TUBE FORMULAS FOR SELF-SIMILAR FRACTALS

MICHEL L. LAPIDUS AND ERIN P. J. PEARSE

ABSTRACT. Tube formulas (by which we mean an explicit formula for the vol-
ume of an (inner) e-neighbourhood of a subset of a suitable metric space)
have been used in many situations to study properties of the subset. For
smooth submanifolds of Euclidean space, this includes Weyl’s celebrated re-
sults on spectral asymptotics, and the subsequent relation between curvature
and spectrum. Additionally, a tube formula contains information about the
dimension and measurability of rough sets. In convex geometry, the tube for-
mula of a convex subset of Euclidean space allows for the definition of certain
curvature measures. These measures describe the curvature of sets which may
be too irregular to support derivatives. In this survey paper, we describe some
recent advances in the development of tube formulas for self-similar fractals,
and their applications and connections to the other topics mentioned here.

1. INTRODUCTION

This survey article describes advances on the computation of tube formulas for
fractal subsets of R and of R?, and relations to classical results. In particular, we
show how the theory of complex dimensions can be used to calculate explicit tube
formulas for a large class of self-similar fractals. We also discuss generalizations
and connections to forthcoming work.

We begin by discussing results for fractal strings, that is, fractal subsets of R.
Also, we give the generalization to tube formulas of measures, and show how these
results may be applied to the investigation of dimension and measurability of rough
sets. In particular, we use the central notion of “complex dimensions”, a concept
which extends the real-valued notion of Minkowski dimension (and Hausdorff di-
mension, in some cases). §2 introduces these notions and describes the basic theory
of fractal strings as developed more fully in [La-vF2]. §3 describes the explicit
computation of a tube formula for the Koch snowflake domain, a subset of R2
with fractal boundary consisting of three copies of the classical self-similar Koch
snowflake curve. This computation is mainly a “brute-force” calculation using ele-
mentary geometry coupled with some subtle exploitation of distributional methods.
§4 contains the construction of a self-similar tiling via an iterated function system,
and shows how the tiling enables one to extend the results for fractal strings to
self-similar subsets of R?. §5 gives a brief description of some classical results from
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convex geometry and shows how these relate to the results for self-similar tilings.
Finally, we conclude with several contrasting examples that illustrate the key ideas
discussed.

1.1. Acknowledgements. We are grateful to the Indiana University Mathematics
Journal and the Journal of the London Math Society for allowing us to include
material here that was first published in [Pe2] and [LaPel], respectively.

1.2. Basic concepts. We now present some of the ideas that are used throughout,
and introduce basic notation.

Definition 1.1. Given € > 0, the inner e-neighbourhood of a set A C R?, d > 1, is
Ac :={x € A: dist(x,0A) < e}, (1.1)

where A is the boundary of A.! For a given A, we are primarily interested in
finding a tube formula for A, that is, an explicit expression for the d-dimensional
Lebesgue measure of A., denoted

VA(E) = VOld(AE).
Definition 1.2. A self-similar system is a family {®;}7_, (with J > 2) of contrac-
tion similitudes
(I’](J?) =vTix+a;, j=1,...,J

Forj=1,...,J,wehave 0 <t; <1,a; € R4, and T; € O(d), the orthogonal group
of rigid motions in d-dimensional Euclidean space R?. The number t; is the scaling
ratio of ®;. For convenience, assume these ratios are indexed so that

1>ty >t >--->1t;>0. (1.2)
When d =1, one has only T; = £1.

It is well known that there is a unique nonempty compact subset F' C R? satis-
fying the fixed-point equation

J
F=a(F):= ] o;(F). (1.3)

This (self-similar) set F' is called the attractor of ®. Given a word w = wy ... wy €
W :={1,2,...,J}* we denote the composition of several similarity mappings by
Dy =Dy, 0...0Py,0D,,.

2. FRACTAL STRINGS

The essential strategy of fractal strings is to study fractal subsets of R by studying
their complements.

Definition 2.1. A fractal string is any bounded open subset L C R, that is, a
countable sequence of open intervals

L:={L,}>,. (2.1)

IThis is a slightly different usage of the notation A., which is often used in the literature to
indicate the exterior e-neighbourhood; see (5.4) and Remark 5.2.
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Although it is not part of the definition, the idea is that the boundary JL is a
set one wants to study. When analyzing L in terms of characteristics which are
invariant with respect to rigid motions, the position of an interval L, within R is
immaterial, and all pertinent data is stored in the sequence of lengths ¢, of L.
For convenience, we therefore always assume that the intervals have monotonically
decreasing length, i.e., they are ordered such that

>0y > >0 (2.2)

Indeed, this is the formulation in which the concept is used in [La-vF2], the primary
reference for fractal strings.? For agreement with the higher-dimensional theory
discussed in §4, however, we use the inradius.

Definition 2.2. The inradius p of a set A C R? is
p = p(A) :=sup{e > 0: Iz with B(z,e) C A}, (2.3)
where B(z,¢) is the ball of radius € centered at € R

It is clear that if A is a bounded set, A C A, for sufficiently large . Alternatively,
it is apparent that for a fixed € > 0, any sufficiently small set will be entirely
contained within its e-neighbourhood. The notion of inradius allows us to see
when this phenomenon occurs; its relevance should be clear from Definition 1.1.

In accordance with (2.2), we have a monotonically decreasing sequence of inradii,
so divide by the first (largest) inradius to obtain a sequence of scales

L= {’rn}zo:17 ry>re>--->0, and /¢, = 297y, (24)

where g = p(L1) is the inradius of the largest interval. Use of the term “scale” here
corresponds to the implicit idea that each interval L, € L is congruent to a copy
of the largest interval which has been scaled by r,. For a self-similar string, this
mapping is explicitly given by ®,,; see (2.5). It is a consequence of the normalization
described above that one always has r; = 1. Strict positivity of the r,, avoids certain
technical trivialities, and > -, 7, < oo follows from the boundedness of L.

To define a self-similar string, consider the self-similar system with similarity
mappings ®;(x) = t;Tjz + a;. The set of scaling ratios of a self-similar string will
consists of the collection of all products of scaling ratios of the maps. In particular,
if w is a finite word of length k on {1,2,...,J}, then the string will include

Ta = Ty Cug - - - Cap s (2.5)

the scaling ratio of ®,, = ®,, o...0®,, 0®,,. Thus, a self-similar string contains
every number that arises as the scaling ratio of a composition of the similarity
transformations ®;. (The first scale r; = 1, corresponds to a composition of 0
similarities.) The motivation for this definition is that it corresponds to the set
obtained by taking the set-theoretic difference of a self-similar subset of R from the
smallest closed interval containing it. Alternatively, the set may be constructed
by selecting any bounded open interval I C R and examining the lengths of the
intervals {®,,(I)}, where w runs over all finite words. An example of a self-similar
string is given by the Cantor string in Example 2.8 just below.

A generalized fractal string is a locally finite Borel measure on (0, 00), without
mass near 0, and is denoted 7 = 7. Such a string may not have a geometric

2This notion was introduced in [LaPol] (building on an example of [Lal]) and studied exten-
sively in [La-vF1] and [La-vF2], as well as [HeLa], [La2], [LaMa], and elsewhere.
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realization. The motivation for this generalization lies in the flexibility of working
in the measure-theoretic framework, and in certain specific applications. In this
context, an ordinary fractal string as given in the previous definitions (self-similar
or not) corresponds to a sum of Dirac masses d,, each located at a reciprocal of
one of the numbers r,,. That is, an ordinary fractal string may be written

N = Z 01 /rn- (2.6)
n=1

Definition 2.3. The scaling zeta function (s of a fractal string is the Mellin trans-
form of the measure 7.:

Cs(s) := /000 x~ % dne(x), seC. (2.7)

In [La-vF2], this is called the geometric zeta function of £. We have chosen the
current terminology to agree with the latter sections of this paper and instead say
that the geometric zeta function of (, is given by

(2€)1_S

Cele,8) = Cs(s)m. (2.8)

The function (. factors into (; and a term which contains geometric data about
open intervals, although this will not become clear until the discussion of the higher-
dimensional tilings in §4. In the case when L is self-similar, the function (. (g, ") :
2 — C may be meromorphically continued to all of C. Otherwise, it is well defined
in some half-plane {Res > a} and may be continued analytically. To demarcate

the domain of {, formally, we introduce the following definition.

Definition 2.4. Let f : R — R be a bounded Lipschitz continuous function. Then
the screen is S = {f(t) + it : t € R}, the graph of f with the axes interchanged.
Here and henceforth, i = v/—1. The region to the right of the screen is the window
W:={z€C: Rez > f(Imz)}. We choose f so that S does not pass through any
poles of {,, and (, has a meromorphic extension to some neighbourhood of W.

Definition 2.5. The (complex) scaling dimensions of L are poles of (. The poles
which lie in the window are called the wvisible scaling dimensions:

De(W) ={w e W lim [Cz(s)| = oo} (2.9)

The screen and window are useful for many purposes. In addition to demarcating
the domain of (., they allow one to make precise statements about the growth of
(r, and they allow for certain approximation arguments that make the proof of the
next theorem possible. In particular, one has the following definition.

Definition 2.6. One says that (. (or just £) is languid if it satisfies certain mild
growth conditions on S, and along a sequence of horizontal lines in W. For the
precise statement of these conditions, see [La-vF2, Def. 5.2].

Theorem 2.7 (Tube formula for fractal strings [La-vF2, Thm. 8.1]). Let nz be a
fractal string with geometric zeta function (r and assume that (o is languid. Then
we have a tube formula

Ve(e) = Z res (Ceo(g, 8); s =w) +{2e:(0)} + R(e). (2.10)

wED, (W)
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Here the term in braces is only included if 0 € W\ D, (W), and the error term is
1
R(e) = 7/ Cole,s)ds = O(X—="ReS) 4o 0t (2.11)
L Js

When the string is also self-similar, one may take W = C and R(e) = 0.

If we denote the poles of the scaling zeta function separately by Ds, then the
result above may be rewritten

Ve(e) = Z res ((z(g,8); s = w) + R(e). (2.12)

w€eD, (W)U{0}

Formula (2.10) was originally obtained as a distribution acting on smooth functions
with compact support in (0, c0). However, it has since been obtained in a pointwise
fashion in [La~-vF2, Thm. 8.7] under only slightly more restrictive conditions (which
are always satisfied in the case of self-similar strings), so this technicality need not
be emphasized.

Example 2.8. The complement of the usual Cantor set in the unit interval [0, 1]

consists of open intervals with lengths {3, 1,1, -L ..}  This self-similar fractal

string has a largest interval of length % and scaling ratios 37% appearing with
multiplicity 2*. Since g = % is the inradius of the largest interval, the Cantor string
CS may be written

nes =, 253, (2.13)
k=0
and its scaling zeta function is

Gs(s) = /OOO r % dnes(x) = i (;)k = ﬁ, (2.14)

while its tube formula is

. ) 1 c 1-D—inp
. _ _ < ) 2.15
cl(e) 310g37%(D+ﬁnp D—1+I'mp) (g) - 219

where D = logs 2 is the Minkowski dimension, and p = 27/log3 is a constant
called the oscillatory period.

Definition 2.9. The Minkowski dimension of A C R? is
D =dimy A :=inf{t >0: Va(e) = O(e?™), ase — 0"}, (2.16)

and is also frequently called the box dimension; see [Lal] for details. For a string,
we define dimpy; £ := dimu; L.

The complex dimensions can be thought of as a generalization of Minkowski
dimension because of the following result of [La2], which also appears as [La-vF2,
Thm. 1.10].

Theorem 2.10. For a string L, the scaling zeta function (s converges on the half-
plane {s € C: Res > o} if and only if o > dim L.
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FIGURE 1. The Koch curve K and Koch snowflake domain Q. This figure
was originally published in [LaPel] and appears with permission of JLMS.

Remark 2.11. In formula (2.14), one discovers the pleasant surprise that (s has a
nice closed form. In fact, it is shown in [La-vF2, Thm. 2.4] that all self-similar
strings have a scaling zeta function of the form

1
G(s) = —=7—
1-— ijl t;
or a (finite) ‘linear combination’ of such terms. This remark remains true for the
self-similar tilings of §4. The number-theoretic and measure-theoretic implications
of this result are extensive; they are studied at length in [La-vF2, Ch. 2-3].

: (2.17)

3. THE KOCH CURVE

The Koch curve K is the attractor of the self-similar system
Dy(2):=pz and Po(z):=(1—p)(z—1)+1, (3.1)

where p = % + ﬁﬁ. Consequently, K is a self-similar fractal with Minkowski
dimension D := logs 4; see Figure 1. In this section, we describe how to calculate
the tube formula for the Koch snowflake directly.

In [LaPel], the authors compute a tube formula for the Koch snowflake domain
Q by considering a certain sequence of curves K,, — K, where convergence is
with respect to Hausdorff metric. Some representative terms of this sequence are
illustrated in Figure 2. The tube formula is obtained as a limit of tube formulas
for Vi, obtained by approximation for each K,, as illustrated for K» in Figure 3.
Three copies of this figure are fitted together to form the inner neighbourhood of
the snowflake, as is indicated by the dashed lines at either end. This region is only
an approximation of course, as one side of each rectangle should be replaced with
a fractal curve. Figure 4 shows how this error is incurred and how it inherits a
Cantoresque structure from the triadic character of the Koch curve. Let us refer to
the dark region in Figure 4 as an error block and each connected component as a
trianglet; denote a trianglet by Ax. Without taking the error blocks into account,
the e-neighbourhood of the Koch curve has approximate area

Vi(e) = 2 Pamted (30000) o 330) L (2 - v3)) - £ (3 4+2v3). (32)

Here, o := —log;(v/3), and we use = = [z] + {2} to denote the decomposition of
x into its integer and fractional parts. That is, [z] is an integer and 0 < {z} < 1.
Furthermore, z is related to n (the index of K,) by n = n(e) = [logs %] = [z].
Thus, the level n of the approximation is determined by &, with n — oo as € — 0.
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/N K2 ﬁm Ko
m K4 J\ﬁn.g\}'\l“énﬁ_/x KS
FIGURE 2. Four early stages in the geometric construction of K. This figure
was originally published in [LaPel] and appears with permission of JLMS.

triangles

overlappin . from overla;
recta%%le% fringe ( P)

N wedges 3

error rectangles

FIGURE 3. An approximation to the inner e-neighbourhood of the Koch
curve, based on the curve Ko from Figure 2. This figure was originally pub-
lished in [LaPel] and appears with permission of JLMS.

Ay Ay A 4, Ay Ay A

FIGURE 4. An error block for K,. The central third of the block contains
one large isosceles triangle, two wedges, and the trianglet A;. Figure 5 contains
4 complete copies of this figure, and 12 partial copies of it. This figure was
originally published in [LaPel] and appears with permission of JLMS.

The tube formula for 2 will be obtained by summing the areas Ay of the trian-
glets, and multiplying by the number of error blocks occurring for a given approx-
imation, i.e., for a particular value of €. Unfortunately, this number is not easy
to express, due to the existence of partial error blocks. See Figure 5 for a visual
explanation of what is meant by partial error blocks and complete error blocks. The
number of complete error blocks can be readily counted with a simple formula,
but the portion of a partial error block that exists for a given value of ¢ is rather
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FIGURE 5. Error block formation. The ends are counted as partial (note
the dotted line) because three copies of this illustration will be added together
to make the entire snowflake. This figure was originally published in [LaPel]
and appears with permission of JLMS.

1 I
\ i[(g)

h(e)

1 1

1 I
93 33 V3 93 33 V3

FIGURE 6. A comparison between the graph of the Cantor-like function h
and the graph of a piecewise smooth approximation k() = p-(—[z] —x), where
p is a constant and z = —log3(5\/§). This figure was originally published
in [LaPel] and appears with permission of JLMS.

ornery, and so we denote this quantity by h(e). We do not know h(e) explicitly,
but we do know by the self-similarity of K that it has multiplicative period 3; i.e.,
h(e) = h(5). Once the error has been taken into account, one obtains the following
theorem.

Theorem 3.1. [LaPel, Thm. 5.1] The area of the inner e-neighbourhood of the
Koch snowflake is given by the following tube formula:

V(€) — Z SDn€2_D_inp + Z 1pni_:2—inp7 (33)
ne”Z neEZ
for suitable constants p,,, ¥, which depend only on n and are expressed in terms of
the Fourier coefficients g of h(e).

To see the full form of (3.3), please see Remark 6.4 at the end of this paper. The
result (3.3) was obtained at a time when the theory of complex dimensions was
entirely restricted to fractal strings as outlined in §2 (except for the conjectures
expressed in [La-vF2, Ch. 12]). Part of the motivation for proving Theorem 3.1
was to get an idea of what the complex dimensions of 2 might look like. Reasoning
by analogy, one would deduce from (3.3) that the complex dimensions of {2 are
obtained from the exponents appearing in (3.3); in particular, that each exponent



TUBE FORMULAS FOR SELF-SIMILAR FRACTALS 9

is of the form 2 —w, where w is a complex dimension of €. This led to the prediction
that the complex dimensions of the Koch snowflake domain are

Dog={D+inp:ne€Z}U{inp:necZ}. (3.4)

The reader will find in Example 6.2 and Remark 6.4 that this is not far wrong.

It is a theorem of [LIWi] that for a self-similar set, the e-neighbourhood must
be either: (i) a finite union of convex sets for every value of €, or (ii) not a finite
union of convex sets for any value of e. We conjecture that for every self-similar
set of the latter type, the tube formula involves a multiplicatively periodic function
analogous to our h(e).

4. FRACTAL SPRAYS AND SELF-SIMILAR TILINGS

A fractal spray is the higher-dimensional counterpart of a fractal string. See [La-
vF2, §1.4] for a discussion; this idea also appears earlier in [LaPo2], [La2], and [La3].

Definition 4.1. Let G C R? be a nonempty bounded open set, which we will
call the generator, and let £L = {r,} be a fractal string. Then a fractal spray
is a bounded open subset of R? which is the disjoint union of open sets R,, for
n=1,2,..., where each R,, is congruent to r,G, the homothetic of G by r,,.

Thus, any fractal string can be thought of as a fractal spray on the basic shape
G = (0,1), the unit interval. Every self-similar system (as in Definition 1.2) is
naturally associated to a certain fractal spray called the self-similar tiling.

Definition 4.2. The self-similar tiling T corresponding to a self-similar system ®
is a fractal spray where the fractal string and generators are defined as follows. The
string is the collection of all finite products of the scaling ratios {v1,...,ts} of the
self-similar system ®. Let C' = [F] be the convex hull of F, and denote its interior
by int C. Recall from (1.3) that F' is the self-similar set which is the attractor of
®. Then the generators are the connected open sets G in the disjoint union

int C'\ ®(C) = Gy U--- U Go. (4.1)

When there is more than one generator, it is more accurate to think of the
tiling as a union of fractal sprays, one for each generator. Indeed, for purposes
of computing the tube formula, it is easiest to deal with each part separately and
then obtain the final result by adding the contributions from each generator. For
this reason, the tube formulas below are all stated for a spray or tiling with one
generator. In fact, we cannot currently exclude the possibility that there may exist
examples for which Q = oco. However, we have been unable to construct such an
example, and for the time being we assume @ < oc.

The term “self-similar tiling” is used here in a sense quite different from the one
often encountered in the literature. In particular, the tiles themselves are neither
self-similar nor are they all of the same size; in fact, the tiles are typically simple
polyhedra. Moreover, the region being tiled is the complement of the self-similar
set F within its convex hull, rather than all of R?; see Figure 7. In fact, it is shown
in [Pe2] that when ® satisfies the tileset condition, the collection {®,,(Gy)}w,q forms
an open tiling of C'\ F. We now define these terms.
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FIGURE 7. The Koch tiling K. The generator is the largest equilateral
triangle, and the system is {P1(2) =€z,P2(2) = (1—-¢&)(z—1)+ 1, for z € C,
where £ = % +5 fﬂ This figure was originally published in [Pe2] and appears
with permission of TUMJ.

Definition 4.3. An open tiling of A € R is a collection of nonempty connected
open sets {A4,,}52; such that

(i) A = U:"Zl A, and (i) Ap N Ay, = @ for n # m. (4.2)

Figure 7 shows a tiling by open sets which are equilateral triangles in the case when
F' is the Koch curve.

Definition 4.4. The system ® satisfies the tileset condition iff C ¢ ®(C) and
int ®;(C) Nint &,(C) = @, Jj# L (4.3)

The tileset condition is a separation condition which is similar to the “open set
condition”, but stronger. The open set condition is satisfied when there exists a
“feasible open set” U which has the property that for all j # ¢, ®;(U), ®,(U) C U,
and ®;(U) N ®,(U) = @. To see that the tileset condition implies this, let U
be the the interior of C' = [F]|. For a counterexample to the converse, see [Pe2,
Example 3.8].

For self-similar tilings, and more generally for fractal sprays, the scaling zeta
function is defined just as it was for fractal strings. However, the geometric zeta
function becomes much more complicated, due to the multifarious possibilities for
the geometry of the generator. The resulting technicalities can be ignored in many
cases, however, for example when the generator is sufficiently simple. This mo-
tivates the condition “Steiner-like” in the definition just below. A bounded open
set in R? is said to be Steiner-like if its inner parallel volume Vg(g) admits a
“polynomial-like” expansion in e of degree at most d. More precisely, we have the
following definition (see §5 for an explanation of this choice of terminology).

Definition 4.5. A bounded open set G C R? is Steiner-like iff for 0 < & < p(G)
its inner tube formula may be written

d
=> k(G : (4.4)

k

=0
where each coefficient function x;(G,-) is assumed to be a bounded and locally
integrable function of & for which

lim ki (G,¢) (4.5)

e—0*t
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exists, and is both positive and finite.

Definition 4.6. In the special case when G is a Steiner-like set whose terms ky
are constant, we say the set is diphase. This terminology refers to the fact that its
tube formula is written piecewise with only two cases: € < p(G) and € > p(G). If G
is Steiner-like and the functions kj are piecewise constant on the interval [0, p(G)],
then we say G is pluriphase. Thus, diphase is a special case of pluriphase.

Conjecture 1. The class of pluriphase sets includes convex sets and polyhedra.

This result may exist in the literature, but we have been unable to find it. It is
simple to show that the class of diphase sets includes balls and regular polyhedra.
In particular, the examples of §6 are both diphase. There are examples of other
types of diphase sets, but they resist easy description. It is easy to find convex sets
which are pluriphase but not diphase; see [LaPe2, Ex. 5.7] for an example. Current
research is attempting to characterize diphase and pluriphase sets in terms of other
geometric properties.

In the case when G is pluriphase, the geometric zeta function is relatively simple
to write down. To avoid obscuring the exposition, we give only the diphase case
here (although in view of Definition 4.8 it is worth noting that the factors — also
appear in the formula for the pluriphase case).

Definition 4.7. The geometric zeta function of a fractal spray with a diphase
generator is

s—k

d
Cr(e, s) i=e475¢,(s) Z g_ - Fike (4.6)
k=0

S

Definition 4.8. The set of visible complex dimensions of a fractal spray is
Dy (W) :=D,(W)U{0,1,...,d—1}. (4.7)

Thus, D7 (W) consists of the visible scaling dimensions and the “integer dimen-
sions” of G, and contains all the poles of (7 (viewed as a function of s).

Theorem 4.9 (Tube formula for fractal sprays). Let n be a fractal spray on the
Steiner-like generator G, with generating inradius g = p(G) > 0. If {7 is languid,
then we have a tube formula

Vre) = 3 res(Crle,)iw) + R(e), (4.8)

weDT (W)

where the sum ranges over the set Dy (W). Here, the error term R(e) is
1
R(e) = —— / Cr(e5)ds, = O(==S),  ase— 0. (4.9)
271 S

Theorem 4.9 was first obtained distributionally in [Pel] and appears in improved
form in [LaPe2]. Since then, a pointwise proof has been obtained in [LaPeWil]. Tt
is important to note that {7 is languid for all self-similar tilings. As we have not
been able to construct a self-similar tiling which satisfies the tileset condition but
fails to be Steiner-like, Theorem 4.9 applies to all known examples. A fortiori, it is
possible to show that all self-similar tilings automatically satisfy a more stringent
condition (called strongly languid in [La-vF2, Def 5.2]) that enables one to take
W = C and R(e) = 0; see [LaPe2, Thm. 8.4]. Thusly one obtains the following
special case of Theorem 4.9, which for simplicity, we only state in the diphase case.
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Corollary 4.10. Let T be a self-similar tiling with a diphase generator G. If (7 (s)
has only simple poles, then

d d—1
Vr(e) = Z Z res (Cs(8);w) Ed_w%m + Z s (k)e?k, (4.10)
k=0

weDs k=0

By comparing (4.10) with (2.10), it is easy to see how the tube formula for fractal
sprays extends the results for fractal strings. Additionally, it extends classical
results for convex sets, as outlined in the next section; see especially (5.7)—(5.8)
and the surrounding discussion.

5. CONVEX GEOMETRY AND THE CURVATURE MEASURES

In order to explain the connections with convex geometry, we give a brief en-
capsulation of Steiner’s classical result. Here, we denote the Minkowski sum of two
sets in R? by

A+B={recR*: 2 =a+bforac Abc B}.

Theorem 5.1. If BY is the d-dimensional unit ball and A C R? s convezx, then
the d-dimensional volume of A+ eB® is given by

d
volg(A +eB%) = " i (A) volai (B F)eF, (5.1)
k=0
where py s the renormalized k-dimensional intrinsic volume and voly(A) is the
k-dimensional Lebesque measure.

Up to some normalizing constant, the k-dimensional intrinsic volume is the k*®
total curvature or (d — k)" Quermassintegral. This valuation p; can be defined
via integral geometry as the average measure of orthogonal projections to (d — k)-
dimensional subspaces; see [KIRo, Ch. 7]. For now, we note that (up to a constant),
there is a correspondence

wo ~ Euler characteristic, tg—1 ~ surface area,
p1  ~ mean width, g ~ volume,

see [Schn2, §4.2] for more. We have chosen the term “Steiner-like” for Definition 4.5
because the intrinsic volumes satisfy the following properties:

(i) each py is homogeneous of degree k, so that for any = > 0,
pr (xA) = pp(A) 2*, and (5.2)
(i) each py(A) is rigid motion invariant, so that for any isometry T' of R?,
pu (T(A)) = px(A). (5-3)

Note that (5.1) gives the volume of the set of points which are within ¢ of A,
including the points of A. If we denote the exterior e-neighbourhood of A by

At = (A4 eBY\ A= {z:d(z,A) <e,x ¢ A}, (5.4)

then it is immediately clear that omitting the d*® term gives

d—1
volg(AZ™) =3~ Cr(A)et* (5.5)
k=0
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with Cx(A) = pr(A) voly,(B4~*). The intrinsic volumes py, can be localized and
understood as the curvature measures introduced in [Fed] and described further
in [Schn2, Ch. 4]. In this case, for a Borel set 8 C R%, one has
d—1
vola{z € A" : p(x, A) € B} = > C(4, B)e"F, (5.6)
k=0
where p(z, A) is the metric projection of = to A, that is, the closest point of A
to x. In fact, the curvature measures are obtained axiomatically in [Schn2] as the
coefficients of the tube formula, and it is this approach that we hope to emulate
in our current work. In other words, we believe that ki may also be understood
as a (total) curvature, in a suitable sense, and we expect that ki can be localized
as a curvature measure. A more rigorous formulation of these ideas is currently
underway in [LaPeWi3]. Caveat: the description of ki given in the conditions
of Definition 4.5 is intended to emphasize the resemblance between ki and Cj.
However, ki may be signed (even when G is convex and k = d — 1,d) and is more
complicated in general. In contrast, the curvature measures Cj, are always positive
for convex bodies.

Remark 5.2 (Inner versus outer e-neighbourhoods). The primary reason we work
with the inner e-neighbourhood instead of the exterior is that it is more intrin-
sic to the set; it makes the computation independent of the embedding of 7
into R?. At least, this should be the case, provided the ‘curvature’ terms ry of
Definition 4.5 are also intrinsic. As a practical bonus, working with the inner
e-neighbourhood allows us to avoid potential issues with the intersections of the
e-neighbourhoods of different components.

In [Fed], Federer unified the tube formulas of Steiner (for convex bodies, as
described in [Schn2, Ch. 4]) and of Weyl (for smooth submanifolds, as described
in [BeGo], [Gr] and [We]) and extended these results to sets of positive reach.?
It is worth noting that Weyl’s tube formula for smooth submanifolds of R? is
expressed as a polynomial in & with coefficients defined in terms of curvatures (in a
classical sense) that are intrinsic to the submanifold [We]. See §6.6-6.9 of [BeGo]
and the book [Gr]. Federer’s tube formula has since been extended in various
directions by a number of researchers in integral geometry and geometric measure
theory, including [Schnl], [Schn2], [Z&1], [Z&2], [Ful], [Fu2], [Sta], and most recently
(and most generally) in [HuLaWe]. The books [Gr] and [Schn2] contain extensive
endnotes with further information and many other references.

To emphasize the present analogy, consider that Steiner’s formula (5.5) may be
rewritten

volg(AS™") = Z cpedk, (5.7)
ke{0,1,....d—1}
and it is clear that Corollary 4.10 may be rewritten

Vr(e) = > e, (5.8)

weD,U{0,1,...,d—1}

3A set A has positive reach iff there is some § > 0 such that any point € AC within & of 4
has a unique metric projection to A, i.e., that there is a unique point A minimizing dist(z, A).
Equivalently, every point g on the boundary of A lies on a sphere dB(z,d) which intersects A
only at g, where = € AL,
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where for each fixed w € D,

w—k

d
cw =res (C(s);w) Z J o Fike (5.9)
k=0

w —

Note that when w =k € {0,1,...,d — 1}, one has ¢, = ¢ = (;(k)r. The obvious
similarities between the tube formulas (5.7) and (5.8) is striking. Our tube formula
is a ‘fractal power series’ in e, rather than just a polynomial in € (as in Steiner’s
formula). Moreover, our series is summed not just over the ‘integral dimensions’
{0,1,...,d— 1}, but also over the countable set D, of scaling complex dimensions.
The coefficients ¢, of the tube formula are expressed in terms of the ‘curvatures’
and the inradii of the generators of the tiling.

Remark 5.3. The two formulas (5.7) and (5.8) measure very different things, and
so appear to be unrelated; nonetheless, they are closely linked. It can happen that
the exterior e-neighbourhood of the fractal itself is, in fact, equal to the union of
the inner e-neighbourhood of the tiling and the exterior e-neighbourhood of its
convex hull. This occurs, for example, with the Sierpinski gasket; see Remark 6.5
and Figure 10. In such cases, the tube formula for the exterior e-neighbourhood
of the fractal will be precisely the sum of the tube formula for the tiling (5.8) and
Steiner’s tube formula for its convex hull (5.7):

volg(FE™) = Vir(g) + volg([F]€*Y) (5.10)

However, things do not always work out so neatly, as the example of the Koch tiling
shows; see Figure 11. In the forthcoming paper [PeWi], it is shown that (5.10) holds
precisely when one of the following equivalent conditions is verified:

(1) 0T = F.
2) 0G, C Fforallg=1,...,Q.
) 9(C\@(C)) C F.

) 0C C F.

) F¢** N C = T. for some (and, equivalently, all) € > 0.

(6) FertnCc = C*t\ C for some (and, equivalently, all) e > 0.
Thus Theorem 4.9 allows one to compute explicit tube formulas for a large family
of self-similar sets via (5.10).

(

(3
(4
(5

Remark 5.4 (Comparison of Vz with the Steiner formula). In the trivial situation
when the spray consists only of finitely many scaled copies of a diphase generator
(so the scaling measure is supported on a finite set), the scaling zeta function
will have no poles in C, so that D; = &. Therefore, the tube formula becomes
a sum over only the numbers k = 0,1,...,d — 1, for which the residues simplify
greatly. (For technical reasons, it turns out during the computation that the d'"
summand always vanishes, so the sum extends only up to d — 1.) In fact, in this
case (,(k) = pk + -+ + p%;, so each residue from (4.10) is a finite sum

Go(k)kr(e) = p’fﬁksd_k 4+ pﬂ“\,fiked_k = nk(rle)ad_k + ot Re(rwy G)ed_k

where NV is the number of scaled copies of the generator G, and r,,, are the corre-
sponding scaling factors. Summing over k, we obtain a tube formula for the scaled
basic shape ry,, G, for each n =1,..., N. The pluriphase case is analogous.
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AVAR V4

FIGURE 8. The Sierpinski gasket tiling. The first stages of the construction
of the gasket are labeled Cy,. The tiles {®,,(G)} are labeled T}, where |w| = n.
This figure was originally published in [Pe2] and appears with permission of

TUMJ.

6. THREE ILLUSTRATIVE EXAMPLES

Example 6.1 (The Sierpinski gasket tiling). The Sierpinski gasket tiling SG (see
Figure 8) is constructed via the system

Oi(2) =Lz, @u(z) =Lzl By(z) = Lz LB
which has one common scaling ratio v = 1/2, with J = 3 and one generator G:
an equilateral triangle of side length % and inradius g = ﬁ. Thus SG has inradii
pr = gt with multiplicity 3%, so the scaling zeta function is

1
= — 1
() = 15 (6.1
and the scaling complex dimensions are
Ds={D+inp:ne€Z} for D =log,3, p= 10g2 (6.2)

The tube formula for §G is readily computed to be

ng = 1610g2 Z ( D+11np + D— 1+nnp D721+1'1np) (%
neL

Example 6.2 (The Koch tiling). The standard Koch tiling IC (see Figure 7) is

constructed via the self-similar system given in (3.1). The attractor of {®1, Po} is

the classical von Koch curve K, as in Figure 1. This system has one scaling ratio

t = |¢] = 1//3, with J = 2 and one generator G: an equilateral triangle of side

— 3e.

)27D71'1np 33/2 2
2

length % and generating inradius g = ‘1/—3. This tiling has inradii p, = gt* with
multiplicity 2%, so the scaling zeta function is

1
Gs(s) = 1_92.3-s/2 (6.3)
and the scaling complex dimensions are
Ds={D+inp:necZ} for D =logs4, p= 1Og3. (6.4)

By inspection, a tile with inradius 1/z will have tube formula

3%/2(—e? +22), e<l/z
= ’ - ’ 6.5
va(z,€) {33/%27 e> 1/ (6.5)
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T, T, T I T,
/ /" (7 (T~ s
A L £ V4 v A~

FIGURE 9. A measurable Koch tiling obtained by picking a nonlattice pa-
rameter £ in (3.1). This figure was originally published in [Pe2] and appears
with permission of TUMJ.

For fixed z, (6.5) is clearly continuous at ¢ = 07. Thus we have rg = —3%2, 5, =
2-3%/2 and ky = —3%/2. Now applying (4.10), the tube formula for the Koch tiling
ICis

@ = 5 (s + o — o) ()
K - 10g3 = D+inp D—1+inp D—2+4inp g
+ 33/252 + m&‘, (66)
f 4

where D =logs4, g = Tg and p = as before.

log 3
Remark 6.3 (Nonlattice Koch tilings). By replacing & = % + ﬁﬁ in (3.1) with
any other complex number satisfying |£|? + |1 — £]? < 1, one obtains a family of
examples of nonlattice self-similar tilings, as illustrated in Figure 9. Computation
of the tube formula does not differ significantly from the lattice case. Further
discussion of nonlattice Koch tilings may be found in [Pe2]. As discussed in [LaPe2],

for example, this furnishes a 1-parameter family of tilings, almost all of which are
Minkowski measurable.

Remark 6.4. In §3 we discussed how to obtain a tube formula for the e-neighbourhood
of the Koch curve itself (rather than of the tiling associated with it) and this led
to the prediction that the complex dimensions of the curve are

Dy = {D +inp:n € Z}U{0+inp:n c Z},

where D = log;4 and p = %. The line of poles above D was expected?, and
agrees precisely with the results of §4. The meaning of the line of poles above 0 is
unclear. We invite the reader to compare (6.6) with the formula for the Koch curve
n (3.3). When formula (3.3) for the area of the inner e-neighbourhood of the Koch

snowflake is stated in full detail (see [LaPel, Thm. 5.1]), it appears as follows:
V(e) = Gi(e)e* P + Ga(e)e?, (6.7)
where G; and G5 are periodic functions of multiplicative period 3, given by

Gi(e) : = 10;3 Z (an + Z bagna> (—1)neinp (6.8a)

nez a€Z

and Ga(e) : = 1023 Z (Un + ZTagna> (—1)"e~mP, (6.8b)

nez a€EZ

4This set of complex dimensions was predicted in [La-vF1], §10.3, except for the dimensions
above 0.
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FIGURE 10. The exterior e-neighbourhood of the Sierpinski gasket is the
disjoint union of the exterior e-neighbourhood of C' = [F] and the inner e-
neighbourhood of the Sierpinski gasket tiling.

QAD QAD

FIGURE 11. The exterior e-neighbourhood of the Koch curve is not sim-
ply related to the exterior e-neighbourhood of C' = [K] and the inner e-
neighbourhood of the Koch tiling K.

where g, are the Fourier coefficients of the multiplicatively periodic function h(e)
discussed just before the statement of Theorem 3.1, and ay, b,,0,, and 7, are the
complex numbers given by

T — 33/2 33/2 35/2 1
an = 53 . + - - . + =by,
25(D +inp)  23(D—1+inp) 25(D—2+inp) 2
b= (2m)! (32m+1 — 4)
n — = 42m+1(m!)2(4m2 _ 1)(32m+1 _ 2)(D —o2m -1+ inp)7
on = —1log3 (% +2V3) 6 — 7., and (6.9)
_ i (2m)! (32m+1 — 1)
Tn = — 42m71(m!)2(4m2 _ 1)(32m+1 _ 2)(—2m 1+ inp)'

In the definition of o,, we use the Kronecker delta to indicate a term that only
appears in og.

Remark 6.5. As mentioned in Remark 5.3, the exterior e-neighbourhood of the
Sierpinski gasket is the disjoint union of the inner e-neighbourhood of the tiling
and the exterior e-neighbourhood of the largest triangle; see Figure 10. This means
that one can immediately obtain the tube formula for the exterior e-neighbourhood
of the gasket by adding the tube formula for the tiling SG and Steiner’s tube formula
for its convex hull (5.5), the equilateral triangle Cy (as labeled in Figure 8).
Unfortunately, this method does not apply to the Koch tiling; see Figure 11.

Example 6.6 (The pentagasket tiling). The pentagasket tiling P is constructed
via the self-similar system defined by the five maps

<I>j(x):3_2\/5:v+pj, j=1,...,5,
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Q

cy (e
CO c3 Cy Cl CZ
N T T,

FIGURE 12. The pentagasket tiling P. This figure was originally published
in [Pe2] and appears with permission of TUMJ.

with common scaling ratio t = ¢~2, where ¢ = (1 ++/5)/2 is the golden ratio, and
the points % = ¢; form the vertices of a regular pentagon of side length 1; see
Figure 12.

The pentagasket P provides an example of multiple (noncongruent) generators
G4 with ¢ = 1,2,...,6. Specifically, G is a regular pentagon and G, ...,Gg are
congruent isosceles triangles, as seen in T3 of Figure 12. This example is developed
fully in [LaPe2, §9.4].
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