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Binary neutron-star systems represent one of the most promising sources of gravitational waves. In order
to be able to extract important information, notably about the equation of state of matter at nuclear density, it
is necessary to have in hands an accurate analytical model ofthe expected waveforms. Following our recent
work [1], we here analyze more in detail two general-relativistic simulations spanning about20 gravitational-
wave cycles of the inspiral of equal-mass binary neutron stars with different compactnesses, and compare them
with a tidal extension of the effective-one-body (EOB) analytical model. The latter tidally extended EOB model
is analytically complete up to the 1.5 post-Newtonian level, and contains an analytically undetermined parameter
representing a higher-order amplification of tidal effects. We find that, by calibrating this single parameter, the
EOB model can reproduce, within the numerical error, the twonumerical waveforms essentially up to the
merger. By contrast, analytical models (either EOB, or Taylor-T4) that do not incorporate such a higher-order
amplification of tidal effects, build a dephasing with respect to the numerical waveforms of several radians.

PACS numbers: 04.25.dk, 04.25.Nx, 04.30.Db, 04.40.Dg, 95.30.Sf, 97.60.Jd

I. INTRODUCTION

Binary neutron-star inspirals are among the most promising
and certain target sources for the advanced versions of the cur-
rently operating ground-based gravitational-wave (GW) de-
tectors LIGO/Virgo/GEO. These detectors will be maximally
sensitive during the inspiral part of the signal (around a GW
frequency of100 Hz, i.e. significantly below the typical GW
frequencies at merger, which are around1000 Hz). The in-
spiral part of the signal will be influenced by tidal interaction
between the two neutron stars (NSs), which, in turn, encodes
important information about the equation of state (EOS) of
matter at nuclear densities. In other words, the detection of
GWs emitted from inspiralling NS in the LIGO/Virgo band-
width could enable us to acquire important information about
the EOS of NS matter. However, two conditions must be ful-
filled (besides getting sufficiently accurate GW data from ad-
vanced detectors) for the success of this program: (i) obtain-
ing a large enough sample of accurate numerical simulations
of inspiralling binary neutron stars (BNS); (ii) possessing a
sufficiently accurateanalytical modelof inspiralling BNS, al-
lowing the extrapolation of the finite set of numerical sim-
ulations to the multi-parameter space of possible GW tem-
plates. Extending the work recently reported in [1], we here
address issues and provide useful progress on both of them. In
essence, we will present the results of general-relativistic sim-
ulations spanning about20 gravitational-wave cycles of the
inspiral of equal-mass BNSs and show how a suitably cali-
brated effective-one-body (EOB) analytical model of tidally
interacting BNS systems enables us to accurately reproduce
the numerically simulated inspiral waveform.

Numerical simulations of merging BNSs in full general rel-
ativity have a long history (see the Introduction of [2] for

a brief review) and the first merger to a hypermassive neu-
tron star (HMNS) was computed more than ten years ago [3].
However, it is only in recent years and with the use of more
advanced and accurate numerical algorithms that it has been
possible to obtain a more precise and robust description of this
process and to include additional physical ingredients such as
magnetic fields and realistic EOSs. In particular the use of
adaptive mesh refinement techniques [2, 4, 5] made it possi-
ble to use very high resolutions, increasing not only the level
of accuracy, but giving the possibility, for example, to com-
pute the full evolution of the HMNS up to black hole for-
mation [2], or to investigate in detail the development of hy-
drodynamical instabilities at the time of the merger [2]. The
numerical convergence properties of BNS simulations have
also been studied only very recently [6], providing for the first
time evidence of the level of accuracy that it is now possi-
ble to achieve in the generation of GW templates from these
sources. Several groups are now able to simulate BNSs using
more realistic EOSs (see,e.g., [7–9] and references therein)
and to assess the possibility to measure their effects in the
GW signals. In the last two years three different groups were
also able to perform for the first time the simulations of mag-
netized BNSs [10–12]. One conclusion already reached is that
no effect of the magnetic field can be measured in the inspi-
ral waveforms [12], while the role of the magnetic field in the
post-merger phase has been recently investigated in [13] as
well as its role in the emission of relativistic jets after the col-
lapse to black hole [14]. Because of their possible connection
with the production of short gamma-ray bursts (GRBs), nu-
merical simulations have also investigated in detail the forma-
tion of massive tori and their dependence on the initial mass
and mass ratio of the binary (e.g.see [15]) as well as on the
EOS used (see [8, 9] and references therein).
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On the other hand, the program of developing an analyti-
cal description within general relativity of tidally-interacting
binary systems has been initiated only very recently [16–22].
Overall, this work has brought to light two surprising results.
First, that the dimensionless expressionkℓ (Love number)
in the (gravito-electric) tidal polarizability parameterGµℓ ≡
2kℓR

2ℓ+1/(2ℓ − 1)!! measuring the relativistic coupling (of
multipolar orderℓ) between a NS of radiusR and the external
gravitational field in which it is embedded strongly decreases
with the compactness parameterC ≡ GM/(c2R) of the
NS [18, 19]1. Second, a recent comparison between a numer-
ical computation of the binding energy of quasi-equilibrium
circular sequences of BNS systems [23] and the EOB descrip-
tion of tidal effects [21] suggest that high-order (beyond the
first order) post-Newtonian (PN) corrections to tidal effects
tend to significantly increase (typically by a factor of order
two) the effective tidal polarizability of NSs.

The main aim of this paper is to present a detailed compar-
ison between waveforms computed from the tidal-completed
EOB analytical model of Ref. [21] and waveforms from BNS
simulations comprising between∼ 20 and 22 GW cycles
of inspiral [1]. More specifically, we will follow Ref. [21],
which has proposed a new way of analytically describing
the dynamics of tidally interacting BNSs, whose validity is
not a priori limited (like the purely PN-based descriptions
used in,e.g. [16]) to the low-frequency part of the GW sig-
nal, but may be extended to higher frequencies, essentially
up to the merger. The proposal of Ref. [21] consists in ex-
tending the EOB method [24–26], which has recently shown
its ability to accurately describe the GW waveforms emit-
ted by inspiralling, merging, and ringing binary black holes
(BBHs) [27, 28], by incorporating tidal effects in it. We shall
improve the tidally-extended EOB model of Ref. [21] (which
already contained the 1PN contributions to the dynamics) by
incorporating the 1PN contributions to the waveform (from
[29]), as well as the waveform tail effects (from [30, 31]).

The paper is organized as follows. In Sec. II we present
in detail our numerical simulations, briefly reviewing our nu-
merical setup, discussing the dynamics of the binaries, and
presenting the main features of the waveforms. Section III
deals instead with the analytical models of the binary dy-
namics and of waveforms that include tidal interaction (ei-
ther PN-based or EOB-based ones). Sec. IV introduces some
tools, notably a certain intrinsic representation of the time
evolution of the GW frequency, which is useful for doing
the numerical-relativity/analytical-relativity (NR/AR) com-
parison. Section V discusses the various errors that affectthe
NR phasing. The NR/AR comparison is carried out in Sec. VI.
We finally present a summary of our findings in Sec. VII. Two
appendices give additional technical details on the use of the
waveforms from the numerical-relativity simulations.

We use a spacelike signature(−,+,+,+) and (unless ex-

1 As a consequence, for a given EOS, the Love numbers of a typical (C ∼
0.15) NS are found to be about4 time smaller than their corresponding
Newtonian estimates, that assumeC → 0.

plicitly said otherwise) a system of units in whichc = G =
M⊙ = 1. Greek indices are taken to run from0 to 3, Latin
indices from1 to 3.

II. NUMERICAL-RELATIVITY SIMULATIONS

A. Numerical setup

The numerical simulations were performed with the set of
codesCactus-Carpet-Whisky [32–36]. The reader is re-
ferred to the references for the description of the details of the
implementations and of the tests of the codes. Since in this
work we use the same gauges and numerical methods already
applied and explained in [2, 6], we also refer the reader to
these articles for more detailed explanations of the setup only
briefly recalled below.

In essence, we evolve a conformal-traceless “3+1” formu-
lation of the Einstein equations in which the spacetime is de-
composed into three-dimensional spacelike slices, described
by a metricγij , its embedding in the full spacetime, speci-
fied by the extrinsic curvatureKij , and the gauge functions
α (lapse) andβi (shift) that specify a coordinate frame (see
Ref. [34] for details on the latest implementation of the Ein-
stein equations in the code). For the evolution of the mat-
ter, theWhisky code implements the flux-conservative for-
mulation of the general-relativistic hydrodynamics equations
proposed by the Valencia group [37]. Its important features
are that the set of conservation equations for the stress-energy
tensorT µν and for the matter current densityJµ are writ-
ten in hyperbolic, first-order, and flux-conservative form (see
Ref. [2] for details on the latest implementation of the hydro-
dynamics equations in the code).

As initial data we use quasi-equilibrium binaries generated
with the multi-domain spectral-method codeLORENE devel-
oped at the Observatoire de Paris-Meudon [38]. For more in-
formation on the code and its methods, the reader is referredto
theLORENEweb pages [39]. In particular, we use irrotational
configurations, defined as having vanishing vorticity and ob-
tained under the additional assumption of a conformally flat
spacetime metric [38]. The EOS assumed for the initial data
is in all cases the polytropic EOS

p = K ρΓ , (1)

wherep andρ are the pressure and the rest-mass (baryonic-
mass) density, respectively. The chosen adiabatic index is
Γ = 2, while the polytropic constant isK ≃ 123.6 (in units
where c = G = M⊙ = 1). For this particular EOS,
the allowed maximum baryonic mass for an individual sta-
ble NS is2.00M⊙, thus leading to a maximum compactness
M

ADM
/R ≃ 0.25. The initial coordinate separation of the

stellar centers in all cases isd = 60 km.
The physical properties of the two binaries considered here

are summarized in Table I, where we have adopted the follow-
ing naming convention:M%C#, with % being replaced by the
rounded total baryonic massMbaryonic

tot of the binary NS sys-
tem and# by the compactness. As an example,M2.9C.12 is
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TABLE I: Properties of the binary NS initial data. From left to right the columns show: the name of the model, the total baryonic mass
Mbaryonic

tot of the system, the total (initial) Arnowitt-Deser-Misner (ADM) massM
ADM

of the system, the total (initial) angular momentumJ ,
the initial orbital frequencyνorb, the initial maximum rest-mass densityρmax, the mean radius̄ri of each star, the axis ratiōAi of each star, the
individual ADM massM∞ of each star as considered in isolation at infinity, the compactnessC∞ = M∞

NS/R
∞
NS of each star as considered

in isolation at infinity, the corresponding (quadrupolar) dimensionless Love numberk2 and tidal constantκT2 as defined in Ref. [21] (see also
Eq. (13) below). The mean radius is defined asr̄i ≡ (r⊢ + r⊣ + r⊥ + rpol)/4, wherer⊢ andr⊣ are the (coordinate) radii of the star parallel
to the line connecting the stars,r⊥ is the radius in the equatorial plane perpendicular to that line, andrpol is the radius perpendicular to the
equatorial plane. The axis ratio is defined as the ratio between the mean radius parallel to the line connecting the stars,and the mean radius
in the plane perpendicular to that line, namelyĀi ≡ (r⊥ + rpol)/(r⊢ + r⊣). The values ofνorb, r̄, Ā,M∞, andC∞ are computed with the
LORENE code, the values ofMbaryonic

tot , M
ADM

, J , andρmax are instead measured on the Cartesian grid by theWhisky code, and those of
k2 (andκT2 ) are computed according to Ref. [18].

Model Mbaryonic
tot M

ADM
J/1049 νorb ρmax/1014 r̄ Ā M∞ C∞ k2 κT2

(M⊙) (M⊙) (g cm2/s) (Hz) (g/cm3) (km) (M⊙)

M2.9C.12 2.8899 2.6925 7.1747 188.52 4.60 14.2 0.97 1.359 0.1196 0.09719 496.09

M3.2C.14 3.2504 2.9966 8.5558 197.03 5.93 13.2 0.97 1.514 0.1399 0.07894 183.81

the binary with total baryonic massMbaryonic
tot = 2.8899 M⊙

and compactnessC = 0.1196. We note that at least as far as
the tidal effects are concerned, the most important difference
in the two sets of initial data is represented by the compact-
ness, which is smaller in the binaryM2.9C.12 than in the bi-
naryM3.2C.14. Note that the dimensionless EOB parameter
κT2 measuring the strength of the (conservative) quadrupolar
interaction is nearly three times larger whenC = 0.12, than
whenC = 0.14.

The initial data is then evolved either using the (isentropic)
polytropic EOS (1), or using the (non-isentropic) “ideal-fluid”
EOS defined by the condition

p = ρ ǫ(Γ− 1), (2)

whereǫ ≡ (e − ρ)/ρ is the specific internal energy, ande is
the total energy density. Although these EOSs are idealized,
they provide a reasonable approximation of the dynamics of
NSs during the inspiral, so that we expect that the use of re-
alistic EOSs (with similar compactnesses) would not change
the main qualitative conclusions of this work. A detailed dis-
cussion of the consequences of using either EOS will be pre-
sented in Sec. V.

As mentioned above, the use of adaptive mesh-refinement
techniques allows us to reach a considerable level of precision
and for this we use theCarpet code [33] that implements
a vertex-centered adaptive-mesh-refinement scheme adopting
nested grids with a2 : 1 refinement factor for successive grid
levels. We center the highest resolution level around the peak
in the rest-mass density of each star. This represents our rather
basic form of adaptive-mesh refinement. The timestep on each
grid is set by the Courant condition (expressed in terms of
the speed of light) and so by the spatial grid resolution for
that level; the typical Courant coefficient is set to be0.35.
The time evolution is carried out using fourth-order accurate
Runge-Kutta integration steps. Boundary data for finer grids
are calculated with spatial prolongation operators employing
fifth-order polynomials and with prolongation in time employ-
ing second-order polynomials.

In the results presented below we have used6 levels of
mesh refinement with the finest grid resolution of∆min =
0.12M⊙ = 0.177 km and the coarsest (or wave-zone) grid
resolution of∆max = 3.84M⊙ = 5.67 km. Each star is com-
pletely covered by the finest grid, so that the high-density re-
gions of the stars are tracked with the highest resolution avail-
able. The refined grids are then moved by tracking the po-
sition of the maximum of the rest-mass density as the stars
orbit, and are finally merged when they overlap. In addi-
tion, a set of refined but fixed grids is set up at the cen-
ter of the computational domain so as to capture the details
of the Kelvin-Helmholtz instability (cf. [2]). The finest of
these grids extends tor = 7.5M⊙ = 11 km = 5.52M
for modelM2.9C.12 and= 4.95M for modelM3.2C.14
(here and in the followingM denotes the gravitational mass
of the system at infinite separation, namely the sum of the
gravitational masses of each NS as computed individually in
isolation, i.e. M ≡ 2M∞

NS in the notation of Table I). A
single grid-resolution covers then the region betweenr =
150M⊙ = 221.5 km and r = 514.56M⊙ = 755.24 km
(or r = 378.63M for M2.9C.12 and r = 339.87M for
M3.2C.14), in which our wave extraction is carried out. The
resolution is here∆ = 3.84M⊙ = 5.67 km and thus more
than sufficient to accurately resolve the gravitational wave-
forms that have initially a wavelength of about720 km.

A reflection symmetry condition across thez = 0 plane
and aπ-symmetry condition2 across thex = 0 plane are used.
A number of tests have been performed to ensure that both
the hierarchy of the refinement levels described above and
the resolutions used yield results that are numerically consis-
tent although not always in a convergent regime at the time of
merger (see the detailed discussion in Ref. [6]).

2 Stated differently, we evolve only the region{x ≥ 0, z ≥ 0} applying
a 180-degrees rotational-symmetry boundary condition across the plane at
x = 0.
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B. Overall matter-dynamics and gravitational waveforms

We next briefly recall the physical properties of BNS in-
spiral and merger as discussed in Refs. [2, 6]. The inspiral
proceeds at higher and higher frequencies until the time of the
merger, just before which the stars decompress because of the
tidal force. At the time of the merger, a Kelvin-Helmholtz
instability develops in the shearing layer formed by the col-
liding stars, which may be of great relevance for the growth
of the magnetic fields [12, 40–42], thought to be present in
such systems, but not included in the present work. If the total
mass of the system is sufficiently large, the merged object im-
mediately collapses to a Kerr BH, while, for smaller masses
(as those considered here), the merger remnant is a HMNS
in a metastable equilibrium. Because of the excess angular
momentum, the HMNS is also subject to a dynamical bar-
mode instability, being responsible for a copious emissionof
gravitational radiation with peak amplitudes that are compa-
rable or even larger than those at the merger (cf. Ref. [2]). As
the bar-deformed HMNS loses energy and angular momentum
via GWs, it contracts and spins up, thus further increasing the
losses. The process terminates when the threshold to the col-
lapse to BH is crossed and the HMNS then rapidly produces
a rotating BH surrounded by a torus of hot and high-density
material. Although this post-merger evolution of the binary
is of great interest and is likely to yield a wealth of physical
information, it will not be further considered in the present
work, which is instead focussed on the analytical modelling
of the inspiral phase, up to merger.

The GW signal is extracted at different surfaces of constant
coordinate radiusr by means of two distinct methods. The
first one is based on the measurements of the non-spherical
gauge-invariant perturbations of a Schwarzschild BH [43, 44].
The second and independent one uses instead the Newman-
Penrose formalism so that the GW (metric) polarization am-
plitudesh+ andh× are then related toψ4 by (see Sec. IV of
Ref. [2] for details of the Newman-Penrose scalar extraction
in our setup)

ḧ+ − iḧ× = ψ4 =

∞∑

ℓ=2

ℓ∑

m=−ℓ

ψℓm4 −2Yℓm(θ, φ), (3)

where we have introduced the (multipolar) expansion ofψ4 in
spin-weighted spherical harmonics [45] of spin-weights =
−2. The coordinate extraction radius isrobs = 500M⊙

for both models, which corresponds torobs/M = 184.3 for
M2.9C.12 and torobs/M = 165.1 for M3.2C.14. The top
panels of Fig. 1 summarizes most of the information related to
the curvature waveformsψ22

4 for theM2.9C.12 model (left
panels) and for theM3.2C.14 model (right panels). The top
panels of the figures show together the modulus and the real
part of theℓ = m = 2 waveform; the bottom ones, illustrate
the behavior of the instantaneous GW (curvature) frequency
Mω22. Note that the inspiral waveform ofM2.9C.12 con-
tains about 22 GW cycles, while that ofM3.2C.14 contains
about20 GW cycles. To fix conventions, let us recall that we
write the waveform as a complex number according to

ψℓm4 = |ψℓm4 |e−iφℓm . (4)

so that the instantaneous (curvature) GW frequency is sim-
ply defined asωℓm ≡ φ̇ℓm. After the initial junk radiation
(cf. Ref. [46]) that is responsible for a spike in the modulus
aroundt = 200M together with high-frequency oscillations
in the frequency, the complexψ22

4 waveform becomes circu-
larly polarized (as expected for circularized inspiral), with a
modulus that grows monotonically in time up to the merger
(see upper panels of Fig. 1).

The matter-dynamics is reflected in the behavior of the fre-
quency: for both models we clearly see thatω22 grows mono-
tonically during the inspiral phase, until it reaches a maxi-
mum around the “merger”. In this work, we phenomeno-
logically define the “NR merger” as the instant when the
modulus of the metric waveformh22 (see below) reaches
its (first) maximum. Roughly speaking, in our simulations
the “dynamic range” of the dimensionless GW frequency pa-
rameterMω22 during inspiral (i.e. before the merger) is
0.015 . Mω22 . 0.15. Note that, if we were consider-
ing a conventional1.4M⊙ + 1.4M⊙ BNS system, we would
then have the correspondencefGW/100Hz ≃ 115.4Mω22 so
thatMω22 = 0.015 corresponds tofGW ≈ 173.1 Hz, while
Mω22 = 0.15 corresponds tofGW ≈ 1731 Hz.

In order to perform direct comparisons with (resummed)
analytical waveforms and since the resummations used in the
EOB method have been developed (and tested) mainly for
metric waveforms, we derived the metric waveform by a (dou-
ble) time-integration of theψ4 waveform. (The so-obtained
metric waveform was found to be more accurate than the out-
put of the gauge-invariant perturbation scheme.) We recall
that the metric waveform is also expanded in spin-weighted
spherical harmonics with the following convention

h+ − ih× =

∞∑

ℓ=2

ℓ∑

m=−ℓ

hℓm −2Yℓm(θ, φ) (5)

so that the metric multipoleshℓm at time t can be obtained
fromψℓm4 by double time-integration as

hℓm(t) =

∫ t

−∞

dt′
∫ t′

−∞

dt′′ψℓm4 (t′′). (6)

This expression assumes that one knows the curvature wave-
form on the infinite time interval(−∞, t]. Since, however,
the simulated curvature waveform does not start at an infinite
time in the past, but at a finite (conventional) timet = 0,
one has to find a way of determining two (complex) integra-
tion constants accounting from the GW emission from infinite
time to our present starting time. To do so, we use here an
improved version of the fit procedure of Ref. [47], which is
presented in detail in Appendix A. Figure 2 shows the re-
sult of this process, with the left panels referring to model
M2.9C.12, and the right ones to modelM3.2C.14. To be
clear, note that the waveforms displayed in these figures are
obtained from simulations with: (i) the non-isentropic (ideal
fluid) EOS; (ii) the highest available resolution; and (iii)an
extraction radius of500M⊙. These will be taken as our fidu-
cial “target” waveforms for our NR/AR comparisons, and we
shall refer to them in the following with the labelIFHR500.
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FIG. 1: Curvaturerψ4
22 gravitational waveform (upper panels) and the instantaneous GW curvature frequencyMω22 (lower panels) for

theM2.9C.12 (left) andM3.2C.14 (right) models. In both cases, the observer’s (coordinate)extraction radius isrobs = 500M⊙; this
corresponds torobs/M = 184.3 for M2.9C.12 androbs/M = 165.1 for M3.2C.14.

FIG. 2: Gravitational metric (complex) waveformsrh22 and frequencies obtained from integration of the curvaturewaveforms of Fig. 1.
The left panels refer to modelM2.9C.12, the right panels to modelM3.2C.14. The fact that the waveform modulus grows monotonically
without evident spurious oscillations is the indication ofthe reliability of the determination of the integration constants. See text for details.

The numerical uncertainty on these target waveforms will be
estimated in Sec. V below.

III. ANALYTICAL MODELS

We recall below some basic information relative to the
EOB-based and PN-based descriptions of the binary dynam-

ics and waveforms that include tidal effects. We follow here
the general discussion of Ref. [21], to which we refer the
reader for more details. We consider successively: (i) the re-
summed EOB description of the conservative dynamics, (ii)
the resummed EOB description of the waveform, and (iii) one
of the non-resummed (i.e. PN expanded) descriptions of the
phasing.
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A. Effective-one-body description of the conservative
dynamics

The EOB formalism [24–26] replaces the PN-expanded
two-body interaction Lagrangian (or Hamiltonian) by a re-
summed Hamiltonian, of a specific form, which depends only
on the relative position and momentum of the binary system
(q,p). For a non spinning BBH system, it has been shown
that its dynamics, up to the 3PN level, can be described by the
following EOB Hamiltonian (in polar coordinates, within the
plane of the motion)

HEOB(r, pr∗ , pϕ) ≡Mc2
√
1 + 2ν(Ĥeff − 1) (7)

where

Ĥeff ≡
√
p2r∗ +A(r)

(
1 +

p2ϕ
r2

+ z3
p4r∗
r2

)
. (8)

HereM ≡MA+MB is the total mass,ν ≡MAMB/(MA+
MB)

2 is the symmetric mass ratio andz3 ≡ 2ν(4 − 3ν). In
addition we are using rescaled dimensionless (effective) vari-
ables, namelyr ≡ rABc

2/GM andpϕ ≡ Pϕc/(GMAMB),
andpr∗ is canonically conjugated to a “tortoise” modification
of r [48].

A remarkable feature of the EOB formalism is that the
complicated, original 3PN Hamiltonian (which contains many
corrections to the basic Newtonian Hamiltonian1

2 p
2 − 1/r)

can be replaced by the simple structure (7)-(8), whose two
crucial ingredients are: (i) a “double square-root” structure

HEOB ∼
√
1 +

√
p2 + · · ·, and (ii) the “condensation” of

most of the nonlinear relativistic gravitational interactions in
one function of the (EOB) radial variable: the basic “radial
potential”A(r). The structure of the functionA(r) is rather
simple at 3PN, being given by

A3PN(r) = 1− 2u+ 2 ν u3 + a4 ν u
4 , (9)

where a4 = 94/3 − (41/32)π2, and u ≡ 1/r =
GM/(c2rAB). It was recently found that an excellent de-
scription of the dynamics of BBH systems is obtained [27]
by: (i) augmenting the presently computed terms in the PN
expansion (9) by additional 4PN and 5PN terms;(ii) Padé-
resumming the corresponding 5PN “Taylor” expansion of the
A function. In other words, the BBH (or “point mass”) dy-
namics is well described by a function of the form

A0(r) = P 1
5

[
1− 2u+ 2νu3 + a4νu

4 + a5νu
5 + a6νu

6
]
,

(10)
where Pnm denotes an(n,m) Padé approximant. It was
found in Ref. [27] that a good agreement between EOB and
numerical-relativity BBH waveforms is obtained in an ex-
tended “banana-like” region in the(a5, a6) plane approxi-
mately spanning the interval between the points(a5, a6) =
(0,−20) and(a5, a6) = (−36,+520). In this work we will
select the valuesa5 = −6.37, a6 = +50 which lie within
this good region (we have checked that the use of other values
within the “good BBH fit” region would have no measurable
influence on our discussion below).

The proposal of Ref. [21] for including dynamical tidal ef-
fects in the conservative part of the dynamics consists in sim-
ply using Eqs. (7)-(8) with the following tidally-augmented
radial potential

A(u) = A0(u) +Atidal(u). (11)

HereA0(u) is the point-mass potential defined in Eq. (10),
whileAtidal(u) is a supplementary “tidal contribution” of the
form

Atidal =
∑

ℓ≥2

−κTℓ u2ℓ+2Âtidal
ℓ (u) , (12)

where the termsκTℓ u
2ℓ+2 represent the leading-order (LO),

i.e. Newtonian order, tidal interaction. The dynamical EOB
tidal coefficientsκTℓ are functions of the two massesMA,MB,
of the two compactnessesCA,B = GMA,B/RA,B, and of the
two (relativistic) Love numberskA,Bℓ of the two objects [18–
20]

κTℓ = 2
MBM

2ℓ
A

(MA +MB)2ℓ+1

kAℓ
C2ℓ+1
A

+ { A ↔ B}

=
1

22ℓ−1

kℓ
C2ℓ+1

, (13)

where the second line refers to an equal-mass binary, as the
ones considered here. Note in Table I the rather large numer-
ical values for theℓ = 2 tidal coefficients:κT2 (C = 0.12) ≃
496 andκT2 (C = 0.14) ≃ 184. In our EOB modelling we also
use the higher multipolar tidal coefficientsκT3 andκT4 , which
are even larger thanκT2 (e.g.κT4 (C = 0.12) ≃ 20318) though
their effect is subdominant in view of the higher power ofu,
u2ℓ+2, with which they enter theA(r) potential.

The additional factorÂtidal
ℓ (u) in Eq. (12) represents the

effect of higher-order relativistic contributions to the dynam-
ical tidal interactions: next-to-leading–order (NLO) contri-
butions, next-to-next-to-leading–order (NNLO) contributions,
etc. Here we will consider a “Taylor-expanded” expression

Âtidal
ℓ (u) = 1 + ᾱ

(ℓ)
1 u+ ᾱ

(ℓ)
2 u2 , (14)

whereᾱ(ℓ)
n are functions ofMA, CA, andkAℓ for a general bi-

nary. The analytical value of the (ℓ = 2) 1PN coefficient̄α(2)
1

has been reported in [21] (and recently confirmed in [49]). In
the equal-mass case, it yieldsᾱ1 = 1.25. By contrast, there
are no analytical calculations available for the 2PN tidal coef-
ficientsᾱ(ℓ)

2 . One of the main aims of the present work will

be to constrain the value of̄α(2)
2 by comparing the EOB pre-

dictions to numerical data.

B. Effective-one-body description of the waveform and
radiation reaction

Let us first recall that the EOB formalism defines the radia-
tion reaction from the angular momentum flux computed from
the waveform. Concerning the waveform, in the case of BBH
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systems, the EOB formalism replaces the PN-expanded mul-
tipolar (metric) waveformhPN

ℓm by a specifically resummed
“factorized waveform” [31, 50], sayh0ℓm (where the super-
script0 is added to signal the absence of tidal effects). This
tidal-free multipolar waveformh0ℓm includes resummed ver-
sions of very high-order PN effects in the phase and the mod-
ulus, and notablytail effects. Actually, in the present work, we
have used a factorized waveform which includes in the modu-
lus (but not in the phase) the new (5PN accurate)ν = 0 terms
recently computed in [51]. [As in Ref. [50] we resum the
ℓ = 2,m = 2 modulus by using the Padé-resummed function
fPf
22 (x; ν) = P 3

2 [f
Taylor
22 (x; ν)].] We also included inh0ℓm the

two next-to-quasi-circular parameters(a1, a2) as in Ref. [27].
[Since bothM2.9C.12 andM3.2C.14 are equal-mass bi-
naries, we fixa1 = −0.0439 anda2 = 1.3077, according to
the EOB/NR comparison (for a BBH equal-mass system) of
Ref. [27]].

When considering tidally interacting binary systems, one
needs to augment the BBH waveformh0ℓm by tidal contribu-
tions. Similarly to the additive tidal modification (11) of the
A potential, we shall here consider anadditivemodification
of the waveform, having the structure

hℓm = h0ℓm + htidalℓm . (15)

This is slightly different from the factorized form introduced
in Eq. (71) of [21] and used in [1]. The above additive form
turns out to be more convenient for incorporating higher-order
relativistic corrections to the tidal waveform. Using the recent
computation [29] of the 1PN-accurate Blanchet-Damour mass
quadrupole moment [52] of a tidally interacting binary system
(together with the Newtonian-accurate spin quadrupole, and
mass octupole), and transforming their symmetric-trace-free
tensorial results into ourℓm-multipolar form, we have com-
puted the corresponding 1PN-accurate value3 of htidal22 , as well
as the 0PN-accurate values ofhtidal21 , htidal33 andhtidal31 . In addi-
tion, using the general analysis of tail effects in Refs. [30, 53],
and the resummation of tails introduced in Refs. [31, 54], we
were able to further improve the accuracy of these waveforms
by incorporating (in a resummed manner) the effect of tails
(to all orders inM ). From a PN point of view, this means, in
particular, that the tidal contribution we use to the total metric
waveform is 1.5PN-accurate.

In summary, the EOB tidal model that we use here is analyt-
ically complete at the 1.5 PN level and contains only one (yet
undertermined) higher-order flexibility parameter, namely ᾱ2,
taken as common value of the variousᾱ(ℓ)

2 , ℓ = {2, 3, 4, . . .}
in Eq. (14). Note that though this parameter is formally of
2PN order, it is used here as aneffectiveparametrization of all
the higher-order effects not covered by the current analytical
knowledge (both in the conservative dynamics and in the radi-
ation reaction). Note also that, while in the general case such a

3 We leave a detailed presentation of our results to future work; let us, how-
ever, mention that, notwithstanding some statements in footnote 4 of [29],
the 1PN-accurate (circular) quadrupolar waveform exactlymatches the
form given in Eq. (71) of [21] (which was expressed in terms offrequency-
related gauge-invariant quantities).

parameter should be allowed to depend on the mass ratio and
the compactnesses, in the equal-mass case that we consider
here, it is a pure number. We shall use below the comparison
between NR simulations and EOB predictions to constrain the
value of the effective higher-order parameterᾱ2.

C. PN-expanded Taylor-T4

Tidal effects can be accounted for also via modifications
of one of the non-resummed “post-Newtonian” description of
the dynamics of inspiralling binaries [7, 16, 20]. Ref. [20],
in particular, has recently suggested to use as baseline a time-
domain T4-type incorporation of tidal effects. We recall that
the phasing of the T4 approximant is defined by the following
equations

dφT4
22

dt
= 2 x3/2,

dx

dt
=

64

5
ν x5

{
aTaylor3.5 (x) + atidal(x)

}
, (16)

whereaTaylor3.5 is the PN expanded expression describing point-
mass contributions, given by

aTaylor3.5 (x) = 1−
(
743

336
+

11

4
ν

)
x+ 4πx3/2

+

(
34103

18144
+

13661

2016
ν +

59

18
ν2
)
x2 −

(
4159

672
+

189

8
ν

)
πx5/2

+

[
16447322263

139708800
− 1712

105
γ − 56198689

217728
ν +

541

896
ν2

− 5605

2592
ν3 +

π2

48
(256 + 451ν)− 856

105
ln(16x)

]
x3

+

(
−4415

4032
+

358675

6048
ν +

91495

1512
ν2
)
πx7/2 (17)

and whereatidal is the tidal contribution. From [29] the latter
is given at 1PN accuracy by

atidal(x) =
∑

I=A,B

aLO(XI)x
5(1 + a1(XI)x) (18)

where

aLO(XI) = 4k̂I2
12− 11XI

XI
(19)

and

a1(X) =
4421− 12263X + 26502X2 − 18508X3

336(12− 11X)
. (20)

In the particular case when the two stars have equal masses,
XA = XB = X = 1/2, and same compactness,CA = CB =
C, the tidal contributionatidal(x) has the form

atidal(x) = 26 κT2 x
5 (1 + aT4

1 x), (21)

with aT4
1 = 5203/4368 ≈ 1.19.
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Similarly to the inclusion of yet uncalculated higher-order
effects in the tidally-augmented EOB formalism via the effec-
tive parameter̄α2, we shall consider below aneffectivemodi-
fication of the 1PN result (21) of the form

atidal(x) = 26 κT2 x
5 (1 + aT4

1 x+ aT4
2 x2), (22)

with an effective higher-order parameter4 aT4
2 that we shall

constrain by comparing NR data to the T4-predicted phasing.
Let us mention that, in the case of inspiralling BBH sys-

tems, several studies [31, 47, 55] have shown that the nonre-
summed Taylor-T4 description of the GW phasing was signif-
icantly less accurate than the EOB description, especiallyfor
mass ratios different from one. Ref. [21] has also shown that,
in the presence of tidal effects, it was predicting GW phases
that differed by more than a radian with respect to the tidal-
completed EOB model. Below, we will investigate how the
T4 phasing based on Eq. (16) differs from the EOB one, both
in the absence (Eq. (21)), and in the presence (Eq. (22)) of the
higher-order parameteraT4

2 .

IV. CHARACTERIZING THE PHASING: THE Qω(ω)
FUNCTION

In order to measure the influence of tidal effects it is useful
to consider the “phase acceleration”ω̇ ≡ dω/dt ≡ d2φ/dt2

as a function ofω, sayω̇ = α(ω) (hereω ≡ ω22 can be either
the curvature or the metric instantaneous GW frequency). In-
deed, as emphasized in [31], the functionα(ω) is independent
of the two “shift ambiguities” that affect the GW phaseφ(t),
namely the shifts in time and phase. Theα(ω) diagnostics (es-
pecially in its Newton-reduced formaω = α(ω)/(cνω

11/3)
with cν = 12

5 2
1/3ν is a useful intrinsic measure of the qual-

ity of the waveform and it has been used extensively in recent
analyses of BBHs [47, 54, 56, 57].

Here we will use another dimensionless measure of the
phase acceleration: the functionQω(ω) which is defined as
the derivative of the (time-domain) phase with respect to the
logarithm of the (time-domain) frequency

Qω(ω) =
dφ

d ln ω
=
ω dφ/dt

dω/dt
=
ω2

ω̇
=

ω2

α(ω)
. (23)

Note that, as a consequence of this definition, the (time-
domain) GW phaseφ(ω1,ω2) accumulated between frequen-
cies(ω1, ω2) is given by the following integral:

φ(ω1,ω2) =

∫ ω2

ω1

Qωd lnω . (24)

4 We found that the 1.5PN fractional contributionaT4
3/2

x3/2 to atidal(x),
predicted by our 1.5PN-accurate EOB waveform, has (like the1PN con-
tribution) only a small effect on the phasing compared to thelarge ampli-
fication that we shall need to agree with NR data. This is why weonly
consider here, for simplicity, and for easier comparison with the 2PN EOB
parameter̄α2, the formally 2PN parameteraT4

2 .

FIG. 3: Exploring the properties ofQω curves computed within the
EOB model for three binary systems. Tidal interactions are approx-
imated at LO. The insets show a magnification, in order to highlight
the differences among the curves.

Stated differently, the functionQω(ω)measures the number
of GW cycles spent by the binary system within an octave of
the GW frequencyω (it is therefore analogous to the “quality
factor”Q of a damped oscillator). Let us also note that, in the
stationary phase approximation,Qω enters as an amplification
factor of the signal, so that the squared signal-to-noise ratio is
equal to [58]

ρ2 = 4

∫
d ln ω

Qω(ω)A
2(ω)

ω Sn(f)
, (25)

whereA denotes the amplitude of the time-domain metric
waveform, and whereSn(f) denotes the one-sided noise
power spectral density andf ≡ ω/(2π).

In view of its definition,Qω is a usefulquantitative indi-
cator of the physics driving the variation ofω. Indeed, a
change ofQω(ω) of the order±1 during a frequency “octave”
ln(ω2/ω1) = 1 corresponds to a local dephasing (aroundω)
of ∆φ ≃ ±1. Because such a dephasing (if it occurs within
the sensitivity band of the detector) can be expected to sig-
nificantly affect the measurability of the signal, it is probably
necessary to modelQω with an absolute accuracy of about±1
(see Ref. [56] for a quantitative discussion of the admissible
error level onQω in the BBH context).

We start our analysis by comparing theQω functions (as
predicted by the EOB formalism) for the (metric) gravitational
waveformsh22 generated by three (equal-mass) binary mod-
els, namely a BBH and the two BNS systems discussed in
Sec. II A. To simplify the discussion, these functions are com-
puted with the LO tidal interaction̂Aℓ(u) = 1. [We shall
separately study below the effect of changingÂℓ(u).]

Figure 3 compares the properties of theQω functions by
showing together the curves for the three binaries versus their
corresponding GW frequency. A number of remarks are worth
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FIG. 4: Obtaining theQω diagnostic from a suitable fitting procedure of the GW phase (for both curvature and metric waveforms). The two
vertical lines on the left panels indicate the time interval∆t/M = [1000, 2290] where we fit the NR phase with Eq. (27). For complete-
ness we also display the real part of the metric waveform. On the right panels, the (light) dashed lines refer to theQω obtained by direct
numerical differentiation of the raw data; the solid lines are instead obtained from the fitted phase. Although the curves displayed here refer to
modelM3.2C.14, similar results are obtained also for the binaryM2.9C.12.

making. First,Qω is a large number that diverges in the
small-frequency limit. This follows from the fact that in
the limit ω → 0 one hasα(ω) ≈ cνω

11/3, and then, via
Eq. (23),Qω = 1/(cνω

5/3) ∼ (c/v)5. Second, the pres-
ence of tidal interactionsdecreasesthe “point-mass” value of
Qω by an amount that is (essentially) proportional toκT2 . In
other words, tidal effects “accelerate” the inspiral by reducing
the number of cycles spent around a given frequency. In par-
ticular, BBHs (which have vanishing tidal constants [18, 19])
are effectively the binaries that spend the largest time at any
given frequency. Finally, note that sinceQω is a large num-
ber, the fact that the curves look relatively close on the large-
scale plot can be misleading, since the corresponding accumu-
lated relative phase difference can actually be large (see inset,
which shows that the absolute differences between the various
Qω(ω) is of order10, corresponding to integrated dephasings
of order10 radians.).

Although the calculation of the phase “quality-factor”Qω is
straightforward within the EOB framework, this is not the case
whenQω is to be calculated from the NR (either curvature
or metric) waveforms. Indeed, the direct computation of the
Qω functions from raw data is in general made difficult by
the presence of both high-frequency noise inω(t) and of low-
frequency oscillations probably due to a residual eccentricity.
This is illustrated in the right-panel of Fig. 4, where we show
with (light) dashed lines the raw NRQω functions obtained
by direct time-differentiation of the NR curvature (top panel)
or metric phase (bottom panel) for the binaryM3.2C.14. A

fourth order accurate finite differencing algorithm has been
used to compute the derivatives. Similar results have been
obtained also for the binaryM2.9C.12.

We see on this Figure that the time-differentiations in-
volved in the definition ofQω(ω) amplify very much the high-
frequency noise contained in the NR phase evolution, and
make it impossible to extract a reliable value ofQω(ω) from
such adirect numerical attack. To tackle this problem, one
needs to filter out the high-frequency numerical errors in the
time-domain phase before effecting any time-differentiation.
To do this, we found useful to “clean” the phaseφ(t) by fit-
ting the NR phase to an analytic expression that is modeled on
the PN expansion. More precisely, after introducing a formal
“coalescence” timetc, and defining the quantity

x ≡
[ν
5
(tc − t)

]−1/8

, (26)

we fitted the time-domain NR phaseφNR(t) to an expression
of the form

φ(t; tc, p2, p3, p4, φ0) = φ0 +− 2

ν
x−5

×
(
1 + p2x

2 + p3x
3 + p4x

4
)
. (27)

In this expression, we have set the lower coefficientsp0, p1
to p0 = 1 andp1 = 0, as suggested by the corresponding
lowest-order PN expression (seee.g.Eq. (234) of [59]), but
we left tc, φ0, and the higher-PNpi’s as free coefficients to
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be determined from the NR data. The basic idea is that of
using a simple analytical form that incorporates the leading
trend ofQω to remove the influence of the numerical errors
while leaving some flexibility in the subleading part of the
phase evolution that is influenced by tidal effects. We view
the fitting parameters{p2, p3, p4} as effective parameters for
describing tidal-phasing effects.

Such a fit of the phase evolution can be reliably done only
in a limited time interval. Indeed, one has to cut off both the
early phase of the inspiral (where the numerical data are too
noisy), and the last few cycles before the merger (where the
PN-based fit is no longer a good approximation). We present
in Appendix B a detailed discussion of the optimal choice of
the time interval where to make the fit, as well as a series
of consistency checks. See also the discussion at the end of
Sec. V B.

Let us start by discussing the application of this procedure
to the GW phase (both curvature and metric) of the binary
modelM3.2C.14. The result of this fitting is shown by the
solid lines in the right-panels of Fig. 4 (top, curvature phase;
bottom, metric phase). The time interval on which we could
reliably apply the fitting procedure isIt/M = [1000, 2290].
This time window is indicated by the dashed lines in the top-
left panel of Fig. 4, were we show together the time evolution
of both the curvature (dashed, red online) and metric (solid)
GW frequencies. For completeness, the lower-left panel of the
same figure translates this information in terms of GW cycles
of the metric waveform. Note that this time interval misses
the first 4 GW cycles (whose NR frequency is indeed seen to
be quite noisy), but covers about 10 GW cycles, and ends up
around 2 GW cycles before the merger (i.e. the maximum of
the modulus of the metric waveform). [Note that the modulus
of the metric waveform is indicated by a dashed line on the
left-bottom panel of the figure]. The corresponding frequency
interval can be visualized on the right panels, and is listedin
the third row of Table III. Similar results are obtained alsofor
theM2.9C.12 data (see Fig. 9 below). In this case, the time
interval we use isIt/M = [1300, 3366], with the correspond-
ing frequencies listed in the tenth row of Table III. Note that
for this model the inspiral is longer than in the previous case
and so this interval actually corresponds to 14 GWs cycles. In
addition, similarly to the other case, our choice of fitting in-
terval misses the first 5.5 GW cycles, and ends about 2 GW
cycles before merger.

As we shall see below, though the frequency windows
where our cleaning procedure allowed us to compute an esti-
mate of the NRQω(ω) functions do not cover the full inspiral,
these estimates will give us access to important information
for performing quantitative comparisons with the predictions
of the EOB (and Taylor T4) analytical models.

V. NUMERICAL ERROR-BUDGET

The aim of this section is to discuss the various errors af-
fecting the numerical waveforms extracted (for both models)
at 500M⊙ and computed with the highest resolution. Such
a discussion will in turn allow us to estimate an uncertainty
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FIG. 5: Comparing waveforms from isentropic (dashed) and non-
isentropic (solid) evolution for BNS modelM3.2C.14. Wave-
forms are computed with the highest resolution and extracted at
robs = 500M⊙. The corresponding phase differenceφpolyHR500 −
φIFHR500 is displayed in Fig. 6.

range on the analytical parameterᾱ2 representing the not-yet-
calculated, high-PN-order tidal effects entering the EOB de-
scription of the phasing.

We shall discuss in turn the numerical errors entailed by
three different effects: (i) the choice of EOS (isentropic versus
non-isentropic evolution); (ii) the finiteness of the extraction
radius; (iii) the finite of the resolution. We shall perform this
analysis both by comparing waveforms in the time domain
and by means of theQω diagnostic.

A. Time-domain analysis

1. Non-isentropic evolutions

As discussed in Sec. II A, we have evolved the binaries us-
ing either a (isentropic) polytropic EOS or a (non-isentropic)
ideal-fluid EOS. We recall that, in the absence of large-scale
shocks (like those taking place at the merger), the two EOSs
are equivalent and should therefore yield evolutions that dif-
fer only at machine precision. In practice, however, when us-
ing the ideal-fluid EOS small shocks are produced in the very
low-density layers of the stars as these orbit [2]. These small
shocks channel some of the orbital kinetic energy into internal
energy, leading to small ejections of matter (i.e.∼ 10−6M⊙),
and are thus responsible for slight differences even duringthe
inspiral. Since we are here presenting the results of simula-
tions that are considerably longer than any presented so far
and in particular of those in Refs. [2, 6], it is important to
quantify the influence of these non-isentropic effects. Con-
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centrating on modelM3.2C.14, we show in the top-panel of
Fig. 5 the real parts of therψ22

4 waveforms computed with
the two EOSs as extracted atrobs = 500M⊙ = 165.1M .
The bottom panel displays the corresponding instantaneous
frequencies for completeness. As customary in comparing
waveforms in the time domain, one allows for arbitrary rel-
ative time and phase shifts(τ, α). These quantities can be
determined in various ways, for example by means of the two-
frequency pinching technique of Ref. [60]. In this paper we
find it useful to use the method used in Ref.[55] to compute
(τ, α). More precisely, given two numerical phase time series
{φ1(ti), φ2(ti)} defined on a given time interval[tL, tR] that
is covered byN numerical pointsti, with i = 1, 2, . . . , N , we
define the quantity

∆φ(ti, τ, α) = φ2(ti + τ)− φ1(ti)− α (28)

and determineτ andα such that they minimize the “reduced”
χ2 quantity

χ̂2 =
1

N

N∑

i=1

(∆φ(ti, τ, α))
2. (29)

The minimization onα is done analytically, while that onτ is
done numerically. Note in addition that the square root of the
minimum value of Eq. (29), say

σ∆φ =

√√√√ 1

N

N∑

i=1

(∆φ(ti, τ, α))2min (30)

has the meaning of a root-mean-square deviation of the phase
difference∆φ over the interval[tL, tR]; as such, it can also
be employed to give a quantitative measure of a phase dif-
ference (and thereby of some phase errors).5 The phase dif-
ference∆φ(t) ≡ φ2(t) − φ1(t) = φpolyHR500 − φIFHR500

(least-square minimized on the time interval[tL, tR]/M =
[300, 2540]) is represented as a dash-dotted line (solid light
blue) in Fig. 6. One sees that the instantaneous phase differ-
ence varies roughly between +0.2 rad and -0.1 rad on this time
interval, which corresponds to a two-sided phase uncertainty
of the order∆φ = ±0.15 rad. The information of Fig. 6 is
completed by Table II, where we list both theℓ∞ norm of the
phase difference, labelled||∆φ||∞, and the root-mean-square
σ∆φ as computed above [as well as the corresponding time
interval [tL, tR] that is used to compute(α, τ)]. Note that
σ∆φ gives a measure of the phase difference which is always
significantly smaller than theℓ∞ norm (i.e. the maximum
absolute value of∆φ(t)). Indeed, these two quantities mea-
sure different aspects of a phase difference, and, when the

5 We note in passing that the alignment procedure also highlights the weak
dependence on the EOS of the late part of the waveform: although the
inspiral of the non-isentropic waveform is about150M longer than the
corresponding isentropic one, the growth ofMω22 (and the corresponding
phasing) is qualitatively and quantitatively very close for both models until
Mω22 peaks for the first time.

FIG. 6: Estimate of the phase uncertainty in the time domain for
modelM3.2C.14 (top) andM2.9C.12 (bottom). The figure shows
the phase difference between different “post-processed” numerical
curvature waveformsrψ4 (in particular, extrapolated in resolution
and/or extraction radius) and the one obtained with the IF EOS and
extracted atrobs = 500M⊙.

time variation of∆φ(t) is dominated by low-frequency ef-
fects (which can be roughly modelled as power laws), the av-
eraging involved in the definition ofσ∆φ will lead to a small-
ish ratioσ∆φ/||∆φ||∞ < 1 linked to integrals of the type∫ 1

0
dt t2n = 1/(2n+ 1).

2. Finite-radius extraction

We next discuss the phasing error introduced by the fact
that our high-resolution target waveforms, for both models,
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TABLE II: Uncertainty estimates on the phase (in radians) ofrψ4
22,

computed in the time domain, for both BNS models. From left to
right, the columns report: the EOS, the coordinate extraction radius,
the type of extrapolation that is performed on the waveform (either in
extraction radius or resolution), the time interval on which theχ2 of
the phase difference is minimized, thel∞ norm of the phase differ-
ence over this interval, the root-mean-square of the phase difference.

M3.2C.14

EOS robs Extrapolation [tL, tR] ||∆φ||∞ σ∆φ

IF @500M⊙ radius [400, 2650] 0.17 0.035

IF @200M⊙ resolution [400, 2650] 1.29 0.31

poly @500M⊙ . . . [300, 2540] 0.21 0.057

poly @500M⊙ radius [300, 2550] 0.43 0.08

M2.9C.12

EOS robs Extrapolation [tL, tR] ||∆φ||∞ σ∆φ

IF @500M⊙ radius [250, 3650] 0.31 0.035

are extracted at the finite coordinate radiusrobs = 500M⊙.
Note that, when expressed in units of the gravitational massof
of the binary at infinite separation,M , this value corresponds
to robs = 134.9M for M2.9C.12 androbs = 165.1M for
M3.2C.14, i.e., for one model waves are actually extracted
slightly farther than for the other. For both models we have at
our disposal several extraction radii, so that we can estimate
the phasing error linked to the finite extraction radius as fol-
lows: (i) We used the rawrψ22

4 data extracted at radiir =
{400, 450, 500}M⊙; (ii) We time-shifted them so that this
triplet of time series is expressed as a function of the (coordi-
nate) retarded timeu = t−r−2MADM ln [r/(2MADM)− 1];
(iii) We separated each curvature waveform in phase and am-
plitude as functions ofu; (iv) We fitted each resulting triplet
of time series to a linear polynomial in the triplet of inverse
extraction radii: c∞(u) + c1(u)/r. The quantitiesc∞(u)
(i.e. A∞(u) and φ∞(u)) yield estimates of the amplitude
and phase of the infinite-radius extrapolation ofrψ4. We then
compare the radius-extrapolated phaseφ∞(u) to the phase ex-
tracted at the outermost radius, allowing for additional time
and phase shifts (which are determined by the least-square
minimization discussed above).

The time evolution of the phase differences computed in
this way are shown in Fig. 6 for modelM3.2C.14 (top panel,
dash-line) and forM2.9C.12 (bottom panel). This local in-
formation is completed by the “global” quantitative informa-
tion (||∆φ||∞, σ∆φ) listed in the fifth and last row of Table II.
On the basis of this analysis, we estimate that, for both mod-
els, the phase uncertainty due to to finite extraction is of order
∆φ ≈ ±0.05 rad almost up to merger, say about100M before
the peak of the GW frequency.

3. Finite-resolution error

Finite-resolution errors have already been discussed in de-
tail in our previous work [6], which used the same numeri-
cal setup (i.e. the same resolution and grid structure) adopted
here. Skipping the details, we recall that it was shown there
that, at the resolution that we are using in this work, the dy-
namics and waveforms are in the convergence regime, with
a convergence rateσ that is≃ 1.8 during the inspiral phase
and drops to≃ 1.2 after the merger and when large-scale
shocks appear. As the computational cost of the calculations
presented here is already at the limit of what can be reason-
ably afforded, we have decided to estimate the truncation-
error of our present waveform by assuming that the inspiral
convergence rateσ ≃ 1.8 found in our previous work [6] ap-
proximately holds in the present (numerically similar) case,
and by using only two simulations, which we have performed
for the more compact binaryM3.2C.14. More specifically,
we have considered a “high-resolution” simulation, where
the finest refinement level has a resolution∆1 = 0.12M⊙,
and a “low-resolution” simulation, with∆2 = 0.15M⊙.
For this particular comparison the waveforms are extracted
at robs = 200M⊙. When comparing the low and high-
resolution curvature waveforms, after suitable(τ, α) align-
ment, one discovers that the phase difference accumulated be-
tween the two resolutions over∼ 2300M of the inspiral, is
about0.45 rad (corresponding to a relative error of≃ 0.36%).
Using the convergence rate measured in [6], we can now
Richardson-extrapolate the results obtained with the two res-
olutions and obtain an estimate of the “infinite-resolution”
waveform. More precisely, we model the suitably aligned,
low- and high-resolution phase evolutions as

φ∆1
(t) = φ0(t) + k(t)∆σ

1 , (31)

φ∆2
(t) = φ0(t) + k(t)∆σ

2 , (32)

whereφ0(t) represents the infinite-resolution phase (∆ →
∆0 = 0). From the above equations, we obtain the following
estimate of the infinite-resolution extrapolation of the phase
evolution

φ0(t) =
∆σ

2φ∆1
(t)−∆σ

1φ∆2
(t)

∆σ
2 −∆σ

1

. (33)

We performed the same extrapolation also on the waveform
modulus, so to have access to the complete extrapolated cur-
vature waveform. The solid line in Fig. 6 displays the phase
differenceφIF2000 − φIFHR500. This indicates a phase uncer-
tainty of ∆φ ≈ ±0.5 radians onφIFHR500 as measured up
to about100M before the maximum ofMω22. See Table II
for the corresponding global measures||∆φ||∞, σ∆φ, of the
phase uncertainty. Note that these uncertainty estimates are
much larger than that normally computed for binary black-
hole simulations for the same computational costs (see, for
instance, [61]). It is, however, the natural consequence of
the smaller resolution employable here and of the lower-order
convergence that is possible to achieve when solving the hy-
drodynamics equations. Since this error is deducedonly after
assuminga certain convergence order (obtained within a sim-
ilar numerical setup), it must be used with a grain of salt, and
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FIG. 7: Left panel: span ofQω ’s due to the various approximations to the curvature waveforms from modelM3.2C.14. Right panel: the
corresponding differences∆Qω = QXω −QIFHR500

ω between the various curves and the fiducial one obtained fromthe phase computed at the
highest resolution and extracted at500M⊙.

TABLE III: Uncertainty estimates on therψ4 phase of theIFHR500 fiducial simulations obtained from integration of the differences between
Qω ’s. From left to right the columns report: the EOS, the coordinate extraction radius, the type of extrapolation that is performed on the
waveform, the frequency intervalIω where the cleaning procedure is applied, the correspondingtime intervalIt/M , the accumulated phase
difference∆φψ4

= φX − φIFHR500 on acommonfrequency intervalIcω, the number of GW cycles on the same frequency interval and the

relative phase differencê∆φψ4
= ∆φψ4

/φψ4
. We choose the common interval of integration to beIcω = [0.045, 0.067] for modelM3.2C.14

andIcω = [0.037, 0.054] for modelM2.9C.12.

M3.2C.14

Data robs Extrapolation Iω It/M ∆φψ4
[rad] φψ4

/(2π) ∆̂φψ4
[%]

IF @500M⊙ . . . [0.041, 0.068] [1000, 2290] . . . 9.14 . . .

IF @500M⊙ radius [0.044, 0.069] [1000, 2130] -0.39 8.99 -1.61

IF @200M⊙ resolution [0.046, 0.072] [1000, 2145] 1.28 9.34 2.24

poly @500M⊙ . . . [0.041, 0.069] [1000, 2290] -0.92 9.07 -0.69

poly @500M⊙ radius [0.044, 0.072] [1000, 2030] -1.24 8.94 -2.16

M2.9C.12

EOS robs Extrapolation Iω It/M ∆φψ4
[rad] φψ4

/(2π) ∆̂φψ4
[%]

IF @500M⊙ . . . [0.036, 0.058] [1300, 3366] . . . 13.02 . . .

IF @500M⊙ radius [0.037, 0.054] [1300, 3070] -0.18 13.00 -0.2

we will use it below only to estimate a rough uncertainty range
on the value of the higher-order EOB tidal correction param-
eterᾱ2. We shall comment more on this in the next sections.

One possible strategy at this stage would be to add to-
gether, in quadrature, the various uncertainties computedso
far to obtain a total error bar on the phases of theIFHR500
data for theM3.2C.14 model. This procedure would then
give a (two-sided) time-domain phase uncertainty∆φ ≃√
0.152 + 0.052 ≃ ±0.16 rad, when excluding the uncer-

tainty due to the finiteness of the resolution, or∆φ ≃√
0.152 + 0.052 + 0.52 ≃ ±0.52 rad when including it. Al-

ternatively, if we add in quadrature the root-mean-squaresof
the corresponding phase errors we findσ∆φ ≃ ±0.07 rad,
when excluding the uncertainty due to the finiteness of the res-

olution, andσ∆φ ≃ ±0.32 rad when including it. Clearly the
resolution-extrapolation error is dominating the error budget.
In view of the uncertainty in estimating this source of error,
we shall not directly use these time-domain phase-error lev-
els in estimating the uncertainties in the comparison between
the EOB, T4, and NR phasings. As we shall discuss next, we
prefer to express the information gathered above on numerical
errors in terms of the correspondingQω curves.

B. Qω analysis

In Sec. IV we have introducedQω = ω2/ω̇ as a convenient,
intrinsic diagnostics to describe the phasing of the waveform.
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FIG. 8: Sensitivity of theQω to the phase model used in the fitting
procedure. Note that then = 4 andn = 6 curves are barely distin-
guishable on the plot. See text for further explanations.

In particular, it allows us to better visualize the influenceof
tidal effects on the phasing as well to quantitatively compute
the intrinsically defined dephasing accumulated on a given
frequency interval. It is then useful to recast the various time-
domain phase uncertainties on the high-resolution waveform
extracted at500M⊙ discussed above, in terms ofQω. In prac-
tice, we apply the cleaning procedure on each waveform of
Table II so as to obtain fourQω curves. These curves are
displayed together in the left panel of Fig. 7, while the third
column of Table III lists the specific frequency intervalsIω
that were selected to apply the cleaning procedure. For a bet-
ter quantitative assessment of the differences between theQω
curves, we present in the right panel of the figure the quantity
∆QXω (ω) = QXω (ω) − QIFHR500

ω (ω), where the labellingX
indicates any other curve than our fiducialIFHR500 one. Al-
though the information conveyed by this figure is qualitatively
analogous to the time-domain analysis, Fig. 6, it is made here
both more intrinsic (i.e. independent of any phase-alignment
procedure), and quantitatively sharper. First of all, the fig-
ure shows that the extrapolations in radius and in resolution
act in different directions: the first pushes the curve down
(i.e., less GW cycles accumulated on a given frequency inter-
val, tidal effects look stronger), while the second pushes the
curve up (i.e., more GW cycles accumulated and tidal effects
look weaker). This result is qualitatively compatible withthe
corresponding∆φ curves in Fig. 6, whose slopes have oppo-
site signs. In addition, by integrating overln(ω) the ∆Qω
curves on thecommonfrequency intervalIcω = [0.045, 0.067]
one obtains an estimate of an actual accumulated phase error

that can be compared to our previous time-domain results (i.e.
Fig. 6). The result of this integration is given in the fifth col-
umn of Table III. Note that the∆φψ4

computed in this way
is typically significantly larger than what was estimated above
in the time domain. For instance, regarding the comparison
with the resolution extrapolated waveform, theQω-based pro-
cedure indicates a phase difference of about 1.3 rad overIcω ;
by contrast, inspecting Fig. 6, where the vertical (red) dashed
line correspond toIcω in the time-domain, we read from the
plot an accumulated phase difference on this interval of about
0.8 rad, i.e. about40% smaller. Similar results hold for the
other phase comparisons. This increase in the estimated phase
errors is probably due to the additional uncertainty brought by
the necessity to use a phase-cleaning procedure to compute
eachQXω (ω) (see below). This is the price we have to pay to
be able to have the convenience of anintrinsic diagnostic of
the phase evolution.

A separate discussion is needed when comparing isentropic
and non-isentropicQω curves. Figure 7 indicates that the
curve corresponding to the ideal-fluid EOS is “pushed up”
with respect to the polytropic one, indicating then that the
tidal interaction appearsweakerin the former case than the
latter (because the IF curve is closer to the point-mass one
than the polytropic one, see below). This effect, during the
inspiral, is likely due to the small shocks that are formed by
the interaction between the outer layer of the stars and the
external atmosphere. The polytropic EOS should yield a pri-
ori a more accurate evolution during the inspiral, when the
stars are far apart, but should become progressively inaccurate
and inconsistent when the two stars become closer and closer,
with mass shedding and the formation of actual shocks that are
not simply due to the weak interaction with the atmosphere.
This discussion is meant to warn us that, if it is true that the
non-isentropicQω’s are probably slightly too high because of
the influence of the atmosphere, the corresponding polytropic
ones are probably too low because of the intrinsic inconsis-
tency in the polytropic EOS when the stars get closer and
closer6. For this reason we shall not use the isentropicQω ’s
as a lower bound in our analysis, but we shall focus only on
non-isentropic evolutions, though keeping in mind that there
is a further source of error on them.

A natural question that comes at this stage is: what is the
error barσQω

on theQω(ω) function that is due to the phase-
cleaning (i.e. phase-fitting) procedure? A partial way of ad-
dressing to this issue is to measure the quantitative effecton
Qω(ω) of changing our fiducial fitting function, Eq. (27). Fo-
cussing, for both models, only on our basicIFHR500 data,
we computed the cleaned frequency using, besides our fidu-
cial n = 4 fitting polynomial, Eq. (27), both a shorter poly-
nomial, truncated atn = 3, and a longer one, extended up
to n = 6.7 The results of these computations are displayed in

6 Remember that we obtain the curves out of a global fit, so that the low-
frequency and high-frequency behavior are actually correlated.

7 Note thatn = 5 is not meaningful as the correspondingp5 term is exactly
degenerate withφ0. (The use ofx5 lnx does not help, as the correspond-
ing term is nearly degenerate withφ0.)
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Fig. 8 for modelM2.9C.12 (top panel) andM3.2C.14 (bot-
tom). The results are qualitatively analogous in both cases.
First, we see that the low polynomial ordern = 3 is clearly
too small, and fails to capture (when comparing it to the PN
- or EOB - curves which are accurate on the low-frequency
side) the low-frequency behaviour ofQω(ω). By contrast, the
fact that then = 6 curve is barely distinguishable (on the
scale of the figure) from then = 4 one, is an indication of a
sort of “convergence” of our fitting procedure as the number
of xn powers is increased. We can therefore use thedifference
betweenQn=6

ω (ω) andQn=4
ω (ω) as an estimate of the uncer-

taintyσQω
(ω) entailed by the cleaning procedure. Computing

this difference, we find that it remains of order unity all over
the fitting frequency intervalIω . More precisely, we estimate
that the error level due to the cleaning isσQω

= ±0.5. Note
that this error level is rather small compared to the variousnu-
merical errors onQω(ω) displayed in Figure 7, but it may be
only a lower bound onσQω

, as we have not investigated in de-
tail other sources of uncertainty associated with our cleaning
procedure.

VI. COMPARISON OF ANALYTICAL AND
NUMERICAL-RELATIVITY RESULTS

A. Characterizing tidal effects from NR simulations

Before proceeding with the NR/AR comparison it is useful
to discuss a procedure by means of which it is possible to ef-
fectively subtract the tidal interaction from the NRQω curves
obtained so far. This procedure will then allow us to obtain
a phase diagnosticQ0

ω that, within some approximation, rep-
resents a non-tidally interacting binary, namely a binary of
two point-particles. As pointed out in Ref. [21], the binding
energy of a binary systemEb(Ω) is approximately linear in
κT2 and it is therefore possible to subtract the tidal effects by
combining different sets of binding-energy curves coming out
of NR calculations. In particular, Ref. [21] computed several
“tidal-free” binding energy curves (one curve for each com-
bination of two different data sets) that were compared with
the corresponding point-mass curve computed within the EOB
approach or within non-resummed PN theory. This procedure
allowed both for the identification (and thus subtraction) of
systematic uncertainties in the NR data, and for the discovery
of higher-order tidal amplification effects.

Here we shall generalize the approach introduced in
Ref. [21] to theQω curve. In particular we assume that the
functionQω(ω) is approximately linear in the (leading) tidal
parameterκT2 , at least during part of the inspiral, say up to
some maximum frequencyωmax (we will useωmax ≈ 0.07).
As a result of this assumption, we can approximately write
Qω(ω), for each binary, as

Qω(ω; I) = Q0
ω(ω) + (κT2 )I Q

2
ω(ω) +O

(
(κT2 )

2
)
, (34)

whereI is an index labelling some binary system. As a con-
sequence of this structure, given theQω diagnostics of two
different binaries with labels(I, J), we can (approximately)

FIG. 9: Subtraction of tidal effects: shown as a solid line isthe point-
mass EOB curve, while shown as a dashed line is theQ0

ω curve ob-
tained by inserting in Eq. (35) the tidally-modified EOBQω curves
shown in Fig. 3.

estimate the two separate functionsQ0
ω(ω) andQ2

ω(ω) as

Q0
ω(ω) =

(κT2 )IQω(ω; J)− (κT2 )JQω(ω; I)

(κT2 )I − (κT2 )J
, (35)

Q2
ω(ω) =

Qω(ω; I)−Qω(ω; J)

(κT2 )I − (κT2 )J
. (36)

From the decomposition (34), we see that, by definition, the
functionQ0

ω denotes theQω diagnostic of two non-tidally in-
teracting neutron stars, namely of two point-like (relativistic)
masses (and also two black holes [18, 19]). Hence, the func-
tion Q2

ω(ω) is seen to represent, within the present approxi-
mation, the effect of the tidal interaction on theQω function.
The calculation of both functions contains therefore impor-
tant information about the analytical representation of tidally-
interacting binary systems. In the following we shall only dis-
cuss the computation of the tidal-free partQ0

ω(ω), leaving a
discussion of the properties ofQ2

ω(ω) to a future publication.

This subtraction procedure for computingQ0
ω(ω) can be

first tested by using the EOB metric waveforms computed
from binaries with compactnessesC = 0.12 andC = 0.14.
The result of the subtraction is displayed in Fig. 9, where we
compare the point-mass (i.e. BBH) EOBQω curve (solid
line), to theQ0

ω curve (dashed line) obtained by inserting in
Eq. (35) theC = 0.12 andC = 0.14 data of Fig. 3. The fact
that the curves are barely distinguishable up toMω = 0.07
(where the difference is∆Qω ≈ 1) gives us confidence that
the procedure will be effective also with actual NR data. This
will indeed be shown in the next Section.
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FIG. 10: Subtraction of tidal effects from numerical relativity
(curvature)Qω curves according to Eq. (35). Note the excellent
agreement with the point-mass EOB curve in the frequency win-
dow whereM2.9C.12 andM3.2C.14 data overlap. The relative
EOB-NR phase difference accumulated over this overlap interval is
∆φEOBNR

ψ4
= −0.03 rad.

B. Inspiral: subtracting tidal effects from NR data

We start our NR/AR comparison by computingfrom ac-
tual NR datatheQ0

ω function, as defined by Eq. (35) (using
our two modelsM2.9C.12 andM3.2C.14 asI, J binaries).
For all the comparisons carried out here we have limited our-
selves to using the curvature waveforms, although similar re-
sults can be obtained from the corresponding metric wave-
forms.

The results are shown in Fig. 10, which reports four differ-
entQω curves: the two tidally-modified NRQω curves for the
binariesM2.9C.12 andM3.2C.14 (with the asterisks and
triangles highlighting a sample of the data on the common
frequency window), the subtracted NRQ0

ω curve (with empty
circles), and the point-mass-EOBQω (as a solid line). This
figure illustrates at once several of the central results of this
paper. First of all, it highlights the excellent agreement be-
tween the cleaned NRQ0

ω and the analytical EOB one (cf. the
red solid curve and the empty circles). This gives evidence
both for the validity of the EOB description, and for the ro-
bustness of our cleaning procedure. When we compute the
relative phase difference over the common frequency inter-
val [0.042, 0.055], we obtain the remarkably small value of
∆φEOBNR

ψ4
≡ φEOB − φNR = −0.03 rad, which translates

into a relative difference∆φEOBNR
ψ4

/φEOBNR
ψ4

= 0.02% 8.
Second, it confirms, independently of our EOB-based check

8 To cross-check the consistency of both the recovery procedure ofh22 from
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FIG. 11: Comparison of the EOBQω curves for different choices of
the effective tidal amplification factor̂Atidal

ℓ (u) = 1+ ᾱ1u+ ᾱ2u
2,

with the corresponding NR ones (dashed lines with open circles)
for the two binaries considered. The dotted line corresponds to the
“tidal free” (or “point-mass”) EOB, namely, when ignoring tidal
effects. The figure also includes the tidal-free Taylor-T4 model.
The good visual agreement between the analytic and the numerical
curves forᾱ2 = 100 provides evidence of the need for large NNLO
tidal corrections. The corresponding phase differences∆φψ4

=
φEOB − φNR are listed in Table IV.

(cf. Fig. 9), that the NR tidal effects are approximately linear
in κT2 at least in the early part9 of the waveform, and thus that
they can be efficiently subtracted. Third, it illustrates the fact
that the tidal interaction between the two objects is important
already in the early-inspiral part of the waveform, since both
theM2.9C.12 andM3.2C.14 curves are significantly dis-
placed (by∆Qω ∼ 10) with respect to the point-mass one.
Fourth, such a good agreement with the point-mass EOB ana-
lytical model (which was tuned so as to accurately reproduce
the equal-mass BBHs) yields an independent check of the con-
sistency and accuracy of our numerical simulations. Finally,
we note that in Ref. [21] the procedure of subtraction, applied
there to the NR binding energy, was giving a curve slightly
displaced with respect to the point-mass EOB (or PN) curve.
This displacement was interpreted as evidence of systematic
errors in the NR simulation and prompted the introduction of
a “correcting” procedure, which however is not necessary for
the present NR data.

ψ22
4 , and of the cleaning of the phase, we carried out the same calculation

also for the metric waveform, finding a difference∆φEOBNR
h = +0.05

rad, which is consistent with the estimated error-bar∆φ = ±0.02 rad on
the EOBNR point-mass waveform during inspiral [27].

9 In the following, we shall refer to the frequency domainMω . 0.06 as
the “early-inspiral”. Note that for a fiducial1.4M⊙ + 1.4M⊙ system
Mω = 0.06 corresponds tofGW = 690 Hz. Note also that in the case,
for instance, of ourC = 0.14 system the frequencyMω = 0.06 is reached
at timet ≃ 2000M , i.e. only about5 GW cycles before merger.
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FIG. 12: Magnitude of NNLO tidal effects: span of EOBQω curves
(red) varyingᾱ2 so to be compatible with the various (numerical)
Qω curves (black).

C. Early inspiral: evidence for large NNLO tidal effects

We continue our analysis by focussing on the influence of
LO tidal effects on the early-frequency part ofQω curves.
We already know from Fig. 10 that tidal effects are impor-
tant in such early-frequency part of the simulations, sincewe
found a significant difference (of order10) between the point-
mass curve and the NR ones. Can these differences be ac-
counted just by the LO tidal effects? Figure 11 shows quite
clearly that this is not the case and that the LO descriptionis
not sufficientto match the corresponding NR curves (dashed
line with open circles). Note that this is the case for both the
M2.9C.12 (upper panel) and theM3.2C.14 binaries (lower
panel). The difference with NR data (on the frequency interval
I where theM2.9C.12 andM3.2C.14 simulations overlap,
I = [0.043, 0.057]) is quantified in the first line of Table IV
and is rather large, namely several radians.

We next turn to analyzing the effect of NLO and NNLO
tidal interactions. Here, we shall regroup under the label of
NLO both 1PN and 1.5PN effects. As seen on Figure 11,
the inclusion of the NLO tidal effects (ᾱ1 = 1.25 [21], 1PN
tidal-radiation effects [29], and 1.5PN tail effects) has only a
barely noticeable effect on theQω curve. This clearly indi-
cates the need for large NNLO (2PN and higher) tidal effects
that we chose to parametrize by means of the effective param-
eterᾱ2 introduced in Eq. (14). We then found that choosing
ᾱ2 = 100 yields a good match between the NR and EOBQω
curves (solid line, EOBNNLO), especially for theM3.2C.14,
for which the analytical curve is on top of the NR data. See
also Table IV for the corresponding phase differences. The
Table also indicates that if we usēα2 = 130, as we did in
Ref. [1], the accumulated dephasing on the frequency interval
I = [0.043, 0.057] is further reduced to a fraction of a radian
for both models. Note that the implementation of the EOB

waveform, and radiation reaction, that we use here is slightly
different with respect to the one of [1], which was based on
Ref. [21] and thus did not incorporate the waveform 1PN cor-
rections [29], nor the tail effects. This explains why in [1]
we were quoting, for̄α2 = 130, different phase differences
(∆Iφ

EOBNR ≈ 0.1 rad) over the same interval. However, we
prefer here the smaller valuēα2 = 100 because the corre-
spondingQω curve is, on average, closer to the NR one on
the larger frequency intervalI = [0.041, 0.068] on which we
succeeded to clean the NR phase.

At this stage, one should remember that, in the previous
Section, we have shown that various numerical errors af-
fect the computation of the NRQω curves, and thereby af-
fect the quantitative determination of the effective NNLO pa-
rameterᾱ2. For example, we have seen that the resolution-
extrapolation (which seemed to be the dominant source of
uncertainty) has the practical effect of pushing the numerical
Qω curveupwards. This suggests that the valuēα2 ∼ 100
obtained from using finite-resolution NR data is too large.
To have a rough idea of the error range onᾱ2 entailed
by using finite-resolution NR data, we compare in Fig. 12
various NR and EOB curves. More precisely, this figure
shows two numericalQω curves (black): (1) the one derived
from our fiducial highest-resolution and largest-extraction-
radiusIFHR500, and (2) the one derived from the resolution-
extrapolated NR data (as discussed above); as well as three
analytical curves (red): namely the EOB predictions for the
three values̄α2 = 0, 40, 100. We see on this figure that
the resolution-extrapolatedQω curve is close to the analytical
curve corresponding to the valueᾱ2 ∼ 40, which is more than
twice smaller than the valuēα2 ∼ 100 suggested by our fidu-
cial, highest-resolution NR data. It is interesting to notethat
the valuēα2 ∼ 40 agrees with the preferred value ofᾱ2 (when
usingᾱ1 = 1.25) found in the work [21] that found the first
evidence for the need of large NNLO effects. Let us also note
that, independently of the precise value ofᾱ2, Fig. 12 clearly
shows the need for large NNLO effects, namelyᾱ2 ≥ 40.

Let us also recall that the other (probably subdominant)
sources of numerical error act in various directions. For in-
stance, non-isentropic effects actually act so as to effectively
reduce the magnitude of the tidal interaction10, while the ex-
trapolation to infinite extraction radius acts in the opposite di-
rection, namely effectively increasing the magnitude of the
tidal interaction.

At the present stage, in view of our incomplete knowledge
of all the sources of error intervening in our NR waveforms,
we cannot zoom in on a precise value ofᾱ2. The best we can
do is to estimate a rough range forᾱ2. From the various com-
parisons we did (including some that we do not discuss here in
detail), we think it probable that̄α2 is approximately between
40 . ᾱ2 . 130, with the understanding that the lower values
ᾱ2 ∼ 40 are preferred because of the expected importance of

10 Indeed the non-isentropicQω curve is also pushed up with respect to the
isentropic one. This is certainly a source of error during the early-inspiral,
where the isentropic description is a priori more accurate,but some energy
is channelled by shocks due to the interaction with the atmosphere.
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TABLE IV: Measuring the phase difference between NR (curvature)
waveforms and analytic ones (from both EOB and Taylor T4 mod-
els). The phase differences are computed on the frequency interval
I = [0.043, 0.057] common to bothQω numerical curves. From left
to right, the columns report: the type of analytical model, the mag-
nitude of the effective parameters; yielding NNLO tidal corrections;
and the dephasings∆φψ4

= φX − φNR (with X being either EOB
or T4) for bothM2.9C.12 andM3.2C.14 data obtained by direct
integration of the correspondingQω ’s of Figs. 11 and 13 overI .

Model NNLO params ∆φM2.9C.12
ψ4

[rad] ∆φM3.2C.14
ψ4

[rad]

EOBLO ᾱ2 = 0 5.04 1.74

EOBNLO ᾱ2 = 0 4.62 1.58

EOBNNLO ᾱ2 = 100 1.06 0.17

EOBNNLO ᾱ2 = 130 0.056 -0.25

T4LO aT4
2 = 0 6.64 2.33

T4NLO aT4
2 = 0 6.42 2.25

T4NNLO aT4
2 = 350 1.53 0.15

the truncation error in the numerical simulations. More nu-
merical simulations with a more detailed estimate of the nu-
merical error budget will be needed in the future to reduce this
error range on̄α2.

Let us conclude this section by briefly discussing the com-
parison between the NRQω diagnostics with those obtained
using several versions of the Taylor-T4 approximant. More
precisely, Fig. 13 displays the followingQω curves: the tidal-
free T4 model (TTF

4 , upper dashed line), the LO Taylor-T4
model (dashed-line), the NLO (i.e. 1PN) one (dash-dotted
line), and finally the effective NNLO one (solid line), as intro-
duced in Sec. III C above. Let us recall that the NNLO model
contains an effective 2PN parameter, calledaT4

2 , which is a
rough T4 analog of the NNLO EOB parameterᾱ2, and which
enters the T4 tidal amplification factor Eq. (22). Similarlyto
the EOB case, one finds that a suitably large value of the ef-
fective 2PN tidal parameteraT4

2 , is able to provide curves that
are close to the numerical ones. The integrated dephasings
φT4 − φEOB corresponding to Fig. 13 are listed in Table IV.

A few comments are worth making on the comparison be-
tween the EOB and T4 results. Let us first recall that, in the
BBH case, it has been shown that the EOB description is defi-
nitely more accurate than the Taylor-T4 one, especially when
considering unequal mass ratios [47], or spin effects [62].
However, as we are considering here an equal-mass case, and
frequencies that are smaller (when considering the dimension-
less frequenciesMω) than in the BBH case, the tidal-free T4
phasing is quite close to the EOB one (see Fig. 11. Concerning
tidal-extended models, we see that both EOB and T4 highlight
the need for adding large, higher-order tidal-amplification fac-
tors. When choosing one such amplification factor for both
BNS systems (saȳα2 = 100 for EOB, andaT4

2 = 350 for
T4), a close look at the comparison of the correspondingQω
curves suggests that the EOB-predicted curves are somewhat
closer than the T4-predicted one to the NR curves. However,
this, by itself, would only be a weak indication that EOB gives

a better representation of our fiducial NR data, especially in
view of the large uncertainties discussed above on the actual
value of theQω(ω) functions. On the other hand, we con-
sider that the need of a much larger tidal-amplification fac-
tor in the T4 case is an indication that the analytical mod-
elling of (LO, NLO and NNLO) tidal effects within the EOB-
resummed framework might be more robust than the corre-
sponding one based on Taylor-expanded approximants. In-
deed, in both cases the parametrization of NNLO effects in-
volves multiplying tidal effects by a factor having a simi-
lar structure:Âtidal(EOB)

ℓ (u) = 1 + ᾱ
(ℓ)
1 u + ᾱ

(ℓ)
2 u2 versus

âtidalT4 (u) = 1 + aT4
1 x + aT4

2 x2. In addition, the quanti-
tiesu andx are numerically close to each other (both being
close to(Mω/2)2/3 ∼ v2/c2). At the end of the inspiral,
Mω reaches numerical values of order0.1 (i.e. 1154 Hz for
a fiducial BNS system), corresponding tou ≃ x ≃ 0.136.
For such a value one sees that the EOB amplification fac-
tor (with ᾱ2 = 100) remains relatively moderate11, namely
Â

tidal(EOB)
ℓ (u) = 1+1.25u+100u2 ≃ 1+0.17+1.85≃ 3,

while the T4 one (withaT4
2 = 350) gets suspiciously large,

and is completely dominated by the last, 2PN contribution,
namelyâtidalT4 (u) = 1 + 1.19x+ 350x2 = 1+ 0.16 + 6.47 =
7.63. Another way to phrase this is to notice that the large
T4 valueaT4

2 = 350 is such that the 2PN contributionaT4
2 x2

starts dominating the LO term atx = 1/
√
350 ≃ 1/18.7, i.e.

at large separationsr ≃ 18.7M corresponding to rather low
frequenciesMω = 2x3/2 = 0.025, i.e. 285 Hz for a fiducial
BNS system. However, in view of the large current uncertain-
ties on theQω NR curve, more work will be needed to confirm
this provisional conclusion. In particular, more accurateNR
simulations, encompassing more compactnesses and different
mass ratios will be needed to assess the relative merits of the
EOB versus the Taylor-T4 description of tidally interacting
BNS systems.

D. EOB/NR phasing

So far our NR/AR comparison based on the frequency-
dependent functionQω(ω) has been limited to a frequency
interval which did not cover the last octave of frequency evo-
lution, though, when viewed in the time domain, this interval
covered most of the cycles of the inspiral. In this section wefi-
nally focus on a phasing comparison in the time domain which
coversthe full inspiral and plunge phase, up to the merger of
the two NSs. Our strategy here will not be to explore from
scratch a good range of values of the tidal NNLO parameter
ᾱ2 values, but instead to use the valueᾱ2 = 100 suggested
by our previousQω(ω)-analysis, and to explore to what ex-
tent it succeeds in providing a waveform which agrees with
our fiducial (highest-resolution) NR waveform over the full
inspiral. Anticipating our conclusion, we shall find that the

11 For ᾱ2 = 40, this amplification factor becomeŝAtidal(EOB)
ℓ (u) = 1 +

1.25u+ 40u2 ≃ 1 + 0.17 + 0.74 ≃ 1.91
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FIG. 13: Comparison of the Taylor-T4Qω curves for different
choices of the effective tidal amplification factorâtidal(u) = 1 +
aT4
1 x + aT4

2 x2, with the corresponding NR ones (dashed lines with
open circles) for the two binaries considered. The dotted line corre-
sponds to the “tidal free” (or “point-mass”) T4, namely, when ignor-
ing tidal effects. Note that the valueaT4

2 = 350 of the dimension-
less NNLO effective tidal correction parameter that best matches the
(M3.2C.14) NR data is considerably larger than in the EOB case.
The corresponding phase differences∆φψ4

= φT4 −φNR are listed
in Table IV.

EOB waveform withᾱ2 = 100 does closely agree (both in
phase and modulus) with the NR waveform essentially up to
merger.

This is shown in Fig. 14, which compares the (real part
of the) EOB and NR metricrh22 waveforms for the case in-
cluding NNLO effects withᾱ2 = 100. The left panels refer
to theM2.9C.12 binary, while the right panels refer to the
M3.2C.14 one. The top panels show the real parts of both
the EOB and NRh22 waveforms (divided by the symmetric
mass ratioν); the middle panels display the corresponding
phase differences∆φEOBNR(t) = φEOB(t) − φNR(t), both
for metric (solid line) and curvature (dashed line) for com-
pleteness; the bottom panel compare the EOB (dashed line)
and NR (solid line) instantaneous GW frequency. The least-
squares phase alignment has been performed on the time in-
terval [tL, tR] = [250, 3300] for theM2.9C.12 binary and
[tL, tR] = [250, 2250] for theM3.2C.14 one.

The two vertical lines (dot-dashed and dashed) indicate the
“end of the inspiral phase”, as defined either within the EOB
analytical framework (dot-dashed line), or by using NR in-
formation (dashed line). Note that we call here simply “in-
spiral” what was called “insplunge” in previous EOB studies,
namely the union of the inspiral and (when it is reached before
merger) of the plunge. More precisely, the dashed line indi-
cates the NR-defined “merger”, i.e. the time (computed from
the NR data) at which the modulus of the metric waveform
reaches its first maximum. On the other hand, the vertical
dash-dotted line, indicates (an estimate of) the EOB-defined

‘ ‘contact” between the two NSs. Such a formal contact mo-
ment was introduced in Eqs. (72) and (77) of Ref. [21], by
a condition expressing that the EOB radial separationR be-
comes equal to the sum of the tidally-deformed radii of the
two NSs, namely

Rcontact = (1 + hA2 ǫA(R))RA + { A ↔ B} ,

whereǫA = MBR
3
A/(R

3MA) is the dimensionless parame-
ter controlling the (LO) strength of the tidal deformation of
the NS labeledA by its companionB and wherehA,B2 is the
shape Love number [18, 63]. The recent study of the tidally-
induced shape deformation of black holes [63] has shown that
the BH shape Love numberh2 was a function of the sep-
arationR (i.e. of u = M/R), which increased asR de-
creased (andu increased). This behaviour is similar to the be-
haviour of the (effective) quadrupole Love numberkeff2 (u) =

k2(1 + ᾱ
(2)
1 u + ᾱ

(2)
2 u2), where both̄α(2)

1 [21] andᾱ(2)
2 were

found to be positive. One would need a special study devoted
to the comparison of the EOB-predicted NS shape deforma-
tion to NR data to investigate in detail theu dependence of
the analogousheff2 (u) = h2(1 + γ̄

(2)
1 u + γ̄

(2)
2 u2). Leaving

to future work such a study, we shall content ourselves here
with using a coarse approach where theu-dependent effective
shape Love numberheff2 (u) is replaced by a constant, chosen
such that the EOB-predicted contact happensbeforethe NR-
defined merger for the two BNS systems we consider. We
found thatheff2 = 3 works, and this is the value we shall use
to replacehA2 andhB2 in the contact condition written above.
[A similar approach was taken in [21], with a less conserva-
tive valueheff2 = 1. Let us recall that the computation of
the infinite-separation shape Love numberh2 = heff2 (u = 0)
of NSs has given values of order unity [18].] An important
point to note is that our (EOB-based) analytical definition of
contact allows one to analytically predict a complete inspiral
waveform, including its termination just before merger.

Figure 14 shows that the agreement in the time domain
between the analytic EOB description and the fully numer-
ical one is extremely good essentially up to merger. More
precisely, the match between the two descriptions is excel-
lent both in modulus and in phase, with a dephasing of or-
der∆φ = ±0.1 during most of the long inspiral phase. It
is only during the last100M before contact that the dephas-
ing grows significantly. One should note that this excellent
EOB/NR agreement holds forboth binariesM3.2C.14 and
M2.9C.12, and has been obtained by tuning asingle tidal-
amplification parameter.

Clearly the results presented here give only a first cut at
these issues. More NR/AR comparisons are needed to con-
firm our findings and to determine the most effective value
of ᾱ2. With sufficiently accurate NR data one can hope
to determine not only the effective tidal-amplification factor
Âeff(u) = 1 + ᾱ

(2)
1 u + ᾱ

(2)
2 u2, but the precise separation-

dependence of̂A(u). This would allow one to extend the EOB
description right up to merger.
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FIG. 14: Comparison between EOB and NR phasing for theM2.9C.12 (left panels) andM3.2C.14 (right panels) binaries. The top
panels show the real parts of the EOB and NRh22 waveforms, the middle panels display the corresponding phase differences∆φEOBNR =
φEOB − φNR, both metric (solid line) and curvature (dashed line). The NNLO corrections to the radial potential are carried out withthe
parameter̄α2 = 100. Note the agreement reached with the numerical waveform almost up to the time of the merger as defined in terms of
the maximum of the GW amplitude (vertical dashed line) or of the contact position (dot-dashed line; see the text and Eqs. (72) and (77) of
Ref. [21] for explanations).

VII. CONCLUSIONS

We have presented the first comprehensive NR/AR compar-
ison of the gravitational waveforms emitted during the inspiral
of relativistic binary neutron stars as computed via state-of-
the-art numerical-relativity simulations and as modelledvia
state-of-the-art analytical approaches. Overall, the work re-
ported here and our findings can be summarized as follows.

1. We have considered the longest to date numerical sim-
ulations of inspiralling and coalescing equal-mass BNS
modeled either with an ideal-fluid or a polytropic EOS.
Because tidal effects are most sensitive to the stellar
compactness, we have considered two binaries with ei-
ther a small compactness ofC = 0.1199 or with a large
compactness ofC = 0.1396. The parts of the wave-
forms relative to the inspiral cover between20 and22
cycles and have been studied to isolate possible sources
of error, such as non-isentropic evolutions, finite-radii
GW extractions, and the use of finite resolutions. For
the model with the highest compactness, the first two
sources of errors lead to a total error-bar in the GW
phase of∆φ ≃ ±0.15 rad. When compared to an
estimate of the resolution-extrapolated data, the high-
resolution waveforms seem to contain an accumulated

phase error of∆φ ≃ ±0.54 rad.

2. We have used the functionQω(ω) ≡ ω2/ω̇ as a use-
ful diagnostic of the physics driving the evolution of
the GW frequencyω. The calculation of this quan-
tity is however challenging when made from the early-
inspiral part of the NR waveforms, as the latter is af-
fected by a series of contaminating errors. We have
filtered out these errors by fitting the NR phase evolu-
tion φ(t) with a simple analytical expression that re-
produces at lower order the behavior expected from
the PN approximation. We have compared the various
Qω ’s obtained from different data to estimate the er-
ror range entailed by comparing analytical predictions
to our highest-resolution, largest-extraction-radius NR
data.

3. Using the estimatedQω(ω) function we have shown
that it is possible, at least for frequenciesMω . 0.06
(i.e. fGW . 700 Hz for a fiducial1.4M⊙ BNS sys-
tem), tosubtract the tidal-effect contributionfrom the
NR waveforms and consistently match this with the ex-
pected EOB model for point particles which has been
successfully matched to BBH simulations. The ability
to perform this match accurately provides us with an
independent validation of the quality of our numerical
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results as well as with a confirmation that the function
Qω(ω) is approximately linear in the (leading) tidal pa-
rameterκT2 .

4. The comparison of analytical predictions with NR data
shows that tidal effects are significantly amplified by
higher-order (NNLO) relativistic corrections even in
the early inspiral phase. These NNLO tidal correc-
tions are parametrized within the EOB approach by a
unique (effective, 2PN) tidal parameterᾱ2. The present
level of precision of the NR data is such that we can
only constrain the actual value ofᾱ2 to be in the range
40 . ᾱ2 . 130.

5. Once asinglechoice forᾱ2 is made, the EOB-predicted
waveforms agree (both in phase and in modulus) with
the NR ones (for both BNS systems) within their error
bar and essentially up to the merger.

6. Finally, we have also compared the NR phasing with the
one predicted by a non-resummed Taylor-T4 PN expan-
sion, completed by additional tidal terms. If one uses
only the currently known analytic T4 tidal terms, the T4
model dephases (whenC = 0.12) by more than2π rad
already at the GW frequencyMω = 0.057, which is
about twice smaller than the GW frequency at merger
(we recall thatMω = 0.057 corresponds to658 Hz
for a fiducial1.4M⊙ + 1.4M⊙ system). On the other
hand, a good match (for both compactnesses) with the
NR phasing is possible if one allows for a T4 analog of
the EOBᾱ2 parameter,i.e. an (effective) 2PN amplifi-
cation of tidal effects. However, the corresponding pa-
rameteraT4

2 ≃ 350 is suspiciously large, and dominates
the amplification of tidal effects already at frequencies
Mω = 0.025 (corresponding to285 Hz). This seems
to suggest that the EOB-based representation of tidal
effects is more reliable than the Taylor-T4 one.

In summary, the work presented here opens new avenues
to the important synergy between numerical and analytic de-
scriptions of inspiralling compact-object binaries in general
relativity. For the first time we have shown that an analytic
modelling is possible also for objects which cannot be treated
as point-particles and for which, therefore, tidal effectsrep-
resent important corrections. Although the results presented
here are very encouraging, a number of improvements are
needed on both the numerical and the analytical sides. On
the numerical side, higher resolutions and better measuresof
the convergence rates (which are particularly challengingin
non-vacuum simulations) are needed to decrease the numeri-
cal phase errors to and reach firm conclusions about the tidal
contributions to the phasing. On the analytical side, higher-
order PN calculations are needed to better determine the form
of the NNLO corrections. Both of these goals will be the sub-
ject of our future work. Hopefully, progress on both fronts
will enable us to determine the crucial tidal-induced dephas-
ing function∆tidalφ(ω) with an accuracy sufficiently high to
extract reliable information on the EOS of matter at nuclear

densities12.
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Appendix A: Computing metric waveforms from ψ4

We discuss here the details of how to accurately derive the
metric waveformsh+,× from the numerically computed cur-
vature waveformsψ4. We first recall that the procedure out-
lined in Ref. [47] consisted essentially of three steps. (i)First
one performs the double integration ofψℓm4 starting att = 0
with zero integration constants; this amounts to defining

ḣℓm0 (t) ≡
∫ t

0

dt′ψℓm4 (t′), (A1)

hℓm0 (t) ≡
∫ t

0

dt′ḣℓm0 (t′). (A2)

The provisional metric waveformhℓm0 differs from the “exact”
metric waveform (6) (integrated from past infinity) by a linear
function oft, say

hℓm0 (t) = hℓm(t) + αexactt+ βexact. (A3)

(ii) The second step consists in obtaining an estimate of the
two (complex) integration constants (−αexact,−βexact) that
enter the exact metric waveform (6) (integrated from past in-
finity) by fitting over the full simulation time interval (sepa-
rately for the real and imaginary parts) the(t ≥ 0)-integrated
waveform (A2) to a linear function oft, sayhlin−fit

0 = αt+β,
whereα andβ are complex quantities. (iii) The third and final
step of the procedure of Ref. [47] consisted in subtracting the
linear functionαt + β from hℓm0 so as to define an approx-
imation to the (t ≥ −∞)-integrated metric waveform, say
holdℓm(t) ≡ hℓm0 (t)− hlin−fit

0 (t).
By contrast to this “old” procedure, in this paper we will

use a “new” (three-step) procedure, which starts with the same
step (i), but modifies both steps (ii) and (iii) so as to get a

12 Simple estimates based on the scalingκT2 ∝ R5 suggest that one needs to
know∆tidalφ(ω) with a fractional accuracy better than20% to constrain
NS radii to a relative precision ofδR/R ≈ 4%.
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FIG. 15: Testing the fit of the GW phase ofM2.9C.12 simulation. The top-left panel shows the time evolution of the frequency, computed
from the metric and curvature waveforms. The bottom-left panel shows the deviation of the cleaned phase evolution with respect to the raw
data; note that they average to zero. The right panels show the comparison of the frequency evolution of the cleaned and raw waveforms, for
the curvature (top) and metric (bottom) waveforms.

better approximation to the exact metric waveform. First of
all, we define an “adiabatic-like” approximation to the metric
waveform,

h̃ℓm(t) ≡ −ψ
ℓm
4 (t)

ω2
ℓm(t)

(A4)

and then we use this to define

h̃ℓm0 (t) ≡ hℓm0 (t)− h̃ℓm(t). (A5)

As h̃ℓm(t) is approximately equal tohℓm(t) (because of the
approximately adiabatic nature of the inspiral), we see from
Eq. (A3) thath̃ℓm0 (t) = hℓm(t) − h̃ℓm(t) + αexactt + βexact
will be closer to the unknown linear functionαexactt+ βexact
thanhℓm0 (t) was. Therefore, the next step is to perform the
linear fit on thish̃ℓm0 instead than onhℓm0 (t) itself. Then, the
last step (iii) consists, as above, in subtracting the resulting

improved linear fitαt+ β from the (t ≥ 0)–integrated metric
waveformhℓm0 (t).

In addition, let us note that we perform the fit not on the
whole time interval, but rather on a restricted time interval
that cuts away the first cycles of the waveform. Finally, after
doing several tests, we realized that the entire procedure leads
to a physically more reliable metric waveform (see below) if
h̃ℓm0 (t) is fitted not to a simple linear function, but rather to a
quadratic13 one,hquad−fit

0 (t) = γt2 + αt+ β.

13 We think that such a quadratic fit is needed for absorbing several effects that
“pollute” the waveform, notably finite-extraction-radiuseffects, remnant
junk radiation, etc. In this respect, we also mention that Ref. [46], in the
context of non-spherical star oscillations, found that a quadratic polynomial
used in the recovery ofh20 fromψ20

4 was a necessary choice to find a good
agreement with both Abrahams-Price metric extraction and perturbative
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FIG. 16: The same as Fig. 15 but for theM3.2C.14 simulation.

As it was emphasized in Ref. [47], we accept the inte-
grated waveform if and only if its modulus exhibits a rather
definite and clean monotonic growth in time during the in-
spiral, consistently with the expected circularly polarized be-
havior of the metric waveform (as well as the curvature
one)14. Figure 2 displays the metric waveforms (for both
theM2.9C.12 (left) and theM3.2C.14 (right) models) ob-
tained using this improved procedure. The time intervals
where we fit the waveforms to gethquad−fit

0 (t) start respec-
tively at t1/M = 294 (modelM2.9C.12) and att1/M =
677 (modelM3.2C.14). Note how the modulus of both mod-
els exhibits a smooth monotonic behavior in time.

waveforms.
14 Note however that small-amplitude, high frequency “ripples” are still

present in the modulus. Their origin is however essentiallynumerical, as
they are also present in theψ22

4 modulus.

Appendix B: Cleaning the GW phase and Qω curves

The purpose of this Appendix is to provide more detailed
information about the cleaning procedure of the NR GW
phase advocated in Sec. IV and used to drive NR/AR compar-
isons. As we said in the main text, the final goal is to fit away
the high-frequencies oscillations in the GW phaseφ so as to
get a clean and smoothQω curve, Eq. (23). We recall here
for convenience that the idea is to fitφ(t) with an analytic ex-
pression that is modeled on the PN expansion. Defining the
quantity

x(t, φc) =
{ν
5
(tc − t)

}−1/8

, (B1)

one then fits the NR phase with an expression of the form

φ = − 2

ν
x−5

(
1 + p2x

2 + p3x
3 + p4x

4 + . . .
)
+ φ0, (B2)

wheretc, φ0, and thepi’s are free coefficient to be determined
by the fit. Note thattc can be thought of as defining a for-
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mal “coalescence” time. There are two delicate (correlated)
points: (i) how many powers ofx [possibly including also
xn ln(x) terms] one has to include in Eq. (B2), and (ii) on
which (time) interval(t1, t2) the approximate description of
φ given by Eq. (B2) (and consequently ofQω) is reliable. The
procedure to select the “best” time interval and to consistently
assess the quality of our cleaned curves can be summarized as
follows:

1. The initial timetL is chosen so to eliminate as much as
possible the noisiest part of the curvature frequency. In
practical terms, this meant cutting attL/M = 1200 for
M2.9C.12 data andtL/M = 1000 for M3.2C.14 data.
This fact is illustrated in the top-left panels of Fig. 15
(for M2.9C.12 data) and of Fig. 16 (forM3.2C.14
data), which show the curvature (dashed line) and met-
ric (solid line) instantaneous GW frequencyω: in both
plots, the first vertical line identifies the location oftL.

2. For a given order of the polynomial, we found the right
end,tR, of the time window essentially, by trial and er-
ror, monitoring the behavior of several quantities. In
particular: (i) we checked that the cleanedω visually
“averages” the rawω, for bothψ4 andh22 data. This
is illustrated in the top-right and bottom-right panels of
Figs. 15-16, the raw data appearing as dashed lines, the
cleaned data as solid lines. Then, (ii), we require that
the phase differenceφClean − φRaw averages to zero,
which indicates that we have subtracted all the “secu-
lar” trends by means of our polynomial fit. The quan-
tity ∆φCleanRaw = φClean − φRaw (both curvature and
metric) is displayed in the bottom-left panel of Figs. 15-
16. The fact that it averages to zero is the indication that
our fit caught the “secular” behavior of the phase, aver-
aging away both (numerical) low-frequency and high-
frequency oscillations.

3. For a fixed time window, the inspection of∆φCleanRaw

is also crucial for choosing the order of the polynomial
in x. As said above, this is done so that the oscillations
in ∆φCleanRaw average to zero. We use this rationale to
select a fourth-order polynomial inx for our fit. A 3rd-
order one is clearly not enough to get the right trend
of the frequency (and thus ofQω) up to the end of our
preferred interval (see text). By contrast, as discussed
in the text, we have found small differences between
n = 4 andn = 6 for some waveforms of our data
sample.

4. In addition, to better select the endtR of the time win-
dow, we found useful to monitor the difference between
the curvature and metricQω ’s, namely∆Qc−m

ω =
Qcurvature
ω − Qmetric

ω . We typically choose the value
of tR in such a way that∆Qc−m

ω is always smaller
than 0.2 on the frequency interval corresponding to
[tL, tR]. This value can be estimated by comparing cur-
vature and metricQω ’s within the EOB: for example,
for the NNLO model withᾱ2 = 100 one checks that
∆Qc−m

ω . 0.2 whenω ∈ [0.035, 0.055] for C = 0.12,
and∆Qc−m

ω . 0.2 whenω ∈ [0.035, 0.063] for C =
0.14. This gives us an idea of the level of∆Qc−m

ω that
we can accept from our cleaned NR curves, so that we
choose the fitting time window accordingly.

In conclusion, to obtain the central NR-cleanedQω
curves labelledIFHR500 used in the core of the paper,
we fixedtR/M = 3366 for theM2.9C.12 phase and
tR/M = 2290 for theM3.2C.14 one. The time in-
tervals (and the corresponding frequency ones) that we
used to clean the other NR phases are also listed in Ta-
ble III.
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