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Abstract: We study the mini—superspace quantization of spatially homogeneous (Bianchi) cosmological uni-
verses sourced by a Dirac spinor field. The quantization of the homogeneous spinor leads to a finite-dimensional
fermionic Hilbert space and thereby to a multi-component Wheeler-DeWitt equation whose main features are:
(i) the presence of spin-dependent Morse-type potentials, and (ii) the appearance of a g-number squared-mass
term, which is of order O(h?), and which is affected by ordering ambiguities. We give the exact quantum
solution of the Bianchi type-II system (which contains both scattering states and bound states), and discuss
the main qualitative features of the quantum dynamics of the (classically chaotic) Bianchi type-IX system. We
compare the exact quantum dynamics of fermionic cosmological billiards to previous works that described the
spinor field as being either classical or Grassmann-valued.

1 Introduction

The main aim of this work is to clarify the physical structure of the coupled quantum Einstein-Dirac system
within a minisuperspace cosmological setting, and, in particular, its dynamics in the vicinity of a cosmological
singularity. Let us recall that the seminal work of Belinsky, Khalatnikov and Lifshitz (BKL) [I] (see also
Misner [2]) has brought into light the chaotically “ oscillatory” behaviour, near the singularity, of the diagonal
components of the metric both in homogeneous Bianchi IX cosmological models, and in the “general (classical)
solution” of Einstein equations. Recently, this chaotic BKL behaviour acquired a new significance through the
discovery of its unexpected link with infinite-dimensional Kac-Moody algebras [3 [, [5] (for reviews, see [6l [7]).
The presence of such a chaotic behaviour depends both on the spacetime dimension, D, and on the matter
content of the considered cosmological model. For instance, pure gravity (i.e. the vacuum Einstein equations)
has a chaotic, BKL-like behaviour in spacetime dimension D < 10, but a monotonic, Kasner-like behaviour in
spacetime dimensions D > 11 [§].

The effect, near a singularity, of a general bosonic matter content (scalar field and p—forms), in any spacetime
dimension D, has been studied in Ref. [6]. The main result is that almost all the bosonic degrees of freedom
“freeze” near the singularity (i.e. admit limits, at each spatial point, as t — 0), except for the diagonal part
of the spatial metric, parametrized as g, = exp(—253,) (together with any scalar field ¢ = Sy, if present).
The dynamics of the S,’s can be represented as that of a "ball” (of position 8,) moving on a Lorentzian (or
hyperbolic) billiard. The latter billiard motion can then either be chaotic, or non-chaotic (i.e. ultimately
monotonic), depending on the geometry of the “ billiard table”, which is a polyhedron domain in hyperbolic
space. The quantum mini—superspace versions of some of these bosonic cosmological billiards have been studied
in several works [9] 10} [T}, 12]

While the effect of bosonic matter on the dynamics near a singularity is well understood, the effect of
fermionic matter is less well understood. This difference in understanding has both technical and physical roots.
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From the technical point of view, the Hamiltonian description of spinor fields, coupled to gravity, is rather subtle
and complex. The Hamiltonian description of a Dirac (spin %) field, coupled to gravity (notably in Bianchi
spacetimes), has been clarified in several papers, see Refs. [13] [14] [15] [16] 17, [I8| [19] 20]. Here, we shall not
consider the case of the gravity coupling to a Rarita-Schwinger (spin %) field, i.e. the case of “supersymmetric
(quantum) cosmology”, though we view the Einstein-Dirac system as a toy model for the Einstein-Rarita-
Schwinger case. See, e.g., [21] for a entry in the literature on supersymmetric quantum cosmology. On the
other hand, the physical meaning of having spinorial sources in cosmology has remained somewhat obscure.
Various (conflicting) approaches to this issue have been assumed in the literature. We shall distinguish three
different approaches to the treatment of spinorial fields, say ¢: (i) bilineard] in ¥ (in the source terms, T#", for
gravity) are replaced by real numbers (or “c-numbers”); (ii) the ¢ variables are treated as Grassmann-valued
(or “G-numbers”); or (iii) the 1¢’s are treated as quantum operators (or “g-numbers”).

When treating the v¢’s as G-numbers, they do not affect the BKL chaos (if the latter is present in absence of
fermions). Indeed, T**  1)? only modifies the “soul” go+g4+--- of the metric g, i.e. the part of the Grassmann
expansion g = go + g2 + g4--- of g which contains an even (non zero) number of Grassmann generators. By
contrast, the “body” go of g (i.e. the part of g which does not contain any Grassmann generator) is unaffected
by the 9’s, and is entirely determined by the bosonic sector of the theory. This approach has been recently
used [22] to discuss how the chaotic behaviour of the body go of the metric induces a corresponding chaotic
dynamics in the (Grassmann-level-one) fermions 1) = 91 + 5 + - - -.

By contrast, if one replaces the ~ 12 source terms by c-numbers (that react back on the body go of the
metric), they can drastically modify the asymptotic behaviour near the singularity. Indeed, it has been argued
by Belinsky and Khalatnikov [23] that the presence of a Dirac field would, if so treated, ultimately destroy
the BKL chaos. This result has been confirmed, and streamlined, by the Hamiltonian treatment of [24] which
showed that the ~ 12 source terms modify the billiard dynamics of the (logarithmic) cosmological scale factors
B by adding a (positive) “squared-mass term” u? to the effective (Lorentzian-signature) Hamiltonian describing
the dynamics of §,. Indeed, such a squared-mass term (in Lorentzian [ space) slows down the motion of the
particle and ultimately prevent collisions on the cushions of the billiard table.

In the present work we shall treat the fermions as g-numbers and face the problem of discussing the meaning
of the back reaction of fermions within a quantum framework. This is a notoriously difficult problem, but
we shall be able to get answers by restricting ourselves to the mini-superspace framework of homogeneous
cosmological spacetimes. In that framework, the quantization of the spinor ¢ is equivalent to considering that
the wavefunction ® of the universe is a multi-component object, say ®,, where the discrete index o labels the
finite number of independent states allowed by the anticommutation relations of ¥. In particular, as we shall see
in detail below, when 1 is a Majorana spinor the discrete index o takes 4 values and can be identified with the
spinor index of an auxiliary SO(4) Clifford algebra defined by the quantum operators ', = 29%1/)(1, a=1,2,3,4.
The appearance in the wavefunction of such a discrete spinor-type label when considering zero-mode (spatially
independent) Fermionic operators is well known from the Ramond string case [25] , and has also been used in
some studies of quantum supersymmetric minisuperspace cosmologies, see, e.g., [26].

Most of our discussion will allow for a general (class A) Bianchi model, but we shall discuss the quantum
dynamics in details only for two cases: the Bianchi IX (or ‘mixmaster’) model, and the (non-chaotic) Bianchi
IT model. We shall also compare the quantum solution to the various ways of discussing its classical analogs.

Our paper is organized as follows. Section 2 discusses the classical Lagrangian formulation (with a specific
fixing of the vielbein in terms of the metric) of an homogeneous spinor field coupled to a Bianchi metric.
This is followed in Sec. 3 by the corresponding classical Hamiltonian formulation. The quantization of this
system, and the discussion of the quantum dynamics of the Bianchi-IX and Bianchi-IT Einstein-Dirac systems
is presented in Sec. 4. The comparison of the g-number and G-number approaches is discussed in Sec. 5,
while our main conclusions are presented in Sec. 6. Finally, three appendices present complementary material,
namely: Appendix A : alternative Hamiltonian approach; Appendix B: alternative fixing of the dreibein; and
Appendix C: classical dynamics of the Bianchi-II case.

1Some authors even replace the 1 variables themselves by real numbers.



2 Classical Lagrangian formulation of a homogeneous spinor field
coupled to a Bianchi cosmological metric

2.1 Choice of approach

The coupling of a spinor field to gravity poses special problems in view of the need to use a vielbein, say hé‘#,
in addition to the metric g,,, to describe the spinor degrees of freedom. The metric and vielbein components
are related by

Guv =Ny hé‘# ne, . (2.1)
Here, and in the following, we shall use hatted indices to denote “flat indices” referring to a local orthonormal

frame where 7, 5= diag(—1,4+1,+1,+1). [We restrict ourselves to a four-dimensional spacetime, and use greek
indices to denote spacetime indices, and latin indices to denote spatial ones.]

There are basically two different approaches to the description of the coupled gravity-spinor (or Einstein-
Dirac) dynamics. Either: (i) the gravity degrees of freedom are only described by means of the metric com-
ponents g, the vielbein ones hé‘u being (locally) determined in terms of g,, by some suitable gauge-fixing of
the local Lorentz symmetry SO(3,1), or (ii) one does not break the local Lorentz symmetry, and describes the
gravity degrees of freedom by means of the redundant vielbein variables hé‘#. The approach (i) is technically
simpler, but depends on the choice of a specific gauge-fixing of the local SO(3,1) symmetry. The approach (ii)
does not depend (until one discusses explicit solutions) on the choice of a gauge-fixing of SO(3, 1), but involves
more constraints than the first approach, namely the constraints linked to the local SO(3,1) gauge symmetry.
We shall use the approach (i) in the text, and discuss the approach (ii) in an Appendix. Note that the approach
(i) has been advocated in Ref. [I7], but that its implementation in that reference differs from the one we shall
use (and does not take advantage of the useful automorphic potentialities of the matrix S discussed below).

Having decided on the approach (i), we need to choose a specific way of fixing the local SO(3,1) gauge
symmetry, i.e. of determining a specific vielbein hé‘u, when given the metric components g,,,, (in some coordinate
system, or, more generally, some non-holonomic frame). Here, the (assumed) symmetry properties of Bianchi
models come to our help. Let us recall that the geometry of homogeneous spacetimes admits the special form

ds* = gu(z)dat dz”
= —N%(t)dt* + gap(t)(NO(t) dt + 7 () (N (t) dt + 7°(z)) (2.2)

where the one-forms 7%(x) = 7¢(z)dz® only depend on the spatial coordinates used in the ¢t = const. slices.
In the case (considered here) of Bianchi geometries, i.e. such that the spatial slices admit a simply transitive
Lie group G preserving the geometry, the one-forms 7% can be chosen to be invariant under the group G, i.e.
£Le,7* = 0, where £ denotes a Lie derivative and & = &} (z) 8/0z", with b = 1,2, 3, a basis of three infinitesimal
generators of G. With a suitable choice of 7%, the structure constants C€ 4, of (the Lie algebra of) G, which
enter the Lie brackets of the Killing vectors, [£q,&] = + C€ ap &, also enter the Cartan differential of the forms
7%, namely

1
dr® = +§C“ pe TOATE. (2.3)

Note that the constants C® . enter with the same sign in [, &.] and in d7%, because there are two flips of sign
when going from the &,’s to the 7%’s: one flip between the bracket of [¢, ] and the d of the co-frame dual to the
&’s, and a second flip between the structure constants of the left action of G' (defined, say, by the £’s) and those
of its right action (which commutes with the &’s, and corresponds to the invariant (co)-frame linked to the 7’s).

Apart from the 7*’s (which depend on the spatial coordinates only), the other objects entering the homoge-
neous metric (Z2) only depend on the (coordinate) time, ¢. In addition, by using some time-dependent change
of coordinates, one can ensure that the components of the shift vector N%(t) vanish for all times. We shall
generally assume that this is the case, but we have left them in Eq. (2.2)) as a reminder that, in the Hamiltonian
formalism, the N®’s enter the action as Lagrange multipliers of the three diffeomorphism constraints H, =
Similarly, the “lapse” N(t) enters the action as a Lagrange multiplier for the Hamiltonian constraint H = 0.
Finally, the dynamical variables of Bianchi geometries are the six functions of time gqp(t).



2.2 Fixing the local Lorentz gauge symmetry

In view of the special structure (22) of the geometry it is natural to choose a vielbein co-frame 6% = h%, da#
of the form

00 = N(t)dt, (2.4)
0 = > e W gh, (t)(r" + NO(t)dt), (2.5)
b
where the matrix S%, satisfiedd
26_26“ Sdb Sdcngc. (2.6)

In other words, the matrix S%,, or rather its inverse S® 4, such that
5&05’05265, S . S¢y =68, (2.7)
transforms the quadratic form g, into a diagonal form
gan 5% ¢ S 4 = [ding(e ™2, 72 e 2s)] ;. (2.8)

The idea behind the representation (Z0)) is to encode the six independent components of g, into two
sets of three variables: (1) three “diagonal” degrees of freedom Si, B2, f83; and (2) three “off diagonal” ones,
parametrizing the “diagonalizing” matrix S. For such a decomposition to be uniquely defined, one needs to
restrict the structure of the (3 by 3) matrix S by six conditions. This can be achieved in several different
ways. For instance, one could require the lower-than-diagonal elements of the matrix 5%, to vanish, and its
diagonal elements to be equal to 1; this would correspond to the so-called Iwasawa decomposition of h%; (and,
correspondingly, of geq = 6, h% . k), which is unique, and which was found to be useful in recent work on
the hidden presence of Kac-Moody symmetries in gravity theories [6]. We shall discuss in Appendix B the use
of this decomposition in the study of the dynamics of type II Bianchi cosmologies. However, in the case of the
most generic (class A) Bianchi models, namely type IX and type VIII, the Iwasawa decomposition is rather
inconvenient.

As was emphasized by R.T. Jantzen [I8, 27, 28] it is quite advantageous to use decompositions (Z.5]),
([2.6) with a matrix S%, restricted to belonging to the automorphism group, say A, of the Lie algebra & of G.
Explicitly, this means that A is the group of linear transformations which leave invariant the structure constants
C%pe. The reason why the choice of a “diagonalizing” matrix S belonging to the automorphism group A is
advantageous is that (as we shall see explicitly below) the potential terms in the Hamiltonian can be expressed

in terms of the £’s and of the components, say [oh = of the structure constants w.r.t. the intermediate, co-frame
7% = §%, b These components are given by

C' =5 8" 8¢ C o (2.9)

For a general choice of S%, the components 6555 would depend on the off-diagonal variables entering S%,.

For instance, when using an Iwasawa decomposition of g, (with an upper diagonal matrix S), the c” 5
explicitly depend on the off-diagonal variables vya, v23, 13 entering Eq. (B.)), so that the potential terms in the
Hamiltonian also depend on these off-diagonal variables. By contrast, by definition of the automorphism group
A (as fixing & and therefore the C’s) when S € A the components c” 7z are simply equal to the original C% .,
and thereby do not introduce any dependence on the off-diagonal metric variables.

When G is a simple group (and when its Dynkin diagram has no symmetries), the automorphism group A
of & is the adjoint group of G. In the case of Bianchi type IX (where G = SU(2)), this means that A4 is SO(3)
(which is the quotient SU(2)/Z2). In that case, S, is an orthogonal matrix, and the decomposition ([Z6) is
the so-called “Gauss decomposition”, corresponding to the diagonalization of the quadratic form gq, w.r.t. a

2We generally use Einstein’s summation convention, except when there are ambiguities, as in Eqs. (Z35) or (2.0).



given Euclidean metric §,5. [Such a Gauss decomposition was advocated by M. Ryan [10, I1].] In the case
of Bianchi type VIII, the automorphism group is SO(1,2), which means that one should use an “hyperbolic”
generalization of the Gauss decomposition of gq, w.r.t. a given Lorentzian metric n,, = diag(—1, —1,41). The
special metrics, du Or 74, that enter here are simply (modulo a suitable normalization) the Cartan-Killing
metrics kqp associated to the Lie algebra &, say

1
Fap = = 5 C% 0 Cye. (2.10)

For instance, in the usual basis for type IX we have C% . = €4pc, S0 that kqp = + dap-

Summarizing: In the Bianchi type IX case, we parametrize the six metric degrees of freedom contained in
Jap(t) by means of the three diagonal variables 51 (t), S2(t), 83(t) and the three Euler angles 61(t),02(¢), 05(t)
parametrizing the orthogonal metric S, (61,65, 03) entering the Gauss decomposition (Z.6)) of the quadratic form
Japb (“transformation to principal axes”). On the other hand, in the Bianchi type VIII case, the parametrization
of gap(t) by three diagonal variables §;(t), S2(t), B5(t) and three “diagonalizing angles” 61 (t), 02(t), 05(t) should
be done by an hyperbolic (S € SO(1,2)) generalization of the Gauss decomposition, i.e. a transformation of g,
to principal axes w.r.t. a Lorentzian metric 74, = diag(—1,—1,+1). [Such a transformation is always possible.
It can be built from the eigenvectors of the non positive-definite quadratic form 7, w.r.t. the positive-definite

one gap |

Then, in terms of such a parametrization, g, < (81, B2, 83, S%p (01,02,03)) of the metric, we gauge-fix
the local Lorentz symmetry by defining the specific vielbein 6%(3,,6,) = hﬁ‘(ﬁa, 0.) dz* by means of Eqs. (2.4),

2.3).
2.3 Lagrangian formulation of the Einstein-Dirac system

Having uniquely determined (for types IX and VIII) a vielbein §% u dzt in terms of the usual metric degrees of
freedom ggp(t), N%(t), N(t), we can now consider the general Einstein(-Hilbert)-Dirac Lagrangian density,

L=Lgy+Lp, (2.11)

Wherﬁ
Len = /—%g*R, (2.12)
Lp = =% (TA*Va¥ -—mTV), (2.13)

as a functional of the metric g,,,, and of the spinor field ¥ (w.r.t. the gauge-fixed vielbein hl(gy»)). We use
gamma matrices adapted to our mostly plus signature — + ++, namely

SRR LS T & (2.14)
with an anti-hermitian 70 (satisfying (70)2 = —1I), and three hermitian 71, 72, 73. We then choose

Bi=ivy=—1i7", (2.15)

with the involutive 8 (32 = +1I) being used to define the usual Dirac conjugate (as defined in the mostly minus

signature) _
U:.=vlg. (2.16)

The frame covariant derivative of the spinor entering the Dirac action Eq. (ZI3) is V4 ¥ = h* 4 V,, ¥, where
h* 5 is the vielbein frame dual to the vielbein co-frame h , (i.e. b, h* 5 = ¢ 5), and where the world-index
covariant derivative V, ¥ is given by

1 af
Vil =0, + S wss,7 o, (2.17)

3We use units such that 1601 G =1 = c.



where (denoting ha, = nch'é )
wdgu = hd,j VM hUB

are the connection components of the vielbein (with last index taken as world index), and wherd]

N - 5 0 VB By = el (2.18)

We shall only consider here class A Bianchi models, i.e. models satisfying C'®,. = 0, which is equivalent to
saying that the dualization of the structure constants w.r.t. the antisymmetric lower indices, n®? := L gbed C@ .

2
yields a symmetric tensor density. In other words

C% e = epean®, (2.19)

where €ape = €[apg (With €123 = +1), and n® = n’. For type IX, one has n® = §° in the usual basis,

while, for type VIII n®® = diag(+1,+1,—1). [Note that the Cartan-Killing metric k5, Eq. (ZI0), associated
to the C’s is quadratic in n%. In type IX k4 = 64 = diag(+1,+1,+1) is numerically equal to n%°, while in
type VIII k., = diag(—1,—1,+1) is of signature — — +, independently of whether one chooses a basis where
n = diag(+1, +1, —1) or n?® = diag(—1,—1,+1).]

It is well-known that the dynamics of class A Bianchi models derives from a Lagrangian which is obtained
simply by substituting in the general action (ZI1]) the symmetry-reduced form of the metric, i.e. Eq. (Z2]). This
is also true when the metric is coupled to a homogeneous spinor. Here, we shall define the spatial homogeneity
of a spinor ¥ simply as meaning that the components of the spinor w.r.t. any frame hg := hf 9, which is
invariant under the homogeneity group G, i.e. £¢, hs = 0, depend only on time?.

We know on general grounds [29] that the lapse, N, and the shift vector, N, will enter the final Hamiltonian
action S = [(pdq — H (g, p)dt) as Lagrange multipliers of, respectively, the Hamiltonian constraint, , and the
diffeomorphism (or momentum) constraints, H,. Namely, the Hamiltonian is of the general form

H = /(NH + N*H) (2.20)

where = 71 A 72 A 73 is the spatial volume density [in the co-frame (dt, 7%, 72, 73)], and where

H o= Vo2'Gy-19) =g ("Ry — "Ry — T7), (2.21)
Mo = VoQ2'G-T) =92 'Ry~ T). (2.22)

Here, g denotes the determinant of the spatial metric g, (w.r.t. the spatial-coframe 7%, see Eq. (22)),
4Gg = 4R§ — %4R 52‘ the spacetime Einstein tensor, and T the matter stress-energy tensor. The factor 2

multiplying 4G9 in the equations above represents (87G)~! in the units we use where 167G = 1.

Knowing in advance the structure ([2.20Q)), one can simplify the computation of the Hamiltonian by working
in the special quasi-Gaussian gauge where

N=,/g, and N*=0. (2.23)

[This gauge was found useful in many previous cosmological studies, see e.g. [I, 10, [6].] In addition, we shall
assume (for notational simplicity) that we consider the dynamics of a (comoving) piece of a homogeneous
universe which has a unit (comoving) volume 1 = [ . This allows one to identify the total Lagrangian with

the Lagrangian density:
s=[n[arai = [arLas.

4Everywhere we use brackets [- - -] around indices to denote antisymmetrization with weight one.

5In some cases, some spatial variation of ¥, of the type Le, ¥ = 1i)g ¥, with real quantities Ay subject to the integrability
constraint A\q C% . = 0, is compatible with the homogeneity of the geometry [16]. However, such a generalization is allowed neither
in the case (we shall focus on) of a Majorana spinor, nor in the case of simple Lie algebras, such as type IX or type VIII, which are
of most physical interest.




2.4 Gravity part of the Lagrangian

The gravity part of the Lagrangian, which generically reads (modulo a total divergence)
Lpn = N g[9* 9" Koy Kea — (9°° Kab)* + R(9)] , (2.24)

in terms of the spatial scalar curvature R(g) = ®>R(g), and of the second fundamental fornm{d,

Kab: atgab_DaNb_DbNa) (225)

1
“an
(D denoting the 3-dimensional covariant derivative), reads, when working in the gauge (223)

Len =Ty(9,9) — Vy(9) - (2.26)
Here T, denotes the “kinetic-energy” part of the gravity Lagrangian (¢ = 0 g),

A PV G
Tg(gvg)zzg gbdgabgcd—z( bgab)z; (2.27)

while V; denotes its “potential” part,
Vo(g) = —gR(g). (2.28)

Using the decomposition (Z.6]) of g, into the three diagonal variables 81, f2, B3, and the three angles
61,02, 03 parametrizing the SO(3) [respectively SO(1,2)] matrix S%; in the type IX (resp. type VIII) case, we
can express the gravity part (2.206) of the Lagrangian in terms of 3,, 0, and 8., 0,.

The spatial scalar curvature of a general homogeneous metric g.,(t) 7%(x) 7°(x) is expressible in terms of
the structure constants of Eq. (2.3)), namely (see, e.g., [30])

1 1
R(g) = =7 C"be C%he = 5 C%he C'ae = C e C% e (2.29)

where it is understood (for notational transparence) that a summation over, say, a and a denotes an appropriate
contraction by means of g, or its inverse g% (e.g. A. B, = gcc, A. Be). In the class A case the last term in
Eq. (Z:29) vanishes, while the other ones can be expressed in terms of the (symmetric) dual, n® of C%,. (see
Eq. (219). This leads to the following simple expression for the “gravity potential” Vg, Eq. [2.28)),

Vylg) = n® ns — L (%) = gaus gy n 0"~ (g’ (2.30)
Inserting the decomposition (Z.6)) into this result, then yields the expression of V; in terms of 8, and the matrix
S. As announced above, the fact that S%; was chosen to belong to the automorphism group A (leaving the
structure constants C . invariant) implies that the right-hand-side (r.h.s.) of Eq. (2.29) is independent of S,
and only depends on the diagonal variables 3,. This is also true for the potential V;, = — g R(g) if S belongs
to the “special” subgroup of A having det S = 1. In the cases we consider here (types IX and VIII) this
is automatically the case as A = SO(3) or SO(1,2). Finally, we conclude that V,(g) is given by the same
expression that it would have if g, had been assumed to be diagonal, namely

=
S
I
=
=
I

1
n%e—4ﬂ1 + nge—432 + nge—433 ) (7’L1€_261 + nze—Qﬁz + n36—2ﬂ3)2
1
= 5 [n%e_461 + nge_462 + nge_463]
_ [n1n26—2(31+32) + n2n36—2(32+,@3) + n3n16_2('63+'31)] , (2'31)

where n, denote the diagonal components of n® = diag(ny, na, n3).

6Note that Ref. [29] defines K, with the opposite sign.



Turning now to the kinetic part T,, Eq. (Z27), we need to evaluate it in terms of the 8 — S parametrization
23) of gqp. To be explicit we should, at this stage, choose a specific convention for the definition of the three
(possibly generalized) Euler angles 61,65, 03 parametrizing the (pseudo-)orthogonal matrix S. It is, however,
better to introduce a notation for the “angular velocity”, say w, of the matrix S, before specifying its expression
in terms of 91, 92, 05 and the 6’s. We define w‘ig by writing

Ste=>"wt; S, (2.32)
b

or $ =wS, if we consider S = 5%}, and w = w?; as matrices. In this matrix notation, the decomposition (26])
reads g = ST e=2# S, where g denotes here the matrix g5, 3 the diagonal matrix (8, dqs, and the superscript T
the transposition of a matrix. Differentiating the matrix g then yields

g=8T(—28e +e PP w4+uwle?0)s. (2.33)

At this stage, the calculation depends on whether the matrix S is orthogonal (SO(3); type IX) or pseudo-
orthogonal (SO(1,2); type VIII). We shall henceforth focus on the type IX case, giving only some indications of
the differences that arise in the type VIII case. In the type IX case we have (when using the usual basis where
nt = §2) §TS = ST = 1 so that the “matrix angular velocity” w defined by Eq. ([Z32) is antisymmetric in
the usual sense: w? = —w. [In the type VIII case w would be antisymmetric in the Lorentzian sense, i.e. after
considering w,; := Naar w? ; Where 7.; = diag(—1, —1,+1).] Inserting this knowledge in Eq. ([2.33)) then yields

an explicit expression for gqp of the form (denoting wib = §b e wt s =wt i)
Jed = Sd c Sb d EEE7 (234)

Ty = — 2 Bae 200 4 (67200 — 7 200) 0. (2.35)

Here, we can think of EEE as the components of the covariant tensor kqp, := gqp w.r.t. to the “rotated” co-frame
7= 8%, . (2.36)

The co-frame (Z36)) is intermediate between the basic co-frame 7¢ (w.r.t. which ds? = —N2dt? + ga, 70 7°),

and the orthonormal frame 69 (w.r.t. which ds?> = Najp 6% 6%). Indeed, in the co-frame (dt,7%) we have a

non-Minkowskian, but diagonal form of the spacetime metric, namely: ds?> = —N2dt? + 3 e=28a(7%)2, with
a

N = \/m — e—(ﬂ1+32+,33)'

As the gravitational kinetic-energy term (227 is manifestly invariant under any linear change of basis of
the co-frame 7%, it can be rewritten as

—ac —=bd T, I a5 =
9 9" kg kzq — 1 (g ’ k65)27 (2.37)

where §EE are the components of the contravariant metric w.r.t. the intermediate frame 7%, namely: §EE =
et2Ba §,,. This yields the explicit result

Ty =Tp(8) + Tw(w, B), (2.38)
where )
Ts(8) = B - (Z Ba> = —2(B1 B2+ BB+ B 1), (2.39)
and (in the type IX case) ' ’
Ti¥(w,B) = 2sinh*(By — B2)(w'?)? + 2sinh’ (B, — B3) ()2
+ 2sinb?(B3 — ) (w™)?. (2.40)



Summarizing so far: the gravity part of the Lagrangian has the form

Len(g,9) = Ts(B) + Tw(w, B) — Vy(B), (2.41)

with a S-kinetic energy given by (2.39), a rotational kinetic energy linked to the dynamics of the Euler angles
entering S(6,) given by (2.40) and a potential energy given by (Z31)) (with n® = §9). Note that the matrix
S, i.e. the Euler angles 61,605,603, do not explicitly enter the result (Z4I]). As explained above, they do not
enter the potential term V, because S was chosen to belong to the automorphism group of the Lie algebra &.
However, they do implicitly enter the rotational kinetic energy T, as the rotational angular velocity w® do
depend both on 6, and 6,. For instance, if we define the Euler angles as in the standard references [311 32],
namely using the z — x — z convention, i.e. a matrix

cosy siny 0 1 0 0 cosp sing 0
S=|—siny cosy 0 0 cosf siné —sing cosp 0], (2.42)
0 0 1 0 —sinf cosf 0 0 1

the angular velocities w?® (with w = S S~1) are given by

i2

w = ¢cos9+1/},
wB = <psin9sin1/)+9cos¢,
Wl = Gsinfcost) — Osin . (2.43)

As several authors (see, e.g., [10]) have previously remarked, the rotational part T,, of the gravity Lagrangian is
analogous to the kinetic energy of a rotating body (“asymmetric top”), namely T,, = $(I1 Q3 + I Q3 + I303),
where Q; = wg‘a’, Oy = wgi, Q3 = w!? are the body-frame components of the angular velocity and I3 =
4 sinh? (81 — B2), ete. the (body-frame) moments of inertia. Note, however, that, contrary to a usual rigid solid,
the body-frame moments of inertia are time-dependent. Indeed, they depend on the /’s, which have a (coupled)
dynamics determined by their kinetic energy Tjg, their potential energy Vg, and their couplings to the other
variables [and notably the Euler angles themselves, through the term T, (t%, 0a, Ba)]-

2.5 Spinor part of the Lagrangian

Let us now derive the explicit form of the spinor part, Lp, Eq. (Z13)), of the Lagrangian. To do this, we need
the explicit expression of the connection coefficients, say w, 45 = Wagy h* P of our specifically chosen vielbein
0% = h% ,da*, defined in Eq. () in terms of the metric degrees of freedom f,, S(6,) (parametrizing g, via
Eq. (256). [In this subsection we take as above a vanishing shift vector N* = 0, but allow for an arbitrary lapse

N (t).] If we consider the “structure constants”, say C% 44 of the orthonormal co-frame 6%, defined as

d@dzl
2

the (frame) connection coefficients w, 3. can be expressed as

Coh 09 N0, (2.44)

WA s *1((3

w1 = 3 +Chaa — Csag) (2.45)

apy T pAa
where we denoted Cd,é& = Nas C7 44
As 6° = N(t) dt only involves ¢, we have df° = 0, so that
CO

Bﬁ =0 (and CO,C:W = 0) . (246)

On the other hand 6% involves both ¢ and the spatial coordinates (that are implicit in 7¢(x)). Using Eq. Z.3)),
one finds that the Cartan differential of #% reads (no summation on a, but summation on b, ¢, d))

N N 1 N
d0* = (e P SN dt AT + = e Pa 8%, Oy TN TE. 2.47
2



Rewriting the r.h.s. in terms of 00 = Ndt and 0% = ¢—Ba §@ p TP yields the structure constants C% o5 and cé e
namely (no summation on a, b, ¢)

a .,
wp

¥ (2.48)

X A 1. B
C% 55 = —C"jp = — 37 Pabap + e F
Cl;, = e Patbotbe 66557 (2.49)

where the C coefficients are the structure constants w.r.t. the intermediate frame 7¢ = 5%, 7°, as defined in

Eq. (Z9) above. Again, the choice of the matrix S as belonging to the automorphism group of the Lie algebra
® implies that the C coeflicients are simply equal to the original structure constants C'® p..

Inserting the results (246), (Z48), (Z49) in Eq. (Z43) (and considering the special case of type IX, i.e.

wT = —w) yields the explicit expressions of the connection coefficients, namely
1 1. . whe
Wobe = 5 [C?;ﬁa + Céod =N Bb Ope + sinh(Bp — Be) ~ (2.50)
1 wdi)
Wapo = 5 [~Cagp + Croa) = —cosh(Ba = Bo) = (2.51)
wdi)é — % (S_Ba"l‘ﬂb"l'ﬁc Oa be + e_ﬂb"l'ﬁc"l‘ﬂa Cb ca — e_Bch‘ﬂa"FBb OC ab) . (252)
In the last expressions, one has simply C? . = €45 When using the usual basis 7, for type IX, so that
1
Wyps = 5 eP1tB2+8s (6_26‘1 4 e 2B _ e—QBc) Eabe - (253)
When inserting these results into the Dirac Lagrangian (2.13), i.e.
27 T A %8 -
Lp=N./g \Ifﬁﬁtllf—i-\lfv"ywme\If—m\I/\I/ , (2.54)

there arise several types of terms: (a) a term involving 9; ¥; (b) some terms involving d; 3; (¢) terms involving
the rotational velocities w ~ 9; (d) terms involving the purely spatial components w;, of the connection; and
(e) the term involving the mass m of the spinor field. Let us first note that the lapse cancels out in all the
terms involving one time derivative (9; ¥, d; 3 or w), while it contributes a factor N1 in the “potential” terms
(d) and (e). Let us first focus on the terms (a) and (b), i.e. those involving either 9; ¥ or 9; 8. They are easily
found to be

Lp = \/57@76 (‘i’—%(31+32+33)‘1’>+---
atgl/4

l_ A .
g2 \If’}/o (‘I"FW\I’) +..., (255)

where we introduced the logarithmic derivative of gi = ¢~ 2(A+B2165)  This shows (as had been used in many
previous works), that the replacement of the original spinor variable ¥ by the rescaled spinor

Yi=gT ¥ (2.56)

disposes of the coupling to the Ba’s. This rescaling has also the effect of absorbing the prefactor /g in Eq. ([2.54)
into the various spinor bilinears: /g W(...)¥ =x(...)x. Note, however, that the lapse prefactor N remains in
factor of the bilinears of types (d) and (e), i.e. those involving no time derivatives.

10



Finally, after using the rescaling ([2.56]) (and remembering the convention ([2IH)), we end up with a spinor
part of the Lagrangian of the form

Lp = ixx— cosh(f1 — B2) wi2xi2 _ cosh(B2 — B3) w23 %23
— COSh(ﬂg - ﬂl) 'LU31 231 - ‘/sgrav - ‘/smass ) (257)

where we have introduced the short-hand notation

ab L 0.4 i ab
2= X" x = 5 xT ™ x (2.58)

for the spinor bilinears that couple to the rotational velocities wib (we used ([2IH) in the last equation). We

are including a factor 3 in the definition (Z58) so that the hermitian operator £ (in the quantum theory)

measures the (second quantized) spin of the spinor field x (with eigenvalues % 3 or 0; see below).

In addition to the (body-frame) “spin-angular-velocity” coupling terms oc w3 £ in the spinor Lagrangian,
there are also (velocity-independent) “spinor potential terms”|], that are naturally divided into two separate
contributions: (i) the spinor potentials Vjgrav coming from the coupling to the spatial connection coefficients
w,je; and (ii) the spinor potential Vi jass coming from the Dirac mass term mW¥. The original expression

(from ([2354)) of the gravitational-spinor potential is

N _ . .
‘/sgrav = _Z X’YCW&E@’YGbX' (259)

Using the gamma identity (where b = 7“’7576])
~e 7ai) _ 7&&13 1 gpta 713 _ né& N (2.60)

and the fact that all the traces of w,;, vanish (because of the vanishing of C ), the potential (2.59) can be
rewritten, using (Z45)), as
N_ abe
ngrav:_z ng 5éva. (2.61)

a,b,c

Using N = /g = e~ (F1+P2+653) and ([Z47), this yields, in any (class A) Bianchi type (with n® = diag(n1, n2,n3))

1 g _ 153 1 g, _ 53] 1 _o0p. _ 315
Vigray = = me 2 Xy x — S nae R X0 M oy — 2nge ™0 X"y, (2.62)
where, for instance, the first term comes from the C! 53 structure constant, and is associated with the corre-

sponding (1;2,3) gravitational wall in S-space, namely w{.y3 = 1 — 2 — 3 + 3_ 8. = 2 /1 (when considering,
as we do here, the 3-dimensional case). We see (in agreement with Refs. [24] [22]) that the corresponding spinor

coupling involves

X7 x=ix" " x (2.63)
Another peculiar feature of 3 dimensions is that all the different gravitational walls, w{ .5, w35, and w3,
312

involve the same spinor bilinear Xwiég X = Xwigi =X ~°>"*. This implies that, for instance in the type IX case,

the spinorial-gravitational coupling explicitly reads

.
Vigray = =7 (€727 722 4 e720) X918y, (2.64)

Finally, the last term in the spinor Lagrangian ([2.57) reads

Vsmass:—l—mN\/g_]ﬁ\If:mNXX:mef(ﬁlJrﬁﬁ%)Xx, (2.65)

"The classical analogs of these terms were discussed in Ref. [I7], where x was treated as a c-number.
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with
Xx=ix 75X (2.66)
Contrary to what happened for V; grav, this term does not correspond to one of the gravitational walls entering

Vy(B). It would correspond to the wall form wy (3) associated to a cosmological constant A. Indeed, in the
N = /g gauge, A generates a term oc AN /g = A e~ 228 with wy(B) = 3 B,. As usual (see, e.g., Ref. [24])

one expects the corresponding “spinor wall” to have a halved exponent, i.e. o e~“A8) which is the case of the
spinor mass term (2.63)).

3 Classical Hamiltonian formulation of the Einstein-Dirac Bianchi
system.

Having obtained a gauge-fixed Lagrangian formulation of the Einstein-Dirac system, let us now show how to
pass to a Hamiltonian formalism.

3.1 From the Lagrangian to the Hamiltonian in presence of derivative couplings

A (well known) peculiarity of the Einstein-Dirac Lagrangian is the presence of derivative couplings between
gravity and the spinor. In our homogeneous-cosmology context (and after the rescaling (2Z56) of the spinor)
these derivative couplings are the terms oc w % in ([Z57), where w® are linear in the time derivatives of the
Euler angles (see Eq. (243). A well-known instance of such derivative couplings is given by the coupling of a
charged particle to a magnetic field say (suppressing indices)

1
Lig.4) = gmd +eqA—cV. (3.67)

Let us recall the effect of the derivative coupling e ¢ A, when going from the Lagrangian to the Hamiltonian
formalism. First, it modifies the relation between the (canonical) momentum and the velocity, namely

oL
p=S —mitea. (3.68)
Second, e A cancels out when computing the energy (because “a magnetic force does no work”)
. . . . 1 .2 . 1 .2
E(q,q):=pg—L=(m¢+eA)q— 3 md —eAqg+eV = 5 mq +eV. (3.69)

However, third, the e A coupling reappears in the Hamiltonian because one must replace ¢ by its expression in
terms of p: ,

Hlw) = 1B iy = |gm+ev| L2 ey, (3.70)

2 q(p) 2m

This mechanism is easily seen to hold for any derivative coupling which is linear in time derivatives. [In a more
general case the mass m in ([B.67) becomes some g-dependent quadratic form, and the m~! factor in H(q, p)
becomes the inverse quadratic form.] The crucial end result is that the Hamiltonian is numerically equal to
the sum of the original kinetic energy terms (without the velocity coupling term e g A) and of the potential
energy, but with the replacement of the concerned velocities by their expressions in terms of their (e A-shifted)
canonical momenta.

3.2 Hamiltonian formulation of the Einstein-Dirac system

We can now write down the explicit Hamiltonian of the Einstein-Dirac system, for homogeneous configurations,
when using the gauge-fixed vielbein (24), (23] (with zero shift vector). More precisely, the Hamiltonian action

12



density has the form
LHam = Z T8, Ba""poQ 9a+7fXTX

- Nﬁ(ﬁawﬁueupeaxTvx) - Na Ha(ﬁuﬂ—ﬂaeapeux'rax) ) (371)

where we have introduced the canonical momenta mg,_, pe,, respectwely conjugated to the three §’s, and to the
three Euler angles 0,, and where N denotes the rescaled lapse N:=N /+/9. We shall work in a gauge where

N =1 and N* = 0, which makes the Hamiltonian in the Hamiltonian action, Lg.,m = p¢ — H, simply equal to
H. Note that H = Vg H where H is the usual Arnowitt-Deser-Misner Hamiltonian density entering Eq. (2.21I)

(H is a spatial density of weight +1, while H has weight +2). Note also that we did not introduce any notation
for the conjugate momentum of x as the Dirac action is first order, i.e. already in p§ — H form (with p =i x|

when ¢ = x). Using the results above (notably in the last Section) the value of H is the sum of kinetic-energy
and potential-energy terms:

ﬁ - TB(Wﬁ)+Tw(ﬁ77rwaX7XT)+‘/g(ﬂ)
+ Vagrav (8% XT) + Vimass (6, xT) - (3.72)

The various potential terms are the same as written above: Vy(3) is given by Eq. Z31)), Vs grav (5, x x") by
Eq. 62), and Vs mass(8; X, XT) by Eq. 85). [One should use X := i xT 74 to replace X in terms of xT.]

The ﬁ—kinetic—ternﬁ is originally given (in any dimension, and for any time gauge, i.e. any value of N =

N/\/9) by
2
. 1 . 1 A .
Ts(B) = =GapBa == [D_ B2 (D 8] | > (3.73)
N N |~ -
which defines the S-space metric Ggp. [Though we put the a index on § as a subscript, one should think of it

as a contravariant index 5%.] After the rescaling (Z.50]) of the spinor field, 3 appears only in the 3 kinetic term,
so that the conjugate momenta 7, to the 8,’s are given by

2 )
B, = = Ga B . 3.74
ba = 77 Gar B (3.74)
This leads to the following value for the 3 kinetic energy expressed in terms of g
1 ab
Ts(mg) = 1 G g, ™, , (3.75)

where G is the inverse of G, i.e. (in our 3 4 1 dimensional case)

® g, T, = Z Ba—-(Z ﬁa> . (3.76)

Note that, if we were in a space dimension d # 3, the coefficient of the second term on the r.h.s. of (3.706]) would
be ﬁ instead of %

It remains to discuss the rotational kinetic term T, linked to the angular motion parametrized by the three
Euler angles ,. To simplify this discussion, we shall henceforth come back to using the time gauge ([2Z23)), as
we did in Section 2. [The formulas above for the S kinetic terms were written in a general time gauge as a
reminder of the various occurrences of N and /g in the kinetic part of the action.] As the rotational velocities

wib ~ 6, are linearly coupled to x wvia the spinor bilinears yab (see Eq. (ZX1)), we must apply the result of the

8When discussing the S-kinetic-term in the Lagrangian (L = T — V), we do not take out a factor ]V, as we do in discussing the
corresponding term in the Hamiltonian.
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previous Section to this term. To ease the writing of the Hamiltonian version of the rotational kinetic term T,
it is convenient to introduce the following momentum-like variables

oL

- W (377)

Tpab
i.e. explicitly (in the type IX case)
Tpab = 4sinh?(8, — By) w® — cosh(B, — B) X, (3.78)

as deduced from Eqs. (Z40) and ([2.57)). Here, and henceforth, we have simplified the notation by dropping the
carets over the (“flat”) indices a,b on w® and X°. [Note that the partial derivatives in Eq. [8.77) are done
w.r.t. the three restricted independent components w'?, w?3, w3!, of w; the other ones being defined in terms
of these by, e.g., w?! := —w!?, etc.

Solving Eq. (BZ8)) for the w’s as functions of the m,’s, then yields the following Hamiltonian version (~
(p — eA)?/(2m)) of the rotational kinetic term

S S . _ 1272
Tw(ﬂvﬂuthX ) - SSiHhQ(ﬂl —ﬂQ) [Trw +COSh(ﬂl [32)E ]
1 v _ 2312
8 sinh2(52 — B3) [musa + cosh(Bz = ) 271
1

= — 31 - 3172 . .
Ssm? (5, B [rwsr 4 cosh(Bs — 51) X°7] (3.79)

If one wanted to express the Hamiltonian H completely in terms of canonically conjugated variables, one
should replace the non-canonical, momentum-like variables m,, by the linear combinations of the Euler-angle

conjugate momenta pg, (see Eq. (B7I)) that they represent. As m,w = wdL/dw = 0IL/DO = py b, the
transpose of the matrix A appearing on the r.h.s. of [Z43) yields the link pg = A7, namely

Dy = €080y + sinfsin my2s + sinf cos ) w1,
Py = COSY T2 — Sine mya1,
Dy = T2, (3.80)
whose inverse reads
T2 = pw N
— cosf
MTyw2s = siny Do — BT Py - Py +cosv pg ,
sin 6
—cosf .
T3l = COSY u — sin py . (3.81)
sin 0

The canonical Poisson brackets {6,,0,} = 0 = {pg,,po, } and {04, ps, } = dap are easily found to imply the
following brackets for the non-canonical variables m,,:

{7Tw12,71’w23} = — Ty31,
{mw2s, Ty} = — Tz,
{ﬂ'wsl,ﬂ'wlz} =  — Typ23. (382)

Note that these are the opposite-sign brackets, compared to those of a usual angular momentum vector: {L,, L, }
= + L,, etc. Indeed, in the analogy of (379) (without the spin term) with the Hamiltonian of an asymmetric
top, i.e.
2 Lz L2
Higp=2+2+2 3.83
tor = 57 T 31, T 31, (3.83)
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the quantities L, Lo, Ly (which are analogous to 23, T,31, T12) represent the (non-conserved) body-frame
components of the angular momentum, which have opposite-type brackets, namely {Lq, Lo} = —Lg3, etc. This
change of sign is linked to the fact that the body-frame Li, Lo, L3 are related to the (normal-bracket, and
conserved) space-frame L,, L,, L, by the time-dependent matrix S effecting the rotation between the space-
frame and the body-frame.

For most purposes, the expression ([B.79) of the rotational energy in terms of the m,’s, together with the
knowledge of the Poisson brackets [B.82)) between the m,,’s, suffices to discuss the Hamiltonian dynamics of the
system.

Summarizing: the total Hamiltonian of the gravity-spinor system is given by Eq. (B72), together with
Eq. B75) [Tp(ms)], Ea. @I [T, 7w X)), Eq. @31 [Vy(8)], Eq. @A) [Vegrav(3x)] and Eq. (ET5)
[Vsmass (8, x)]. The Poisson brackets between the various variables is given by canonical pairs appearing in
the pg terms in Eq. (B71). [See also [B:82)).] When considering “classical” spinor variables, one should use
an odd, Grassmann-valued Y, and define a graded (anti-) bracket under which y is conjugated to i x'. The
quantum case will be discussed in detail below.

3.3 Diffeomorphism constraints

For simplifying the calculations, we have assumed above that we were working in a gauge where the shift vector
N vanishes. However, as recalled in Eq. (B.71), when we relax this assumption we know that N will simply
enter as a Lagrange multiplier of the diffeomorphism constraint H, = 0, where (see Eq. (2222

Ho =g (2R —TO) = g T (3.84)

Here, the tensorial objects refer to the spatial metric gap (e.9. D¢ gap = 0), and all indices are projected on the
co-frame 7¢, and its dual. In addition, 7% denotes the kinematical part of the conjugate momentum 7 of the
metric gqp. In the electromagnetm model discussed above, this would be the m ¢ part, without the e A shift in
Eq. (3:68). In our case, m denotes the part of 7% proportional to the second fundamental form K, i.e. (in
covariant form) wk;)“ = 9(Kap — gap K¢ ), when using the + gq, convention ([2.25) for the definition of Kgy.
Finally, the matter term in (B:84)) comes, in our case, from the stress-energy tensor of the spinor field. From
Ref. [16], the explicit expression of the r.h.s. of [B:84)) for a Bianchi spacetime reads

1
Ho =272 gpe C€ qa + 3 2. Ca, (3.85)

where X4 := he 5 hy %0,
Inserting the decomposition h%j, = e~%a §%, of the dreibein (with geq = (N3 h ., hb 4), and transforming all

tensor indices to the intermediate frame 7@ = S%; 7%, except the indices on X% which must remain “flat” (i.e.
referring to % = e~%2 77), one finds that (3.85) becomes

—_ 1 o\ —p
Hor o= 8" Ha=» <2 e e 2P 4 3 ePa=br qu) C" g - (3.86)

2

Note that, because of the covectorial nature of H,, the definition of Hm involves the inverse of the matrix
S@,. The automorphism property of the matrix S guarantees that the 7-frame structure constants C' entering
(m are numerically equal to the original, 7-frame, structure constants C. In add1t10n the rewriting of the

gab term in the Hamiltonian action as Y g, Ba—i—wwlz w2 428 w23 43 w3, shows that the components

a

_lqu] = ﬁﬁlln are linked to 7<%, via

7 = 2 (e — 720712 (3.87)
and similarly for the cyclic permutations 23 and 31. This implies that Eq. (3.86]) reads, say for m = 3,

Hy = — 75 + cosh(B1 — Ba) ni2, (3.88)
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From Eq. (BX8), we see that the last, spin contribution in (Z88) has the correct magnitude and sign to

transform the kinematic contribution 75 = 4sinh?(8; — B2) w'? into the full momentum-like variable 7,12
Finally, this shows (in agreement with [I8]) that Hz = — m,12, i.e., more explicitly

S Ha = — Typa (3.89)

where mp ¢ is a cyclic permutation of 123. In other words, in the analogy where m,2s = L, etc. are the
body-frame angular momenta, we have that H; = — L,, etc. are (minus), the space-frame angular momenta.
As in the asymmetric top situation, the H,, contrary to the m,, are conserved because of the first-class bracket
{Ha,H} = 0. Let us also note that the diffeomorphism constraints satisfy the Poisson-bracket algebra

{HaaHb} =-C° ab Hc . (390)

[Here, the minus sign comes from the minus sign in the relation H; = — L,.] The simple link ([3:89) between the
diffeomorphism constraints and the (body-frame) angular momenta 7, is not an accident but derives from basic
symmetry properties. Indeed, while the three quantities H, generate (in phase space) adjoint transformations of
the homogeneity group G [16], the three angular momenta m,, generate, by definition, the group of the matrices
S(61,02,03) used in the parametrization (235]), (Z.6). However, for simple groups, such as type IX and type VIII,
the latter group coincides with the adjoint representation of G.

3.4 Explicit forms of some (class A) Bianchi Hamiltonians

The full Hamiltonian action [B.7I]) implies two types of constraints: (i) the diffeomorphism constraints #H, =~
0 linked to the arbitrariness of the shift vector N and (ii) the Hamiltonian constraint H ~ 0 linked to
the arbitrariness of the rescaled lapse N = N/ v/9- When considering general (class A) Bianchi models, the
expression and the number of effective diffeomorphism constraints strongly depend on the structure constraints
of the homogeneity group. Let us summarize the results for the various Bianchi types.

In the Bianchi type I case, i.e. when C?%p. = 0, we see on the general expression (B.85) that H, = 0,
i.e. that there are no diffeomorphism constraints. In that case, one can still conventionally decide to use the
decomposition (2.0 with a matrix S(61,62,03) € SO(3). One then ends up with an Hamiltonian action of the
form ([B7T), except for the last term N®H, which is absent. This type I action describes the coupled dynamics
of the variables (1, 82, f3, 01,02, 05, and x. The explicit form of the Hamiltonian is given (when N = N/./g) by
the r.h.s. of B72), where, however, several terms vanish because of the vanishing of the C’s. Specifically, the
two potential terms in (B.72)) linked to gravitational walls, namely V(8) and Vi gav (5, X), are identically zero
in type I. Finally, the type I Hamiltonian has the form

H' = Ts(75) + T (B85 T X XT) + Vimass (B, X XT) (3.91)

where T3(mg) is (universally) given by Eq. B7H), Vi mass(8, X) by Eq. (Z65), and where T, (8, mw, X) is given by
the full expression [379). Note that this Hamiltonian (which must be submitted to the single constraint H ~ 0)
describes the coupled dynamics of the variables 51, 82, 83; ¢, 8,%, and x. It is a generalized asymmetric top
dynamics (for the rotational degrees of freedom ¢, 6, 1)), where the moments of inertia I3(8) = 4 sinh?(8; — S2),
etc. have their own (coupled) dynamics, and which includes a coupling between the (bosonic) rotor and spinor
degrees of freedom. As our main physical focus here concerns type IX, we shall not discuss in detail the type I
dynamics. Let us only note that Ref. [23] has explicitly solved the equations of motion of type I dynamics,
when using a different way of fixing the rotational state of the dreibein, and treating x as a classical quantity.

The Bianchi type II case cannot be directly described by the expressions derived above from the SO(3)
parametrization ([2.6]) because (contrary to the type I and type IX cases) its structure constants are not invariant
under the full SO(3) group. Refs. [18, 27, 28] has indicated other useful choices of three-dimensional matrix
groups leaving invariant the C’s. To give a different perspective on the type II case, and relate it to recent work
on cosmological billiards, we treat the type II case in an Appendix by using an Iwasawa decomposition of the
metric, i.e. an upper triangular matrix S in Eqs. (Z3) and (234)).
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Leaving aside a discussion of the other degenerate class-A Bianchi types (i.e. VIp and VIIy), let us come
back to the main focus of this work, namely the non-degenerate types IX and VIII. In both cases, the link
(B:89) between the three diffeomorphism constraints, and the three body-frame angular momenta ,,, holds. [As
mentioned above, in type VIII the rotational angles and momenta refer to SO(1, 2) with metric diag(+1, —1, —1),
rather than to SO(3) with diag(+1,+1,+1).] We can therefore greatly simplify the dynamics by reducing the
Hamiltonian by imposing the (first class) constraints H, = 0, i.e. m, = 0, thereby eliminating both the p96"
terms in Eq. 871) and the N®#, contribution. This leads to a reduced Hamiltonian action of the simpler
form

L™ =", B +ix"x = NHX (8,75, X, 0, (3.92)

a

where (Z = VIII, IX being a label for the Bianchi type)

H7 o= Tp(m) + T (B, X) + Vi (B) + Vian (8 X) + Vamass (8, X) - (3.93)

Here: Tp(mg) and Vimass(B, X) have the universal structure given above; V,Z(3) is given for any Bianchi type
(including degenerate ones) by Eq. (230); VSZg]r,(W is given for any Bianchi type by Eq. (Z61)), with C%;, given
by Eq. @49) (with C = C when S leaves the C’s invariant, as is the case for Z = VIII and IX); and, finally,

the rotational energy term takes, in type IX, the simplified form obtained by replacing m,, — 0 in (3.79)

TOMN(,x) = 5 coth(h — B)(S2) + 5 coth? (B — ) (5%)?
+ % coth?(B5 — B1)(231)2. (3.94)

The type VIII case is obtained by particularizing to the case (n1,n2,n3) = (+1, 41, —1) the result for a general
n = diag(n1,na,n3), which reads

T (8,x) = 3

The Hamiltonian (3:93)-(@95) describes the coupled dynamics of the diagonal degrees of freedom of the
metric coupled to a spinor. In the next Section we shall discuss its quantization.

1 B2—P1 B1—B2 \ 2
("16 +nac ) (212)2 4 cyclic. (3.95)

n1652*51 - n2651*ﬁ2

4 Quantum formulation of the coupled spinor-Bianchi-IX system

4.1 Dependence on the Euler angles

We shall denote by ® the abstract quantum state of the system. Following Dirac, we interpret the various
classical constraints, H ~ 0, H, ~ 0 as constraints on ® of the type

HO =0, (4.1)
Ho®=0, (4.2)

where 7 and ’;Za are suitably defined operatorial versions of H and H,. We shall work in the gravity configuration
space (1, B2, 83; 01, 02,03, together with a suitable description of the spinor degrees of freedom, labelled, say, by
o (see below). This leads to a wave function of the universe described by ®(3,60, ). Let us start by remarking
that the classical link ([B:89) naturally suggests an ordering such that Eq. (£2)) becomes

Fpar D(B,0,0) = 0. (4.3)

The classical angular momenta m, are linear combinations of the canonical angular momenta py,, see
Eq. B381). The canonical quantization pg, = —i9/06, (with h = 1), together with the natural ordering
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of the 7, as differential operators on the SO(3) spaceﬁ naturally leads to concluding that the quantum con-
straint (L3) means that ®(0;,02,03) does not depend on the Euler angles: dp, ® = 0. More directly, we can
say that Eq. ([43) means that ® is a zero-angular-momentum state on SO(3); i.e. an “s-wave”. As ® does not
depend on the §’s, we can simply ignore them in the following. Note that this is consistent with having started
the quantization procedure at the level of the final, reduced type IX Hamiltonian, namely Eq. (8:93), which
does not contain the #’s. From this point of view, the quantum description is cleaner than the classical one.
Indeed, in the classical description the Euler angles satisfy first-order differential equations obtained by setting
to zero the Lh.s. of Eq. (B78). This yields a non-trivial dynamics for the 6’s sourced by the spinor bilinears
o X9(t), and influenced by the time-dependence of the 4’s. In the quantum description, the ’s do not appear
at all, which is nicely consistent with the fact that they have the character of gauge parameters.

4.2 Quantum description of the spinor degrees of freedom

After the rescaling (258) of the spinor, the spinor kinetic term is simply

4
LE™ =ixtx =i ) xht) Xa(t) (4.4)

a=1

where we made explicit the Dirac-spinor index a = 1,2, 3,4, which was kept implicit up to now. In the case
where x is a generic Dirac spinor, with 4 independent complex components, the quantization of (&4 is done
by the standard anticommutator result (with & = 1)

Do X84 = 0= Db xBl s [Xas Xbl+ = das, (4.5)

where [A4, B]; = AB + BA denotes an anticommutator, and where all the x’s are taken at the same instant
t. In other words, each one of the four x,’s can be viewed (at each instant t) as an independent (complex)
fermionic destruction operator, with ! being the corresponding fermionic creation operator. To each pair
(Xa, X},) then corresponds a two-dimensional (complex) Hilbert space, so that to the 4 mutually anticommuting
pairs (Xa,X!), @ =1,...,4 correspond a fermionic Hilbert space of dimension 2% = 16.

We can, however, simplify the problem by demanding, from the start, that x be a Majorana spinor, i.e.

be restricted to contain only 4 independent real components. More precisely, let us use the following explicit
Majorana representation of the 4 Dirac gamma matrices v® entering the spinor action:

0 _ 0 iUg 1_ (01 0 5 _[—03 0
7= (iUQ 0 = 0 g1 T 0 —03 ’
3 0 —1i 09
FY - <,L'0_2 0 ) (46)

where 01 = ((1) (1)), o9 = ((z) _OZ>, o3 = (é _01> are the standard Pauli matrices. The four gamma matrices

@A) are all real, with the 3 spatial 7’s being symmetric (and therefore hermitian), while 70 is anti-symmetric
(i.e. anti-hermitian).

When using a real representation such as ([@.0)), the reality condition for a Majorana spinor is simply x* = ¥,
i.e. the condition that each component x,, be real (i.e. hermitian, as an operator). In that case, the quantization

of the standard spinor kinetic term @A), i.e. i) Xa Xa, involves an extra factor %, namely
«

1
5 a5 (4.7)

9Note that the §’s parametrize SO(3) matrices, rather than the SU(2) group G which constitutes the cosmological space. The
“factor 2” difference between SO(3) and SU(2) might have been important, if we had needed to consider situations where 7, ® # 0.

[Xas X8]+ = Xa X8+ X8 Xa =
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The need for the factor % in the quantization condition (£71) can be viewed in several ways. The most direct
way is that the normalization of the basic field commutators should be chosen so that the universal Heisenberg-
representation equation of motion for operators (with i = 1)

d
 — Q) = H 4.8
i LQ=10.H) (1)
(where [A, B] = AB — BA denotes a commutator) hold true, and be consistent with the usual Euler-Lagrange
equations of motion. As the Euler-Lagrange variation of the kinetic term & [ d¢ix x (for a real, anticommuting
x) involves a factor 2 (after integrating by parts), one needs the factor % in (7).

An indirect check consists of decomposing a general, complex Dirac spinor, with kinetic term (£4), into real
(i.e. Majorana) and imaginary parts, say x = Xr +i X1, X' = Xr — i X1, where xr and 7 are both Majorana.
It is then easily checked that the standard anticommutators (4.3]) imply that xr and x; both satisfy ({#1), and
mutually anti-commute. In addition, it is easily seen that if we insert the decomposition x = xr+1i xs in the full
Dirac action (2357), it simply decomposes as the sum of two decoupled Majorana actions, one involving xr and
one involving x7. [This is true because all the spinor bilinears, including the mass term oc x' Y5 X, involve an
antisymmetric Clifford-algebra matrix, such as ' 2, Y% ~123 or 75, sandwiched between x' and x.] This shows
that considering a complex Dirac spinor source is equivalent to coupling gravity to the sum of two independent
Majorana spinor sources. At the Hilbert-space level, the Dirac fermionic state space is just the tensor product of
two independent Majorana fermionic state spaces. For simplicity, we shall consider in the following the simpler,
single Majorana case, i.e. x* = x. Note, in particular, that in that case the fermionic Hilbert space is simply of
dimension 22 = 4. Indeed, this fermionic Majorana space is the (irreducible) representation space of the algebra
#Z0), which is simply a Clifford algebra on the 4-dimensional Euclidean space. Actually, if we introduce the
notation

Iy :=2Xa, a=1,....,4 (4.9)

we see that the four operators (in Hilbert space) T'y, a = 1,...,4, satisfy the standard O(4) Clifford algebra
relations
FoTg+Tgl0 =20643. (4.10)

In particular, each Iy, has a unit square. In addition, note that the product
Is:=T1T2T3Ts =16 x1 X2 X3 X4 5 (4.11)

defines an operator which anticommutes with each X, and which has also a unit square: s = +1. [This
contrasts with the O(3, 1) case where 75 = 75 v7 75 73 squares to minus 1, because of the time-like character of
Vo]

Summarizing: when y is taken to be a Majorana spinor, the second-quantization of x, Eq. ([@T), leads to a 4-
dimensional space of fermionic degrees of freedom. In other words, the wavefunction of the universe, ® (53, 0., ),
is labelled, besides the 6 continuous bosonic labels (81, B2, 83; 61, 62, 03) of the gravitational minisuperspace, by
a discrete index o, which takes 4 values, and which is algebraically equivalent to the spinor index of the Dirac
representation of the O(4) Clifford algebra (AI0). When ¥ is taken to be a complex, Dirac spinor, the second
quantization of x, Eq. (@3], leads to a 16-dimensional space of fermionic degrees of freedom, which is the tensor
product of two independent Majorana-spinor spaces. Note that if one works in a Heisenberg picture, where the
X(t)’s evolve in time according to the equations of motion (8], the corresponding Clifford algebra generators
(#3) must also be viewed as time-evolving objects, rather than fixed numerical gamma matrices.

4.3 Explicit form of the Einstein-Majorana Bianchi-IX quantum Hamiltonian

After having taken into account the diffeomorphism constraints (£.2) in the form (@3], so that the wave function
®(S,0) depends only on the three diagonal metric variables 31, 82, 83 and the discrete spin-space label o, it
is natural, in the gauge N=N /+/9 = 1, to quantize the gravitational degrees of freedom by replacing the
classical S-momenta 7z [which enter the Hamiltonian ([3.93)) only through Ts(73), Eq. (879)] by the differential

19



operators mg, = —i0/0f,. This leads to interpreting the Hamiltonian constraint as the following Klein-
Gordon-like Wheeler-DeWitt equation

HIX ®(B,0)=0. (4.12)
with .
HX = Tp(Rs) + T (B, x) + ViX(B) + Ve (B.%) + Vimass(B,X) + ¢, (4.13)
. 1 1 1
Ts(7p) = -5 G 0y, 0p, = ~7 (03, + 03, + 03,) + 3 (0p, + 0p, + 0p,)*, (4.14)

where VIX(B) is the usual type IX potential (2.31]), and where the quantum versions of all the 8 — x coupling

terms T (ﬁ 2, X)s VSDgi av (35 X);, Vsmass(B, x), are simply obtained from their classical expressions by interpreting

the various spinor bilinears they contain as operators in the fermionic space defined, say in the Majorana case,
by Eq. (@T). This yields

1 = 1 ~
TO(B,x) = 3 coth®(B1 — B2) (8'%)% + 3 coth? (B2 — B3) (£%%)?
1 -
T3 coth?(Bs — B1) (£°1)%, (4.15)
where . . .
-~ i ~5 = i 5% = i
= oxTy iy, B = o Xy, B ::ng I, (4.16)

are operators acting in the 4-dimensional fermionic space. Similarly, denoting by “+ cyclic” the addition of two
other cyclically permuted terms,

1 oy 53 _
Vs%rav(ﬁ,x) = 3¢ 281 (i xT 5922 x) + cyelic
1 , s
= (e e g (i xT g1 ), (4.17)
and, R
Vimass (B, x) = me™Pr5109) (i3T5 x) (4.18)

Finally, we have allowed for the addition of an “ordering constant” ¢ in Eq. ([I3]). There are several motivations
for allowing for such an additional constant. First, if we were working in a dlfferent gauge, e.g. N =1, i.e.
N = g~ 1/2 = ¢(P462465) ingtead of N = 1, we would have had to quantize H = 1e(F1+F245s) Gabpy mp
instead of 1G% g, ms,. More generally the quantization of H = 1 (%) Gabrg, 7T,@b, where a(f) = a,f, is
some l1near form in the B’s, leads (after reabsorbing e*(®) in the definition of the wavefunction) to an ordering
ambiguity which is equivalent to adding a constant ¢ o G®a, a3 in Eq. ([@I3). Second, the contribution (@I5)
being quartic in the non-commuting x’s has also ordering ambiguities (though it is natural to define it as we
did, i.e. by taking the squares of the spinor bilinears ([#I6]), which have no ordering ambiguities because v'2,
etc., are antisymmetric matrices). Finally, there is a basic ambiguity in the gravity-spinor Lagrangian due to
the possible use of first-order (Palatini) versus second-order formulations. It has been shown long ago [33] that
this leads to an ambiguity in the action density proportional to

AL = % —ig @Y T 9) @155, 9)
= N[—(@vaiaﬁzc)z—(ixwagx)z’ (ixt T x)
+ (x5 22 x)%. (4.19)

We will come back below to the latter (S-independent when N = 1, but x-dependent) ambiguity. Finally,
note that one could also consider adding to the quantum Dirac action other Lorentz-invariant contributions
quadratic in spinor bilinears, AL ~ (¢ y4 )2, because no symmetry prevents the appearance of such quartic
contributions.
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4.4 Properties of the spinor bilinears

For the time being, let us note that, in the representation (6], one can compute explicit expressions for the
Majorana-spinor bilinears entering the Hamiltonian. Let the 4 components of the Majorana spinor x in the
representation (6] be denoted as X1, X2, X3, X4, and let xT denote the transpose of the column vector yq, i.e.
the horizontal row x* = (x1, X2, X3, x4). We find

X' X = xixa—Xe X1t X3 X4 — X4X3,
XT”YQWBX = X2X3—X3X2t+tX1X4—XaX1,
X"y X = Xxsxa—x1x3+X2Xa—XaXx2, (4.20)

for the bilinears entering 7™ (without the i/2 prefactor), while

XF 7071 7273 X = X1 X2 — X2 X1 — X3 X4 + X4 X3 » (4.21)

and
xT Y0 X = X2 X3 — X3 X2 — X1 X4 + Xa X1, (4.22)

are the bilinears entering V grav and Vi mass.

In view of (£20) it would seem that ﬁ(ﬁ), which contains the squares of these bilinears, is a hopelessly
complicated expression. However, things simplify very much if we use the Clifford-algebra properties of the
X’s. More precisely, using the notation ([@3)), and simple properties such as I'? = 1, (I'1'2)? = —1, and
I ToT5 = —T'3Ty (with the definition (@IT]) of I's), one finds the following simplified expressions for the spinor
bilinears

A2y = Ty 1—2F5 ,
Ny = TaTye —21“5 :
WPy = Taly o _2F5 ,
X o12sx = Tily ! —;FS ;
xFvox = Tolg 1 +2F5 . (4.23)
Note that these expressions contain the projectors
Py = % , (4.24)

which satisfy the usual properties of Dirac’s helicity projectors (1 £ ivs)/2 [with v5 = 70717273 so that
(iv5)? = +1], namely: P, + P_ =1, P2 =P;, P2=P_, P, P_ =0.

Let us also note that the above bilinears satisfy simple commutation relations among themselves. First, as
Lap =Ty (de. Tip =0, T'ig =T Ty, etc.) commutes with I's, and Py P— = 0, we see that the first three
bilinears in (£23)) commute with the last two. Second, one easily checks that (together with its cyclic analogs)

23

12 13
v v v
[XTTX,XTTX]=XT7><, (4.25)

i.e. adding the factor i transforming the anti-hermitian % T4 y into the hermitian operators £ of Eq. EIg),

[i”,i?ﬂ 5 (4.26)
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together with its cyclic kins. In other words, the second-quantized operators 212, 223, 381 satisfy the (reverse-
sign) commutation law of body-frame angular momenta (the classical Poisson bracket {L1, L2} = — L3 mentioned
above becoming [L1, Ls] = —i L3 at the quantum level).

Let us note that, more generally, one can deduce directly from the basic anticommutation relations (@7
that the commutators of two bilinears ¥ Ax = xa Aag xg and XTB X = Xa Bag X3 (Where A and B are some,
say antisymmetric, x-independent matrices) is equal to

X"Ax, x"Bx] =x"[A, Bl x, (4.27)

where [A, Blag = Aoo Bsg — Bao Asp is the usual matrix commutator.
In addition the squares of the bilinears (23] simplify. Notably, (x7 72 x)? = (T12)? P2 = —P_, i.c.

(212)2 _ (223)2 _ (231)2 _ ip_ . (4.28)

4.5 “Squared-mass” in the Wheeler-DeWitt equation

The main result of Ref. [23] was the finding that a classical spinor source (i.e. treating the spinor bilinears

a

2
X' Ax as c-numbers) modifies the usual quadratic relation Y p2 — ( 3 pa> = 0 satisfied by Kasner exponents
a

(in the Bianchi type I case, i.e. far from any potential wall) into the relation']

2
Zpi - <Zpa> = —% [(212)2 + (223)2 + (231)2] , (4.29)

where the ¥% are the spinor bilinears defined above (treated as c-numbers). In the language of cosmological
billiards (and using the time gauge N = /g = T, i.e. a coordinate time ¢t = —InT'), the result (£29) means

2
that the Lorentzian squared velocity in S-space 32 = Gap Ba Bb =Yp2 - (Zpa) is negative, 32 < 0, i.e.
a a

time-like, rather than light-like (32 = 0) as usual. Belinsky and Khalatnikov [23] argued that this implied
that a classical spinor would (like a scalar field does) ultimately quench the chaotic, oscillatory regime near the
singularity, and ultimately turn it into a monotonic Kasner-like, power-law behaviour (because the S-particle
can ultimately move on a time-like geodesic which no longer hits any gravitation wall).

The result (£29) was understood via an Hamiltonian approach, and within a more general Kac-Moody
coset model approach, by de Buyl, Henneaux and Paulot [24]. These authors found that, far from the walls
associated to a general coset model, the mass-shell condition for the 3-momenta 73, o Ggp Bb was modified,
by the coupling to a classical spinor, from the usual light-like condition wg = 0 (where 77[23 = G%mg, mg,) to a
massive-shell condition

5+ upt =0, (4.30)

where the general expression for the (8-space) squared-mass p? was found to be
1 . s
Heoser = 5 _(1XTI2X0)%. (4.31)

Here, y is the coset Dirac field [which corresponds to the rescaled Einstein-Dirac field ([256)], and « labels
all the (positive) Kac-Moody roots (including their degeneracy) that enter the bosonic coset model G/K.
Each root « is a linear form in the f’s, and corresponds (in Iwasawa gauge) to a bosonic wall potential
proportional to exp(—2a(f8)). The object J in (@3] is an anti-hermitian generator which represents (in
the spinor representation s) the “rotation” FE, — F_, of the maximally compact subgroup K of G associated

10We normalize the type I spatial metric so that /g =T, where T is the proper time.
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to the root a.. The extra factor i in (@31) turns J2 into a hermitian operator, so that i xT.J2 x is real and p? is
given (for a Kac-Moody coset G/K) by an infinite sum of positive quantities.

In the language of the general Kac-Moody result (@30), (£31) (which uses a normalization where mg, =
Gab By, without the factor 2 entering our Eq. (B74) above) the original Belinsky-Khalatnikov result (£.29)

corresponds to the squared-mass

e = 5 (5127 + (5207 4 (57 (132)

This squared-mass is of the general form (A31]) (see below) but includes only three roots, namely the roots
corresponding to the so-called “symmetry walls"[!l, a12(8) = 5% — B, ao3(B) = 8° — 5% and a13(8) = 8% — 3.
One might wonder whether the presence of only those three symmetry roots, and, in particular, the absence of
any contribution coming from the gravitational-wall roots a‘g;%(ﬁ) = 201, etc. (which are crucial to generate
the BKL chaos) is due to the approximate nature of the treatment of Ref. [23], based on a Bianchi type-I model,
i.e. a model which contains all the symmetry walls, but no gravitational walls. Separately from this issue, we
wish here to use our results above to clarify the effect of considering, as one should, the spin source as being
quantum, rather than classical, as was assumed both in [23] and in [24].

One can define the squared-mass term in the Wheeler-DeWitt equation as the term remaining with %[23
in a BKL-type limit 8 — +oc in which one stays far away from all exponential walls. We have already
mentioned that Vslgrav, Eq. (@I), contains (half) gravitational walls, while V; mass, Eq. [@I8)), contains a (half)
cosmological-constant-related exponential wall. All these terms, as well as the usual bosonic type-IX potential

VIX(3), Eq. 231), will tend to zero in this far-wall BKL limit. It remains to consider the contribution 7Y,
Eq. (@I5). Using the hyperbolic-trigonometry identity coth® z = 1 4 1/sinh?(x), we see that we can split TIE,O)
as

T = 2% + Vo5, ), (4:33)
where
PR =5 (B + B + 3] (434)
and R
1 (212)2

f/ccnmf(ﬂ, X) + cyclic. (4.35)

8 sinh?(B1 — B2)
One recognizes in ([{354]) the sum of three sinh™2-type centrifugal-wall potentials, which is the form taken by
symmetry walls when one uses a Gauss decomposition of the off-diagonal components of the metric rather than
an Iwasawa decomposition (see [10, [11]). Far from the symmetry (or centrifugal) walls, i.e. when |32 — 8| > 1,
ete., Veentrif hecomes a sum of exponentially small terms oc exp(—2|3? — 3|) +cyclic. This leaves as only terms
contributing to the dynamics in the far-wall limit

HX = [73 + 1% + 4c] + (exponentially small terms), (4.36)

=

where %% = _@Gab 0g, Og, is the Klein-Gordon operator associated to the 3-space Lorentzian metric.

This result shows that, in Bianchi type-IX (and also, as one easily sees, in type VIII), the coupling of gravity
to a quantum spinor generates a g-number squared mass in the Klein-Gordon-like Wheeler-DeWitt equation
given by

i° = p% + 4c,

where [i% is defined in Eq. (34), and where c is the ordering ambiguity that we allowed for in Eq. (ZI3).

Note, first, that if we take a formal classical limit of fi%, Eq. (@34)), we recover the Belinsky-Khalatnikov
result p3y, Eq. [32), without any extra contribution coming from the gravitational walls (which were explicitly
taken into account in our calculation, contrary to the type-I computation of Ref. [23]). When comparing this

1'When considering potential wall forms w4 (8) from a coset perspective we denote them as a.4(3).
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result with the coset-model result u2 ..., Eq. (@31]), we see that there is a genuine difference. Even if one were
considering a truncated coset model involving only the couplings to the walls entering the type-IX gravity model,
the sum in Eq. (£31]) should include as roots both the three symmetry roots a2(8) = B2 — f1, aas(B) = B3 — B2
and a13(8) = B3 — f1, and the three gravitational roots afy;(8) = 81 — B2 — B3 + X4 Ba = 2 1, 033, (8) =2 B2
and a4, (8) = 2 B3. The corresponding K (AF3) generators, J, = E, — E_,, within the spinor representation
of K(AEs), are known to be [24] [34] [35] [36] 22],

1 1 1
JS i ,712 , JS —— 7237 JS i 7137 (437)

a2 2 Q23 2 13 2
for the three symmetry roots, and

1 123 L 231 1 312
Jaty = 57075 Jag, =577, Jag, = 570777, (4.38)
for the three gravitational walls. Inserting the expressions ([@37) into the general coset result (@31 yields,
in view of the definition ([2.58) of $9°, precisely the result (Z.34) (including the correct normalization factor).
However, a coset model involving the couplings to the walls entering the type-IX gravity model would yield a
(quantum) squared-mass of the form

. 2
2(IX)  ~ 3 (1
TR T 3 (5 x oy x> : (4.39)

where the factor 3 comes from the fact that the three gravitational-root generators (£38)) happen to be equal
among themselves.

The reason why the coset-results ([@L31]) or [@39) (for the type-IX truncation) contain more contributions
than the original type-IX gravity model, Eq. (£34), is easily understood from the corresponding derivations of
these results in [24] and in Section B above. Indeed, one sees that each individual contribution 3 (i xTJ3 x)?
to u? comes for the presence of a corresponding time-derivative coupling ~ e A, see Eq. ([3.67), between
gravity and the spinor. For instance, it is because in Eq. ([2.57)) there were (say in the far-wall limit) three
Lagrangian-coupling terms,

1
— cosh(B1 — B2) w'? £ + cyclic ~ ~3 e@12(8) 12 12 4 cyelic, (4.40)

between the rotational velocities w'? = ¢ cosf + 7,/'1, etc. of the off-diagonal metric variables (parametrized by
Euler angles), that one ended up with [i% given by the sum of three symmetry wall contributions a2, aas, a13.
By contrast, the couplings corresponding to the three gravitational walls afys, ads;, a5, between gravity and
the spinor, predicted by the Einstein-Dirac action, were contained in Vj grav, Eq. (Z64), i.e. were of the type

1 ,
Vegray = =5 Cl 23 e~ 2(A) [% xFyo vt x} + cyclic. (4.41)

This is very analogous to the coupling (£40), with, however, the crucial difference that the rotational
velocities w'?, etc., appearing in ([@40) are replaced in (@ZI) by the structure constants C! o3, etc. In the
gravity picture, the structure constants are spatial derivatives of the metric, and therefore do not contribute a

squared-mass term via the
(p—eA)? 1A%
o =37m + ... (4.42)

mechanism (with e A % x'J2 x) explained above, which was linked to a time-derivative coupling AL = e ¢ A.
By contrast, the coset action is related to the gravity action by a dualization of some of the gravity degrees of
freedom. In particular, the structure constants C 5. become replaced by the conjugate momenta, i.e. essentially
by the time-derivative, of some dual coset field, namely C% := %Ede C® g x T ~ éab for the AFE5 case linked
to the (34 1)-dimensional Bianchi-IX dynamics (see Section 8 of [6]). This explains why the gravitational roots
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(and actually all the coset roots) give a contribution to p? within the coset model (for the spin 1/2 case), but
not within the original gravity model.

Let us now turn to the quantum nature of the Bianchi-IX squared-mass term ([£34). Though each term
(Rab)2 = (% xFyab X)2 is quartic in the quantized spinor field y, we have shown above that the Clifford-algebra
nature of the quantization conditions for a Majorana spinor led to simple final results. More precisely, we see
from ([#28) that each separate (X°)? term yields the same result, so that the total quantum p? reads

53, _31-Ty

:uEzg - ] 92 )

(4.43)

where we recall that I's denotes the involutive (I'2 = 1) operator (.II]). The simple result [£Z3) shows that,
in the quantum theory, the squared-mass term [in absence of any additional ordering-constant contribution 4c,
as in Eq. (@386))] is an operator which has two possible eigenvalues: the eigenvalue p% = 0 in the 2-dimensional
space of “helicity” T's = +1, or the eigenvalue p% = 3/8 in the complementary (orthogonal) 2-dimensional
space of “helicity” I's = —1. [Note that u% vanishes in half of the total (4-dimensional) Majorana-spinor
Hilbert space.] In terms of (2j + 1)-dimensional irreducible representations D; of SU(2), we can view the

three components 2127 223, S8 of a single Majorana field as describing the sum Dy + Dgy + D%. Let us also

note that our results above, also gives the eigenvalues of 12,523 5331 (and then of x2) when considering a
complex Dirac spinor. Indeed, this case is obtained by considering x = xr + 4 xr1 as the complex combination
of two, independent (i.e. anticommuting), Majorana spinors, so that each final ¥'2 etc., is given by a sum,
i};f + E}Q, of two commuting spin operators. The corresponding representation space is therefore the tensor
product (Dg + Do + D%) x (Do + Do + D%), i.e. the sum 5Dy + 4D% + D;. This shows that the possible
eigenvalues of 1% are 0, 3/8 and 1. Moreover, the eigenvalue i = 0 is obtained (when assuming ¢ = 0) in
a 5-dimensional subspace of the 16-dimensional total Hilbert space. Note that we can extend this result by
considering the case where gravity couples to a sum of N independent (i.e. anticommuting) Majorana spinor
fields. In that case each spin operator $12 ete. will be the sum of N independent (commuting) contributions
belonging to a Dy + Dy + D 1 representation space. This implies that the eigenvalues of i3 will range between
0 and N(N +2)/8. Decomposing the Hilbert space obtained from N tensorial products of (Dg + Do + D%) into
a direct sum of irreducible spin s subspaces Ds, one finds that the number A(s, N) of irreducible spaces D,
appearing in the 4V dimensional product space is given by :

(25+1) (2N +2)!

For large N and fixed s this behaves as : A(s, N) ~ 4N+ (1 4-25)/(y/7 N3/2). Applying this result to the case
s = 0 shows that the eigenvalue p% = 0 will be realized in a rather large fraction of the total Hilbert space,
namely a subspace of dimension (2N 4 2)!/((N + 1)!(N + 2)!) ~ 4N+ /(\/7 N3/2) of the total 4"-dimensional
space. For any N, the mean value of u% (treating all states as equally probable) is equal to 3N/16 > 0. The
standard deviation of p% is found to be oz = +\/3(2N2+ N) = 0.15N (for large N). In the large N limit,
one would recover the result of the classical treatments of Refs [23] [24].

Let us also note that, if one were considering the coset-type mass [£39)), including the gravitational-root
contributions, the result (£23) shows that one would obtain

A2(1x)_§1—r5 §1+F5_§ 444
/’LCOSet_g 9 8 9 _87 (' )

i.e. a constant, c-number result, all over the Hilbert space. This result is reminiscent of the full coset result
(@3T), whose r.h.s., is the quadratic Casimir invariant of the spinor representation of K(G), which is a ¢
number in any irreducible representation. Note, however, that, though the representation space of the spinor
representation of the Kac-Moody maximally compact subgroup K(G) is finite dimensional, there is an infinite
number of roots «, and a corresponding infinite number of generators J2, that one should sum over in the coset
result Eq. ([@31)), so that the value of [i2 .., is formally infinite, or, at least, ill defined as an operator. This
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indicates the need to renormalize it by some ordering prescription. This suggests that, in spite of contrary
appearances, the renormalized value % ... = 0 is an allowed possibility.

Let us come back to the result ([@43]) predicted by the usual Einstein-Dirac action, and further discuss its
meaning. Let us first note that the non-zero value (Z43) of i? is a quantum effect, which directly comes from
the anti-commutation relation (7)) of the quantized spinor x. If we reinstate the 7 on the r.h.s. of {I1), we
see that the objects T, that satisfy the unit-normalized Clifford algebra (.I0) are actually related to x via:
Xa = %\/7—11"(1. As [i? is quartic in x this shows that [i% is actually % % h2, i.e. of order 2. In turn, this
shows that, when one is in a quasi-classical (WKB-type) regime where the gravitational momenta 7g are large
compared to h, the mass term will have only a sub-leading effect. This is consistent with the finding above that
p? has an intrinsic quantum ambiguity due to ordering problems: indeed, the constant ¢ in Eq. ([@38) is also
seen to be O(h?). On the other hand, when considering the Klein-Gordon-type equation defined by ([36]) with
7g = —ih0/0B,, we see that a same factor h? appears in front of the S-space d’Alembertian — G 9,9, and
of both the Y-generated mass [i%, and any quantum-ordering contribution 4c. This means that the mass term
p? will be important when the wave function ®(3, o) has a characteristic scale of variation in S-space of order
unity.

Let us finally note that the ambiguity in the Einstein-Dirac action linked to using a first-order or second-
order formalism is equivalent, in view of Eq. (@IJ), to adding to fi*> a term proportional to —fi% — —|—%[Z§w\,,
where 7i2,,, is the contribution to the coset result (31 coming from the three gravitational roots, i.e. the
second term on the r.h.s. of Eq. (@39) (which is the sum 0% + fig,a, )-

This shows that the addition of a suitable multiple of the extra contribution (Z.19) to the Einstein-Dirac
action can modify the basic result 4% in a more general result of the type

o Kk
(1 - k)M2E + g Ngrav +4c, (445)

where we took also into account a possible (c-number) ordering constant. For instance, if k = % this would
generate a mass term 1 (1% + [i3ay) + 4c. When ¢ = 0, this would correspond (modulo the factor 1) with the
coset-like result (Z44). On the other hand, if we choose k = 3 and 4c = —3/32, we end up with a vanishing
total squared-mass.

Keeping in mind all these (quantum) ambiguities in the value of i, we shall now discuss in more detail the

quantum dynamics of the Bianchi-IX-spinor system.

4.6 Quantum dynamics of the Bianchi-IX-spinor system

The Wheeler-DeWitt equation for the Bianchi-IX-Majorana-spinor system has the form

1 ~ .p —~
(‘1 G 9, 05, + VX(B) + Vo= (5,x) + V1%, (8,x) +

1

Vo (B0) + B0 ) B(5. ) = 0. (1.46)

Here, the spin-independent term VgIX (8) is the usual bosonic type-IX potential ([2.31]), while there appears three
different spin-dependent potentials. Using our results above, their explicit expressions are (for type IX)

~ . 1 1 1 1
Vccntrli (ﬁ7 X) _ - ( + + )
= 32 \sinh®(8) — B2)  sinh2(Bs — B5)  sinh?(fs — f1)
X 1_TF5 : (4.47)
N 1 14T
Vi (Bx) = =7 (72 4722 4 e72M) (i) +2 5, (4.48)
N 14T
Vvslﬁass(ﬁa X) = +m€_(61+'82+63) (l PQFB) 4_2 2 . (449)
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The various possible values of i2,, have been discussed in the previous subsection.

The discrete spin label o, indicated as argument of ®, takes four values, and reminds us that the various spin
operators I's, i [ 'y and ¢ T'2I'3 act upon a 4-dimensional Hilbert space. In other words, Eq. (£40]) is similar to
the second-order form of the Dirac equation coupled to an external electromagnetic field, namely

(10, —eAu)? + %eo’“’ Fo+m?|=0 (4.50)

where o#¥ = %7”” is the spin generator (in the Clifford algebra).

In the case of the usual Dirac equation ([£50), the spin coupling term %e o F,, (linked to the magnetic
moment of the electron) couples the 4-different components of the (first-quantized) Dirac spinor 1, and embodies
physical phenomena such as the precession of the electron spin in an external magnetic field. Similarly, we can
think of the wave function of the universe ®(3) as a column vector of 4 components ®,(3), which propagate
in the Lorentzian S-space, and are deflected by the spin-independent potential VgIX (8), together with the three
spin-dependent potentials (£47)—(@49) which are analogous to the % et F,,, spin-coupling term in Eq. (E50).
In addition, the mass term fiZ, () is also spin-dependent, as discussed in the previous subsection.

In this work, we shall focus on understanding the dynamics of the universe’s multi-component wave function
®(0) in the BKL regime where one approaches the singularity, .e. in the limit where the various ,’s all tend
to +oco. For concreteness, let us first consider the case where fi? is given by the Bianchi-IX prediction ({#.43)
together with a possible ordering constant, but without any further contribution of the type of Eq. (19)). In
that case we have

~2 § 1- I‘l5
82
Let us start by noting that the helicity operator I's commutes with all the terms in the Wheeler-DeWitt
equation ([{40]). This means that the 4 components of ® can be viewed as the superposition of two independent,
2-component wave functions; say ¢4 and ¢_, with

1+T
— 59,
2
and where & and ®_ undergo two uncoupled evolutions. More precisely ®; (which is a positive-helicity
eigenstate ['s . = +® ) satisfies (with Og = G 95, 95,)

+4c. (4.51)

D

P=0, +_, (4.52)

1 1
(_Z Og + VgIX(ﬁ) — (e7r 72 4 o720y

4
+ m e~ (B1t+B2+83) 4 ol + C) (I)+(ﬁ) =0, (453)
while ®_(I's ?_ = —P_) satisfies
1 1 1 1

— =05+ V*(B) + = +

( 4 g g (ﬂ) 32 (sinh2 (ﬂl — /82) sinh2 (ﬂz - ﬂg)
1 3

Lt NS e =0, 4.54

)5 )0 Y

These two sub-equations have rather different structures: (i) they contain a different mass term, (ii) the ®_
equation is spin-independent (i.e. the two independent components of ®_ satisfy the same equation), while the
two-independent components of ®, are coupled via the presence of the ¢ I'1I's and i 'sI's spin-coupling terms;
and (iil) they contain different spin-averaged potentials (besides the mass term). Concerning the last property,
the spin-averaged potential term for @ (taking into account that (i [,I',)? = + 1, i.e. that the eigenvalues of
iTaly, a £ b, are £1) is

(e*4ﬁ1 + e*4ﬁ2 + 6*453) _

N =

Vi) = Vgh(B)=
_(6*2(51+

=

2) e 2Bt hs) 4 om2(Bs By (4.55)
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while the spin-averaged potential for ®_ is

g e (] -
V-6 = VRO 5 (s T

1
+—sinh2(63 — 51)) . (4.56)

We note that the spin-averaged potential V. (8) for @, is the usual type-IX potential for a diagonal metric,
which contains only gravitational walls, but no symmetry (or centrifugal) walls. Classically, this potential
(approximately) confines the motion of the § particle (when considering the near-singularity limit) to stay
within the Lorentzian billiard chamber defined by the condition that the three gravitational wall forms be
positive:

wiys(B) =251 >0, wis(B)=202>0, wiy(B)=283>0. (4.57)

At the quantum level, this confinement mechanism will be blurred by tunnelling effects. As is well-known
the physics of tunnelling in quantum cosmology crucially depends on the choice of boundary conditions in
configuration space, see, e.g., [37]. Leaving a discussion of more general states to future work, we shall focus
here on wave functions which are quantum analogs of the classical billiard motions within the appropriate
billiard chamber (e.g. the chamber (LI1) when considering the ®; component). For such states, taking the
ordering constant ¢ in ([£53]) to its naive value, ¢ = 0, we can qualitatively describe the quantum evolution
of @4 by looking at the various potential terms in ([£53]). First, we note that, when trying to penetrate the
gravitational walls (£57), i.e. when exploring regions where some of the wall forms, e.g., 2 1, become negative,
the spin-averaged bosonic potential V (8) = V;X(B) will grow like + % e~461 and will therefore dominate over
the corresponding (non positive-definite) growing gravitational spin-dependent potential o e=281 i\ T'y. In
addition, the spin-dependent potential related to the mass m of the spinor becomes exponentially small in the
near-singularity limit where the volume of the universe, < /g = e~ (BitP248s) tends to zero (i.e. when the
sum 1 + B2 + B3 — + 00). This discussion shows that there will exist quasi-classical spinor-like wave functions
®, (B) (with two independent components) consisting of WKB-like solutions approximately bouncing between
the walls of the chamber (L57), and decaying in the “forbidden” domain, $; < 0, 82 < 0, 83 < 0. Compared to
the usual, pure gravity Wheeler-DeWitt equation for Bianchi-IX, which would be

(- 100 +15®) 03 = 0, (459

for a scalar-valued (one component) ®¢(3), the interesting new feature of the gravity-spinor system is the
presence of additional spin-dependent couplings. In the case of the @ equation ([@53), these are the terms
containing i ' 'y and ¢ ToT's. As these two (Clifford algebra) operators do not commute among themselves, their
presence means that the two independent components of ®, will continuously mix under the influence of these
terms. We thereby end up with the picture of a quantum fermionic billiard where the various polarization state of
a spinor-valued wave function mix as the quantum state bounces within the billiard chamber. We shall discuss
below the precise link between such a quantum fermionic billiard, and its Grassmann-valued correspondent,
studied in Ref. [22].

In the BKL limit 8y 4+ B2 + 83 — + oo, the term proportional to m in the evolution equations for ® become
negligible. Let us then consider the special case where m = 0, which should also describe the general behaviour
when 31+ 82+ 83 — + 0o. For the case m = 0 (and ¢ = 0), the evolution equation ([@53]) for @ further simplifies
in that it contains only one spin-dependent operator, namely ¢I'1T's. In that case, the idempotent operator
iT1T9 commutes with the Hamiltonian, so that we can further decompose @, into two (scalar) components,

say
14£iD0,T
o) = % o, (4.59)

that evolve independently of each other. Namely, these components satisfy

(— i Os + V,X(B) ¥ i (e7201 4 e 4 e—%)) o (B)=0. (4.60)
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In other words, when m = 0, we can reduce the dynamics of the multi-component wave function ®(3, ) to the
uncoupled dynamics of several separate components satisfying different scalar, Wheeler-DeWitt equations.

Turning to the dynamics of ®_, Eq. ([@54), we already noted that it did not contain spin-dependent terms.
This means that, similarly to the m = 0,®, case discussed above, the two components of ®_ satisfy (even
when m # 0) the same scalar, Wheeler-DeWitt equation (£54]). The latter equation has two interesting new
features compared to the ®, one. First, though the off-diagonal, gauge-like Euler-angle degrees of freedom
have been eliminated by the diffeomorphism constraints, they have left behind new centrifugal contributions,
oc 1/sinh?(8; — B2) + cyclic, to the potential (see Eq. (56). These centrifugal terms create infinite potential
barriers located at the three symmetry walls: 81 = B2, B2 = 3 and B3 = ;. To examine the effect of these
barriers on the quantum wave function, let us consider, say, what happens near the §; = f2 symmetry wall.
Locally, we can change coordinates in S-space and use x = (31 — B2 as new coordinate. As the hyperplane
B1 = Ba is timelike (i.e. its normal is spacelike), the coordinate x is a spatial coordinate in the Lorentzian
[B-space. This means that the ®_ equation has, near the x = 0 hyperplane, the structure

2
(8,52 -0 - 02+ % + regular) O_(t,y,z) =0, (4.61)

where we completed the spatial coordinate x by another spatial one, y, together with some time-like variable
t, and where o? denotes a positive numerical constant linked to the coefficient of the centrifugal terms. [In
the case considered here we have o® = 1/16, but it is instructive to leave its value arbitrary.] Here, t,x,y are
some linear combinations of the three variables 31, 82, 33, chosen so that the Lorentzian metric Gup dB, dBy =
—dt? + dz? + dy?. We can separate the motion w.r.t. ¢t and y, i.e. ®_ = e*¥= »(z). Finally, the behaviour of

¢(z) near the singular point x = 0 is given by 92 ¢(z) ~ o? 72 ¢(z). This implies that ¢(z) ~ z* with a power

s satisfying the indicial equation s(s —1) = a2, so that sy = % +4/ % + o2. The important point is that the two
possible solutions satisfy s; > 1 and s— < 0. If we reject the possibility of a singular wave function at x = 0,
this eliminates ¢_ () ~ x*-. Finally, we conclude that the centrifugal terms force the wave function to vanish
at each symmetry wall like |31 — 82|+, |82 — B3]°+ and |5 — f1]°+, with s; > 1. In other words, the centrifugal
terms confine the evolution of ®_(3) to six separate chambers, corresponding to the six possible orderings of
b1, B2, B3: namely, B1 < o < B3, B2 < B1 < (3, etc. In each symmetry chamber, the WKB-like solutions for
®_ will bounce between two “hard” symmetry walls (e.g. 81 = B2 < 3 and 1 < B2 = (B3 for the chamber
B1 < B2 < fB3) and the “soft” (exponential) gravitational wall (e.g. the 282 = 0 wall for the §; < 82 < 3
chamber).

If we use the naive ordering constant ¢ = 0 (which led to a “massless” Wheeler-DeWitt equation for @)
we see in Eq. (f54) that the ®_ components have acquired a positive squared-mass u? = 3/32. This mass
term will strongly affect the near-singularity behaviour of the ®_ wave function. Indeed, as there exist wave
packets of the free massive Klein-Gordon equation ((g — p2)® = 0 that are approximately localized (in 3

space) around, say, a time-like line 8, = v* 1 + ﬁ((lo)7 with Ggp v v® < 0, such wave packets yield approximate
asymptotic solutions of the Wheeler-DeWitt equation (£54)), because, as 51 + B2 + B3 — + oo (within, say,
the chamber 81 < B2 < f3) the potential terms will become negligible in the domain where the wave packet
is approximately localized. This is the quantum version of the result of [23, 4] that a positive y? ultimately
quenches the chaotic billiard motion, in the near singularity limit.

However, let us note that, when ¢ = 0, the fact that the q-number i? admits the eigenvalue zero means that
there will always exist a part of the quantum wavefunction (namely the one described by its ®; component)
which will exhibit a chaotic behavior near the singularity. In other words, at the quantum level, the classical
result of [23] 24] does not prevent part of the quantum reality to behave chaotically.

5 Quantum versus Grassmannian fermionic billiards
The two crucial new features brought by coupling gravity to a spinor are: (i) the appearance of new spin-

dependent potential terms; and (ii) the possible presence of a squared-mass term in the Klein-Gordon-Wheeler-
DeWitt equation. As discussed above, though the feature (ii) is important for knowing whether the mixmaster
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chaos is affected or not by the coupling to a quantum spinor, it is also a delicate quantum effect, which is
sensitive to the choice of ordering in the Wheeler-DeWitt equation, as well as to other choices. We shall assume
in this Section either that we have made choices so that the relevant squared-mass term vanishe, or that
we are considering situations where one can distinguish the effect of the spin-dependent potential from other
effects. Under this assumption, we can focus on the effect of the spin-dependent potential terms, and contrast
a quantum treatment of these spin-dependent terms, to a treatment where the spinor variables are considered
as Grassmann-valued (G-numbers).

The recent work [22] has studied in detail the fermionic billiards defined by the chaotic dynamics of G-valued
(spin-3/2) spinor fields, as they arise in the near-singularity limit of supergravity (both in dimension eleven, and
dimension four). The two main results of Ref. [22] that are relevant to our present study are: (1) the spin-3/2
billiard defined by supergravity factorizes into a spin-1 (vector) billiard, and a spin-1/2 (Majorana-spinor) one;
in view of the results of Ref. [24], it is the latter spin-1/2 billiard which is of relevance for us here; and (2) the
spin-1/2 billiard consists of a succession of generalized Weyl reflections, defined in a kind of spin-covering W?* of
the standard Weyl group of the Kac-Moody algebra associated with the considered supergravity model. More
precisely, it was found that each collision of the universe on a wall labelled by a Kac-Moody root « (i.e. so that
the corresponding wall form is simply w(8) = a(8)), corresponding to a spin-dependent potential proportional
to exp(—a(B))ix'JS x, causes the G-valued spin-1/2 field y to “rotate”, in the spin-1/2 representation space,
by an angle of /4 along the axis defined by J2. More precisely, the value of the Dirac spinor x after the
collision on the wall a differs from its incident value by the matrix

Ro =eo2la (5.62)

Here, ¢, = £1 is a sign which will be defined below, and the object J2, which was introduced above, is an
anti-hermitian generator which represents (in the spinor representation s) the “rotation” E, — E_, of the
maximally compact subgroup K of G associated to the root «. For instance, in the (3 + 1)-dimensional case of
relevance here, the generators J; associated, respectively, to the symmetry walls and the leading gravitational
walls, were written down in Eqs. ([@37), [{38)). Note that the generators J$ all include a factor 1/2, so that
their eigenvalues are :l:%. [In conjunction with the § prefactor, this implies, as stated, a rotation angle of +7 ]
Note also that all the generators JS belong to the Clifford algebra defined by the usual (3 + 1)-dimensional
gamma matrices, so that the spinor-wall-reflection matrices (5:62)) are 4 x 4 matrices acting on the usual Dirac
spinor space. [More precisely, they are real, and act on the real Majorana spinor space.]

The picture of fermionic billiards emerging from Ref. [22] is a growing, chaotic succession of spinor reflections

Ran 'Ran—l e Raz 'Ral (5.63)

acting on the spinor index of the G-valued spinor x. It was found in Ref. [22] that the multiplicative group
W?# defined by spin-1/2 billiard, i.e. by all the matrix products (5.63), is of finite cardinality, both in the eleven-
dimensional case, and the four-dimensional one. For example, in the 4-dimensional case of relevance here, the
group of products (B63) of the basic reflection generators, Eqs. ([@37), [@38)), associated with the symmetry
and gravitational walls is a finite group of cardinality 4 x 48. Actually, it happens that the 4-dimensional case
is quite special in that the symmetry generators happen to commute with the gravitational wall ones (which,
themselves, reduce to only one element as the three generators ([{.38) differ only by a cyclic permutation of
123, which does not change the value of v123). Due to this, the group W* is the direct product of two separate
groups.

Having recalled the results concerning the near-singularity limit of the dynamics of G-valued spinors coupled
to a chaotic bosonic cosmology, we wish now to clarify the connection of these results to the case of quantum
spinors, sourcing a cosmological model. In that case, we must replace the classical evolution of a G-valued
spinor x, considered along the classical evolution of the bosonic billiard described by the g-particle bouncing
between symmetry and gravitational walls, by a solution of the coupled multi-component Wheeler-DeWitt
equation. However, in order to be able to compare the two treatments we must consider a case where the
Wheeler-DeWitt equation do correspond to the spinor coupling terms studied in Refs. [24] 22]. Indeed, the
latter works considered classical Hamiltonians of the form

12This would, for instance, be the case for the ®; components of ®, with the naive ordering constant ¢ = 0, see Eq. ([@53).
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- G‘“’ T, Tp, + Z 2200112 4 Z e PN,y + crot (5.64)

Here, the II,’s are dynamical variables whose meaning is different if one considers a gravity model or a coset
model, the 3, ’s are the spin-coupling terms corresponding to a general root, namely

S = ix 2 x (5.65)

where the J2’s are the products of usual gamma matrices defined in Eqs. (@37), (£38) for symmetry and
gravitational roots, and where the constant cio; (defining the squared mass w? = 4ciot) includes various types
of contributions, which depend on the model considered (as discussed above).

The important feature of the spin-couplings included in (5.64) is that the same quantity II, enters the
bosonic potential wall %6_2Q(B)Hi, and the corresponding spin-dependent potential term 56_0‘(/3)1_[ Y- One
can verify that this is indeed the case for the general Hamiltonian (B72), both for the terms linked to the
dominant gravitational walls (with, e.g., ajas = 281, Ilay,, = —Cls, and Ju,,, given by ([E38) ), and to the
symmetry walls. However, in the latter case, as Eq. (5.64) refers to an Iwasawa decomposition of the metric
one must reconsider the far-wall limit of the Gauss-decomposition-based Hamiltonian (872). In that limit (e.g.
when 2 — 1 > 1) one finds that the various hyperbolic functions in Eq. (879) do yield a structure compatible
with the general Iwasawa result (5.64) (with, e.g., Iy, = my12).

In order to see more clearly the differences between the Grassmannian treatment of spinor couplings, and its
quantum treatment, let us consider the quantization of the simplest version of the general Hamiltonian (5.64)),
namely the case where there is only one wall, corresponding to one root .. In that case, the dynamical variable
II, is clearly seen to be a constant of motion, and can therefore be considered as being a c-number both in a
classical and a quantum treatment. [In the quantum treatment, we consider eigenstates of the operator Il .]
It then remains to quantize $ and x. Canonical quantization of the 5 dynamics yields m3 = —idg, while the
quantization of x is done according to the anticommutation relations (X)), or (A1) in the Majorana case that
we shall consider here. This yields a quantum Hamiltonian of the form

1 1 1 a
H= _Z Gab 5,@& 6]@17 + 56_2(1('8)1_13 + 56_(1(6)1_[&2& + Ctot (566)

where ia is the quantum operator defined by replacing x in Eq. (&.65) by its quantized version, submitted
to [@1).

As explained above, the quantum wavefunction ®(3,0) has both continuous indices related to the g dy-
namics, and a discrete one, o, related to the Clifford algebra ([@T) satisfied by the quantum y. Let us consider
solutions of H®(,0) = 0 describing wavepackets colliding on the « potential wall. One can write such solu-
tions explicitly by separating the variables in Eq. (5.606]). Namely, as the potential terms depend only on the
combination a(f8) of the s, we can look for wavefunctions ® of the form

o(8,0) =M PIF(BL,0) (5.67)

where the linear form kIl describes the S-space momentum parallel to the wall a(3) = 0 (i.e. Gabkﬂab =0),
while F(8,,0), where 8, := «(f), describes the motion perpendicular to the o wall (as well as the spin
degrees of freedom). Inserting this separated wavefunction in the Wheeler-DeWitt equation H®(8,0) = 0 (and
considering a root a(3) of norm G®ag,a; = 2, as is the case for all the roots considered here) yields the following
equation for F:

F(BL,0) = (e 2112 4+ e P T1,50 — Q)F(BL,0) (5.68)

where Q is a separation constant which involves both (k)2 := Gabkﬂké‘ and the constant cyo, in Eq. (G.60]).

If ia were a c-number, this would be the Schrédinger equation in a Morse potential, which is well-known to
be reducible to the general confluent hypergeometric equation. In our case, ¥, is an operator in spin space
(i.e. acting on the index o labelling the four components of the wavefunction ®). However, we can reduce our
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problem to a c-number-valued ia by first considering wavefunctions ®(o) that are eigenstates of this operator:
say ia@(a) = 3,P(0). We can also simplify the resulting equation by shifting 5, by a constant so as to
absorb the IT2 factor multiplying e=2+. Namely, one defines 3/ such that e=25% = T12¢~2%+ This makes also
I1,, disappear from the second term, except for its sign: €, := sgn(Il,) = £1. When Q is positive, there is a
solution of the resulting equation

03, F(B1,0) = (72" 4 e Piea, — QF (B, 0) (5.69)

which starts as an incident plane wave F (3 ,0) o exp —iy/Qf, faraway from the wall, i.e. when 8, > +1,
reflects on the wall located around | = 0 (with an evanescent wave in the ‘forbidden’ region 8/ < 0), and
ends up, with some dephasing, as an outgoing plane wave F (5’ ,0) o exp —l—i\/@Bi when 3| — +oo. Using
the notation U(a, b, z) for the second Kummer function (see [38], chapter 13), the exact solution of Eq. (B.6G3])
describing this scattering process on the combined bosonic+spinorial wall «(/3) is given by

1 1 /

3+ gaazaﬂ\/@,uzi\/@ﬂe*m (5.70)
We can then extract from this exact expression (using the expansion of the Kummer U (a, b, z) function near

z = 0) the phase factor e?®> between the incident wave and the outgoing one. We find

gt _ LG+ 322 —iVOT(3 +2iVQ)

(3 + 1ca¥a +iVO) (3 —2iV/Q)

Let us now compare this quantum dephasing with the Grassmannian description, recalled above, of the
reflection of the spinor x,, on the wall a(8). [Here, we denote by m,n, ... spinor indices, to avoid the confusion

with the use of v as a label for the root]. This description was that the value x’ of the spinor after the interaction
with the wall a is obtained from its value x before the interaction via the following matrix transformation:

F[5)] = expl[—e™ "] e VALY

(5.71)

X;n = (Ra)man = {GEQ%J;} Xn (572)

mn
where g, := sgn(Il,) = £1 as above.

Similarly to what happens for the usual Dirac equation, we can consider that the various components,
labelled by m, of the spinor x,, encode the classical polarization state of x. This polarization state can then
be also encoded by decomposing the spinor x,, onto a basis of eigenstates of the first-quantized hermitian spin
generator ¢ J3. [We recall that ¢ JS is ¢ times the product of an even number of ordinary gamma matrices; e.g.
for the symmetry root ajs = B2 — 1 it is the ordinary first-quantized spin generator ¢ %712, whose eigenvalues
are :I:%7 and whose eigen-spinors are often used to decompose a general spinor into various spin states.] We then
see that Eq. (572]) is saying that the classical dephasing, upon reflection on the wall «, of a classical spinor x,
polarized so as to be an eigenstate of iJ3, with eigenvalue o, = :l:% is given by the phase factor exp —ieq50q.

The quantum dephasing (5.71]) looks a priori quite different from the classical dephasing exp —ieo 5o, Let
us, however, check that they agree, as they should, in the quasi-classical, WKB limit. This limit corresponds
to considering a large value of v/Q, i.e. high-frequency wavepackets ~ exp :l:i\/@ﬂj_ . In addition, we need to
decompose the quantum phase §,(X,) in (BTI) into two separate contributions: (i) a spin-independent part,
04(0), which can be mathematically defined by replacing ¥, by zero on the r.h.s. of Eq. (&XI)), and (ii) the
spin-dependent contribution, d,(Xa) — 04(0). This yields a spin-dependent dephasing factor given by

i (5 (Sa)—6a(0) _ I(5+35a%a —1VQ) I'(z +iVQ)
I(3-ivQ)  I(}+1ieaZa +ivV0Q)
Using now the fact that, for large values of z, one has I'(z + a)/T'(z) = 2%(1 4+ O(1/z)), we see that, modulo

fractional corrections of order 1/4/Q, the spin-dependent part of the quantum phase, i.e. 64 (Xq)—04(0), is equal
to —gsaZa, in perfect agreement with the classical result —%aaaa. This result also shows that the generalized

e

(5.73)

spin operators So = ixTJSx are the second-quantized versions of the first-quantized gamma-algebra generators
1JZ, and that classical spinors x,, that are eigenstates of iJJ5 do correspond, after quantizing x according to
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Eq. (1), to quantum eigenstates ® of Sa. Note also that the fact that the quantum phase BT agrees, in
the quasi-classical limit, with the result obtained by integrating the classical equation of motion of y, namely

o = e ML T3

finally rests on the fact that, according to the general result (£3]), the Heisenberg-picture quantum operator ¥
satisfies the same equation of motion.

We have compared here the quantum and classical descriptions of the ‘collision’ of the universe on a single
(bosonic+spinorial) potential wall a(8). We could discuss, exactly along the same lines, the dynamics of the
two @ components of the wavefunction ® in the Bianchi-IX case. Indeed, &, satisfies the (two-component)
equation ([@53]) which (in the case m = 0) is closely similar to the Wheeler-DeWitt equation associated to Eq.
(E566]), except that we now have spin-dependent collisions on three different gravitational walls. Note, however,
that the spin evolution is very simple in this case, as the three gravitational-wall spin operators J3 ., J5.. »J5..,
all coincide. The spin eigenstates being the same for the three different walls, there is no room for any interesting
chaotic behaviour of the spin polarization, as could happen if one had had three different (and non commuting)
spin operators. As for the two remaining ®_ components of the Bianchi-IX ® they satisfy the spin-independent
equation ([A54) so that we cannot compare its dynamics to the discussion of [22].

There is, however, another Bianchi model for which we can compare the classical and quantum dynamics, it
is the Bianchi-II model, defined by structure constants C? p. = €peq n% with n® = diag(1,0,0). The classical
dynamics of this model is discussed in Appendix C, using an Iwasawa fixing of the dreibein. The diagonal
metric variables are denoted (i, B2, 83, while the Iwasawa off-diagonal degrees of freedom are denoted 112, V23
and v13. [Note that indices are not naturally cyclically permuted when working in an Iwasawa representation.
The quantization of x is done as above, while the quantization of the metric degrees of freedom is conveniently
done in a 8, v representation, i.e. with momenta conjugated to the three 8’s defined as @® = —idg,, and with
momenta conjugated to the three v’s defined as @ = —id,,,.

In the Bianchi-II model, there are only two non trivial diffeomorphism constraints (classically given by Egs.
(C2)), in addition to the Hamiltonian constraints (Eq. (CJ)). The quantum mechanical versions of these two
constraints will then be the following constraints on the quantum state ®:

o2d =aBd =0 (5.74)

In the 8, v representation, i.e. for a wavefunction ®(8, v, o) (where, as above, the discrete index o labels the
spin degrees of freedom), the constraints (.74))) imply that ®(8, v, o) does not depend on v15 and 43, but only
(besides o) on fS1, B2, B3 and vos.

The remaining constraint is the Hamiltonian one, of the form

Hd =0 (5.75)

Assuming for simplicity a vanishing Dirac mass, m = 0, but allowing, as above, for an ordering constant c,
the Hamiltonian operator [whose classical version is (Eq. (C)) | may be written as

~ 1 ~i 1 ~i 1 _
-z -] e e
4 ; 2 ; 2
1 r~ma ian o iaA N —281 '
+§ [2[12]2 4 2[31]2 4 (2[23] 4 26(62_'63)?2'23)2} _ ¢ zXT'YO'Yl%X
+c (5.76)

It is amusing to note that the quantum dynamics of this Bianchi-II model is simpler to analyze than its
classical dynamics. Indeed, as discussed in Appendix C, it is difficult to solve generically the classical (or
Grassmannian) spinor evolution equation (C.44]). By contrast, in the Schrodinger-Wheeler-DeWitt picture of
Eq. (B18) there are no fermionic equations to solve. In addition, we have that: (1) the spin dependence of the

Hamiltonian is analog to that of a symmetric top, i.e. involving the spin operators Sjab only through i[%], and
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the combination S012% 4 i[ig]z; and (2) the additional spin-dependent term linked to the gravitational wall,
i.e. ix"y0y123x, commutes with the i“b-dependen‘c terms (see the subsection ). [Note that this commutation
property (2) is valid in the case where one would consider a complex, Dirac spinor x, because of the independence
of the two real Majorana components of such a general y.]

In other words, we can diagonalize the Hamiltonian by imposing that the state ® is a simultaneous eigenstate
of the following three operators:

i[ég]@ = 0'23‘1),
(809 4 S 4 5597 g — %0,
i
ZXT707123X‘1> =Cy® (5.77)
On each o component of such a state, the Hamiltonian constraint equation leads to an equation of the form
1|:| 1 —4p1 1 2(B2—Ps) 2 d B2—Ps 5 C. e 2A 182 d=0 5.78
st T T ge vy — 5 023 € vag Tlge T+ 2om ) @ =0, (5.78)

By using the results of subsection 4] the allowed values of the quantum numbers s23, C, and 82, and their
multiplicity, for a Majorana spinor are,

(023, Cgy S?|mutt. : [0,£1/4,0]1, [£1/2,0,3/4]; .
while, for a Dirac spinor they are :
[o23, Cqg, S?|muts. : [0,0,0]3, [0,+1/2,0], [+1/2,41/4,3/4]», [0,0,2], [£1,0,2].

Note that in the Majorana case 023 and C, cannot be both non zero, and we have the simple link §? = 3 03;.
These links are relaxed in the Dirac-spinor case.

Eq. (BT8) can be solved by separation of variables. Indeed, the wave operator [z depends on three [
variables, while the potential walls entering the equation involve only two combinations of the three §’s, namely
a123(8) = 281 and as3(8) = B3 — Ba2. Therefore there exists a linear combination of the three 8’s which will be
‘orthogonal’ (in the Lorentz-[S-space sense) to the two combinations aq23(3) and as3(8). Tt is easy to see that
ag(B) := 261+ P2+ B3 is such a combination. Actually, one can easily check that the three variables ag, aa3, a123
define an orthogonal coordinate system in Lorentzian 8-space, with ag being a time-like coordinate, and a3, and
123 two space-like coordinates. Finally, a generic solution can always be expressed by superposing separated
solutions of the form:

D(B, va3) = et Praeth (2014821455 [y (98 ) Fy (B3 — fBa) (5.79)

where the two functions F; and F5 satisfy exactly the same Morse-potential-type Schrodinger equation that we
encountered above (in the single-wall case) namely:

F'1281) = (e*P —2C, e 2P — Q) F1[284] (5.80)
FY[8s— ] = (pz €2 (B2=03) | ooy o(B2—Fs) _ Qz) Fo[Bs — Ba] (5.81)

Here the two separation constants Q; and Qs must satisfy the following mass-shell condition

1
—p? (5.82)

1
—k2+Q1+Q2=—182—2C:—2

where 1?2 is the squared-mass of the Wheeler-DeWitt equation. If we look, as above, for wave functions that
vanish behind the asz, and aq23 walls, we must choose Kummer’s U-type solution for F; and F5.
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When Q; and Qs are positive, the physically relevant solutions are (when assuming p > 0 for definiteness):

F1[2B1] = exp[—e 2 71] 72“/_51U —C +ivQ1,142i+/Q1,2e7251],

(5.83)
Py (B3 — Ba] = exp[_pef(ﬁafﬁz)] etV Q2(Bz—h2)
1
X U[§(1 + 023) + i/ Q2,1+ 2i/Qy, 2pe=Fs=02)] |
(5.84)

Far from the two walls, these modes propagate as plane waves in all the variables, with 8-space momenta w,

of the form
walea,es] = {2(k+ec v/ Q1) k+es v/ Qa k—es/Qa}

satisfying the mass-shell condition
1
Gy = —p? = —552 —4c (5.85)

The quantities eg and g in the momenta w, denote some £1 signs, that flip upon collisions on the walls.

As above, we can also compute the phase shifts of these modes as they reflect on a wall. More precisely we
find that, for given quantum numbers Cy, 91, 023 and Qa, the phase shift o, of F as it reflects on a gravitational
wall, and the phase shift o, of F5 as it reflects on a symmetry wall, are respectively given by:

s — CP(A/2-C—iVO)T(1/2+2iVOy) (5.56)
[(1/2—=Cy+1iv/0O1)T(1/2—-2i/Ox) '

pios _ CT(1/2+093/2 —iv/Q2)T(1/2 +2i+/Q2) (5.87)
CT(1/2+ 023/2+iv/Q2)T(1/2 — 2i+/Q3) '

(5.88)

As above, we can deduce from these results the intrinsic phase shifts due to the spin dependence of the walls
by subtracting the phase shift of the spin zero mode.

Let us finally note that the existence of a non-zero mass term p? = §2/2 + 4c in the Wheeler-DeWitt
equation can lead to an interesting phenomenon (whose classical analogue is discussed in Appendix C). Indeed,
a strictly positive u? (e.g. corresponding to ¢ = 0 and 82 # 0) forces the classical trajectory of the wavepacket
to stay time-like in (-space, i.e. prevents it to reach the [S-space light-cone. Therefore, such a mass term
constitutes a kind of potential wall that prevents the wavepacket to reach the light-cone. We can therefore
think of the dynamics described by the Bianchi-II Hamiltonian above as that of a quantum particle moving in
a three-dimensional Lorentzian space, and confined by three different walls: the two spacelike walls a;23 and
a3 (that prevent the particle from going on the negative sides of those spacelike walls), and a third effective 12
wall that prevents the particle, after it has bounced on the spacelike walls and aims towards the light-cone, to
reach the light-cone. These three walls thereby define a kind of waveguide that oblige the particle to move in a
time-like direction, which is somewhere midway between the spacelike walls and the light-cone. The interesting
consequence of this waveguide phenomenon is that it can trap the particle in a bound state, confined between
all these walls. This happens when both Q; and Qs are negative (in view of the mass-shell condition (5.82)
this happens only when p? > 2k? > 0). In that case, one should no longer consider scattering states of the
Morse-potential equations above, but rather bound states in the Morse potentials. It is well known (see, e.g.,
[39]) that these bound states occur for the following quantization conditions

1
—Ql = —N1 — 5 +Cg, (589)
and 1
—QQ = —Ng — 5(1 + 0’23) . (590)
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where n; and ny must be natural integers (starting with 0). For instance, in the minimal case where the
ordering constant is simply the naive value ¢ = 0, there will exist only one such bound state, namely the ground
state ny = ng = 0, with C; = —093/2 = 1/4, Q1 = Q2 = —1/16, and k = £1/4. This solution furnishes an
interesting example of a quantum cosmological ground state associated to a Bianchi-II billiard. Note that we
have discussed here a state which is bound simultaneously within the two separate Morse-potential equations
associated to the gravitational and symmetry walls. There can also exist semi-bound states, i.e. states which
are bound w.r.t, say, the gravitational-wall Morse-potential, but which represent scattering states w.r.t. the
symmetry-wall potential.

6 Conclusions

We have studied the minisuperspace quantization of spatially homogeneous (Bianchi) cosmological universes
sourced by a Dirac (or Majorana) spinor field. In the main text we used a formulation of the spinor dynamics
in which the local SO(3,1) local Lorentz symmetry of the vielbein is gauge-fixed from the start. [Appendix A
compares this approach to the one where one does not initially fix the vielbein.] In the Bianchi types IX and
VIII (corresponding to simple homogeneity groups G) we fixed the SO(3) freedom in the dreibein by using the
existence of a three-dimensional automorphism group of the Lie algebra of G. In the Bianchi type II case, we
fixed the SO(3) freedom of the dreibein by using an Iwasawa decomposition (which happens to be compatible
with the automorphism group of the corresponding G).

In the Bianchi types IX and VIII, the quantum version of the three diffeomorphism constraints means that
the wavefunction does not depend on the three Euler angles parametrizing the (pseudo-)orthogonal matrix
S € SO(3) (for type IX) or S € SO(1,2) (for type VIII), entering the Gauss decomposition g = STdiagS
of the metric g. This is the quantum version of the classical possibility of restricting g to a diagonal form,
diag = diag(e=201, e202 ¢=28s)

The quantization of the homogeneous spinor (denoted x after a rescaling) leads to a finite-dimensional
fermionic Hilbert space, which means that the wavefunction of the universe, which, in the bosonic case, has
only one component, becomes multi-component in presence of a spinor field. In addition, in the Majorana case,
the four components of the wavefunction can be identified with the four components of a spinor of an Euclidean
O(4).

The multi-component Wheeler-DeWitt equation satisfied by the wavefunction ® is similar to the second-order
form of the Dirac equation coupled to an external electromagnetic field ([(i 8, — e A,)? + 2 e o™ Fp, +m?] ¢ =
0), namely it has a structure of the form (for types IX and VIII)

(—i G B, D, + Vo(5) + 30 ValB)Sa(0) + 3 Vo (8) B (0 + 7 ﬁfotoo) B(B,0)=0.  (6.91)

where f]a(x) = ixTJSx, and ia/(x) = ix1J% x are some bilinears in y, and where o and o/ run over some
sets of linear forms in 3 (or ‘roots’). There exist a limit in S space (the far-wall, or BKL, limit) where all the
potentials V4 () tend exponentially towards zero. [The existence of this limit defines the separation between the
Va(B)-terms and the squared-mass term % iz (x).] The main features of this multi-component Wheeler-DeWitt
equation are the following.

The squared-mass term fiZ, () is a quantum effect, which is of order h?, and which is affected by several
sorts of quantum ordering ambiguities. We discussed the fact that it was different in the original minisuperspace
Einstein-Dirac theory compared to the spin-1/2 Kac-Moody coset proposed in [24]. This suggests that we should
choose an ordering (and additional terms, such as (£19)) such that the total squared-mass term vanishes. On
the other hand, if we do not do so, but use instead the naive ordering that looks natural in the quasi-Gaussian
spacetime gauge N = /g, one gets a specific prediction for fiZ(x). One then finds that this quantum (spin-
dependent) operator admits the eigenvalue zero in a fraction of the total Hilbert space. This ensures that a part
of the total wavefunction, i.e. a part of the total quantum reality, will formally continue to behave chaotically
near the singularity, in contrast with the case where the spinor source is treated classically, where 2 is a strictly
positive c-number [23] (see (£32)).

36



We discussed in some detail the physical effects linked to the other terms in the multi-component Wheeler-
DeWitt equation (€91). We studied in particular the spin-dependent terms of the form ) Vo (8)¥4(x). Such
terms appear both in the Bianchi IX and VIII cases, and in the Bianchi II one. In the Bianchi IX and VIII cases
the set of roots v entering these terms are the three gravitational roots, while, in the Bianchi II case there appear
both a gravitational root and a symmetry root (see (B.78])). When combining these spin-dependent terms with
the corresponding potential terms ~ e~2%(%) of the spinless potential Vo(B) involving the same root «, we found
that they lead to a Schrodinger equation in a Morse potential. By studying the quantum scattering on such
spin-dependent Morse potentials we could relate the quantum dynamics of wavepackets reflecting on them to a
previous study of fermionic billiards, which used Grassmann-valued spinor fields. The quantum spin dynamics
of Bianchi IX and Bianchi VIII happens to be rather trivial because all the corresponding spin-dependent
couplings X, (x) can be simultaneously diagonalized. A more interesting spin dynamics would, however, be
obtained in more complicated models (e.g. in higher- dimensions) where the various S (x)’s do not commute
among themselves.

We also studied in detail the Bianchi II model. For this case we could provide the exact general solution
of the quantum dynamics. It can indeed be decomposed in separated modes, which can all be expressed in
terms of confluent hypergeometric functions. Some of these solutions describe wavepackets reflecting on the
gravitational and symmetry wall forms a;23(8) and aa3(83) of the Bianchi IT model, while other solutions (present
when p? > 0) can describe interesting bound states, trapped between the walls a123(3) and as23(3), and the
effective wall generated by the positive squared-mass term.

Note finally that the Appendices provide more details about several formal aspects of the gravity-spinor
Hamiltonian dynamics, as well as a study of the classical limit of this dynamics.
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Appendices

These Appendices are devoted to some aspects of the Hamiltonian formalism applied to the dynamical problem
constituted by the Einstein-Dirac equations considered in the framework of homogeneous Bianchi (class A)
cosmological models. As described in the main text, we use an adapted tetrad constituted, at each point, by
a time-like vector orthogonal to the slices of homogeneity and a dreibein tangent to these slices: thus these
dreibeins are defined up to local SO(3) rotations. In the first Appendix we do not fix the local SO(3) freedom
in the dreibeins, and provide all the constraints and Hamiltonian evolution equations of the corresponding
dynamical variables. In the second Appendix we make use of an Iwasawa decomposition to fix the SO(3) gauge
freedom and display the Hamiltonian and momentum constraints and general constants of motion, bilinear in
the spinorial variables. The third Appendix consists of a sketch of the resolution of the classical equations for
the particular case of the Bianchi II cosmological model. The main aim of this discussion is to provide the
elements needed to compare the classical and quantum dynamics of a billiard collision near the cosmological
singularity.

A Locally SO(3)-invariant approach to the Einstein-Dirac dynamics

In the approach [I5], [16] where one fixes the time-like vector of the vielbein but leaves an SO(3) rotational gauge
symmetry in the choice of the spatial dreibein, the dynamical variables (in an Hamiltonian formalism) are N,

N¢, hg,, v, \IIZ, together with the conjugate momenta to the dreibein and the spinor, say, respectively, HE“,
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II4 and IT4. Starting from the Lagrangian action L = Ly + Lp, where
Lew = Nyg (PR + KK — (K2)?) ,

with K, denoting the second fundamental form, Eq. (Z25), and

Lp=Nyg (@yovﬁxp + TV — m@p) ,

one computes the two sets of momenta. First the gravitational momenta conjugated to the dreibein :

cha = 3L/8hka — 2 gica +2pi€a_si€a
where we defined
ab,__ ab ab _ 11ba
0= +/g [K* — g K] =",
b 5 404 () _ 1 —= 5 b b
P = —\/E\IWPT\IIhﬁ hq :Z\/Z]\Iw U g% = P’

ab L = o ab ba
Sab . — Z\/E‘I’”YO’Y by = _gba

as well as . . . .
L I . S

3

chb,: hfc Hab
¢ = %a

(A.1)

(A.2)

(A.3)

(A4)

(A.5)

Note that, for convenience, we follow Ref. [I6] in working in the Appendices with the spinor bilinear S&B,

which differs by a factor one-half from the one used in the main text: namely gab — %Eai)’ with the definition

2.53).

We also have the fermionic momenta that lead to primary constraints :

IT4

OLL/9YA = — /g (@wf’)A ——iyg i,
n4 = atL/evi =o.
The Cartan one—form w = pdgq is given by:
@ = *dh;, + T4d¥* + 14407,
and the total Hamiltonian is given by

H = N™H+ N HE + Q[ab] #Hlab)

where (using when necessary the definition 1I"% := hgl‘[’;s):
H= 1 (e - 1(W)2 — V3 R — \/gUP D0 +m /g UV + ! V9 DT T)
VI \G Grs  2%ar P 2 ’

and
S Cld = 0 s a 1 a i Aa a
H® = —D,II*" + /g0y’ D*w | bl = i(hkl'[’“b — hTIFe) + Sletl

(A.6)
(A7)

(A.10)

(A.11)

The coefficients (2[4 in Eq. are Lagrange multipliers measuring the arbitrariness in the local rotation
rate of the dreibein. We will fix them in Appendix [Bl To the three Lagrange multipliers N, Ny and Qqp) are

associated the three constraints:
H~0, H ~0, Hx~0.
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It is useful to use slightly different canonical spinorial variables: x4 := ¢'/* ¥4 and QSTA = jgl/4 \IIL.
Accordingly we obtain:

1 1 1 A
[Ad0A = ¢T4dXA - Z¢TX 5 dg = ¢T4dXA - §¢TX h dhjg- (A.13)

This redefinition of the spinorial variable entails a corresponding redefinition of the canonical momentum conju-
gated to the dreibein h; . Instead of IT% the new momentum conjugated to h;, becomes mha = ITha %QbTX hka,
This shift in the definition of the gravitational momentum has the effect of suppressing the second , 2 pk @, con-
tribution in the above expression for H’Aw, so that one finally obtains

mhe =9 g’%“ —gka, (A.14)

When appropriately moving the indices by means of the dreibein hz or its inverse, the two contributions to the
redefined gravitational momentum read:

. . 1 .
(hgm” 4 hpmhe), 5% = 26Ty (A.15)

Hab:
4

1

G 4

Let us now apply the above general formalism to homogeneous spaces of Bianchi class A, i.e. with structure
constants, Eq. (Z3]), of the form

Cacd = ’rLabEbcd. (A.16)

In such a framework we have ) )
R=—- (nabnab - —n2> (A.17)

g 2

where the indices on ngy, have been lowered with g,p, and where n := g4 n?. The spatial Dirac derivative of ¥
has the general form .
. n g
DU =XV + 4\/57 v, (A.18)

where we have taken into account the possibility to introduce a spatial variation of ¥ via constants A, such that
the Lie derivative of the spinor field along the generators &, of the isometry group of the homogeneous slices
verify £¢, W =i\, V. Integrability of these equations implies that A\, n®® = 0 (see Ref. [16]). When )\, # 0 the
fermionic degrees of freedom are expressed as a product of a time dependent dynamical factor multiplied by a
space dependent phase factor. However, this spatial dependence disappears in the stress-energy tensor T+ ().
As indicated by the explicit ¢ entering the condition £, ¥ =i A, ¥ such generalized homogeneous solutions are
only possible in the complex, Dirac-spinor case. Seen from the viewpoint where one decomposes a Dirac field
¥ into two real Majorana fields W, Uy, these solutions correspond to having spatial oscillations turning one
Majorana mode into the other one (but keeping quadratic expressions ~ \IJ% + U2 constant in space).

From all these results we obtain the various terms defining the total Hamiltonian (A.9)) in the framework of
Bianchi cosmologies:

R e s Av 1 W GNP S Y- ST S VSO LS SRR Sy
H—ﬁ@ I, 2@))*@(” Nab 2n>+l¢w<x 4\/§¢75x m @' x (A.19)

where 5 = Yoy1y27y3 is the common Clifford algebra generator linked to spinorial gravitational walls, see Egs.

(E38), while

IR 1 .
Hs = 2 gmn Chan + Z(bT”Y[mn]X Cins +1Xs 01y
= 7" Crsn +iXs by, (A.20)
qlabl ) %“M[d&] = rlifl 4 gab (A.21)
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Here the hatted indices on 7" and Cj,ss are obtained from their original forms ke and C4, by suitable uses
of the dreibein h;  or its inverse.

The Einstein—Dirac Lagrangian leads to a set of second class constraints that oblige us to consider Dirac
brackets instead of Poisson brackets. Denoting Dirac brackets as { , }* we obtain from the constraint equations
(A6l [A7) the canonical brackets :

{hia ™} =000t XA ah} = o =i [\ (A.22)
with corresponding classical equations of motion
hi, ~ {h HY ks {wk“,H} L R A HY (A.23)
completed by the first class constraints:
H=~0 7‘[{1 ~0 H[mﬁ] ~0. (A24)

So that, in the gauge N, = 0, we obtain (with h := Vg and m ;= hﬁmh,;bwmb):

; N b "
Mo = 77 (T +7ai) = (7" hin) Big) + Qi P (A.25)
from which we deduce 1
S
5 (hadhf = by hl) = (A.26)
h (. : 2h
g Cpa) Al
Tap) = 7 (haoh? +hs,hl) — <265 (A.27)
and
. ka ka 1 78 1 7\2 rs 2
T = N<h T 7T7ﬁ§_§(ﬂ—,,:) —4n"n,.s + 20

ST I
+iXF ¢TI0y %y + 57" PhidTysx

1
—hgy—

(anwicb 4 da_ bk _ ﬂqz;wim)
lAcl ac, b ab
—i—th (4n ne—2nn )
E _pa
_Q ﬁﬂ-p . (A.28)
To be complete let us also display the Dirac equation :
'*N(i U —m@) + 1o il (A.29)
X =N {(i7A= 1775 =my7 ) x4 797 X -
B Approach using an Iwasawa representation to fix the local SO(3)
gauge
In Appendix [Al we displayed an Hamiltonian formalism in which the local rotation rate of the spatial dreibein
is left unfixed. Starting from this formalism, we can then gauge fix the local rotation of the dreibein by choosing

a specific way of defining a dreibein hg_ from the metric components gqp. In the main text, we did this by using
the form (2.1), with a matrix S belonging to the automorphism group of the Bianchi structure constants C p..
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Here, we show the form of the Hamiltonian obtained when fixing the definition of the dreibein by means of an
Iwasawa representation, namely

1 v 113
hfc = 0 e P2 0 0 1 V23 (Bl)
0 O

ie.
hi, =e Prug, without summation on k. (B.2)

Let us emphasize that there are (only) three (non-vanishing) off-diagonal v variables, namely 12, Va3, 113, i.e.
the vg,’s such that k& < a. [The vg,’s with k > a are equal either to 0 or to 1.] These three metric off-diagonal
variables are the Iwasawa-decomposition analogs of the three Gauss-decomposition Euler-angle variables. The
momenta conjugated to the Iwasawa diagonal and off-diagonal variables, 8y and v, (k < a) will be denoted by

w® and wh (k < a): (o', w2, @3, @w!'?, @', ©?3). Note that @w"® is only defined for k < a. This contrasts with

the momenta 7% conjugated to the dreibein hj,, which are defined for all indices: k¥ < a, k = a and k > a.
Among these, the ones with & < @ and k = a are easily related to the @®® (k < a)’s and the s by considering
the Cartan one—form ([AZg]). Specifically, one finds :

whenk < a : 7F% = ePrhe

7tk = _ePr(® 4 g " Uka) -
k<a

On the other hand, the calculation of the remaining components of the gravitational momenta, i.e ke for k> a
is less immediate and must be based on the fact that, when viewed within the non-gauge-fixed formalism of
Appendix A the Iwasawa gauge (B.I)) introduces three new constraints: h;, = 0 for k > a, that do not commute

with the constraints #9%1. The presence of these new constraints oblige us either to apply the Dirac procedure
or to solve them explicitly. Using this last option allows one to compute, recursively, the remaining momenta
7% with k > a, i.e. 72!, 7! and 7°2, by using the relation

ke = pg Pl pk 2 glkal, (B.3)

starting from (k,k — 1) down to (2,1). Indeed, noticing that hy =01if p < a and hé = 0if k > d, we see that
for given values of k > a, the right hand side of Eq.(B.3)) involves only already known momenta 7?¢ with either
p>kork>p>abutd>p. In three dimensions, this yields the explicit results

132 = o(282=B2) 523 | oBs 8 | 9 0P gI2]
ol = P [62’63 (v13 — V12V23)w3 + e2Pripld — 62'821/127323] + 2[6/31S[13] — eﬁzuuS[%]]
’]Til = eﬁ2 [u12w2 + 672@27#}1)(@12 + 1/23w13) + (V23V12 — V13)w23] +2 eﬁls[ﬁ]

(B.4)

Now we have in hands all the ingredients needed (A14) to write the remaining Hamiltonian equations and
constraints (A TIAA20) in terms of the Iwasawa variables.
The Iwasawa Hamiltonian density (of weight 4+1) reads, when using a diagonal fornd nat = diag {n1,n2,n3}

ab

13 As is well known, the matrix n®® can always be diagonalized; we assume it has been.
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for the symmetric matrix nab entering the structure constants C? .4 = nab Ebeds

H o= b {i(wl)2 + (@) + (@®) — %(wl + @ +w)?

_|_% [(6(51*52)(1312 + V23w13) + 3[121)2 + (e(ﬁlfﬁs)ww + 3[131)2 + (6(52753)7323 + S[Q?’])Q

n,? —48; no? —28, —2B1,,2 12 ns? —28; 281, 2 285 2 12
e +7[€ +e T+ e te 5+ e )
—nyngle2BitBe) _ e=4B1,2 ]

—ninsle” 2(81+83) _ o—4B1,, 2 s+ e (ﬁ1+52)y223]
_n2n3[e 2(Ba+63) +e—2(ﬂ1+63) —4/32,,23_ e P22

e 2P (U3 — dvng vig vog + vE, v33))]

1
_Z[nleizﬁl +n2( 2ﬁ2+e 2511/2)_'_”3( 253+e 251 2 s+ e 2ﬁ2V223>]¢T'Y5X}

-m ¢T70X (B.5)

while the momentum constraints reduce to

H = M {n3 [62(ﬁ27ﬁ3)w23 + vy3wt? — ugg(w2 . V23w23) + 26(‘32*53)5’{23]}
—ng (w23 + V12w13)} (B.6)
7‘[2 = 652 {nl w13 “+ nag V12 (w23 + Vlgwlg)

—na [62(51*53) w3 + 62(51*52) Vo3 (wu + o3 w13)
+v1s (wl — w2 + 13 w3 + o3 w23) + 26('61_62)V23 5[12] - 26('61_63) 5[13]} } (B7)
H3 = 653 {—nl [wu + o3 wlg]

+ng [e2P1782) (12 4 1oy w'3) — vio[w! — @ + via (w2 + vy w!?)] + 2 PP 5102)]
—n3[13(e2P2 P2 (! — w?) 4 2eP27F) §I23]) 1 L2 (w12 4 b3 1)

— Vo3 (62(ﬁ1*ﬁ3)w13 4 9P Ps 5[13])]} (B.8)
The constraint algebra reduces to
{H,H.} =0 {Hao, Ho} = —C He - (B.9)

Obviously bosonic and fermionic equations decouple in the sense that the bosonic sector only involve
quadratic expressions in the fermionic variables. In particular, using the previous equations we obtain (un-
der the simplifying condition A\, = 0) :

(¢'5x) = 2m ol ysx (B.10)

which constitute a first integral when the Dirac mass m vanishes (chirality conservation), and
giz _ 1 (eﬁz—ﬁssiﬁw% _ 631—ﬂ3323w13) (B.11)
2
plus two similar equations obtained by circular permutation of the indices 1,2 and 3. It is worthwhile to notice

that these spin equations are independent from the Bianchi type considered. They lead to the conservation law
of the norm of the spin tensor :

(S122 4 (S8 + (8P == . (B.12)
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C Classical dynamics of the Bianchi-II-Dirac system

To analyze the behaviour of the spinor variables under a collision, it suffices to restrict ourselves to the (almost)
simplest case: the Bianchi type IT homogeneous model. The relevant structure constants are obtained by using
n' =1,n? =n3 =0in Eq. (AI6). An important remark is that (see Ref.[16], in which various special solutions
of the Einstein-Dirac system are discussed) the subgroup SInv of unimodular SL(3,R) transformations that
preserves these structure constants is a five dimensional group whose generators will provide, a priori, five

constants of motion [see eqs (CAHC.G))].

The Hamiltonian constraint is:

5 (1 L, 1 ) "
H = exif (Z lZ(w)2—§(¥w)2 +3e 48

3

n [(e<61—62)(w12 4Bty g §U2)2 4 (o(Br1=Be) 513 | GUBN2 | (o(B2=Fa) 23 4 5[23])2})

e(B2+Bs—p1)

I X, (C.1)

—m iy x —
while the three diffeomorphism constraints reduce (upon using n' = 1, n? = n® = 0) to only two non-empty

constraints, namely
w?~0 w' ~ 0 (C.2)

Let us notice that the Hamiltonian does not depend on the variables vy and 113, so that there will be no
ordering ambiguities when quantizing this system.
When replacing the constraints ((2)) within the Hamiltonian, and using as lapse and shift N = e~ (F1+52+53)
N* =0, one ends up with a Hamiltonian of the form
H = ! [Z(wi)2 — 1(Z w)?| + 16_4'81
4 2 - 2

K2

+% [(S[ii])z + (SN2 4 (e(B2=Ba) 528 4 gl231)2
- o, 1 -
—me (ﬁ1+ﬁ2+53)¢T70X _ Ze 261 ¢T75X' (C.3)

The non vanishing extra constants, taking into account the momentum constraints, are

wBxp, (C4)
w3 —w2 —21/23@23 zCl, (05)
Vo (% — @2) + (e2F2783) _ 12 52 4 9 e(B2=B3) 5128 ¢, (C.6)
Moreover we also obtain that N
5[23] X 593 (07)
is a constant of motion, as well as the norm of the spinor field
XTX ~C (C.8)
and, if we assume that the Dirac mass m is zero,
(i/4) xTsx ~ C, (C.9)

constitutes one more constant of motion.
As usual in this framework we adopt as lapse and shift functions:

N = ¢~ (BitBa+8s) 7 Nk =0. (C.10)
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The equations of motion reduce to F=N [F,H]. When combined with the energy and momentum constraints,
and the previous constants of motion, they lead to:

g = 41 (s glid (C.11)
2
glis _ _%pe(ﬁz—ﬂs)g[iﬁ] (C.12)

from which we deduce another constant of motion: (S12)2 4 (SM31)2 = L2 in accordance with eqs (BI2) and
(C7).[ Note the links sg3 = 023/2 and L? + s3; = S? = §%/4 between these constants of the motion, and the
other constants introduced above; in the following discussion of the integration of the classical equations of
motion we denote some constants of integration by the same symbols as their corresponding quantum numbers
introduced at the end of section [l]

We also obtain :

. . 1
Ba—PBs = §(w2 — @), (C.13)
@B w? = 26y (eBa=Ba)y 4 g0y (C.14)

Obviously this system may be integrated by two quadratures. However it will furnish only one new constant of
integration as from eqs (C.ZHC.G) we obtain:

1
(@2 = @ = pCa+ 7C3 + 8207 — (pe® ) 5397, (C.15)

N

ie. equivalently . .
(B2 — B3)* = K* — (p /7% 4 593)° (C.16)

where we have put K? := pCa + C?/4 + s23% = Qo + s35. Let us notice that this equation implies that 8s — B33
is bounded from above if there is effectively a symmetry wall, i.e. unless p = 0. More precisely the domain of
variation of 8 — B3 are the following, depending on the relative values of (> 0) and sa3 i.e. of Qs :

Qs > 0 (K? > 5237) (C.17)
fpsa3>0 :  B2— B3 €]—00,In[(K —|sa3])/[pl]]
if psegg <0 B2 — B3 € |=00,In[(K + [sa3])/[pl]]

Qs < 0 (K? < 523%) (C.18)
fpsaz <0 : Bo— B3 €In[(s2s] — K)/Ipl], In[(|s23] + K)/Ipl]]

The situation corresponding to integration constants obeying the inequality (CI7) corresponds to a situation
where (3 is (almost) alway greater than 8. When K2 < s932, the difference between 85 and 3 could be of
constant (positive or negative) sign or oscillate around zero. Once integrated, eqs (CI]) and (C12) furnish the

spin components S021 and SU3 after a single quadrature while the metric coefficient o3 is directly obtained

thanks to equations (CH) and (CI3) :

1,. . C1
Vo3 = — (B3 — fB2) — —. C.19
= 2 (a = ) - 5 (C19)
Another constant of motion is obtained from the equation
4w =—2NH=0. (C.20)

We denote it by @w? + w® = 2k.

14 Always if the ratio (K F |s23])/|p| < 1, otherwise there is a short period of time during which B2 > 3.
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The remaining bosonic equations, taking into account the previous ones, reduce to :

B = 1@ 5k (C.21)
Bot+ Pz = —%wl ; (C.22)
w! = 24P _2¢, 72 (C.23)
by = Sl2eBi—pa) (C.24)
iy = SH3eBi=Be) 4 o(Brp2) glI2],,, (C.25)
Equations (C.21)) and (C.22)) immediately provide:

281+ B2+ Bs =k (to—1t). (C.26)

Just as equations (C.I3) and (C.I4), equations (C.21) and (C.23)) are integrated by two quadratures, defining
by the way the constant of motion Q;:

o 1
B =7 (2 +2¢ e i) (C.27)

For (8 to be classically defined we need C_g + 91 >0and Cy > 0or Q; > 0. The domain of variation of e~201 iy

e2heo,fezraite|  ifQi>0, (C.28)
2P e [Cy = [C2 4+ Q1,Cy+/C2+ Q1] Qi <0andCy > 0. (C.29)

The first case corresponds to a bounce defining asymptotic Kasner’s exponents; the second one to an oscillatory
behaviour of the metric component.

So we obtain the expression of the three variables 81, 82 and 3. Then the remaining three equations can
be integrated by quadratures. For completeness we display them hereafter:

The solutions:

After elementary integrations, we obtain when K2 — 5932 > 0 :

K |p| cosh[\/K2 — s932(t — t_)] + p s23
B3 — B2 n{ KT 532 : (C.30)
B(t) = %/e<62—63> dt
K — sgn(p) sa3
= t = POV tanh[VK2 — sog2(t —t_)/2]]
sgn(p) arctan K T sen(p) 525 anh[ s232( )/2]
and when K2 — 5932 < 0 and psa3 <0 :
[ooa2 — JC2(f —
ﬂ?, _ ﬂ2 — In K |p| COS[ 523 K (t t*)] + psa3 7 (031)
K2 — 5952
s23 — sgn(p) K
B(t) = t ———t 2—K2(t—t_)/2]| .
() = sgn(p) arctan [ e tanl/aay? — K2 (t 1) 1]
The function B(t) furnishes the time evolution of the non constant spin tensor components:
S — L cos[B(t)], (C.32)
SU3 — L sin[B(#)]. (C.33)
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Let us notice that, by fixing appropriately the initial values of the spinorial mode, we also have : pe(#2=588) 4 595 =
K sin[2 B(t)].
In the same way we obtain the expression of 5;. When Q; > 0 it reads as:

+/C2 4 Q1 cosh[vOi(t —t.)] — C
B = %m i 5 i . (C.34)
1

when Q; < 0 and thus Cg > |Q1], we obtain :

5 %ln Cy+4/C2+ Q1|CQOS|[\/—Q1(t — t)]
1

(C.35)

Combining these equations with eqs (C26]) and eqs (C.30 or [C3T]) we obtain the explicit expression of 82 and
B3. The functions v15 and vy3 are then obtained by integration of eqs (C24), [C25) where the spin tensor
components are expressed thanks eqs (C.32] [C33). The various integration constants p,..., Q, L are not all
independent. The Hamiltonian constraint imposes:

1
k2—p62—ZC%—3232—L2:I€2—IC2—L2, (C.36)

which is the classical analogs of the mass shell condition ([.82). Obviously there are different qualitative
behaviors of the metric components, according to the relative values and signs of some integration constants.
From Eq. (C.26) and egs (C.30] [C.34) we immediately obtain Kasner exponents (see next section). The function
B(t), obtained from Eq. (C.30), varies of a finite amount, and the spin tensor components 5021 and S13] rotate
by a finite angle. But contrary to what happens for gravity coupled to bosonic fields, the non-diagonal metric
coefficients 112 and v13, which are driven by these spin tensor components blow up exponentially.

The solutions given by egs (C.31)) and (C.35)) are of a different nature. Here the spin tensor components S
and SU13) oscillate. The metric component exp[—201] also oscillate between two positive values. The coefficients
exp[—202] and exp[—2f5] are given by the product of a non-vanishing oscillatory factor and the exponential
exp[2kt]. Accordingly they blow up when k¢t — +oo and collapse to a singularity when k¢t — —oo. The
evolution of the non-diagonal terms are different according to the subspace they concern. The coeflicient vo3
follows the derivative of 83 — B2, and remains bounded, oscillating. The coefficients 112 and v13 grow up like
an exponential, but modulated by an oscillating factor. Notice that this last solution absolutely requires a non
vanishing spinor field.

(2]

Collision rules

The collision rules, i.e. the transformation law of the Kasner exponents of the metric, when they exist (i.e.
for Q1 > 0), are directly read from the asymptotic behaviour of the solutions displayed in the previous sec-
tion. These solutions allow one to discuss both collisions on a gravitational wall or on a symmetry wall. The
arbitrariness of the constants ¢, and ¢_ reflects the independence of the order of the collision processes.

The kinetic matrix is, with respect to the velocities {Bl, Ba, B3, 12, 113, Ua3 by

0 -1 -1 0 0 0
-1 0 -1 0 0 0
-1 -1 0 0 0 0
0 0 0 L(e2s2ipy? 4 2Be261)  _1e205-28,,, 0 (C.37)
0 0 0 _ %6263—2[31 Uag %6%3—261 0
0 0 0 0 0 %62ﬁ37252

The Hamiltonian constraint implies that asymptotically the trajectories in the -space are non-spacelike:

. 1 1 1
B-8= Z(w% + w%—i—,wﬁ) — g(wl + wo + W3)2 = _Z(L2 + 8232) . (0.38)
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with a mass term in agreement with [23]. In terms of the velocities {Bi}, the collision rules are, for a collision on
a gravitational wall {51, B2, B3} — {—p1, B2+2 f1, f3+2 B1} and on a symmetry wall {1, B2, S5} — {51, B3, B2}

In terms of momenta we obtain :
{wl,WQ,ZD3} — {—W1+2(WQ+W3),WQ,W3} and {wl,WQ,W3} — {wl,W3,’LD2} (039)

These mappings conserve the value of the "mass” ([C.38)). As is well known, the timelike nature of the trajectories
makes that, after a finite number of collisions, the § “billiard ball” will end up on a worldline which does not
catch up anymore the receding walls.

The Dirac sector

It remains to solve the Dirac equation (A29]), taking into account the expression of the metric and spin com-
ponents obtained. It is given by:

. 1 (i) 8 o ofif] 18 4 ¢ o35 o o 5
X=NO{H = 5 (3“2] 72+ SUA 4 (S5 4 ePaBs 528) 4% ¢ 25175) X (C.40)

This classical equation for the rotation of the spinor y is more complicated to solve than the quantum problem
posed by the quantum type II Hamiltonian (5.76) because it represents the rotation of the body-frame object
x w.r.t. the space frame. This rotation is the combination of several different precessions and rotations
corresponding to the various terms in the equation above. We can simplify a bit the study of this combined
rotation by “encoding” the last term (linked to the interaction with the gravitational wall) in a change of spinor
variable. Indeed, using the commutation of v5 with the spin matrices 7%, its effect is taken into account by
replacing, for Q; > 0, x by the variable v, with:

\/Ca+ Q1 +Cy
Y tanh[Qi (t—t.)/2) | 5| ¥, (C.41)

1 —2p, 1
X = exp { 1 / e 75] P = exp 5 arctan Neon

or
= — = arct —_— % — t—t.)/2 C.42
X = exp 5 arctan Naxon an( Q1 ( )/2) | vs | ¥ ( )

when Q; < 0.

Note that, after a collision on the gravitational wall, the spinor undergoes a total rotation around the
“direction” 5 = y07'?3 (associated to the gravitational wall) given by the matrix :

O¢ := exp Kﬁm - %arctan(\/Q_l /cg)> 75] . (C.43)

In particular, in the limit where v/Q; > C,, we get a rotation by an angle of 7 around 5 = ~Yv'?3, in agreement
with the sharp (gravitational) wall limit studied [22].

Let us finally discuss the effects of the other terms in the rotational evolution of the spinor, which, in terms
of the object 1, are contained in the equation:

b=t (S[iﬁ] A2 1 glis) 13 | (g8) | B2y wzs),ygé) " (C.44)
4
For arbitrary values of L, it seems difficult to express simply the spinorial mode but assuming L = 0 we obtain:
1 1 1 1 53
P[t] = cos[Zszg t+ 3 B(t)] + sm[ZSQ;,» t+ B Bt)]~v~ ) vo - (C.45)

This result exhibits a rotation in spinor space which is the sum of a uniform, continuous precession (with angular
velocity s23/4), and of the rotation B(t) (which spans a finite angle in the infinite time ¢ € (—o0,400)). If
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s23 = 0 things further simplify. [Note that the two conditions L = 0 and se3 = 0 cancel the rotation of the body
frame w.r.t. the space frame, and leave only the effects of the two dynamical walls: the gravitational wall 23,
(studied above), and the symmetry wall 53— (2 that we consider next.] We obtain B(t) = arctan{exp[K(t—t_)]}
and after the collision the spinor will be rotated as :

Y[t = +o0] = exp |:£7T’723:| Y[t = —o0] := Og Y[t = —x). (C.46)
in accordance with the collision law on a symmetry wall obtained in Ref. [22].

Thus to conclude this section let us remark that the bosonic part of the m = 0 and Ay = 0 Einstein-Dirac
system, under the assumption of a cosmological model of Bianchi type II, is completely integrable, in terms
of elementary functions. For the fermionic part we have obtained explicit solutions only when simplifying the
problem by, essentially, restricting the continuous rotation between the space frame and the body frame (to
which the spinor is attached). However, as mentioned earlier it is not necessary to know precisely the spinor
dynamics to elucidate the gravitational one. As discussed in the main text, the quantum dynamics of this
system is simpler and can be solved in an exact manner.
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