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Abstract. We use the self-similar tilings constructed in [32] to define a gen-
erating function for the geometry of a self-similar set in Euclidean space. This
geometric zeta function encodes scaling and curvature properties related to
the complement of the fractal set, and the associated system of mappings.
This allows one to obtain the complex dimensions of the self-similar tiling as
the poles of the geometric zeta function and hence develop a tube formula for
self-similar tilings in Rd. The resulting power series in ε is a fractal extension
of Steiner’s classical tube formula for convex bodies K ⊆ Rd. Our sum has
coefficients related to the curvatures of the tiling, and contains terms for each
integer i = 0, 1, . . . , d − 1, just as Steiner’s does. However, our formula also
contains a term for each complex dimension. This provides further justifica-
tion for the term “complex dimension”. It also extends several aspects of the
theory of fractal strings to higher dimensions and sheds new light on the tube
formula for fractals strings obtained in [30].

1. Introduction

In [32], the second author has shown that a self-similar tiling T is canonically
associated with any self-similar system, i.e., any finite collection Φ = {Φj} of con-
tractive similarity transformations. Such a tiling T is essentially a decomposition
of the complement of the unique self-similar set associated with Φ, and is reviewed
in greater detail in §2. The main result of this paper is a tube formula for T , where
by a tube formula for A ⊆ Rd, we mean an explicit expression for the d-dimensional
volume of the inner ε-neighbourhood of A, i.e.,

VA(ε) = vold{x ∈ A ..
. dist(x, ∂A) ≤ ε}.(1.1)

At the heart of this paper is the geometric zeta function ζT (s) of a self-similar
tiling T . It will take some work before we are able to describe this meromorphic
distribution-valued function precisely in §7. The function ζT is a generating func-
tion for the geometry of a self-similar tiling: it encodes the density of geometric
states of a tiling, including curvature and scaling properties. The poles of ζT are
the complex dimensions DT of the tiling, and we obtain a tube formula for T given
as a sum over DT of the residues of ζT , taken at the complex dimensions.

The first ingredient of ζT is a scaling zeta function ζs(s) which encodes the
scaling properties of the tiling and is discussed in §4.2. This comparatively simple
zeta function is the Mellin transform of a discrete scaling measure ηs which encodes
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the combinatorics of the scaling ratios of a self-similar tiling. More precisely, if one
considers a composition of similarity mappings Φj , each with scaling ratio rj , then

Φw = Φw1w2...wn
= Φwn

◦ . . .◦Φw2 ◦Φw1

has scaling ratio rw = rw1rw2 . . . rwn . The measure ηs is a sum of Dirac masses,
where each mass is located at a reciprocal scaling ratio r−1

w . The total mass of
any point in the support of ηs corresponds to the multiplicity with which such
a scaling ratio can occur. The scaling zeta function ζs is formally identical to
the zeta functions studied in [30]. The function ζs also allows us to define the
complex dimensions of a self-similar set in Rd (as the poles of ζs), and we find these
dimensions to have the same structure as in the 1-dimensional case. The definition
and properties of the scaling measure ηs and zeta function ζs is the subject of §4.1.

The next ingredient of ζT is a generator tube formula γG. In [32], it is shown
that certain tiles G1, . . . , GQ of T are generators in the sense that any tile Rn of T
is the image of some Gq under some composition of the mappings Φj , i.e.,

Rn ∈ T =⇒ Rn = Φw(Gq),

for some Gq and some w = w1w2 . . . wm. In §5, we discuss the role of the generators
and introduce the function γG which gives the inner tube formula for a generator in
the sense of Def. 1.1. Moreover, appropriately parameterizing γG yields the inner
tube formula for a scaled generator. Therefore, by integrating γG against ηs, one
obtains the total contribution of Gq (and its images under the maps Φw) to the
final tube formula VT . This is elaborated upon in §5.3.

At last, the geometric zeta function of the tiling ζT is assembled from the scaling
zeta function, the tiling, and the terms appearing in γG. In some precise sense, ζT
is a generating function for the geometry of the self-similar tiling. Using ζT , and
following the distributional techniques and explicit formulas of [30], we are able to
obtain an explicit distributional tube formula for self-similar tilings.

Theorem 1.1. The d-dimensional volume of the inner tubular neighbourhood of T
is given by the following distributional explicit formula:

VT (ε) =
∑

ω∈DT
res (ζT (ε, s); ω) .(1.2)

This tube formula extends previous results in two ways. On one hand, it provides
a fractal analogue of the classical Steiner formula of convex geometry. Steiner’s
formula for the exterior ε-neighbourhood of a compact convex set is a polynomial
in ε with coefficients given by curvature measures. This is discussed further in
§8.4. On the other hand, the tube formula (1.2) also provides a natural higher-
dimensional analogue of the tube formula for fractal strings obtained in [30] and
recalled in (6.17). The present work can be considered as a further step towards
a higher-dimensional theory of fractal strings, especially in the self-similar case,
following upon [27], §10.2 and §10.3, and our earlier paper [21]. This is discussed
further in §8.3 and in Rem. 9.1.

The primary object of study in [30] is a fractal string, a countable collection
L = {Ln}∞n=1 of disjoint open intervals which form a bounded open subset of R.
Due to the trivial geometry of such intervals, this reduces to studying the lengths
of these intervals L = {`n}∞n=1, and the sequence L is also referred to as a fractal
string. The tube formula for a fractal string L (and in particular, for a self-similar
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tiling in R) is defined to be VL(ε) := VL(ε) and is shown to be essentially given by
a sum of the form

VL(ε) =
∑

ω∈DL∪{0}
cωε1−ω(1.3)

in [30], Thm. 8.1. Here, the sum is taken over the set of complex dimensions
DL = {poles of ζL}, and cw is defined in terms of the residue at s = ω of ζL(s), the
geometric zeta function of L. The definition VL(ε) := VL(ε) is justified because, as
is shown in [25], VL depends exclusively on L.

In §1.4 of [30] (following [26]), a fractal spray is defined to be given by a nonempty
bounded open set B ⊆ Rd (called the basic shape or generator), scaled by a fractal
string η. That is, a fractal spray is a bounded open subset of Rd which is the
disjoint union of open sets Ωn for n = 1, 2, . . . , where Ωn is congruent to `nB (the
homothetic of Ω by `n) for each `n. Thus, a fractal string is a fractal spray on the
basic shape B = (0, 1), the unit interval. In the context of the current paper, a
self-similar tiling is a union of fractal sprays on the basic shapes G1, . . . , GQ, each
scaled by a fixed self-similar string. In fact, we first prove Thm. 1.1 for the more
general case of fractal sprays, and then refine it to obtain the formula for self-similar
tilings.

The rest of this paper is organized as follows. §2 contains a quick overview
of the background material concerning self-similar tilings. §3 discusses how the
notion of inradius describes the different scales of the tiling. §4 defines the scaling
and geometric measures, the scaling zeta function, and complex dimensions of a
self-similar tiling. §5 develops the tube formula for the generators of a self-similar
tiling, and establishes the general form of VT (ε) in terms of this. §6 reviews the
explicit formulas for fractal strings which will be used in the proof of the main
results. §7 defines the geometric zeta function of the tiling, and states and proves
the tube formula for fractal sprays (a generalization of a tiling) given in Thm. 7.5,
from which the tube formula for self-similar tilings follows readily, and §9 discusses
several examples illustrating the theory. Appendix A verifies the validity of the
definition of the geometric zeta function ζT . Appendix B verifies the distributional
error term and its estimate, from Thm. 7.5.

Remark 1.2 (A note on the references). The primary references for this paper
are [32] and the research monograph “Fractal Geometry, Complex Dimensions
and Zeta Functions: Geometry and spectra of fractal strings” by Lapidus and
van Frankenhuijsen [30]. This volume is essentially a revised and much expanded
version of [27], by the same authors. The present paper cites [30] almost exclusively,
so we provide the following partial correspondence between chapters for the aid of
the reader:

[27] Ch. 2 Ch. 3 Ch. 4 Ch. 6 Ch. 10
[30] Ch. 2–3 Ch. 4 Ch. 5 Ch. 8 Ch. 12

Remark 1.3. Throughout, we reserve the symbol i =
√−1 for the imaginary num-

ber.

1.1. Acknowledgements. The authors wish to thank Martina Zähle for several
helpful discussions on geometric measure theory and for bringing the reference [13]
to our attention. Additionally, the authors would like to thank Steffen Winter for
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many helpful discussions and suggestions, and for finding mistakes in an earlier
version of this paper.

2. The Self-Similar Tiling

This section provides an overview of the necessary background material concern-
ing self-similar tilings. Further details may be found in [32].

Definition 2.1. A self-similar system is a family {Φj}J
j=1 (with J ≥ 2) of contrac-

tion similitudes
Φj(x) := rjAjx + aj , j = 1, . . . , J.

For j = 1, . . . , J , we have 0 < rj < 1, aj ∈ Rd, and Aj ∈ O(d), the orthogonal
group of rigid rotations in d-dimensional Euclidean space Rd. The number rj is the
scaling ratio of Φj . For convenience, assume that

(2.1) 1 > r1 ≥ r2 ≥ · · · ≥ rJ > 0.

It is well known that there is a unique nonempty compact subset F ⊆ Rd satis-
fying the fixed-point equation

(2.2) F = Φ(F ) :=
J⋃

j=1

Φj(F ).

This (self-similar) set F is called the attractor of Φ. We abuse notation and let Φ
denote both an operator on compacta (as in (2.2)) and the family {Φj}. Different
self-similar systems may give rise to the same self-similar set; therefore we emphasize
the self-similar system and its corresponding dynamics.

It is shown in [32] that for a self-similar system satisfying the tileset condition
(see Def. 2.2), there exists a natural decomposition of C \ F which is produced
by the system Φ. The construction of this tiling is illustrated for a well-known
example, the Koch curve, in Fig. 1. It may help the reader to look at this example
before diving into the next paragraph and the thicket of definitions therein. Further
examples are depicted in §9.

Let C := [F ] be the convex hull of F , and let T := relintC be the relative interior
of C. Iterates of the hull C under Φ are denoted

(2.3) Ck := Φk(C) =
⋃

w∈Wk

Φw(C),

where w = w1 . . . wk is a word inWk := {1, 2, . . . , J}k and Φw := Φwk
◦. . .◦Φw2◦Φw1 .

For future reference, let W :=
⋃∞

k=1Wk be the set of all finite words w over the
alphabet {1, 2, . . . , J}.
Definition 2.2. The system satisfies the tileset condition iff T * Φ(C) and

(2.4) intΦj(C) ∩ intΦ`(C) = ∅, j 6= `.

This is a restriction on the overlap of the images of the mappings and implies
(but is not equivalent to) the open set condition. For any system satisfying the
tileset condition,

(2.5) T1 := T \ C1

is well defined and nonempty, and hence so is Tk := Φk(T1). As an open set, T1 is
a disjoint union of connected open sets:

(2.6) T1 = G1 ∪G2 ∪ · · · ∪GQ, Gp ∩Gq = ∅, p 6= q.
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Figure 1. Construction of the Koch tiling K. This example is discussed
further in §9. The tiling K has the single generator T1 = G1, an equilateral

triangle.

Definition 2.3. The generators of the tiling are the connected components of T1,
i.e., the disjoint open sets {Gq} in (2.6).

The number Q of generators depends on the system Φ, not just on F . In general,
the number of connected components of an open subset of Rd may be countable;
however, in this paper we assume Q < ∞.

Definition 2.4. The self-similar tiling of Φ is

(2.7) T = {Rn}∞n=1 = {Φw(Gq) ..
. w ∈ W, q = 1, . . . , Q}.

In (2.7), the sequence {Rn} is an enumeration of the sets {Φw(Gq)}, and Φw is
as in (2.3). We say T is a tiling of C \F because the tiles Rn have disjoint interiors
and F does not intersect the interior of any Rn (see Fig. 3):

C =
⋃

n
Rn, F ⊆

⋃
n

∂Rn, and Rn1 ∩Rn2 = ∂Rn1 ∩ ∂Rn2 .
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3. The Inradius

As alluded to in (1.1), we are interested in that portion of a set which lies within
ε of its boundary.

Definition 3.1. Given ε > 0, the inner ε-neighbourhood of a set A ⊆ Rd, d ≥ 1, is

(3.1) Aε := {x ∈ A ..
. dist(x, ∂A) ≤ ε},

where ∂A is the boundary of A. We are primarily interested in the d-dimensional
Lebesgue measure of Aε, denoted VA(ε) := vold(Aε).

It is clear that if A is a bounded set, A ⊆ Aε for sufficiently large ε. Alternatively,
it is apparent that for a fixed ε > 0, any sufficiently small set will be entirely
contained within its ε-neighbourhood. The notion of inradius allows us to see
when this phenomenon occurs.

Definition 3.2. The inradius ρ of a set A is

(3.2) ρ = ρ(A) := sup{ε > 0 ..
. ∃x with B(x, ε) ⊆ A}.

Note that the supremum is taken over ε > 0, because A0 = A. The inradii ρn =
ρ(Rn) replace the lengths `n = 2ρ(Ln) of the 1-dimensional theory; furthermore,
the inradius is characterized by the following theorem.1

Theorem 3.3. In Rd, the inradius is the furthest distance from a point of A to
∂A, or the radius of the largest ball contained in A, i.e.,

ρ(A) = sup{ε > 0 ..
. V (Aε) < V (A)}.(3.3)

Proof. Continuity of the distance and volume functionals gives V (Aδ) < V (A) if
and only if there is a set U of positive d-dimensional measure contained in the
interior of A which is further than δ from any point of ∂A. For any x ∈ U ,
B(x, δ) ⊆ A. Conversely, for δ strictly less than the right-hand side of (3.3), the
same reasons imply the existence of the set U of positive measure. ¤

Remark 3.4. The proof of Thm. 3.3 shows that the inradius may also be defined
by ρ(A) = sup{d(x, ∂A) ..

. x ∈ A}.
The utility of the inradius in the present paper arises primarily from the equality

(3.3) and the fact that the inradius behaves well under the action of the self-similar
system:

(3.4) ρn = ρ(Rn) = ρ(Φw(Gq)) = re1
1 . . . reJ

J gq,

where rj is the scaling ratio of Φj , and the exponent ej ∈ N indicates the multiplicity
of the letter j in the finite word w ∈ W.

Definition 3.5. For q = 1, . . . , Q, the qth generating inradius is the inradius of the
qth generator of the tiling T and denoted

(3.5) gq := ρ(Gq).

1While this result is probably folklore in some circles, we were unable to find it in the literature
and so have provided a proof.
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Throughout the remainder of this paper,2 we assume that T is a self-similar tiling
associated with a given self-similar system (and having inradii gq), as described in
§2–§3 and in further detail in [32]. For convenience, we may take the generators in
nonincreasing order, i.e., index the generators so that

(3.6) g1 ≥ g2 ≥ · · · ≥ gQ > 0.

4. Measures and zeta functions

In this section and the rest of the paper, any zeta function is understood to be
the meromorphic extension of its defining expression.

4.1. The geometric zeta function of a fractal string. In [30],3 a fractal string
is defined to be a bounded open subset of R, that is, a countable collection of
disjoint open intervals, L =

⋃∞
n=1 Ln, with lengths L = {`n}∞n=1. The geometric

zeta function of such an object is

(4.1) ζL(s) =
∞∑

n=1

`s
n,

and can be used to study the geometry of L and of its (presumably fractal) boundary
∂L := ∂L. Observe that ζL(s) is the Mellin transform of the measure

(4.2) ηL =
∞∑

n=1

δ1/`n
,

where δx denotes the Dirac mass (or Dirac measure) at x. Thus,

(4.3) ζL(s) =
∫ ∞

0

xs dηL(x).

4.2. The scaling zeta function of a self-similar tiling. We now extend the
ideas of §4.1 to higher dimensions. In 1 dimension, the length of an interval is just
twice its inradius, and the distinction between the scale of a set and its volume is
blurred. For the higher-dimensional case the scaling zeta function ζs is separate
from the geometric zeta function of the tiling ζT ; the tiling zeta function ζT encodes
the density of geometric states of Φ and acts as a generating function for the
geometry of the entire tiling. The scaling zeta function encodes only scaling data.
In [30], both of these roles are essentially played by ζL. Discussion of ζT is postponed
to Def. 7.2, as it takes some work to give a precise description.

Definition 4.1. The scaling measure encodes the scaling factors of Φ as a sum of
Dirac masses:

ηs(x) :=
∑

w∈W
δ1/rw

(x).(4.4)

Definition 4.2. The scaling zeta function is defined by the Mellin transform of
the scaling measure ηs:

ζs(s) :=
∫ ∞

0

x−s dη =
∑

w∈W
rs
w =

∞∑

k=0

∑

w∈Wk

rs
w.(4.5)

2Except for the discussion surrounding Thm. 7.5, wherein T is taken to be a fractal spray. See
the introduction to §7.

3See also [25–2,20,18–3,27–3,10], along with [17], Exm. 5.1 and App. C.
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The scaling zeta function ζs encodes the combinatorics of the scaling ratios rj of Φ
and is thus a generating function for the scaling properties of Φ.

Theorem 4.3. The scaling zeta function of a self-similar system is

ζs(s) =
1

1−∑J
j=1 rs

j

.(4.6)

This remains valid for the meromorphic extension of ζs to all of C.

This theorem is the higher-dimensional counterpart of [30], Thm. 2.4, and can,
in fact, be viewed as a corollary of it; see §4.3. Indeed, it is proved in precisely the
same way.

Definition 4.4. We can now define the scaling (complex) dimensions of a tiling T
as the poles of the scaling zeta function:

Ds := {ω ∈ C ..
. ζs(s) has a pole at ω}.(4.7)

4.3. Comparison with [30]. Although the measures and zeta function introduced
in Def. 4.1 and Def. 4.2 above correspond to fractal subsets of Rd, it is crucial to
note that they are also formally identical to the objects η and ζη studied in [30].
To be precise, the scaling measure is a self-similar string of the sort studied in
Chap. 2–3 of [30], and a generalized fractal string of the kind introduced in Chap. 4
of [30]. In that context, ζs is just the geometric zeta function of a self-similar
string with scaling ratios {rj}J

j=1 and a single gap4, which has been normalized
so as to have `1 = 1, where `1 is the first length in the string. Consequently, all
of the explicit formulas developed in [30] are applicable to the measures and zeta
functions described in the present paper. This is key to the proof of Thm. 7.5.

Let D be the unique real number satisfying
∑J

j=1 rD
j = 1. One can check (as

in [30], §5.1) that for some real constant c > D,

ηs(x) =
1

2πi

∫ c+i∞

c−i∞
xs−1ζs(s) ds, and ζs(s) =

∫ ∞

0

x−s ηs(dx).(4.8)

Additionally, the Structure Theorem for complex dimensions [30], Thm. 3.6,
holds for the set of scaling complex dimensions of Def. 4.4. By (4.6), Ds consists of
the set of complex solutions of the complexified Moran equation

∑J
j=1 rs

j = 1 which
is studied in detail in Chap. 2–3 of [30]. In particular, the complex dimensions lie
in a horizontally bounded strip of the form C ≤ Re s ≤ D, where D is as just above
and C < D is some other (finite, possibly negative) constant. The positive number
D is called the similarity dimension of Φ (or of its attractor F ) and coincides with
the abscissa of convergence of ζs [30], Thm. 1.10.5 Furthermore, the following
dichotomy prevails:

• Lattice case. When the logarithms of the scaling ratios rj are each an integer
power of some common positive real number, the complex dimensions lie
periodically on finitely many vertical lines, including the line Re s = D. In
this case, there are infinitely many complex dimensions with real part D

4In this paper, we use the term “generator” in place of “gap”.
5If the self-similar system defining F satisfies the ‘open set condition’ (see [14], as described

in [2] or [15]), as is the case when the tileset condition is satisfied, then D coincides with the
Hausdorff and Minkowski dimensions of F .
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• Nonlattice case. Otherwise, the complex dimensions are quasiperiodically
distributed and s = D is the only complex dimension with real part D.
However, there exists an infinite sequence of complex dimensions approach-
ing the line Re s = D from the left. In this case, the set {Re s ..

. s ∈ D}
appears to be dense in [Dl, D].

It has been proven in [30] that for d = 1, the attractor of Φ fails to be Minkowski
measurable if and only if ζη has nonreal complex dimensions with real part D, and
in [30], Conj. 12.18, this is conjectured to hold also in higher dimensions. See also
Remark 8.7.

5. The Generators

The inner tube formula for the tiling will consist of the sum of the inner tube
formulas for each tile, and each of these can be expressed as a rescaled version of
the tube formula for a generator. That is, if R = Φw(G) for some w ∈ W , then the
inradius of such a tile is

ρ = ρ(R) = ρ(Φw(G)) = rwg = re1
1 . . . reJ

J g,

and invariance of Lebesgue measure under rigid motions gives

VR(ε) = VΦw(G)(ε) = VrwG(ε).(5.1)

Thus, it behooves us to find an expression for

γG(x, ε) := V(1/x)G(ε),(5.2)

where 1
xG is a homothetic image of G, scaled by some factor 1

x > 0. Then γG(1, ε)
gives the inner tube formula for G, and γG(x, ε) is the volume of a tile which is
similar to G but which has been scaled by 1/x. The motivation for defining γG in
terms of 1/x (rather than x) appears in (5.21).

For the moment, the following definition is left intentionally vague; motivation
for the definition (and its name) can be found in §8.4.

Definition 5.1. A generator G is said to be Steiner-like iff its inner tube formula
admits an expansion of the form

VG(ε) =
d−1∑

i=0

κi(G, ε)εd−i,(5.3)

for ε < g, where each κi(G, ε) is some reasonably nice (e.g., bounded and locally
integrable) function for ε ∈ [0,∞). In particular, we require that

(i) each κi(G, ε) is homogeneous of degree i, so that for λ > 0,

κi (λG, λε) = κi(G, ε)λi, and(5.4)

(ii) each κi(G, ε) is rigid motion invariant, so that

κi (T (G), ε) = κi(G, ε),(5.5)

for any (affine) isometry T of Rd.
(iii) for each κi(G, ε), i = 0, 1, . . . , d− 1, the limit limε→0+ κi(G, ε) exists in R.
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5.1. The tube formula for a diphase generator. In this paper, we treat only
the special case of a Steiner-like generator G where the coefficient functions κi(G, ε)
are piecewise constant functions of ε, in which case G is called pluriphase as in
Def. 5.4. In the special case when each κi(G, ε) takes on only two values, G is
called diphase as in Def. 5.2. We will treat the general case in the forthcoming
collaboration with Steffen Winter [24].

Definition 5.2. A Steiner-like generator G is said to be a diphase generator, or to
have a diphase tube formula, iff

VG(ε) = γG(1, ε) =
d−1∑

i=0

κi(G)εd−i, for ε < g,(5.6)

for some κi(G) ∈ R, i = 0, 1, . . . , d− 1.

Not every polyhedral G is diphase; the more general pluriphase case is discussed
in §5.2. In general, the computation of γG(x, ε) may be nontrivial. We define κd(G)
to be the negative of the d-dimensional Lebesgue measure of G:

(5.7) κd(G) = −λd(G).

Theorem 5.3. If G is diphase, then for any tile congruent to the homothetic image
1
xG, the inner tube formula is given by

(5.8) γG(x, ε) =

{∑d−1
i=0 κi(G)x−iεd−i, ε ≤ g/x,

−κd(G)x−d, ε ≥ g/x.

Proof. So far, we have only defined VG(ε) for ε < g. To extend it to all of R+, note
that VG(ε) is just the Lebesgue measure of G for ε ≥ g. Therefore, define

κi(G; ε) := κi(G)χ[0,g)(ε), i = 0, 1, . . . , d− 1

κd(G; ε) := −κd(G)χ[g,∞)(ε),

where κi(G) is as in (5.6), χA is the usual characteristic function of the set A, and
µd is Lebesgue measure on Rd. Now we have

VG(ε) = γG(1, ε) =
d∑

i=0

κi(G; ε)εd−i, for ε ≥ 0.(5.9)

Next, we would like to adapt this formula so as to obtain a tube formula valid for
a tile of any size. Note that VrG(rε) = rdVG(ε), as both expressions are measuring
congruent regions in Rd. Hence for ε < g, one has

d−1∑

i=0

riκi(G; ε)(rε)d−i = rdVG(ε) = VrG(rε) =
d−1∑

i=0

κi(rG; rε)(rε)d−i,

and thus for ε < g/x, one has

γG(x, ε) = V 1
x G(ε) =

d−1∑

i=0

(
1
x

)i
κi(G; xε)εd−i =

d−1∑

i=0

κi(G;xε)x−iεd−i.

Since κi(G; xε) = κi(G)χ[0,g)(xε) = κi(G)χ[0,g/x)(ε) for i = 0, 1, . . . , d − 1, it is
clear that (5.2) may be expressed as

(5.10) γG(x, ε) =
d∑

i=0

κi( 1
xG; ε)εd−i =

{∑d−1
i=0 κi(G)x−iεd−i, ε ≤ g/x,

−κd(G)x−d, ε ≥ g/x,
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where the constants κi(G) are as defined in (5.6) for i = 0, 1, . . . , d−1, and in (5.7)
for i = d. ¤

The function γG(x, ε) gives the volume of the ε-neighbourhood of a tile which
is congruent to a generator scaled by 1/x. The value ε = g/x corresponds to the
value of ε at which the inner ε-neighbourhood of the tile becomes equal to the tile
itself. Thus, γG is continuous (but generally not differentiable) at ε = g/x.

As was mentioned before, not every G is diphase; the more complicated plu-
riphase case is discussed in §5.2. In fact, even if G is polyhedral or convex, it still
may not be diphase; see Example 5.7 for an example of the latter. We expect
that all convex generators are pluriphase, but this has not yet been proved. For
situations even more general, it is an interior version of Federer’s notion of reach
(see [4]) that is required. For such cases, the inner tube formula will be obtained
in [22] via the more general methods of [13] and others.

5.2. The tube formula for pluriphase generators. The most general genera-
tors that we consider in this paper are those whose inner tube formula is given by
a piecewise polynomial function of ε (see [22] for investigation of the more general
case). In this case, each generator has a sequence of values of ε which gives a par-
tition {ε0 := 0, ε1, ε2, . . . , εM := g}, of the interval [0, g], with εm−1 < εm for each
m. Then one has the following definition:

Definition 5.4. A Steiner-like generator G is said to be a pluriphase generator, or
to have a pluriphase tube formula, iff one can write VG for each fixed m = 1, . . . , M
as

VG(ε) = γG(1, ε) =
d∑

i=0

κm
i (G)εd−i, εm−1 ≤ ε < εm,(5.11)

for some real coefficients κm
i (G). Then for i = 0, . . . d−1, define a piecewise constant

function on R+ = [0,∞) by

(5.12) κi(G; ε) :=
M∑

m=1

κm
i (G)χ[εm−1,εm)(ε).

Similarly, let κd(G) := −µd(G) and define

(5.13) κd(G; ε) :=
M∑

m=1

κm
d (G)χ[εm−1,εm)(ε)− κd(G)χ[g,∞)(ε).

The double negatives for the dth term are regrettable but necessary, as will
become clear from the proof of Thm. 7.5 and the examples in §9. The next theorem
is proved just like Thm. 5.3.

Theorem 5.5. If G is pluriphase, then for any tile congruent to the homothetic
image 1

xG, the inner tube formula is given by

(5.14) γG(x, ε) =
d∑

i=0

κm
i ( 1

xG; ε)εd−i =

{∑d
i=0

∑M
m=1 κm

i (G)x−iεd−i, ε ≤ g/x,

−κd(G)x−d, ε ≥ g/x.

As before, the function γG(x, ε) gives the volume of the ε-neighbourhood of
a tile which is similar to G but has been scaled by a factor of 1/x, and γG is
continuous (but generally not differentiable) at ε = 1

x . For the present, we take
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1/2

2

G

Figure 2. A pluriphase generator.

Def. 5.4 as a working definition and note that it is applicable to a wide range of
examples, including all of those in §9. In particular, Example 5.7 is pluriphase but
not diphase. We will investigate the implications of this definition further in the
later paper [22]. To compare with the diphase case, note that if ε0 = 0 and ε1 = g,
then (5.10) may be rewritten as

(5.15) γG(x, ε) =
d−1∑

i=0

1∑
m=1

κm
i (G)χ[ εm−1

x , εm
x )(ε)x

−iεd−i, for ε ≤ g/x.

Definition 5.6. If the generator G is pluriphase and defined on a partition of
M subintervals {0 = ε0, ε1, . . . , εM = ρ(G)}, then its curvature matrix κ is the
(M + 1)× (d + 1) matrix with entries

κ := [κm
i (G)] =




κ1
0 κ1

1 . . . κ1
d−1 κ1

d

κ2
0 κ2

1 . . . κ2
d−1 κ2

d
...

...
...

κM
0 κM

1 . . . κM
d−1 κM

d

0 0 . . . 0 κd




.(5.16)

It is worth noting that the continuity of VG(ε) at ε = 0 mandates that κ1
d = 0

(recall that this is the coefficient of the constant term). Thus, if the generator G is
diphase as in Def. 5.2, then with an abuse of notation, the curvature matrix may
be written

κ := [κi(G)] =
[

κ0, κ1, . . . , κd−1, κd

]
.(5.17)

Example 5.7 (A pluriphase generator). Consider a fractal spray on a generator G
consisting of a 2× 2 square with one corner replaced by a circular arc, as depicted
in Fig. 2. This generator has inradius g = ρ(G) = 1 and is pluriphase, but not
diphase. Indeed, the relevant partition is

(5.18) {0 = ε0, ε1 = 1/2, ε2 = 1},
and the tube formula for G is

(5.19) γG(1, ε) =





(8 + π
4 )ε− (5 + π

4 )ε2, ε0 ≤ ε ≤ ε1

π−4
16 + 8ε− 4ε2, ε1 ≤ ε ≤ ε2

π−4
16 + 4, ε2 ≤ ε.
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5.3. Tilings with one generator. Suppose we have a tiling T with just one
generator G. Then the inner tube formula of T is given by

VT (ε) =
∞∑

n=1

VRn(ε) =
∑

ρn≥ε

VRn(ε) +
∑
ρn<ε

VRn
(ε),(5.20)

much as in [26], Eqn. (3.2). Recall that ρn is the inradius of the tile Rn. For
Rn = Φw(Gq), invariance under rigid motions allows us to use the equality (5.1) to
rewrite the sums in (5.20) as integrals with respect to ηs:

VT (ε) =
∑

ρ−1
n ≤1/ε

VRn
(ε) +

∑

ρ−1
n >1/ε

VRn(ε)

=
∫ g/ε

0

V(1/x)G(ε) dηs(x) + µd(G)
∫ ∞

g/ε

x−d dηs(x)(5.21)

=
∫ ∞

0

γG(x, ε) dηs(x)

= 〈ηs, γG〉,(5.22)

where γG is a ‘test function’ giving the volume of a tile which is similar to G, but
which has been scaled by a factor of 1/x; see (5.2). Although γG is not smooth,
it fits the criteria given in Thm. 6.5 and is thus amenable to the distributional
techniques developed in [30], §5.4.

5.4. Tilings with multiple generators. Upon replacing G by Gq, we use the
notation Vq, γq, κqi, etc., to refer to the corresponding quantity for the qth generator.
For example, γG(x, ε) is replaced by γq(x, ε) = γGq (x, ε), the volume of the ε-
neighbourhood of a tile which is similar to Gq but which has been scaled by x.

The contribution to VT (ε) resulting from one generator Gq and its successive
images is Vq(ε) := 〈ηs, γq〉, so the case of multiple generators can be reduced to a
sum of single-generator tilings via the formula

(5.23) VT (ε) =
Q∑

q=1

Vq(ε) =
Q∑

q=1

〈ηs, γq〉.

Henceforth, we will always assume there is only a single generator, as this simpli-
fying assumption will clarify the exposition. For a concrete example of how this is
done, see the example of the pentagasket in §9.4

6. Distributional Explicit Formulas for Fractal Strings

These four definitions and the three theorems that follow them are excerpted
from §5.3 of [30]. The technical details described here are used in the proof of
Thm. 7.5, especially in Appendix A and Appendix B. The reader can easily skim
or skip this section on a first reading.

Definition 6.1. A generalized fractal string is defined to be a local positive Borel
measure on (0,∞) and is denoted by η. Here, local means locally bounded with
support bounded away from 0. The associated scaling zeta function is defined

(6.1) ζη(s) :=
∫ ∞

0

x−s dη.
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It is clear that the scaling measure ηs introduced in Def. 4.1 is a generalized
fractal string, as discussed in §4.3.

Definition 6.2. Let f : R→ R be a bounded Lipschitz continuous function. Then
the screen is S = {f(t) + it ..

. t ∈ R}, the graph of a function with the axes
interchanged. We let

inf S := inft f(t) = inf{Re s ..
. s ∈ S}, and(6.2)

sup S := supt f(t) = sup{Re s ..
. s ∈ S}.(6.3)

The screen is thus a vertical contour in C. The region to the right of the screen is
the set W , called the window :

W := {z ∈ C ..
. Re z ≥ f(Im z)}.(6.4)

The poles of ζη which lie in the window are called the visible scaling dimensions
and the set of them is denoted

Dη(W ) = {ω ∈ W ..
. lim

s→ω
|ζη(s)| = ∞}.(6.5)

Definition 6.3. The generalized fractal string η (as in Def. 6.1) is said to be languid
if its associated zeta function ζη satisfies certain growth conditions relative to the
screen.6 Specifically, let {Tn}n∈Z be a sequence in R such that T−n < 0 < Tn for
n ≥ 1, and

lim
n→∞

Tn = ∞, lim
n→∞

T−n = −∞, and lim
n→∞

Tn

|T−n| = 1.(6.6)

For η to be languid, there must exist real constants $, c > 0 and a sequence {Tn}
as described in (6.6), such that

L1 For all n ∈ Z and all σ ≥ f(Tn),

|ζη(σ + iTn)| ≤ c · (|Tn|+ 1)$
, and(6.7)

L2 For all t ∈ R, |t| ≥ 1,

|ζη(f(t) + it)| ≤ c · |t|$.(6.8)

In this case, η is said to be languid of order $ .

Definition 6.4. The generalized fractal string η is said to be strongly languid if it
satisfies L1 and the condition L2’, which is clearly stronger than L2:

L2’ There exists a sequence of screens Sm(t) = fm(t) + it for m ≥ 1, t ∈ R, with
supSm → −∞ as m → ∞, and with a uniform Lipschitz bound. Additionally,
there must exist constants a, c > 0 such that

|ζη(f(t) + it)| ≤ c · a|fm(t)|(|t|+ 1)$,(6.9)

for all t ∈ R and m ≥ 1.

Taking [30], Thm. 5.26 and Thm. 5.30 at level k = 0 gives the following dis-
tributional explicit formula for the action of a fractal string η on a test function
ψ ∈ C∞(0,∞). Note that ψ may not have compact support; only the decay prop-
erties (6.10)–(6.11) are required.

6We take ζη to be meromorphically continued to an open neighbourhood of W , as in Def. ??.
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Theorem 6.5 (Extended distributional explicit formula). Let η be a generalized
fractal string which is languid of order $. Let ψ ∈ C∞(0,∞) with nth derivative
satisfying, for some δ > 0, and every n ∈ {0, 1, . . . , N = [$] + 2},
(6.10) ψ(n)(x) = O

(
x−n−D−δ

)
as x →∞, and

(6.11) ψ(n)(x) =
∑
α

a(n)
α x−α−n + O

(
x−n−inf S+δ

)
as x → 0+.

Then we have the following distributional explicit formula for η:

(6.12) 〈η, ψ〉 =
∑

ω∈Dη

res
(
ζη(s)ψ̃(s); ω

)
+

∑

α∈W\Dη

a(0)
α ζη(α) + 〈R, ψ〉 ,

where the error term R(x) is the distribution given by

(6.13) 〈R, ψ〉 = 1
2πi

∫

S

ζη(s)ψ̃(s) ds

and estimated by

(6.14) R(x) = O
(
xsup S−1

)
, as x →∞.

Here, ψ̃ is the Mellin transform of the function ψ, defined by

(6.15) ψ̃(s) :=
∫ ∞

0

xs−1ψ(x) dx.

Note: the sum in (6.11) is over finitely many complex exponents α with Reα >
−σl + δ. This condition is described by saying that ψ has an asymptotic expansion
of order −σl + δ at 0.

Taking [30], Thm. 5.27, at level k = 0 gives the following distributional explicit
formula for the action of a fractal string η on a test function ψ. Note that in
addition to requiring ψ ∈ C∞(0,∞), we now also require that ψ is a finite linear
combination of terms x−βe−cβx in a neighbourhood of the interval (0, A], where A
is the same constant as in Def 6.4.

Theorem 6.6 (Extended distributional formula, without error term). Let η be a
strongly languid generalized fractal string. Let q ∈ N be such that q > max{1, $},
where $ is as in Def. 6.3. Further, let ψ be a test function that is q times con-
tinuously differentiable on (0,∞). Assume that the jth derivative ψ(j)(x) satisfies
(6.10) and (6.11), and that there exists a δ > 0 such that

ψ(j)(x) =
∑
α

a(j)
α x−αe−cαx, for x ∈ (0, A + δ), 0 ≤ j ≤ q.(6.16)

Then formula (6.12) holds with R ≡ 0.

Theorem 6.7 (Tube formula for fractal strings [30], Thm. 8.1). Let η = ηL be a
languid fractal string with geometric zeta function ζη. The volume of the (one-sided)
tubular neighbourhood of radius ε of the boundary of η is given by the following
distributional explicit formula for test functions ψ ∈ C∞c (0,∞), the space of C∞

functions with compact support contained in (0,∞):

(6.17) Vη(ε) =
∑

ω∈Dη(W )

res
(

ζη(s)(2ε)1−s

s(1− s)
; ω

)
+ {2εζη(0)}+R(ε).
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Here the term in braces is only included if 0 ∈ W \ Dη(W ), and R(ε) is the error
term, given by

(6.18) R(ε) =
1

2πi

∫

S

ζη(s)(2ε)1−s

s(1− s)
ds

and estimated by

(6.19) R(ε) = O(ε1−sup S), as ε → 0+.

The meaning of (6.14) and (6.19), the order of the distributional error term, is
given in Def. B.6 of Appendix B.

When η = ηL is an ordinary fractal string L, as in (4.2) above, then Vη(ε) = VL(ε)
as in Def. 3.1, if L is the bounded open set defining L. Furthermore, when ηL is a
self-similar fractal string, the results of Thm. 6.7 may be strengthened as described
in §8.2. In particular, one may take W = C and R ≡ 0.

7. The Tube Formula for Fractal Sprays

In this section, we present the main result of the paper, a higher-dimensional
analogue of Thm. 6.7. While the proof is similar in spirit, it is significantly more
involved, especially if Appendices A and B are taken into account. This result
provides new insight, particularly with regard to the geometric interpretation of
the terms of the formula; see Remark 9.6. Also, it introduces the proper concep-
tual framework and confirms that fractal sprays are clearly the higher-dimensional
counterpart of fractal strings. In a similar vein, we will see from Theorem 8.4
(the tube formula for self-similar tilings) that the self-similar tilings are the natural
higher-dimensional analogue of self-similar fractal strings.

Although our primary goal in this paper is to obtain a tube formula for self-
similar tilings, we state our main result for the more general class of fractal sprays,
as we expect it to be useful in the study of other fractal structures and tilings to be
investigated in forthcoming work. The important special case of self-similar tilings
is stated in Thm. 8.4 of §8.2.

7.1. Statement of the tube formula. We will prove the tube formula first for
the more general case of fractal sprays, and then refine this result to obtain the
formula for self-similar tilings. The following definition first appeared in [26].

Definition 7.1. Let B ⊆ Rd be a nonempty bounded open set, which we will call
the basic shape or generator. Then a fractal spray is a bounded open subset of
Rd which is the disjoint union of open sets Ωn for n = 1, 2, . . . , where each Ωn is
congruent to `nB, the homothetic of B by `n. Here, L = {`n} is a fractal string.

More generally, as in [30], a fractal spray is given by a nonempty bounded open
set scaled by a fractal string η.

Thus, any fractal string can be thought of as a fractal spray on the basic shape
B = (0, 1), the unit interval. In the context of the current paper, a self-similar
tiling is a union of fractal sprays on the basic shapes G1, . . . , GQ, each scaled by
a fixed self-similar string. A general fractal spray may have multiple generators,
as long as they are all scaled by the same generalized fractal string η. However,
for the remainder of this paper we consider only a single generator G. Indeed, as
mentioned in §5.4, the multiple-generator case can readily be reduced to the case
of a single generator.
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Definition 7.2. The geometric zeta function of a fractal spray with a diphase
generator is

ζT (ε, s) :=εd−sζη(s)
d∑

i=0

gs−i

s− i
κi.(7.1)

More generally, the geometric zeta function of a fractal spray with a pluriphase
generator is

ζT (ε, s) :=εd−sζη(s)
d∑

i=0

M∑
m=1

(εs−i
m − εs−i

m−1)
s− i

κm
i .(7.2)

Here, κi = κi(G) or κm
i = κm

i (G) as defined in Def. 5.2 or Def. 5.4, respectively.

The geometric zeta function of a self-similar tiling or tiling zeta function is
similarly defined, except that ζη is replaced by ζs, the scaling zeta function of a
self-similar tiling described in Def. 4.2. It turns out that ζT is a meromorphic
distribution-valued function for each fixed s ∈ W , where W ⊆ C is the window
defined in Def. 6.2. This verification is given in Def. A.5 and Thm. A.7 of Ap-
pendix A. Considered as a distribution, the action of ζT (s, ·) on a test function
ψ ∈ C∞c (0,∞) is given by

(7.3) 〈ζT (ε, s), ψ(ε)〉 =
∫ ∞

0

ζT (ε, s)ψ(ε) dε.

Here, C∞c (0,∞) is the space of smooth functions with compact support contained
in (0,∞). At first glance, it may appear strange that something as concretely
geometric as a tube formula is given distributionally. However, the flexibility of the
distributional framework allows the proof to proceed; see Rem. 5.20 of [30].

Remark 7.3. The presentation of the geometric zeta function in (7.1) differs from
that given in [30], wherein the “geometric zeta function” is actually closer to what
we call the scaling zeta function here. The general tube formula [30], Thm. 8.1,
does involve the one-dimensional case of ζT , but it is not explicitly named as such.
For several reasons, it behooves one to think of ζT as the geometric zeta function
most naturally associated with the spray (or tiling), especially as pertains to the
tube formula:

(i) The function ζT arises naturally in the expression of the tube formula
for the tiling, as will be seen in Thm. 7.5 and Thm. 8.4.

(ii) It is the poles of ζT (ε, s) that naturally index the sum appearing in VT ,
and the residues of ζT that give the actual volume.

(iii) Using ζT leads to the natural unification of expressions which previously
appeared unrelated; compare (8.5) to (8.7) in Cor. 8.8.

Thus, the function ζT encodes all the geometric information of T as pertains to its
tube formula. In Rem. 8.12 we discuss how the unification mentioned in (ii) leads
to a geometric interpretation of the term {2εζη(0)} that appears in (6.17).

Definition 7.4. The set of visible complex dimensions of a fractal spray is

DT (W ) := Dη(W ) ∪ {0, 1, . . . , d− 1},(7.4)

where Dη(W ) is as in §7.1. Thus, DT (W ) consists of the visible scaling dimensions
and the “integral dimensions” of the spray. Furthermore, the poles of ζT are all
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contained in DT (W ). Note that Dη(W ) and DT (W ) are discrete subsets of W ⊆ C,
and hence are at most countable.

Theorem 7.5 (Tube formula for fractal sprays). Let η be a fractal spray on the
diphase generator G, with generating inradius g = ρ(G) > 0. Assume that ζη is
languid on a screen S which avoids the dimensions in DT (W ). Then for test func-
tions in C∞c (0,∞), the d-dimensional volume of the inner tubular neighbourhood of
the spray is given by the following distributional explicit formula:

VT (ε) =
∑

ω∈DT (W )

res (ζT (ε, s); ω) +R(ε),(7.5)

where the sum ranges over the set (7.4) of integral and visible complex dimensions
dimensions of the spray. Here, the error term R(ε) is given by

R(ε) =
1

2πi

∫

S

ζT (ε, s) ds,(7.6)

and estimated by

R(ε) = O(εd−sup S), as ε → 0+.(7.7)

As a distributional formula, (8.4) is valid when applied to test functions ψ ∈
C∞c (0,∞). The order of the distributional error term as in (7.7) is defined in
Def. B.6. There is a version of this theorem in which the error term vanishes
identically; it is presented in Cor. 8.2. Also, the special case of self-similar tilings
is presented in Thm. 8.4. The following proof relies heavily on the material in §6;
the reader may wish to review this material before proceeding.

7.2. Proof of the tube formula. The proof of Theorem 7.5 is given only for a
spray with a Steiner-like generator which is diphase; the more general pluriphase
case is presented as a corollary, as the proof follows in the same fashion. The
reader may now wish to review §6 before proceeding, as the proof uses these explicit
formulas and distributional techniques from [30],

Proof of Thm. 7.5. Recall that we view VT (ε) as a distribution,7 so we understand
VT (ε) = 〈ηs, γG〉 by computing its action on a test function ψ:

〈VT (ε), ψ〉 = 〈〈ηs, γG〉, ψ〉 =
∫ ∞

0

(∫ ∞

0

γG(x, ε)dηs(x)
)

ψ(ε) dε(7.8)

=
∫ ∞

0

∫ ∞

0

γG(x, ε)ψ(ε) dε dηs(x)(7.9)

= 〈ηs, 〈γG, ψ〉〉 .(7.10)

Now, writing κi = κi(G), we use (5.8) to compute

〈γG, ψ〉 =
∫ ∞

0

γG(x, ε)ψ(ε) dε

=
∫ ∞

0

d∑

i=0

κi( 1
xG; ε)εd−iψ(ε) dε

7Indeed, VT (ε) is clearly continuous and bounded (by the total volume of the spray), hence it
defines a locally integrable function on (0,∞).
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=
d−1∑

i=0

∫ ∞

0

κiχ[0,g/x)(ε)x−iεd−iψ(ε) dε−
∫ ∞

0

κdχ[g/x,∞)(ε)x−dψ(ε) dε

=
d−1∑

i=0

κix
−i

∫ g/x

0

εd−iψ(ε) dε− κdx
−d

∫ ∞

g/x

ψ(ε) dε

=
d∑

i=0

ϕi(x),(7.11)

where, for x > 0, we have introduced

(7.12) ϕi(x) :=

{
κix

−i
∫ g/x

0
εd−iψ(ε) dε, 0 ≤ i ≤ d− 1,

κix
−i

∫ g/x

∞ ψ(ε) dε, i = d,

in the last line. Caution: ϕi is a function of x, whereas ψ is a function of ε. Putting
(7.11) into (7.10), we obtain

〈VT , ψ〉 =

〈
ηs,

d∑

i=0

ϕi

〉
=

d∑

i=0

〈ηs, ϕi〉 .(7.13)

To apply Thm. 6.5, we must first check that the functions ϕi satisfy the hypotheses
(6.10)–(6.11). Recall that ψ ∈ C∞c (0,∞).

For i < d, (6.10) is satisfied because for large x, the corresponding integral in
(7.12) is taken over a set outside the (compact) support of ψ. This gives ϕi(x) = 0
for sufficiently large x, and it is clear that, a fortiori, the nth derivative of ϕi satisfies

(7.14) ϕ
(n)
i (x) = O(x−n−D−δ) for x →∞, ∀n ≥ 0.

To see that (6.11) is satisfied, note that ψ vanishes for x sufficiently large and
thus we have

ϕi(x) = κix
−i

∫ ∞

0

εd−iψ(ε) dε for x ≈ 0,

i.e., ϕi(x) = aix
−i for all small enough x > 0, where ai is the constant

(7.15) ai := κi

∫ ∞

0

εd−iψ(ε) dε = κiψ̃(d− i + 1) = lim
x→0+

xiϕi(x).

Here ψ̃ is the Mellin transform of ψ, as in (6.15).
Thus, the expansion (6.11) for the test function ϕi consists of only one term,

and for each n = 0, 1, . . . , N ,8

(7.16) ϕ
(n)
i (x) = dn

dxn

[
aix

−i
]

= O(x−n−i) for x → 0+, ∀n ≥ 0.

A key point is that since ψ is smooth, (7.14) and (7.16) will hold for each n =
0, 1, . . . , N , as required by Thm. 6.5. Since the expansion of ϕi has only one term,
the only α in the sum is α = i. Thus ai is the constant corresponding to aα in
(6.11).

Applying Thm. 6.5 in the case when i < d, (6.12) becomes

〈ηs, ϕi〉 =
∑

ω∈Dη(W )

res (ζη(s)ϕ̃i(s); ω) + {aiζη(i)}i∈W\Dη

8Recall that η is languid of order $ and that N = [$] + 2 in the hypotheses of Thm. 6.5.
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+ 1
2πi

∫

S

ζη(s)ϕ̃i(s) ds,(7.17)

where the term in braces is to be included iff i ∈ W \ Dη. Here and henceforth, ϕ̃i

denotes the Mellin transform of ϕi given by

(7.18) ϕ̃i(s) =
∫ ∞

0

xs−1ϕi(x) dx.

The case when i = d is similar (or antisimilar). The compact support of ψ again
gives

ϕd(x) = κdx
−d

∫ 0

∞
ψ(ε) dε, for x →∞,(7.19)

so that for some positive constant c, and for all sufficiently large x, we have κd(x) =
cx−d. Hence

(7.20) ϕ
(n)
d (x) = O(x−n−d) for x →∞, ∀n ≥ 0,

and (6.10) is satisfied. For very small x, the integral in the definition of κd(x) is
taken over an interval outside the support of ψ, and hence κd(x) = 0 for x ≈ 0.
Then clearly (6.11) is satisfied:

(7.21) ϕ
(n)
d (x) = 0 for x → 0+, ∀n ≥ 0.

An immediate consequence of (7.21) is that for i = d in (7.15), the constant term
is

(7.22) ad = lim
x→0

xdϕd(x) = 0,

and compared with (7.17) we have one term less in

(7.23) 〈ηs, ϕd〉 =
∑

ω∈Dη(W )

res (ζη(s)ϕ̃d(s); ω) + 1
2πi

∫

S

ζη(s)ϕ̃d(s) ds.

As in (7.18), denote the Mellin transform of the function ψ by ψ̃ and compute

ϕ̃i(s) =
∫ ∞

0

xs−1ϕi(x) dx = κi

∫ ∞

0

xs−i−1

∫ g/x

0

εd−iψ(ε) dε dx

= κi

∫ ∞

0

(∫ g/ε

0

xs−i−1 dx

)
εd−iψ(ε) dε

=
κi

s− i

∫ ∞

0

gs−iεi−sεd−iψ(ε) dε

= gs−i κi

s− i
ψ̃(d− s + 1).(7.24)

By a similar calculation,

ϕ̃d(s) = gs−d κd

s− d
ψ̃(d− s + 1).(7.25)

Note that for 0 ≤ i < d − 1, (7.24) is valid for Re s > i, and for i = d, (7.25) is
valid for Re s < i. Thus both are valid in the strip d− 1 < Re s < d, and hence by
analytic (meromorphic) continuation, they are valid everywhere in C. Indeed, by
Cor. A.4, ψ̃ is entire.
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We return to the evaluation of (7.13), applying Thm. 6.5 to find the action of ηs

on the test function ϕi, for i = 0 . . . , d. Substituting (7.24) and (7.25) into (7.17)
gives

〈ηs, ϕi〉 =
∑

ω∈Dη(W )

res
(

ζη(s)
gs−iκi

s− i
ψ̃(d− s + 1); ω

)
(7.26)

+ {aiζη(i)}i∈W\Dη
+ 〈Ri, ψ〉,

where Ri is defined by

〈Ri, ψ〉 := 1
2πi

∫

S

ζη(s)ϕ̃i(s) ds.(7.27)

Substituting (7.26) into (7.13), we obtain

〈V (ε), ψ〉 =
d∑

i=0

∑

ω∈Dη(W )

res
(

ζη(s)
gs−iκi

s− i
ψ̃(d− s + 1); ω

)

+
d∑

i=0

{aiζη(i)}i∈W\Dη
+

d∑

i=0

〈Ri(ε), ψ(ε)〉.(7.28)

Recall from (7.22) that the dth term is ad = 0, so the top term of the second sum
vanishes. Note that at each such i we have a residue

res
(

ζη(s)
gs−iκi

s− i
ψ̃(d− s + 1); i

)
= κi lim

s→i
ζη(s)gs−iψ̃(d− s + 1)

= κiζη(i)ψ̃(d− i + 1)

= aiζη(i).(7.29)

Since the terms of the second sum of (7.28) are only included for
i ∈ W \ Dη(W ), we can use (7.4) and (7.29) to put combine the two sums of
(7.28) without losing or duplicating terms:

〈V (ε), ψ〉 =
∑

ω∈DT (W )

res

(
ψ̃(d− s + 1)ζη(s)

d∑

i=0

gs−iκi

s− i
; ω

)
+ 〈R(ε), ψ(ε)〉 ,

where R(ε) :=
∑d

i=0Ri(ε). This may also be written as the distribution

V (ε) =
∑

ω∈Dη(W )

res

(
εd−sζη(s)

d∑

i=0

gs−iκi

s− i
;ω

)
+R(ε).(7.30)

This completes the proof of (8.4). All that remains is the verification of the
expression (7.6) for the error term, and error estimate (7.7). Due to their technical
and specialized nature, we leave the proofs of (7.6) and (7.7) to Appendix B. ¤

8. Extensions and Consequences: the Tube Formula for Self-Similar
Tilings

8.1. Generalizations and special cases. We extend Thm. 7.5 to deal with plu-
riphase generators. Recall from (5.14) that a pluriphase generator tube formula is



22 MICHEL L. LAPIDUS AND ERIN P. J. PEARSE

given by

γG(x, ε) =
d∑

i=0

M∑
m=1

κm
i (G)χ[εm−1,εm)(ε)x−iεd−i − κd(G)χ[εM ,∞)(ε)(8.1)

and the geometric zeta function of the corresponding fractal spray is

ζT (ε, s) :=εd−sζη(s)
d∑

i=0

M∑
m=1

(εs−i
m − εs−i

m−1)
s− i

κm
i .(8.2)

Theorem 8.1 (Pluriphase tube formula for fractal sprays). Let η be a fractal spray
on the pluriphase generator G, where γG is defined with respect to the partition
{0 = ε0, ε1, . . . , εM−1, εM = ∞}. Assume that ζη is languid on a screen S which
avoids the dimensions in DT (W ). Then just as in Thm. 7.5, the d-dimensional
volume of the inner tubular neighbourhood of the spray is given by

VT (ε) =
∑

ω∈DT (W )

res (ζT (ε, s); ω) +R(ε),(8.3)

where the error term R(ε) is as in Thm. 7.5.

Proof. The proof is essentially analogous to that of Thm. 7.5. ¤

Again, recall from §5.4 that this may easily be extended to multiple generators
simply be taking the corresponding finite sum.

The next corollary indicates that when ζη is strongly languid, one may take
W = C in the previous theorem and the error term will vanish identically.

Corollary 8.2 (Tube formula for strongly languid fractal sprays). Let the hypothe-
ses of Thm. 8.1 be satisfied, and additionally assume that ζη is strongly languid.
Then

VT (ε) =
∑

ω∈DT
res (ζT (ε, s); ω) .(8.4)

Proof. This is immediate upon combining Thm. 6.6 (the extended distributional
formula without error term) with the proof of Thm. 8.1. One finds that Ri ≡ 0
and thus R ≡ 0 in (7.30). ¤

Remark 8.3 (Reality principle). The nonreal complex dimensions appear in complex
conjugate pairs and produce terms with coefficients which are also complex conju-
gates, in the general tube formula for fractal sprays. This ensures that formulas
(8.4) and (8.5) are real-valued.

8.2. The self-similar case. Self-similar strings automatically satisfy the more
stringent hypothesis of being strongly languid, as in Def. 6.4. This automatically
entails that Cor. 8.2 holds,9 so the window may be taken to be all of C and the error
term vanishes identically, i.e., R(ε) ≡ 0. Hence Thm. 7.5 may be strengthened for
self-similar tilings as follows.

9This is essentially because Thm. 6.5 and Thm. 6.7 hold without error term. This is discussed
further in [30], Thm. 5.27, and the end of [30], Thm. 8.1. A general discussion of the strongly
languid case may be found in [30], Def. 5.3, and an argument showing that all self-similar strings
are strongly languid is given in §6.4 of [30].
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Theorem 8.4 (Tube formula for self-similar tilings).
Let T = {ΦwG}, be a self-similar tiling with pluriphase generator G and geometric
zeta function ζT . Then the d-dimensional volume of the inner tubular neighbourhood
of T is given by the following distributional explicit formula:

VT (ε) =
∑

ω∈DT
res (ζT (ε, s); ω) ,(8.5)

where DT = DT (C) = Ds(C) ∪ {0, 1, . . . , d− 1}.
Proof. Note that in this (self-similar) case, one has ζη(s) = ζs(s) and Dη(C) =
Ds(C), with η = ηs as in (4.4). The proof follows [30], §6.4. According to Thm. 4.3,
the scaling zeta function of a self-similar tiling has the form

ζs(s) =
1

1−∑J
j=1 rs

j

.

Let rJ be the smallest scaling ratio. Then from

|ζs(s)| ¿
(

1
rJ

)−|σ|
as σ = Re(s) → −∞,

we deduce that ζT is strongly languid and therefore apply Cor. 8.2. This argument
follows from the analogous ideas regarding self-similar strings, which may be found
in Ch. 8 of [30]. ¤
Remark 8.5. Thm. 8.4 provides a higher-dimensional counterpart of the tube for-
mula obtained for self-similar strings in §8.4 of [30]. It should be noted that Thm. 8.4
applies to a slightly smaller class of test functions than Thm. 7.5. Indeed, the sup-
port of the test functions must be bounded away from 0 by µd(C)g/rJ , where
C = [F ] is the hull of the attractor (as in §2), g is the smallest generating inradius
(as in (3.6)), and rJ is the smallest scaling ratio of Φ (as in (2.1)). This technicality
is discussed further in [30], Def. 5.3 and Thm. 5.27, §6.4, and Thm. 8.1.

Corollary 8.6 (Measurability and the lattice/nonlattice dichotomy). A self-similar
tiling is Minkowski measurable if and only if it is nonlattice.

Proof. We define a self-similar tiling T to be Minkowski measurable iff

0 < lim
ε→0+

VT (ε)ε−(d−D) < ∞,(8.6)

i.e., if the limit in (8.6) exists and takes a value in (0,∞). A tiling has infinitely
many complex dimensions with real part D iff it is lattice type, as mentioned in
§4.3. Furthermore, all the poles with real part D are simple in that case. A glance
at (8.8) then shows that VT (ε)ε−(d−D) is a sum containing infinitely many purely
oscillatory terms cωεinp, n ∈ Z, where p is some fixed period. Thus, the limit (8.6)
cannot exist; see also §8.4.2 of [30]. Conversely, the tiling is nonlattice iff D is the
only complex dimension with real part D. In this case, D is simple and no term
in the sum VT (ε)ε−(d−D) is purely oscillatory; thus the tiling T is measurable. See
also §8.4.4 of [30]. ¤
Remark 8.7. In §8.3–8.4 of [30], it is shown that a self-similar fractal string (i.e.,
a 1-dimensional self-similar tiling) is Minkowski measurable if and only if it is
nonlattice. Gatzouras showed in [8] that nonlattice self-similar subsets of Rd are
Minkowski measurable, thereby extending to higher dimensions a result in [19], [3]
and partially proving the geometric part of [19], Conj. 3, p. 163. The previous
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result gives a complete characterization of self-similar tilings in Rd as nonlattice if
and only if they are Minkowski measurable. With the exception of Rem. 9.2, each
of the examples discussed in §9 is lattice and hence not Minkowski measurable.
Our results, however, apply to nonlattice tilings as well. A more detailed proof
of Cor. 8.6 is possible via truncation, by using the screen and window technique
of [30], Thm. 5.31 and Thm. 8.36.

The following corollary of Thm. 8.4 will be used in §9.

Corollary 8.8. If, in addition to the hypotheses of Thm. 8.4, G is diphase and
ζT (s) has only simple poles, then

VT (ε) =
∑

ω∈Ds

d∑

i=0

res (ζs(s); ω) εd−ω gω−i

ω−i κi +
d−1∑

i=0

κiζs(i)εd−i.(8.7)

It is not an error that the first sum extends to d in (8.7), while the second
stops at d − 1; see (7.22). Note that in Cor. 8.8, Ds does not contain any integer
i = 0, 1, . . . , d − 1, because this would imply that ζT has a pole of multiplicity at
least 2 at such an integer. In general, at most one integer can possibly be a pole of
ζs; see §4.3.

Remark 8.9. For self-similar tilings satisfying the hypotheses of Cor. 8.8, it is clear
that the general form of the tube formula is

VT (ε) =
∑

ω∈DT
cωεd−ω,(8.8)

where for each fixed ω ∈ Ds,

cω := res (ζs(s); ω)
d∑

i=0

gω−i

ω − i
κi.(8.9)

Note that when ω = i ∈ {0, 1, . . . , d− 1}, one has cω = ci = ζs(i)κi.

Remark 8.10. The oscillatory nature of the geometry of T is apparent in (8.8). In
particular, the existence of the limit in (8.6) can be determined by examining (8.8)
and DT .

8.3. Recovering the tube formula for fractal strings.

Remark 8.11. In the literature regarding the 1-dimensional case [28,30,5], the terms
“gaps” and “multiple gaps” have been used where we have used “generators”.

In this section, we discuss the 1-dimensional tube formula of Thm. 6.7 which
is true for general (i.e., not necessarily self-similar) fractal strings and which can
be recovered from Thm. 7.5. Suppose L = {`n}∞n=1 is a languid fractal string
with associated measure η =

∑∞
n=1 δ1/`n

, as in (4.2), and geometric zeta function
ζη =

∑∞
n=1 `s

n, as in (4.1). Considering the string now as a tiling, write L as
L = {Ln}∞n=1 to emphasize the fact that we are thinking of it as a spray instead of as
a string. If we take the spray L to have as its single generator the interval G = (0, 2),
then L has inradii ρn = 1

2`n = rwg, scaling measure ηs =
∑

δ1/rw
=

∑∞
n=1 δ2g/`n

and geometric zeta function

ζs(s) =
∑

w∈W
rs
w =

∞∑
n=1

(
`n

2g

)s

= (2g)−sζη(s).
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The generator is clearly diphase with κ0 = 2 and κ1 = −2:

γG(x, ε) =

{
2ε, ε ≤ g/x,

2g/x, ε ≥ g/x.
(8.10)

One obtains the geometric zeta function of the (1-dimensional) tiling L as

ζL(ε, s) = ε1−sζs(s)
1∑

i=0

κi

s− i
= ε1−s(2g)−sζη(s)

(
2
s
− 2

s− 1

)
.(8.11)

Recall that we chose G so that g = 1. Then

ζL(ε, s) =
ζη(s)(2ε)1−s

s(1− s)

from Thm. 7.5 we exactly recover the tube formula VL(ε) = VL(ε) (and its error
term) as given by Thm. 6.7.

Remark 8.12. In addition to recovering a previously known formula, we also gain a
geometric interpretation of the terms appearing in the 1-dimensional tube formula
(6.17), in view of the previous computation. In particular, one sees that the linear
term {2εζη(0)} has a geometric interpretation in terms of the inner Steiner formula
for an interval, and can be dissected as

(8.12) 2εζη(0) = κ0(G)ε1−0ζη(0) = (−2)µi(G)εd−iζη(i),

where i = 0 and d = 1. Note that µ0(G) = −1 is the Euler characteristic of an
open interval. This should be discussed further in [22].

8.4. The Steiner Formula. In order to explain the connections between this
paper and results from convex geometry, we give a brief encapsulation of Steiner’s
classical result. Here, we denote the Minkowski sum of two sets in Rd by

A + B = {x ∈ Rd
..
. x = a + b for a ∈ A, b ∈ B}.

Theorem 8.13. If Bd is the d-dimensional unit ball and A ⊆ Rd is convex, then
the d-dimensional volume of A + εBd is given by

vold(A + εBd) =
d∑

i=0

µi(A) vold-i(Bd−i)εd−i,(8.13)

where µi is the renormalized i-dimensional intrinsic volume.

Up to some normalizing constant, the i-dimensional intrinsic volume is the same
thing as the ith total curvature or (d− i)th Quermassintegral. This valuation µi can
be defined via integral geometry as the average measure of orthogonal projections
to (d− i)-dimensional subspaces; see Chap. 7 of [16]. For now, we note that (up to
a constant), there is a correspondence

µ0 ∼ Euler characteristic, µd−1 ∼ surface area,
µ1 ∼ mean width, µd ∼ volume.

We have chosen the term “Steiner-like” for Def. 5.1 because the intrinsic volumes
satisfy the following properties

(i) each µi is homogeneous of degree i, so that for x > 0,

µi (xA) = µi(A)xi, and(8.14)
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(ii) each µi(A) is rigid motion invariant, so that

µi (T (A)) = µi(A),(8.15)

for any (affine) isometry T of Rd.
Caution: the description of κi(G) given in the conditions of Def. 5.1 is intended to
emphasize the resemblance between κi(G) and µi. However, κi(G) may be signed
(even when G is convex and i = d − 1, d) and is more complicated in general. In
contrast, the curvature measures Θi are always positive for convex sets.

Note that (8.13) gives the volume of the set of points which are within ε of A,
including the points of A. If we denote the exterior ε-neighbourhood 10 of A by

Aext
ε := {x ..

. d(x,A) ≤ ε, x /∈ A},
then it is immediately clear that omitting the dth term gives

vold(Aext
ε ) =

d−1∑

i=0

Ci(A)εd−i(8.16)

with Ci(A) = µi(A) vold-i(Bd−i). The intrinsic volumes µi can be localized and
understood as the curvature measures described in [4] and Ch. 4 of [37]. In this
case, for a Borel set β ⊆ Rd, one has

vold{x ∈ Aext
ε ..

. p(x,A) ∈ β} =
d−1∑

i=0

Ci(A, β)εd−i(8.17)

where p(x,A) is the metric projection of x to A, that is, the closest point of A
to x. In fact, the curvature measures are obtained axiomatically in [37] as the
coefficients of the tube formula, and it is this approach that we hope to emulate
in our current work. In other words, we believe that κi may also be understood
as a (total) curvature, in a suitable sense, and we expect that κi can be localized
as a curvature measure. A more rigorous formulation of these ideas is currently
underway in [23].

In [4], Federer unified the tube formulas of Steiner (for convex bodies, as de-
scribed in Ch. 4 of [37]) and of Weyl (for smooth submanifolds, as described in [9]
and [40]) and extended these results to sets of positive reach.11 It is worth noting
that Weyl’s tube formula for smooth submanifolds of Rd is expressed as a poly-
nomial in ε with coefficients defined in terms of curvatures (in the classical sense)
that are intrinsic to the submanifold [40]. See §6.6–6.9 of [1] and the book [9].
Federer’s tube formula has since been extended in various directions by a num-
ber of researchers in integral geometry and geometric measure theory, including
[36,37], [41,42], [6,7], [38], and most recently (and most generally) in [13]. The
books [9] and [37] contain extensive endnotes with further information and many
other references.

10The primary reason we have worked with the inner ε-neighbourhood instead of the exterior
is that it is more intrinsic to the set; it makes the computation independent of the embedding of
T into Rd. At least, this should be the case, provided the ‘curvature’ terms κi of Def. 5.2 are
also intrinsic. As a practical bonus, working with the inner ε-neighbourhood allows us to avoid
potential issues with the intersections of the ε-neighbourhoods of different components.

11A set A has positive reach iff there is some δ > 0 such that any point x within δ of A
has a unique metric projection to A, i.e., that there is a unique point A minimizing dist(x, A).
Equivalently, every point q on the boundary of A lies on a sphere of radius δ which intersects ∂A
only at q.
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To emphasize the present analogy, consider that Steiner’s formula (8.16) may be
rewritten

vold(Aext
ε ) =

∑

i∈{0,1,...,d−1}
ciε

d−i.(8.18)

and our result (8.5) may be rewritten

VT (ε) =
∑

ω∈Ds∪{0,1,...,d−1}
cωεd−ω.(8.19)

The obvious similarities between the tube formulas is striking. Our tube formula
is a fractal power series in ε, rather than just a polynomial in ε (as in Steiner’s
formula). Moreover, our series is summed not just over the ‘integral dimensions’
{0, 1, . . . , d − 1}, but also over the countable set Ds of complex dimensions. The
coefficients cω of the tube formula are expressed in terms of the ‘curvatures’ and
the inradii of the generators of the tiling.

Remark 8.14. The two formulas (8.18) and (8.19) initially appear to be measuring
very different things, but this is misleading. If one considers the example of the
Sierpinski tiling (discussed in §9.3) then it is immediately apparent that the exte-
rior ε-neighbourhood of the Sierpinski gasket is, in fact, equal to the union of the
inner ε-neighbourhood of the tiling and the exterior ε-neighbourhood of the largest
triangle. With C0 as in Figure 4,

vol2(SGext
ε ) = VSG(ε) + vol2(C0).(8.20)

However, things do not always work out so neatly, as the example of the Koch
tiling shows; see §9.2. In the forthcoming paper [34], precise conditions are given
for equality to hold as in (8.20). This allows one to compute explicit tube formulas
for a large family of self-similar sets.

Remark 8.15 (Comparison of VT with the Steiner formula). In the trivial situation
when the spray consists only of finitely many scaled copies of a diphase generator
(so the scaling measure η is supported on a finite set), the geometric zeta function
will have no poles in C. Therefore, the tube formula becomes a sum over only the
numbers 0, 1, . . . , d−1 (recall from (7.22) that ad = 0, so the dth summand vanishes),
for which the residues simplify greatly as in (7.29). In this case, ζη(i) = ρi

1+· · ·+ρi
N ,

so each residue from (7.29) becomes a finite sum

ζη(i)κi(ε) = ρi
1κiε

d−i + · · ·+ ρi
Nκiε

d−i

= κi(rw1G)εd−i + · · ·+ κi(rwN G)εd−i

where N is the number of scaled copies of the generator G, and rwn is the corre-
sponding scaling factor. Thus, for each n = 1, . . . , N , we obtain a diphase formula
for the scaled basic shape rwnG. The pluriphase case is analogous.

9. Tube Formula Examples

Although Remark 9.2 discusses how one may construct nonlattice examples, the
other examples chosen in this section are lattice self-similar tilings, in the sense
of §4.3. Also, all examples in this section have diphase generators in the sense of
Def. 5.2, as is verified in each case.
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Moreover, the scaling zeta function ζs of each example has only simple poles, with
a single line of complex dimensions distributed periodically on the line Re s = D.
Thus, the tube formula may be substantially simplified via Cor. 8.8.

9.1. The Cantor tiling. The Cantor tiling C (called the Cantor string in [30],
§1.1.2 and §2.3.1) is constructed via the self-similar system

Φ1(x) = x
3 , Φ2(x) = x+2

3 .

The associated self-similar set F is the classical ternary Cantor set, so d = 1 and
we have one scaling ratio r = 1

3 , and one generator G =
(

1
3 , 2

3

)
with generating

inradius g = 1
6 . The corresponding self-similar string has inradii ρk = grk with

multiplicity 2k, so the scaling zeta function is

ζs(s) =
1

1− 2 · 3−s
,(9.1)

and the scaling complex dimensions are

Ds = {D + inp ..
. n ∈ Z} for D = log3 2, p = 2π

log 3 .(9.2)

We note that ζs(0) = −1 and apply (8.11) from the previous section to recover
the following tube formula for C (as obtained in [30], §1.1.2):

VC(ε) =
1

2 log 3

∑

n∈Z

(2ε)1−D−inp

(D + inp)(1−D − inp)
− 2ε.(9.3)

Alternatively, this may be written as a series in
(

ε
g

)
as

VC(ε) =
1

3 log 3

∑

n∈Z

(
1

D + inp
− 1

D − 1 + inp

)(
ε

g

)1−D−inp

− 2ε,(9.4)

with g = 1
6 , D = log3 2, and p = 2π/ log 3. It is this form of the tube formula

which is closer in appearance to the following examples.

9.2. The Koch tiling. The standard Koch tiling K (see Fig. 3, along with Fig. 1
of §2) is constructed via the self-similar system

Φ1(z) := ξz and Φ2(z) := (1− ξ)(z − 1) + 1,(9.5)

with ξ = 1
2 + 1

2
√

3
i and z ∈ C. The attractor of {Φ1, Φ2} is the classical von Koch

curve. Thus K has one scaling ratio r = |ξ| = 1/
√

3, and one generator G: an
equilateral triangle of side length 1

3 and generating inradius g =
√

3
18 . This tiling

has inradii ρk = grk with multiplicity 2k, so the scaling zeta function is

ζs(s) =
1

1− 2 · 3−s/2
,(9.6)

and the scaling complex dimensions are

Ds = {D + inp ..
. n ∈ Z} for D = log3 4, p = 4π

log 3 .(9.7)

By inspection, a tile with inradius 1/x will have tube formula

γG(x, ε) =

{
33/2

(−ε2 + 2εx
)
, ε ≤ 1/x,

33/2x2, ε ≥ 1/x.
(9.8)
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Figure 3. The Koch tiling K.

For fixed x, (9.8) is clearly continuous at ε = 0+. Thus we have

ζs(s) =
1

1− 2 · 3−s/2
and

κ0 = −33/2, κ1 = 2 · 33/2, κ2 = −33/2.

Now applying (8.7), the tube formula for the Koch tiling K is

VK(ε) = 33/2g2
∑

ω∈Ds

res
(

1
1− 2 · 3−s/2

;ω
) (

− 1
ω + 2

ω−1 − 1
ω−2

)(
ε
g

)2−ω

+ g
2ζs(0) res

(− 1
s ; 0

) (
ε
g

)2−0

+ g
2ζs(1) res

(
2

s−1 ; 1
)(

ε
g

)2−1

=
g

log 3

∑

n∈Z

(
− 1

D+inp + 2
D−1+inp − 1

D−2+inp

)(
ε
g

)2−D−inp

+ 33/2ε2 + 1
1−2·3−1/2 ε,(9.9)

where D = log3 4, g =
√

3
18 and p = 4π

log 3 as before.

Remark 9.1. In [21], a tube formula was obtained for the ε-neighbourhood of the
Koch curve itself (rather than of the tiling associated with it) and the possible
complex dimensions of this curve were inferred to be

DK? = {D + inp ..
. n ∈ Z} ∪ {0 + inp ..

. n ∈ Z},
where D = log3 4 and p = 2π

log 3 . The line of poles above D was expected12, and
agrees precisely with the results of this paper. The meaning of the line of poles
above 0 is still unclear. A zeta function for the Koch curve was not defined prior
to the present paper; all previous reasoning was by analogy with (6.17).

Remark 9.2 (Nonlattice Koch tilings). By replacing ξ = 1
2 + 1

2
√

3
i in (9.5) with

any other complex number satisfying |ξ|2 + |1 − ξ|2 < 1, one obtains a family of
examples of nonlattice self-similar tilings. The tube formula computations parallel
the lattice case almost identically. The lattice Koch tilings correspond exactly to
those ξ ∈ B( 1

2 , 1
2 ) (the ball of radius 1

2 centered at 1
2 ∈ C) for which logr |ξ| and

logr |1− ξ| are both positive integers, for some fixed 0 < r < 1. Further discussion
(and illustrations) of nonlattice Koch tilings may be found in [32].
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C0 C1 C2 C3 C4 C5

Co T1 T2 T3 T4 T5

Figure 4. The Sierpinski gasket tiling.

9.3. The Sierpinski gasket tiling. The Sierpinski gasket tiling SG (see Fig. 4)
is constructed via the system

Φ1(z) := 1
2z, Φ2(z) := 1

2z + 1
2 , Φ3(z) := 1

2z + 1+i
√

3
4 ,

which has one common scaling ratio r = 1/2, and one generator G: an equilateral
triangle of side length 1

2 and inradius g = 1
4
√

3
. Thus SG has inradii ρk = grk with

multiplicity 3k, so the scaling zeta function is

ζs(s) =
1

1− 3 · 2−s
,(9.10)

and the scaling complex dimensions are

Ds = {D + inp ..
. n ∈ Z} for D = log2 3, p = 2π

log 2 .(9.11)

Aside from ζs(s), the tube formula calculation for SG is identical to that for the
previous example K:

VSG(ε) =
√

3
16 log 2

∑

n∈Z

(
− 1

D+inp + 2
D−1+inp − 1

D−2+inp

)(
ε
g

)2−D−inp

+ 33/2

2 ε2 − 3ε.(9.12)

Remark 9.3. Suppose that for a tiling T , the boundary of the hull intersects the
boundary of a generator in at most a finite set: |∂C ∩ ∂Gq| < ∞. In this case, the
tube formula for the tiling is almost the (exterior) tube formula for the attractor.
This is the case for the Sierpinski gasket, and also for the Sierpinksi carpet (in
which case the intersection is empty). In fact, the exterior ε-neighbourhood of the
Sierpinski gasket curve is obtained by adding the Steiner’s formula for C:

vol2((SG)ε) = VSG(ε) + 3ε + πε2.(9.13)

9.4. The Pentagasket tiling. The Pentagasket tiling P (see Fig. 5) is constructed
via the self-similar system defined by the five maps

Φj(x) = 3−√5
2 x + pj , j = 1, . . . , 5,

with common scaling ratio r = φ−2, where φ = (1 +
√

5)/2 is the golden ratio, and
the points pj

1−r = cj form the vertices of a regular pentagon of side length 1. The
Pentagasket P is an example of multiple generators Gq: G1 is a regular pentagon
and G2, . . . , G6 are congruent isosceles triangles, as seen in T1 of Fig. 5. To make

12This set of complex dimensions was predicted in [27], §10.3.
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C0 C1 C2 C3 C4

C
o

T1 T2 T3 T4

Figure 5. The Pentagasket tiling.

0 1φ−1φ−2φ−4φ−6

Figure 6. The pentagasket and the golden ratio φ.

the notation more meaningful, we use the subscripts p, t to indicate a pentagon or
triangle, respectively. The generating inradius for the pentagon is gp = φ2

2 tan 3
10π

and the generating inradius for the triangles is gt = φ3

2 tan π
5 . Thus, P has inradii

ρk = gqr
k, for q = p, t, with multiplicity 5k, so the scaling zeta function is

ζs(s) =
1

1− 5 · r−s
,(9.14)

and the scaling complex dimensions are

Ds = {D + inp ..
. n ∈ Z} for D = log1/r 5, p = 2π

log r−1 .(9.15)

We omit the exercise of finding volumes for the pentagonal and triangular genera-
tors; the tube formula for a tile of inradius 1/x is

γq(x, ε) =

{
κq0(ε)x0 + κq1(ε)x1 = αq

(−ε2 + 2εx
)
, ε ≤ 1/x,

κq2(ε)x2 = αqx
2, ε ≥ 1/x,

where αp := 5 cot 3
10π and αt := (cot π

5 )/
(
1− tan2 π

5

)
. Since G2, . . . , G6 are con-

gruent, we will apply Cor. 8.8 to a triangle Gt and multiply by 5 before adding to
it to the result of applying Cor. 8.8 to the pentagon Gp. For the pentagon and the
triangle, we have κ0 = −αq, κ1 = 2αq, and κ2 = −αq.

The geometric zeta function of P is

ζP(ε, s) =
6∑

q=1

αqg
s
q

1− 5 · r−s

(
− 1

s + 2
s−1 − 1

s−2

)
ε2−s,



32 MICHEL L. LAPIDUS AND ERIN P. J. PEARSE

and the tube formula for P is

VP(ε) =
αp

log r−1

∑

n∈Z
g2

p

(
− 1

D+inp + 2
D−1+inp − 1

D−2+inp

)(
ε
gp

)2−D−inp

+
5αt

log r−1

∑

n∈Z
g2

t

(
− 1

D+inp + 2
D−1+inp − 1

D−2+inp

) (
ε
gt

)2−D−inp

+
[(αp

4 + 5αt

4

)
ε2 + (2αpgq+10αpgqr)r

r−5 ε
]
,(9.16)

with r = φ−2, αp = 5 cot 3
10π, αt = (cot π

5 )/
(
1− tan2 π

5

)
, gp = φ2

2 tan 3
10π, gt =

φ3

2 tan π
5 , D = log1/r 5 and p = 2π

log r−1 .

Remark 9.4. Much as in the case of fractal strings where d = 1 (see [30], §8.4.2), it
follows from Thm. 8.4 that for a lattice self-similar tiling T , each line of simple com-
plex dimensions β + inp gives rise to a function which consists of a multiplicatively
periodic function times εd−β . Here, β is some real constant and p = 2π/ log r−1 is
the oscillatory period of T . Consequently, the tube formula for each lattice tiling
in this section has the form

VT (ε) = h
(
logr−1(ε−1)

)
εd−β + P (ε),(9.17)

where h is an additively periodic function of period 1 and P is a polynomial in
ε. For instance, the periodic function appearing in the tube formula (9.9) for the
Koch tiling K of Example 9.2 has the following Fourier expansion:

h(u) = g
log 3

∑

n∈Z
ginp

(
− 1

D+inp + 2
D−1+inp − 1

D−2+inp

)
e2πinu,(9.18)

where g =
√

3/18, D = log3 4, r = 1/
√

3, and p = 4π/ log 3. We note that
multiplicatively periodic terms appear frequently in the mathematics and physics
literature. See, for example, the relevant references given in §1.5, §2.7, §6.6, and
§12.5 of [30].

9.5. Some remarks on the results in this paper.

Remark 9.5. The monograph [30] proposes a new definition of a fractal as “an
object with nonreal complex dimensions that have a positive real part”. With
respect to this definition, the present work confirms the fractal nature of all the
examples discussed in §9, and more generally, of all self-similar tilings considered
in this paper.

Remark 9.6. Our results for tilings shed new light on the (1-dimensional) tube
formula for fractal strings (1.3). The origin of the previously mysterious linear
term {2εζL(0)} (see (6.17))) is now seen to come from a diphase formula for the
unit interval, akin to (5.2). This is discussed further in §8.3. In fact, all terms
coming from the third sum of the extended distributional formula of Thm. 6.5 are
now understood to be related to a pluriphase formula. This reveals a geometric
interpretation and allows the two sums to be naturally combined, as seen in (7.29)
and (8.12).
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Remark 9.7. Many classical fractal curves are attractors of more than one self-
similar system. For example, the Koch curve discussed in §9.2 is also the attractor
of a system of 4 mappings, each with scaling ratio r = 1

3 . In this particular example,
changes in the scaling zeta function produce a different set of complex dimensions.
In fact, we obtain a subset of the original complex dimensions: {log3 4 + inp ..

. n ∈
Z,p = 4π/ log 3}. This has a natural geometric interpretation which is to be
discussed in later work. In particular, it would be desirable to determine precisely
which characteristics remain invariant between different tilings which are so related.

Remark 9.8. The tube formula for a self-similar tiling may differ from the tube
formula for the corresponding self-similar set, as discussed at the end of Rem. 8.14.
Despite this, it gives us valuable information about self-similar geometries (and
their associated dynamical systems). Indeed, we can define the complex dimensions
of a given self-similar set in Rd to be those of the self-similar tiling canonically
associated to it (as in [32]). This is motivated by focusing on the dynamics of
the self-similar system, rather than looking directly at the set. For an example, see
§9.2, especially Rem. 9.1. Even so, the inner ε-neighbourhood of certain self-similar
tilings is exactly equal to the outer ε-neighbourhood of the attractor, less the outer
ε-neighbourhood of the convex hull of the attractor, as discussed in Rem. 8.14.
The Sierpinski gasket and carpet are both examples of this phenomenon. For
such fractals, our results immediately give additional information, e.g., Minkowski
nonmeasurability. Furthermore, we are able to obtain the exact ε-neighbourhood
for a large class of self-similar fractal sets; see Rem 9.3.

Appendix A. The Definition and Properties of ζT

In this appendix, we confirm some basic properties of the geometric zeta function
of a tiling ζT . However, we first require some facts about Mellin transformation.
If ψ ∈ D = C∞c (0,∞), it is elementary to check that for every s ∈ C, the Mellin
transform ψ̃(s) is given by the well-defined integral (6.15) and satisfies |ψ̃(s)| ≤
|ψ̃|(Re s) < ∞. We will need additional estimates in what follows. We also use the
forthcoming fact that ψ̃(s) is an entire function.

Lemma A.1. Suppose that S ⊆ C is horizontally bounded, so inf S := infS Re s
and supS := supS Re s are finite. Let K be a compact interval containing the
support of ψ ∈ C∞c (0,∞). Then there is a constant cK > 0 depending only on K
such that

sup
s∈S

|ψ̃(s)| ≤ cK‖ψ‖∞.(A.1)

In particular, ψ̃(s) is always uniformly bounded on any screen S as in Def. 6.2.

Proof. Let K be a compact interval containing the support of ψ. Since

|xs−1| = xRe s−1 ≤
{

xsup S−1, x ≥ 1,

xinf S−1, 0 < x < 1,
(A.2)

one can define a bound

bK := sup
x∈K

max{xsup S−1, xinf S−1}.
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Note that bK is finite because the function x 7→ max{xsup S−1, xinf S−1} is continu-
ous on the compact set K, and hence is bounded. Then we use (A.2) to bound ψ̃
as follows:

|ψ̃(s)| ≤
∫ ∞

0

|xs−1| · |ψ(x)| dx

=
∫

K

xRe s−1|ψ|(x) dx = |̃ψ|(Re s)(A.3)

≤ bK‖ψ‖∞ · vol1(K). ¤

Remark A.2. The exact counterpart of Lemma A.1 holds if ψ̃(s) is replaced by a
translate ψ̃(s − s0), for any s0 ∈ C. Therefore, under the same assumptions as in
Lemma A.1, we have

sup
s∈S

|ψ̃(s− s0)| ≤ cK,s0‖ψ‖∞,(A.4)

where cK,s0 := bK,s0 · vol1(K), and

bK,s0 := sup
x∈K

max{xsup S−Re s0−1, xinf S−Re s0−1} < ∞.(A.5)

In particular, for any compact interval K containing the support of ψ, and for each
fixed integer k ≥ 0,

sup
s∈S

∣∣∣ψ̃(s− d + k + 1)
∣∣∣ ≤ cK,k‖ψ‖∞,(A.6)

where cK,k is a finite and positive constant.

Lemma A.3. Let (X,µ) be a measure space. Define an integral transform by
F (s) =

∫
X

f(x, s) dµ(x) where

|f(x, s)| ≤ G(x), for µ-a.e. x ∈ X,

for some G ∈ L1(X, µ), and for all s in some neighbourhood of s0 ∈ C. If the
function s 7→ f(x, s) is holomorphic for µ-a.e. x ∈ X, then F (s) is well-defined
and holomorphic at s0.

The proof is a well-known application of Lebesgue’s Dominated Convergence
Theorem. We use Lemma A.3 to obtain the following corollary, which is used to
prove Thm. 7.5 and Thm. A.7.

Corollary A.4. For ψ ∈ C∞c (0,∞), ψ̃(s) is entire.

Proof. Fix s0 ∈ C. If s is in a compact neighbourhood of s0, then Re s is bounded,
say by α ∈ R. Then for almost every x > 0,

∣∣xs−1ψ(x)
∣∣ ≤ xα−1‖ψ‖∞χψ,(A.7)

where χψ is the characteristic function of the compact support of ψ. Upon appli-
cation of Lemma A.3, one deduces that ψ is holomorphic at s0. ¤

Caution: note that this does not combine with Lemma A.1 to imply that ψ̃ is
constant; indeed, Liouville’s Theorem does not apply because s is restricted to S
in these two propositions.
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Definition A.5. For T (ε, s) to be a weakly meromorphic distribution-valued func-
tion on W , there must exist (i) a discrete set PT ⊆ C, and (ii) for each ω ∈ PT ,
an integer nω < ∞, such that Ψ(s) = 〈T (ε, s), ψ(ε)〉 is a meromorphic function of
s ∈ W , and each pole ω of Ψ lies in PT and has multiplicity at most nω.

To say that the distribution-valued function T : W → D′ given by s 7→ T (ε, s) is
(strongly) meromorphic means that, as a D′-valued function, it is truly a meromor-
phic function, in the sense of the proof of Lemma A.6. Recall that we are working
with the space of distributions D′, defined as the dual of the space of test functions
D = C∞c (0,∞).

Lemma A.6. If T is a weakly meromorphic distribution-valued function, then it
is a (strongly) meromorphic distribution-valued function.

Proof. For ω /∈ PT , note that as s → ω,
T (ε, s)− T (ε, ω)

s− ω
(A.8)

converges to a distribution (call it T ′(ε, ω)) in D′, by the Uniform Boundedness
Principle for a topological vector space such as D; see [35], Thm. 2.5 and Thm. 2.8.
Hence, the D′-valued function T is holomorphic at ω.

For ω ∈ PT , apply the same argument to

lim
s→ω

1
(nω − 1)!

(
d

ds

)nω−1(
(s− ω)nωT (ε, s)

)
,(A.9)

which must therefore define a distribution, i.e., exist as an element of D′. Thus
T is truly a meromorphic function with values in D′, and with poles contained in
PT . ¤
Theorem A.7. Under the hypothesis of Thm. 7.5 or Thm. 8.4, the geometric zeta
function of a fractal spray or tiling

ζT (ε, s) = εd−sζη(s)
d∑

i=0

gs−i

s− i
κi(A.10)

is a distribution-valued (strongly) meromorphic function on W , with poles contained
in DT .

Proof. Let PT = DT and note that

〈ζT (ε, s), ψ(ε)〉 = ζη(s)
d∑

i=0

gs−i

s− i
κi

∫ ∞

0

εd−sψ(ε) dε

= ζη(s)ψ̃(d− s + 1)
d∑

i=0

gs−i

s− i
κi.(A.11)

By Cor. A.4, this is a finite sum of meromorphic functions and hence meromor-
phic on W , for any test function ψ. Applying Lemma A.6, one sees that ζT is a
meromorphic function with values in D′. ¤
Remark A.8. Note that for each ψ ∈ D, the poles of the C-valued function

s 7→ 〈ζT (ε, s), ψ(ε)〉(A.12)

are contained in DT . Further, if mω is the multiplicity of ω ∈ DT as a pole of ζη(s),
then the multiplicity of ω as a pole of (A.12) is bounded by mω + 1.
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Corollary A.9. The residue of ζT at a pole ω ∈ DT is a well-defined distribution.

Proof. This follows immediately from the second part of the proof of Lemma A.6,
with PT = DT . ¤

Corollary A.10. The sum of residues appearing in Thm. 7.5 and Thm. 8.4 is
distributionally convergent, and is thus a well-defined distribution.

Proof. In view of the proof of Thm. A.7, this comes by applying the Uniform
Boundedness Principle to an appropriate sequence of partial sums, in a manner
similar to the proof of Lemma A.6. Again, see [30], Rem. 5.21. ¤

Appendix B. The Error Term and Its Estimate

In this appendix, we give the promised proof of the expression for the error term
and its estimate, as stated in Thm. 7.5. First, we require a definition.

Definition B.1 (Primitives of distributions). Let Tη be a distribution defined by
a measure as 〈Tη, ψ〉 :=

∫∞
0

ψ dη. Then the kth primitive (or kth antiderivative)
of Tη is defined by 〈T [k]

η , ψ〉 := (−1)k〈Tη, ψ[k]〉, where ψ[k] is the kth primitive of
ψ ∈ C∞c (0,∞) that vanishes at ∞ together with all its derivatives. For k ≥ 1, for
example,

〈T [k]
η , ψ〉 =

∫ ∞

0

∫ ∞

y

(x− y)k−1

(k − 1)!
ψ(x) dx dη(y).(B.1)

Theorem B.2. The Mellin transform of the kth primitive of a test function is
given by ψ̃[k](s) = ψ̃(s + k)ξk(s), where ξk is the meromorphic function

ξk(s) :=
k−1∑

j=0

(
k−1

j

)
(−1)j

(k − 1)!(s + j)
.(B.2)

Proof. By direct computation,

ψ̃[k](s) =
∫ ∞

0

εs−1

∫ ∞

ε

(x− ε)k−1

(k − 1)!
ψ(x) dx dε

=
1

(k − 1)!

∫ ∞

0

∫ ∞

ε

k−1∑

j=0

(
k − 1

j

)
xk−1−j(−ε)jεs−1ψ(x) dx dε

=
k−1∑

j=0

(
k−1

j

)
(−1)j

(k − 1)!

∫ ∞

0

∫ ∞

ε

xk−1−jεs+j−1ψ(x) dx dε

=
k−1∑

j=0

(
k−1

j

)
(−1)j

(k − 1)!

∫ ∞

0

xk−1−jψ(x)
∫ x

0

εs+j−1 dε dx

=
k−1∑

j=0

(
k−1

j

)
(−1)j

(k − 1)!(s + j)

∫ ∞

0

xs+k−1ψ(x) dx(B.3)

= ψ̃(s + k)ξk(s).

Again, the formula (B.2) for ξk is valid for Re s > k by (B.3), but then extends to
being valid for s ∈ C by meromorphic continuation. ¤
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Corollary B.3. We also have
∣∣∣ψ̃[k](s)

∣∣∣ ≤
∣∣∣ψ̃(s + k)ξk(s)

∣∣∣.
Remark B.4. For s ∈ C, t = Im s, and cξ > 0, we also have

|ξk(s)| ≤ cξ

|t|k .(B.4)

We are now in a position to provide the proofs previously promised.

Theorem B.5. As stated in (7.6) of Thm. 7.5, the error term is given by

R(ε) =
1

2πi

∫

S

ζT (ε, s) ds,(B.5)

and is a well-defined distribution.

Proof. Applying (6.15) to (7.27) for i = 0, . . . , d gives13

〈R, ϕ〉i =
1

2πi

∫

S

gs−i

s− i
ζs(s)κi

∫ ∞

0

εd−sψ(ε) dε ds.(B.6)

To see that this gives a well-defined distribution R, we apply the descent method,
as described in [30], Rem. 5.20. The first step is to show that

〈R[k], ψ
〉

i
is a well-

defined distribution for sufficiently large k; specifically, for any integer k > $, where
$ is the order of languidity, as in Def. 6.3. Note that we can break the integral
along the screen S into two pieces and work with each separately:

〈
R[k], ψ

〉
i
=

(−1)k

2πi

∫

| Im s|>1

gs−i

s− i
ζs(s)κi

∫ ∞

0

εd−sψ[k](ε) dε ds(B.7)

+
(−1)k

2πi

∫

| Im s|≤1

gs−i

s− i
ζs(s)κi

∫ ∞

0

εd−sψ[k](ε) dε ds.(B.8)

Here and throughout the rest of this appendix, it is understood that such integrals
(as in (B.7)–(B.8)) are for s ∈ S. Since the screen avoids the integers 0, . . . , d by
assumption, the quantity |s−i| is bounded away from 0. Since the screen avoids the
poles of ζs by hypothesis, ζs(s) is continuous on the compact set {s ∈ S ..

. | Im s| ≤
1}. Therefore, it is clear that (B.8) is a well-defined integral. We focus now on
(B.7):

∣∣∣ κi

2πi

∫

| Im s|>1

gs−i

s− i
ζs(s)

∫ ∞

0

εd−sψ[k](ε) dε ds

∣∣∣∣∣

≤ κi

2π

∫

Im s>1

∣∣∣∣gs−i ζs(s)
s− i

∣∣∣∣ ·
∣∣∣ψ̃[k](s− d + 1)

∣∣∣ ds

≤ c1

∫ ∞

1

|t|M−1 ·
∣∣∣ψ̃(s− d + k + 1)

∣∣∣ · |ξk(s− d + 1)| dt

≤ c1

∫ ∞

1

ci|t|M−1 · cK‖ψ‖∞ · cξ

|t|k dt,

= C‖ψ‖∞
∫ ∞

1

|t|M−1−k dt,(B.9)

13In the proof of Thm. 7.5, the quantity (B.6) was denoted by 〈Ri, ψ〉, so that R could easily
be written (formally) as a function in (7.30). Since we work with test functions, this quantity is
instead denoted by 〈R, ψ〉i throughout this proof.



38 MICHEL L. LAPIDUS AND ERIN P. J. PEARSE

which is clearly convergent for k > M . The second inequality in (B.9) comes by
condition L2 of Def. 6.3. Also, recall (from the remark just after the statement
of Lemma A.1) that for s ∈ S, the real part of s is given by some function r
which is Lipschitz, and hence is almost everywhere differentiable and has bounded
derivatives on the support of ψ. The third comes by inequality (A.5) of Rem. A.2,
along with Rem. B.4. This establishes the validity of 〈R[k], ψ〉i and thus shows that
R[k] defines a linear functional on D.

To check that the action of R[k] is continuous on D, let ψn → 0 in D, so that
there is a compact set K which contains the support of every ψn, and ‖ψn‖∞ → 0.
Then ∣∣∣〈R[k], ψn〉

∣∣∣ ≤ C ·
∣∣∣ψ̃n(s− d + k + 1)

∣∣∣ ≤ cK‖ψn‖∞ n→∞−−−−−→ 0,(B.10)

by following (B.9) and then applying Lemma A.1, along with its extensions as
stated in Rem. A.2. Thus, R[k] is a well-defined distribution. If we differentiate
it distributionally k times, we obtain R. This shows that R is a well-defined
distribution and concludes the proof. ¤

Before finally checking the error estimate, we define what is meant by the ex-
pression T (x) = O(xα) as x →∞, when T is a distribution.

Definition B.6. When R(x) = O(xα) as x →∞ (as in (6.14)), we say as in [30],
§5.4.2, that R is of asymptotic order at most xα as x → ∞. To understand this
expression, first define

ψa(x) := 1
aψ

(
x
a

)
,(B.11)

for a > 0 and for any test function ψ. Then “R(x) = O(xα) as x → ∞” means
that

〈R, ψa〉 = O(aα), as a →∞,

for every test function ψ. The implied constant may depend on ψ. Similarly,
“R(x) = O(xα) as x → 0+” (as in (6.19) and (7.7)) is defined to mean that

〈R, ψa〉 = O(aα), as a → 0+,

for every test function ψ.

Theorem B.7 (Error estimate). As stated in Thm. 7.5, the error term R(ε) in
(B.5) is estimated by

R(ε) = O(εd−sup S), as ε → 0+.(B.12)

Proof. As in the proof of Thm. B.5, we use the descent method and begin by
splitting the integral into two pieces. Since 〈R[k], ψa〉 = (−1)k〈R, (ψa)[k]〉, we work
with

〈
R, (ψa)[k]

〉
qi

=
κi

2πi

∫

| Im s|>1

gs−i

s− i
ζs(s)

∫ ∞

0

εd−s(ψa)[k](ε) dε ds(B.13)

+
κi

2πi

∫

| Im s|≤1

gs−i

s− i
ζs(s)

∫ ∞

0

εd−s(ψa)[k](ε) dε ds.(B.14)

The kth primitive of ψa is given by

(ψa)[k](ε) =
∫ ∞

ε

(u− ε)k−1

(k − 1)!
1
aψ

(
u
a

)
du =

∫ ∞

ε/a

(au− ε)k−1

(k − 1)!
ψ(u) du.(B.15)



TUBE FORMULAS AND COMPLEX DIMENSIONS OF SELF-SIMILAR TILINGS 39

By following the same calculations as in Thm. B.2, one observes that
∣∣∣∣∣
∫ ∞

0

εd−s

s− i

∫ ∞

ε/a

(au− ε)k−1

(k − 1)!
ψ(u) du dε

∣∣∣∣∣

=

∣∣∣∣∣∣

∫ ∞

0

∫ au

0 s− i

k−1∑

j=0

(
k−1

j

)
(−1)j

(k − 1)!
(au)k−1−jεd−s+jψ(u) dε du

∣∣∣∣∣∣

≤ 1
|s− i|

k−1∑

j=0

(
k−1

j

)
(−1)j

(k − 1)!

∫ ∞

0

∣∣(au)k−1−jψ(u)
∣∣
∫ au

0

∣∣εd−s+j dε
∣∣ du

≤ ci

|s− i|ξk(d− Re s + 1)
∫ ∞

0

(au)k−1−j(au)d−Re s+j+1|ψ(u)| du

= ad−Re s+k ci

|s− i|ξk(d− Re s + 1)|̃ψ|(d− Re s + k).(B.16)

Using (B.4) for ξk and (A.3) for |̃ψ| (see Rem. A.2), we bound (B.13) by

ci

2π

∫

| Im s|>1

ad−Re s+k · |g
s−iζs(s)|
|s− i| · cψ

|t|k · cK‖ψ‖∞ ds(B.17)

≤ ad−sup S+k

(
C

∫ ∞

1

|t|M−1−k dt

)
,(B.18)

for any 0 < a < 1, as in (B.9). Since the integral in (B.18) clearly converges for
k > M , we have established the estimate for R[k], along the part of the integral
where | Im s| > 1. Recall that all our contour integrals are taken along the screen
S. The proof for (B.13), where | Im s| > 1, readily follows from the corresponding
argument in the proof of Thm. B.5. Thus we have established that

∣∣∣〈R[k](ε), ψa(ε)〉
∣∣∣ ≤ ad−sup S+kck, for all 0 < a < 1.(B.19)

In (B.19)–(B.21), the constants ck may depend on the test function ψ.14

By iterating the following calculation:
∣∣∣〈R[k−1](ε), ψa(ε)〉

∣∣∣ =
∣∣∣
〈
R[k](ε),

(
1
aψ

(
ε
a

))′〉∣∣∣

=
∣∣∣ 1
a 〈R[k](ε), (ψ′)a(ε)〉

∣∣∣
≤ ad−sup S+k−1ck−1,(B.20)

one sees that

|〈R(ε), ψa(ε)〉| ≤ ad−sup Sc0, for all 0 < a < 1.(B.21)

By Def. B.6, this implies that R(ε) = O(εd−sup S) as ε → 0+. ¤

14Note that ck−1 does not correspond to ck when k is replaced by k− 1; rather, ck−1 depends
on the support of ψ′. The notation is just used to indicate the analogous roles the constants ck

play.
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