COHOMOLOGICAL DESCENT FOR FALTINGS’ p-ADIC HODGE THEORY AND
APPLICATIONS

TONGMU HE

ABSTRACT. Faltings’ approach in p-adic Hodge theory can be schematically divided into two main steps:
firstly, a local reduction of the computation of the p-adic étale cohomology of a smooth variety over a
p-adic local field to a Galois cohomology computation and then, the establishment of a link between
the latter and differential forms. These relations are organized through Faltings ringed topos whose
definition relies on the choice of an integral model of the variety, and whose good properties depend on
the (logarithmic) smoothness of this model. Scholze’s generalization for rigid analytic varieties has the
advantage of depending only on the variety (i.e. the generic fibre). Inspired by Deligne’s approach to
classical Hodge theory for singular varieties, we establish a cohomological descent result for the structural
sheaf of Faltings topos, which makes it possible to extend Faltings’ approach to any integral model, i.e.
without any smoothness assumption. An essential ingredient of our proof is a descent result of perfectoid
algebras in the arc-topology due to Bhatt and Scholze. As an application of our cohomological descent,
using a variant of de Jong’s alteration theorem for morphisms of schemes, we generalize Faltings’ main
p-adic comparison theorem to any proper and finitely presented morphism of coherent schemes over an
absolute integral closure of Z, (without any assumption of smoothness) for torsion étale sheaves (not
necessarily finite locally constant).
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1. INTRODUCTION

1.1. Faltings’ proof of the Hodge-Tate decomposition illustrates his approach in p-adic Hodge theory and
the role of his ringed topos. Let K be a complete discrete valuation field of characteristic 0 with perfect
residue field of characteristic p > 0. For a proper smooth K-scheme X, Tate conjectured that there
is a canonical Gal(K /K)-equivariant decomposition, now called the Hodge-Tate decomposition ([Tat67,
Remark, page 180]),

~

(1.1.1) H(X5 Q) @o, K = @@ HUX, QL) ®k K(g—n),

0<gq<n

where K is the p-adic completion of an algebraic closure K of K, and K(q—n) is the (¢—n)-th Tate twist

of K. This conjecture was settled by Faltings [Fal88, Fal02] and Tsuji [Tsu99, Tsu02] independently, and
had been generalized to rigid analytic settings by Scholze [Sch13al.
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1.2. For a semi-stable Og-scheme X and Y = X, Faltings constructed a ringed site (E§§ N X7Q), now
called the Faltings ringed site, whose foundation was developed by Abbes-Gros [AGT16, VI|. Faltings
designed it as a bridge between the p-adic étale cohomology of Y and differential forms of X. Concretely,
these links are established through the natural morphisms of sites

(1.2.1) Yo -5 EBY ¢ - X
which satisfy the following properties:

(1) (Faltings’ main p-adic comparison theorem, [Fal02, Thm.8, page 223|, [AG20, 4.8.13]). For any
finite locally constant abelian sheaf IF on Y, there exists a canonical morphism

(1.2.2) RI (Y, F) ®F O — RI(ES, ., 0.F @7 B),

which is an almost isomorphism, that is, the cohomology groups of its cone are killed by p" for
any rational number r > 0.

(2) (Faltings’ computation of Galois cohomology, [AG20, 6.3.8]). There exists a canonical homomor-
phism of Ox ®p, Op-modules

(1.2.3) Q% 10, @0 O /" Og — Ri0.(B/p" B)

whose kernel and cokernel are killed by p” for any rational number r > %, where ﬁg( 0k

is the module of ¢g-th logarithmic differentials forms of X with poles in its special fibre.

Observing that Z/p"Z = .(Z/p"7Z), Faltings deduced the Hodge-Tate decomposition from the degen-
eration and splitting of the Cartan-Leray spectral sequence for the composed functor RI'(Xg;, —) o Roy,
later named the Hodge-Tate spectral sequence by Scholze. Using de Jong’s alteration theorem, one can
deduce the Hodge-Tate decomposition for a general proper smooth K-scheme by reducing to the case
where it admits a semi-stable model (cf. [Tsu02, A5]).

Recently, Abbes-Gros [AG20] generalized the Hodge-Tate spectral sequence to relative settings. Their
work requires semi-stable models over Og. More precisely, for any projective (log-)smooth morphism
between (log-)smooth log schemes over O, they constructed a relative Hodge-Tate spectral sequence,
which takes place in the Faltings topos of the target log scheme (cf. [AG20, 6.7.5]).

The starting point of this work is to see if the relative Hodge-Tate spectral sequence can be made free
of models. A first question which has its own interest is whether we can develop p-adic Hodge theory
by working over Faltings site for a general model (without any smoothness condition). Deligne [Del74]
used cohomological descent of étale cohomology and Hironaka’s resolution of singularities to generalize
the classical Hodge theory to singular varieties. Inspired by his approach, we give a positive answer to
the previous question by proving that the structural sheaf on Faltings site satisfies cohomological descent
along proper hypercoverings. As an application, we generalize Faltings’ main p-adic comparison theorem
(which we refer to as “Faltings’ comparison theorem” for short in the rest of the introduction) to general
models. Other applications are expected including the extension of the relative Hodge-Tate spectral
sequence to general models.

1.3. Firstly, we recall the definition of the Faltings site associated to a morphism of coherent schemes
Y — X (“coherent” stands for “quasi-compact and quasi-separated”) (cf. 7.7). Let E§! ,, be the
category of morphisms of coherent schemes V' — U over Y — X, i.e. commutative diagrams

(1.3.1) V—>U

L

Y —X
such that U is étale over X and that V is finite étale over Y x x U. We endow E§! ., + with the topology
generated by the following types of families of morphisms

V) {(Vin =2 U) = (V = U) bimem, where {V,,, = Ve is a finite étale covering;
(c) {(Vxp U, = U,) = (V= U)}lnen, where {U, = U},cn is an étale covering,.

Consider the presheaf % on E§! | defined by
(1.3.2) BV - U)=TUY,0yv),

where UV is the integral closure of U in V. It is indeed a sheaf of rings, the structural sheaf of ES! |
(cf. 7.6).
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1.4. Recall that the cohomological descent of étale cohomology along proper hypercoverings can be
generalized as follows: for a coherent S-scheme, we endow the category of coherent S-schemes Sch;%h
with Voevodsky’s h-topology which is generated by étale coverings and proper surjective morphisms of
finite presentation. Then, for any torsion abelian sheaf F on Sg;, denoting by a : (Sch‘j%h)h — Sgt the
natural morphism of sites, the adjunction morphism F — Ra,a~'F is an isomorphism.

This result remains true for a finer topology, the v-topology. A morphism of coherent schemes T' — S
is called a v-covering if for any morphism Spec(A) — S with A a valuation ring, there exists an extension
of valuation rings A — B and a lifting Spec(B) — T. In fact, a v-covering is a limit of h-coverings (cf.

3.6). We will describe the cohomological descent for Z using a new site built from the v-topology.
Definition 1.5 (cf. 3.23). Let S° — S be an open immersion of coherent schemes such that S is
integrally closed in S°. We define a site Igo_, g as follows:

(1) The underlying category is formed by coherent S-schemes T which are integrally closed in S°x T
(2) The topology is generated by covering families {T; — T'};cr in the v-topology.

We call Igo_,g the v-site of S°-integrally closed coherent S-schemes, and we call the sheaf & on Igo_,g
associated to the presheaf T'— T'(T, Or) the structural sheaf of Iso_,g.

1.6. Let p be a prime number, Z, the integral closure of Z, in an algebraic closure Q, of Q,. We take
S° = Spec(Q,) and S = Spec(Z,,). Consider a diagram of coherent schemes

(1.6.1) Y XY X

T

Spec(Qp) —— Spec(Zy)

where XV is the integral closure of X in Y and the square is Cartesian (we don’t impose any condition
on the regularity or finiteness of Y or X). The functor et : Eé{}_»( — Iy, xv sending V — U to UV
defines a natural morphism of ringed sites

(1.6.2) e:(Iysxv,0) — (Ei;cﬂXa@)'
Our cohomological descent results are stated as follows:

Theorem 1.7 (Cohomological descent for Faltings sites, cf. 8.9). For any finite locally constant abelian
sheaf L on BS! ., y, the canonical morphism

(1.7.1) L ®z # — Re.(c 'L ®z O)
is an almost isomorphism.

Corollary 1.8 (cf. 8.13). For any proper hypercovering Xo — X, if a : E(’Yt._)X. — E$ | denotes the
augmentation of simplicial site where Yo =Y X x X,, then the canonical morphism

(1.8.1) L ®z % — Ra,(a 'L ®z %B,)
is an almost isomorphism.

The key ingredient of our proof of 1.7 is the descent of perfectoid algebras in the arc-topology (a topol-
ogy finer than the v-topology) due to Bhatt-Scholze [BS19, 8.9] (cf. 5.31). The analogue in characteristic
p of 1.7 is Gabber’s computation of the cohomology of the structural sheaf in the h-topology (cf. 4).
Theorem 1.7 allows us to descend important results for Faltings sites with nice models to Faltings sites
associated to general models.

1.9. We use 1.7 to generalize Faltings’ comparison theorem in the absolute case. Let A be a valuation
ring extension of Z, with algebraically closed fraction field. Consider a Cartesian square of coherent
schemes

(1.9.1)

- <X

|

A[3]) — Spec(4)

~

—~

Spec
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Theorem 1.10 (Faltings’ comparison theorem in the absolute case, cf. 10.18). Assume that X is proper
of finite presentation over A. Then, for any finite locally constant abelian sheaf F on Yz, there exists a
canonical morphism

(1.10.1) RI(Yy,F) @% A — RI(ES, «, .F @7 A),
which is an almost isomorphism.

We remark that the natural morphism ¢ : Yz — E‘i} _ x induces an equivalence of the categories of
finite locally constant abelian sheaves on Yz and E§! | (cf. 10.4),

(1.10.2) LocSys(Yz) <£> LocSys(E§! . ).
w—l

As a continuation of the work of Abbes-Gros, the canonical morphism (1.10.1) (refered as Faltings’
comparison morphism) is constructed using the acyclicity of ¢ for F, ie. . F = Ry.F (so that
RI(Ye, F) = RI(ES ., y,v.F)), which is a consequence of Achinger’s result on K(r,1)-schemes (cf.
10.7 and 10.9). We also propose a new way to construct Faltings’ comparison morphism in the derived
category of almost modules using our cohomological descent result 1.7, which avoids using the acyclicity
of 1. Indeed, there are natural morphisms of sites

(1.10.3) (Sch%$")y ——= Y
qzl l‘l’
Iy xv —=Ef_x

and V¥ is acyclic for any torsion abelian sheaf F on Y, i.e. U,(a"1F) = RV, (a"1F), which allows more
general coefficients and whose proof is much easier than that of ¢ (cf. 3.27). We remark that this new
construction won’t give us a “real morphism” (1.10.1) but a canonical morphism in the derived category
of almost modules (cf. 11.6).

We briefly explain the strategy for proving 1.10:

(1) Firstly, we use de Jong-Gabber-Illusie-Temkin’s alteration theorem for morphisms of schemes
[ILO14, X.3] to obtain a proper surjective morphism of finite presentation X’ — X such that
the morphism X’ — Spec(A) is the cofiltered limit of a system of “nice” morphisms X{ — T of
“nice” models over Ok, , where K is a finite extension of Q, (cf. 9.11).

(2) Then, we can apply Faltings’ comparison theorem in the relative case to the “nice” morphisms
X} — T (formulated by Faltings [Fal02, Thm.6, page 266] and proved by Abbes-Gros [AG20,
5.7.4], cf. 10.14). By a limit argument, we get the comparison theorem for X’.

(3) Finally, using our cohomological descent result 1.8, we deduce the comparison theorem for X.

1.11. The site Iy _, xv is also appropriate to globalize Faltings’ comparison theorem. Consider a Cartesian
square of coherent schemes

(1.11.1) Y — = X'

o

Y —X

where Y — X is Cartesian over Spec(Q,) — Spec(Z,). In particular, there is a natural morphism of
ringed sites by the functoriality of (1.10.3),

(1.11.2) fi: (oo, 0) — (Iy_yxv, O).

Theorem 1.12 (cf. 11.11). Assume that X' — X is proper of finite presentation. Let F' be a torsion
abelian sheaf on Y/, and F' = W' a/~'F' (cf. (1.10.3)). Then, the canonical morphism

(1.12.1) (Rf1F') 9% 0 — Rft.(F' ®z 0")

is an almost isomorphism.
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We remark that if ' = Z/p"Z then %' = Z/p"7Z (cf. 3.27), and that R?f1..%’ is the sheafification
of étale cohomologies of Y’ over Y with coefficient F' in the v-topology (cf. 11.12). Very roughly
speaking, objects of Iy _, yv are “locally” the spectrums of valuation rings, and the “stalks” of (1.12.1)
are Faltings’ comparison morphisms (1.10.1) when F’ is finite locally constant (cf. 11.5). Theorem
1.12 can be regarded as a scheme theoretical analogue of Scholze’s comparison theorem for p-adic étale
cohomology of a morphism of rigid analytic varieties [Sch13b, 3.13].

Finally, we generalize Faltings’ comparison theorem in the relative case using 1.7 and 1.12.

Theorem 1.13 (Faltings’ comparison theorem in the relative case, cf. 11.13 and 11.14). Assume that
Y’ =Y is smooth and that X' — X is proper of finite presentation. Then, for any finite locally constant
abelian sheaf F' on Y, there exists a canonical morphism

(1.13.1) (R RfeeF) @% Z — R (WF @7 F ),

which is an almost isomorphism, and where fe : Y, — Yo and fu : B$L o — ESE, « are the natural
morphisms of sites. In particular, there exists a canonical morphism

(1.13.2) (VR ferF') @5 B — R fru(V.F @7 B ),
which is an almost isomorphism, for any integer q.

1.14. The paper is structured as follows. In section 3, we establish the foundation of the site Igo_,g,
where proposition 3.27 discussing the cohomological properties of W : (Sch(j%}é)v — Igo_, 5 is the key to
our new construction of Faltings’ comparison morphism (cf. 11.6). Sections 4 and 5 are devoted to a
detailed proof of the arc-descent for perfectoid algebras following Bhatt-Scholze [BS19, 8.9]. Since we
use the language of schemes, the terminology “pre-perfectoid” is introduced for those algebras whose
p-adic completions are perfectoid. In sections 6 and 7, we review the definition and some basic properties
of Faltings sites and we introduce a pro-version of Faltings site to evaluate the structural sheaf on the
spectrums of pre-perfectoid algebras. Then, we prove our cohomological descent result in section 8. In
section 9, we review de Jong-Gabber-Illusie-Temkin’s alteration theorem and apply it to schemes over a
valuation ring of height 1. Section 10 is devoted to proving our generalization of Faltings’ comparison
theorem in the absolute case. In section 11, we give a new construction of Faltings’ comparison morphism
and our generalization of Faltings’ comparison theorem in the relative case.

1.15. Our work suggests that the site Iso_, g could play an important role in Faltings’ p-adic Hodge theory,
as it allows us to work with general models (at least in the “comparison” part). A recent work of Guo
[Guol9] generalized the Hodge-Tate decomposition to singular rigid analytic varieties. Thus, it seems
reasonable that we could use Iso_, g to generalize the “Galois cohomology” part of Faltings’ p-adic Hodge
theory and relate it to Deligne-du Bois complex, and the final goal is to generalize Abbes-Gros’ relative
Hodge-Tate spectral sequence to morphisms of singular varieties. If one would like to be more optimistic
about the site Iso_, g, then it is interesting to look for an intrinsic proof of Faltings’ comparison theorems
on Iso_,g instead of doing alterations and cohomological descent. A further possible generalization would
be over a general base S° — S (not only Cartesian over Spec(Q,) — Spec(Z,)). On the other hand,
it seems that the site Igo_,g is closely related to Bhatt-Scholze’s perfectoidization in their prismatic
cohomology theory [BS19, 8], and further concrete relations are waiting to be explored. The author is
still studying these problems.

Acknowledgements. This work is part of my thesis prepared at Université Paris-Saclay and Institut
des Hautes Etudes Scientifiques. I would like to express my sincere gratitude to my doctoral supervisor,
Ahmed Abbes, for his guidance to this project, his thorough review of this work and his plenty of helpful
suggestions on both research and writing.

2. NOTATION AND CONVENTIONS

2.1. We fix a prime number p throughout this paper. For any monoid M, we denote by Frob : M — M
the map sending an element x to 2P and we call it the Frobenius of M. For a ring R, we denote by R*
the group of units of R. A ring R is called absolutely integrally closed if any monic polynomial f € R[T]
has a root in R ([Sta21, 0ODCK]). We remark that quotients, localizations and products of absolutely
integrally closed rings are still absolutely integrally closed.
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Recall that a valuation ring is a domain V such that for any element x in its fraction field, if z ¢ V
then 71 € V. The family of ideals of V is totally ordered by the inclusion relation ([Bou06, VI.§1.2,
Thm.1]). In particular, a radical ideal of V' is a prime ideal. Moreover, any quotient of V' by a prime ideal
and any localization of V' are still valuations rings ([Sta21, 088Y]). We remark that V' is normal, and
that V is absolutely integrally closed if and only if its fraction field is algebraically closed. An eztension
of valuation rings is an injective and local homomorphism of valuation rings.

2.2. Following [SGA 41, VI.1.22], a coherent scheme (resp. morphism of schemes) stands for a quasi-
compact and quasi-separated scheme (resp. morphism of schemes). For a coherent morphism ¥ — X of
schemes, we denote by XY the integral closure of X in Y ([Sta21, 0BAK]). For an X-scheme Z, we say
that Z is Y -integrally closed if Z = ZY*xZ,

2.3. Throughout this paper, we fix two universes U and V such that the set of natural numbers N is an
element of U and that U is an element of V ([SGA 4;, 1.0]). In most cases, we won’t emphasize this set
theoretical issue. Unless stated otherwise, we only consider U-small schemes and we denote by Sch the
category of U-small schemes, which is a V-small category.

2.4. Let C be a category. We denote by C the category of presheaves of V-small sets on C. If C' is a
V-site ([SGA 41, 11.3.0.2]), we denote by C the topos of sheaves of V-small sets on C. We denote by
hC :C — C, z s hC the Yoneda embbeding ([SGA 4p, 1.1.3]), and by C — C, F + F* the sheafification
functor ([SGA 4i, 11.3.4]). Unless stated otherwise, a site in this paper stands for a site where all finite
limits are representable.

2.5. Let u™ : C' — D be a functor of categories. We denote by uP : D — C the functor that associates
to a presheaf G of V-small sets on D the presheaf uPG = Gou™. If C is V-small and D is a V-category,
then P admits a left adjoint up, [Sta2l, 00VC] and a right adjoint pu [Sta2l, 00XF] (cf. [SGA 4, L.5]).
So we have a sequence of adjoint functors

(2.5.1) Up, UP, pu.

If moreover C' and D are V-sites, then we denote by ug, u®, su the functors of the topoi C and D of sheaves
of V-small sets induced by composing the sheafification functor with the functors uy, uP, ,u respectively.
As we only consider finite complete sites, we say that the functor ut gives a morphism of sites, if u™ is
left exact and preserves covering families ([SGA 4;, IV.4.9.2]). Then, we denote by

(2.5.2) w=(u"u):D—C

the associated morphism of topoi, where u=! = ug and u, = u® = uP| - We remark that the notation

here, adopted by [Sta21], is slightly different with that in [SGA 4;] (cf. [Sta21, 0CMZ]).

3. THE V-SITE OF INTEGRALLY CLOSED SCHEMES

Definition 3.1. Let X — Y be a quasi-compact morphism of schemes.

(1) We say that X — Y is a v-covering, if for any valuation ring V' and any morphism Spec(V) — Y,
there exists an extension of valuation rings V' — W (2.1) and a commutative diagram (cf. [Sta21,
OETN])

(3.1.1) Spec(W) —— X

|

Spec(V) ——Y

(2) Let 7 be an element of I'(Y,Oy). We say that X — Y is an arc-covering (resp. m-complete
arc-covering), if for any valuation ring (resp. m-adically complete valuation ring) V' of height < 1
and any morphism Spec(V) — Y, there exists an extension of valuation rings (resp. m-adically
complete valuation rings) V' — W of height < 1 and a commutative diagram (3.1.1) (cf. [BM20,
1.2], [CS19, 2.2.1]).

(3) We say that X — Y is an h-covering, if it is a v-covering and locally of finite presentation (cf.
[Sta21, OETS]).

We note that an arc-covering is simply a 0-complete arc-covering.


https://stacks.math.columbia.edu/tag/088Y
https://stacks.math.columbia.edu/tag/0BAK
https://stacks.math.columbia.edu/tag/00VC
https://stacks.math.columbia.edu/tag/00XF
https://stacks.math.columbia.edu/tag/0CMZ
https://stacks.math.columbia.edu/tag/0ETN
https://stacks.math.columbia.edu/tag/0ETS
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Lemma 3.2. Let Z -5 Y 15 X be quasi-compact morphisms of schemes, m € I'(X,0x), 7 € {h, v,
mw-complete arc}.

(1) If f is a T-covering, then any base change of f is also a T-covering.

(2) If f and g are T-coverings, then f o g is also a T-covering.

(3) If fogis a T-covering (and if f is locally of finite presentation when 7 = h), then f is also a
T-COVEring.

Proof. 1t follows directly from the definitions. (I

3.3. Let Sch®" be the category of coherent U-small schemes, T € {h, v, arc}. We endow Sch" with
the 7-topology generated by the pretopology formed by families of morphisms {X; — X };cr with I finite
such that J],.; X; — X is a 7-covering, and we denote the corresponding site by Schi‘)h. It is clear
that a morphism Y — X (which is locally of finite presentation if 7 = h) is a 7-covering if and only if
{Y = X} is a covering family in Sch®" by 3.2 and [SGA 4, I1.1.4].

For any coherent U-small scheme X, we endow the category Sch%? of objects of Sch®" over X with

the topology induced by the 7-topology of Sch®” ie. the topology generated by the pretopology formed
by families of X-morphisms {Y; — Y'};c; with I finite such that [],.; Y; — Y is a 7-covering ([SGA 4,
I11.5.2]). For any sheaf F of V-small abelian groups on the site (Sch%?)ﬁ we denote its ¢g-th cohomology
by HI(X,F).

Lemma 3.4. Let f : X = Y be a quasi-compact morphism of schemes, m € T'(Y, Oy).

(1) If f is proper surjective or faithfully flat, then f is a v-covering.

(2) If f is an h-covering and Y is affine, then there exists a proper surjective morphism Y' — Y
of finite presentation and a finite affine open covering Y' = JI'_, Y, such that Y] — 'Y factors
through f for each r.

(3) If f is an h-covering and if there exists a directed inverse system (fx : Xax — Ya)rea of finitely
presented morphisms of coherent schemes with affine transition morphisms ¥y : Xy — X and
Ot Yo = Yy such that X =lim X, Y =lim Yy and that fy is the base change of fx, by dax,
for some index \y € A and any X\ > \g, then there exists an index \y > g such that fy is an
h-covering for any A > 1.

(4) If f is a v-covering, then it is a w-complete arc-covering.

(5) Let " be another element of T(Y, Oy) which divides w. If f is a w-complete arc-covering, then it
is a ' -complete arc-covering.

(6) If Spec(B) — Spec(A) is a m-complete arc-covering, then the morphism Spec(g) — Spec(;l\)
between the spectrums of their m-adic completions is also a w-complete arc-covering.

Proof. (1), (2) are proved in [Sta21l, OETK, OETU] respectively.

(3) To show that one can take Ay > Ao such that fy, is an h-covering, we may assume that Y}, is affine
by replacing it by a finite affine open covering by 3.2 and (1). Thus, applying (2) to the h-covering f and
using [EGA IV3, 8.8.2, 8.10.5], there exists an index A\; > Ag, a proper surjective morphism Y/\’1 — Yy,
and a finite affine open covering Yy = (J;'_, ¥/, such that the morphisms ¥ — Y’ — Y are the base
changes of the morphisms Y, — Yy — Y, by the transition morphism Y — Y),, and that Y/, — Y},
factors through X,,. This shows that fy, is an h-covering by 3.2 and (1).

(4) With the notation in (3.1.1), if V' is a m-adically complete valuation ring of height < 1 with maximal
ideal m, then since the family of prime ideals of W is totally ordered by the inclusion relation (2.1), we
take the maximal prime ideal p C W over 0 C V and the minimal prime ideal ¢ C W over m C V. Then,
p € qand W' = (W/p)q over V is an extension of valuation rings of height < 1. Since 7 € m and W’ is
of height < 1, the m-adic completion W is still a valuation ring extension of V of height < 1 (cf. [Bou06,
VI.§5.3, Prop.5]), which proves (4).

(5) Since a 7'-adically complete valuation ring V' is also m-adically complete ([Sta21, 090T]), there exists
a lifting Spec(W) — X for any morphism Spec(V) — Y. After replacing W by its n’-adic completion,
the conclusion follows. R

(6) Let V be a m-adically complete valuation ring of height < 1. Given a morphism A — V, there
exists a lifting B — W where V. — W is an extension of m-adically complete valuation rings of height
< 1. It is clear that B — W factors through B, which proves (6). O


https://stacks.math.columbia.edu/tag/0ETK
https://stacks.math.columbia.edu/tag/0ETU
https://stacks.math.columbia.edu/tag/090T
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3.5. Let X be a coherent scheme, Schf/IfX the full subcategory of Sch‘f}g1 formed by finitely presented X-
schemes. We endow it with the topology generated by the pretopology formed by families of morphisms
{Yi = Y}ier with [ finite such that [[,.; Y; — Y is an h-covering, and we denote the corresponding site

by (Schf/%()h. It is clear that this topology coincides with the topologies induced from (Sch

(f}?)v and
+ +
from (Sch‘;‘}?)h. The inclusion functors (Schipx)][l LN (Sch?‘}?)h < (Sch‘;‘}?)v define morphisms of sites
(2.5)
(3.5.1) (SchS%), — (Schf%), — (Sch'Py ).
Lemma 3.6. Let X be a coherent scheme. Then, for any covering family 4 = {Y; — Y}ier in (Sch?‘}?)v
with I finite,
(i) there exists a directed inverse system (Y\)xea of finitely presented X -schemes with affine transi-
tion morphisms such that’Y =1imY), and
(ii) for each i € I, there exists a directed inverse system (Yix)aea of finitely presented X -schemes
with affine transition morphisms over the inverse system (Yx)xea such that Y; =limY;y, and
(iii) for each A € A, the family Ux = {Yix — Ya}ier is a covering in (SChf/pX)h'

Proof. We take a directed set A such that for each i € I, we can write Y; as a cofiltered limit of finitely
presented Y-schemes Y; = limyey Yiq with affine transition morphisms ([Sta21, 09MV]). We see that
[;c; Yia — Y is an h-covering for each o € A by 3.2.

We write Y as a cofiltered limit of finitely presented X-schemes Y = limgep Y3 with affine transition
morphisms ([Sta21, 09MV]). By [EGA IV3, 8.8.2, 8.10.5] and 3.4.(3), for each o € A, there exists an
index B, € B such that the morphism Y;, — Y is the base change of a finitely presented morphism
Yiap, — Y3, by the transition morphism Y — Y3 for each ¢ € I, and that [[,.; Yias, — Y3, is an
h-covering. For each 8 > f3,, let Yoz be the base change of Yj,g, by Yz — Yz, .

We define a category A°P, whose set of objects is {(a, ) € A x B | 8> B4}, and for any two objects
N =(,3), A= (a, ), the set Hompop (X', \) is

(i) the subset of J],.; Homy,, (Yiar g, Yiap) formed by elements f = (f;);er such that for each i € I,
fi + Yiargr = Yiqp is affine and the base change of f; by Y — Yjs is the transition morphism
Yiar = Yia, if &/ > a and ' > 3;

(ii) empty, if else.

icl

The composition of morphisms (g,* 2 Yigrngr — )/Z‘a/ﬂ//)iej with (fz Yiwg — Y;agl)iej in A°P is (gi o fll :
Yiargr — Yiapr), where f] is the base change of f; by the transition morphism Yg» — Yg. We see
that A°P is cofiltered by [EGA IV3s, 8.8.2]. Let A be the opposite category of A°P. For each i € I and
A= (a,8) € A, we set Y = Y3 and Y;n = Yiag. It is clear that the natural functors A — A and
A — B are cofinal ([SGA 4;, 1.8.1.3]). After replacing A by a directed set ([Sta21, 0032]), the families
Uy = {Yix — Y }ies satisfy the required conditions. O

Lemma 3.7. With the notation in 3.5, let F be a presheaf on (Schff;{)h, (Y)) a directed inverse system
of finitely presented X -schemes with affine transition morphisms, Y =limYy. Then, we have v, F(Y) =

colim F(Yy), where vt = €% (resp. vt =T o).
Proof. Notice that the presheaf F is a filtered colimit of representable presheaves by [SGA 4, 1.3.4]

(371) F = colim hy/.
Y'e(Schfy), r

Thus, we may assume that F is representable by a finitely presented X-scheme Y’ since the section
functor T'(Y, —) commutes with colimits of presheaves ([Sta21, 00VB]). Then, we have

(372) Vphy/(Y) = h,,+(y/)(Y) = HOHlX (K Y/) = colim HomX (Y,\,Y/) = colim hy/(Y)\)

where the first equality follows from [Sta21, 04D2], and the third equality follows from [EGA IV3, 8.14.2].
U

Proposition 3.8. With the notation in 3.5, let F be an abelian sheaf on (SchﬁpX)h, (Y\) a directed

inverse system of finitely presented X -schemes with affine transition morphisms, Y =1limY). Let 7 =h
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and vt =&T (resp. T=v and vt =t o &T). Then, for any integer q, we have

(3.8.1) HI(Y,v™ F) = colim H((Sch'y, )n, ).

In particular, the canonical morphism F — Rv, v~ F is an isomorphism.

Proof. For the second assertion, the sheaf Riv,v~!F is the sheaf associated to the presheaf Y
HY(Y,v=1F) = Hq((Schipy)}17 F) by the first assertion, which is F if ¢ = 0 and vanishes otherwise.

We claim that it suffices to show that (3.8.1) holds for any injective abelian sheaf F = 7 on (Sch%()h.
Indeed, if so, then we prove by induction on ¢ that (3.8.1) holds in general. The case where ¢ < —1
is trivial. We set H{(F) = HY(Y,v~1F) and H¥(F) = colim Hq((Schf/pYA)h,f). We embed an abelian
sheaf F to an injective abelian sheaf Z. Consider the exact sequence 0 — F — Z — G — 0 and the
morphism of long exact sequences

(3.8.2) H{™Y(I) — H{"'(9) H{(F) H{(Z) — H{(G)
H™N(I) — Hi () H3(F) H3(Z) — H3(G)

If (3.8.1) holds for any abelian sheaf F for degree ¢ — 1, then 71, v2, 4 are isomorphisms and thus 73 is
injective by the 5-lemma ([Sta21, 05QA]). Thus, +5 is also injective since F is an arbitrary abelian sheaf.
Then, we see that 3 is an isomorphism, which completes the induction procedure.

For an injective abelian sheaf 7 on (Schipx)h, we claim that for any covering family ${ = {(V; = Y ) }ier

in (Sch%?)r with I finite, the augmented Cech complex associated to the presheaf vpL
(3.8.3) WI(Y) = [[wI) = [] »I(ixyY;) =
il ijel
is exact. Admitting this claim, we see that 1,7 is indeed a sheaf, i.e. v7'Z = 1,7, and the vanishing of

higher Cech cohomologies implies that H?(Y,v~'Z) = 0 for ¢ > 0 by 3.6 ([Sta21, 03F9]), which completes
the proof together with 3.7. For the claim, we take the covering families Ly = {Y;» — Y, }ier in (Schfp )h

: /X
constructed by 3.6. By 3.7, the sequence (3.8.3) is the filtered colimit of the augmented Cech complexes
(3.8.4) I(Yy) — Hz(m) — H Z(Yix Xy, Yjn) = -+,

i€l ijel
which are exact since Z is an injective abelian sheaf on (Schl;pX)h. ]

Corollary 3.9. Let X be a coherent scheme, F a torsion abelian sheaf on the site X formed by coherent
coh

étale X -schemes endowed with the étale topology, a : (Sch/X )y — Xet the morphism of sites defined by
the inclusion functor. Then, the canonical morphism F — Ra.a ' F is an isomorphism.

Proof. Consider the morphisms of sites defined by inclusion functors

(3.9.1) (Sch§3e), — (Schi3), — (Seh )y — Xer.
Notice that the morphism F — R(u o &).(p o £)~1F is an isomorphism by [Sta21, 0OEWG]. Hence,
F — Ry~ ' F is an isomorphism by 3.8, and thus so is F — Ra,a~'F by 3.8. (]

Corollary 3.10. Let f : X = Y be a proper morphism of coherent schemes, F a torsion abelian sheaf
on Xe¢. Consider the commutative diagram

(3.10.1) (Schi%)y — = Xe

e

(Schi3t), — = Y
where f, and f& are defined by the base change by f. Then, the canonical morphism
(3.10.2) ay'RfeexF — Rfvsax' F

is an isomorphism.
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Proof. Consider the commutative diagram

(3.10.3) (Sch%)y —> (Schf% )y —X> X

fvl fhl/ lféc
by

co 54 co
(Sehj}?)y — > (Schj§), — > Y

The canonical morphism by R fs.F — Rfn.by' F is an isomorphism by [Sta21, 0EWF]. It remains to
show that the canonical morphism ¢, 'R fr.by' F — Rfyeax' F is an isomorphism. Let Y’ be a coherent
Y-scheme and we set g : X' =Y’ ><y X — X. For each integer ¢, C; quh*b_ F is the sheaf associated
to the presheaf Y’ s H(X', byigs' F) = H{ (X', g5;' F) by [Sta2l, 0EWH], and R9f,.ay' F is the sheaf
associated to the presheaf Y/ — HI(X’, aX,g_tl]-") HE (X', g, F) by 3.9. O

Lemma 3.11. Let A be a product of (resp. absolutely integrally closed) valuation rings (2.1).

(1) Any finitely generated ideal of A is principal.
(2) Any connected component of Spec(A) with the reduced closed subscheme structure is isomorphic
to the spectrum of a (resp. absolutely integrally closed) valuation ring.

Proof. (1) is proved in [Sta21, 092T], and (2) follows from the proof of [BS17, 6.2]. O

Lemma 3.12. Let X be a U-small scheme, y ~> x a specialization of points of X. Then, there exists a
U-small family {fx : Spec(Vy) = X }aea of morphisms of schemes such that

(i) the ring Vy is a U-small (resp. absolutely integrally closed) valuation ring, and that
(ii) the morphism fx maps the generic point and closed point of Spec(Vy) to y and x respectively,
and that
(iii) for any morphism of schemes f : Spec(V) — X where V is a (resp. absolutely integrally closed)
valuation ring such that f maps the generic point and closed point of V' to y and x respectively,
there exists an element A € Ay, such that [ factors through fy and that Vx — V is an extension
of valuation rings.

Yy~

Proof. Let K, be the residue field x(y) of y (resp. an algebraic closure of k(y)). Let p, be the prime
ideal of the local ring Ox , corresponding to the point y, and let {Vy}xea, .., be the set of all valuation
rings with fraction field K, which contain Ox ,/p, such that the injective homomorphism Ox . /p, — Vi
is local. The smallness of Ay.., and V) is clear, and the inclusion Ox , / py — Vi induces a morphism
I Spec(Vy) — X satisfying (ii). It remains to check (iii). The morphism f induces an injective and
local homomorphism Ox ,/p, — V. Notice that Ox ,/p, — Frac(V) factors through K, and that K,NV
is a valuation ring with fraction field K. It is clear that K, NV — V is local and injective, which shows
that K, NV belongs to the set {Vi}aeca constructed before. O

Y~

Lemma 3.13. Let f: Spec(V) — X be a morphism of schemes where V is a valuation ring. We denote
by a and b the closed point and generic point of Spec(V') respectively. If c € X is a generalization of f(b),
then there exists an absolutely integrally closed valuation ring W, a prime ideal p of W, and a morphism
g : Spec(W) — X satisfying the following conditions:
(i) If z, y, x denote respectively the generic point, the point p and the closed point of Spec(W), then
9(2) = ¢, g(y) = f(b) and g(z) = f(a).
(ii) The induced morphism Spec(W/p) — X factors through f, and the induced morphism V. — W/p
is an extension of valuation rings.

Proof. According to [EGA TI, 7.1.4], there exists an absolutely integrally closed valuation ring U and a
morphism Spec(U) — X which maps the generic point z and the closed point y of Spec(U) to ¢ and f(b)
respectively. After extending U, we may assume that the morphism y — f(b) factors through b ([EGA II,
7.1.2]). We denote by x(y) the residue field of the point y. Let V' be a valuation ring extension of V'
with fraction field x(y), and let W be the preimage of V' by the surjection U — x(y). Then, the maximal
ideal p = Ker(U — k(y)) of U is a prime ideal of W, and W/p = V’'. We claim that W is an absolutely
integrally closed valuation ring such that W, = U. Indeed, firstly note that the fractlon fields of U and
W are equal as p C W. Let v be an element of Frac(W)\ W. If v € U, then y~! € W \ p by definition

since 7! € U\ p and V is a valuation ring, and then v € W,. If v ¢ U, then v~! € p since U is a
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valuation ring, and then v ¢ W,. Thus, we have proved the claim, which shows that W satisfies the
required conditions. O

Proposition 3.14. Let X be a coherent U-small scheme, X° a quasi-compact dense open subset of
X. Then, there exists a U-small product A of absolutely integrally closed U-small valuation rings and a
v-covering Spec(A) — X such that Spec(A) is X°-integrally closed (2.2).

Proof. After replacing X by a finite affine open covering, we may assume that X = Spec(R). For a
specialization y ~» 2 of points of X, let {R — Vi}aea,.., be the U-small set constructed in 3.12. Let
A= HyEXO Ay.z where y ~» 2 runs through all specializations in X such that y € X°. We take
A = []xea Vo and R — A the natural homomorphism. As a quasi-compact open subscheme of Spec(A4),
X° xx Spec(A) is the spectrum of A[1/7] for an element m = (my)rea € A by 3.11.(1) ([Sta2l, 01PH]).
Notice that my # 0 for any A € A. We see that A is integrally closed in A[l/7]. It remains to check
that Spec(A) — X is a v-covering. For any morphism f : Spec(V) — X where V is a valuation ring, by
3.13, there exists an absolutely integrally closed valuation ring W, a prime ideal p of W and a morphism
g : Spec(W) — X such that g maps the generic point of W into X° and that W/p is a valuation ring
extension of V. By construction, there exists A € A such that g factors through Spec(V)) — X. We see
that f lifts to the composition of Spec(W/p) — Spec(Vy) — Spec(A4). O

Proposition 3.15. Consider a commutative diagram of schemes

(3.15.1) Y —7 —— X'

L

Y —7 —X

where Z' — Z and X' — X are quasi-compact. Assume that Y — 'Y xx X' is surjective, Y — Z is
dominant, Z — X 1is separated and Z' — X' is integral. If X' — X 1is a v-covering, then Z' — Z is also
a V-Ccovering.

Proof. Notice that Z' — Z xx X' is still integral as Z — X is separated. After replacing X' — X
by Z xx X' — Z, we may assume that Z = X. Let Spec(V) — Z be a morphism of schemes where
V is a valuation ring. Since Y — Z is dominant, by 3.13, there exists a morphism Spec(W) — Z
where W is an absolutely integrally closed valuation ring, a prime ideal p of W such that W/p is a
valuation ring extension of V' and that the generic point £ of Spec(W) is over the image of Y — Z. After
extending W ([Sta21, 00TA]), we may assume that there exists a lifting € — Y of £ — Z. The morphism
Spec(W) — Z = X admits a lifting Spec(W’') — X’ where W — W’ is an extension of valuation rings.
We claim that after extending W', Spec(W’) — X’ factors through Z’. Indeed, if £’ denotes the generic
point of Spec(W’), as Y’ — Y x x X' is surjective, after extending W', we may assume that there exists
an X'-morphism ¢ — Y’ which is over £ — Y. Since Spec(W’) is integrally closed in £’ and Z’ is integral
over X', the morphism Spec(W') — X’ factors through Z’ ([Sta21, 035I]). Finally, let q € Spec(W')
which lies over p € Spec(W), then we get a lifting Spec(W’/q) — Z’ of Spec(V) — Z, which shows that
7' — Z is a v-covering. O

3.16. Let S° — S be an open immersion of coherent schemes such that S is S°-integrally closed (2.2).
For any S-scheme X, we set X° = S° xg X. We denote by Iso_,g the category formed by coherent
S-schemes which are S°-integrally closed. Note that any S°-integrally closed coherent S-scheme X is
also X°-integrally closed by definition. It is clear that the category (Iso_s),x of objects of Iso_,s over
X is canonically equivalent to the category Ixo_ x.

Lemma 3.17 ([Sta2l, 03GV]). Let Y — X be a coherent morphism of schemes, X' — X a smooth
morphism of schemes, Y' =Y xx X'. Then, we have X' = XY xx X'.

Lemma 3.18. Let (Y — X))aea be a directed inverse system of morphisms of coherent schemes with
affine transition morphisms Yyr — Yy and Xy — X\ (N > X). We set Y = limY, and X = lim X,.
Then, (X}\/*)AGA s a directed inverse system of coherent schemes with affine transition morphisms and
we have XY = limX;\/*.

Proof. We fix an index Ao € A. After replacing X, by an affine open covering, we may assume that X,
is affine (3.17). We write X = Spec(4,) and By = I'(Y), Oy, ) for each A > )¢, and we set A = colim A
and B = colim By. Then, we have X = Spec(4) and B = I'(Y,Oy) ([Sta21l, 009F]). Let Ry (resp.
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R) be the integral closure of Ay in By (resp. A in B). By definition, we have X)}* = Spec(R,) and
XY = Spec(R). The conclusion follows from the fact that R = colim Ry. O

Lemma 3.19. Let S° — S be an open immersion of coherent schemes.

(1) If X is an S°-integrally closed coherent S-scheme, then the open subscheme X° is scheme theo-
retically dense in X.

(2) If X is an S°-integrally closed coherent S-scheme and X' is a coherent smooth X -scheme, then
X' is also S°-integrally closed.

(3) If (Xa)ren is a directed inverse system of S°-integrally closed coherent S-scheme with affine
transition morphisms, then X = limycp X, s also S°-integrally closed.

(4) If Y — X is a morphism of coherent schemes over S° — S such that'Y is integral over X°, then
the integral closure XY is S°-integrally closed with (XY)° =Y.

Proof. (1), (2), (3) follow from [Sta21, 0351, 3.17 and 3.18 respectively. For (4), (XY)° = X° xx XV is
the integral closure of X° in X° xx Y =Y by 3.17, which is YV itself. O

3.20. We take the notation in 3.16. The inclusion functor

(3.20.1) Ot :Igo 5 — Schfy, X — X,
admits a right adjoint

(3.20.2) ot :Schfy — Igo 5, X — X = XX,

Indeed, o is well-defined by 3.19.(4), and the adjointness follows from the functoriality of taking integral
closures. We remark that X = X°. On the other hand, the functor

3.20.3 Ut Tgo,g —> Schf, X —s X°,
/S
admits a left adjoint
(3.20.4) a®:Schiyt — Ises, Y — Y.

Lemma 3.21. With the notation in 3.16, let ¢ : I — Igo_,g be a functor sending i to X;. If )iz lim X;
represents the limit of ¢ in the category of coherent S-schemes, then the integral closure X = xx°
represents the limit of v in Lgo_,g with X° = Xx°.

Proof. Tt follows directly from the adjoint pair (®+, 1) (3.20). O

It follows from 3.21 that for a diagram X; — Xy < X5 in Igo_, g, the fibred product is representable
by
(3.21.1) Xixx, X2 = (X1 xx, X2)
Proposition 3.22. With the notation in 3.16, let € be the set of families of morphisms {X; — X }ier
of Igo s with I finite such that [[,.; X; — X is a v-covering. Then, € forms a pretopology of Igo_,g.
Proof. Let {X; — X}ier be an element of €. Firstly, we check that for a morphism X’ — X of Igo_,g,

the base change {X! — X'};es also lies in €, where Z; = X; xx X' and X = ZiZ'i0
3.15 to the following diagram

o o
Xl XX8X2

i€l

by 3.21. Applying

(3.22.1) Wic: 28 ——ic; Xi — = ier Zi
AXiL/o i/ i/

we deduce that [[;.; X; — X' is also a v-covering, which shows the stability of ¢" under base change.
For each i € I, let {X,;; — X;};cs, be an element of ¥. We need to show that the composition

{Xi; = Xtierjes, also lies in €. This follows immediately from the stability of v-coverings under

composition. We conclude that ¢ forms a pretopology. (I

Definition 3.23. With the notation in 3.16, we endow the category Igo_, s with the topology generated
by the pretopology defined in 3.22, and we call Iso_, g the v-site of S°-integrally closed coherent S-schemes.

By definition, any object in Iso_, s is quasi-compact. Let & be the sheaf on Igo_, g associated to the
presheaf X — I'(X, Ox). We call € the structural sheaf of Igo_,g.
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Proposition 3.24. With the notation in 3.16, let f : X' — X be a covering in Igo_,g such that f is
separated and that the diagonal morphism X'° — X'° X xo X'° is surjective. Then, the morphism of
representable sheaves h, — h% is an isomorphism.

Proof. We need to show that for any sheaf F on Igo_, g, F(X) — F(X') is an isomorphism. Since the
composition of X’° — X’ X xo X’ — X'x x X’ factors through the closed immersion X’ — X'X x X’
(as f is separated), the closed immersion X’ — X'X x X’ is surjective (3.19.(1)). Consider the following
sequence

(3.24.1) F(X)—= FX) = F(X'xxX") = F(X").

The right arrow is injective as X’ — X'X x X' is a v-covering. Thus, the middle two arrows are actually
the same. Thus, the first arrow is an isomorphism by the sheaf property of F. O

Proposition 3.25. With the notation in 3.16, let o : F1 — Fa be a morphism of presheaves on Igo_.g.
Assume that
(i) the morphism F1(Spec(V)) — Fa(Spec(V)) is an isomorphism for any S°-integrally closed S-
scheme Spec(V') where V' is an absolutely integrally closed valuation ring, and that
(ii) for any directed inverse system of S°-integrally closed affine schemes (Spec(Ax))aea over S the
natural morphism colim F;(Spec(Ay)) — Fi(Spec(colim Ay)) is an isomorphism for i = 1,2 (cf.
3.19.(3)).

Then, the morphism of the associated sheaves F — F& is an isomorphism.

Proof. Let A be a product of absolutely integrally closed valuation rings such that X = Spec(A) is an
S°-integrally closed S-scheme. Let Spec(V) be a connected component of Spec(A) with the reduced
closed subscheme structure. Then, V' is an absolutely integrally closed valuation ring by 3.11.(2), and
Spec(V) is also S°-integrally closed since it has nonempty intersection with the dense open subset X° of
X. Notice that each connected component of an affine scheme is the intersection of some open and closed
subsets ([Sta21, 04PP]). Moreover, since A is reduced, we have V' = colim A’, where the colimit is taken
over all the open and closed subschemes X’ = Spec(A’) of X which contain Spec(V'). By assumption, we
have an isomorphism

(3.25.1) colim Fy (X') =5 colim Fy(X").

For two elements &;,&] € F1(X) with ax (&) = ax(§]) in F(X), by (3.25.1) and a limit argument,
there exists a finite disjoin union X = [[;_; X/ such that the images of & and & in F;(X]) are the same.
Therefore, 72 — F% is injective by 3.14. On the other hand, for an element & € Fa(X), by (3.25.1)
and a limit argument, there exists a finite disjoin union X = [[;_, X/ such that there exists an element
§1,i € F1(X]) for each i such that the image of &y in Fo(X]) is equal to ax/(&1,;). Therefore, 7 — F3
is surjective by 3.14. O

3.26. We take the notation in 3.16. Endowing Sch®" with the v-topology (3.3), we see that the functors
o and Ut defined in 3.20 are left exact (as they have left adjoints) and continuous by 3.15 and 3.22.
Therefore, they define morphisms of sites (2.5)

(3.26.1) (Sch9h ), 5 Isos ~7> (Schie),.

Proposition 3.27. With the notation in 3.26, let a : (Sch‘}%}é)v — S¢, be the morphism of site defined
by the inclusion functor (3.9).

(1) For any torsion abelian sheaf F on S, the canonical morphism ¥, (a=*F) — R¥,(a 1 F) is an
isomorphism.

(2) For any locally constant torsion abelian sheaf 1L onIgo_,g, the canonical morphism L. — RY, W11
18 an tsomorphism.

Proof. (1) For each integer ¢, the sheaf R9WU,(a"'F) is the sheaf associated to the presheaf X
HY(X° a 1F) = Hgt(Xo,f,ézlf) by 3.9, where fs : X& — Sg is the natural morphism. If X is
the spectrum of a nonzero absolutely integrally closed valuation ring V, then X° = Spec(V[1/7]) for a
nonzero element 7 € V by 3.11.(1) and 3.19.(1), which is also the spectrum of an absolutely integrally
closed valuation ring (2.1). In this case, Hgt(X",fgtl.F) = 0 for ¢ > 0, which proves (1) by 3.25 and
[SGA 4y1, VIL5.8].
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(2) The problem is local on Igo_,5. We may assume that L is the constant sheaf with value L. Then,
RV, UL = 0 for ¢ > 0 by applying (1) on the constant sheaf with value L on Sg,. For ¢ = 0, notice that
LL is also the sheaf associated to the presheaf X +— HY (X, L), while U, UL is the sheaf X — HJ, (X°, L)
by the discussion in (1). If X is the spectrum of a nonzero absolutely integrally closed valuation ring,
then so is X° and so that HY (X, L) = HY (X°,L) = L. The conclusion follows from 3.25 and [SGA 4y,
VIL5.8]. O

4. THE ARC-DESCENT OF PERFECT ALGEBRAS
Definition 4.1. For any F,-algebra R, we denote by Rpers the filtered colimit
(4.1.1) Rpert = cglimR

rob

indexed by (N, <), where the transition map associated to ¢ < (i 4+ 1) is the Frobenius of R.
It is clear that the endo-functor of the category of Fj-algebras, R +— Ryerf, commutes with colimits.

4.2. We define a presheaf Ope,r on the category Schﬁf;h of coherent U-small Fp-schemes X by
(4.2.1) Opert(X) = T(X, Ox )pert-

For any morphism Spec(B) — Spec(A) of affine F,-schemes, we consider the augmented Cech complex
of the presheaf Ope.s,

(4.2.2) 0— Aperf — Bperf — Bperf Xa Bperf — e

perf

Lemma 4.3 ([Sta2l, 0EWT]). The presheaf Opert is a sheaf on Sch]l?zh with respect to the fppf topology
([Sta21, 021L]). Moreover, for any coherent Fp,-scheme X and any integer q,

(4.3.1) ngpf(X7 Opert) = clg)rl(i){)an(X7 Ox).

Proof. Firstly, we remark that for any integer ¢, the functor H{ (X, —) commutes with filtered colimit of

fppf
abelian sheaves on (SCh?g?)fppf for any coherent scheme X ([Sta21, 0739]). Since the presheaf O sending
X toI'(X,0x) on Schf}zh is an fppf-sheaf, we have Hy (X, 03 ;) = colimpron HY), 1 (X, O) = Opers(X).

perf
Thus, Oper is an fppf-sheaf. Moreover, quppf(X7 Opert) = colimpyop HE (X, O) = colimpon, H1(X, Ox)

ppf
by faithfully flat descent ([Sta21, 03DW]). O

Lemma 4.4. Let 7 € {fppf, h, v, arc}. The following propositions are equivalent:

(1) The presheaf Opers 0N Sch]%zh is a T-sheaf and HI(X, Opert) = colimpon, H1(X,Ox) for any
coherent F,,-scheme X and any integer q.

(2) For any T-covering Spec(B) — Spec(A) of affine F,-schemes, the augmented Cech complex (4.2.2)
15 exact.

Proof. For an affine scheme X = Spec(A), HY(X,Ox) vanishes for ¢ > 0 and H°(X,0x) = A. For
(1) = (2), the exactness of (4.2.2) follows from the Cech-cohomology-to-cohomology spectral sequence
associated to the 7-covering Spec(B) — Spec(A) [Sta2l, 03AZ]. Therefore, (1) and (2) hold for 7 = fppf
by 4.3. Conversely, the exactness of (4.2.2) shows the sheaf property for any 7-covering of an affine
scheme by affine schemes, which implies the fppf-sheaf Operr is a 7-sheaf (cf. [Sta2l, OETM]). The
vanishing of higher Cech cohomologies implies that H(X, Operf) = 0 for any affine F,-scheme X and
any g > 0 ([Sta2l, 03F9]). Therefore, for a coherent F,-scheme X, HI(X, Operf) can be computed by
the hyper-Cech cohomology of a hypercovering of X formed by affine open subschemes ([Sta21, 01GY]).
In particular, we have HY(X, Opert) = H{ (X, Oper) for any integer ¢, which completes the proof by

fppf
4.3. (]

Lemma 4.5 (Gabber). The augmented Cech compler (4.2.2) is exact for any h-covering Spec(B) —
Spec(A) of affine Fp-schemes.

Proof. This is a result of Gabber, cf. [BST17, 3.3] or [Sta21, 0EWU], and 4.4. O

Lemma 4.6 ([BS17, 4.1]). The augmented Cech complex (4.2.2) is exact for any v-covering Spec(B) —
Spec(A) of affine Fy,-schemes.
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Proof. We write B as a filtered colimit of finitely presented A-algebras B = colim By. Then, Spec(B)) —
Spec(A) is an h-covering for each A by 3.2. Notice that Bpeys = colim By perr, then the conclusion follows
from applying 4.5 on Spec(B)) — Spec(A4) and taking colimit. O

Lemma 4.7 ([BS17, 6.3]). For any valuation ring V' and any prime ideal p of V, the sequence
(4.7.1) 0—V-5VhaV, 5 V/pV, — 0

is exact, where a(a) = (a,a) and B(a,b) = a —b. If moreover V is a perfect Fp-algebra, then for any
perfect V-algebra R, the base change of (4.7.1) by V — R,

(4.7.2) 0—R— R/pR®R, — Ry /pR, — 0
18 exact.

Proof. The sequence (4.7.1) is exact if and only if p = pV,. Let a € p and s € V' \ p. Since p is an ideal,
s/a ¢ V, thus a/s € V as V is a valuation ring. Moreover, we must have a/s € p as p is a prime ideal.
This shows the equality p = pV,,.

The second assertion follows directly from the fact that Torj;(B ,C) = 0 for any ¢ > 0 and any diagram
B+ A — C of perfect Fp-algebras ([BS17, 3.16]). d

Lemma 4.8 ([BM20, 4.8]). The augmented Cech complex (4.2.2) is exact for any arc-covering Spec(B) —
Spec(A) of affine Fy,-schemes with A a valuation ring.

Proof. We follow the proof of Bhatt-Mathew [BM20, 4.8]. Let B = colim Bj be a filtered colimit of
finitely presented A-algebras. Then, Spec(B)) — Spec(A) is also an arc-covering by 3.2. Thus, we may
assume that B is a finitely presented A-algebra.

An interval I = [p,q] of a valuation ring A is a pair of prime ideals p C g of A. We denote by
Ar = (A/p)q. The set Z of intervals of A is partially ordered under inclusion. Let P be the subset
consisting of intervals I such that the lemma holds for Spec(B ®4 A;) — Spec(Ar). It suffices to show
that P = 7.

(1) If the valuation ring Ay is of height < 1, we claim that Spec(B® 4 A1) — Spec(Ay) is automatically
a v-covering. Indeed, there is an extension of valuation rings A; — V of height < 1 which factors
through B ®4 Ay. As Ay — V is faithfully flat, Spec(B ®4 Ar) — Spec(Ay) is a v-covering by
3.2 and 3.4.(1). Therefore, I € P by 4.6.

(2) For any interval J C I, if I € P then J € P. Indeed, applying ®r, (As)pert to the exact sequence
(4.2.2) for Spec(B ®4 A1) — Spec(Ag), we still get an exact sequence by the Tor-independence
of perfect F,-algebras ([BS17, 3.16]).

(3) If p C A is not maximal, then there exists ¢ 2 p with I = [p,q] € P. Indeed, if there is no such
I with the height of A; no more than 1, then p = ﬂqu q, and thus,

(4.8.1) Ay /pA, = colim Aj.
I=[p,q],a2p
Since Spec(B ®4 Ay /pAp) — Spec(A4,/pAy) is an h-covering as A, /pA, is a field (and we have
assumed that B is of finite presentation over A), there exists an interval I in the above colimit,
such that Spec(B®4 Ay) — Spec(A;) is also an h-covering by 3.4.(3). Therefore, this I lies in P
by 4.6.

(4) If p C A is nonzero, then there exists q C p with I = [q,p] € P. This is similar to (3).

(5) If I, J € P are overlapping, then I U J € P. Indeed, by (2) and replacing A by Ajuy, we may
assume that I = [0,p], J = [p, m| with m the maximal ideal. In particular, A; = A,, Ay = A/p,
and A;ny = Ap/pA,. Since for each R = ®';  Bpers we have the short exact sequence (4.7.2),
we get TUJ € P.

In general, by Zorn’s lemma, the above five properties of P guarantee that P = Z (cf. [BM20, 4.7]). O

perf

Lemma 4.9 (cf. [BM20, 3.30]). The augmented Cech complex (4.2.2) is exact for any arc-covering
Spec(B) — Spec(A) of affine F,-schemes with A a product of valuation rings.

Proof. We follow closely the proof of 3.25. Let Spec(V) be a connected component of Spec(A) with the
reduced closed subscheme structure. Then, V' is a valuation ring by 3.11.(2). By 4.8, the augmented
Cech complex

(491) O — Vperf — (B ®A V)perf — (B ®A V)perf ®Vperf (B ®A V)perf —
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is exact. Notice that each connected component of an affine scheme is the intersection of some open and
closed subsets ([Sta21, 04PP]). Moreover, since A is reduced, we have V' = colim A’, where the colimit is
taken over all the open and closed subschemes Spec(A’) which contain Spec(V).

Therefore, by a limit argument, for an element f € ®Zperprerf which maps to zero in ®Z‘;1rprerf,

as Spec(A) is quasi-compact, we can decompose Spec(A) into a finite disjoint union ]_[fvzl Spec(A4;) such
that there exists g; € ®Zfl (B ®a Ai)pert which maps to the image f; of f in ®7}‘Z_.perf(B ®4 Ai)pert-

i,perf

Since we have

N
(492) ®Zperprerf = H ®Zi,perf (B Ka Ai)perfa
i=1
the element g = (g;)~_; maps to f, which shows the exactness of (4.2.2). O

Proposition 4.10 ([BS19, 8.9]). Let T € {fppf, h, v, arc}.

(1) The presheaf Opert is a T-sheaf over Schf}ih, and for any coherent F,-scheme X and any integer
q,

(4.10.1) HY(X, Opert) = colim HY(X, Ox).

(2) For any 7-covering Spec(B) — Spec(A) of affine Fp-schemes, the augmented Cech complex

(4102) 0— Aperf — Bpert — Bpert ®4 Bpert =« -

perf

18 exact.

Proof. We follow closely the proof of Bhatt-Scholze [BS19, 8.9]. (1) and (2) are equivalent by 4.4, and
they hold for 7 € {fppf, h, v} by 4.3, 4.5 and 4.6. In particular,

(4.10.3) HS(Spec(A), Opert) = Apert and HI(Spec(A), Opert) =0, Vg > 0.

We take a hypercovering in the v-topology Spec(As) — Spec(A) such that A, is a product of valuation
rings for each degree n by 3.14 and [Sta21, 094K and 0DB1]. The associated sequence

(4104) 0— Apcrf — AO,perf - Al,pcrf —

is exact by the hyper-Cech-cohomology-to-cohomology spectral sequence [Sta21, 01GY].

Consider the double complex (A7) where the i-th row A? is the base change of (4.10.2) by Apest —
Aj pert, i-e. the augmented Cech complex (4.2.2) associated to Spec(B ®4 A;) — Spec(4;) (we set
A_; = A). On the other hand, the j-th column Al is the associated sequence (4.10.4) to the hypercovering
Spec(Ae @4 (@, B)) — Spec(®’, B), which is exact by the previous discussion. Since A®, — Tot(Az)ng
is a quasi-isomorphism ([Sta21, 0133]), for the exactness of the (—1)-row A®, we only need to show the
exactness of the i-th row A? for any ¢ > 0 but this has been proved in 4.9 thanks to our choice of the
hypercovering, which completes the proof. ([l

5. ALMOST PRE-PERFECTOID ALGEBRAS

Definition 5.1.

(1) A pre-perfectoid field K is a valuation field whose valuation ring O is non-discrete, of height 1
and of residue characteristic p, and such that the Frobenius map on Ok /pOf is surjective.
(2) A perfectoid field K is a pre-perfectoid field which is complete for the topology defined by its
valuation (cf. [Sch12, 3.1]).
(3) A pseudo-uniformizer m of a pre-perfectoid field K is a nonzero element of the maximal ideal my
of OK
A morphism of pre-perfectoid fields K — L is a homomorphism of fields which induces an extension of
valuation rings O — Oyp,.

Lemma 5.2. Let K be a pre-perfectoid field with a pseudo-uniformizer w. Then, the fraction field K of
the m-adic completion of Ok is a perfectoid field.
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Proof. The m-adic completion 6; of Ok is still a non-discrete valuation ring of height 1 with residue
characteristic p (cf. [Bou06, V1.§5.3, Prop.5]). If p # 0, then it is canonically isomorphic to the p-adic
Completion of Ok, so that there is a canonical isomorphism O /pOx — 6; / p@—;\(, from which we see
that K is a perfect01d field. If p = 0, then the Frobenius 1nduces a surjection O — Ok if and only if
Ok is perfect. Thus, (’)K is also perfect, and we see that Kisa perfectoid field. ([

5.3. Let K be a pre-perfectoid field. There is a unique (up to scalar) ordered group homomorphism
v : K* — R such that v}l(O) = Oj, where the group structure on R is given by the addition. In
particular, O \ 0 = vz (Rsp) and mg \ 0 = vg' (Rso) (cf. [Bou06, VI.§4.5 Prop.7] and [Bou07, V.§2
Prop.1, Rem.2]). The non-discrete assumption on Ok implies that the image v (K*) C R is dense. We
set v (0) = 4o0.

Lemma 5.4 ([Sch12, 3.2]). Let K be a pre-perfectoid field. Then, for any pseudo-uniformizer n of K,
there exists m, € myg for each integer n > 0 such that mg = 7w and 7, = u, -WfH_l for some unit u, € OF,
and mg is generated by {m, }n>0.

Proof. If vg(m) < vk(p), since the Frobenius is surjective on OK/p, there exists m; € Ok such that
vi(m — 7)) > vg(p). Then, vig(r) = vi (7)) and thus # = w - 7} with v € Of. In general, since
vi (K*) C Ris dense, any pseudo-uniformizer 7 is a finite product of pseudo- unlformlzers whose valuation
values are strictly less than vk (p), from which we get a p-th root 71 of 7 up to a unit. Since m is also
a pseudo-uniformizer, we get 7, inductively. As vg(m,) tends to zero when n tends to infinity, mg is
generated by {m, }n>0- O

5.5. Let K be a pre-perfectoid field. We briefly review almost algebra over (Ok, mg ) for which we mainly
refer to [AG20, 2.6], [AGT16, V] and [GRO3]. Remark that mg ®o, mg = m?% = m is flat over Of.

An Og-module M is called almost zero if mxgM = 0. A morphism of Og-modules M — N is called
an almost isomorphism if its kernel and cokernel are almost zero. Let .4 be the full subcategory of
the category Og-Mod of Og-modules formed by almost zero objects. It is clear that .4 is a Serre
subcategory of Ox-Mod ([Sta21, 02MO]). Let S be the set of almost isomorphisms in Ox-Mod. Since
A is a Serre subcategory, S is a multiplicative system, and moreover the quotient abelian category
Ox-Mod/./ is representable by the localized category S™1Ox-Mod (cf. [Sta2l, 02MS]). We denote
S71Ok-Mod by O#-Mod, whose objects are called almost Oy -modules or simply O%-modules (cf.
[AG20, 2.6.2]). We denote by

(5.5.1) o : Og-Mod — O3-Mod, M — M?

the localization functor. It induces an Og-linear structure on O'}‘}—Mod. For any two Og-modules M
and N, we have a natural O-linear isomorphism ([AG20, 2.6.7.1])

(5.5.2) Hom pa_ppoa(M™, N*) = Homo . Moa (Mix @0, M, N).

The localization functor o admits a right adjoint
(5.5.3) a, : Of-Mod — Ox-Mod, M +— M, = Hompa noq(OF, M),
and a left adjoint
(5.5.4)  : 0% -Mod — Ox-Mod, M — M, = myg @0, M,.
Moreover, the natural morphisms
(5.5.5) (M) =5 M, M =5 (M)

are isomorphisms for any O%-module M (cf. [AG20, 2.6.8]). In particular, for any functor ¢ : I —
0*_Mod sending i to M;, the colimit and limit of ¢ are representable by

(5.5.6) colim M; = (colim M;,)?, lim M; = (lim M;,)™
The tensor product in Ox-Mod induces a tensor product in O%-Mod by
(5.5.7) M @oa N = (M ©0, N)™

making O%-Mod an abelian tensor category ([AG20, 2.6.4]). We denote by O#-Alg the category of
commutative unitary monoids in 0%-Mod induced by the tensor structure, whose objects are called
almost Ofc-algebras or simply O%-algebras (cf. [AG20, 2.6.11]). Notice that R* (resp. R.) admits a
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canonical algebra structure for any Og-algebra (resp. (’)%-algebra) R. Moreover, a* and a, induce
adjoint functors between O-Alg and O3l-Alg ([AG20, 2.6.12]). Combining with (5.5.5) and (5.5.6), we
see that for any functor ¢ : I — O%-Alg sending i to R;, the colimit and limit of ¢ are representable by
(cf. [GRO3, 2.2.16])

(5.5.8) colim R; = (colim R;, )™, lim R; = (lim Ry, ).
In particular, for any diagram B < A — C of O%-algebras, we denote its colimit by
(5.5.9) B®,sC = (B,®4, C)*,

which is clearly compatible with the tensor products of modules. We remark that a* commutes with
arbitrary colimits (resp. limits), since it has a right adjoint c, (resp. since the forgetful functor
O3l-Alg — 0%-Mod and the localization functor o* : Ox-Mod — O3-Mod commute with arbitrary
limits).

5.6. For an element a of O, we denote by (O /aOx)*-Mod the full subcategory of O%-Mod formed
by the objects on which the morphism induced by multiplication by a is zero. Notice that for an
(Ok /aOg)™-module M, M, is an O /aOx-module. Thus, the localization functor a* induces an
essentially surjective exact functor (O /aOk)-Mod — (Ok/aOk)*-Mod, which identifies the latter
with the quotient abelian category (Ok/aOk)-Mod/. A N (O /aOk)-Mod.

Let m be a pseudo-uniformizer of K dividing p with a p-th root m; up to a unit. The Frobenius on
Oy /7Ok induces an isomorphism O /71O — O /7Of. The Frobenius on (O /m)-algebras and the
localization functor a* induce a natural transformation from the base change functor (O /7)*-Alg —
(O /7)*-Alg, R+ (O /) ®@Frob, (0 /x) I to the identity functor.

(5.6.1) (O /m)*-Alg —— (O /m)*-Alg —— (Ok /m)*-Alg

T

id
For an (O /m)%-algebra R, we usually identify the (O /m )*-algebra R/m R with the (Ox /7)%-algebra
(OK /T) ®Frob, (0 /x) R, and we denote by R/m1 R — R the natural morphism (O /7) ®prob, (0 /) R — R
induced by the Frobenius (cf. [GR03, 3.5.6]). Moreover, the natural transformations induced by Frobenius
for (O /7)-Alg and (O /7)*-Alg are also compatible with the functor a.. Indeed, it follows from the
fact that for any (Og /m)-algebra R, the composition of

Hom ,Frob
(562) (OK/ﬂ') ®(OK/7T) Hom(mK, R) — Hom(mK, (OK/TF) ®(OK/7r) R) (‘1141(2 I{OIn(n‘LK7 R)

is the relative Frobenius on (R*), = Home, Mod(Mz, R).

5.7. Let C be asite. A presheaf F of Ox-modules on C is called almost zero if F(U) is almost zero for any
object U of C. A morphism of presheaves F — G of Ox-modules on C is called an almost isomorphism
if F(U) — G(U) is an almost isomorphism for any object U of C (cf. [AG20, 2.6.23]). Let .4 be the full
subcategory of the category Ox-Mod¢ of sheaves of Og-modules on C' formed by almost zero objects.
Similarly, .4 is a Serre subcategory of Ox-Mod¢. Let D_y (Ox-Mod¢) be the full subcategory of the
derived category D(Ox-Mod¢) formed by complexes with almost zero cohomologies. It is a strictly full
saturated triangulated subcategory ([Sta21, 06UQ]). We also say that the objects of D_y (Ox-Mod() are
almost zero. Let S be the set of arrows in D(Ox-Mod) which induce almost isomorphisms on cohomolo-
gies. We also call the elements of S almost isomorphisms. Then, S is a saturated multiplicative system
([Sta21, 05RG]), and moreover the quotient triangulated category D(Ox-Mod¢)/D _y (Ox-Modc) is
representable by the localized triangulated category S™'D(Ox-Modc) ([Sta2l, 05RI]). The natural
functor

(5.7.1) S™'D(0Ox-Mod¢) — D(03-Mod()
is an equivalence by [Sta21, 06XM] and (5.5.5) (cf. [GRO3, 2.4.9]).

Lemma 5.8. Let K be a pre-perfectoid field with a pseudo-uniformizer m, M a flat Ox-module. We fix
a system of p™-th roots (mp)n>0 of ™ up to units (5.4), then the map

(5.8.1) () 7'M = (M™), = Homo, -Moa (M, M), a (z — za)
n>0
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where 7, M C MI1/7], is an isomorphism of O -modules. Moreover, for an extension of valuation
rings Ox — R of height 1, we have R = ngO 7, LR and the above isomorphism coincides with the unit

map R — (RY),.

Proof. Since mg is generated by {m,}n>0, any Og-linear morphism f : mg — M is determined by its
values f(m,) € M. Notice that (7/7,) - f(7,) = f(7) and M is w-torsion free, so that f must be given
by the multiplication by an element a = f(7)/m € M[1/x]. It is clear that such a multiplication sends
mg to M if and only if a € (0,5 7, * M, which shows the first assertion. If Ox — R is an extension of
valuation rings of height 1, then we directly deduce from the valuation map v : R[1/7]\ 0 — R (5.3) the
equality R =(1,>, ™, ' R. O
Lemma 5.9. Let K be a pre-perfectoid field, R an Og-algebra, O — V an extension of valuation rings
of height 1. Then, the canonical map

(5.9.1) Homo . aig(R, V) — Hompy a1g(RY, V)

1s bijective.

Proof. There are natural maps

(5.9.2) Homo, aig(R,V) — Hompa a1 (R, V) = Homo,aig(R, (V*).) = Homo,aig(R, V),
where the middle isomorphism is given by adjunction and the last isomorphism is induced by the inverse

of the unit map V — (V2!), by 5.8. The composition is the identity map, which completes the proof. [J

Definition 5.10. Let K be a pre-perfectoid field. We say that an O3 -module M (resp. an Ox-module
M) is flat (vesp. almost flat) if the functor 0%-Mod — O%-Mod given by tensoring with M is exact
(resp. M?! is flat).

Lemma 5.11. Let K be a pre-perfectoid field with a pseudo-uniformizer w. Then, an O%-module M is
flat if and only if M, is w-torsion free. In particular, an Ok-module N is almost flat if and only if the
submodule of m-torsion elements of N is almost zero.

Proof. First of all, for any O%-modules L; and Lo, we have a canonical isomorphism

(5.11.1) Hompe noa(M @0y L1, L2) = Homog voa (L1, Homo , Moa (M, L2.)™)

by (5.5.2), (5.5.5) and (5.5.7). Therefore, the functor defined by tensoring with M admits a right adjoint,
and thus it is right exact. Consider the sequence

(5.11.2) 0— 0% 5 08— (0Og/10x)Y — 0,

which is exact since the localization functor o is exact. If M is flat, tensoring the above sequence with
M and applying «., we deduce that M, is m-torsion free since a, is left exact (as a right adjoint to
o). Conversely, if M, is m-torsion free, then it is flat over Ok . For any injective morphism L; — Lo of
(’)‘}é—modules, Ly« — Lo, is also injective, and it remains injective after tensoring with M,. Therefore,
L1 — Lo also remains injective after tensoring with M since o* is exact. This shows that M is flat.
The second assertion follows from the almost isomorphism N — (N?!), and the fact that (N?!), =
Homo,.-Mod (Mg, N) has no nonzero almost zero element. O

Lemma 5.12. Let K be a pre-perfectoid field with a pseudo-uniformizer w, M a flat O'}‘}—module, x an
element of Ok . Then, the canonical morphism M, /xM, — (M /xM), is injective, and for any € € mg,
the image of pe : (M/exM ), — (M/xM), is M./xM,. In particular, the canonical morphism

(5.12.1) lim M, /7" M, — (lim M/7" M),

is an isomorphism of Ok -modules.

Proof. We follow the proof of [Sch12, 5.3]. Applying the left exact functor «, to the exact sequence

(5.12.2) 0 M 2= M M/zM ——=0,

we see that M, /eM, — (M/xM), is injective.

To show that the image of ¢, is M, /xM,, it suffices to show that o, factors through M, /xM,. We
identify (M/xM), with Home,. mod (Mg, Mi/xM,) by (5.5.5) and (5.5.2) so that M, /xM, identifies
with the subset consisting of the Ox-morphisms myx — M, /xM, sending y to ya for some element
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a € M,/xM,. For an Og-morphism f : mg — M, /exM,, let b be an element of M, which lifts f(e).
Notice that M, is m-torsion free by 5.11. With notation in 5.8, we have b = (¢/m,) - f(7,) mod exM, for
n big enough so that the element b/e € M,[1/7] lies in (),,s( 7, * M. = M,.. Moreover, m, - (b/€) = f(m,)
mod zM, for n big enough. As ¢.(f) is determined by its values on 7, for n big enough, it follows that
©ve(f) = a, where a is the image of b/e in M, /xM.,.

Finally, the previous result implies that the inverse system ((M/7"M).)n,>1 is Mittag-Leffler so that
the “in particular” part follows immediately from the fact that «, commutes with arbitrary limits (as a
right adjoint to o*) ([Sta21, 0596]). O

Definition 5.13. Let K be a pre-perfectoid field. For any Og-algebra R, we define a perfect ring R” as
the projective limit

(5.13.1) R’ = lim R/pR
Frob
indexed by (N, <), where transition map associated to i < (i + 1) is the Frobenius on R/pR. We call R’
the tilt of R.
Lemma 5.14 ([Sch12, 3.4]). Let K be a perfectoid field with a pseudo-uniformizer © dividing p.

(1) The projection induces an isomorphism of multiplicative monoids

Frob Frob

In particular, the right hand side is canonically isomorphic to ((’)K)b as a ring.
(2) We denote by

(5.14.2) t:(Ok) — Ok, s at,

the composition of the inverse of (5.14.1) and the projection onto the first component. Then
v ot (Ok)’”\ 0 = Rsq defines a valuation of height 1 on (Of)".
(3) The fraction field K° of (Ok)? is a perfectoid field of characteristic p and the element

(5.14.3) w = (o m/” m/? m,0) € (Ok)

is a pseudo-uniformizer of K°, where m = u - 7} with 1 € mg and u € OF.
(4) We have O = (Ok)®, and there is a canonical isomorphism

(5.14.4) O /T O = O /7O
induced by (1) and the projection onto the first component.

5.15. We see that the tilt defines a functor Ox-Alg — Of»-Alg, R +— R’, which preserves almost zero
objects and almost isomorphisms. For an O%-algebra R, we set R> = ((R.)")* and call it the tilt of
R, which induces a functor O%}—Alg — (9§<1,,-A1g7 R — R’. Note that the tilt functor commutes with
the localization functor a® up to a canonical isomorphism, and commutes with the functor a, up to a
canonical almost isomorphism.

Definition 5.16 ([Sch12, 5.1]). Let K be a perfectoid field, = a pseudo-uniformizer of K dividing p with
a p-th root 7 up to a unit.
(1) A perfectoid O -algebra is an O%-algebra R such that
(i) R is flat over O3l;
(ii) the Frobenius of R/mR induces an isomorphism R/m1 R — R/mR of O%i-algebras (5.6);
(iii) the canonical morphism R — lim R/7"R is an isomorphism in O%-Alg.
We denote by O3-Perf the full subcategory of O%-Alg formed by perfectoid O3i-algebras.
(2) A perfectoid (O /m)*-algebra is a flat (O /7)?-algebra R such that the Frobenius map in-
duces an isomorphism R/m R — R. We denote by (O /m)*-Perf the full subcategory of
(Ok /m)?-Alg formed by perfectoid (O /7)-algebras.

Lemma 5.17. Let K be a pre-perfectoid field, m a pseudo-uniformizer of K dividing p with a p-th root
w1 up to a unit. Then, for an Ok-algebra R, the following conditions are equivalent:

(1) The almost algebra R# associated to the T-adic completion R of R is a perfectoid O;L(l—algebm,
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(2) The Og-module R is almost flat, and the Frobenius of R/mR induces an almost isomorphism
R/m R — R/7R.

Proof. We have seen that K isa perfectoid field in 5.2 and 7 is obviously a pseudo-uniformizer of K.
Since the localization functor o* : Og-Alg — O%-Alg commutes with arbitrary limits and colimits

(5.5), we have a canonical isomorphism R = lim ﬁal/wnﬁal. Thus, the third condition in 5.16.(1)
holds for R?!. Since there are canonical isomorphisms

(5.17.1) R/mR = R/mR, R/TR = R/nR,

the conditions (1) and (2) are clearly equivalent. O

Definition 5.18. Let K be a pre-perfectoid field, m a pseudo-uniformizer of K dividing p with a p-th
root m up to a unit. We say that an Og-algebra is almost pre-perfectoid if it satisfies the equivalent
conditions in 5.17.

We remark that in 5.18, if a morphism of Og-algebras R — R’ induces an almost isomorphism
R/7"R — R'/7"R' for each n > 1, then the morphism of the 7-adic completions R — R’ is an almost
isomorphism since o commutes w1th limits. In particular, R is almost pre-perfectoid if and only if R’ is
almost pre-perfectoid.

Lemma 5.19. Let K be a pre-perfectoid field with a pseudo-uniformizer w, R an Og-algebra. If R is
almost flat (resp. flat) over O, then the m-adic completion R is almost flat (resp. flat) over Og.

Proof. For any integer n > 0, there is a canonical isomorphism
(5.19.1) R/7"R =% R/7"R.

Let 2 € R be a m-torsion element. Since any m-torsion element of R is almost zero (resp. zero) by 5.11, for
any € € mg (resp. € = 1), the image of ez in R/7" R lies in 7" R/7" R. Therefore, ex € Mo IR =
0, which amounts to say that R is almost flat (resp. flat) over O R~ O

Lemma 5.20. Let K be a pre-perfectoid field, m a pseudo-uniformizer of K dividing p with a p-th root
w1 up to a unit, R a flat Ok -algebra. Then, the following conditions are equivalent:

(1) The Frobenius induces an injection R/mi R — R/TR.

(2) For any x € R[1/7], if 2P € R, then x € R.

Proof. We follow the proof of [Sch12, 5.7]. Assume first that R/m1 R — R/7R is injective. Let « € R[1/7]
with 2P € R, k the minimal natural number such that y = 7¥2 € R. If k > 1, then y? = wkap € mR.
Therefore, y € m R by the injectivity of the Frobenius. However, as R is w-torsion free, we have y' =
y/m = i1z € R which contradicts the minimality of k.

Conversely, for any « € R with 2P € 7R, we have (/m1)P € R. Thus, z/m € R by assumption, i.e.

x € m R, which implies the injectivity of the Frobenius. ([l

Lemma 5.21. Let K be a pre-perfectoid field, m a pseudo-uniformizer of K dividing p with a p-th root
w1 up to a unit, R an Ok -algebra which is almost flat. Then, the following conditions are equivalent:

(1) The Frobenius induces an almost injection (resp. almost isomorphism) R/m R — R/mR.
(2) The Frobenius induces an injection (resp. isomorphism) (R™), /7 (R™), — (R™),/m(R™),.

Proof. We follow the proof of [Sch12, 5.6]. Notice that the Frobenius is compatible with the functors a*
and a, (5.6). (2) = (1) follows from the almost isomorphism R — (R),. The “injection” part of (1)
= (2) follows from the inclusions (5.12)

(5.21.1) (R™)o/m(RY)s € ((R/mR)™)., (RY)s/mn(RY). C ((R/7R)™)..

For the “isomorphism” part of (1) = (2), notice that (R™),/m (R*). — (R*),/7(R*), is almost surjec-
tive. Let w2 be a p-th root of 711 up to a unit (5.4). Then, for an element x of (R™),, there exist elements
y and 2’ of (R*), such that bz = yP + 7r§2:c'. Thus, z = y'? + 7r§27pm’ where y' = y/m2 € (R™).[1/7]
(as (R™), is flat over O by 5.11). In fact, y’ lies in (R*), by 5.20 and the “injection” part of (1) = (2).
By applying this process to z’, there exist elements y” and 2" of (R™), such that 2’ = y""? + 7r§27pm”.

In conclusion, we have x = y'? + 7r§27p(y”p + ’7T§27p1'//) = (y + 72"y mod w(R™)., which shows
the surjectivity of (R), /71 (R™), — (RM), /7(R™),. O
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Lemma 5.22. Let K be a pre-perfectoid field, R an almost flat O -algebra, m, 7' pseudo-uniformizers
dividing p with p-th roots m, ™) respectively up to units. Then, the following conditions are equivalent:

(1) The Frobenius induces an almost injection (resp. almost surjection) R/m1 R — R/mR.
(2) The Frobenius induces an almost injection (resp. almost surjection) R/m{ R — R/7'R.

In particular, the definitions 5.16.(1) and 5.18 do not depend on the choice of the pseudo-uniformizer.

Proof. Notice that (R™), is flat over Ok by 5.11. The “injection” part follows from 5.20 and 5.21. For
the “surjection” part, we assume that R/m R — R/7R is almost surjective. Let € € mg. We can take a
pseudo-uniformizer 7 of K dividing p with 7 = 7 and vk (7)/3 < vk (T) < vk (m)/2. For any x € R, by
the almost surjectivity, we have ex = y? + 72z for some 3,z € R. We also have 7z = v? + 7w for some
v,w € R, then ex = y? + TvP + Trw. Since y? + 7P = (y + m1v)? mod pR, R'/7i R — R/7'R is almost
surjective for any pseudo-uniformizer 7’ dividing p with vk (7") < 4vk(7)/3. By induction, we see that
R'/miR — R/7'R is almost surjective in general. O

Proposition 5.23. Let K be a pre-perfectoid field of characteristic p with a pseudo-uniformizer w, R
an O -algebra, R the m-adic completion of R. Then, R is almost pre-perfectoid if and only if (R™), is
perfect.

Proof. Note that Ok is perfect by definition. If R is almost pre-perfectoid, then R is almost flat so that
(ﬁal)* is m-adically complete by taking M = Relin 5.12. Moreover, the Frobenius induces an isomorphism
(R, /7"(R™), — (R™),/aP"(R™), for any integer n > 1 by 5.21 and 5.22, which implies that (R®),
is perfect Conversely, assume that (R™), is perfect. For any 7-torsion element f € (R™),, we have
7l/P" f =0 for any integer n > 0, which shows that R is almost flat by 5.11. Moreover, it is clear that
the Frobenius induces an isomorphism (R?!), /w(R™), — (R™),/7?(R™),, which shows that R is almost
pre-perfectoid by 5.21 and 5.22. ]

Proposition 5.24. Let K be a pre-perfectoid field with a pseudo-uniformizer m, R an Ok -algebra which
is almost flat, R’ the integral closure of R in R[1/xw]. If the Frobenius induces an almost injection
R/m R — R/mR, then R — R’ is an almost isomorphism.

Proof. Since R — (R™), is an almost isomorphism, we may replace R by (R®), so that we may assume
that R = (R),, R C R[1/7] by 5.11 and for any € R[1/n] such that P € R, then € R by 5.20
and 5.21. It suffices to show that R is integrally closed in R[1/7]. Suppose that x € R[1/7] is integral

over R. There is an integer N > 0 such that 2" is an R-linear combination of 1,z, ...,z for any r > 0.
Therefore, there exists an integer k > 0 such that 7*2" € R for any » > 0. Taking r = p", we get
2 €(),50Tn 'R = (R™), = R by 5.8, which completes our proof. O

Lemma 5.25. Let K be a pre-perfectoid field with a pseudo-uniformizer m, R an Og-algebra which is
almost pre-perfectoid. Consider the natural morphisms

(5.25.1) R—L+ R3]

R Rl

Q

3 |=

Then f(R) — ¢~ (f'(R)) is an almost isomorphism.

Proof. We need to show that f(R) — ¢~ 1(f’ (}A%)) is almost surjective. Let f(a)/7™ € ¢'~1(f'(R)) where
a € R. Hence, ¢'(f(a)) = n" f'(b) for some b € R. Notice that f’ is almost injective since R?! is perfectoid.
Therefore, € - g(a) = en™b for any € € mg. Since g induces an isomorphism

(5.25.2) R/m"R = R/n"R,
there exists ¢ € R such that ea = 7"¢, which implies that e(f(a)/7") = f(c) € f(R). This completes the
proof. O

Proposition 5.26. Let K be a pre-perfectoid field with a pseudo-uniformizer m, R an Ok -algebra which
18 almost pre-perfectoid, R' the integral closure of R in R[1/x]|. Then, the morphism of w-adic completions

R — R is an almost isomorphism. In particular, R' is also almost pre-perfectoid.
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Proof. We consider the following commutative diagram

f
/’F\
|

R//

(5.26.1)

g

N <=—

P
1"
_

 ——
h
h/
e

|

where R” is the integral closure of R in R[1/7]. We claim that R’ /7" R’ — R" /7" R’ is almost injective.
Let a € R’ C R[1/x] such that ¢"”"(a) = «™b for some b € R”. Since h’ is an almost isomorphism by
5.24, for any € € mg, there exists ¢ € R such that € - ¢”(a) = 7"h/(c). Thus, ea/7™ € ¢'~*(f'(R)), hence
e2a/m™ € f(R) by 5.25, and thus €?a € 7" R’, which proves the claim. Now we consider

(5.26.2) R/7m"R — R'/7"R' — R" /7" R".

Its composition is an almost isomorphism since A’ is an almost isomorphism. Since the second map
is almost injective, the first map R/7#"R — R’'/7"R’ is an almost isomorphism, which completes the
proof. O

Theorem 5.27 (Tilting correspondence [Sch12, 5.2, 5.21]). Let K be a perfectoid field, = a pseudo-
uniformizer of K dividing p with a p-th root w1 up to a unit.
(1) The functor O%-Perf — (O /m)¥-Perf, R+ R/TR, is an equivalence of categories.
(2) The functor O3, -Perf — (O /7)) -Perf, R — R/m°R is an equivalence of categories, and
the functor (O /7°)*-Perf — O, -Perf, R~ R’ is a quasi-inverse.
(3) Let R be a perfectoid O3 -algebra with tilt R®. Then, R is isomorphic to O for some perfectoid
field L over K if and only if R’ is isomorphic to O, for some perfectoid field L' over K.

In conclusion, we have natural equivalences
5.27.1 O%-Perf 5 (O /7)) -Perf =5 (O /1) -Perf < 0, -Perf,
K K K

where the middle equivalence is given by the isomorphism (5.14.4) Oy /7O — Ok /TOx. We
remark that the natural isomorphisms of the equivalence in (2) are defined as follows: for a perfectoid
03l -algebra R, the natural isomorphism R — (R/7’R)" is induced by the morphism R, — (R./7’R,)’
sending x to (- - - 7551/1’2, z'/? 1) (notice that R, is perfect by 5.23); for a perfectoid (O /n°)-algebra R,
the natural isomorphism R’ /7’ R”> — R is induced by the projection on the first component (R, )" — R,
(cf. [Sch12, 5.17]). Consequently, for a perfectoid O%i-algebra R, the morphism

(5.27.2) R /T’R* — R/7R
induced by the projection on the first component is an isomorphism.

Proposition 5.28. Let K be a perfectoid field with a pseudo-uniformizer m of K dividing p, B + A —
C a diagram of perfectoid O3 -algebras. Then, the m-adically completed tensor product B®4C is also
perfectoid.

Proof. We follow closely the proof of [Sch12, 6.18]. Firstly, we claim that (B ®4 C)/7 is flat over
(Ok /7). Since (B®4 C)/m = (B* @4 C”)/x°, it suffices to show the flatness of B* ® 4, C” over O,
which amounts to say that the submodule of 7’-torsion elements of (B,)® @A,y (C.)" is almost zero as
B’ ® 4 C° = ((B.)’ ®(a, ) (COP)AL I f € (B, ®(a.) (C.,)" is a w*-torsion element, then by perfectness
of (B,) ®(a,) (C,)?, we have (7°)*/?" f = 0 for any n > 0, which proves the claim.

Thus, (B ®4 C)/7 is a perfectoid (/\(’)K/W)al—algebra. It corresponds to a perfectoid O%-algebra D
by 5.27 and it induces a morphism B®,C — D by universal property of m-adically completed tensor
product. We use dévissage to show that (B®4 C)/n™ — D/n™ is an isomorphism for any integer n > 0.
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By induction,

(5.28.1) (B4 O)/n" —"= (B®4C)/r"! ——= (B®4C)/T —=0
0 D/7™ z D/xntt D/x 0

the vertical arrows on the left and right are isomorphisms. By snake’s lemma in the abelian category
0#-Mod ([Sta21, 010H]), we know that the vertical arrow in the middle is also an isomorphism. In
conclusion, B® 4C — D is an isomorphism, which completes the proof. ([

Corollary 5.29. Let K be a pre-perfectoid field, B < A — C a diagram of Og-algebras which are
almost pre-perfectoid. Then, the tensor product B ® 4 C is also almost pre-perfectoid.

Proof. Since o* commutes with arbitrary limits and colimits (5.5), we have (B®,C)* = B¥® galéal,
which is perfectoid by 5.28. (]

Lemma 5.30. Let K be a perfectoid field, Ox — V an extension of valuation rings of height 1. Then,
there exists an extension of perfectoid fields K — L and an extension of valuation rings V. — Op over

Ok.

Proof. Let 7 be a pseudo-uniformizer of K, E the fraction field of V, E an algebraic closure of E, V the
integral closure of V in E. Let m be a maximal ideal of V. It lies over the unique maximal ideal of V as
V — V is integral. Setting W = V,, according to [Bou06, VI.§8.6, Prop.6], V — W is an extension of
valuation rings of height 1. Since W is integrally closed in the algebraically closed fraction field E, the
Frobenius is surjective on W/pW. Thus, the fraction field of W is a pre-perfectoid field over K. Passing
to completion, we get an extension of perfectoid fields K — L by 5.2. O

Proposition 5.31 ([BS19, 8.9]). Let K be a pre-perfectoid field with a pseudo-uniformizer = dividing p,
R — R’ a homomorphism of Ok -algebras which are almost pre-perfectoid. If Spec(R') — Spec(R) is a
m-complete arc-covering, then for any integer n > 1, the augmented Cech complex

(5.31.1) 0— R/m" = R'/t" - (R @g R')/7" — ---
is almost exact.

Proof. We follow Bhatt-Scholze’s proof [BS19, 8.9]. After replacing O, R, R’ by their m-adic com-
pletions, we may assume that K is a perfectoid field and that R* and R are perfectoid O%-algebras
such that Spec(R’) — Spec(R) is a m-complete arc-covering by 3.4.(6). Since the localization functor a*
commutes with arbitrary limits and colimits (5.5), (@;R’)al = @k]%alR/al is still a perfectoid O%-algebra

. ~k . s . .
by 5.28 for any k& > 0. In particular, ® , R’ is almost flat over Ok . Then, by dévissage, it suffices to show
the almost exactness of the augmented Cech complex when n = 1, i.e. the almost exactness of

(5.31.2) 0— R/n” = R"/n” = (R®” @p» R®) /7" — --- .

We claim that the natural morphism X = Spec(R”)]]Spec(R’[1/7°]) — Y = Spec(R’) is an arc-
covering. Since Spec(R’/7) — Spec(R/w) is an arc-covering, X — Y is surjective. Therefore, we only
need to consider the test map Spec(V) — Y where V is a valuation ring of height 1. There are three
cases:

(1) If 7” is invertible in V, then we get a natural lifting R’[1/7°] — V.

(2) If 7 is zero in V, then we have R/m = R’ /7 — V, and there is a lifting R /7 = R"” /7> — W.

(3) Otherwise, O — V is an extension of valuation rings. After replacing V by an extension
(5.30), we may assume that V[1/7"] is a perfectoid field over K” with valuation ring V. By
tilting correspondence 5.27, it corresponds to a perfectoid field over K with valuation ring V¥,
together with an Og-morphism R — V* by 5.9. Since R — R’ gives a m-complete arc-covering,
there is an extension V¥ — W of valuation rings of height 1 and a lifting R' — W. After replacing
W by an extension (5.30), we may assume that W[1/7] is a perfectoid field over K with valuation
ring W. By tilting correspondence 5.27 and 5.9, we get a lifting R® — W" of R® — V.
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Now we apply 4.10 to the arc-covering X — Y of perfect affine Fj,-schemes. We get an exact augmented
Cech complex

1 1 1
(5.31.3) 0— R = R" x Rb[;] — (R" x Rb[g]) @p» (R x Rb[;]) —

Since each term is a perfect Fj-algebra, the submodule of n’-torsion elements is almost zero, in other
words, each term is almost flat over Og». Modulo 7°, we get the almost exactness of (5.31.2), which
completes the proof. (I

6. BRIEF REVIEW ON COVANISHING FIBRED SITES

We give a brief review on covanishing fibred sites, which are developed by Abbes and Gros [AGT16,
VI]. We remark that [AGT16, VI] does not require the sites to admit finite limits (2.4).

6.1. A fibred site E/C is a fibred category 7 : E — C whose fibres are sites such that for a cleavage and
for every morphism f : § — « in C, the inverse image functor f* : E, — Ejz gives a morphism of sites
(so that the same holds for any cleavage) (cf. [SGA 4y, VI.7.2]).

Let x be an object of E over o € Ob(C'). We denote by

(6.1.1) Wf By — E

the inclusion functor of the fibre category E, over « into the whole category E. A wvertical covering of
x is the image by ¢} of a covering family {z,, — z}men in E,. We call the topology generated by all
vertical coverings the total topology on E (cf. [SGA 4y1, V1.7.4.2]).

Assume further that C' is a site. A Cartesian covering of x is a family {x,, — x},cn of morphisms of
E such that there exists a covering family {«, = a},en in C with z,, isomorphic to the pullback of =
by a, — « for each n.

Definition 6.2 ([AGT16, V1.5.3]). A covanishing fibred site is a fibred site E/C where C is a site.
We associate to E the covanishing topology which is generated by all vertical coverings and Cartesian
coverings. We simply call a covering family for the covanishing topology a covanishing covering.

Definition 6.3. Let E/C be a covanishing fibred site. We call a composition of a Cartesian covering
followed by vertical coverings a standard covanishing covering. More precisely, a standard covanishing
covering is a family of morphisms of F

(6.3.1) {Znm = T}nenmem,

such that there is a Cartesian covering {z,, — z}nen and for each n € N a vertical covering {zp, —
xn}’rnEMn~

Proposition 6.4 ([AGT16, VI.5.9]). Let E/C be a covanishing fibred site. Assume that in each fibre
any object is quasi-compact, then a family of morphisms {x; — x}icr of E is a covanishing covering if
and only if it can be refined by a standard covanishing covering.

6.5. Let E/C be a fibred category. Fixing a cleavage of E/C| to give a presheaf F on E is equivalent to
give a presheaf 7, on each fibre category E, and transition morphisms F, — fPFj3 for each morphism

f: B — «ain C satisfying a cocycle relation (cf. [SGA 4y1, VI1.7.4.7]). Thus, we simply denote a presheaf
F on E by

(651) F = {a — ]:a}’QGOb(C)7

where F, = (BF is the restriction of F on the fibre category E,. If E/C is a fibred site, then F is a
sheaf with respect to the total topology on E if and only if F, is a sheaf on E, for each o ([SGA 4,
V1.7.4.7]). Moreover, we have the following description of a covanishing sheaf.

Proposition 6.6 ([AGT16, V1.5.10]). Let E/C be a covanishing fibred site. Then, a presheaf F on E is
a sheaf if and only if the following conditions hold:
(v) The presheaf Fo = (B F on E, is a sheaf for any o € Ob(C).
(c) For any covering family {f; : a; = a}icr of C, if we set o;j = a; Xo oj and fij : o — «, then
the sequence of sheaves on E.,,
(6.6.1) Fo = [ fisFar = [ FiinFess
iel ijel
s exact.
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7. FALTINGS FIBRED SITES

7.1. Let Y — X be a morphism of U-small coherent schemes, and let Ey _, x be the category of morphisms
V' — U of U-small coherent schemes over the morphism ¥ — X, namely, the category of commutative
diagrams of coherent schemes

(7.1.1) V—sU

|

Y —X

Given a functor I — Ey_, x sending ¢ to (V; — U;), if lim V; and lim U; are representable in the category
of coherent schemes, then lim(V; — U;) is representable by (lim V; — limU;). We say that a morphism
(V' = U") = (V= U) of objects of Ey_, x is Cartesian if V! — V xy U’ is an isomorphism. It is clear
that the Cartesian morphisms in Ey_, x are stable under base change.

Consider the functor

(7.1.2) o By_x — Schiy, (V> U)— U.

The fibre category over U is canonically equivalent to the category Sch?oUhY of coherent Uy -schemes,
where Uy =Y xx U. The base change by U’ — U gives an inverse image functor Sch??]hy — Sch;([’]hly,

which endows Ey_, x/ Sch%ﬁl with a structure of fibred category. We define a presheaf on Ey_, x by
(7.1.3) BV - U)=T(UY,0yv),
where UV is the integral closure of U in V.

Definition 7.2. Let Y — X be a morphism of coherent schemes. A morphism (V' — U’) —» (V — U)
in Ey_, x is called étale, if U’ — U is étale and V' — V xy U’ is finite étale.

Lemma 7.3. Let Y — X be a morphism of coherent schemes, (V" — U") 5 (V! — U’) N (V-=U)
morphisms in Ey_ x.

(1) If f is étale, then any base change of f is also étale.

(2) If f and g are étale, then f o g is also étale.

(3) If f and f o g are étale, then g is also étale.

Proof. It follows directly from the definitions. ([l

7.4. Let Y — X be a morphism of coherent schemes. We still denote by X (resp. Xer) the site formed
by coherent étale (resp. finite étale) X-schemes endowed with étale topology. Let E' . be the full
subcategory of Ey_, x formed by (V — U) étale over the final object (Y — X). It is clear that ES! |
is stable under finite limits in Ey_, x. Then, the functor (7.1.2) induces a functor

(7.4.1) o B — Xy, (V=2U)— U,

which endows E§! . /X with a structure of fibred sites, whose fibre over U is the finite étale site
Uy s We endow E‘;} _,x Wwith the associated covanishing topology, that is, the topology generated by
the following types of families of morphisms

V) {(Vi, = U) = (V = U) bmem, where {V,,, = V}en is a finite étale covering;

(c) {(Vxy U, =Uy,) = (V—=U)}en, where {U,, — U},ecn is an étale covering.
It is clear that any object of E§ |y is quasi-compact by 6.4. We still denote by % the restriction of the
presheaf 4 on Ey_, x to E$! |  if there is no ambiguity.

oh

Lemma 7.5. Let Y — X be a morphism of coherent schemes. Then, the presheaf on Sch;Y sending Y’
to I‘(XY,, Oy v') is a sheaf with respect to the fpqc topology ([Sta2l, 022A]).
Proof. We may regard Oy as a quasi-coherent Ox-algebra over X. It suffices to show that for a finite

family of morphisms {Y; — Y }ier with Y/ =[], Y; faithfully flat over Y, the sequence of quasi-coherent
O x-algebras

(7.5.1) 0 Oxvy Oxvr :;OXY’XYY’

el
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is exact. Thus, we may assume that X = Spec(R) is affine. We set Ag = T'(Y,0y), A1 = T(Y’,Oy/),
Ay = T(Y' Xy Y',Oyrxyyr), Ry = T(XY,0xv), Ri = T(XY,0xv'), Ry = T(XYY [ Oyyriyrr).
Notice that R; is the integral closure of R in A; for i = 0, 1,2 ([Sta2l, 035F]). Consider the diagram

(7.5.2) 0——=Ry—— R —= Ry

.

O4>A04>A13A2

We see that the vertical arrows are injective and the second row is exact by faithfully flat descent. Notice
that Ryg = Ag N Ry, since they are both the integral closure of R in Ay as Ay C A;. Thus, the first row
is also exact, which completes the proof. (I

Proposition 7.6. Let Y — X be a morphism of coherent schemes. Then, the presheaf B on E%/t—»( 18
a sheaf.

Proof. 1t follows directly from 6.6, whose first condition holds by 7.5, and whose second condition holds
by 3.17 (cf. [AGT16, 111.8.16]). O

Definition 7.7 ([Fal02, page 214], [AGT16, VI.10.1]). We call E§ . /X4 the Faltings fibred site of the
morphism of coherent schemes Y — X, and call Z the structural sheaf of ES! | .

It is clear that the localization (E%@%X)/(V_,U) of E§! . v at an object (V — U) is canonically equivalent
to the Faltings fibred site ES! ., of the morphism V — U by 6.4 (cf. [AGT16, VI.10.14]).

Lemma 7.8. Let X be the spectrum of an absolutely integrally closed valuation ring, Y a quasi-compact
open subscheme of X. Then, for any presheaf F on ES , , we have F*(Y — X) = F(Y — X). In
particular, the associated topos of ES' , y is local ([SGA 411, V1.8.4.6]).

Proof. Notice that Y is also the spectrum of an absolutely integrally closed valuation ring by 3.11.(1)
and that absolutely integrally closed valuation rings are strictly Henselian. Thus, any covering of Y — X
in E$! | can be refined by the identity covering by 6.4. We see that F2(Y — X) = F(Y — X) for any
presheaf F. For the last assertion, it suffices to show that the section functor I'(Y — X, —) commutes
with colimits of sheaves. For a colimit of sheaves F = colim F;, let G be the colimit of presheaves
G = colim F;. Then, we have F =G* and I'(Y — X, F) =T(Y — X,G) = colimI'(Y — X, F;). O

7.9. Let (Yy — X)\)xea be a U-small directed inverse system of morphisms of U-small coherent schemes
with affine transition morphisms Yy, — Yy and X)» — X (M > A). We set (Y — X) = limyea (Y —
X»). We regard the directed set A as a filtered category and regard the inverse system (Y) — X))xea as
a functor ¢ : A°® — E from the opposite category of A to the category of morphisms of U-small coherent
schemes. Consider the fibred category Efot — A°P defined by ¢ whose fibre category over \ is E‘)é/tA SN
and whose inverse image functor ¥, : B} | — Ef/i, _ x; associated to a morphism A" — X in A°P is
given by the base change by the transition morphism (Yy — Xx) — (YA — X)) (cf. [AGT16, VI.11.2]).
Let ¢ : E% Sxy E$' |, be the functor defined by the base change by the transition morphism
Y - X) = (V) = X)).

Recall that the filtered colimit of categories (E‘;ﬁA N XA) acA Is representable by the category E‘i} whose

objects are those of E‘f; and whose morphisms are given by ([SGA 41, VI 6.3, 6.5])
(7.9.1) Homga (V= U), (V' = U")) = colim Homga (V" = U"), (V! = U")),
= (VI SUM)y—(V—oU) ®

Cartesian

where the colimit is taken over the opposite category of the cofiltered category of Cartesian morphisms
with target V' — U of the fibred category Ef} over A°P (distinguish with the Cartesian morphisms defined

in 7.1). We see that the functors gpi induces an equivalence of categories by [EGA IV3, 8.8.2, 8.10.5] and
[EGA TVy, 17.7.8]

(7.9.2) &S EY Ly

Recall that the cofiltered limit of sites (E§} _, x, )xea is representable by E¢ endowed with the coarsest
topology such that the natural functors EYf _, v — E are continuous ([SGA 4y, VI.8.2.3]).
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Lemma 7.10. With the notation in 7.9, for any covering family L = {fi : (Vix = Ux) = (V = U) }rer
mn E’f}%X with K finite, there exists an index N\g € A and a covering family ty, = {fexng : Vir, —
Ukxe) = (Vg = Uxy)}trex in Eégo—”ﬁo such that fi is the base change of frx, by the transition
morphism (Y — X) = (Ya, = X»)-

Proof. There is a standard covanishing covering ' = {gnm : (Vi,,, = U)) = (V = U)}nenmem, in
E§' ,  with N, M, finite, which refines ¢l by 6.4. The equivalence (7.9.2) implies that there exists an index
A1 € A and families of morphisms U} = {gnmx, : Vi, = Una,) = (Va, = Ux,)tnenmenm,, (resp.

L= ASa t Vex, = Ukyy) = (Va, = Uxy) bkek) in Eé{/th—’Xh such that gnm, (resp. fi) is the base
change of gnma, (resp. fra,) by the transition morphism (Y — X) — (Y, — X)) and that 4} refines
Uy, . For each A > Ay, let gnma : (V/ N Un)\) (V)\ — U,\) (resp. fex : (Vex — Ugy) — (V)\ — U)))
be the base change of gnmx, (resp. fra,) by the transition morphism (Yy — X,) — (Y, — X),). Since
the morphisms [ [,y U, — U and ]_[meM m — V Xy U], are surjective, there exists an index Ag > Ay
such that the morphisms [[, cn Uy, — Ux, and err, Vimao = Vao XUy, Uy, are also surjective by
[EGA 1V3, 8.10.5], i.e. &\ = {gnmx, JneN,men, is a standard covanishing covering in E%O Xy Thus,
e = {fkxo trex i a covering family in E%O Xy O

Proposition 7.11 ([AGT16, VL 11]) With the notation in 7.9, ES . represents the limit of sites
(B! | x,)rea, and 2 = colimyep ¢y ' B.

Proof. (1) is proved in [AGTIG VI.11.3]. It also follows directly from the discussion in 7.9 and 7.10. For
(2), notice that colimyep ¢y ' % = (colimyen prp%)* ([Sta2l, 00WT]). It suffices to show that B(V —
U) = colimyen(prpZ)(V — U) for each object V. — U of E§' .. It follows from the equivalence
(7.9.2) that there exists an index A\g € A and an object Vy, — U, of Eg’, V=X, such that V' — U
is the base change of V), — U,, by the transition morphism. For each A > Ao, let Vi — Uy be the
base change of V), — Uy, by the transition morphism (Yy — X,) — (Y5, — X),). Then, we have
colimyen (prpZ)(V — U) = colimyep Z(Va — Uy) by [SGA 4q1, VI 8.5.2, 8.5.7]. The conclusion follows
from B(V — U) = colimyep B(Vy — Uy) by 3.18. O

Definition 7.12. A morphism X — S of coherent schemes is called pro-étale (resp. pro-finite étale), if
there is a directed inverse system of étale (resp. finite étale) S-schemes (X)xea with affine transition
morphisms such that there is an isomorphism of S-schemes X 2 limycp X). We call such an inverse
system (X»)xea a pro-étale presentation (resp. pro-finite étale presentation) of X over S.

Lemma 7.13. Let X 25 v -1 S be morphisms of coherent schemes.

(1) If f is pro-étale (resp. pro-finite étale), then f is flat (resp. flat and integral).

(2) Any base change of a pro-étale (resp. pro-finite étale) morphism is pro-étale (resp. pro-finite
étale).

(3) If f and g are pro-étale (resp. pro-finite étale), then so is fog.

(4) If f and f o g are pro-étale (resp. pro-finite étale), then so is g.

(5) If f is pro-étale with a pro-étale presentation Y = limYjs, and if g is étale (resp. finite étale),
then there is an index By and an étale (resp. finite étale) S-morphism gg, : Xg, — Yp, such that
g is the base change of gg, by Y — Yp,.

(6) Let Z and Z' be coherent schemes pro-étale over S with pro-étale presentations Z = lim Z,,
7' = limZé, then

(7.13.1) Homg(Z,2') = liéncogmHomg(Za,Zg).

Proof. (1) and (2) follow directly from the definition.

(3) We follow closely the proof of 3.6. Let X =1lim X, and ¥ = lim Y3 be pro-étale (resp. pro-finite
étale) presentations over Y and over S respectively. As Y3 are coherent, for each «, there is an index S,
and an étale (resp. finite étale) Yp_-scheme X,p, such that X, — Y is the base change of X,3, — Y3,
([EGA 1V3, 8.8.2, 8.10.5], [EGA IVy, 17.7.8]). For each 8 > 8,, let X,3 — Y3 be the base change of
Xop, = Y, by Yg — Ys,. Then, we have X = lim, g>3, Xog by [EGA IV3, 8.8.2] (cf. 3.6), which is
pro-finite étale over S. For (5), one can take X = X,.
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(6) We have
(7.13.2) Homg(Z,Z') = lién Homg(Z, Zj;) = lign colim Homg (Z,, Zj)

where the first equality follows from the universal property of limits of schemes, and the second follows
from the fact that Zj — S is locally of finite presentation ([EGA IV3, 8.14.2]). For (4), we take Z = X
and Z’ =Y. Then, for each index 8, we have an S-morphism X, — Y3 for « big enough, which is also
étale (resp. finite étale). Then, X = lim, Xo = lima,g Xo Xy, Y is pro-étale (resp. pro-finite étale) over
Y. O

Remark 7.14. A pro-étale (resp. pro-finite étale) morphism of U-small coherent schemes X — S admits
a U-small pro-étale (resp. pro-finite étale) presentation. Indeed, let X = limyea X be a presentation
of X — S. We may regard A as a filtered category with an initial object 0. Consider the category
¢ = x\Xogt,an (resp. ¢ = x\Xozsr) of affine (resp. finite) étale Xo-schemes which are under X.
Notice that ¥ is essentially U-small and that the natual functor A — €°P is cofinal by 7.13.(6) ([SGA 4,
1.8.1.3]). Therefore, after replacing ¢°P by a U-small directed set A’, we obtain a U-small presentation
X = limX/GA/ X' ([SGA 41, 1816])

Definition 7.15. For any U-small coherent scheme X, we endow the category of U-small coherent
pro-étale (resp. pro-finite étale) X-schemes with the topology generated by the pretopology formed by
families of morphisms

(7.15.1) {fi: Ui = Ulier

such that I is finite and that U = | f;(U;). This defines a site Xprost (resp. Xprofes), called the pro-étale
site (resp. pro-finite étale site) of X.

It is clear that the localization Xy oct v (resp. Xprost/v) Of Xpross (resp. Xprofss) at an object U
is canonically equivalent to the pro-étale (resp. pro-finite étale) site Uprosr (resp. Uprofst) of U. By
definition, any object in Xppoet (resp. Xprofet) IS quasi-compact.

7.16. We compare our definitions of pro-étale site and pro-finite étale site with some other definitions
existing in the literature. But we don’t use the comparison result in this paper.

Let X be a U-small Noetherian scheme. Consider the category of pro-objects pro-Xgst of Xget, i.e.
the category whose objects are functors F' : A — X with A a U-small cofiltered category and whose
morphisms are given by Hom(F,G) = limgep colimye 4 Hom(F (o), G(8)) for any F' : A — Xye and
G : B = X ([Schl3a, 3.2]). We may simply denote such a functor F' by (X,)aca. Remark that
limye 4 X, exists which is pro-finite étale over X. Consider the functor

(7161) prO‘Xfc't — Xprofét; (Xa)QGA — (}zler?él Xom

which is well-defined and fully faithful by 7.13.(6) and essentially surjective by 7.14. Thus, according
to [Sch13a, 3.3] and its corrigendum [Sch16], Scholze’s pro-finite étale site Xsmfét has the underlying
category Xprofst and its topology is generated by the families of morphisms

(7.16.2) U v L vy

where [ is finite and [[,.; U; — U’ is finite étale surjective, and there exists a well-ordered directed set
A with a least index 0 and a pro-finite étale presentation (Uj)xea of f such that Uj = U and that for
each A € A the natural morphism U} — lim, <) U}, is finite étale surjective (cf. [Kerl6, 5.5], 7.13 and
[EGA IV3, 8.10.5.(vi)]). It is clear that the topology of our pro-finite étale site Xprorst is finer than that
of Xgmfét. We remark that if X is connected, then Xsrofét gives a site-theoretic interpretation of the
continuous group cohomology of the fundamental group of X ([Schl3a, 3.7]). For simplicity, we don’t
consider Xsmfét in the rest of the paper, but we can replace Xprorst by Xsmfét for most of the statements

in this paper (cf. [Kerl6, 6]).

7.17. Let X be a U-small scheme. Bhatt-Scholze’s pro-étale site Xf;%ét has the underlying category of
U-small weakly étale X-schemes and a family of morphisms {f; : Y; = Y}icr in Xp]ir%ét is a covering if
and only if for any affine open subscheme U of Y, there exists a map a : {1,...,n} — I and affine open
subschemes Uj of Y,(;) (j = 1,...,n) such that U = U;;l Ja)(Uj) ([BS15, 4.1.1], cf. [Sta21, 0989]).
Remark that a pro-étale morphism of coherent schemes is weakly étale by [BS15, 2.3.3.1]. Thus, for a

coherent scheme X, X4 is a full subcategory of Xg’r%ét.
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Lemma 7.18. Let X be a coherent scheme. The full subcategory Xproet of Xg}%ét is a topologically
generating family, and the induced topology on Xpreee coincides the topology defined in 7.15. In particular,
the topoi of sheaves of V-small sets associated to the two sites are naturally equivalent.

Proof. For a weakly étale X-scheme Y, we show that it can be covered by pro-étale X-schemes. After
replacing X by a finite affine open covering and replacing Y by an affine open covering, we may assume
that X and Y are affine. Then, the result follows from the fact that for any weakly étale morphism of
rings A — B there exists a faithfully flat ind-étale morphism B — C such that A — C' is ind-étale by
[BS15, 2.3.4] (cf. [BS15, 4.1.3]). Thus, Xpw0s is a topologically generating family of Xfr%ét. A family of
morphisms {f; : Y; = Y}icr in Xpro¢¢ is a covering with respect to the induced topology if and only if for
any affine open subscheme U of Y, there exists amap a : {1,...,n} — I and affine open subschemes U; of
Yaj) (4 =1,...,n) such that U = U7_, fa(j)(U;) ([SGA 4y, II1.3.3]). Notice that ¥; and Y are coherent,
thus {f;}icr is a covering if and only if there exists a finite subset Iy C I such that Y = User, fi(Yi),

which shows that the induced topology on X4 coincides the topology defined in 7.15. Finally, the “in
particular” part follows from [SGA 4y, 111.4.1]. O

Definition 7.19. Let Y — X be a morphism of coherent schemes. A morphism (V' — U’) — (V — U)
in Ey_,x is called pro-étale if U' — U is pro-étale and V' — V xy U’ is pro-finite étale. A pro-étale
presentation of such a morphism is a directed inverse system (Vy — Uy)xea étale over V. — U with affine
transition morphisms Uy — Uy and V) — Vi () > A) such that (V' — U’) = limyea (Va — Uy).

Lemma 7.20. LetY — X be a morphism of coherent schemes, (V" — U") < (V! — U’) N (V—=U)
morphisms in Ey _ x.
(1) If f is pro-étale, then it admits a pro-étale presentation.
(2) If f is pro-étale, then any base change of f is also pro-étale.
(3) If f and g are pro-étale, then f o g is also pro-étale.
(4) If f and f o g are pro-étale, then g is also pro-étale.

Proof. Tt follows directly from 7.13 and its arguments. (]

Remark 7.21. Similar to 7.14, a pro-étale morphism in Ey_, x admits a U-small presentation.

7.22. Let Y — X be a morphism of coherent schemes, Eﬁ’/rf; the full subcategory of Ey_, x formed by
objects which are pro-étale over the final object Y — X. It is clear that E}°C% is stable under finite

limits in Ey_, x. Then, the functor (7.1.2) induces a functor

(7.22.1) ot DEYY s Xpest, (V= U)— U,

which endows E?ff;( /Xpross With a structure of fibred sites, whose fibre over U is the pro-finite étale
site Uy, profst- We endow Eg’fif;c with the associated covanishing topology. It is clear that any object in

E?,rf; is quasi-compact by 6.4. We still denote by Z the restriction of the presheaf % on Ey_ x to
EY % if there is no ambiguity. We will show in 7.30 that 2 is a sheaf on E}°r%.

Definition 7.23. We callﬁE‘{fif;( /Xproct the pro-étale Ealtings fibred site of the morphism of coherent
schemes Y — X, and call Z the structural sheaf of EX'°C%.

It is clear that the localization (Eﬁ’/rgf;() J(v—u) of Eg’fi‘f;( at an object V' — U is canonically equivalent

to the pro-étale Faltings fibred site EI"/rOé[tJ of the morphism V' — U by 6.4.

N
Remark 7.24. The categories Xprost, Xprotes and ngﬂfﬁ( are essentially V-small categories.
Lemma 7.25. Let Y — X be a morphism of coherent schemes. Then, the inclusion functor
(7.25.1) vTES  — BN (VS U) s (V= U)

defines a morphism of sites v : Eﬁ’,rfg( — Ef L ¢ (2.5).

Proof. Tt is clear that v* commutes with finite limits and sends a standard covanishing covering in
E$' |+ to a standard covanishing covering in El;rif;( (6.3). Therefore, v is continuous by 6.4 and defines

a morphism of sites. O
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Lemma 7.26. Let Y — X be a morphism of coherent schemes. Then, the topology on ES .\ is the

topology induced from Eg)fié;.

Proof. After 7.25, it suffices to show that for a family of morphisms & = {(V;, = Ux) = (V = U) hrek

in E§Y ¢, if v (Y) is a covering in EY'%y, then £l is a covering in E§' , . We may assume that K is

finite. There is a standard covanishing covering ' = {(V,.,,, = U},) = (V — U)}neNnmem, in ngfg(
with N, M,, finite, which refines v ({) by 6.4. We take a directed set = such that for each n € N,
we can take a pro-étale presentation U,, = limeez U;Lf over U, and we take a directed set 3 such that
for each n € N and m € M,, we can take a pro-finite étale presentation V! = lim,exV, ., over
V xy U],. By 7.13 (5), for each o € X, there exists an index £, € = and a finite étale morphism
Vimoe, =V xu Uy for each n and m, whose base change by U;, — U} is V., = V xy Uy,. Let
Vimoe = V xu Uy be the base change of V. — V xyy U}, by the transition morphism Uy, — U,
for each § > &,. Since [[,,cas. Viime — V xu U, is surjective, after enlarging {,, we may assume that
ens, Vamoe = V xu Uy, is also surjective for £ > £, by [EGA IV3, 8.10.5.(vi)]. It is clear that
[,en Une — U is surjective for each § € =. Therefore, Ui, = {(V,,,,¢ = Uyse) = (V= U)}nenmem,
is a standard covanishing covering in E“S,t _y for each 0 € ¥ and £ > &,. Notice that for each n € N

and m € M, there exists k¥ € K such that the morphism (V.. — U)) — (V — U) factors through

nmao

(Vi — Uy) for o, big enough by 7.13 (6), which shows that il is a covering in ES! | . O

Lemma 7.27. Let Y — X be a morphism of coherent schemes, $d = {(Vi, = Ug) = (V — U)}rer a
covering in El;,rie;( with K finite. Then, there exist pro-étale presentations (V — U) = limaea (V) — Uy),
(Vi = Ug) = limaep (Viex = Uka) over Y — X and compatible étale morphisms (Vix — Ugy) = (Vi —

Uy) such that the family 8y = {(Vix — Ug) = (Vx — Ux) }rer is a covering in B, .

Proof. We follow closely the proof of 3.6. We take a directed set A such that for each k € K we can take
a pro-étale presentation (Vi — Ug) = limpea(Via — Uga) over (V. — U). Then, Uy = {(fra : Via —
Uka) = (V = U)}rex is a covering family in ES¢ ., for each o € A by 7.26.

Let (V — U) = limgep(Vs — Up) be a pro-étale presentation over Y — X. For each o € A, there
exists an index 8, € B and a covering family o5, = {frag. @ Vias, = Ukag.) = (Va, — Us, ) tkek
such that fro is the base change of frag, by the transition morphism (V. — U) — (Vp, — Us,)
(7.10). For each 8 > fBa, let frag @ (Viap — Urag) — (Vg — Ug) be the base change of frap, by
the transition morphism (Vz — Ug) — (Vz, — Ug,). We take A = {(a,8) € Ax B | B > Ba},
(V)\ — U,\) = (VB — Uﬂ) and (V]C,\ — Uk,\) = (Vkaﬁ — Ukaﬁ) for each \ = (a,ﬁ) € A. Then, the families
Uy = {(Vkx = Ugx) = (V\ = Ux) }rex meet the requirements in the lemma (cf. 3.6). O

Lemma 7.28. Let Y — X be a morphism of coherent schemes, F a presheaf on E‘i}ax, V= U an
object of BY°C% with a pro-étale presentation (V — U) = lim(Vy — Uy). Then, we have v, F(V — U) =
colim F(Vy — Uy), where vt : B, — EX% s the inclusion functor.

Proof. Notice that the presheaf F is a filtered colimit of representable presheaves by [SGA 4y, 1.3.4]

(7.28.1) F = colim SN
(VIsUNE®S, x| 0

Thus, we may assume that F is representable by V' — U’ since the section functor 'V — U, —)
commutes with colimits of presheaves ([Sta21, 00VB]). Then, we have

(7.28.2) vph$t L (V = U) =h2% (V= U)
=Hompproar (V' = U), (V' =U")
= colim HOmEe;}*X((V)\ — U)\)7 (V/ — U/))
=colim hsh 7 (Vs — Uy)

where the first equality follows from [Sta21, 04D2], and the third equality follows from [EGA IVs3, 8.14.2]
since U’ and V' are locally of finite presentation over X and Y x x U’ respectively. O

Proposition 7.29. Let Y — X be a morphism of coherent schemes, F an abelian sheaf on E’gs,tﬁx,
V — U an object of EY°% with a pro-étale presentation (V — U) = lim(Vy — Uy). Then, for any
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integer q, we have
(7.29.1) HUEYS v F) = colim HY(ES! ., F),

where v : Ei’,rie;( — E?%X is the morphism of sites defined by the inclusion functor (7.25). In particular,

the canonical morphism F — Ruv,v ™1 F is an isomorphism.

Proof. We follow closely the proof of 3.8. For the second assertion, since R9v,v~1 F is the sheaf associated
to the presheaf (V — U) — Hq(EF‘fié;], v1F) = HY(ES ,;, F) by the first assertion, which is F if ¢ =0
and vanishes otherwise.

For the first assertion, we may assume that F = 7 is an abelian injective sheaf on E§' , y (cf. 3.8). We
claim that for any covering in Eg)/rié;, U={(Vy = U;) = (V= U)}lrex with K finite, the augmented
Cech complex associated to the presheaf vpZ,

(7.29.2) 0= 1pZ(V—=U)— Hypz(vk = Up) — H voZ(Vie Xy Vi — Uy, Xy Upr) — -+
k b,k

is exact. Admitting this claim, we see that 1,7 is indeed a sheaf, i.e. v7'7 = 1,7, and the vanishing of
higher Cech cohomologies implies that H q(El‘"ffg, v~17T) = 0 for any ¢ > 0, which completes the proof
together with 7.28. For the claim, let (V — U) = limyea (Va — Ux) and (Vi — Uy) = limyxea (Vix — Ugy)
be the pro-étale presentations constructed in 7.27. The family y = {(Vix — Uir) = (Va = Ux) brex
is a covering in E'xéft—»(- By 7.28, the sequence (7.29.2) is the filtered colimit of the augmented Cech
complexes

(7.29.3) 0—Z(Vy— Uy — HI(VM = Uka) — HI(Vm Xvy Vieax = U Xuy, Upra) = -
k kK

which are exact since Z is an injective abelian sheaf on E§f_, . O

Corollary 7.30. With the notation in 7.29, the presheaf % on Er;/r:e} is a sheaf, and the canonical
morphisms v B — B and B — Rv, B are isomorphisms. If moreover p is invertible on Y, then for
each integer n > 0, the canonical morphisms v="(B/p"B) — B[p" % and B[p" B — Rv.(B/p"B) are
isomorphisms.

Proof. For any pro-étale presentation (V — U) = lim(Vy — Uy ), we have v~ 1 #(V — U) = colim Z(V), —
Uy) = B(V — U) by 7.28 and 3.18. This verifies that 2 is a sheaf on EP'°% and that v~ 1% — Z is
an isomorphism. The second isomorphism follows from the first and 7.29. For the last assertion, notice
that the multiplication by p" is injective on 4, so that the conclusion follows from the exact sequence

n

(7.30.1) 0 7 7] B/p" B — 0.

8. COHOMOLOGICAL DESCENT OF THE STRUCTURAL SHEAVES

Lemma 8.1. Let Y — X be a morphism of coherent schemes such that Y — XY is an open immersion.
Then, the functor

(8.1.1) FLEY STy Ly, (Vo U)—UY,
is well-defined, left exact and continuous. Moreover, we have Y x xy UV = V.

Proof. Since U’ = XY x x U is integral over U, we have UV = U’Y. Applying 3.19.(4) to V — U’ over
Y — XV, we see that the XY -scheme U" is Y-integrally closed with Y x yv UY = V, and thus the
functor €t is well-defined. Let (Vi — Uy) — (Vo — Up) + (Vo — Us) be a diagram in EY°%. By
3.21, Ul‘/lyug’ﬂ Uy? = (U Xy¥o Uy2)V1xv V2 = (U xy, Up)V**% V2 which shows the left exactness of et

For the continuity, notice that any covering in Eg’fifg( can be refined by a standard covanishing covering
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(6.4). For a Cartesian covering family 3 = {(V xy U, — U,) = (V —= U)}nen with N finite, we apply
3.15 to the commutative diagram

(8.1.2) HneNV XU UnHHneN UXXUUW HHnGN U,
1% uv U

then we see that e (L) is a covering family in Iy _, xv. For a vertical covering family 4 = {(V,,, — U) —
(V= U)}mem with M finite, we apply 3.15 to the commutative diagram

(8.1.3) oens Vin — e, UV ——=U
\% uv U
then we see that ¢*(4) is also a covering family in Ty _, xv. O

8.2. Let Y — X be a morphism of coherent schemes such that ¥ — XY is an open immersion. Then,
there are morphisms of sites

(8.2.1) e: Ty xv — EY°%
(8.2.2) eIy xv — Ef ¢

defined by (8.1.1) and the composition of (8.1.1) with (7.25.1) respectively. We temporarily denote
by OP*® the presheaf on Iy_,xv sending W to I'(W,Ow) (thus & = (0*™)*). Notice that we have
B = e? O™ (resp. B = ePOP). The canonical morphism ? P — P& (resp. eP OP™ — eP ) induces
a canonical morphism % — €, 0 (resp. B — e, 0).

8.3. Let K be a pre-perfectoid field (5.1) of mixed characteristic (0,p), n = Spec(K), S = Spec(Ok),
Y — X a morphism of coherent schemes such that XY is an S-scheme with generic fibre (X¥), =Y. In
particular, XY is an object of Is.

Lemma 8.4. For any ring R, there is an R-algebra Ry satisfying the following conditions:
(i) The scheme Spec(Rx[1/p]) is pro-finite étale and faithfully flat over Spec(R[1/p]).
(ii) The R-algebra Ry is the integral closure of R in Rso[1/p].
(iii) Any unit t of Ree admits a p-th oot t'/? in R...
Moreover, if p lies in the Jacobson radical J(R) of R, and if there is a p*-th root po € R of p up to a
unit, and we write py = ph, then we may require further that

(iv) the Frobenius of Roo/pRs induces an isomorphism Reo/p1Roo — Roo/PRoo-

Proof. Setting By = R[1/p], we construct inductively a ring B,,11 ind-finite étale over B,, and we denote
by R, the integral closure of R in B,. For n > 0, we set
teT

— coli p_
(8.4.1) Biia ;%1}%1 ®Bn B, [X]/(XP —1)
where the colimit runs through all finite subsets T" of the subset R)* of units of R,, and the transition
maps are given by the inclusion relation of these finite subsets T. Notice that B, [X]/(X? —t) is finite
étale and faithfully flat over B,,, thus B, 41 is ind-finite étale and faithfully flat over B,,. Now we take
By = colim,, B,,. The integral closure R, of R in By, is equal to colim, R, by 3.18. We claim that R,
satisfies the first three conditions. Firstly, we see inductively that B, = R,[1/p] (0 < n < co0) by 3.17.
Thus, (i), (ii) follow immediately. For (iii), notice that we have R = colim, R). For an unit t € RX,
we suppose that it is the image of ¢,, € R). By construction, there exists an element x,,11 € R,,4+1 such
that xf)H_l =t,. Thus, ¢t admits a p-th root in R.

For (iv), the injectivity follows from the fact that R, is integrally closed in Ro[1/p] (cf. 5.20). For
the surjectivity, let a € Ro,. Firstly, since Ry is integral over R, p also lies in the Jacobson radical
J(Rs) of Roo. Thus, 1 +pia € RX, and then by (iii) there is b € Ry, such that b» = 1 + pja. We write
(b—1)P = pya’ for some @’ € a+p;Re. Thus, 1+a’ —a € RX, and then by (iii) there is ¢ € Ry such that
c? = 1+a’—a. On the other hand, since R is integrally closed in Ry [1/p], we have z = (b—1)/p2 € Roo.
Now we have (z —c+ 1)? = aP — ? + 1 = a (mod pR ), which completes the proof. O
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Remark 8.5. In 8.4, it follows from the construction that Spec(R[1/p]) — Spec(R[1/p]) is a covering in
Spec(R[1/)ue (7:16).

Proposition 8.6. With the notation in 8.3, for any object V.— U in Elg’,r:é;(, there exists a covering

{(Vi = U;) = (V= U)}ier with I finite such that for each i € I, Uzv is the spectrum of an Ok -algebra
which is almost pre-perfectoid (5.18).

Proof. After replacing U by an affine open covering, we may assume that U = Spec(A). Consider
the category € of étale A-algebras B such that A/pA — B/pB is an isomorphism, and the colimit
AN = colim B over €. In fact, ¥ is filtered and (A", pA®) is the Henselization of the pair (A4, pA) (cf.
[Sta21, 0A02]). It is clear that Spec(A™) [ Spec(A[1/p]) — Spec(A) is a covering in Uproet. So we reduce
to the situation where p € J(A) or p € A*. The latter case is trivial, since the p-adic completion of
R=T(UY,0Oyv) is zero if p is invertible in A. Therefore, we may assume that p € J(A) in the following.

Since R =T'(UY, Oyv) is integral over A, we also have p € J(R). Applying 8.4 to the Ok-algebra R,
we obtain a covering Vo, = Spec(Rx[1/p]) — V = Spec(R[1/p]) in Vyoter such that Re = T(UY>, Opva.)
is an Ok-algebra which is almost pre-perfectoid by 5.4 and 5.19. (]

Proposition 8.7. With the notation in 8.3, if W is an object of I,_,5 such that W is the spectrum
of an Ok-algebra which is almost pre-perfectoid, then for any integer n > 0, the canonical morphism
L(W,0w)/p"T(W,Ow) — RI'(Iw, »w, O/p"O) is an almost isomorphism (5.7).

Proof. Let € be the full-subcategory of I,,_, 5 formed by the spectrums of Og-algebras which are almost
pre-perfectoid. It is stable under fibred product by 5.29, 5.26 and 3.21, and it forms a topologically
generating family for the site I, s by 8.1 and 8.6. It suffices to show that for any covering in I, g,
U= {W; — W}ier consisting of objects of € with K finite, the augmented Cech complex associated to
the presheaf W — I'(W, Ow ) /p"T' (W, Ow ) on I,_,s (whose associated sheaf is just € /p"0),

(8.7.1) 0 — D(W,0w)/p" = [ [T (Wi, Ow,) /p" = T[T (WeXwWir, Oz w, )/0™ = -
k k!

is almost exact. Indeed, the almost exactness shows firstly that T'(W, Oy, ) /p"™ — H O(Iwn—wv, O/p"0) is
an almost isomorphism (cf. [Sta21, 00W1]), so that the augmented Cech complex associated to the sheaf
O [p" 0 is also almost exact. Then, the conclusion follows from the almost vanishing of the higher Cech
cohomologies of &'/p" € by [Sta2l, 03F9].

We set R =T'(W,0w) and R' =[], cx I'(Wg, Ow, ). They are almost pre-perfectoid, and Spec(R’) —
Spec(R) is a v-covering by definition. Thus, the almost exactness of (8.7.1) follows from 5.29, 5.26 and
9.31. 0

Theorem 8.8. With the notation in 8.3, lete : Iy _, xv — E?ff& be the morphism of sites defined in 8.2.

Then, for any integer n > 0, the canonical morphism % /p"% — Re.(O[p"O) is an almost isomorphism
in the derived category D(Og-Modgpree: ) (5.7).
Y —->X

Proof. Since Rie,(€/p"0) is the sheal associated to the presheaf (V. — U) — HI(Iy_yv,0/p"0)

and any object in EI;,rOj;( can be covered by those objects whose image under et are the spectrums of
O-algebras which are almost pre-perfectoid by 8.6, the conclusion follows from 8.7. O

Corollary 8.9. With the notation in 8.3, let € : Iy _ xv — E?/tax be the morphism of sites defined in
8.2. Then, for any finite locally constant abelian sheaf L on E$ ., the canonical morphism L ®z % —
Re.(e7'L ®z O) is an almost isomorphism in the derived category D(Ox-Modge: ) (5.7).

Proof. The problem is local on E§' ., thus we may assume that L is the constant sheaf with value
Z/p™Z. Then, the conclusion follows from 8.8 and 7.30. U

Remark 8.10. In 8.9, if L is a bounded complex of abelian sheaves on E$! , - with finite locally constant
cohomology sheaves, then the canonical morphism L ®% Z — Re. (e 7!L ®% ) is also an almost isomor-
phism. Indeed, after replacing L by L ®% Zp, we may assume that L is a complex of Z/p™Z-modules for
some integer n ([Sta21, 0DD7]). Then, there exists a covering family {(V; — X;) = (Y — X)}ier in
E$'_, x such that the restriction of L on E§f_, i is represented by a bounded complex of finite locally
constant Z/p"Z-modules ([Sta21, 094G]). Then, the conclusion follows directly from 8.9.
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Corollary 8.11. With the notation in 8.3, let Y — X; (i = 1,2) be a morphism of coherent schemes
such that XY is an S-scheme with generic fibre (Xiy),] =Y, L a finite locally constant abelian sheaf on
E‘;}HXQ. If there is a morphism [ : X1 — X5 underY such that the nqtuml morphism g: X{ = XY isa
separated v-covering and that g~ (Y) =Y, and if we denote by u : E?axl — E‘;}exz the corresponding
morphism of sites, then the natural morphism L @z % — Ru.(u"'L ®z &) is an almost isomorphism.

Proof. The morphism w is defined by the functor u* : E§!_ , — E{'_, \ sending (V — Uz) to (V —
Up) = (V= X1 xx, Up). Weset Vo =Y xx, Uy =Y xx, Uy. According to 3.17, UY* — U,® is the
base change of X{" — X3 by Us — X», and thus it is a separated v-covering. Notice that Vj is an open
subscheme in both U}® and U,°, and moreover Vy = Vj Xy ULP. Applying 3.15 to the commutative
diagram

(8.11.1) V—U/ —=UP

L

V—=U) —=U)°

it follows that U} — UJ is also a separated v-covering. Let g; : Iy, y» — E§3§_>Xi (1 = 1,2) be the
morphisms of sites defined in 8.2. The sheaf R%u, (u~'L ®z %) is associated to the presheaf (V — Us)
HYEY_,, ,u"'L ®z B). We have

(8.11.2) HYEY p,,u 'Ly B) = H'(Iy_yv,e; v 'L ey 0)
= HQ(IV—>U§/75§1L ®z 0) — HY(EY_p,,L ®7 B),

where the equality follows from the fact that the morphism of representable sheaves associated to U} —
Uy on I, 5 is an isomorphism by 3.24, and where the two arrows are almost isomorphisms by 8.9, which
completes the proof. O

8.12. Let A be the category formed by finite ordered sets [n] = {0,1,...,n} (n > 0) with non-decreasing
maps ([Sta2l, 0164]). For a functor from its opposite category A°P to the category E of morphisms
of coherent schemes sending [n] to Y,, — X,,, we simply denote it by Yo — X,. Then, we obtain a
fibred site ESf _ . over A°? whose fibre category over [n] is E{ |y and the inverse image functor
JTHEY L — E§ ¢ associated to a morphism f : [m] — [n] in A°P is induced the base change by
the morphism (Y, = X,,,) — (¥, — X,,) associated to f. We endow E’f}.ﬁx. with the total topology
(6.1) and call it the simplicial Faltings site associated to Yo — X, ([Sta21, 09WE.(A)]). The sheaf % on
cach E§! _ « induces a sheaf Z, = {[n] — 2} on E{{ _, \ with the notation in 6.5.

For an augmentation (Yo — X,) — (Y — X) in E ([Sta21, 018F]), we obtain an augmentation of
simplicial site a : Ef v — E{’_ \ ([Sta21, 0D6Z.(A)]). We denote by a, : ES _  — E§f_ ¢ the
natural morphism induced by (Y, — X,,) — (Y — X). Notice that for any sheaf F on E$! , y, we have
a 'F = {[n] = a, ' F} with the notation in 6.5 ([Sta21, 0D70]).

Corollary 8.13. With the notation in 8.3, let L a finite locally constant abelian sheaf on Eéf,t_»(, Xe > X
an augmentation of simplicial coherent scheme. If we set Yo =Y Xx Xo and denote by a : Ei’,t._»(. —
E'§§_>X the augmentation of siﬁplicml site, assumﬁLg that XY — XY is a hypercovering in I,_g, then
the canonical morphism L @z B — Ra.(a 'L ®z B,) is an almost isomorphism.

Proof. Let b: 1y _ yve — Iy ,xv be the augmentation of simplicial site associated to the augmentation

of simplicial object XY* — XY of I, 5 ([Sta21, 09X8]). The functorial morphism of sites ¢ : Iy _, xv —
E$' | defined in 8.2 induces a commutative diagram of topoi ([Sta21, 0D99])

(8.13.1) I- SR

. X0

bl l

~ € St~
IY%Xy EY—>X
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We denote by a,, : Eé}nﬁXn — E§! .y and b, : I
Consider the commutative diagram

v s x¥» — Iy xv the natural morphisms of sites.
n n

(8.13.2) Ra.(a 'L ® A,) - L® % * Re.(e7'L ® O)
Ra,Regne; (0L ®@ By) —> Rew (¢ 'L ® O,) —— Re, Rb, b~ (e 'L ® 0)

where ¢ = aoe, = c0b, and ay (resp. as) is induced by the canonical morphism e 1% — & (resp.
5:1@. — 0O,), and other arrows are the canonical morphisms.

Notice that aq is an almost isomorphism by 8.9, and that a4 is an isomorphism by [Sta21, 0D8N] as
XY — XY is a hypercovering in I, _,s. It remains to show that as o aj is an almost isomorphism. With
the notation in 6.5, we have

(8.13.3) a 'L ® By = {[n] — a, 'L ® A} and
(8.13.4) L ® Oy = {[n] — ¢, a,'L® O}.
Moreover, by [Sta21, 0D97] we have

(8.13.5) Rice.(c 'L ® O,) = {[n] = Ricpu(c, a, 'L ® O)}

for each integer g. Therefore, a 'L ® B¢ — Reex(c L ® O,) is an almost isomorphism by 8.9 and so is
a5 0 as. (I

9. COMPLEMENTS ON LOGARITHMIC GEOMETRY

We briefly recall some notions and facts of logarithmic geometry which will be used in the rest of the
paper. We refer to [Kat89, Kat94, GR04, Ogul8] for a systematic development of logarithmic geometry,
and to [AGT16, IL.5] for a brief summary of the theory.

9.1. We only consider logarithmic structures in étale topology. More precisely, let X be a scheme, Xg; the
étale site of X, Ox,, the structure sheaf on X¢;, O the subsheaf of units of Ox,,. A logarithmic struture
on X is a homomorphism of sheaves of monoids o : . #Z — Ox,, on X¢ which induces an isomorphism
a1 (0%,,) — O%,.. We denote by (X, .#) the associated logarithmic scheme (cf. [AGT16, I1.5.11]).

9.2. Let (X,.#) be a coherent log scheme (cf. [AGT16, I1.5.15]). Then, there is a maximal open
subscheme X' of X on which . is trivial, and moreover it is functorial in (X, .#) ([Ogul8, I11.1.2.8]).
Let (X, #) — (S,.Z) < (Y, /) be a diagram of fine and saturated log schemes (cf. [AGT16, I1.5.15]).
Then, the fibred product is representable in the category of fine and saturated log schemes by (Z, &) =
(X, ) sts,,s,ﬂ) (Y, #). We remark that Z" = X% xgu Y% that Z — X Xg Y is finite, and that
Z'" — 7 is Cartesian over X' Xgu Y — X xg Y ([Ogul8, III 2.1.2, 2.1.6]). Moreover, if X' = X,
then Z = X xg Y ([Ogul8, I11.2.1.3]).

9.3. For an open immersion j : Y — X, we denote by js : Yer — Xg the morphism of their étale
sites defined by the base change by j. Let .#y_,x be the preimage of ]};t*(?)x/ét under the natural map
Ox,, — JjetxOy,,, and we endow X with the logarithmic structure .#y_, x — Ox,,, which is called the
compactifying log structure associated to the open immersion j ([Ogul8, I11.1.6.1]). Sometimes we write
My _x as Mx if Y is clear in the context.

9.4. Let (X, #) be a fine and saturated log scheme which is regular ([Kat94, 2.1], [Niz06, 2.3]). Then,
X is locally Noetherian and normal, and X' is regular and dense in X ([Kat94, 4.1]). Moreover, there
is a natural isomorphism .# — #xu«_,x ([Kat94, 11.6], [Niz06, 2.6]). We remark that if X is a regular
scheme with a strict normal crossings divisor D, then (X,.#x\p_x) is fine, saturated and regular
([Ogu1g, I11.1.11.9]).

Let f: (X, .#) — (S,.Z) be a smooth (resp. saturated) morphism of fine and saturated log schemes
(cf. [AGT16, I 5.25, 5.18]). Then, f remains smooth (resp. saturated) under the base change in the
category of fine and saturated log schemes ([Ogul8, IV.3.1.2, IV.3.1.11], resp. [Ogul8, I111.2.5.3]). We
remark that if f is smooth, then f% : X** — S% is a smooth morphism of schemes. If moreover (S,.%) is
regular, then (X, .#) is also regular ([Ogul8, IV.3.5.3]). We also remark that if f is saturated, then for
any fibred product in the category of fine and saturated log schemes (Z, &) = (X, .#) X?S 2) (Y, A,
we have Z = X xgY ([Tsul9, 11.2.13)).
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9.5. Let K be a complete discrete valuation field with valuation ring Ok, k the residue field of Ok, w
a uniformizer of Ox. We set n = Spec(K), S = Spec(Ok) and s = Spec(k). Then, (S, .#,s) is fine,
saturated and regular, since N — I'(S, ., _, 5) sending 1 to 7 forms a chart of (S, #,_.s) (cf. [AGT16,
I1.5.13, 11.6.1]). Recall that an open immersion ¥ — X of quasi-compact and separated schemes over
n — S is strictly semi-stable ([dJ96, 6.3]) if and only if the following conditions are satisfied ([dJ96, 6.4],
[EGA TVy, 17.5.3)):

(i) For each point = of the generic fibre X, there is an open neighborhood U C X, of = and a
smooth K-morphism

(9.5.1) f:U — Spec(K[s1,...,5m))

such that f maps x to the point associated to the maximal ideal (sy,..., s;,) and that U \ 'YV is
the inverse image of the closed subset defined by s ---s,, =0.

(ii) For each point z of the special fibre X, there is an open neighborhood U C X of 2 and a smooth
O g-morphism

(9.5.2) f:U — Spec(Ok[t1, .- tn, 81,y Sm]/(m —t1 -+ tn))

such that f maps x to the point associated to the maximal ideal (¢1,...,t,, $1,...,8m) and that
U\ 'Y is the inverse image of the closed subset defined by ¢; -« ¢, - s1 -8, = 0.
In this case, (X, .#y_,x) is fine, saturated and regular which is smooth and saturated over (S, ., _s),
since locally on X there exists a chart for the morphism (X, #y_x) — (S, .#,—s) subordinate to
the morphism N — N" @& N™ sending 1 to (1,...,1,0,...,0) such that the induced morphism X —
S Xy Anngnm is smooth (cf. [Ogul8, IV.3.1.18)]).

9.6. Recall that a morphism of schemes f : X — S is called generically finite if there exists a dense open
subscheme U of S such that f~'(U) — U is finite. We remark that for a morphism f : X — S of finite
type between Noetherian schemes which maps generic points to generic points, f is generically finite if
and only if the residue field of any generic point 7 of X is a finite field extension of the residue field of
f(n) (ILO14, 11.1.1.7]).

9.7. Let K be a complete discrete valuation field with valuation ring Ok, L an algebraically closed
valuation field of height 1 extension of K with valuation ring O, K the algebraic closure of K in L.

Consider the category € of open immersions between integral affine schemes U — T over Spec(K) —
Spec(Ok) under Spec(L) — Spec(Or) such that T is of finite type over Ok and that Spec(L) — U
is dominant. Let %, be the full subcategory of ¢ formed by those objects U — T Cartesian over
Spec(K) — Spec(Ok).

(9.7.1) Spec(L) Spec(Op)

| |

U = Spec(B) —— T = Spec(A)

| |

Spec(K) ——— Spec(Ok)

We note that the objects of € are of the form (U = Spec(B) — T = Spec(A)) where A (resp. B) is a
finitely generated Og-subalgebra of O, (resp. K-subalgebra of L) with A C B such that Spec(B) —
Spec(A4) is an open immersion.

Lemma 9.8. With the notation in 9.7, we have:

(1) The category € is cofiltered, and the subcategory Geay is initial in €.

(2) The morphism Spec(L) — Spec(Op) represents the cofiltered limit of morphisms U — T indexed
by € in the category of morphisms of schemes (cf. 7.1).

(3) There exists a directed inverse system (Ux — Tx)aea of objects of Gear over a directed inverse
system (Spec(Ky) — Spec(Ok, ))aca of objects of Gear such that Ky is a finite field extension of
K in L, that K = Usea K, that Ux — Ty is strictly semi-stable over Spec(Ky) — Spec(Ok, )
(9.5), and that (Ux — Tx\)rea forms an initial full subcategory of Cear-

Proof. (1) For a diagram (U; — T1) — (Uy — Tp) < (Uz — T») in €, let T be the scheme theoretic image
of Spec(L) — T1 X, T> and let U be the intersection of Uy X, Uz with T. It is clear that T is of finite
type over Ok as Ok is Noetherian, that U and T are integral and affine, that Spec(L) — U is dominant,
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and that Spec(L) — T factors through Spec(Opr). Thus, U — T is an object of €', which shows that € is
cofiltered. For an object (U = Spec(B) — T = Spec(A)) of €, we write O, as a filtered union of finitely
generated A-subalgebras A;. Let m be a uniformizer of K. Notice that L = Op[1/7] = colim A;[1/7]
and that Homg_ag(B, L) = colim Homg._a1g(B, A;[1/7]) by [EGA IV3, 8.14.2.2]. Thus, there exists an
index ¢ such that Spec(4;[1/7]) — Spec(4;) is an object of G oy over U — T.

(2) It follows immediately from the arguments above.

(3) Consider the category 2 of morphisms of 6.y,

(9.8.1) U’ T’

| |

Spec(K') —— Spec(Ok)

such that K’ is a finite field extension of K. Similarly, this category is also cofiltered with limit of
diagrams of schemes (Spec(L) — Spec(Or)) — (Spec(K) — Spec(Oz)). It suffices to show that the
full subcategory of 2 formed by strictly semi-stable objects is initial. For any object U — T of %,a;, by
de Jong’s alteration theorem [dJ96, 6.5], there exists a proper surjective and generically finite morphism
T — T of integral schemes such that U’ = U xp T' — T’ is strictly semi-stable over Spec(K') —
Spec(Ok-) for a finite field extension K — K’. Since L is algebraically closed, the dominant morphism
Spec(L) — U lifts to a dominant morphism Spec(L) — U’ (9.6), which further extends to a lifting
Spec(Op) — T’ of Spec(Or) — T by the valuative criterion. After replacing 77 by an affine open
neighborhood of the image of the closed point of Spec(Qy,), we obtain a strictly semi-stable object of 2
over (U — T) — (Spec(K) — Spec(Ok)), which completes the proof. O

Theorem 9.9 ([ILO14, X 3.5, 3.7]). Let K be a complete discrete valuation field with valuation ring
Ok, Y - X) - (U — T) a morphism of dominant open immersions over Spec(K) — Spec(Ok)
between irreducible Ok -schemes of finite type such that X — T is proper surjective. Then, there exists a
commutative diagram of dominant open immersions between irreducible O -schemes of finite type

(9.9.1) v - x Ay S ox)

(f"ﬂf’)i i(f",f)

U = T") —— (U = T)

(e,a)
satisfying the following conditions:
(i) We have Y' = B~ (Y)N f'=YU"), i.e. Y — X' is Cartesian over U' xy Y — T’ x7 X (cf. 7.1).
(ii) The morphism (X', My —x') — (T', My —1') induced by (f'°, f') is a smooth and saturated
morphism of fine, saturated and regular log schemes.
(iii) The morphisms « and B are proper surjective and generically finite, and f’ is projective surjective.

Proof. We may assume that T is nonempty. Recall that Spec(Ok) is universally Q-resolvable ([ILO14,
X.3.3]) by de Jong’s alteration theorem [dJ96, 6.5]. Thus, T is also universally Q-resolvable by [ILO14,
X 3.5, 3.5.2] so that we can apply [ILO14, X.3.5] to the proper surjective morphism f and the nowhere
dense closed subset X \ Y. Then, we obtain a commutative diagram of schemes

(9.9.2) x Lox

)

T/?T

and dense open subsets U’ C T', Y = =1 (V)N f'~Y(U’) C X' such that (X', Ay x:) and (T", My —71)
are fine, saturated and regular, that (X', #y/ . x/) — (T', . #y —71) is smooth, that «, 3 are proper
surjective and generically finite morphisms which map generic points to generic points, and that f’ is
projective (since f is proper, cf. [ILO14, X 3.1.6, 3.1.7]). Since X (resp. T) is irreducible and X’
(resp. T") is a disjoint union of normal integral schemes (9.4), after firstly replacing X’ by an irreducible
component and then replacing 7" by the irreducible component under X', we may assume that X’ and
T’ are irreducible. Then, Y’ — U’ is dominant (so that f’ is projective surjective), since it is smooth
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and Y’ is nonempty ([EGA IV, 2.3.4]). We claim that o maps U’ into U. Indeed, if there exists a point
u € U’ with a(u) ¢ U, then f'~1(u)NY’ = (). However, endowing u with the trivial log structure, the
log scheme (u, O, ) is fine, saturated and regular, and the fibred product in the category of fine and
saturated log schemes

(9.9.3) (O ) X Gty oy (X My x0)

Ust
is regular with underlying scheme f'~!(u) (9.4, 9.2). Thus, f~*(u) NY’ is dense in f'~!(u), which
contradicts the assumption that f/~1(u)NY’ = () since f’ is surjective. Thus, we obtain a diagram (9.9.1)
satisfying all the conditions except the saturatedness of (X', 4y x/) — (T, My —717).

To make (X', My x) = (T, My 1) saturated, we apply [ILO14, X.3.7] to the morphism (f’°, f’).
We obtain a Cartesian morphism (v°,7v) : (U” — T"”) — (U’ — T’) of dominant open immersions
such that (T, Ay ) is a fine, saturated and regular log scheme, that 7 is a proper surjective and
generically finite morphism which maps generic points of T" to the generic point of T”, and that the
fibred product in the category of fine and saturated log schemes

(994) (TN“%U//*)TN) X%T’V//ZU’—»T’) (X/;%Y’%X’)

is saturated over (T", Ay 7). The fibred product (9.9.4) is still smooth over (T", A7), and thus
it is regular (9.4). Let X” be the underlying scheme of it and let Y” = (X”)**. Then, the fibred product
(9.9.4) is isomorphic to (X", #y_,x) (9.4). Thus, we obtain a commutative diagram of dominant open
immersions of schemes

(9.9.5) (v — x) 0

(f//o,f//)l \L(flovfl)

U"—=71")—— U -1
)
Notice that Y = U” xy Y and X" — T” xp X' is finite, and that Y — X’ is Cartesian over
U'xgp Y = T" xp X' (9.2). Thus, we see that Y — X" is Cartesian over U” xy Y — T” xpr X and
that f” is projective. Since T” (resp. X’) is irreducible and 7" (resp. X"') is a disjoint union of normal
integral schemes (9.4), after firstly replacing 7" by an irreducible component and then replacing X" by
an irreducible component on which the restriction of §° is dominant, we may assume that 7" and X"
are irreducible. In particular, ¢ is generically finite and so is S0 (9.6), and again Y — U” is dominant
so that f” is projective surjective. (I

(Y — X)

Lemma 9.10. Let X be a scheme of finite type over a valuation ring A of height 1. Then, the underlying
topological space of X is Noetherian.

Proof. Let n and s be the generic point and closed point of Spec(A) respectively. Then, the generic fibre
X, and the special fibre X, are both Noetherian. As a union of X, and X, the underlying topological
space of X is also Noetherian ([Sta21, 0053]). O

Proposition 9.11. With the notation in 9.7 and 9.8, let Y — X be a quasi-compact dominant open
immersion over Spec(L) — Spec(Op) such that X — Spec(Oy) is proper of finite presentation. Then,
there exists a proper surjective Op-morphism of finite presentation X' — X, an index \1 € A, and a
directed inverse system of open immersions (Y — X{)a>x, over (Ux — Tx)a>», satisfying the following
conditions for each X > A\i:

(i) We have Y' =Y xx X' =limy>y, Yy and X' = limy>y, X}.

(ii) The log scheme (Xf\,///yA/HX;) is fine, saturated and reqular.

(iii) The morphism (X;\,L//ly;_»(;) — (T, My, 1) is smooth and saturated, and X\ — Ty is pro-

jective.
(iv) If moreover Y = Spec(L) Xgpec(0,) X, then we can require that Yy = Uy x1, X}.

Proof. We follow closely the proof of [ALPT19, 5.2.19]. Since the underlying topological space of X is
Noetherian by 9.10, each irreducible component Z of X admits a closed subscheme structure such that
Z — X is of finite presentation ([Sta21, 01PH]). After replacing X by the disjoint union of its irreducible
components, we may assume that X is irreducible. Then, the generic fibre of X — Spec(Qp) is also
irreducible as an open subset of X. Using [EGA IV3, 8.8.2, 8.10.5], there exists an index Ag € A, a proper
T,-scheme X),, and an open subscheme Y), of Uj, X1y, X, such that X = Spec(Op) Xy, X, and
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that Y = Spec(L) Xy, Y),- Let n denote the generic point of X, 7, the image of 7 under the morphism
X — X, Z», the scheme theoretic closure of 7, in X,. Notice that Spec(Or) x1,, Zy, = X is a
surjective finitely presented closed immersion. After replacing X by Spec(Oy,) X1y, Zx, and replacing
X, by Z,, we may assume that X — X, is a dominant morphism of irreducible schemes. Since T}, is
irreducible and L is algebraically closed, the generic fibre of f : X, — T), is geometrically irreducible.
In particular, if ), (resp. 7,,) denotes the generic point of T}, (resp. X)), then 7 = Spec(L) X¢, 7,
([EGA TVq, 4.5.9]). In the situation of (iv), we can moreover assume that Yy, = Uy, X1y, Xno-
By 9.9, there exists a commutative diagram of dominant open immersions of irreducible schemes,

(5°.8)
(9.11.1) (V] = X},) = (Yag = Xa,)

(f"”f')l l(f",f)

U5, = 13,) TP (Uxg = Tno)

where Yy — X is Cartesian over Uy Xy, Y, — T3, X1y, X),, and where (X;\O,t//lykfo_w;o) —
(T>,\o7//lU;0 _)Tio) is a smooth and saturated morphism of fine, saturated and regular log schemes, and
where o and 3 are proper surjective and generically finite, and where f’ is projective surjective. We
take a dominant morphism 7° : Spec(L) — Uy which lifts Spec(L) — Uy, since L is algebraically closed
and « is generically finite, the morphism Spec(Or) — Tj, lifts to v : Spec(Or) — T3 by the valuative
criterion. We set Y’ = Spec(L) Xuy, Yy, and X’ = Spec(Op) X1y X3, It is clear that Y/ — X' is
Cartesian over Y — X by base change. Let £} (resp. 7} ) be the generic points of T (resp. X} ).
Since the generic fibre of f is geometrically irreducible, 53\0 Xgy, Mo 1S a single point and nf\o maps to
it ([EGA IVa, 4.5.9]). Since Spec(L) x¢, 7y, is the generic point of X, we see that X" — X is proper
surjective and of finite presentation. It remains to construct (Yy — X{)a>x,-

After replacing T/{O by an affine open neighborhood of the image of the closed point of Spec(Oy,),
lemma 9.8 implies that there exists an index Ay > Ag such that the transition morphism (Uy, — Ty,) —
(Uxn, = T,) factors through (Uy — Ty ). For each index A > A, consider the fibred product in the
category of fine and saturated log schemes

(9.11.2) (Xg\a'/lY/{%Xf\) = (I, Mv,-T,) XlEST/(O,//{ (X;\OV%Y{O%X’AO%

vl 1l )
Ao Ao

which is a fine, saturated and regular log scheme smooth and saturated over (T, #y, —1,) (9.2, 9.4).
Moreover, we have Yy = Uj Xuy, Yy, X5 =1 Xy, X}, and in the situation of (iv), Yy = Uy x1, X}
by base change. Therefore, (Y{ — X{)x>x, meets our requirements. ([

10. FALTINGS’ MAIN p-ADIC COMPARISON THEOREM: THE ABSOLUTE CASE
10.1. Let Y — X be a morphism of coherent schemes. Consider the functors
(10.1.1) Yt ES L — Y, (V= U)—V,
(10.1.2) BT Yiee — ES L, Vi— (V= X).
They are left exact and continuous (cf. [AGT16, VI 10.6, 10.7]). Then, we obtain morphisms of sites
(10.1.3) Y

RS

&t
EY_x 5 Yiet

where p : Y — Yie is defined by the inclusion functor.

Lemma 10.2. Let Y be a coherent scheme, V a finite étale Y -scheme. Then, there exists a finite étale
surjective morphism Y' — Y such that Y' xy V is isomorphic to a finite disjoint union of Y.

Proof. If Y is connected, let 7 be a geometric point of Y, m1 (Y, ) the fundamental group of Y with base
point . Then, Yz¢ is equivalent to the category of finite 7 (Y, 7)-sets so that the lemma holds ([Sta21,
OBND]).
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In general, for any connected component Z of Y, let (Y))xca, be the directed inverse system of all
open and closed subschemes of Y which contain Z and whose transition morphisms are inclusions. Notice
that limyep, Yy is a closed subscheme of Y with underlying topological space Z by [Sta21, 04PL] and
[EGA IV3, 8.2.9]. We endow Z with the closed subscheme structure of limyea, Y. The first paragraph
shows that there exists a finite étale surjective morphism Z’ — Z such that Z’' xy V =[]/_, Z’. Using
[EGA TV3, 8.8.2, 8.10.5] and [EGA TVy, 17.7.8], there exists an index A\g € Az, a finite étale surjective
morphism Y — Y), and an isomorphism Yy xy V = []i_; Y . Notice that Y is also finite étale over
Y. Since Z is an arbitrary connected component of Y, the conclusion follows from the quasi-compactness
of Y. O

Lemma 10.3. Let Y be a coherent scheme, p : Yo — Yiey the morphism of sites defined by the in-
clusion functor. Then, the functor p~' : Yie, — Ye of the associated topoi induces an equivalence
p~ 1 : LocSys(Yist) — LocSys(Ys) between the categories of finite locally constant abelian sheaves with
quasi-inverse p..

Proof. Since any finite locally constant sheaf on Y (resp. Yzgt) is representable by a finite étale Y-scheme
by faithfully flat descent (cf. [Sta21, 03RV]), the Yoneda embeddings induce a commutative diagram

(10.3.1) LocSys(Yist) —> Yie, > YVier
LocSys(Ys) Ye " Yoo

where the horizontal arrows are fully faithful. In particular, p=! is fully faithful. For a finite locally

constant abelian sheaf F on Yg, let V' be a finite étale Y-scheme representing F and let h“s‘} (resp. hﬁft) be
the representable sheaf of V on Y (resp. Yie). We have F = hSt = p~ 1Al ([Sta21, 04D3]). By 10.2, hist
is finite locally constant. It is clear that the adjunction morphism hﬁ}ét — P h“é} is an isomorphism, which
shows that h%ﬁ’t is an abelian sheaf. Thus, p~! is essentially surjective. Moreover, the argument also
shows that p, induces a functor p. : LocSys(Yg) — LocSys(Yzs) which is a quasi-inverse of p~1. ([l

Proposition 10.4. With the notation in 10.1, the functors between the categories of finite locally constant
abelian sheaves

1 ., —1
(10.4.1) LocSys(Yiet) 5y LocSys(E{_ ) LN LocSys(Yat)
are equivalences with quasi-inverses By and v, respectively.

Proof. Notice that for any finite locally constant abelian sheaf G on Y4, the canonical morphism 8~'G —
¥,p 'G, which is induced by the adjunction id — ,%~! and by the identity ¥ 87! = p~!, is an
isomorphism by 10.3 and the proof of [AGT16, VI.6.3.(iii)]. For a finite locally constant abelian sheaf F
over Yy, we write F = p~'G by 10.3. Then, F = ¢~ !71G == ¢~ 19,p7'G = ¥~ 14, F, whose inverse
is the adjunction map ~'¢,F — F since the composition of ¥»~1(71G) — ¥~ (v, 1) (B7IG) =
(W)Y H(B7IG) — ¢~ Y(B7IG) is the identity. On the other hand, for a finite locally constant
abelian sheaf L over E§' . -, we claim that L — v, 'L is an isomorphism. The problem is local on
E$' .. Thus, we may assume that L is the constant sheaf with value L where L is a finite abelian
group. Let L be the constant sheaf with value L on Y. Then, L. = S7!L, and the isomorphism
L =pB"'L = ¢,p 'L = 1,4~ 'L coincides with the adjunction map L. — 1,¢)~'L. Therefore, 1)~ :
LocSys(E$! , ) — LocSys(Ys) is an equivalence with quasi-inverse ¢.. The conclusion follows from
10.3. ([l

10.5. Let f: (Y — X') - (Y — X) be a morphism of morphisms between coherent schemes over
Spec(Qp) — Spec(Zy,). The base change by f induces a commutative diagram of sites

(10.5.1) Y/, AN ES,

o

P .
Yas E(;}*)X


https://stacks.math.columbia.edu/tag/04PL
https://stacks.math.columbia.edu/tag/03RV
https://stacks.math.columbia.edu/tag/04D3

42 TONGMU HE

Let F’ be a finite locally constant abelian sheaf on Y/,. Remark that the sheaf % on ES! .  is flat over
Z. Consider the natural morphisms in the derived category D(%’—ModE?; X),

(10.5.2) (RY,R feru ') @ B <" (Rfp. YL F') @% B —> R fp. (W.F @7 B ),
where «y is induced by the canonical morphism ¥, F — Ry,F’, and as is the canonical morphism.

10.6. We keep the notation in 10.5 and assume that X is the spectrum of an absolutely integrally
closed valuation ring A and that Y is a quasi-compact open subscheme of X. Applying the functor
RI'(Y — X, —) on (10.5.2), we obtain the natural morphisms in the derived category D(A-Mod) by 7.8,
(10.6.1) R (Y}, F') @F A <"— RI(B{, , ., v/F") @% A —"2>RT(E$, v, YF' @7 % ).

étr

Definition 10.7 ([AG20, 4.8.13, 5.7.4]). With the notation in 10.5 (resp. 10.6), if a7 is an isomorphism
(for instance, if the canonical morphism .F' — Ry,F’ is an isomorphism), then we call the canonical
morphism

(10.7.1) as oot (RpRfa.F) ®F Z — Rifg,(WLF @z B )
(10.7.2) (resp. azoay’ : RI(Y,,, F) ®% A — RIES, , ., 0/.F @7 #))

the relative (resp. absolute) Faltings’ comparison morphism associated to f : (Y — X') —» (Y — X)
and F’. In this case, we say that Faltings’ comparison morphisms ezist.

Theorem 10.8 ([Achl7, Cor.6.9], cf. [AG20, 4.4.2]). Let Ok be a strictly Henselian discrete valuation
ring with fraction field K of characteristic 0 and residue field of characteristic p. We fiz an algebraic
closure K of K. Let X be an Og-scheme of finite type, F a finite locally constant abelian sheaf on X% et
P X?,ét — Eg}ﬁﬁx the morphism of sites defined in 10.1. Then, the canonical morphism ¥, F — R, F
is an isomorphism.

Corollary 10.9. Let Ok be a strictly Henselian discrete valuation ring with fraction field K of charac-
teristic 0 and residue field of characteristic p. We fiz an algebraic closure K of K. Let X be a coherent
Oz-scheme, Y = Spec(K) XSpec(0) X ; F a finite locally constant abelian sheaf on Ya, ¢ : Yoy — | D
the morphism of sites defined in 10.1. Then, the canonical morphism ,F — R, F is an isomorphism.

We emphasize that we don’t need any finiteness condition of X over O in 10.9. In fact, one can

replace Oz by Zj, without loss of generality, where Zp is the integral closure of Z,, in an algebraic closure
of Q,. We keep working over O only for the continuation of our usage of notation.

Proof of 10.9. We take a directed inverse system (X, — Spec(Ok, ))aea of morphisms of finite type of
schemes by Noetherian approximation, such that K is a finite field extension of K and K = | ren K,
and that the transition morphisms X, — X are affine and X = limyecp X (cf. [Sta21, 09MV]). For
each A € A, we set Y, = Spec(K) XSpec(Ox, ) XA- Notice that Y = limY). Then, there exists an index
Ao € A and a finite locally constant abelian sheaf Fy, on Y}, ¢ such that IF is the pullback of Fy, by
Ye, = Yo, 60 (cf. [Sta2l, 09YU]). Let Fy be the pullback of Fy, by Y ¢, — Y, for each A > XAg. Notice
that Ok, also satisfies the conditions in 10.8. Let 1y : Yy ¢ — Eéygaxx be the morphism of sites defined
in 10.1, o) : B — E%—»@ the morphism of sites defined by the transition morphism. Then, we
have R%y,Fy = 0 for each integer g > 0 by 10.8, and moreover

(10.9.1) R, F = colim ¢y 'R%,.Fy =0
A>Xo
by 7.11, [SGA 4y, VIL5.6] and [SGA 4;1, VI.8.7.3] whose conditions are satisfied because each object in

each concerned site is quasi-compact. O

Lemma 10.10. With the notation in 10.5, let F be a finite locally constant abelian sheaf on Ye. Then,
the canonical morphism fglw*IF — wfkf;tlIF s an isomorphism.

Proof. The base change morphism fg L F — o) fat 'F is the composition of the adjunction morphisms
([SGA 4y1, XVII1.2.1.3))

(10.10.1) fa 0 F = o (g o) = LSt (0T F) = L 'F
which are both isomorphisms by 10.4. O
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10.11. Let K be a complete discrete valuation field of characteristic 0 with valuation ring Ok whose
residue field k is algebraically closed (a technical condition required by [AG20, 4.1.3, 5.1.3]) of character-
istic p > 0, K an algebraic closure of K, Oz the integral closure of O in K, n = Spec(K), 1] = Spec(K),
S = Spec(Ok), S = Spec(Oz), s = Spec(k). Remark that K is a pre-perfectoid field with valuation ring
O so we are also in the situation 8.3.

10.12. With the notation in 10.11, let X be an S-scheme, Y an open subscheme of the generic fibre X,,.
We simply denote by .#x the compactifying log structure .#x, ,x (9.3). Following [AGT16, 111.4.7], we
say that Y — X is adequate over n — S if the following conditions are satisfied:

(i) X is of finite type over S;
(ii) Any point of the special fibre X admits an étale neighborhood U such that U, — 7 is smooth
and that U, \ Y is the support of a strict normal crossings divisor on U,;
(iii) (X, #y_x) is a fine log scheme and the structure morphism (X, #y_ x) — (S, #s) is smooth
and saturated.

In this case, (X, #y_x) — (S, #s) is adequate in the sense of [AGT16, I111.4.7]. We remark that for any
adequate (S,.#s)-log scheme (X,.#), X% — X is adequate over n — S and (X,.#) = (X, Mxe=_x)
(cf. 9.4, 9.5). Note that if Y — X is strictly semi-stable over n — S then it is adequate (cf. 9.5).

10.13. We recall the statement of Faltings’ main p-adic comparison theorem following Abbes-Gros [AG20].
We take the notation in 10.11. Firstly, recall that for any adequate open immersion of schemes X° — X
over n — S and any finite locally constant abelian sheaf F on X7 ¢ the canonical morphism ¢, F — R, F
is an isomorphism, where 1 : X7 o — Eég%_)X is the morphism of sites defined in 10.1 ([AG20, 4.4.2]).

Let (X" — X') — (X° — X) be a morphism of adequate open immersions of schemes over n — S
such that X’ — X is projective and that the induced morphism (X', #xr»_x/) = (X, Mxo_x) is
smooth and saturated. Let Y/ =7 x, X", Y =7 x, X°, f: (Y = X') - (Y — X) the natural
morphism, F” a finite locally constant abelian sheaf on Y(,. By the first paragraph, we have the relative
Faltings’ comparison morphism associated to f and F’ (10.7.1),

(10.13.1) (R, RfeenF) @F B — Rfg, (V.F @7, Z ).

Remark that under our assumption, the sheaf RY f¢[F’ on Yy is finite locally constant for each integer ¢
([AG20, 5.7.2]).

Theorem 10.14 ([Fal02, Thm.6, page 266], [AG20, 5.7.4]). With the notation in 10.13, the relative
Faltings’ comparison morphism associated to f and F' is an almost isomorphism in the derived category
D(Of'ModEi/t ) (6.7), and it induces an almost isomorphism

(10.14.1) (xR fexuF') @2 B — R fi (VLF' @2 B )
of Og-modules for each integer q.

Proposition 10.15. With the notation in 10.11, let A be an absolutely integrally closed valuation ring
of height 1 extension of O, X a proper A-scheme of finite presentation, Y = Spec(A[1/p]) Xgpec(a) X,
F a finite locally constant abelian sheaf on Ys. Then, there exists a proper surjective morphism X' — X
of finite presentation such that the relative and absolute Faltings’ comparison morphisms associated to
fr (Y = X') — (Spec(A[1l/p]) — Spec(A)) and F' (which exist by 10.9) are almost isomorphisms,
where Y' =Y xx X' and ' is the pullback of F on YY,.

Proof. Since the underlying topological space of X is Noetherian by 9.10, each irreducible component Z
of X admits a closed subscheme structure such that Z — X is of finite presentation ([Sta21, 01PH]). After
replacing X by the disjoint union of its irreducible components, we may assume that X is irreducible. If
Y is empty, then we take X’ = X and thus the relative (resp. absolute) Faltings’ comparison morphism
associated to f’ and F’ is an isomorphism between zero objects. If Y is not empty, then we are in the
situation of 9.11.(iv) by taking O, = A. With the notation in 9.11, we check that the morphism X’ — X
meets our requirements. We set 7y = Spec(Ky), Sx = Spec(Ox, ), Tozx =1 Xy Ux, X} 7z =7 X, Y3,

and denote by f} : (X} — X}) = (7 — 1)) the natural morphism. We obtain a commutative
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diagram
(10.15.1) ES, EY, R
\ 2N
g>\ ét
— X
f.e fgtl J/f fe
hx,eé
Spec(A[1/p)er — > Th et
/ &\\
4 h,\,E ,
E?pec(A[l/p])—)Spec(A) E%tx,ﬁ—ﬁ’&

Firstly notice that the site Yy, (resp. Spec(A[l/p])) is the limit of the sites X} ;- o (vesp. T 75 .et)
and the site EY},_, v (resp. EG a1 /p))—spec(a)) 18 the limit of the sites E‘;{, X, (resp. E, T

([SGA 4y, VIL5.6] and 7.11). There exists an index Ag € A and a finite locally constant abelian sheaf

F, on X} et such that F” is the pullback of F) by Y{ — X} gt (cf. [Sta21, 09YU]). Let F) be

the pullback of IF’ by X§ et X/\O’m & for each A > Xo. We also have 7% = colim gx. i:% (resp.

% = colim hy. LB) by 7.11. According to [SGA 4j1, VI.8.7.3], whose conditions are satisfied because each
object in each concerned site is quasi-compact, there are canonical isomorphisms for each integer ¢,

(10.15.2) (RY(¢ 0 fiu)F') @2 % — colim hy (R (¥x o f} &)+ F3) ®z B),
(10.15.3) R fs, (VLF @7 B ) > colim by LRIf, g, (04, F\ 92 B).

On the other hand, (X}, ,//ZX;) — (T, A1, ) is a smooth and saturated morphism of adequate (Sx, #s, )-
log schemes with X{ — T projective for each A € A by construction. Thus, we are in the situation of
10.14, which implies that the relative Faltings’ comparison morphism associated to f} and F},

(10.15.4) (RU(9ox © f4.c0)FY) @2 B — RS} g, (W4, Fh 92 B

is an almost isomorphism for each A > A\g. Combining with (10.15.2) and (10.15.3), we see that the
relative Faltings’ comparison morphism associated to f’ and F,

(10.15.5) Rps (Rf4.F) 5 B — R (V\F @2 %),
is an almost isomorphism (and thus so is the absolute one). O

Corollary 10.16. With the notation in 10.15, there exists a proper hypercovering Xe — X of coherent
schemes ([Sta21l, ODHI]) such that for each degree n, the relative and absolute Faltings’ comparison
morphisms associated to f, : (Y, — X,) — (Spec(A[l/p]) — Spec(A)) and F,, (which exist by 10.9)
are almost isomorphisms, where Y, =Y xx X, and F,, is the pullback of F by the natural morphism
Yo 6t — Ysi. In particular, Yo — Y is a proper hypercovering and XY — XY is a hypercovering in Iﬁ_@.

Proof. Let € be the category of proper A-schemes of finite presentation endowed with the pretopology
formed by families of morphisms {f; : X; — X}y with I finite and X = (J,c; fi(X;). Consider the
functor ut : € — Ispec(A[1/p))—Spec(a) sending X to XY where Y = Spec(A[1/p]) Xgpec(a) X- It is
well-defined by 3.19.(4) and commutes with fibred products by 3.21 and continuous by 3.15. Lemma
10.15 allows us to take a hypercovering X, — X in % meeting our requirement by [Sta2l, 094K and
0DB1]. We see that Y, — Y is a proper hypercovering and that XJ* — XV is a hypercovering in I77 N

by the properties of v ([Sta21, 0DAY]). O

Lemma 10.17. Let Z, be the integral closure of Z, in an algebraic closure of Q,, A a Z,-algebra
which is an absolutely integrally closed valuation ring, X a proper A-scheme of finite presentation, Y =
Spec(A[1/p]) Xspec(ay X, F a finite locally constant abelian sheaf on Yg. Let A" = ((A/ Nn>op™A) 5a)"
(p-adic completion), X' = Xa/, Y' =Yar, F' the pullback of F on Y/,. Then, the following statements
are equivalent:
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(1) The absolute Faltings’ comparison morphism associated to f : (Y — X) — (Spec(A[l/p]) —
Spec(A)) and F (which exists by 10.9) is an almost isomorphism.

(2) The absolute Faltings’ comparison morphism associated to f' : (Y — X') — (Spec(4'[1/p]) —
Spec(4”)) and F' (which exists by 10.9) is an almost isomorphism.

Proof. If p is zero (resp. invertible) in A, then the absolute Faltings’ comparison morphisms are both
isomorphisms between zero objects, since Y and Y’ are empty (resp. the abelian sheaves F and F’ are
zero after inverting p). Thus, we may assume that p is a nonzero element of the maximal ideal of A.
Notice that N,>op"A is the maximal prime ideal of A not containing p and that /pA is the minimal
prime ideal of A containing p (2.1). Thus, (A/Ny>0p"A), 57 is an absolutely integrally closed valuation
ring of height 1 extension of Z, (2.1) and thus so is its p-adic completion A’.

We denote by u : (Y' — X’) — (Y — X) the natural morphism. We have F/ = uj;'F. The natural
morphisms in (10.6.1) induce a commutative diagram

aq [e5]

(10.17.1) RI'(Ya, F) @F A RI(ES . v, v.F) @F A RI(ES, v, ¢.F @7 B)

RI(Y/,,F') @ A’ < RI(EY, , v, V.F) @% A’ —2> RT(ES, | ., .F @, @)

ét)

where 7 is induced by the canonical morphism F — Ruét*ugtlF, and 7, (resp. 73) is induced by the
composition of ¢, F — RuE*u}Elw*F — RuE*w;ugtlF (resp. and by the canonical morphism % —
Rug.% ). Since a; and «} are isomorphisms by 10.9, it suffices to show that v; and 3 are almost
isomorphisms.

Since A/ Npso p"A — (A/ Nypso p"A) 5z is injective whose cokernel is killed by +/pA (4.7), the
morphism A — A’ induces an almost isomorphism A/p™A — A’/p™ A’ for each n. Then, for any torsion
abelian group M, the natural morphism M ®7; A — M ®z A’ is an almost isomorphism. Therefore,
~1 is an almost isomorphism by the proper base change theorem over the strictly Henselian local ring
A[1/p] ([SGA 4qy1, XII 5.5, 5.4]). For 73, it suffices to show that the canonical morphism ,F ® % —
Rug. (V.F ® @,) is an almost isomorphism. The problem is local on E‘;} _ x, thus we may assume that
1, is the constant sheaf with value Z/p"Z by 10.4. Then, ¢.F’ is also the constant sheaf with value
Z/p"Z by 10.10. Let V' — U be an object of E?fﬁf& such that UV = Spec(R) is the spectrum of an
Zy-algebra R which is almost pre-perfectoid. Since the almost isomorphisms R/p® — (R @4 A’)/p"
(n > 1) induces an almost isomorphism of the p-adic completions R — R4 A’, the Zy-algebra R @4 A’
is still almost pre-perfectoid (5.18). The pullback of V' — U in Er;rf)itx, is the object V4 — Uy and
UX?“ is the spectrum of the integral closure R’ of R®4 A’ in R®4 A’[1/p]. Since R ®4 A’ is almost
pre-perfectoid, R’ is also almost pre-perfectoid and the morphism (R ®4 A")/p™ — R'/p™ is an almost
isomorphism by 5.26. Therefore, the morphism %/p"% — RuE*(@/ / p”@/) is an almost isomorphism
by 7.30, 8.7 and 8.8. O

Theorem 10.18. Let Z, be the integral closure of Z, in an algebraic closure of Q,, A a Z,-algebra
which is an absolutely integrally closed valuation ring, X a proper A-scheme of finite presentation, Y =
Spec(A[1/p]) Xgpec(a) X, F a finite locally constant abelian sheaf on Y. Then, the absolute Faltings’
comparison morphism associated to f : (Y — X) — (Spec(A[1/p]) — Spec(A)) and F (10.7.2) (which
exists by 10.9),

(10.18.1) RI(Ye, F) @8 A — RI(ES, ., . F ®7 B),
is an almost isomorphism in D(Z,-Mod) (5.7).

Proof. Let K be the p-adic completion of the maximal unramified extension of Q,. By 10.17, we may
assume that A is a valuation ring of height 1 extension of Of. Let X, — X be the proper hypercovering
of coherent schemes constructed in 10.16. For each degree n the canonical morphisms (10.7.2)

(10.18.2) RI(Yye0, Fn) ®F A +— RI(ES _ x. ,¥niFn) ®F A — RU(ES _ x, , ¥niFrn @2 2)
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are an isomorphism and an almost isomorphism, where F,, is the pullback of F by the natural morphism
Y 6t — Ys. Consider the commutative diagram

(10.18.3)  RI'(Ya,F) ®% A <——RI(ES', x, ¢.F) ®F A —=—RI(ESL, ., .F @z )

| | |

RI(Ye . Fo) @% A<= RI(EY, |y ve.Fo) @ A == RI(B{,_x,, voFo 2 Z0)

where F, = {[n] — F,,} with the notation in 6.5. By the functorial spectral sequence of simplicial sites
([Sta21, 09WJ]), we deduce from (10.18.2) that a1 is an isomorphism and as, is an almost isomorphism.
Since a7 is an isomorphism by 10.9, it remains to show that the left vertical arrow is an isomorphism
and the right vertical arrow is an almost isomorphism.

We denote by a : E%{%X. — E§t .,  the augmentation of simplicial site and by a, : E%HXTL —ES$t ¢
the natural morphism of sites. Notice that a9, F = {[n] — a9, F} = {[n] = ¥n.Fp} = Ye.Fe by
10.10 ([Sta21, 0D70]). Since XY* — XY forms a hypercovering in I 5. the right vertical arrow is
an almost isomorphism by 10.4 and 8.13. Finally, the left vertical arrow is an isomorphism by the
cohomological descent for étale cohomology [Sta21, ODHL]. O

11. FALTINGS’ MAIN p-ADIC COMPARISON THEOREM: THE RELATIVE CASE FOR MORE GENERAL
COEFFICIENTS

11.1. Let Y — X be a morphism of coherent schemes such that ¥ — XV is an open immersion. We
obtain from 3.26, 8.2 and 10.1 a commutative diagram of sites

(11.1.1) (Schfy?), —*— Ya

LI

Ly xy —— E()éftax > Yia
where a : (Sch%ﬁ‘)v — Yz and p : Yoy — Yigy are defined by the inclusion functors.

Lemma 11.2. With the notation in 11.1, for any finite locally constant abelian sheaf F on Y, the
canonical morphism E_ll/J*F = U,a"1F is an isomorphism.

Proof. The base change morphism e 1¢,F — W¥,a 'F is the composition of the adjunction morphisms
([SGA 4y1, XVII1.2.1.3))

(11.2.1) e M, F — U U ey, F) = Uoa (¢ 1 F) = Vo 'F
which are both isomorphisms by 3.27.(2) and 10.4. O

11.3. We fix an algebraic closure @, of the p-adic number field Q, and we denote by Z, the integral
closure of Z, in Q,. We set n = Spec(Q,), 7 = Spec(Q,), S = Spec(Z,), S = Spec(Z,). Remark that
@p is a pre-perfectoid field with valuation ring Zi, so we are also in the situation 8.3. Let f : (Y —
X’") = (Y — X) be a Cartesian morphism of morphisms of coherent schemes with a Cartesian morphism
(Y = XY) = (7 — 5) (then, Y’ — X"¥" is Cartesian over 77 — S by 3.19.(4)). Thus, X and X"¥" are
objects of I s Consider the following commutative diagram of sites associated to f.

w/
(11.3.1) Y}, < (Schish )y —X- Ty v ——>ES 4
féci fvl ifl le

Yet <~ (SCh?c;?)V *‘1}> Iy_,xv — Egs;c—>X

P
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11.4. Following 11.3, let g : (Y = X) = (Y = X) be a morphisms of coherent schemes such that
Y — XY is also Cartesian over 7 — S. We denote by ¢’ : (Y/ — X’) — (Y’ — X') the base change of g
by f, and denote by f : (Y’ = X') = (Y — X)) the natural morphism which is Cartesian by base change.

’

~= —~Y ~
Thus, XY and X’ are also objects of I. 5. We write the diagram (11.3.1) associated f equipping all
labels with tildes.

Lemma 11. 5 With the notation in 11.3 and 11.4, let ¥’ be a finite locally constant abelian sheaf on 'Y,
and we set F' = U.a/"'F'. Let X be an object of Iy ,xv,Y =17 Xg X, F =g L 'F, g an integer.

(1) The sheaf qul*f on Iy _, xv is canonically isomorphic to the sheaf associated to the presheaf
X — Hf (Y’ IF’)

(2) The shcaf RIf1.(F' @z 0') on Iy_ xv is canonically almost isomorphic to the sheaf associated
to the presheaf X > Hq(E%}H)?,,W*F’ Rz @1).

(3) The canonical morphism (R f1.7') @z € — (R fr.7" @z ﬁ’) is compatible with the canonical
morphisms HE, (Y, F') @7 R < Hq(ECt X/,l/}' ') @z R =2 Hq(ECt X/,l/}' F ®, B ), where
R=2(Y — X) (c£.10.6.1).

— — ~ o~ —1~ ~ ~ ~
Proof. Let #' be the restriction of %’ on I_ _. We have F' = ¥.a’ F. We set L/ = ¢/ F

Y X7
which is a finite locally constant abelian sheaf on E%—)Y' by 10.4. Notice that the canonical morphisms
~_1~ ~ ~—1 ~ —
¢ L' —F and &/ L/ — Z' are isomorphisms by 10.4 and 11.2 respectively.
(1) It follows from the canonical isomorphisms
~ ~ ~—1~-1~ ~ a1~ =1~ ~ ~—1~
(1L5.1) HIY(I_ o0 LY S HIY, O & 'L)=HIY,a @ L)% HL(Y' ¢ L),
Y= X
~l~ Y 1]~

where 7, is induced by the canonical isomorphism & L/ — R/, U/ ¢ 1T/ (3.27.(2)), and o is

~—1 ~ ~ ~—]l~—1~
induced by the canonical isomorphism ' L' — Ra’.a’ 1@/1’ L’ (3.9).
(2) It follows from the canonical almost isomorphism

— ~—1 ~
(11.5.2) s HUEBY, o L@z B)— HI(I_ e Lo
Y'»X'

which is induced by the canonical almost isomorphism L’ ®, 7 —Re NE ' ® 0") (8.9).
(3) Consider the following diagram

a1 a2

(1153)  HL(Y,4' L)®R HYEL D) ®R HIBY L, %)

Y2 ®idg |2 l J/73

- o~ 1~ ~ ~
HIY' O & L’)@RMHQ(I?,_}}W,E L')@RHHQ(I}%_})TYME 'T'e 6

~ ~ ~—1~
where the unlabelled vertical arrow is induced by the canonical morphism I/ — Re’,.e’ L/, and the
unlabelled horizontal arrow is the canonical morphism which induces (R?f1..%#") ®z € — R fr.(F' @2 0")
on Iy_, xv by sheafification. It is clear that the diagram (11.5.3) is commutative, which completes the
proof. O

11.6. We remark that 11.5 gives a new definition of the relative (resp. absolute) Faltings’ comparison
morphism without using 10.9. Following 11.3, let F’ be a finite locally constant abelian sheaf on Y}, and
we set F' = W' a'"1F. We set L' = ¢, F’, which is a finite locally constant abelian sheaf on ES, , ., by
10.4. Remark that the canonical morphisms ¢’/ — F’ and ¢/~'L’ — .#’ are isomorphisms by 10.4
and 11.2 respectively. We also remark that %, ¢ are flat over Z. The canonical morphisms in the derived
category D(#-Modgg ) (cf. 10.5.2),

(11.6.1) (R, Rfsut)' L) ®L B <2 (Rfg.) ®F B —2> R (L' @7 B ),
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fit into the following commutative diagram

Qo a2

(11.6.2) Rip, (Rfsntt' L) @% 7 (Rfg.L') @k 7 Rfg. (L @7 Z)

| | -

Rip. (RaR fo 071" ) @ B < — Rew(Rfre’ ') ©f B —— Re.Rfr.(¢" 'L @7 &)

(1) The morphism a3 is induced by the canonical isomorphism ’'~IL’ — Ra’a’~!(y/~!L') by 3.9,
and thus a3 is an isomorphism.

(2) The morphism «j is induced by the canonical isomorphism &'~/ — RW’/ ¥/'~1¢/~1L' by 3.27,
and thus aj; is an isomorphism.

(3) The unlabelled arrow is induced by the canonical morphism L — Re’.e’~!L.

(4) The morphism ay is induced by the canonical almost isomorphism L' ®z B — Rel (71 @z 0")
by 8.9, and thus a4 is an almost isomorphism.

(5) The morphism «g is the composition of

(11.6.3) Re, (Rf1.e’ ') @F B — Re. (Rfr.e’"'L)) @ 0)
(11.6.4) with Re, ((Rfr.e’ L) @% 0) — Re, Rfr. (e 7L @z 0").
In conclusion, the arrows ag, as, ag and a4 induce an arrow

(11.6.5) aytoagoaztoas: R (RfaF') @F B — Rfe.(V.F @z @/)

in the derived category of almost Z,-modules on E' . - (5.7). Remark that we don’t assume that o is an
isomorphism here. We also call (11.6.5) the relative Faltings’ comparison morphism. Indeed, if a; is an

isomorphism, then the relative Faltings’ comparison morphism (10.7.1) induces (11.6.5) in D(fpal-Mod)
due to the commutativity of the diagram (11.6.2).

If X is the spectrum of an absolutely integrally closed valuation ring A and if ¥ = 7 x5 X, then
applying the functor RI'(Y — X, —) on (11.6.2) we obtain the natural morphisms in the derived category
D(A-Mod) by 7.8,

(11.6.6)
RI(Y/,, '~ 'L') @k A RI(ES, ., L)) L A RIES, L @7 Z)

| | -

RI((Schf3 )y, W' 1e' L) ®% A <= RT Ly, xnvr e L)) @k A ——= RI(Ly,_ v, €'~ @7 0)

5} a2

The arrows a3, as, ag and ay4 induce an arrow

(11.6.7) ajloagoasoas: RU(Y,,F)®% A — RU(ES v .F @, B )

étr

in the derived category D(Zpal-Mod) of almost Z,-modules (5.7). We also call (11.6.7) the absolute
Faltings’ comparison morphism.

Lemma 11.7. With the notation in 11.3, let F' be a finite locally constant abelian sheaf on Y/, and we
set F' = W' a/~'F'. Assume that X' — X is proper of finite presentation. Then, the canonical morphism

(11.7.1) (RftF') @ 6 — Rfr(F' @7 0")

is an almost isomorphism.

Proof. Following 11.5, consider the following presheaves on Iy _, xv for each integer ¢:
(11.7.2) HI: X — HLY' F) @z BY = X),

(11.7.3) My X — HYES, o 0/ F) @y BY - X),

(11.7.4) MY X — HIES, o 0/ F ey 7),
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They satisfy the limit-preserving condition 3.25.(ii) by 7.11, [SGA 4y1, VIL5.6] and [SGA 4y, VI 8.5.9,
8.7.3]. Moreover, if X = Spec(A) where A is an absolutely integrally closed valuation ring with p nonzero
in A, then the canonical morphisms

(11.7.5) H{(Spec(A)) < Hi(Spec(A)) — Hi(Spec(A))

are an isomorphism and an almost isomorphism by 10.18. Thus, the canonical morphisms H{ « H3 — H4
induce an isomorphism and an almost isomorphism of their sheafifications by 3.25. The conclusion follows
from 11.5. O

Lemma 11.8. Let Y — X be an open immersion of coherent schemes, Y' — Y a finite morphism of
finite presentation. Then, there exists a finite morphism X' — X of finite presentation whose base change
by Y - X isY' =Y.

Proof. Firstly, assume that X is Noetherian. We have Y’ = Y xx XY by 3.19.(4). We write X¥ =
Specy (A) where A is an integral quasi-coherent O x-algebra on X, and we write A as a filtered colimit of
its finite quasi-coherent O x-subalgebras A = colim A, ([Sta21, 0817]). Let B, be the restriction of A, to
Y. Then, B = colim B,, is a filtered colimit of finite quasi-coherent Oy -algebras with injective transition
morphisms. Since Y’ = Specy (B) is finite over Y, there exists an index g such that Y’ = Specy (Ba, )-
Therefore, X’ = Specy (Aq,) meets our requirements.

In general, we write X as a cofiltered limit of coherent schemes of finite type over Z with affine
transition morphisms X = limyep X ([Sta2l, 01ZA]). Since Y — X is an open immersion of finite
presentation, using [EGA IVs, 8.8.2, 8.10.5] there exists an index Ao € A, an open immersion Yy, — X,
and a finite morphism Yy — Y), such that the base change of the morphisms Yy — Y\, — X, by
X — X, are the morphisms Y/ — Y — X. By the first paragraph, there exists a finite morphism
X3, = X, of finite presentation such that Yy = 1Y), xx, X} . We see that the base change X' — X
of X}, — X), by X — X, meets our requirements. ]

Lemma 11.9. With the notation in 11.3, let g : Y — Y’ be a finite morphism of finite presentation,
F" a finite locally constant abelian sheaf on Y{! and we set F' = V'a'7 (gt F"). Assume that X' — X
is proper of finite presentation. Then, the canonical morphism

(11.9.1) (Rf1.F') 9% 0 — Rf1.(F' @7 0")
is an almost isomorphism.

Proof. There exists a Cartesian morphism g : (Y — X”) — (Y' — XY xx X’) of open immersions of
coherent schemes such that X” — XY xx X’ is finite and of finite presentation by 11.8. Consider the
diagram (11.3.1) associated to g:

(11.9.2) Y/ LA (Schj‘{&%)V AN Iy oy

gét l gv i g1 l
’ ’

a h '
Ygt (SCh(/:%/’)V > IY’*}X’Yl

We set 4" = U”a”~'F". The base change morphism a’~!gs;. — gv«a” ! induces a canonical isomorphism
F' 5 919" by 3.10. Moreover, the canonical morphism gr.%9"” — Rgr.4" is an isomorphism by 11.5.(1)
and 3.25, since g : Y — Y is finite ([SGA 4y, VIIL.5.6]). By applying 11.7 to g and F”, the canonical
morphism

(11.9.3) (Rg1.4") @% 0 — Rg1.(9" ®7 0")
is an almost isomorphism. Let h be the composition of (Y — X”) — (V' — XY xx X') = (Y — XY).

Note that X” — XY is also proper of finite presentation. By applying 11.7 to h and F”, the canonical
morphism

(11.9.4) (Rh1,94") @% 0 — Rh1 (9" @7 0")

is an almost isomorphism. It is clear that hy = f1 o g1. The conclusion follows from the canonical
isomorphism %’ — Rgr.%4” and the canonical almost isomorphisms (11.9.3) and (11.9.4). O
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Lemma 11.10. With the notation in 11.3, let F' be a constructible abelian sheaf on Y/, and we set
F' =V a7 F'. Assume that X' — X is proper of finite presentation. Then, the canonical morphism

(11.10.1) Rf1.F") @% O — Rf1,(F' @7 0")

is an almost isomorphism.

Proof. We prove by induction on an integer g that the canonical morphism (R f1..7")®7z0 — R4 f1.(F'®z
0") is an almost isomorphism. It holds trivially for each ¢ < —1. Notice that there exists a finite mor-
phism g : Y — Y of finite presentation, a finite locally constant abelian sheaf F” on Y/{ and an injective
morphism F' — g F” by [Sta2l, 09Z7] (cf. [SGA 4, IX.2.14]). Let G’ be the quotient of F' — get.F”,

which is also a constructible abelian sheaf on Y}, since gg.F” is so ([Sta2l, 095R, 03RZ]). The exact
sequence 0 = F' — gt F”’ — G — 0 induces an exact sequence by 3.27.(1),

(11.10.2) 00—V a'F ——= Va1 (gsF') —= V'a'~1G ——=0.
We set #' = V' a' "1 (geexF”) and &' = W'.a/71G’. Then, we obtain a morphism of long exact sequences
(11.10.3)

R fr#)® 60— R fLY)® 0 —— RIfr.F)® O —— RUfr.#) ® 0 —— R f.Y)® O

\L’Yl J{’}Q l')’f} i"/él l'ﬁ

R fr(#' ®0') — R fr.(9 ® 0') — RIfr.(F @ 0') —=RIfr.(H#' ® 0') —= R fr.(¢' ® 0)
Notice that 71 and 72 are almost isomorphisms by induction, and that 4 is an almost isomorphism by
11.9. Thus, applying the 5-lemma ([Sta2l, 05QA]) in the abelian category of almost Z,-modules over

Iy _, xv, we see that 3 is almost injective. Since F’ is an arbitrary constructible abelian sheaf, the
morphism 75 is also almost injective. Thus, 3 is an almost isomorphism. O

Theorem 11.11. With the notation in 11.3, let F' be a torsion abelian sheaf on Y/, and we set F' =
U o'~ F'. Assume that X' — X is proper of finite presentation. Then, the canonical morphism
(11.11.1) (Rf1F') 9% 0 — Rf1.(F' @7 0")

is an almost isomorphism in the derived category D(pr—l\/[odlyﬂxy) (5.7).

Proof. We write F' as a filtered colimit of constructible abelian sheaves F' = colimyca F3 ([Sta2l, 03SA],
cf. [SGA 4y, 1X.2.7.2]). We set .#{ = U.a'"'Fy. We have F’ = colimyep #{ by [SGA 4y, VL5.1]
whose conditions are satisfied since each object in each concerned site is quasi-compact. Moreover, for
each integer ¢, we have

(11.11.2) (RUf1.F") @y O = cohm(quI* 1) ®z O,
(11113) quI*(y/ X7 ﬁl) :Cg\)ll/I\HquI*( )\®Z ﬁ/)
€
The conclusion follows from 11.10. O

Lemma 11. 12 With the notation in 11.3 and 11.4, let F' be a torsion abelian sheaf onY, Ct, H = Rfet* !
and we set F' = V. a' " F', # =RU,a M. Let X be an object of Iy ,xv,Y =7 Xz X, F =d L

(1) The sheaf R f1.. 7’ is canonically isomorphic to the preshean — HY (Y’, .7-") for each integer q.
(2) If Y' =Y is proper, then there exists a canonical isomorphism S — R fr..7'

Proof. Note that the canonical morphism .#' — RW.a’~'F’ is an isomorphism by 3.27.(1). Thus,
Rf1«.7" = R(¥ o f,).a’"1F’, whose g-th cohomology is the sheaf associated to the presheaf X
Hg(i/v’,g’_lj-"v’) = Hgt(ifv’,]-N") by 3.9, and thus (1) follows. If Y/ — Y is proper, then the base change
morphism a 'R fe. — Rfva’~! induces an isomorphism a='H > Rf,.a’~'F by 3.10, and thus (2)
follows. O

Theorem 11.13. With the notation in 11.3, let F' be a finite locally constant abelian sheaf on Y,
Assume that
(i) the morphism X' — X is proper of finite presentation, and that

(ii) the sheaf RIfeesF' is finite locally constant for each integer q and nonzero for finitely many q,
and that
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(i) we have R4, H = 0 (resp. RUW.H = 0) for any finite locally constant abelian sheaf H on Y
(resp. Y/, ) and any integer ¢ > 0.

Then, the relative Faltings’ comparison morphism associated to f and F' (10.7.1) (which exists by (iii))

is an almost isomorphism in the derived category D(pr—ModEébx) (5.7), and it induces an almost

isomorphism
—/

(11.13.1) (VR f60.F') @7 B — R fp.(V.F @7 F)

of Zy-modules for each integer q.

Proof. We follow the discussion of 11.6 and set .#’ = W’.a’~'F’. The canonical morphism (11.6.4)
(11.13.2) Re,. ((Rf1.Z') @% 0) — Re Rf1.(F' @7 0")

is an almost isomorphism by 11.7. It remains to show that the canonical morphism (11.6.3)
(11.13.3) Re, (Rf1.F') @F B — Re ((Rfr..F') Q% 0)

is also an almost isomorphism. With the notation in 11.12 by taking 7' = F/, the complex H is a bounded
complex whose cohomologies H?(H) are finite locally constant abelian sheaves by condition (ii). Consider
the commutative diagram (11.1.1),

(11.13.4) (Schi3)y ——= Ya

\I/\L l’l’
Iy ,xv —E§_x

We set £ = RypH. Then, HY(L) = ¢ H(H) by Cartan-Leray spectral sequence and condition (iii).
Hence, L is a bounded complex of abelian sheaves whose cohomologies are finite locally constant by 10.4
so that the canonical morphism

(11.13.5) LY B — Re, (7L L 0)

is an almost isomorphism by 8.10.

On the other hand, H9() = ¥.a ' HI(H) by Cartan-Leray spectral sequence and 3.27.(1). Thus,
the base change morphism ¢ 'Ry, — RW¥,a~! induces an isomorphism e ~'£ —+ # by 11.2. Moreover,
the canonical morphism £ — Re,e 'L = Re,# = Rep,Ra,a™'H is an isomorphism by 3.9. Thus, the
canonical morphism

(11.13.6) (Reye L) @Y B — Re, (e 1L @y O)

is an almost isomorphism by (11.13.5). In conclusion, (11.13.3) is an almost isomorphism by (11.13.6)
and by the canonical isomorphisms e 'L —+ # = R f..%". (]

Remark 11.14. We give two concrete situations where the conditions in 11.13 are satisfied:

(1) Let Zi, be the integral closure of Z, in an algebraic closure @ of Q,, X’ — X a proper and
finitely presented morphism of coherent Z,-schemes, Y’ — Y the base change of X’ — X by
Spec(Q,) — Spec(Z,). Assume that Y’ — Y is smooth. Then, the condition (ii) is guaranteed
by [SGA 4y11, XVI.2.2 and XVIL.5.2.8.1], and the condition (iii) is guaranteed by 10.9.

(2) Let Ok be a strictly Henselian discrete valuation ring with fraction field K of characteristic 0
and residue field of characteristic p, K an algebraic closure of K, X’ — X a proper morphism
of Of-schemes of finite type, Y/ — Y the base change of X’ — X by Spec(K) — Spec(Ox).
Assume that Y’ — Y is smooth. Then, the condition (ii) is guaranteed by [SGA 45, XVI.2.2
and XVIL.5.2.8.1], and the condition (iii) is guaranteed by 10.8.
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