated by comparing cur-
vature and metri@),,’s within the EOB: for example,
for the NNLO model withas = 100 one checks that
AQS™ < 0.2 whenw € [0.035,0.055] for C = 0.12,
andAQS™ < 0.2 whenw € [0.035,0.063] for C =

2. For a given order of the polynomial, we found the right
end,tg, of the time window essentially, by trial and er-
ror, monitoring the behavior of several quantities. In
particular: (i) we checked that the cleanedvisually
“averages” the raw, for both, andhyo data. This

is illustrated in the top-right and bottom-right panels of
Figs. 15-16, the raw data appearing as dashed lines, the
cleaned data as solid lines. Then, (ii), we require that

0.14. This gives us an idea of the level &fQ¢ ™ that
we can accept from our cleaned NR curves, so that we
choose the fitting time window accordingly.

the phase differencg®'e®» — pRav gverages to zero,
which indicates that we have subtracted all the “secu-
lar” trends by means of our polynomial fit. The quan-
tity AgCleanRaw — gClean _ jRaw (hoth curvature and
metric) is displayed in the bottom-left panel of Figs. 15-
16. The fact that it averages to zero is the indication that
our fit caught the “secular” behavior of the phase, aver-
aging away both (numerical) low-frequency and high-
frequency oscillations.

In conclusion, to obtain the central NR-cleanéq,
curves labelledFggr 500 used in the core of the paper,
we fixedtr/M = 3366 for theM2. 9C. 12 phase and
tr/M = 2290 for the M3. 2C. 14 one. The time in-
tervals (and the corresponding frequency ones) that we
used to clean the other NR phases are also listed in Ta-
ble Il1.
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