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Abstract. Faltings’ approach in p-adic Hodge theory can be schematically divided into two main steps:
firstly, a local reduction of the computation of the p-adic étale cohomology of a smooth variety over a

p-adic local field to a Galois cohomology computation and then, the establishment of a link between
the latter and differential forms. These relations are organized through Faltings ringed topos whose
definition relies on the choice of an integral model of the variety, and whose good properties depend on
the (logarithmic) smoothness of this model. Scholze’s generalization for rigid analytic varieties has the

advantage of depending only on the variety (i.e. the generic fibre). Inspired by Deligne’s approach to
classical Hodge theory for singular varieties, we establish a cohomological descent result for the structural
sheaf of Faltings topos, which makes it possible to extend Faltings’ approach to any integral model, i.e.

without any smoothness assumption. An essential ingredient of our proof is a descent result of perfectoid
algebras in the arc-topology due to Bhatt and Scholze. As an application of our cohomological descent,
using a variant of de Jong’s alteration theorem for morphisms of schemes, we generalize Faltings’ main
p-adic comparison theorem to any proper and finitely presented morphism of coherent schemes over an

absolute integral closure of Zp (without any assumption of smoothness) for torsion étale sheaves (not
necessarily finite locally constant).
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1. Introduction

1.1. Faltings’ proof of the Hodge-Tate decomposition illustrates his approach in p-adic Hodge theory and
the role of his ringed topos. Let K be a complete discrete valuation field of characteristic 0 with perfect
residue field of characteristic p > 0. For a proper smooth K-scheme X, Tate conjectured that there
is a canonical Gal(K/K)-equivariant decomposition, now called the Hodge-Tate decomposition ([Tat67,
Remark, page 180]),

Hn
ét(XK ,Qp)⊗Qp K̂ =

⊕
0≤q≤n

Hq(X,Ωn−qX/K)⊗K K̂(q − n),(1.1.1)

where K̂ is the p-adic completion of an algebraic closure K of K, and K̂(q−n) is the (q−n)-th Tate twist

of K̂. This conjecture was settled by Faltings [Fal88, Fal02] and Tsuji [Tsu99, Tsu02] independently, and
had been generalized to rigid analytic settings by Scholze [Sch13a].
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1.2. For a semi-stable OK-scheme X and Y = XK , Faltings constructed a ringed site (Eét
Y→X ,B), now

called the Faltings ringed site, whose foundation was developed by Abbes-Gros [AGT16, VI]. Faltings
designed it as a bridge between the p-adic étale cohomology of Y and differential forms of X. Concretely,
these links are established through the natural morphisms of sites

Yét
ψ−→ Eét

Y→X
σ−→ Xét(1.2.1)

which satisfy the following properties:

(1) (Faltings’ main p-adic comparison theorem, [Fal02, Thm.8, page 223], [AG20, 4.8.13]). For any
finite locally constant abelian sheaf F on Yét, there exists a canonical morphism

RΓ(Yét,F)⊗L
Z OK −→ RΓ(Eét

Y→X , ψ∗F⊗Z B),(1.2.2)

which is an almost isomorphism, that is, the cohomology groups of its cone are killed by pr for
any rational number r > 0.

(2) (Faltings’ computation of Galois cohomology, [AG20, 6.3.8]). There exists a canonical homomor-
phism of OX ⊗OK

OK-modules

Ω̃qX/OK
⊗OK

OK/p
nOK −→ Rqσ∗(B/pnB)(1.2.3)

whose kernel and cokernel are killed by pr for any rational number r > 2 dim(Y )+1
p−1 , where Ω̃qX/OK

is the module of q-th logarithmic differentials forms of X with poles in its special fibre.

Observing that Z/pnZ = ψ∗(Z/pnZ), Faltings deduced the Hodge-Tate decomposition from the degen-
eration and splitting of the Cartan-Leray spectral sequence for the composed functor RΓ(Xét,−) ◦ Rσ∗,
later named the Hodge-Tate spectral sequence by Scholze. Using de Jong’s alteration theorem, one can
deduce the Hodge-Tate decomposition for a general proper smooth K-scheme by reducing to the case
where it admits a semi-stable model (cf. [Tsu02, A5]).

Recently, Abbes-Gros [AG20] generalized the Hodge-Tate spectral sequence to relative settings. Their
work requires semi-stable models over OK . More precisely, for any projective (log-)smooth morphism
between (log-)smooth log schemes over OK , they constructed a relative Hodge-Tate spectral sequence,
which takes place in the Faltings topos of the target log scheme (cf. [AG20, 6.7.5]).

The starting point of this work is to see if the relative Hodge-Tate spectral sequence can be made free
of models. A first question which has its own interest is whether we can develop p-adic Hodge theory
by working over Faltings site for a general model (without any smoothness condition). Deligne [Del74]
used cohomological descent of étale cohomology and Hironaka’s resolution of singularities to generalize
the classical Hodge theory to singular varieties. Inspired by his approach, we give a positive answer to
the previous question by proving that the structural sheaf on Faltings site satisfies cohomological descent
along proper hypercoverings. As an application, we generalize Faltings’ main p-adic comparison theorem
(which we refer to as “Faltings’ comparison theorem” for short in the rest of the introduction) to general
models. Other applications are expected including the extension of the relative Hodge-Tate spectral
sequence to general models.

1.3. Firstly, we recall the definition of the Faltings site associated to a morphism of coherent schemes
Y → X (“coherent” stands for “quasi-compact and quasi-separated”) (cf. 7.7). Let Eét

Y→X be the
category of morphisms of coherent schemes V → U over Y → X, i.e. commutative diagrams

V //

��

U

��
Y // X

(1.3.1)

such that U is étale over X and that V is finite étale over Y ×X U . We endow Eét
Y→X with the topology

generated by the following types of families of morphisms

(v) {(Vm → U)→ (V → U)}m∈M , where {Vm → V }m∈M is a finite étale covering;
(c) {(V ×U Un → Un)→ (V → U)}n∈N , where {Un → U}n∈N is an étale covering.

Consider the presheaf B on Eét
Y→X defined by

B(V → U) = Γ(UV ,OUV ),(1.3.2)

where UV is the integral closure of U in V . It is indeed a sheaf of rings, the structural sheaf of Eét
Y→X

(cf. 7.6).
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1.4. Recall that the cohomological descent of étale cohomology along proper hypercoverings can be
generalized as follows: for a coherent S-scheme, we endow the category of coherent S-schemes Schcoh

/S

with Voevodsky’s h-topology which is generated by étale coverings and proper surjective morphisms of
finite presentation. Then, for any torsion abelian sheaf F on Sét, denoting by a : (Schcoh

/S )h → Sét the

natural morphism of sites, the adjunction morphism F → Ra∗a
−1F is an isomorphism.

This result remains true for a finer topology, the v-topology. A morphism of coherent schemes T → S
is called a v-covering if for any morphism Spec(A)→ S with A a valuation ring, there exists an extension
of valuation rings A → B and a lifting Spec(B) → T . In fact, a v-covering is a limit of h-coverings (cf.
3.6). We will describe the cohomological descent for B using a new site built from the v-topology.

Definition 1.5 (cf. 3.23). Let S◦ → S be an open immersion of coherent schemes such that S is
integrally closed in S◦. We define a site IS◦→S as follows:

(1) The underlying category is formed by coherent S-schemes T which are integrally closed in S◦×ST .
(2) The topology is generated by covering families {Ti → T}i∈I in the v-topology.

We call IS◦→S the v-site of S◦-integrally closed coherent S-schemes, and we call the sheaf O on IS◦→S

associated to the presheaf T 7→ Γ(T,OT ) the structural sheaf of IS◦→S .

1.6. Let p be a prime number, Zp the integral closure of Zp in an algebraic closure Qp of Qp. We take

S◦ = Spec(Qp) and S = Spec(Zp). Consider a diagram of coherent schemes

Y //

��

XY //

��

X

Spec(Qp) // Spec(Zp)

(1.6.1)

where XY is the integral closure of X in Y and the square is Cartesian (we don’t impose any condition
on the regularity or finiteness of Y or X). The functor ε+ : Eét

Y→X → IY→XY sending V → U to UV

defines a natural morphism of ringed sites

ε : (IY→XY ,O) −→ (Eét
Y→X ,B).(1.6.2)

Our cohomological descent results are stated as follows:

Theorem 1.7 (Cohomological descent for Faltings sites, cf. 8.9). For any finite locally constant abelian
sheaf L on Eét

Y→X , the canonical morphism

L⊗Z B −→ Rε∗(ε
−1L⊗Z O)(1.7.1)

is an almost isomorphism.

Corollary 1.8 (cf. 8.13). For any proper hypercovering X• → X, if a : Eét
Y•→X•

→ Eét
Y→X denotes the

augmentation of simplicial site where Y• = Y ×X X•, then the canonical morphism

L⊗Z B −→ Ra∗(a
−1L⊗Z B•)(1.8.1)

is an almost isomorphism.

The key ingredient of our proof of 1.7 is the descent of perfectoid algebras in the arc-topology (a topol-
ogy finer than the v-topology) due to Bhatt-Scholze [BS19, 8.9] (cf. 5.31). The analogue in characteristic
p of 1.7 is Gabber’s computation of the cohomology of the structural sheaf in the h-topology (cf. 4).
Theorem 1.7 allows us to descend important results for Faltings sites with nice models to Faltings sites
associated to general models.

1.9. We use 1.7 to generalize Faltings’ comparison theorem in the absolute case. Let A be a valuation
ring extension of Zp with algebraically closed fraction field. Consider a Cartesian square of coherent
schemes

Y //

��

X

��
Spec(A[ 1p ])

// Spec(A)

(1.9.1)
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Theorem 1.10 (Faltings’ comparison theorem in the absolute case, cf. 10.18). Assume that X is proper
of finite presentation over A. Then, for any finite locally constant abelian sheaf F on Yét, there exists a
canonical morphism

RΓ(Yét,F)⊗L
Z A −→ RΓ(Eét

Y→X , ψ∗F⊗Z B),(1.10.1)

which is an almost isomorphism.

We remark that the natural morphism ψ : Yét → Eét
Y→X induces an equivalence of the categories of

finite locally constant abelian sheaves on Yét and Eét
Y→X (cf. 10.4),

LocSys(Yét)
ψ∗ // LocSys(Eét

Y→X).
ψ−1

oo(1.10.2)

As a continuation of the work of Abbes-Gros, the canonical morphism (1.10.1) (refered as Faltings’
comparison morphism) is constructed using the acyclicity of ψ for F, i.e. ψ∗F = Rψ∗F (so that
RΓ(Yét,F) = RΓ(Eét

Y→X , ψ∗F)), which is a consequence of Achinger’s result on K(π, 1)-schemes (cf.
10.7 and 10.9). We also propose a new way to construct Faltings’ comparison morphism in the derived
category of almost modules using our cohomological descent result 1.7, which avoids using the acyclicity
of ψ. Indeed, there are natural morphisms of sites

(Schcoh
/Y )v

a //

Ψ

��

Yét

ψ

��
IY→XY

ε // Eét
Y→X

(1.10.3)

and Ψ is acyclic for any torsion abelian sheaf F on Yét, i.e. Ψ∗(a
−1F) = RΨ∗(a

−1F), which allows more
general coefficients and whose proof is much easier than that of ψ (cf. 3.27). We remark that this new
construction won’t give us a “real morphism” (1.10.1) but a canonical morphism in the derived category
of almost modules (cf. 11.6).

We briefly explain the strategy for proving 1.10:

(1) Firstly, we use de Jong-Gabber-Illusie-Temkin’s alteration theorem for morphisms of schemes
[ILO14, X.3] to obtain a proper surjective morphism of finite presentation X ′ → X such that
the morphism X ′ → Spec(A) is the cofiltered limit of a system of “nice” morphisms X ′

λ → Tλ of
“nice” models over OKλ

, where Kλ is a finite extension of Qp (cf. 9.11).
(2) Then, we can apply Faltings’ comparison theorem in the relative case to the “nice” morphisms

X ′
λ → Tλ (formulated by Faltings [Fal02, Thm.6, page 266] and proved by Abbes-Gros [AG20,

5.7.4], cf. 10.14). By a limit argument, we get the comparison theorem for X ′.
(3) Finally, using our cohomological descent result 1.8, we deduce the comparison theorem for X.

1.11. The site IY→XY is also appropriate to globalize Faltings’ comparison theorem. Consider a Cartesian
square of coherent schemes

Y ′ //

��

X ′

��
Y // X

(1.11.1)

where Y → X is Cartesian over Spec(Qp) → Spec(Zp). In particular, there is a natural morphism of
ringed sites by the functoriality of (1.10.3),

fI : (IY ′→X′Y ′ ,O ′) −→ (IY→XY ,O).(1.11.2)

Theorem 1.12 (cf. 11.11). Assume that X ′ → X is proper of finite presentation. Let F ′ be a torsion
abelian sheaf on Y ′

ét and F ′ = Ψ′
∗a

′−1F ′ (cf. (1.10.3)). Then, the canonical morphism

(RfI∗F
′)⊗L

Z O −→ RfI∗(F
′ ⊗Z O ′)(1.12.1)

is an almost isomorphism.
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We remark that if F ′ = Z/pnZ then F ′ = Z/pnZ (cf. 3.27), and that RqfI∗F ′ is the sheafification
of étale cohomologies of Y ′ over Y with coefficient F ′ in the v-topology (cf. 11.12). Very roughly
speaking, objects of IY→XY are “locally” the spectrums of valuation rings, and the “stalks” of (1.12.1)
are Faltings’ comparison morphisms (1.10.1) when F ′ is finite locally constant (cf. 11.5). Theorem
1.12 can be regarded as a scheme theoretical analogue of Scholze’s comparison theorem for p-adic étale
cohomology of a morphism of rigid analytic varieties [Sch13b, 3.13].

Finally, we generalize Faltings’ comparison theorem in the relative case using 1.7 and 1.12.

Theorem 1.13 (Faltings’ comparison theorem in the relative case, cf. 11.13 and 11.14). Assume that
Y ′ → Y is smooth and that X ′ → X is proper of finite presentation. Then, for any finite locally constant
abelian sheaf F′ on Y ′

ét, there exists a canonical morphism

(Rψ∗Rfét∗F′)⊗L
Z B −→ RfE∗(ψ

′
∗F′ ⊗Z B

′
),(1.13.1)

which is an almost isomorphism, and where fét : Y
′
ét → Yét and fE : Eét

Y ′→X′ → Eét
Y→X are the natural

morphisms of sites. In particular, there exists a canonical morphism

(ψ∗R
qfét∗F′)⊗Z B −→ RqfE∗(ψ

′
∗F′ ⊗Z B

′
),(1.13.2)

which is an almost isomorphism, for any integer q.

1.14. The paper is structured as follows. In section 3, we establish the foundation of the site IS◦→S ,
where proposition 3.27 discussing the cohomological properties of Ψ : (Schcoh

/S◦)v → IS◦→S is the key to

our new construction of Faltings’ comparison morphism (cf. 11.6). Sections 4 and 5 are devoted to a
detailed proof of the arc-descent for perfectoid algebras following Bhatt-Scholze [BS19, 8.9]. Since we
use the language of schemes, the terminology “pre-perfectoid” is introduced for those algebras whose
p-adic completions are perfectoid. In sections 6 and 7, we review the definition and some basic properties
of Faltings sites and we introduce a pro-version of Faltings site to evaluate the structural sheaf on the
spectrums of pre-perfectoid algebras. Then, we prove our cohomological descent result in section 8. In
section 9, we review de Jong-Gabber-Illusie-Temkin’s alteration theorem and apply it to schemes over a
valuation ring of height 1. Section 10 is devoted to proving our generalization of Faltings’ comparison
theorem in the absolute case. In section 11, we give a new construction of Faltings’ comparison morphism
and our generalization of Faltings’ comparison theorem in the relative case.

1.15. Our work suggests that the site IS◦→S could play an important role in Faltings’ p-adic Hodge theory,
as it allows us to work with general models (at least in the “comparison” part). A recent work of Guo
[Guo19] generalized the Hodge-Tate decomposition to singular rigid analytic varieties. Thus, it seems
reasonable that we could use IS◦→S to generalize the “Galois cohomology” part of Faltings’ p-adic Hodge
theory and relate it to Deligne-du Bois complex, and the final goal is to generalize Abbes-Gros’ relative
Hodge-Tate spectral sequence to morphisms of singular varieties. If one would like to be more optimistic
about the site IS◦→S , then it is interesting to look for an intrinsic proof of Faltings’ comparison theorems
on IS◦→S instead of doing alterations and cohomological descent. A further possible generalization would
be over a general base S◦ → S (not only Cartesian over Spec(Qp) → Spec(Zp)). On the other hand,
it seems that the site IS◦→S is closely related to Bhatt-Scholze’s perfectoidization in their prismatic
cohomology theory [BS19, 8], and further concrete relations are waiting to be explored. The author is
still studying these problems.

Acknowledgements. This work is part of my thesis prepared at Université Paris-Saclay and Institut
des Hautes Études Scientifiques. I would like to express my sincere gratitude to my doctoral supervisor,
Ahmed Abbes, for his guidance to this project, his thorough review of this work and his plenty of helpful
suggestions on both research and writing.

2. Notation and Conventions

2.1. We fix a prime number p throughout this paper. For any monoid M , we denote by Frob : M →M
the map sending an element x to xp and we call it the Frobenius of M . For a ring R, we denote by R×

the group of units of R. A ring R is called absolutely integrally closed if any monic polynomial f ∈ R[T ]
has a root in R ([Sta21, 0DCK]). We remark that quotients, localizations and products of absolutely
integrally closed rings are still absolutely integrally closed.

https://stacks.math.columbia.edu/tag/0DCK
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Recall that a valuation ring is a domain V such that for any element x in its fraction field, if x /∈ V
then x−1 ∈ V . The family of ideals of V is totally ordered by the inclusion relation ([Bou06, VI.§1.2,
Thm.1]). In particular, a radical ideal of V is a prime ideal. Moreover, any quotient of V by a prime ideal
and any localization of V are still valuations rings ([Sta21, 088Y]). We remark that V is normal, and
that V is absolutely integrally closed if and only if its fraction field is algebraically closed. An extension
of valuation rings is an injective and local homomorphism of valuation rings.

2.2. Following [SGA 4II, VI.1.22], a coherent scheme (resp. morphism of schemes) stands for a quasi-
compact and quasi-separated scheme (resp. morphism of schemes). For a coherent morphism Y → X of
schemes, we denote by XY the integral closure of X in Y ([Sta21, 0BAK]). For an X-scheme Z, we say
that Z is Y -integrally closed if Z = ZY×XZ .

2.3. Throughout this paper, we fix two universes U and V such that the set of natural numbers N is an
element of U and that U is an element of V ([SGA 4I, I.0]). In most cases, we won’t emphasize this set
theoretical issue. Unless stated otherwise, we only consider U-small schemes and we denote by Sch the
category of U-small schemes, which is a V-small category.

2.4. Let C be a category. We denote by Ĉ the category of presheaves of V-small sets on C. If C is a

V-site ([SGA 4I, II.3.0.2]), we denote by C̃ the topos of sheaves of V-small sets on C. We denote by

hC : C → Ĉ, x 7→ hCx the Yoneda embbeding ([SGA 4I, I.1.3]), and by Ĉ → C̃, F 7→ Fa the sheafification
functor ([SGA 4I, II.3.4]). Unless stated otherwise, a site in this paper stands for a site where all finite
limits are representable.

2.5. Let u+ : C → D be a functor of categories. We denote by up : D̂ → Ĉ the functor that associates
to a presheaf G of V-small sets on D the presheaf upG = G ◦ u+. If C is V-small and D is a V-category,
then up admits a left adjoint up [Sta21, 00VC] and a right adjoint pu [Sta21, 00XF] (cf. [SGA 4I, I.5]).
So we have a sequence of adjoint functors

up, u
p, pu.(2.5.1)

If moreover C and D are V-sites, then we denote by us, u
s, su the functors of the topoi C̃ and D̃ of sheaves

of V-small sets induced by composing the sheafification functor with the functors up, u
p, pu respectively.

As we only consider finite complete sites, we say that the functor u+ gives a morphism of sites, if u+ is
left exact and preserves covering families ([SGA 4I, IV.4.9.2]). Then, we denote by

u = (u−1, u∗) : D̃ → C̃(2.5.2)

the associated morphism of topoi, where u−1 = us and u∗ = us = up|D̃. We remark that the notation
here, adopted by [Sta21], is slightly different with that in [SGA 4I] (cf. [Sta21, 0CMZ]).

3. The v-site of Integrally Closed Schemes

Definition 3.1. Let X → Y be a quasi-compact morphism of schemes.

(1) We say that X → Y is a v-covering, if for any valuation ring V and any morphism Spec(V )→ Y ,
there exists an extension of valuation rings V →W (2.1) and a commutative diagram (cf. [Sta21,
0ETN])

Spec(W ) //

��

X

��
Spec(V ) // Y

(3.1.1)

(2) Let π be an element of Γ(Y,OY ). We say that X → Y is an arc-covering (resp. π-complete
arc-covering), if for any valuation ring (resp. π-adically complete valuation ring) V of height ≤ 1
and any morphism Spec(V ) → Y , there exists an extension of valuation rings (resp. π-adically
complete valuation rings) V →W of height ≤ 1 and a commutative diagram (3.1.1) (cf. [BM20,
1.2], [CS19, 2.2.1]).

(3) We say that X → Y is an h-covering, if it is a v-covering and locally of finite presentation (cf.
[Sta21, 0ETS]).

We note that an arc-covering is simply a 0-complete arc-covering.

https://stacks.math.columbia.edu/tag/088Y
https://stacks.math.columbia.edu/tag/0BAK
https://stacks.math.columbia.edu/tag/00VC
https://stacks.math.columbia.edu/tag/00XF
https://stacks.math.columbia.edu/tag/0CMZ
https://stacks.math.columbia.edu/tag/0ETN
https://stacks.math.columbia.edu/tag/0ETS
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Lemma 3.2. Let Z
g−→ Y

f−→ X be quasi-compact morphisms of schemes, π ∈ Γ(X,OX), τ ∈ {h, v,
π-complete arc}.

(1) If f is a τ -covering, then any base change of f is also a τ -covering.
(2) If f and g are τ -coverings, then f ◦ g is also a τ -covering.
(3) If f ◦ g is a τ -covering (and if f is locally of finite presentation when τ = h), then f is also a

τ -covering.

Proof. It follows directly from the definitions. □

3.3. Let Schcoh be the category of coherent U-small schemes, τ ∈ {h, v, arc}. We endow Schcoh with
the τ -topology generated by the pretopology formed by families of morphisms {Xi → X}i∈I with I finite

such that
⨿
i∈I Xi → X is a τ -covering, and we denote the corresponding site by Schcoh

τ . It is clear
that a morphism Y → X (which is locally of finite presentation if τ = h) is a τ -covering if and only if

{Y → X} is a covering family in Schcoh
τ by 3.2 and [SGA 4I, II.1.4].

For any coherent U-small scheme X, we endow the category Schcoh
/X of objects of Schcoh over X with

the topology induced by the τ -topology of Schcoh, i.e. the topology generated by the pretopology formed
by families of X-morphisms {Yi → Y }i∈I with I finite such that

⨿
i∈I Yi → Y is a τ -covering ([SGA 4I,

III.5.2]). For any sheaf F of V-small abelian groups on the site (Schcoh
/X )τ , we denote its q-th cohomology

by Hq
τ (X,F).

Lemma 3.4. Let f : X → Y be a quasi-compact morphism of schemes, π ∈ Γ(Y,OY ).
(1) If f is proper surjective or faithfully flat, then f is a v-covering.
(2) If f is an h-covering and Y is affine, then there exists a proper surjective morphism Y ′ → Y

of finite presentation and a finite affine open covering Y ′ =
∪n
r=1 Y

′
r such that Y ′

r → Y factors
through f for each r.

(3) If f is an h-covering and if there exists a directed inverse system (fλ : Xλ → Yλ)λ∈Λ of finitely
presented morphisms of coherent schemes with affine transition morphisms ψλ′λ : Xλ′ → Xλ and
ϕλ′λ : Yλ′ → Yλ such that X = limXλ, Y = limYλ and that fλ is the base change of fλ0 by ϕλλ0

for some index λ0 ∈ Λ and any λ ≥ λ0, then there exists an index λ1 ≥ λ0 such that fλ is an
h-covering for any λ ≥ λ1.

(4) If f is a v-covering, then it is a π-complete arc-covering.
(5) Let π′ be another element of Γ(Y,OY ) which divides π. If f is a π-complete arc-covering, then it

is a π′-complete arc-covering.

(6) If Spec(B) → Spec(A) is a π-complete arc-covering, then the morphism Spec(B̂) → Spec(Â)
between the spectrums of their π-adic completions is also a π-complete arc-covering.

Proof. (1), (2) are proved in [Sta21, 0ETK, 0ETU] respectively.
(3) To show that one can take λ1 ≥ λ0 such that fλ1 is an h-covering, we may assume that Yλ0 is affine

by replacing it by a finite affine open covering by 3.2 and (1). Thus, applying (2) to the h-covering f and
using [EGA IV3, 8.8.2, 8.10.5], there exists an index λ1 ≥ λ0, a proper surjective morphism Y ′

λ1
→ Yλ1

and a finite affine open covering Y ′
λ1

=
∪n
r=1 Y

′
rλ1

such that the morphisms Y ′
r → Y ′ → Y are the base

changes of the morphisms Y ′
rλ1
→ Y ′

λ1
→ Yλ1 by the transition morphism Y → Yλ1 , and that Y ′

rλ1
→ Yλ1

factors through Xλ1 . This shows that fλ1 is an h-covering by 3.2 and (1).
(4) With the notation in (3.1.1), if V is a π-adically complete valuation ring of height ≤ 1 with maximal

ideal m, then since the family of prime ideals of W is totally ordered by the inclusion relation (2.1), we
take the maximal prime ideal p ⊆W over 0 ⊆ V and the minimal prime ideal q ⊆W over m ⊆ V . Then,
p ⊆ q and W ′ = (W/p)q over V is an extension of valuation rings of height ≤ 1. Since π ∈ m and W ′ is

of height ≤ 1, the π-adic completion Ŵ ′ is still a valuation ring extension of V of height ≤ 1 (cf. [Bou06,
VI.§5.3, Prop.5]), which proves (4).

(5) Since a π′-adically complete valuation ring V is also π-adically complete ([Sta21, 090T]), there exists
a lifting Spec(W ) → X for any morphism Spec(V ) → Y . After replacing W by its π′-adic completion,
the conclusion follows.

(6) Let V be a π-adically complete valuation ring of height ≤ 1. Given a morphism Â → V , there
exists a lifting B → W where V → W is an extension of π-adically complete valuation rings of height

≤ 1. It is clear that B →W factors through B̂, which proves (6). □

https://stacks.math.columbia.edu/tag/0ETK
https://stacks.math.columbia.edu/tag/0ETU
https://stacks.math.columbia.edu/tag/090T
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3.5. Let X be a coherent scheme, Schfp
/X the full subcategory of Schcoh

/X formed by finitely presented X-

schemes. We endow it with the topology generated by the pretopology formed by families of morphisms
{Yi → Y }i∈I with I finite such that

⨿
i∈I Yi → Y is an h-covering, and we denote the corresponding site

by (Schfp
/X)h. It is clear that this topology coincides with the topologies induced from (Schcoh

/X )v and

from (Schcoh
/X )h. The inclusion functors (Schfp

/X)h
ξ+−→ (Schcoh

/X )h
ζ+−→ (Schcoh

/X )v define morphisms of sites

(2.5)

(Schcoh
/X )v

ζ−→ (Schcoh
/X )h

ξ−→ (Schfp
/X)h.(3.5.1)

Lemma 3.6. Let X be a coherent scheme. Then, for any covering family U = {Yi → Y }i∈I in (Schcoh
/X )v

with I finite,

(i) there exists a directed inverse system (Yλ)λ∈Λ of finitely presented X-schemes with affine transi-
tion morphisms such that Y = limYλ, and

(ii) for each i ∈ I, there exists a directed inverse system (Yiλ)λ∈Λ of finitely presented X-schemes
with affine transition morphisms over the inverse system (Yλ)λ∈Λ such that Yi = limYiλ, and

(iii) for each λ ∈ Λ, the family Uλ = {Yiλ → Yλ}i∈I is a covering in (Schfp
/X)h.

Proof. We take a directed set A such that for each i ∈ I, we can write Yi as a cofiltered limit of finitely
presented Y -schemes Yi = limα∈A Yiα with affine transition morphisms ([Sta21, 09MV]). We see that⨿
i∈I Yiα → Y is an h-covering for each α ∈ A by 3.2.
We write Y as a cofiltered limit of finitely presented X-schemes Y = limβ∈B Yβ with affine transition

morphisms ([Sta21, 09MV]). By [EGA IV3, 8.8.2, 8.10.5] and 3.4.(3), for each α ∈ A, there exists an
index βα ∈ B such that the morphism Yiα → Y is the base change of a finitely presented morphism
Yiαβα → Yβα by the transition morphism Y → Yβα for each i ∈ I, and that

⨿
i∈I Yiαβα → Yβα is an

h-covering. For each β ≥ βα, let Yiαβ be the base change of Yiαβα by Yβ → Yβα .
We define a category Λop, whose set of objects is {(α, β) ∈ A×B | β ≥ βα}, and for any two objects

λ′ = (α′, β′), λ = (α, β), the set HomΛop(λ′, λ) is

(i) the subset of
∏
i∈I HomYβ′ (Yiα′β′ , Yiαβ′) formed by elements f = (fi)i∈I such that for each i ∈ I,

fi : Yiα′β′ → Yiαβ′ is affine and the base change of fi by Y → Yβ′ is the transition morphism
Yiα′ → Yiα, if α

′ ≥ α and β′ ≥ β;
(ii) empty, if else.

The composition of morphisms (gi : Yiα′′β′′ → Yiα′β′′)i∈I with (fi : Yiα′β′ → Yiαβ′)i∈I in Λop is (gi ◦ f ′i :
Yiα′′β′′ → Yiαβ′′), where f ′i is the base change of fi by the transition morphism Yβ′′ → Yβ′ . We see
that Λop is cofiltered by [EGA IV3, 8.8.2]. Let Λ be the opposite category of Λop. For each i ∈ I and
λ = (α, β) ∈ Λ, we set Yλ = Yβ and Yiλ = Yiαβ . It is clear that the natural functors Λ → A and
Λ → B are cofinal ([SGA 4I, I.8.1.3]). After replacing Λ by a directed set ([Sta21, 0032]), the families
Uλ = {Yiλ → Yλ}i∈I satisfy the required conditions. □

Lemma 3.7. With the notation in 3.5, let F be a presheaf on (Schfp
/X)h, (Yλ) a directed inverse system

of finitely presented X-schemes with affine transition morphisms, Y = limYλ. Then, we have νpF(Y ) =
colimF(Yλ), where ν+ = ξ+ (resp. ν+ = ζ+ ◦ ξ+).

Proof. Notice that the presheaf F is a filtered colimit of representable presheaves by [SGA 4I, I.3.4]

F = colim
Y ′∈(Schfp

/X
)/F

hY ′ .(3.7.1)

Thus, we may assume that F is representable by a finitely presented X-scheme Y ′ since the section
functor Γ(Y,−) commutes with colimits of presheaves ([Sta21, 00VB]). Then, we have

νphY ′(Y ) = hν+(Y ′)(Y ) = HomX(Y, Y ′) = colimHomX(Yλ, Y
′) = colimhY ′(Yλ)(3.7.2)

where the first equality follows from [Sta21, 04D2], and the third equality follows from [EGA IV3, 8.14.2].
□

Proposition 3.8. With the notation in 3.5, let F be an abelian sheaf on (Schfp
/X)h, (Yλ) a directed

inverse system of finitely presented X-schemes with affine transition morphisms, Y = limYλ. Let τ = h

https://stacks.math.columbia.edu/tag/09MV
https://stacks.math.columbia.edu/tag/09MV
https://stacks.math.columbia.edu/tag/0032
https://stacks.math.columbia.edu/tag/00VB
https://stacks.math.columbia.edu/tag/04D2
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and ν+ = ξ+ (resp. τ = v and ν+ = ζ+ ◦ ξ+). Then, for any integer q, we have

Hq
τ (Y, ν

−1F) = colimHq((Schfp
/Yλ

)h,F).(3.8.1)

In particular, the canonical morphism F −→ Rν∗ν
−1F is an isomorphism.

Proof. For the second assertion, the sheaf Rqν∗ν
−1F is the sheaf associated to the presheaf Y 7→

Hq
τ (Y, ν

−1F) = Hq((Schfp
/Y )h,F) by the first assertion, which is F if q = 0 and vanishes otherwise.

We claim that it suffices to show that (3.8.1) holds for any injective abelian sheaf F = I on (Schfp
/X)h.

Indeed, if so, then we prove by induction on q that (3.8.1) holds in general. The case where q ≤ −1
is trivial. We set Hq

1 (F) = Hq
τ (Y, ν

−1F) and Hq
2 (F) = colimHq((Schfp

/Yλ
)h,F). We embed an abelian

sheaf F to an injective abelian sheaf I. Consider the exact sequence 0 → F → I → G → 0 and the
morphism of long exact sequences

Hq−1
1 (I) //

γ1

��

Hq−1
1 (G) //

γ2

��

Hq
1 (F) //

γ3

��

Hq
1 (I) //

γ4

��

Hq
1 (G)

γ5

��
Hq−1

2 (I) // Hq−1
2 (G) // Hq

2 (F) // Hq
2 (I) // Hq

2 (G)

(3.8.2)

If (3.8.1) holds for any abelian sheaf F for degree q − 1, then γ1, γ2, γ4 are isomorphisms and thus γ3 is
injective by the 5-lemma ([Sta21, 05QA]). Thus, γ5 is also injective since F is an arbitrary abelian sheaf.
Then, we see that γ3 is an isomorphism, which completes the induction procedure.

For an injective abelian sheaf I on (Schfp
/X)h, we claim that for any covering family U = {(Yi → Y )}i∈I

in (Schcoh
/X )τ with I finite, the augmented Čech complex associated to the presheaf νpI

νpI(Y )→
∏
i∈I

νpI(Yi)→
∏
i,j∈I

νpI(Yi ×Y Yj)→ · · ·(3.8.3)

is exact. Admitting this claim, we see that νpI is indeed a sheaf, i.e. ν−1I = νpI, and the vanishing of

higher Čech cohomologies implies that Hq
τ (Y, ν

−1I) = 0 for q > 0 by 3.6 ([Sta21, 03F9]), which completes

the proof together with 3.7. For the claim, we take the covering families Uλ = {Yiλ → Yλ}i∈I in (Schfp
/X)h

constructed by 3.6. By 3.7, the sequence (3.8.3) is the filtered colimit of the augmented Čech complexes

I(Yλ)→
∏
i∈I

I(Yiλ)→
∏
i,j∈I

I(Yiλ ×Yλ
Yjλ)→ · · · ,(3.8.4)

which are exact since I is an injective abelian sheaf on (Schfp
/X)h. □

Corollary 3.9. Let X be a coherent scheme, F a torsion abelian sheaf on the site Xét formed by coherent
étale X-schemes endowed with the étale topology, a : (Schcoh

/X )v → Xét the morphism of sites defined by

the inclusion functor. Then, the canonical morphism F → Ra∗a
−1F is an isomorphism.

Proof. Consider the morphisms of sites defined by inclusion functors

(Schcoh
/X )v

ζ−→ (Schcoh
/X )h

ξ−→ (Schfp
/X)h

µ−→ Xét.(3.9.1)

Notice that the morphism F → R(µ ◦ ξ)∗(µ ◦ ξ)−1F is an isomorphism by [Sta21, 0EWG]. Hence,
F → Rµ∗µ

−1F is an isomorphism by 3.8, and thus so is F → Ra∗a
−1F by 3.8. □

Corollary 3.10. Let f : X → Y be a proper morphism of coherent schemes, F a torsion abelian sheaf
on Xét. Consider the commutative diagram

(Schcoh
/X )v

aX //

fv

��

Xét

fét

��
(Schcoh

/Y )v
aY // Yét

(3.10.1)

where fv and fét are defined by the base change by f . Then, the canonical morphism

a−1
Y Rfét∗F −→ Rfv∗a

−1
X F(3.10.2)

is an isomorphism.

https://stacks.math.columbia.edu/tag/05QA
https://stacks.math.columbia.edu/tag/03F9
https://stacks.math.columbia.edu/tag/0EWG
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Proof. Consider the commutative diagram

(Schcoh
/X )v

ζX //

fv

��

(Schcoh
/X )h

bX //

fh

��

Xét

fét

��
(Schcoh

/Y )v
ζY // (Schcoh

/Y )h
bY // Yét

(3.10.3)

The canonical morphism b−1
Y Rfét∗F −→ Rfh∗b

−1
X F is an isomorphism by [Sta21, 0EWF]. It remains to

show that the canonical morphism ζ−1
Y Rfh∗b

−1
X F −→ Rfv∗a

−1
X F is an isomorphism. Let Y ′ be a coherent

Y -scheme and we set g : X ′ = Y ′ ×Y X → X. For each integer q, ζ−1
Y Rqfh∗b

−1
X F is the sheaf associated

to the presheaf Y ′ 7→ Hq
h(X

′, b−1
X′g

−1
ét F) = Hq

ét(X
′, g−1

ét F) by [Sta21, 0EWH], and Rqfv∗a
−1
X F is the sheaf

associated to the presheaf Y ′ 7→ Hq
v(X

′, a−1
X′g

−1
ét F) = Hq

ét(X
′, g−1

ét F) by 3.9. □

Lemma 3.11. Let A be a product of (resp. absolutely integrally closed) valuation rings (2.1).

(1) Any finitely generated ideal of A is principal.
(2) Any connected component of Spec(A) with the reduced closed subscheme structure is isomorphic

to the spectrum of a (resp. absolutely integrally closed) valuation ring.

Proof. (1) is proved in [Sta21, 092T], and (2) follows from the proof of [BS17, 6.2]. □

Lemma 3.12. Let X be a U-small scheme, y ⇝ x a specialization of points of X. Then, there exists a
U-small family {fλ : Spec(Vλ)→ X}λ∈Λy⇝x

of morphisms of schemes such that

(i) the ring Vλ is a U-small (resp. absolutely integrally closed) valuation ring, and that
(ii) the morphism fλ maps the generic point and closed point of Spec(Vλ) to y and x respectively,

and that
(iii) for any morphism of schemes f : Spec(V )→ X where V is a (resp. absolutely integrally closed)

valuation ring such that f maps the generic point and closed point of V to y and x respectively,
there exists an element λ ∈ Λy⇝x such that f factors through fλ and that Vλ → V is an extension
of valuation rings.

Proof. Let Ky be the residue field κ(y) of y (resp. an algebraic closure of κ(y)). Let py be the prime
ideal of the local ring OX,x corresponding to the point y, and let {Vλ}λ∈Λy⇝x be the set of all valuation
rings with fraction field Ky which contain OX,x/py such that the injective homomorphism OX,x/py → Vλ
is local. The smallness of Λy⇝x and Vλ is clear, and the inclusion OX,x/py → Vλ induces a morphism
fλ : Spec(Vλ) → X satisfying (ii). It remains to check (iii). The morphism f induces an injective and
local homomorphism OX,x/py → V . Notice that OX,x/py → Frac(V ) factors through Ky and that Ky∩V
is a valuation ring with fraction field Ky. It is clear that Ky ∩V → V is local and injective, which shows
that Ky ∩ V belongs to the set {Vλ}λ∈Λy⇝x constructed before. □

Lemma 3.13. Let f : Spec(V )→ X be a morphism of schemes where V is a valuation ring. We denote
by a and b the closed point and generic point of Spec(V ) respectively. If c ∈ X is a generalization of f(b),
then there exists an absolutely integrally closed valuation ring W , a prime ideal p of W , and a morphism
g : Spec(W )→ X satisfying the following conditions:

(i) If z, y, x denote respectively the generic point, the point p and the closed point of Spec(W ), then
g(z) = c, g(y) = f(b) and g(x) = f(a).

(ii) The induced morphism Spec(W/p)→ X factors through f , and the induced morphism V →W/p
is an extension of valuation rings.

Proof. According to [EGA II, 7.1.4], there exists an absolutely integrally closed valuation ring U and a
morphism Spec(U)→ X which maps the generic point z and the closed point y of Spec(U) to c and f(b)
respectively. After extending U , we may assume that the morphism y → f(b) factors through b ([EGA II,
7.1.2]). We denote by κ(y) the residue field of the point y. Let V ′ be a valuation ring extension of V
with fraction field κ(y), and letW be the preimage of V ′ by the surjection U → κ(y). Then, the maximal
ideal p = Ker(U → κ(y)) of U is a prime ideal of W , and W/p = V ′. We claim that W is an absolutely
integrally closed valuation ring such that Wp = U . Indeed, firstly note that the fraction fields of U and
W are equal as p ⊆ W . Let γ be an element of Frac(W ) \W . If γ ∈ U , then γ−1 ∈ W \ p by definition
since γ−1 ∈ U \ p and V is a valuation ring, and then γ ∈ Wp. If γ /∈ U , then γ−1 ∈ p since U is a

https://stacks.math.columbia.edu/tag/0EWF
https://stacks.math.columbia.edu/tag/0EWH
https://stacks.math.columbia.edu/tag/092T
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valuation ring, and then γ /∈ Wp. Thus, we have proved the claim, which shows that W satisfies the
required conditions. □
Proposition 3.14. Let X be a coherent U-small scheme, X◦ a quasi-compact dense open subset of
X. Then, there exists a U-small product A of absolutely integrally closed U-small valuation rings and a
v-covering Spec(A)→ X such that Spec(A) is X◦-integrally closed (2.2).

Proof. After replacing X by a finite affine open covering, we may assume that X = Spec(R). For a
specialization y ⇝ x of points of X, let {R → Vλ}λ∈Λy⇝x be the U-small set constructed in 3.12. Let
Λ =

⨿
y∈X◦ Λy⇝x where y ⇝ x runs through all specializations in X such that y ∈ X◦. We take

A =
∏
λ∈Λ Vλ and R→ A the natural homomorphism. As a quasi-compact open subscheme of Spec(A),

X◦ ×X Spec(A) is the spectrum of A[1/π] for an element π = (πλ)λ∈Λ ∈ A by 3.11.(1) ([Sta21, 01PH]).
Notice that πλ ̸= 0 for any λ ∈ Λ. We see that A is integrally closed in A[1/π]. It remains to check
that Spec(A)→ X is a v-covering. For any morphism f : Spec(V )→ X where V is a valuation ring, by
3.13, there exists an absolutely integrally closed valuation ring W , a prime ideal p of W and a morphism
g : Spec(W ) → X such that g maps the generic point of W into X◦ and that W/p is a valuation ring
extension of V . By construction, there exists λ ∈ Λ such that g factors through Spec(Vλ)→ X. We see
that f lifts to the composition of Spec(W/p)→ Spec(Vλ)→ Spec(A). □
Proposition 3.15. Consider a commutative diagram of schemes

Y ′ //

��

Z ′ //

��

X ′

��
Y // Z // X

(3.15.1)

where Z ′ → Z and X ′ → X are quasi-compact. Assume that Y ′ → Y ×X X ′ is surjective, Y → Z is
dominant, Z → X is separated and Z ′ → X ′ is integral. If X ′ → X is a v-covering, then Z ′ → Z is also
a v-covering.

Proof. Notice that Z ′ → Z ×X X ′ is still integral as Z → X is separated. After replacing X ′ → X
by Z ×X X ′ → Z, we may assume that Z = X. Let Spec(V ) → Z be a morphism of schemes where
V is a valuation ring. Since Y → Z is dominant, by 3.13, there exists a morphism Spec(W ) → Z
where W is an absolutely integrally closed valuation ring, a prime ideal p of W such that W/p is a
valuation ring extension of V and that the generic point ξ of Spec(W ) is over the image of Y → Z. After
extending W ([Sta21, 00IA]), we may assume that there exists a lifting ξ → Y of ξ → Z. The morphism
Spec(W ) → Z = X admits a lifting Spec(W ′) → X ′ where W → W ′ is an extension of valuation rings.
We claim that after extending W ′, Spec(W ′)→ X ′ factors through Z ′. Indeed, if ξ′ denotes the generic
point of Spec(W ′), as Y ′ → Y ×X X ′ is surjective, after extending W ′, we may assume that there exists
an X ′-morphism ξ′ → Y ′ which is over ξ → Y . Since Spec(W ′) is integrally closed in ξ′ and Z ′ is integral
over X ′, the morphism Spec(W ′) → X ′ factors through Z ′ ([Sta21, 035I]). Finally, let q ∈ Spec(W ′)
which lies over p ∈ Spec(W ), then we get a lifting Spec(W ′/q)→ Z ′ of Spec(V )→ Z, which shows that
Z ′ → Z is a v-covering. □
3.16. Let S◦ → S be an open immersion of coherent schemes such that S is S◦-integrally closed (2.2).
For any S-scheme X, we set X◦ = S◦ ×S X. We denote by IS◦→S the category formed by coherent
S-schemes which are S◦-integrally closed. Note that any S◦-integrally closed coherent S-scheme X is
also X◦-integrally closed by definition. It is clear that the category (IS◦→S)/X of objects of IS◦→S over
X is canonically equivalent to the category IX◦→X .

Lemma 3.17 ([Sta21, 03GV]). Let Y → X be a coherent morphism of schemes, X ′ → X a smooth

morphism of schemes, Y ′ = Y ×X X ′. Then, we have X ′Y ′
= XY ×X X ′.

Lemma 3.18. Let (Yλ → Xλ)λ∈Λ be a directed inverse system of morphisms of coherent schemes with
affine transition morphisms Yλ′ → Yλ and Xλ′ → Xλ (λ′ ≥ λ). We set Y = limYλ and X = limXλ.

Then, (XYλ

λ )λ∈Λ is a directed inverse system of coherent schemes with affine transition morphisms and

we have XY = limXYλ

λ .

Proof. We fix an index λ0 ∈ Λ. After replacing Xλ0 by an affine open covering, we may assume that Xλ0

is affine (3.17). We write Xλ = Spec(Aλ) and Bλ = Γ(Yλ,OYλ
) for each λ ≥ λ0, and we set A = colimAλ

and B = colimBλ. Then, we have X = Spec(A) and B = Γ(Y,OY ) ([Sta21, 009F]). Let Rλ (resp.

https://stacks.math.columbia.edu/tag/01PH
https://stacks.math.columbia.edu/tag/00IA
https://stacks.math.columbia.edu/tag/035I
https://stacks.math.columbia.edu/tag/03GV
https://stacks.math.columbia.edu/tag/009F
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R) be the integral closure of Aλ in Bλ (resp. A in B). By definition, we have XYλ

λ = Spec(Rλ) and
XY = Spec(R). The conclusion follows from the fact that R = colimRλ. □
Lemma 3.19. Let S◦ → S be an open immersion of coherent schemes.

(1) If X is an S◦-integrally closed coherent S-scheme, then the open subscheme X◦ is scheme theo-
retically dense in X.

(2) If X is an S◦-integrally closed coherent S-scheme and X ′ is a coherent smooth X-scheme, then
X ′ is also S◦-integrally closed.

(3) If (Xλ)λ∈Λ is a directed inverse system of S◦-integrally closed coherent S-scheme with affine
transition morphisms, then X = limλ∈ΛXλ is also S◦-integrally closed.

(4) If Y → X is a morphism of coherent schemes over S◦ → S such that Y is integral over X◦, then
the integral closure XY is S◦-integrally closed with (XY )◦ = Y .

Proof. (1), (2), (3) follow from [Sta21, 035I], 3.17 and 3.18 respectively. For (4), (XY )◦ = X◦ ×X XY is
the integral closure of X◦ in X◦ ×X Y = Y by 3.17, which is Y itself. □
3.20. We take the notation in 3.16. The inclusion functor

Φ+ : IS◦→S −→ Schcoh
/S , X 7−→ X,(3.20.1)

admits a right adjoint

σ+ : Schcoh
/S −→ IS◦→S , X 7−→ X = XX◦

.(3.20.2)

Indeed, σ+ is well-defined by 3.19.(4), and the adjointness follows from the functoriality of taking integral

closures. We remark that X
◦
= X◦. On the other hand, the functor

Ψ+ : IS◦→S −→ Schcoh
/S◦ , X 7−→ X◦,(3.20.3)

admits a left adjoint

α+ : Schcoh
/S◦ −→ IS◦→S , Y 7−→ Y.(3.20.4)

Lemma 3.21. With the notation in 3.16, let φ : I → IS◦→S be a functor sending i to Xi. If X = limXi

represents the limit of φ in the category of coherent S-schemes, then the integral closure X = XX◦

represents the limit of φ in IS◦→S with X
◦
= X◦.

Proof. It follows directly from the adjoint pair (Φ+, σ+) (3.20). □
It follows from 3.21 that for a diagram X1 → X0 ← X2 in IS◦→S , the fibred product is representable

by

X1×X0
X2 = (X1 ×X0

X2)
X◦

1×X◦
0
X◦

2 .(3.21.1)

Proposition 3.22. With the notation in 3.16, let C be the set of families of morphisms {Xi → X}i∈I
of IS◦→S with I finite such that

⨿
i∈I Xi → X is a v-covering. Then, C forms a pretopology of IS◦→S.

Proof. Let {Xi → X}i∈I be an element of C . Firstly, we check that for a morphism X ′ → X of IS◦→S ,

the base change {X ′
i → X ′}i∈I also lies in C , where Zi = Xi ×X X ′ and X ′

i = Z
Z◦

i
i by 3.21. Applying

3.15 to the following diagram ⨿
i∈I Z

◦
i

//

��

⨿
i∈I X

′
i

//

��

⨿
i∈I Zi

��
X ′◦ // X ′ // X ′

(3.22.1)

we deduce that
⨿
i∈I X

′
i → X ′ is also a v-covering, which shows the stability of C under base change.

For each i ∈ I, let {Xij → Xi}j∈Ji be an element of C . We need to show that the composition
{Xij → X}i∈I,j∈Ji also lies in C . This follows immediately from the stability of v-coverings under
composition. We conclude that C forms a pretopology. □
Definition 3.23. With the notation in 3.16, we endow the category IS◦→S with the topology generated
by the pretopology defined in 3.22, and we call IS◦→S the v-site of S◦-integrally closed coherent S-schemes.

By definition, any object in IS◦→S is quasi-compact. Let O be the sheaf on IS◦→S associated to the
presheaf X 7→ Γ(X,OX). We call O the structural sheaf of IS◦→S .

https://stacks.math.columbia.edu/tag/035I


COHOMOLOGICAL DESCENT FOR FALTINGS’ p-ADIC HODGE THEORY AND APPLICATIONS 13

Proposition 3.24. With the notation in 3.16, let f : X ′ → X be a covering in IS◦→S such that f is
separated and that the diagonal morphism X ′◦ → X ′◦ ×X◦ X ′◦ is surjective. Then, the morphism of
representable sheaves haX′ → haX is an isomorphism.

Proof. We need to show that for any sheaf F on IS◦→S , F(X) → F(X ′) is an isomorphism. Since the
composition of X ′◦ → X ′◦ ×X◦ X ′◦ → X ′×XX ′ factors through the closed immersion X ′ → X ′×XX ′

(as f is separated), the closed immersion X ′ → X ′×XX ′ is surjective (3.19.(1)). Consider the following
sequence

F(X)→ F(X ′)⇒ F(X ′×XX ′)→ F(X ′).(3.24.1)

The right arrow is injective as X ′ → X ′×XX ′ is a v-covering. Thus, the middle two arrows are actually
the same. Thus, the first arrow is an isomorphism by the sheaf property of F . □

Proposition 3.25. With the notation in 3.16, let α : F1 → F2 be a morphism of presheaves on IS◦→S.
Assume that

(i) the morphism F1(Spec(V )) → F2(Spec(V )) is an isomorphism for any S◦-integrally closed S-
scheme Spec(V ) where V is an absolutely integrally closed valuation ring, and that

(ii) for any directed inverse system of S◦-integrally closed affine schemes (Spec(Aλ))λ∈Λ over S the
natural morphism colimFi(Spec(Aλ)) → Fi(Spec(colimAλ)) is an isomorphism for i = 1, 2 (cf.
3.19.(3)).

Then, the morphism of the associated sheaves Fa
1 → Fa

2 is an isomorphism.

Proof. Let A be a product of absolutely integrally closed valuation rings such that X = Spec(A) is an
S◦-integrally closed S-scheme. Let Spec(V ) be a connected component of Spec(A) with the reduced
closed subscheme structure. Then, V is an absolutely integrally closed valuation ring by 3.11.(2), and
Spec(V ) is also S◦-integrally closed since it has nonempty intersection with the dense open subset X◦ of
X. Notice that each connected component of an affine scheme is the intersection of some open and closed
subsets ([Sta21, 04PP]). Moreover, since A is reduced, we have V = colimA′, where the colimit is taken
over all the open and closed subschemes X ′ = Spec(A′) of X which contain Spec(V ). By assumption, we
have an isomorphism

colimF1(X
′)

∼−→ colimF2(X
′).(3.25.1)

For two elements ξ1, ξ
′
1 ∈ F1(X) with αX(ξ1) = αX(ξ′1) in F2(X), by (3.25.1) and a limit argument,

there exists a finite disjoin union X =
⨿r
i=1X

′
i such that the images of ξ1 and ξ′1 in F1(X

′
i) are the same.

Therefore, Fa
1 → Fa

2 is injective by 3.14. On the other hand, for an element ξ2 ∈ F2(X), by (3.25.1)
and a limit argument, there exists a finite disjoin union X =

⨿r
i=1X

′
i such that there exists an element

ξ1,i ∈ F1(X
′
i) for each i such that the image of ξ2 in F2(X

′
i) is equal to αX′

i
(ξ1,i). Therefore, Fa

1 → Fa
2

is surjective by 3.14. □

3.26. We take the notation in 3.16. Endowing Schcoh with the v-topology (3.3), we see that the functors
σ+ and Ψ+ defined in 3.20 are left exact (as they have left adjoints) and continuous by 3.15 and 3.22.
Therefore, they define morphisms of sites (2.5)

(Schcoh
/S◦)v

Ψ−→ IS◦→S
σ−→ (Schcoh

/S )v.(3.26.1)

Proposition 3.27. With the notation in 3.26, let a : (Schcoh
/S◦)v → S◦

ét be the morphism of site defined

by the inclusion functor (3.9).

(1) For any torsion abelian sheaf F on S◦
ét, the canonical morphism Ψ∗(a

−1F)→ RΨ∗(a
−1F) is an

isomorphism.
(2) For any locally constant torsion abelian sheaf L on IS◦→S, the canonical morphism L→ RΨ∗Ψ

−1L
is an isomorphism.

Proof. (1) For each integer q, the sheaf RqΨ∗(a
−1F) is the sheaf associated to the presheaf X 7→

Hq
v(X

◦, a−1F) = Hq
ét(X

◦, f−1
ét F) by 3.9, where fét : X◦

ét → S◦
ét is the natural morphism. If X is

the spectrum of a nonzero absolutely integrally closed valuation ring V , then X◦ = Spec(V [1/π]) for a
nonzero element π ∈ V by 3.11.(1) and 3.19.(1), which is also the spectrum of an absolutely integrally
closed valuation ring (2.1). In this case, Hq

ét(X
◦, f−1

ét F) = 0 for q > 0, which proves (1) by 3.25 and
[SGA 4II, VII.5.8].

https://stacks.math.columbia.edu/tag/04PP
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(2) The problem is local on IS◦→S . We may assume that L is the constant sheaf with value L. Then,
RqΨ∗Ψ

−1L = 0 for q > 0 by applying (1) on the constant sheaf with value L on S◦
ét. For q = 0, notice that

L is also the sheaf associated to the presheaf X 7→ H0
ét(X,L), while Ψ∗Ψ

−1L is the sheaf X 7→ H0
ét(X

◦, L)
by the discussion in (1). If X is the spectrum of a nonzero absolutely integrally closed valuation ring,
then so is X◦ and so that H0

ét(X,L) = H0
ét(X

◦, L) = L. The conclusion follows from 3.25 and [SGA 4II,
VII.5.8]. □

4. The arc-Descent of Perfect Algebras

Definition 4.1. For any Fp-algebra R, we denote by Rperf the filtered colimit

Rperf = colim
Frob

R(4.1.1)

indexed by (N,≤), where the transition map associated to i ≤ (i+ 1) is the Frobenius of R.

It is clear that the endo-functor of the category of Fp-algebras, R 7→ Rperf , commutes with colimits.

4.2. We define a presheaf Operf on the category Schcoh
Fp

of coherent U-small Fp-schemes X by

Operf(X) = Γ(X,OX)perf .(4.2.1)

For any morphism Spec(B) → Spec(A) of affine Fp-schemes, we consider the augmented Čech complex
of the presheaf Operf ,

0→ Aperf → Bperf → Bperf ⊗Aperf
Bperf → · · · .(4.2.2)

Lemma 4.3 ([Sta21, 0EWT]). The presheaf Operf is a sheaf on Schcoh
Fp

with respect to the fppf topology

([Sta21, 021L]). Moreover, for any coherent Fp-scheme X and any integer q,

Hq
fppf(X,Operf) = colim

Frob
Hq(X,OX).(4.3.1)

Proof. Firstly, we remark that for any integer q, the functor Hq
fppf(X,−) commutes with filtered colimit of

abelian sheaves on (Schcoh
/X )fppf for any coherent scheme X ([Sta21, 0739]). Since the presheaf O sending

X to Γ(X,OX) on Schcoh
Fp

is an fppf-sheaf, we have H0
fppf(X,Oa

perf) = colimFrobH
0
fppf(X,O) = Operf(X).

Thus, Operf is an fppf-sheaf. Moreover, Hq
fppf(X,Operf) = colimFrobH

q
fppf(X,O) = colimFrobH

q(X,OX)

by faithfully flat descent ([Sta21, 03DW]). □

Lemma 4.4. Let τ ∈ {fppf, h, v, arc}. The following propositions are equivalent:

(1) The presheaf Operf on Schcoh
Fp

is a τ -sheaf and Hq
τ (X,Operf) = colimFrobH

q(X,OX) for any
coherent Fp-scheme X and any integer q.

(2) For any τ -covering Spec(B)→ Spec(A) of affine Fp-schemes, the augmented Čech complex (4.2.2)
is exact.

Proof. For an affine scheme X = Spec(A), Hq(X,OX) vanishes for q > 0 and H0(X,OX) = A. For
(1) ⇒ (2), the exactness of (4.2.2) follows from the Čech-cohomology-to-cohomology spectral sequence
associated to the τ -covering Spec(B)→ Spec(A) [Sta21, 03AZ]. Therefore, (1) and (2) hold for τ = fppf
by 4.3. Conversely, the exactness of (4.2.2) shows the sheaf property for any τ -covering of an affine
scheme by affine schemes, which implies the fppf-sheaf Operf is a τ -sheaf (cf. [Sta21, 0ETM]). The

vanishing of higher Čech cohomologies implies that Hq
τ (X,Operf) = 0 for any affine Fp-scheme X and

any q > 0 ([Sta21, 03F9]). Therefore, for a coherent Fp-scheme X, Hq
τ (X,Operf) can be computed by

the hyper-Čech cohomology of a hypercovering of X formed by affine open subschemes ([Sta21, 01GY]).
In particular, we have Hq

τ (X,Operf) = Hq
fppf(X,Operf) for any integer q, which completes the proof by

4.3. □

Lemma 4.5 (Gabber). The augmented Čech complex (4.2.2) is exact for any h-covering Spec(B) →
Spec(A) of affine Fp-schemes.

Proof. This is a result of Gabber, cf. [BST17, 3.3] or [Sta21, 0EWU], and 4.4. □

Lemma 4.6 ([BS17, 4.1]). The augmented Čech complex (4.2.2) is exact for any v-covering Spec(B)→
Spec(A) of affine Fp-schemes.

https://stacks.math.columbia.edu/tag/0EWT
https://stacks.math.columbia.edu/tag/021L
https://stacks.math.columbia.edu/tag/0739
https://stacks.math.columbia.edu/tag/03DW
https://stacks.math.columbia.edu/tag/03AZ
https://stacks.math.columbia.edu/tag/0ETM
https://stacks.math.columbia.edu/tag/03F9
https://stacks.math.columbia.edu/tag/01GY
https://stacks.math.columbia.edu/tag/0EWU
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Proof. We write B as a filtered colimit of finitely presented A-algebras B = colimBλ. Then, Spec(Bλ)→
Spec(A) is an h-covering for each λ by 3.2. Notice that Bperf = colimBλ,perf , then the conclusion follows
from applying 4.5 on Spec(Bλ)→ Spec(A) and taking colimit. □
Lemma 4.7 ([BS17, 6.3]). For any valuation ring V and any prime ideal p of V , the sequence

0 −→ V
α−→ V/p⊕ Vp

β−→ Vp/pVp −→ 0(4.7.1)

is exact, where α(a) = (a, a) and β(a, b) = a − b. If moreover V is a perfect Fp-algebra, then for any
perfect V -algebra R, the base change of (4.7.1) by V → R,

0 −→ R −→ R/pR⊕Rp −→ Rp/pRp −→ 0(4.7.2)

is exact.

Proof. The sequence (4.7.1) is exact if and only if p = pVp. Let a ∈ p and s ∈ V \ p. Since p is an ideal,
s/a /∈ V , thus a/s ∈ V as V is a valuation ring. Moreover, we must have a/s ∈ p as p is a prime ideal.
This shows the equality p = pVp.

The second assertion follows directly from the fact that TorAq (B,C) = 0 for any q > 0 and any diagram
B ← A→ C of perfect Fp-algebras ([BS17, 3.16]). □

Lemma 4.8 ([BM20, 4.8]). The augmented Čech complex (4.2.2) is exact for any arc-covering Spec(B)→
Spec(A) of affine Fp-schemes with A a valuation ring.

Proof. We follow the proof of Bhatt-Mathew [BM20, 4.8]. Let B = colimBλ be a filtered colimit of
finitely presented A-algebras. Then, Spec(Bλ) → Spec(A) is also an arc-covering by 3.2. Thus, we may
assume that B is a finitely presented A-algebra.

An interval I = [p, q] of a valuation ring A is a pair of prime ideals p ⊆ q of A. We denote by
AI = (A/p)q. The set I of intervals of A is partially ordered under inclusion. Let P be the subset
consisting of intervals I such that the lemma holds for Spec(B ⊗A AI) → Spec(AI). It suffices to show
that P = I.

(1) If the valuation ring AI is of height≤ 1, we claim that Spec(B⊗AAI)→ Spec(AI) is automatically
a v-covering. Indeed, there is an extension of valuation rings AI → V of height ≤ 1 which factors
through B ⊗A AI . As AI → V is faithfully flat, Spec(B ⊗A AI) → Spec(AI) is a v-covering by
3.2 and 3.4.(1). Therefore, I ∈ P by 4.6.

(2) For any interval J ⊆ I, if I ∈ P then J ∈ P. Indeed, applying ⊗Fp(AJ )perf to the exact sequence
(4.2.2) for Spec(B ⊗A AI) → Spec(AI), we still get an exact sequence by the Tor-independence
of perfect Fp-algebras ([BS17, 3.16]).

(3) If p ⊆ A is not maximal, then there exists q ⊋ p with I = [p, q] ∈ P. Indeed, if there is no such
I with the height of AI no more than 1, then p =

∩
q⊋p q, and thus,

Ap/pAp = colim
I=[p,q],q⊋p

AI .(4.8.1)

Since Spec(B ⊗A Ap/pAp) → Spec(Ap/pAp) is an h-covering as Ap/pAp is a field (and we have
assumed that B is of finite presentation over A), there exists an interval I in the above colimit,
such that Spec(B⊗AAI)→ Spec(AI) is also an h-covering by 3.4.(3). Therefore, this I lies in P
by 4.6.

(4) If p ⊆ A is nonzero, then there exists q ⊊ p with I = [q, p] ∈ P. This is similar to (3).
(5) If I, J ∈ P are overlapping, then I ∪ J ∈ P. Indeed, by (2) and replacing A by AI∪J , we may

assume that I = [0, p], J = [p,m] with m the maximal ideal. In particular, AI = Ap, AJ = A/p,
and AI∩J = Ap/pAp. Since for each R = ⊗nAperf

Bperf we have the short exact sequence (4.7.2),

we get I ∪ J ∈ P.
In general, by Zorn’s lemma, the above five properties of P guarantee that P = I (cf. [BM20, 4.7]). □
Lemma 4.9 (cf. [BM20, 3.30]). The augmented Čech complex (4.2.2) is exact for any arc-covering
Spec(B)→ Spec(A) of affine Fp-schemes with A a product of valuation rings.

Proof. We follow closely the proof of 3.25. Let Spec(V ) be a connected component of Spec(A) with the
reduced closed subscheme structure. Then, V is a valuation ring by 3.11.(2). By 4.8, the augmented
Čech complex

0→ Vperf → (B ⊗A V )perf → (B ⊗A V )perf ⊗Vperf
(B ⊗A V )perf → · · ·(4.9.1)



16 TONGMU HE

is exact. Notice that each connected component of an affine scheme is the intersection of some open and
closed subsets ([Sta21, 04PP]). Moreover, since A is reduced, we have V = colimA′, where the colimit is
taken over all the open and closed subschemes Spec(A′) which contain Spec(V ).

Therefore, by a limit argument, for an element f ∈ ⊗nAperf
Bperf which maps to zero in ⊗n+1

Aperf
Bperf ,

as Spec(A) is quasi-compact, we can decompose Spec(A) into a finite disjoint union
⨿N
i=1 Spec(Ai) such

that there exists gi ∈ ⊗n−1
Ai,perf

(B ⊗A Ai)perf which maps to the image fi of f in ⊗nAi,perf
(B ⊗A Ai)perf .

Since we have

⊗nAperf
Bperf =

N∏
i=1

⊗nAi,perf
(B ⊗A Ai)perf ,(4.9.2)

the element g = (gi)
N
i=1 maps to f , which shows the exactness of (4.2.2). □

Proposition 4.10 ([BS19, 8.9]). Let τ ∈ {fppf, h, v, arc}.
(1) The presheaf Operf is a τ -sheaf over Schcoh

Fp
, and for any coherent Fp-scheme X and any integer

q,

Hq
τ (X,Operf) = colim

Frob
Hq(X,OX).(4.10.1)

(2) For any τ -covering Spec(B)→ Spec(A) of affine Fp-schemes, the augmented Čech complex

0→ Aperf → Bperf → Bperf ⊗Aperf
Bperf → · · ·(4.10.2)

is exact.

Proof. We follow closely the proof of Bhatt-Scholze [BS19, 8.9]. (1) and (2) are equivalent by 4.4, and
they hold for τ ∈ {fppf, h, v} by 4.3, 4.5 and 4.6. In particular,

H0
v(Spec(A),Operf) = Aperf and H

q
v(Spec(A),Operf) = 0, ∀q > 0.(4.10.3)

We take a hypercovering in the v-topology Spec(A•) → Spec(A) such that An is a product of valuation
rings for each degree n by 3.14 and [Sta21, 094K and 0DB1]. The associated sequence

0→ Aperf → A0,perf → A1,perf → · · ·(4.10.4)

is exact by the hyper-Čech-cohomology-to-cohomology spectral sequence [Sta21, 01GY].

Consider the double complex (Aji ) where the i-th row A•
i is the base change of (4.10.2) by Aperf →

Ai,perf , i.e. the augmented Čech complex (4.2.2) associated to Spec(B ⊗A Ai) → Spec(Ai) (we set

A−1 = A). On the other hand, the j-th column Aj• is the associated sequence (4.10.4) to the hypercovering

Spec(A• ⊗A (⊗jAB))→ Spec(⊗jAB), which is exact by the previous discussion. Since A•
−1 → Tot(Aji )

j≥0
i≥0

is a quasi-isomorphism ([Sta21, 0133]), for the exactness of the (−1)-row A•
−1, we only need to show the

exactness of the i-th row A•
i for any i ≥ 0 but this has been proved in 4.9 thanks to our choice of the

hypercovering, which completes the proof. □

5. Almost Pre-perfectoid Algebras

Definition 5.1.

(1) A pre-perfectoid field K is a valuation field whose valuation ring OK is non-discrete, of height 1
and of residue characteristic p, and such that the Frobenius map on OK/pOK is surjective.

(2) A perfectoid field K is a pre-perfectoid field which is complete for the topology defined by its
valuation (cf. [Sch12, 3.1]).

(3) A pseudo-uniformizer π of a pre-perfectoid field K is a nonzero element of the maximal ideal mK
of OK .

A morphism of pre-perfectoid fields K → L is a homomorphism of fields which induces an extension of
valuation rings OK → OL.

Lemma 5.2. Let K be a pre-perfectoid field with a pseudo-uniformizer π. Then, the fraction field K̂ of
the π-adic completion of OK is a perfectoid field.

https://stacks.math.columbia.edu/tag/04PP
https://stacks.math.columbia.edu/tag/094K
https://stacks.math.columbia.edu/tag/0DB1
https://stacks.math.columbia.edu/tag/01GY
https://stacks.math.columbia.edu/tag/0133
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Proof. The π-adic completion ÔK of OK is still a non-discrete valuation ring of height 1 with residue
characteristic p (cf. [Bou06, VI.§5.3, Prop.5]). If p ̸= 0, then it is canonically isomorphic to the p-adic

completion of OK , so that there is a canonical isomorphism OK/pOK
∼−→ ÔK/pÔK , from which we see

that K̂ is a perfectoid field. If p = 0, then the Frobenius induces a surjection OK → OK if and only if

OK is perfect. Thus, ÔK is also perfect, and we see that K̂ is a perfectoid field. □

5.3. Let K be a pre-perfectoid field. There is a unique (up to scalar) ordered group homomorphism
vK : K× → R such that v−1

K (0) = O×
K , where the group structure on R is given by the addition. In

particular, OK \ 0 = v−1
K (R≥0) and mK \ 0 = v−1

K (R>0) (cf. [Bou06, VI.§4.5 Prop.7] and [Bou07, V.§2
Prop.1, Rem.2]). The non-discrete assumption on OK implies that the image vK(K×) ⊆ R is dense. We
set vK(0) = +∞.

Lemma 5.4 ([Sch12, 3.2]). Let K be a pre-perfectoid field. Then, for any pseudo-uniformizer π of K,
there exists πn ∈ mK for each integer n ≥ 0 such that π0 = π and πn = un ·πpn+1 for some unit un ∈ O×

K ,
and mK is generated by {πn}n≥0.

Proof. If vK(π) < vK(p), since the Frobenius is surjective on OK/p, there exists π1 ∈ OK such that
vK(π − πp1) ≥ vK(p). Then, vK(π) = vK(πp1) and thus π = u · πp1 with u ∈ O×

K . In general, since
vK(K×) ⊆ R is dense, any pseudo-uniformizer π is a finite product of pseudo-uniformizers whose valuation
values are strictly less than vK(p), from which we get a p-th root π1 of π up to a unit. Since π1 is also
a pseudo-uniformizer, we get πn inductively. As vK(πn) tends to zero when n tends to infinity, mK is
generated by {πn}n≥0. □

5.5. Let K be a pre-perfectoid field. We briefly review almost algebra over (OK ,mK) for which we mainly
refer to [AG20, 2.6], [AGT16, V] and [GR03]. Remark that mK ⊗OK

mK ∼= m2
K = mK is flat over OK .

An OK-module M is called almost zero if mKM = 0. A morphism of OK-modules M → N is called
an almost isomorphism if its kernel and cokernel are almost zero. Let N be the full subcategory of
the category OK-Mod of OK-modules formed by almost zero objects. It is clear that N is a Serre
subcategory of OK-Mod ([Sta21, 02MO]). Let S be the set of almost isomorphisms in OK-Mod. Since
N is a Serre subcategory, S is a multiplicative system, and moreover the quotient abelian category
OK-Mod/N is representable by the localized category S−1OK-Mod (cf. [Sta21, 02MS]). We denote
S−1OK-Mod by Oal

K-Mod, whose objects are called almost OK-modules or simply Oal
K-modules (cf.

[AG20, 2.6.2]). We denote by

α∗ : OK-Mod −→ Oal
K-Mod, M 7−→Mal(5.5.1)

the localization functor. It induces an OK-linear structure on Oal
K-Mod. For any two OK-modules M

and N , we have a natural OK-linear isomorphism ([AG20, 2.6.7.1])

HomOal
K -Mod(M

al, Nal) = HomOK -Mod(mK ⊗OK
M,N).(5.5.2)

The localization functor α∗ admits a right adjoint

α∗ : Oal
K-Mod −→ OK-Mod, M 7−→M∗ = HomOal

K -Mod(Oal
K ,M),(5.5.3)

and a left adjoint

α! : Oal
K-Mod −→ OK-Mod, M 7−→M! = mK ⊗OK

M∗.(5.5.4)

Moreover, the natural morphisms

(M∗)
al ∼−→M, M

∼−→ (M!)
al(5.5.5)

are isomorphisms for any Oal
K-module M (cf. [AG20, 2.6.8]). In particular, for any functor φ : I →

Oal
K-Mod sending i to Mi, the colimit and limit of φ are representable by

colimMi = (colimMi∗)
al, limMi = (limMi∗)

al.(5.5.6)

The tensor product in OK-Mod induces a tensor product in Oal
K-Mod by

Mal ⊗Oal
K
Nal = (M ⊗OK

N)al(5.5.7)

making Oal
K-Mod an abelian tensor category ([AG20, 2.6.4]). We denote by Oal

K-Alg the category of
commutative unitary monoids in Oal

K-Mod induced by the tensor structure, whose objects are called
almost OK-algebras or simply Oal

K-algebras (cf. [AG20, 2.6.11]). Notice that Ral (resp. R∗) admits a

https://stacks.math.columbia.edu/tag/02MO
https://stacks.math.columbia.edu/tag/02MS
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canonical algebra structure for any OK-algebra (resp. Oal
K-algebra) R. Moreover, α∗ and α∗ induce

adjoint functors between OK-Alg and Oal
K-Alg ([AG20, 2.6.12]). Combining with (5.5.5) and (5.5.6), we

see that for any functor φ : I → Oal
K-Alg sending i to Ri, the colimit and limit of φ are representable by

(cf. [GR03, 2.2.16])

colimRi = (colimRi∗)
al, limRi = (limRi∗)

al.(5.5.8)

In particular, for any diagram B ← A→ C of Oal
K-algebras, we denote its colimit by

B ⊗A C = (B∗ ⊗A∗ C∗)
al,(5.5.9)

which is clearly compatible with the tensor products of modules. We remark that α∗ commutes with
arbitrary colimits (resp. limits), since it has a right adjoint α∗ (resp. since the forgetful functor
Oal
K-Alg → Oal

K-Mod and the localization functor α∗ : OK-Mod → Oal
K-Mod commute with arbitrary

limits).

5.6. For an element a of OK , we denote by (OK/aOK)al-Mod the full subcategory of Oal
K-Mod formed

by the objects on which the morphism induced by multiplication by a is zero. Notice that for an
(OK/aOK)al-module M , M∗ is an OK/aOK-module. Thus, the localization functor α∗ induces an
essentially surjective exact functor (OK/aOK)-Mod → (OK/aOK)al-Mod, which identifies the latter
with the quotient abelian category (OK/aOK)-Mod/N ∩ (OK/aOK)-Mod.

Let π be a pseudo-uniformizer of K dividing p with a p-th root π1 up to a unit. The Frobenius on
OK/πOK induces an isomorphism OK/π1OK

∼−→ OK/πOK . The Frobenius on (OK/π)-algebras and the
localization functor α∗ induce a natural transformation from the base change functor (OK/π)al-Alg →
(OK/π)al-Alg, R 7→ (OK/π)⊗Frob,(OK/π) R to the identity functor.

(OK/π)al-Alg //

⇓Frob

id

66
(OK/π1)al-Alg

∼ // (OK/π)al-Alg(5.6.1)

For an (OK/π)al-algebra R, we usually identify the (OK/π1)al-algebra R/π1R with the (OK/π)al-algebra
(OK/π)⊗Frob,(OK/π)R, and we denote by R/π1R→ R the natural morphism (OK/π)⊗Frob,(OK/π)R→ R
induced by the Frobenius (cf. [GR03, 3.5.6]). Moreover, the natural transformations induced by Frobenius
for (OK/π)-Alg and (OK/π)al-Alg are also compatible with the functor α∗. Indeed, it follows from the
fact that for any (OK/π)-algebra R, the composition of

(OK/π)⊗(OK/π) Hom(mK , R) // Hom(mK , (OK/π)⊗(OK/π) R)
Hom(mK ,Frob) // Hom(mK , R)(5.6.2)

is the relative Frobenius on (Ral)∗ = HomOK -Mod(mK , R).

5.7. Let C be a site. A presheaf F of OK-modules on C is called almost zero if F(U) is almost zero for any
object U of C. A morphism of presheaves F → G of OK-modules on C is called an almost isomorphism
if F(U)→ G(U) is an almost isomorphism for any object U of C (cf. [AG20, 2.6.23]). Let N be the full
subcategory of the category OK-ModC of sheaves of OK-modules on C formed by almost zero objects.
Similarly, N is a Serre subcategory of OK-ModC . Let DN (OK-ModC) be the full subcategory of the
derived category D(OK-ModC) formed by complexes with almost zero cohomologies. It is a strictly full
saturated triangulated subcategory ([Sta21, 06UQ]). We also say that the objects of DN (OK-ModC) are
almost zero. Let S be the set of arrows inD(OK-ModC) which induce almost isomorphisms on cohomolo-
gies. We also call the elements of S almost isomorphisms. Then, S is a saturated multiplicative system
([Sta21, 05RG]), and moreover the quotient triangulated category D(OK-ModC)/DN (OK-ModC) is
representable by the localized triangulated category S−1D(OK-ModC) ([Sta21, 05RI]). The natural
functor

S−1D(OK-ModC) −→ D(Oal
K-ModC)(5.7.1)

is an equivalence by [Sta21, 06XM] and (5.5.5) (cf. [GR03, 2.4.9]).

Lemma 5.8. Let K be a pre-perfectoid field with a pseudo-uniformizer π, M a flat OK-module. We fix
a system of pn-th roots (πn)n≥0 of π up to units (5.4), then the map∩

n≥0

π−1
n M → (Mal)∗ = HomOK-Mod(mK ,M), a 7→ (x 7→ xa)(5.8.1)

https://stacks.math.columbia.edu/tag/06UQ
https://stacks.math.columbia.edu/tag/05RG
https://stacks.math.columbia.edu/tag/05RI
https://stacks.math.columbia.edu/tag/06XM
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where π−1
n M ⊆ M [1/π], is an isomorphism of OK-modules. Moreover, for an extension of valuation

rings OK → R of height 1, we have R =
∩
n≥0 π

−1
n R and the above isomorphism coincides with the unit

map R→ (Ral)∗.

Proof. Since mK is generated by {πn}n≥0, any OK-linear morphism f : mK → M is determined by its
values f(πn) ∈ M . Notice that (π/πn) · f(πn) = f(π) and M is π-torsion free, so that f must be given
by the multiplication by an element a = f(π)/π ∈ M [1/π]. It is clear that such a multiplication sends
mK to M if and only if a ∈

∩
n≥0 π

−1
n M , which shows the first assertion. If OK → R is an extension of

valuation rings of height 1, then we directly deduce from the valuation map v : R[1/π] \ 0→ R (5.3) the
equality R =

∩
n≥0 π

−1
n R. □

Lemma 5.9. Let K be a pre-perfectoid field, R an OK-algebra, OK → V an extension of valuation rings
of height 1. Then, the canonical map

HomOK-Alg(R, V ) −→ HomOal
K-Alg(R

al, V al)(5.9.1)

is bijective.

Proof. There are natural maps

HomOK -Alg(R, V )→ HomOal
K -Alg(R

al, V al)
∼−→ HomOK -Alg(R, (V

al)∗)
∼−→ HomOK -Alg(R, V ),(5.9.2)

where the middle isomorphism is given by adjunction and the last isomorphism is induced by the inverse
of the unit map V → (V al)∗ by 5.8. The composition is the identity map, which completes the proof. □
Definition 5.10. Let K be a pre-perfectoid field. We say that an Oal

K-module M (resp. an OK-module
M) is flat (resp. almost flat) if the functor Oal

K-Mod → Oal
K-Mod given by tensoring with M is exact

(resp. Mal is flat).

Lemma 5.11. Let K be a pre-perfectoid field with a pseudo-uniformizer π. Then, an Oal
K-module M is

flat if and only if M∗ is π-torsion free. In particular, an OK-module N is almost flat if and only if the
submodule of π-torsion elements of N is almost zero.

Proof. First of all, for any Oal
K-modules L1 and L2, we have a canonical isomorphism

HomOal
K -Mod(M ⊗Oal

K
L1, L2) = HomOal

K -Mod(L1,HomOK -Mod(M∗, L2∗)
al)(5.11.1)

by (5.5.2), (5.5.5) and (5.5.7). Therefore, the functor defined by tensoring withM admits a right adjoint,
and thus it is right exact. Consider the sequence

0 −→ Oal
K

·π−→ Oal
K −→ (OK/πOK)al −→ 0,(5.11.2)

which is exact since the localization functor α∗ is exact. If M is flat, tensoring the above sequence with
M and applying α∗, we deduce that M∗ is π-torsion free since α∗ is left exact (as a right adjoint to
α∗). Conversely, if M∗ is π-torsion free, then it is flat over OK . For any injective morphism L1 → L2 of
Oal
K-modules, L1∗ → L2∗ is also injective, and it remains injective after tensoring with M∗. Therefore,

L1 → L2 also remains injective after tensoring with M since α∗ is exact. This shows that M is flat.
The second assertion follows from the almost isomorphism N → (Nal)∗ and the fact that (Nal)∗ =

HomOK -Mod(mK , N) has no nonzero almost zero element. □
Lemma 5.12. Let K be a pre-perfectoid field with a pseudo-uniformizer π, M a flat Oal

K-module, x an
element of OK . Then, the canonical morphism M∗/xM∗ → (M/xM)∗ is injective, and for any ϵ ∈ mK ,
the image of φϵ : (M/ϵxM)∗ → (M/xM)∗ is M∗/xM∗. In particular, the canonical morphism

lim←−
n

M∗/π
nM∗ −→ (lim←−

n

M/πnM)∗(5.12.1)

is an isomorphism of OK-modules.

Proof. We follow the proof of [Sch12, 5.3]. Applying the left exact functor α∗ to the exact sequence

0 // M
·x // M // M/xM // 0,(5.12.2)

we see that M∗/xM∗ → (M/xM)∗ is injective.
To show that the image of φϵ is M∗/xM∗, it suffices to show that φϵ factors through M∗/xM∗. We

identify (M/xM)∗ with HomOK -Mod(mK ,M∗/xM∗) by (5.5.5) and (5.5.2) so that M∗/xM∗ identifies
with the subset consisting of the OK-morphisms mK → M∗/xM∗ sending y to ya for some element
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a ∈ M∗/xM∗. For an OK-morphism f : mK → M∗/ϵxM∗, let b be an element of M∗ which lifts f(ϵ).
Notice thatM∗ is π-torsion free by 5.11. With notation in 5.8, we have b ≡ (ϵ/πn) ·f(πn) mod ϵxM∗ for
n big enough so that the element b/ϵ ∈M∗[1/π] lies in

∩
n≥0 π

−1
n M∗ =M∗. Moreover, πn · (b/ϵ) ≡ f(πn)

mod xM∗ for n big enough. As φϵ(f) is determined by its values on πn for n big enough, it follows that
φϵ(f) = a, where a is the image of b/ϵ in M∗/xM∗.

Finally, the previous result implies that the inverse system ((M/πnM)∗)n≥1 is Mittag-Leffler so that
the “in particular” part follows immediately from the fact that α∗ commutes with arbitrary limits (as a
right adjoint to α∗) ([Sta21, 0596]). □

Definition 5.13. Let K be a pre-perfectoid field. For any OK-algebra R, we define a perfect ring R♭ as
the projective limit

R♭ = lim←−
Frob

R/pR(5.13.1)

indexed by (N,≤), where transition map associated to i ≤ (i+ 1) is the Frobenius on R/pR. We call R♭

the tilt of R.

Lemma 5.14 ([Sch12, 3.4]). Let K be a perfectoid field with a pseudo-uniformizer π dividing p.

(1) The projection induces an isomorphism of multiplicative monoids

lim←−
Frob

OK −→ lim←−
Frob

OK/πOK .(5.14.1)

In particular, the right hand side is canonically isomorphic to (OK)♭ as a ring.
(2) We denote by

♯ : (OK)♭ −→ OK , x 7→ x♯,(5.14.2)

the composition of the inverse of (5.14.1) and the projection onto the first component. Then
vK ◦ ♯ : (OK)♭ \ 0→ R≥0 defines a valuation of height 1 on (OK)♭.

(3) The fraction field K♭ of (OK)♭ is a perfectoid field of characteristic p and the element

π♭ = (· · · , π1/p2

1 , π
1/p
1 , π1, 0) ∈ (OK)♭(5.14.3)

is a pseudo-uniformizer of K♭, where π = u · πp1 with π1 ∈ mK and u ∈ O×
K .

(4) We have OK♭ = (OK)♭, and there is a canonical isomorphism

OK♭/π♭OK♭
∼−→ OK/πOK(5.14.4)

induced by (1) and the projection onto the first component.

5.15. We see that the tilt defines a functor OK-Alg → OK♭-Alg, R 7→ R♭, which preserves almost zero
objects and almost isomorphisms. For an Oal

K-algebra R, we set R♭ = ((R∗)
♭)al and call it the tilt of

R, which induces a functor Oal
K-Alg → Oal

K♭-Alg, R 7→ R♭. Note that the tilt functor commutes with
the localization functor α∗ up to a canonical isomorphism, and commutes with the functor α∗ up to a
canonical almost isomorphism.

Definition 5.16 ([Sch12, 5.1]). Let K be a perfectoid field, π a pseudo-uniformizer of K dividing p with
a p-th root π1 up to a unit.

(1) A perfectoid Oal
K-algebra is an Oal

K-algebra R such that
(i) R is flat over Oal

K ;
(ii) the Frobenius of R/πR induces an isomorphism R/π1R→ R/πR of Oal

K-algebras (5.6);
(iii) the canonical morphism R→ lim←−nR/π

nR is an isomorphism in Oal
K-Alg.

We denote by Oal
K-Perf the full subcategory of Oal

K-Alg formed by perfectoid Oal
K-algebras.

(2) A perfectoid (OK/π)al-algebra is a flat (OK/π)al-algebra R such that the Frobenius map in-

duces an isomorphism R/π1R
∼−→ R. We denote by (OK/π)al-Perf the full subcategory of

(OK/π)al-Alg formed by perfectoid (OK/π)al-algebras.

Lemma 5.17. Let K be a pre-perfectoid field, π a pseudo-uniformizer of K dividing p with a p-th root
π1 up to a unit. Then, for an OK-algebra R, the following conditions are equivalent:

(1) The almost algebra R̂al associated to the π-adic completion R̂ of R is a perfectoid Oal
K̂
-algebra.

https://stacks.math.columbia.edu/tag/0596
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(2) The OK̂-module R̂ is almost flat, and the Frobenius of R/πR induces an almost isomorphism
R/π1R→ R/πR.

Proof. We have seen that K̂ is a perfectoid field in 5.2 and π is obviously a pseudo-uniformizer of K̂.
Since the localization functor α∗ : OK-Alg → Oal

K-Alg commutes with arbitrary limits and colimits

(5.5), we have a canonical isomorphism R̂al ∼−→ lim←−n R̂
al/πnR̂al. Thus, the third condition in 5.16.(1)

holds for R̂al. Since there are canonical isomorphisms

R/π1R
∼−→ R̂/π1R̂, R/πR

∼−→ R̂/πR̂,(5.17.1)

the conditions (1) and (2) are clearly equivalent. □
Definition 5.18. Let K be a pre-perfectoid field, π a pseudo-uniformizer of K dividing p with a p-th
root π1 up to a unit. We say that an OK-algebra is almost pre-perfectoid if it satisfies the equivalent
conditions in 5.17.

We remark that in 5.18, if a morphism of OK-algebras R → R′ induces an almost isomorphism

R/πnR → R′/πnR′ for each n ≥ 1, then the morphism of the π-adic completions R̂ → R̂′ is an almost
isomorphism since α∗ commutes with limits. In particular, R is almost pre-perfectoid if and only if R′ is
almost pre-perfectoid.

Lemma 5.19. Let K be a pre-perfectoid field with a pseudo-uniformizer π, R an OK-algebra. If R is

almost flat (resp. flat) over OK , then the π-adic completion R̂ is almost flat (resp. flat) over OK̂ .

Proof. For any integer n > 0, there is a canonical isomorphism

R/πnR
∼−→ R̂/πnR̂.(5.19.1)

Let x ∈ R̂ be a π-torsion element. Since any π-torsion element of R is almost zero (resp. zero) by 5.11, for

any ϵ ∈ mK (resp. ϵ = 1), the image of ϵx in R̂/πnR̂ lies in πn−1R̂/πnR̂. Therefore, ϵx ∈
∩
n>0 π

n−1R̂ =

0, which amounts to say that R̂ is almost flat (resp. flat) over OK̂ . □
Lemma 5.20. Let K be a pre-perfectoid field, π a pseudo-uniformizer of K dividing p with a p-th root
π1 up to a unit, R a flat OK-algebra. Then, the following conditions are equivalent:

(1) The Frobenius induces an injection R/π1R→ R/πR.
(2) For any x ∈ R[1/π], if xp ∈ R, then x ∈ R.

Proof. We follow the proof of [Sch12, 5.7]. Assume first that R/π1R→ R/πR is injective. Let x ∈ R[1/π]
with xp ∈ R, k the minimal natural number such that y = πk1x ∈ R. If k ≥ 1, then yp = πpk1 xp ∈ πR.
Therefore, y ∈ π1R by the injectivity of the Frobenius. However, as R is π-torsion free, we have y′ =
y/π1 = πk−1

1 x ∈ R which contradicts the minimality of k.
Conversely, for any x ∈ R with xp ∈ πR, we have (x/π1)

p ∈ R. Thus, x/π1 ∈ R by assumption, i.e.
x ∈ π1R, which implies the injectivity of the Frobenius. □
Lemma 5.21. Let K be a pre-perfectoid field, π a pseudo-uniformizer of K dividing p with a p-th root
π1 up to a unit, R an OK-algebra which is almost flat. Then, the following conditions are equivalent:

(1) The Frobenius induces an almost injection (resp. almost isomorphism) R/π1R→ R/πR.
(2) The Frobenius induces an injection (resp. isomorphism) (Ral)∗/π1(R

al)∗ → (Ral)∗/π(R
al)∗.

Proof. We follow the proof of [Sch12, 5.6]. Notice that the Frobenius is compatible with the functors α∗

and α∗ (5.6). (2) ⇒ (1) follows from the almost isomorphism R → (Ral)∗. The “injection” part of (1)
⇒ (2) follows from the inclusions (5.12)

(Ral)∗/π1(R
al)∗ ⊆ ((R/π1R)

al)∗, (R
al)∗/π(R

al)∗ ⊆ ((R/πR)al)∗.(5.21.1)

For the “isomorphism” part of (1)⇒ (2), notice that (Ral)∗/π1(R
al)∗ → (Ral)∗/π(R

al)∗ is almost surjec-
tive. Let π2 be a p-th root of π1 up to a unit (5.4). Then, for an element x of (Ral)∗, there exist elements

y and x′ of (Ral)∗ such that πp2x = yp + πp
2

2 x
′. Thus, x = y′p + πp

2−p
2 x′ where y′ = y/π2 ∈ (Ral)∗[1/π]

(as (Ral)∗ is flat over OK by 5.11). In fact, y′ lies in (Ral)∗ by 5.20 and the “injection” part of (1)⇒ (2).

By applying this process to x′, there exist elements y′′ and x′′ of (Ral)∗ such that x′ = y′′p + πp
2−p

2 x′′.

In conclusion, we have x = y′p + πp
2−p

2 (y′′p + πp
2−p

2 x′′) ≡ (y′ + πp−1
2 y′′)p mod π(Ral)∗, which shows

the surjectivity of (Ral)∗/π1(R
al)∗ → (Ral)∗/π(R

al)∗. □
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Lemma 5.22. Let K be a pre-perfectoid field, R an almost flat OK-algebra, π, π′ pseudo-uniformizers
dividing p with p-th roots π1, π

′
1 respectively up to units. Then, the following conditions are equivalent:

(1) The Frobenius induces an almost injection (resp. almost surjection) R/π1R→ R/πR.
(2) The Frobenius induces an almost injection (resp. almost surjection) R/π′

1R→ R/π′R.

In particular, the definitions 5.16.(1) and 5.18 do not depend on the choice of the pseudo-uniformizer.

Proof. Notice that (Ral)∗ is flat over OK by 5.11. The “injection” part follows from 5.20 and 5.21. For
the “surjection” part, we assume that R/π1R→ R/πR is almost surjective. Let ϵ ∈ mK . We can take a
pseudo-uniformizer π̃ of K dividing p with π̃p1 = π̃ and vK(π)/3 < vK(π̃) < vK(π)/2. For any x ∈ R, by
the almost surjectivity, we have ϵx = yp + π̃2z for some y, z ∈ R. We also have π̃z = vp + πw for some
v, w ∈ R, then ϵx = yp + π̃vp + π̃πw. Since yp + π̃vp ≡ (y + π̃1v)

p mod pR, R′/π′
1R→ R/π′R is almost

surjective for any pseudo-uniformizer π′ dividing p with vK(π′) < 4vK(π)/3. By induction, we see that
R′/π′

1R→ R/π′R is almost surjective in general. □

Proposition 5.23. Let K be a pre-perfectoid field of characteristic p with a pseudo-uniformizer π, R

an OK-algebra, R̂ the π-adic completion of R. Then, R is almost pre-perfectoid if and only if (R̂al)∗ is
perfect.

Proof. Note that OK is perfect by definition. If R is almost pre-perfectoid, then R̂ is almost flat so that

(R̂al)∗ is π-adically complete by takingM = R̂al in 5.12. Moreover, the Frobenius induces an isomorphism

(R̂al)∗/π
n(R̂al)∗ → (R̂al)∗/π

pn(R̂al)∗ for any integer n ≥ 1 by 5.21 and 5.22, which implies that (R̂al)∗
is perfect. Conversely, assume that (R̂al)∗ is perfect. For any π-torsion element f ∈ (R̂al)∗, we have

π1/pnf = 0 for any integer n ≥ 0, which shows that R̂ is almost flat by 5.11. Moreover, it is clear that

the Frobenius induces an isomorphism (R̂al)∗/π(R̂
al)∗ → (R̂al)∗/π

p(R̂al)∗, which shows that R is almost
pre-perfectoid by 5.21 and 5.22. □

Proposition 5.24. Let K be a pre-perfectoid field with a pseudo-uniformizer π, R an OK-algebra which
is almost flat, R′ the integral closure of R in R[1/π]. If the Frobenius induces an almost injection
R/π1R→ R/πR, then R→ R′ is an almost isomorphism.

Proof. Since R→ (Ral)∗ is an almost isomorphism, we may replace R by (Ral)∗ so that we may assume
that R = (Ral)∗, R ⊆ R[1/π] by 5.11 and for any x ∈ R[1/π] such that xp ∈ R, then x ∈ R by 5.20
and 5.21. It suffices to show that R is integrally closed in R[1/π]. Suppose that x ∈ R[1/π] is integral
over R. There is an integer N > 0 such that xr is an R-linear combination of 1, x, . . . , xN for any r > 0.
Therefore, there exists an integer k > 0 such that πkxr ∈ R for any r > 0. Taking r = pn, we get
x ∈

∩
n≥0 π

−1
n R = (Ral)∗ = R by 5.8, which completes our proof. □

Lemma 5.25. Let K be a pre-perfectoid field with a pseudo-uniformizer π, R an OK-algebra which is
almost pre-perfectoid. Consider the natural morphisms

R
f //

g

��

R[ 1π ]

g′

��
R̂

f ′
// R̂[ 1π ]

(5.25.1)

Then f(R)→ g′−1(f ′(R̂)) is an almost isomorphism.

Proof. We need to show that f(R)→ g′−1(f ′(R̂)) is almost surjective. Let f(a)/πn ∈ g′−1(f ′(R̂)) where

a ∈ R. Hence, g′(f(a)) = πnf ′(b) for some b ∈ R̂. Notice that f ′ is almost injective since R̂al is perfectoid.
Therefore, ϵ · g(a) = ϵπnb for any ϵ ∈ mK . Since g induces an isomorphism

R/πnR
∼−→ R̂/πnR̂,(5.25.2)

there exists c ∈ R such that ϵa = πnc, which implies that ϵ(f(a)/πn) = f(c) ∈ f(R). This completes the
proof. □

Proposition 5.26. Let K be a pre-perfectoid field with a pseudo-uniformizer π, R an OK-algebra which
is almost pre-perfectoid, R′ the integral closure of R in R[1/π]. Then, the morphism of π-adic completions

R̂→ R̂′ is an almost isomorphism. In particular, R′ is also almost pre-perfectoid.
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Proof. We consider the following commutative diagram

R
h

//

f

))

g

��

R′ //

g′′

��

R[ 1π ]

g′

��
R̂

h′
//

f ′

55R′′ // R̂[ 1π ]

(5.26.1)

where R′′ is the integral closure of R̂ in R̂[1/π]. We claim that R′/πnR′ → R′′/πnR′′ is almost injective.
Let a ∈ R′ ⊆ R[1/π] such that g′′(a) = πnb for some b ∈ R′′. Since h′ is an almost isomorphism by

5.24, for any ϵ ∈ mK , there exists c ∈ R̂ such that ϵ · g′′(a) = πnh′(c). Thus, ϵa/πn ∈ g′−1(f ′(R̂)), hence
ϵ2a/πn ∈ f(R) by 5.25, and thus ϵ2a ∈ πnR′, which proves the claim. Now we consider

R/πnR −→ R′/πnR′ −→ R′′/πnR′′.(5.26.2)

Its composition is an almost isomorphism since h′ is an almost isomorphism. Since the second map
is almost injective, the first map R/πnR → R′/πnR′ is an almost isomorphism, which completes the
proof. □

Theorem 5.27 (Tilting correspondence [Sch12, 5.2, 5.21]). Let K be a perfectoid field, π a pseudo-
uniformizer of K dividing p with a p-th root π1 up to a unit.

(1) The functor Oal
K-Perf → (OK/π)al-Perf , R 7→ R/πR, is an equivalence of categories.

(2) The functor Oal
K♭-Perf → (OK♭/π♭)al-Perf , R 7→ R/π♭R is an equivalence of categories, and

the functor (OK♭/π♭)al-Perf → Oal
K♭-Perf , R 7→ R♭ is a quasi-inverse.

(3) Let R be a perfectoid Oal
K-algebra with tilt R♭. Then, R is isomorphic to Oal

L for some perfectoid

field L over K if and only if R♭ is isomorphic to Oal
L′ for some perfectoid field L′ over K♭.

In conclusion, we have natural equivalences

Oal
K-Perf

∼−→ (OK/π)al-Perf
∼−→ (OK♭/π♭)al-Perf

∼←− Oal
K♭ -Perf ,(5.27.1)

where the middle equivalence is given by the isomorphism (5.14.4) OK♭/π♭OK♭
∼−→ OK/πOK . We

remark that the natural isomorphisms of the equivalence in (2) are defined as follows: for a perfectoid

Oal
K♭ -algebra R, the natural isomorphism R

∼−→ (R/π♭R)♭ is induced by the morphism R∗ → (R∗/π
♭R∗)

♭

sending x to (· · · , x1/p2 , x1/p, x) (notice that R∗ is perfect by 5.23); for a perfectoid (OK♭/π♭)-algebra R,

the natural isomorphism R♭/π♭R♭
∼−→ R is induced by the projection on the first component (R∗)

♭ → R∗
(cf. [Sch12, 5.17]). Consequently, for a perfectoid Oal

K-algebra R, the morphism

R♭/π♭R♭ −→ R/πR(5.27.2)

induced by the projection on the first component is an isomorphism.

Proposition 5.28. Let K be a perfectoid field with a pseudo-uniformizer π of K dividing p, B ← A→
C a diagram of perfectoid Oal

K-algebras. Then, the π-adically completed tensor product B⊗̂AC is also
perfectoid.

Proof. We follow closely the proof of [Sch12, 6.18]. Firstly, we claim that (B ⊗A C)/π is flat over
(OK/π)al. Since (B ⊗A C)/π = (B♭ ⊗A♭ C♭)/π♭, it suffices to show the flatness of B♭ ⊗A♭ C♭ over Oal

K♭ ,

which amounts to say that the submodule of π♭-torsion elements of (B∗)
♭ ⊗(A∗)♭ (C∗)

♭ is almost zero as

B♭⊗A♭ C♭ = ((B∗)
♭⊗(A∗)♭ (C∗)

♭)al. If f ∈ (B∗)
♭⊗(A∗)♭ (C∗)

♭ is a π♭-torsion element, then by perfectness

of (B∗)
♭ ⊗(A∗)♭ (C∗)

♭, we have (π♭)1/p
n

f = 0 for any n > 0, which proves the claim.

Thus, (B ⊗A C)/π is a perfectoid (OK/π)al-algebra. It corresponds to a perfectoid Oal
K-algebra D

by 5.27 and it induces a morphism B⊗̂AC → D by universal property of π-adically completed tensor
product. We use dévissage to show that (B ⊗A C)/πn → D/πn is an isomorphism for any integer n > 0.
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By induction,

(B ⊗A C)/πn
·π //

��

(B ⊗A C)/πn+1 //

��

(B ⊗A C)/π //

��

0

0 // D/πn
·π // D/πn+1 // D/π // 0

(5.28.1)

the vertical arrows on the left and right are isomorphisms. By snake’s lemma in the abelian category
Oal
K-Mod ([Sta21, 010H]), we know that the vertical arrow in the middle is also an isomorphism. In

conclusion, B⊗̂AC → D is an isomorphism, which completes the proof. □

Corollary 5.29. Let K be a pre-perfectoid field, B ← A → C a diagram of OK-algebras which are
almost pre-perfectoid. Then, the tensor product B ⊗A C is also almost pre-perfectoid.

Proof. Since α∗ commutes with arbitrary limits and colimits (5.5), we have (B⊗̂AC)al = B̂al⊗̂ÂalĈ
al,

which is perfectoid by 5.28. □

Lemma 5.30. Let K be a perfectoid field, OK → V an extension of valuation rings of height 1. Then,
there exists an extension of perfectoid fields K → L and an extension of valuation rings V → OL over
OK .

Proof. Let π be a pseudo-uniformizer of K, E the fraction field of V , E an algebraic closure of E, V the
integral closure of V in E. Let m be a maximal ideal of V . It lies over the unique maximal ideal of V as
V → V is integral. Setting W = V m, according to [Bou06, VI.§8.6, Prop.6], V → W is an extension of
valuation rings of height 1. Since W is integrally closed in the algebraically closed fraction field E, the
Frobenius is surjective on W/pW . Thus, the fraction field of W is a pre-perfectoid field over K. Passing
to completion, we get an extension of perfectoid fields K → L by 5.2. □

Proposition 5.31 ([BS19, 8.9]). Let K be a pre-perfectoid field with a pseudo-uniformizer π dividing p,
R → R′ a homomorphism of OK-algebras which are almost pre-perfectoid. If Spec(R′) → Spec(R) is a
π-complete arc-covering, then for any integer n ≥ 1, the augmented Čech complex

0→ R/πn → R′/πn → (R′ ⊗R R′)/πn → · · ·(5.31.1)

is almost exact.

Proof. We follow Bhatt-Scholze’s proof [BS19, 8.9]. After replacing OK , R, R′ by their π-adic com-
pletions, we may assume that K is a perfectoid field and that Ral and R′al are perfectoid Oal

K-algebras
such that Spec(R′)→ Spec(R) is a π-complete arc-covering by 3.4.(6). Since the localization functor α∗

commutes with arbitrary limits and colimits (5.5), (⊗̂kRR′)al = ⊗̂kRalR′al is still a perfectoid Oal
K-algebra

by 5.28 for any k ≥ 0. In particular, ⊗̂kRR′ is almost flat over OK . Then, by dévissage, it suffices to show
the almost exactness of the augmented Čech complex when n = 1, i.e. the almost exactness of

0→ R♭/π♭ → R′♭/π♭ → (R′♭ ⊗R♭ R′♭)/π♭ → · · · .(5.31.2)

We claim that the natural morphism X = Spec(R′♭)
⨿

Spec(R♭[1/π♭]) → Y = Spec(R♭) is an arc-
covering. Since Spec(R′/π) → Spec(R/π) is an arc-covering, X → Y is surjective. Therefore, we only
need to consider the test map Spec(V ) → Y where V is a valuation ring of height 1. There are three
cases:

(1) If π♭ is invertible in V , then we get a natural lifting R♭[1/π♭]→ V .
(2) If π♭ is zero in V , then we have R/π = R♭/π♭ → V , and there is a lifting R′/π = R′♭/π♭ →W .
(3) Otherwise, OK♭ → V is an extension of valuation rings. After replacing V by an extension

(5.30), we may assume that V [1/π♭] is a perfectoid field over K♭ with valuation ring V . By
tilting correspondence 5.27, it corresponds to a perfectoid field over K with valuation ring V ♯,
together with an OK-morphism R → V ♯ by 5.9. Since R → R′ gives a π-complete arc-covering,
there is an extension V ♯ →W of valuation rings of height 1 and a lifting R′ →W . After replacing
W by an extension (5.30), we may assume thatW [1/π] is a perfectoid field over K with valuation
ring W . By tilting correspondence 5.27 and 5.9, we get a lifting R′♭ →W ♭ of R♭ → V .

https://stacks.math.columbia.edu/tag/010H
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Now we apply 4.10 to the arc-covering X → Y of perfect affine Fp-schemes. We get an exact augmented

Čech complex

0→ R♭ → R′♭ ×R♭[ 1
π♭

]→ (R′♭ ×R♭[ 1
π♭

])⊗R♭ (R′♭ ×R♭[ 1
π♭

])→ · · · .(5.31.3)

Since each term is a perfect Fp-algebra, the submodule of π♭-torsion elements is almost zero, in other

words, each term is almost flat over OK♭ . Modulo π♭, we get the almost exactness of (5.31.2), which
completes the proof. □

6. Brief Review on Covanishing Fibred Sites

We give a brief review on covanishing fibred sites, which are developed by Abbes and Gros [AGT16,
VI]. We remark that [AGT16, VI] does not require the sites to admit finite limits (2.4).

6.1. A fibred site E/C is a fibred category π : E → C whose fibres are sites such that for a cleavage and
for every morphism f : β → α in C, the inverse image functor f+ : Eα → Eβ gives a morphism of sites
(so that the same holds for any cleavage) (cf. [SGA 4II, VI.7.2]).

Let x be an object of E over α ∈ Ob(C). We denote by

ι+α : Eα → E(6.1.1)

the inclusion functor of the fibre category Eα over α into the whole category E. A vertical covering of
x is the image by ι+α of a covering family {xm → x}m∈M in Eα. We call the topology generated by all
vertical coverings the total topology on E (cf. [SGA 4II, VI.7.4.2]).

Assume further that C is a site. A Cartesian covering of x is a family {xn → x}n∈N of morphisms of
E such that there exists a covering family {αn → α}n∈N in C with xn isomorphic to the pullback of x
by αn → α for each n.

Definition 6.2 ([AGT16, VI.5.3]). A covanishing fibred site is a fibred site E/C where C is a site.
We associate to E the covanishing topology which is generated by all vertical coverings and Cartesian
coverings. We simply call a covering family for the covanishing topology a covanishing covering.

Definition 6.3. Let E/C be a covanishing fibred site. We call a composition of a Cartesian covering
followed by vertical coverings a standard covanishing covering. More precisely, a standard covanishing
covering is a family of morphisms of E

{xnm → x}n∈N,m∈Mn(6.3.1)

such that there is a Cartesian covering {xn → x}n∈N and for each n ∈ N a vertical covering {xnm →
xn}m∈Mn .

Proposition 6.4 ([AGT16, VI.5.9]). Let E/C be a covanishing fibred site. Assume that in each fibre
any object is quasi-compact, then a family of morphisms {xi → x}i∈I of E is a covanishing covering if
and only if it can be refined by a standard covanishing covering.

6.5. Let E/C be a fibred category. Fixing a cleavage of E/C, to give a presheaf F on E is equivalent to
give a presheaf Fα on each fibre category Eα and transition morphisms Fα → fpFβ for each morphism
f : β → α in C satisfying a cocycle relation (cf. [SGA 4II, VI.7.4.7]). Thus, we simply denote a presheaf
F on E by

F = {α 7→ Fα}α∈Ob(C),(6.5.1)

where Fα = ιpαF is the restriction of F on the fibre category Eα. If E/C is a fibred site, then F is a
sheaf with respect to the total topology on E if and only if Fα is a sheaf on Eα for each α ([SGA 4II,
VI.7.4.7]). Moreover, we have the following description of a covanishing sheaf.

Proposition 6.6 ([AGT16, VI.5.10]). Let E/C be a covanishing fibred site. Then, a presheaf F on E is
a sheaf if and only if the following conditions hold:

(v) The presheaf Fα = ιpαF on Eα is a sheaf for any α ∈ Ob(C).
(c) For any covering family {fi : αi → α}i∈I of C, if we set αij = αi ×α αj and fij : αij → α, then

the sequence of sheaves on Eα,

Fα →
∏
i∈I

fi∗Fαi ⇒
∏
i,j∈I

fij∗Fαij ,(6.6.1)

is exact.
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7. Faltings Fibred Sites

7.1. Let Y → X be a morphism of U-small coherent schemes, and let EY→X be the category of morphisms
V → U of U-small coherent schemes over the morphism Y → X, namely, the category of commutative
diagrams of coherent schemes

V //

��

U

��
Y // X

(7.1.1)

Given a functor I → EY→X sending i to (Vi → Ui), if limVi and limUi are representable in the category
of coherent schemes, then lim(Vi → Ui) is representable by (limVi → limUi). We say that a morphism
(V ′ → U ′)→ (V → U) of objects of EY→X is Cartesian if V ′ → V ×U U ′ is an isomorphism. It is clear
that the Cartesian morphisms in EY→X are stable under base change.

Consider the functor

σ+ : EY→X −→ Schcoh
/X , (V → U) 7−→ U.(7.1.2)

The fibre category over U is canonically equivalent to the category Schcoh
/UY

of coherent UY -schemes,

where UY = Y ×X U . The base change by U ′ → U gives an inverse image functor Schcoh
/UY
→ Schcoh

/U ′
Y
,

which endows EY→X/Sch
coh
/X with a structure of fibred category. We define a presheaf on EY→X by

B(V → U) = Γ(UV ,OUV ),(7.1.3)

where UV is the integral closure of U in V .

Definition 7.2. Let Y → X be a morphism of coherent schemes. A morphism (V ′ → U ′) → (V → U)
in EY→X is called étale, if U ′ → U is étale and V ′ → V ×U U ′ is finite étale.

Lemma 7.3. Let Y → X be a morphism of coherent schemes, (V ′′ → U ′′)
g−→ (V ′ → U ′)

f−→ (V → U)
morphisms in EY→X .

(1) If f is étale, then any base change of f is also étale.
(2) If f and g are étale, then f ◦ g is also étale.
(3) If f and f ◦ g are étale, then g is also étale.

Proof. It follows directly from the definitions. □

7.4. Let Y → X be a morphism of coherent schemes. We still denote by Xét (resp. Xfét) the site formed
by coherent étale (resp. finite étale) X-schemes endowed with étale topology. Let Eét

Y→X be the full
subcategory of EY→X formed by (V → U) étale over the final object (Y → X). It is clear that Eét

Y→X

is stable under finite limits in EY→X . Then, the functor (7.1.2) induces a functor

σ+ : Eét
Y→X −→ Xét, (V → U) 7−→ U,(7.4.1)

which endows Eét
Y→X/Xét with a structure of fibred sites, whose fibre over U is the finite étale site

UY,fét. We endow Eét
Y→X with the associated covanishing topology, that is, the topology generated by

the following types of families of morphisms

(v) {(Vm → U)→ (V → U)}m∈M , where {Vm → V }m∈M is a finite étale covering;
(c) {(V ×U Un → Un)→ (V → U)}n∈N , where {Un → U}n∈N is an étale covering.

It is clear that any object of Eét
Y→X is quasi-compact by 6.4. We still denote by B the restriction of the

presheaf B on EY→X to Eét
Y→X if there is no ambiguity.

Lemma 7.5. Let Y → X be a morphism of coherent schemes. Then, the presheaf on Schcoh
/Y sending Y ′

to Γ(XY ′
,OXY ′ ) is a sheaf with respect to the fpqc topology ([Sta21, 022A]).

Proof. We may regard OXY ′ as a quasi-coherent OX -algebra over X. It suffices to show that for a finite
family of morphisms {Yi → Y }i∈I with Y ′ =

⨿
i∈I Yi faithfully flat over Y , the sequence of quasi-coherent

OX -algebras

0 // OXY // OXY ′
//// OXY ′×Y Y ′(7.5.1)

https://stacks.math.columbia.edu/tag/022A
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is exact. Thus, we may assume that X = Spec(R) is affine. We set A0 = Γ(Y,OY ), A1 = Γ(Y ′,OY ′),

A2 = Γ(Y ′ ×Y Y ′,OY ′×Y Y ′), R0 = Γ(XY ,OXY ), R1 = Γ(XY ′
,OXY ′ ), R2 = Γ(XY ′×Y Y

′
,OXY ′×Y Y ′ ).

Notice that Ri is the integral closure of R in Ai for i = 0, 1, 2 ([Sta21, 035F]). Consider the diagram

0 // R0
//

��

R1
////

��

R2

��
0 // A0

// A1
//// A2

(7.5.2)

We see that the vertical arrows are injective and the second row is exact by faithfully flat descent. Notice
that R0 = A0 ∩ R1, since they are both the integral closure of R in A0 as A0 ⊆ A1. Thus, the first row
is also exact, which completes the proof. □

Proposition 7.6. Let Y → X be a morphism of coherent schemes. Then, the presheaf B on Eét
Y→X is

a sheaf.

Proof. It follows directly from 6.6, whose first condition holds by 7.5, and whose second condition holds
by 3.17 (cf. [AGT16, III.8.16]). □

Definition 7.7 ([Fal02, page 214], [AGT16, VI.10.1]). We call Eét
Y→X/Xét the Faltings fibred site of the

morphism of coherent schemes Y → X, and call B the structural sheaf of Eét
Y→X .

It is clear that the localization (Eét
Y→X)/(V→U) of E

ét
Y→X at an object (V → U) is canonically equivalent

to the Faltings fibred site Eét
V→U of the morphism V → U by 6.4 (cf. [AGT16, VI.10.14]).

Lemma 7.8. Let X be the spectrum of an absolutely integrally closed valuation ring, Y a quasi-compact
open subscheme of X. Then, for any presheaf F on Eét

Y→X , we have Fa(Y → X) = F(Y → X). In
particular, the associated topos of Eét

Y→X is local ([SGA 4II, VI.8.4.6]).

Proof. Notice that Y is also the spectrum of an absolutely integrally closed valuation ring by 3.11.(1)
and that absolutely integrally closed valuation rings are strictly Henselian. Thus, any covering of Y → X
in Eét

Y→X can be refined by the identity covering by 6.4. We see that Fa(Y → X) = F(Y → X) for any
presheaf F . For the last assertion, it suffices to show that the section functor Γ(Y → X,−) commutes
with colimits of sheaves. For a colimit of sheaves F = colimFi, let G be the colimit of presheaves
G = colimFi. Then, we have F = Ga and Γ(Y → X,F) = Γ(Y → X,G) = colimΓ(Y → X,Fi). □

7.9. Let (Yλ → Xλ)λ∈Λ be a U-small directed inverse system of morphisms of U-small coherent schemes
with affine transition morphisms Yλ′ → Yλ and Xλ′ → Xλ (λ′ ≥ λ). We set (Y → X) = limλ∈Λ(Yλ →
Xλ). We regard the directed set Λ as a filtered category and regard the inverse system (Yλ → Xλ)λ∈Λ as
a functor φ : Λop → E from the opposite category of Λ to the category of morphisms of U-small coherent
schemes. Consider the fibred category Eét

φ → Λop defined by φ whose fibre category over λ is Eét
Yλ→Xλ

and whose inverse image functor φ+
λ′λ : Eét

Yλ→Xλ
→ Eét

Y ′
λ→X′

λ
associated to a morphism λ′ → λ in Λop is

given by the base change by the transition morphism (Yλ′ → Xλ′)→ (Yλ → Xλ) (cf. [AGT16, VI.11.2]).
Let φ+

λ : Eét
Yλ→Xλ

→ Eét
Y→X be the functor defined by the base change by the transition morphism

(Y → X)→ (Yλ → Xλ).
Recall that the filtered colimit of categories (Eét

Yλ→Xλ
)λ∈Λ is representable by the category E−→

ét
φ whose

objects are those of Eét
φ and whose morphisms are given by ([SGA 4II, VI 6.3, 6.5])

HomE−→
ét
φ
((V → U), (V ′ → U ′)) = colim

(V ′′→U′′)→(V →U)

Cartesian

HomEét
φ
((V ′′ → U ′′), (V ′ → U ′)),(7.9.1)

where the colimit is taken over the opposite category of the cofiltered category of Cartesian morphisms
with target V → U of the fibred category Eét

φ over Λop (distinguish with the Cartesian morphisms defined

in 7.1). We see that the functors φ+
λ induces an equivalence of categories by [EGA IV3, 8.8.2, 8.10.5] and

[EGA IV4, 17.7.8]

E−→
ét
φ

∼−→ Eét
Y→X .(7.9.2)

Recall that the cofiltered limit of sites (Eét
Yλ→Xλ

)λ∈Λ is representable by E−→
ét
φ endowed with the coarsest

topology such that the natural functors Eét
Yλ→Xλ

→ E−→
ét
φ are continuous ([SGA 4II, VI.8.2.3]).

https://stacks.math.columbia.edu/tag/035F
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Lemma 7.10. With the notation in 7.9, for any covering family U = {fk : (Vk → Uk)→ (V → U)}k∈K
in Eét

Y→X with K finite, there exists an index λ0 ∈ Λ and a covering family Uλ0 = {fkλ0 : (Vkλ0 →
Ukλ0) → (Vλ0 → Uλ0)}k∈K in Eét

Yλ0
→Xλ0

such that fk is the base change of fkλ0 by the transition

morphism (Y → X)→ (Yλ0 → Xλ0).

Proof. There is a standard covanishing covering U′ = {gnm : (V ′
nm → U ′

n) → (V → U)}n∈N,m∈Mn in
Eét
Y→X withN ,Mn finite, which refines U by 6.4. The equivalence (7.9.2) implies that there exists an index

λ1 ∈ Λ and families of morphisms U′
λ1

= {gnmλ1 : (V ′
nmλ1

→ U ′
nλ1

) → (Vλ1 → Uλ1)}n∈N,m∈Mn (resp.

Uλ1 = {fkλ1 : (Vkλ1 → Ukλ1) → (Vλ1 → Uλ1)}k∈K) in Eét
Yλ1

→Xλ1
such that gnm (resp. fk) is the base

change of gnmλ1 (resp. fkλ1) by the transition morphism (Y → X)→ (Yλ1 → Xλ1) and that U′
λ1

refines
Uλ1 . For each λ ≥ λ1, let gnmλ : (V ′

nmλ → U ′
nλ) → (Vλ → Uλ) (resp. fkλ : (Vkλ → Ukλ) → (Vλ → Uλ))

be the base change of gnmλ1 (resp. fkλ1) by the transition morphism (Yλ → Xλ)→ (Yλ1 → Xλ1). Since
the morphisms

⨿
n∈N U

′
n → U and

⨿
m∈Mn

V ′
nm → V ×U U ′

n are surjective, there exists an index λ0 ≥ λ1
such that the morphisms

⨿
n∈N U

′
nλ0
→ Uλ0 and

⨿
m∈Mn

V ′
nmλ0

→ Vλ0 ×Uλ0
U ′
nλ0

are also surjective by

[EGA IV3, 8.10.5], i.e. U
′
λ0

= {gnmλ0}n∈N,m∈Mn is a standard covanishing covering in Eét
Yλ0

→Xλ0
. Thus,

Uλ0 = {fkλ0}k∈K is a covering family in Eét
Yλ0

→Xλ0
. □

Proposition 7.11 ([AGT16, VI.11]). With the notation in 7.9, Eét
Y→X represents the limit of sites

(Eét
Yλ→Xλ

)λ∈Λ, and B = colimλ∈Λ φ
−1
λ B.

Proof. (1) is proved in [AGT16, VI.11.3]. It also follows directly from the discussion in 7.9 and 7.10. For
(2), notice that colimλ∈Λ φ

−1
λ B = (colimλ∈Λ φλ,pB)a ([Sta21, 00WI]). It suffices to show that B(V →

U) = colimλ∈Λ(φλ,pB)(V → U) for each object V → U of Eét
Y→X . It follows from the equivalence

(7.9.2) that there exists an index λ0 ∈ Λ and an object Vλ0 → Uλ0 of Eét
Yλ0

→Xλ0
such that V → U

is the base change of Vλ0 → Uλ0 by the transition morphism. For each λ ≥ λ0, let Vλ → Uλ be the
base change of Vλ0 → Uλ0 by the transition morphism (Yλ → Xλ) → (Yλ0 → Xλ0). Then, we have

colimλ∈Λ(φλ,pB)(V → U) = colimλ∈Λ B(Vλ → Uλ) by [SGA 4II, VI 8.5.2, 8.5.7]. The conclusion follows

from B(V → U) = colimλ∈Λ B(Vλ → Uλ) by 3.18. □

Definition 7.12. A morphism X → S of coherent schemes is called pro-étale (resp. pro-finite étale), if
there is a directed inverse system of étale (resp. finite étale) S-schemes (Xλ)λ∈Λ with affine transition
morphisms such that there is an isomorphism of S-schemes X ∼= limλ∈ΛXλ. We call such an inverse
system (Xλ)λ∈Λ a pro-étale presentation (resp. pro-finite étale presentation) of X over S.

Lemma 7.13. Let X
g−→ Y

f−→ S be morphisms of coherent schemes.

(1) If f is pro-étale (resp. pro-finite étale), then f is flat (resp. flat and integral).
(2) Any base change of a pro-étale (resp. pro-finite étale) morphism is pro-étale (resp. pro-finite

étale).
(3) If f and g are pro-étale (resp. pro-finite étale), then so is f ◦ g.
(4) If f and f ◦ g are pro-étale (resp. pro-finite étale), then so is g.
(5) If f is pro-étale with a pro-étale presentation Y = limYβ, and if g is étale (resp. finite étale),

then there is an index β0 and an étale (resp. finite étale) S-morphism gβ0 : Xβ0 → Yβ0 such that
g is the base change of gβ0 by Y → Yβ0 .

(6) Let Z and Z ′ be coherent schemes pro-étale over S with pro-étale presentations Z = limZα,
Z ′ = limZ ′

β, then

HomS(Z,Z
′) = lim

β
colim
α

HomS(Zα, Z
′
β).(7.13.1)

Proof. (1) and (2) follow directly from the definition.
(3) We follow closely the proof of 3.6. Let X = limXα and Y = limYβ be pro-étale (resp. pro-finite

étale) presentations over Y and over S respectively. As Yβ are coherent, for each α, there is an index βα
and an étale (resp. finite étale) Yβα -scheme Xαβα such that Xα → Y is the base change of Xαβα → Yβα

([EGA IV3, 8.8.2, 8.10.5], [EGA IV4, 17.7.8]). For each β ≥ βα, let Xαβ → Yβ be the base change of
Xαβα → Yβα by Yβ → Yβα . Then, we have X = limα,β≥βα Xαβ by [EGA IV3, 8.8.2] (cf. 3.6), which is
pro-finite étale over S. For (5), one can take X = Xα.

https://stacks.math.columbia.edu/tag/00WI
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(6) We have

HomS(Z,Z
′) = lim

β
HomS(Z,Z

′
β) = lim

β
colim
α

HomS(Zα, Z
′
β)(7.13.2)

where the first equality follows from the universal property of limits of schemes, and the second follows
from the fact that Z ′

β → S is locally of finite presentation ([EGA IV3, 8.14.2]). For (4), we take Z = X

and Z ′ = Y . Then, for each index β, we have an S-morphism Xα → Yβ for α big enough, which is also
étale (resp. finite étale). Then, X = limαXα = limα,β Xα ×Yβ

Y is pro-étale (resp. pro-finite étale) over
Y . □
Remark 7.14. A pro-étale (resp. pro-finite étale) morphism of U-small coherent schemes X → S admits
a U-small pro-étale (resp. pro-finite étale) presentation. Indeed, let X = limλ∈ΛXλ be a presentation
of X → S. We may regard Λ as a filtered category with an initial object 0. Consider the category
C = X\X0,ét,aff (resp. C = X\X0,fét) of affine (resp. finite) étale X0-schemes which are under X.
Notice that C is essentially U-small and that the natual functor Λ→ C op is cofinal by 7.13.(6) ([SGA 4I,
I.8.1.3]). Therefore, after replacing C op by a U-small directed set Λ′, we obtain a U-small presentation
X = limX′∈Λ′ X ′ ([SGA 4I, I.8.1.6]).

Definition 7.15. For any U-small coherent scheme X, we endow the category of U-small coherent
pro-étale (resp. pro-finite étale) X-schemes with the topology generated by the pretopology formed by
families of morphisms

{fi : Ui → U}i∈I(7.15.1)

such that I is finite and that U =
∪
fi(Ui). This defines a site Xproét (resp. Xprofét), called the pro-étale

site (resp. pro-finite étale site) of X.

It is clear that the localization Xproét/U (resp. Xprofét/U ) of Xproét (resp. Xprofét) at an object U
is canonically equivalent to the pro-étale (resp. pro-finite étale) site Uproét (resp. Uprofét) of U . By
definition, any object in Xproét (resp. Xprofét) is quasi-compact.

7.16. We compare our definitions of pro-étale site and pro-finite étale site with some other definitions
existing in the literature. But we don’t use the comparison result in this paper.

Let X be a U-small Noetherian scheme. Consider the category of pro-objects pro-Xfét of Xfét, i.e.
the category whose objects are functors F : A → Xfét with A a U-small cofiltered category and whose
morphisms are given by Hom(F,G) = limβ∈B colimα∈A Hom(F (α), G(β)) for any F : A → Xfét and
G : B → Xfét ([Sch13a, 3.2]). We may simply denote such a functor F by (Xα)α∈A. Remark that
limα∈AXα exists which is pro-finite étale over X. Consider the functor

pro-Xfét −→ Xprofét, (Xα)α∈A 7→ lim
α∈A

Xα,(7.16.1)

which is well-defined and fully faithful by 7.13.(6) and essentially surjective by 7.14. Thus, according
to [Sch13a, 3.3] and its corrigendum [Sch16], Scholze’s pro-finite étale site XS

profét has the underlying
category Xprofét and its topology is generated by the families of morphisms

{Ui
fi−→ U ′ f−→ U}i∈I(7.16.2)

where I is finite and
⨿
i∈I Ui → U ′ is finite étale surjective, and there exists a well-ordered directed set

Λ with a least index 0 and a pro-finite étale presentation (U ′
λ)λ∈Λ of f such that U ′

0 = U and that for
each λ ∈ Λ the natural morphism U ′

λ → limµ<λ U
′
µ is finite étale surjective (cf. [Ker16, 5.5], 7.13 and

[EGA IV3, 8.10.5.(vi)]). It is clear that the topology of our pro-finite étale site Xprofét is finer than that
of XS

profét. We remark that if X is connected, then XS
profét gives a site-theoretic interpretation of the

continuous group cohomology of the fundamental group of X ([Sch13a, 3.7]). For simplicity, we don’t
consider XS

profét in the rest of the paper, but we can replace Xprofét by X
S
profét for most of the statements

in this paper (cf. [Ker16, 6]).

7.17. Let X be a U-small scheme. Bhatt-Scholze’s pro-étale site XBS
proét has the underlying category of

U-small weakly étale X-schemes and a family of morphisms {fi : Yi → Y }i∈I in XBS
proét is a covering if

and only if for any affine open subscheme U of Y , there exists a map a : {1, . . . , n} → I and affine open
subschemes Uj of Ya(j) (j = 1, . . . , n) such that U =

∪n
j=1 fa(j)(Uj) ([BS15, 4.1.1], cf. [Sta21, 0989]).

Remark that a pro-étale morphism of coherent schemes is weakly étale by [BS15, 2.3.3.1]. Thus, for a
coherent scheme X, Xproét is a full subcategory of XBS

proét.

https://stacks.math.columbia.edu/tag/0989
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Lemma 7.18. Let X be a coherent scheme. The full subcategory Xproét of XBS
proét is a topologically

generating family, and the induced topology on Xproét coincides the topology defined in 7.15. In particular,
the topoi of sheaves of V-small sets associated to the two sites are naturally equivalent.

Proof. For a weakly étale X-scheme Y , we show that it can be covered by pro-étale X-schemes. After
replacing X by a finite affine open covering and replacing Y by an affine open covering, we may assume
that X and Y are affine. Then, the result follows from the fact that for any weakly étale morphism of
rings A → B there exists a faithfully flat ind-étale morphism B → C such that A → C is ind-étale by
[BS15, 2.3.4] (cf. [BS15, 4.1.3]). Thus, Xproét is a topologically generating family of XBS

proét. A family of

morphisms {fi : Yi → Y }i∈I in Xproét is a covering with respect to the induced topology if and only if for
any affine open subscheme U of Y , there exists a map a : {1, . . . , n} → I and affine open subschemes Uj of
Ya(j) (j = 1, . . . , n) such that U =

∪n
j=1 fa(j)(Uj) ([SGA 4I, III.3.3]). Notice that Yi and Y are coherent,

thus {fi}i∈I is a covering if and only if there exists a finite subset I0 ⊆ I such that Y =
∪
i∈I0 fi(Yi),

which shows that the induced topology on Xproét coincides the topology defined in 7.15. Finally, the “in
particular” part follows from [SGA 4I, III.4.1]. □

Definition 7.19. Let Y → X be a morphism of coherent schemes. A morphism (V ′ → U ′)→ (V → U)
in EY→X is called pro-étale if U ′ → U is pro-étale and V ′ → V ×U U ′ is pro-finite étale. A pro-étale
presentation of such a morphism is a directed inverse system (Vλ → Uλ)λ∈Λ étale over V → U with affine
transition morphisms Uλ′ → Uλ and Vλ′ → Vλ (λ′ ≥ λ) such that (V ′ → U ′) = limλ∈Λ(Vλ → Uλ).

Lemma 7.20. Let Y → X be a morphism of coherent schemes, (V ′′ → U ′′)
g−→ (V ′ → U ′)

f−→ (V → U)
morphisms in EY→X .

(1) If f is pro-étale, then it admits a pro-étale presentation.
(2) If f is pro-étale, then any base change of f is also pro-étale.
(3) If f and g are pro-étale, then f ◦ g is also pro-étale.
(4) If f and f ◦ g are pro-étale, then g is also pro-étale.

Proof. It follows directly from 7.13 and its arguments. □

Remark 7.21. Similar to 7.14, a pro-étale morphism in EY→X admits a U-small presentation.

7.22. Let Y → X be a morphism of coherent schemes, Eproét
Y→X the full subcategory of EY→X formed by

objects which are pro-étale over the final object Y → X. It is clear that Eproét
Y→X is stable under finite

limits in EY→X . Then, the functor (7.1.2) induces a functor

σ+ : Eproét
Y→X −→ Xproét, (V → U) 7−→ U,(7.22.1)

which endows Eproét
Y→X/Xproét with a structure of fibred sites, whose fibre over U is the pro-finite étale

site UY,profét. We endow Eproét
Y→X with the associated covanishing topology. It is clear that any object in

Eproét
Y→X is quasi-compact by 6.4. We still denote by B the restriction of the presheaf B on EY→X to

Eproét
Y→X if there is no ambiguity. We will show in 7.30 that B is a sheaf on Eproét

Y→X .

Definition 7.23. We call Eproét
Y→X/Xproét the pro-étale Faltings fibred site of the morphism of coherent

schemes Y → X, and call B the structural sheaf of Eproét
Y→X .

It is clear that the localization (Eproét
Y→X)/(V→U) of E

proét
Y→X at an object V → U is canonically equivalent

to the pro-étale Faltings fibred site Eproét
V→U of the morphism V → U by 6.4.

Remark 7.24. The categories Xproét, Xprofét and Eproét
Y→X are essentially V-small categories.

Lemma 7.25. Let Y → X be a morphism of coherent schemes. Then, the inclusion functor

ν+ : Eét
Y→X −→ Eproét

Y→X , (V → U) 7−→ (V → U)(7.25.1)

defines a morphism of sites ν : Eproét
Y→X → Eét

Y→X (2.5).

Proof. It is clear that ν+ commutes with finite limits and sends a standard covanishing covering in

Eét
Y→X to a standard covanishing covering in Eproét

Y→X (6.3). Therefore, ν+ is continuous by 6.4 and defines
a morphism of sites. □
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Lemma 7.26. Let Y → X be a morphism of coherent schemes. Then, the topology on Eét
Y→X is the

topology induced from Eproét
Y→X .

Proof. After 7.25, it suffices to show that for a family of morphisms U = {(Vk → Uk) → (V → U)}k∈K
in Eét

Y→X , if ν+(U) is a covering in Eproét
Y→X , then U is a covering in Eét

Y→X . We may assume that K is

finite. There is a standard covanishing covering U′ = {(V ′
nm → U ′

n) → (V → U)}n∈N,m∈Mn in Eproét
Y→X

with N , Mn finite, which refines ν+(U) by 6.4. We take a directed set Ξ such that for each n ∈ N ,
we can take a pro-étale presentation U ′

n = limξ∈Ξ U
′
nξ over U , and we take a directed set Σ such that

for each n ∈ N and m ∈ Mn, we can take a pro-finite étale presentation V ′
nm = limσ∈Σ V

′
nmσ over

V ×U U ′
n. By 7.13 (5), for each σ ∈ Σ, there exists an index ξσ ∈ Ξ and a finite étale morphism

V ′
nmσξσ

→ V ×U U ′
nξσ

for each n and m, whose base change by U ′
n → U ′

nξσ
is V ′

nmσ → V ×U U ′
n. Let

V ′
nmσξ → V ×U U ′

nξ be the base change of V
′
nmσξσ

→ V ×U U ′
nξσ

by the transition morphism U ′
nξ → U ′

nξσ

for each ξ ≥ ξσ. Since
⨿
m∈Mn

V ′
nmσ → V ×U U ′

n is surjective, after enlarging ξσ, we may assume that⨿
m∈Mn

V ′
nmσξ → V ×U U ′

nξ is also surjective for ξ ≥ ξσ by [EGA IV3, 8.10.5.(vi)]. It is clear that⨿
n∈N U

′
nξ → U is surjective for each ξ ∈ Ξ. Therefore, U′

σξ = {(V ′
nmσξ → U ′

nξ) → (V → U)}n∈N,m∈Mn

is a standard covanishing covering in Eét
V→U for each σ ∈ Σ and ξ ≥ ξσ. Notice that for each n ∈ N

and m ∈ Mn, there exists k ∈ K such that the morphism (V ′
nmσξ → U ′

nξ) → (V → U) factors through

(Vk → Uk) for σ, ξ big enough by 7.13 (6), which shows that U is a covering in Eét
Y→X . □

Lemma 7.27. Let Y → X be a morphism of coherent schemes, U = {(Vk → Uk) → (V → U)}k∈K a

covering in Eproét
Y→X with K finite. Then, there exist pro-étale presentations (V → U) = limλ∈Λ(Vλ → Uλ),

(Vk → Uk) = limλ∈Λ(Vkλ → Ukλ) over Y → X and compatible étale morphisms (Vkλ → Ukλ) → (Vλ →
Uλ) such that the family Uλ = {(Vkλ → Ukλ)→ (Vλ → Uλ)}k∈K is a covering in Eét

Y→X .

Proof. We follow closely the proof of 3.6. We take a directed set A such that for each k ∈ K we can take
a pro-étale presentation (Vk → Uk) = limα∈A(Vkα → Ukα) over (V → U). Then, Uα = {(fkα : Vkα →
Ukα)→ (V → U)}k∈K is a covering family in Eét

V→U for each α ∈ A by 7.26.
Let (V → U) = limβ∈B(Vβ → Uβ) be a pro-étale presentation over Y → X. For each α ∈ A, there

exists an index βα ∈ B and a covering family Uαβα = {fkαβα : (Vkαβα → Ukαβα) → (Vβα → Uβα)}k∈K
such that fkα is the base change of fkαβα by the transition morphism (V → U) → (Vβα → Uβα)
(7.10). For each β ≥ βα, let fkαβ : (Vkαβ → Ukαβ) → (Vβ → Uβ) be the base change of fkαβα by
the transition morphism (Vβ → Uβ) → (Vβα → Uβα). We take Λ = {(α, β) ∈ A × B | β ≥ βα},
(Vλ → Uλ) = (Vβ → Uβ) and (Vkλ → Ukλ) = (Vkαβ → Ukαβ) for each λ = (α, β) ∈ Λ. Then, the families
Uλ = {(Vkλ → Ukλ)→ (Vλ → Uλ)}k∈K meet the requirements in the lemma (cf. 3.6). □

Lemma 7.28. Let Y → X be a morphism of coherent schemes, F a presheaf on Eét
Y→X , V → U an

object of Eproét
Y→X with a pro-étale presentation (V → U) = lim(Vλ → Uλ). Then, we have νpF(V → U) =

colimF(Vλ → Uλ), where ν
+ : Eét

Y→X → Eproét
Y→X is the inclusion functor.

Proof. Notice that the presheaf F is a filtered colimit of representable presheaves by [SGA 4I, I.3.4]

F = colim
(V ′→U ′)∈(Eét

Y →X)/F

hétV ′→U ′ .(7.28.1)

Thus, we may assume that F is representable by V ′ → U ′ since the section functor Γ(V → U,−)
commutes with colimits of presheaves ([Sta21, 00VB]). Then, we have

νph
ét
V ′→U ′(V → U) =hproétV ′→U ′(V → U)(7.28.2)

=HomEproét
Y →X

((V → U), (V ′ → U ′))

= colimHomEét
Y →X

((Vλ → Uλ), (V
′ → U ′))

= colimhétV ′→U ′(Vλ → Uλ)

where the first equality follows from [Sta21, 04D2], and the third equality follows from [EGA IV3, 8.14.2]
since U ′ and V ′ are locally of finite presentation over X and Y ×X U ′ respectively. □

Proposition 7.29. Let Y → X be a morphism of coherent schemes, F an abelian sheaf on Eét
Y→X ,

V → U an object of Eproét
Y→X with a pro-étale presentation (V → U) = lim(Vλ → Uλ). Then, for any

https://stacks.math.columbia.edu/tag/00VB
https://stacks.math.columbia.edu/tag/04D2
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integer q, we have

Hq(Eproét
V→U , ν

−1F) = colimHq(Eét
Vλ→Uλ

,F),(7.29.1)

where ν : Eproét
Y→X → Eét

Y→X is the morphism of sites defined by the inclusion functor (7.25). In particular,
the canonical morphism F −→ Rν∗ν

−1F is an isomorphism.

Proof. We follow closely the proof of 3.8. For the second assertion, since Rqν∗ν
−1F is the sheaf associated

to the presheaf (V → U) 7→ Hq(Eproét
V→U , ν

−1F) = Hq(Eét
V→U ,F) by the first assertion, which is F if q = 0

and vanishes otherwise.
For the first assertion, we may assume that F = I is an abelian injective sheaf on Eét

Y→X (cf. 3.8). We

claim that for any covering in Eproét
Y→X , U = {(Vk → Uk) → (V → U)}k∈K with K finite, the augmented

Čech complex associated to the presheaf νpI,

0→ νpI(V → U)→
∏
k

νpI(Vk → Uk)→
∏
k,k′

νpI(Vk ×V Vk′ → Uk ×U Uk′)→ · · ·(7.29.2)

is exact. Admitting this claim, we see that νpI is indeed a sheaf, i.e. ν−1I = νpI, and the vanishing of

higher Čech cohomologies implies that Hq(Eproét
V→U , ν

−1I) = 0 for any q > 0, which completes the proof
together with 7.28. For the claim, let (V → U) = limλ∈Λ(Vλ → Uλ) and (Vk → Uk) = limλ∈Λ(Vkλ → Ukλ)
be the pro-étale presentations constructed in 7.27. The family Uλ = {(Vkλ → Ukλ) → (Vλ → Uλ)}k∈K
is a covering in Eét

Y→X . By 7.28, the sequence (7.29.2) is the filtered colimit of the augmented Čech
complexes

0→ I(Vλ → Uλ)→
∏
k

I(Vkλ → Ukλ)→
∏
k,k′

I(Vkλ ×Vλ
Vk′λ → Ukλ ×Uλ

Uk′λ)→ · · ·(7.29.3)

which are exact since I is an injective abelian sheaf on Eét
Y→X . □

Corollary 7.30. With the notation in 7.29, the presheaf B on Eproét
Y→X is a sheaf, and the canonical

morphisms ν−1B → B and B → Rν∗B are isomorphisms. If moreover p is invertible on Y , then for
each integer n > 0, the canonical morphisms ν−1(B/pnB)→ B/pnB and B/pnB → Rν∗(B/pnB) are
isomorphisms.

Proof. For any pro-étale presentation (V → U) = lim(Vλ → Uλ), we have ν
−1B(V → U) = colimB(Vλ →

Uλ) = B(V → U) by 7.28 and 3.18. This verifies that B is a sheaf on Eproét
Y→X and that ν−1B → B is

an isomorphism. The second isomorphism follows from the first and 7.29. For the last assertion, notice
that the multiplication by pn is injective on B, so that the conclusion follows from the exact sequence

0 // B
·pn // B // B/pnB // 0.(7.30.1)

□

8. Cohomological Descent of the Structural Sheaves

Lemma 8.1. Let Y → X be a morphism of coherent schemes such that Y → XY is an open immersion.
Then, the functor

ϵ+ : Eproét
Y→X −→ IY→XY , (V → U) 7−→ UV ,(8.1.1)

is well-defined, left exact and continuous. Moreover, we have Y ×XY UV = V .

Proof. Since U ′ = XY ×X U is integral over U , we have UV = U ′V . Applying 3.19.(4) to V → U ′ over
Y → XY , we see that the XY -scheme UV is Y -integrally closed with Y ×XY UV = V , and thus the

functor ϵ+ is well-defined. Let (V1 → U1) → (V0 → U0) ← (V2 → U2) be a diagram in Eproét
Y→X . By

3.21, UV1
1 ×UV0

0
UV2
2 = (UV1

1 ×UV0
0
UV2
2 )V1×V0

V2 = (U1×U0 U2)
V1×V0

V2 which shows the left exactness of ϵ+.

For the continuity, notice that any covering in Eproét
Y→X can be refined by a standard covanishing covering
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(6.4). For a Cartesian covering family U = {(V ×U Un → Un)→ (V → U)}n∈N with N finite, we apply
3.15 to the commutative diagram⨿

n∈N V ×U Un //

��

⨿
n∈N U

V×UUn
n

//

��

⨿
n∈N Un

��
V // UV // U

(8.1.2)

then we see that ϵ+(U) is a covering family in IY→XY . For a vertical covering family U = {(Vm → U)→
(V → U)}m∈M with M finite, we apply 3.15 to the commutative diagram⨿

m∈M Vm //

��

⨿
m∈M UVm //

��

U

��
V // UV // U

(8.1.3)

then we see that ϵ+(U) is also a covering family in IY→XY . □
8.2. Let Y → X be a morphism of coherent schemes such that Y → XY is an open immersion. Then,
there are morphisms of sites

ϵ : IY→XY −→ Eproét
Y→X ,(8.2.1)

ε : IY→XY −→ Eét
Y→X(8.2.2)

defined by (8.1.1) and the composition of (8.1.1) with (7.25.1) respectively. We temporarily denote
by Opre the presheaf on IY→XY sending W to Γ(W,OW ) (thus O = (Opre)a). Notice that we have
B = ϵpOpre (resp. B = εpOpre). The canonical morphism ϵpOpre → ϵpO (resp. εpOpre → εpO) induces
a canonical morphism B → ϵ∗O (resp. B → ε∗O).

8.3. Let K be a pre-perfectoid field (5.1) of mixed characteristic (0, p), η = Spec(K), S = Spec(OK),
Y → X a morphism of coherent schemes such that XY is an S-scheme with generic fibre (XY )η = Y . In
particular, XY is an object of Iη→S .

Lemma 8.4. For any ring R, there is an R-algebra R∞ satisfying the following conditions:

(i) The scheme Spec(R∞[1/p]) is pro-finite étale and faithfully flat over Spec(R[1/p]).
(ii) The R-algebra R∞ is the integral closure of R in R∞[1/p].
(iii) Any unit t of R∞ admits a p-th root t1/p in R∞.

Moreover, if p lies in the Jacobson radical J(R) of R, and if there is a p2-th root p2 ∈ R of p up to a
unit, and we write p1 = pp2, then we may require further that

(iv) the Frobenius of R∞/pR∞ induces an isomorphism R∞/p1R∞ → R∞/pR∞.

Proof. Setting B0 = R[1/p], we construct inductively a ring Bn+1 ind-finite étale over Bn and we denote
by Rn the integral closure of R in Bn. For n ≥ 0, we set

Bn+1 = colim
T⊆R×

n

⊗t∈T

Bn

Bn[X]/(Xp − t)(8.4.1)

where the colimit runs through all finite subsets T of the subset R×
n of units of Rn and the transition

maps are given by the inclusion relation of these finite subsets T . Notice that Bn[X]/(Xp − t) is finite
étale and faithfully flat over Bn, thus Bn+1 is ind-finite étale and faithfully flat over Bn. Now we take
B∞ = colimnBn. The integral closure R∞ of R in B∞ is equal to colimnRn by 3.18. We claim that R∞
satisfies the first three conditions. Firstly, we see inductively that Bn = Rn[1/p] (0 ≤ n ≤ ∞) by 3.17.
Thus, (i), (ii) follow immediately. For (iii), notice that we have R×

∞ = colimnR
×
n . For an unit t ∈ R×

∞,
we suppose that it is the image of tn ∈ R×

n . By construction, there exists an element xn+1 ∈ Rn+1 such
that xpn+1 = tn. Thus, t admits a p-th root in R∞.

For (iv), the injectivity follows from the fact that R∞ is integrally closed in R∞[1/p] (cf. 5.20). For
the surjectivity, let a ∈ R∞. Firstly, since R∞ is integral over R, p also lies in the Jacobson radical
J(R∞) of R∞. Thus, 1 + p1a ∈ R×

∞, and then by (iii) there is b ∈ R∞ such that bp = 1 + p1a. We write
(b−1)p = p1a

′ for some a′ ∈ a+p1R∞. Thus, 1+a′−a ∈ R×
∞, and then by (iii) there is c ∈ R∞ such that

cp = 1+a′−a. On the other hand, since R∞ is integrally closed in R∞[1/p], we have x = (b−1)/p2 ∈ R∞.
Now we have (x− c+ 1)p ≡ xp − cp + 1 ≡ a (mod pR∞), which completes the proof. □



34 TONGMU HE

Remark 8.5. In 8.4, it follows from the construction that Spec(R∞[1/p])→ Spec(R[1/p]) is a covering in
Spec(R[1/p])Sprofét (7.16).

Proposition 8.6. With the notation in 8.3, for any object V → U in Eproét
Y→X , there exists a covering

{(Vi → Ui)→ (V → U)}i∈I with I finite such that for each i ∈ I, UVi
i is the spectrum of an OK-algebra

which is almost pre-perfectoid (5.18).

Proof. After replacing U by an affine open covering, we may assume that U = Spec(A). Consider
the category C of étale A-algebras B such that A/pA → B/pB is an isomorphism, and the colimit
Ah = colimB over C . In fact, C is filtered and (Ah, pAh) is the Henselization of the pair (A, pA) (cf.
[Sta21, 0A02]). It is clear that Spec(Ah)

⨿
Spec(A[1/p])→ Spec(A) is a covering in Uproét. So we reduce

to the situation where p ∈ J(A) or p ∈ A×. The latter case is trivial, since the p-adic completion of
R = Γ(UV ,OUV ) is zero if p is invertible in A. Therefore, we may assume that p ∈ J(A) in the following.

Since R = Γ(UV ,OUV ) is integral over A, we also have p ∈ J(R). Applying 8.4 to the OK-algebra R,
we obtain a covering V∞ = Spec(R∞[1/p])→ V = Spec(R[1/p]) in Vprofét such that R∞ = Γ(UV∞ ,OUV∞ )
is an OK-algebra which is almost pre-perfectoid by 5.4 and 5.19. □

Proposition 8.7. With the notation in 8.3, if W is an object of Iη→S such that W is the spectrum
of an OK-algebra which is almost pre-perfectoid, then for any integer n > 0, the canonical morphism
Γ(W,OW )/pnΓ(W,OW )→ RΓ(IWη→W ,O/pnO) is an almost isomorphism (5.7).

Proof. Let C be the full-subcategory of Iη→S formed by the spectrums of OK-algebras which are almost
pre-perfectoid. It is stable under fibred product by 5.29, 5.26 and 3.21, and it forms a topologically
generating family for the site Iη→S by 8.1 and 8.6. It suffices to show that for any covering in Iη→S ,

U = {Wk →W}k∈K consisting of objects of C with K finite, the augmented Čech complex associated to
the presheaf W 7→ Γ(W,OW )/pnΓ(W,OW ) on Iη→S (whose associated sheaf is just O/pnO),

0→ Γ(W,OW )/pn →
∏
k

Γ(Wk,OWk
)/pn →

∏
k,k′

Γ(Wk×WWk′ ,OWk×WWk′ )/p
n → · · ·(8.7.1)

is almost exact. Indeed, the almost exactness shows firstly that Γ(W,OW )/pn → H0(IWη→W ,O/pnO) is

an almost isomorphism (cf. [Sta21, 00W1]), so that the augmented Čech complex associated to the sheaf
O/pnO is also almost exact. Then, the conclusion follows from the almost vanishing of the higher Čech
cohomologies of O/pnO by [Sta21, 03F9].

We set R = Γ(W,OW ) and R′ =
∏
k∈K Γ(Wk,OWk

). They are almost pre-perfectoid, and Spec(R′)→
Spec(R) is a v-covering by definition. Thus, the almost exactness of (8.7.1) follows from 5.29, 5.26 and
5.31. □

Theorem 8.8. With the notation in 8.3, let ϵ : IY→XY → Eproét
Y→X be the morphism of sites defined in 8.2.

Then, for any integer n > 0, the canonical morphism B/pnB → Rϵ∗(O/pnO) is an almost isomorphism
in the derived category D(OK-ModEproét

Y →X
) (5.7).

Proof. Since Rqϵ∗(O/pnO) is the sheaf associated to the presheaf (V → U) 7→ Hq(IV→UV ,O/pnO)

and any object in Eproét
Y→X can be covered by those objects whose image under ϵ+ are the spectrums of

OK-algebras which are almost pre-perfectoid by 8.6, the conclusion follows from 8.7. □

Corollary 8.9. With the notation in 8.3, let ε : IY→XY → Eét
Y→X be the morphism of sites defined in

8.2. Then, for any finite locally constant abelian sheaf L on Eét
Y→X , the canonical morphism L⊗Z B →

Rε∗(ε
−1L⊗Z O) is an almost isomorphism in the derived category D(OK-ModEét

Y →X
) (5.7).

Proof. The problem is local on Eét
Y→X , thus we may assume that L is the constant sheaf with value

Z/pnZ. Then, the conclusion follows from 8.8 and 7.30. □

Remark 8.10. In 8.9, if L is a bounded complex of abelian sheaves on Eét
Y→X with finite locally constant

cohomology sheaves, then the canonical morphism L⊗L
Z B → Rε∗(ε

−1L⊗L
Z O) is also an almost isomor-

phism. Indeed, after replacing L by L⊗L
Z Zp, we may assume that L is a complex of Z/pnZ-modules for

some integer n ([Sta21, 0DD7]). Then, there exists a covering family {(Yi → Xi) → (Y → X)}i∈I in
Eét
Y→X such that the restriction of L on Eét

Yi→Xi
is represented by a bounded complex of finite locally

constant Z/pnZ-modules ([Sta21, 094G]). Then, the conclusion follows directly from 8.9.

https://stacks.math.columbia.edu/tag/0A02
https://stacks.math.columbia.edu/tag/00W1
https://stacks.math.columbia.edu/tag/03F9
https://stacks.math.columbia.edu/tag/0DD7
https://stacks.math.columbia.edu/tag/094G
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Corollary 8.11. With the notation in 8.3, let Y → Xi (i = 1, 2) be a morphism of coherent schemes
such that XY

i is an S-scheme with generic fibre (XY
i )η = Y , L a finite locally constant abelian sheaf on

Eét
Y→X2

. If there is a morphism f : X1 → X2 under Y such that the natural morphism g : XY
1 → XY

2 is a

separated v-covering and that g−1(Y ) = Y , and if we denote by u : Eét
Y→X1

→ Eét
Y→X2

the corresponding

morphism of sites, then the natural morphism L⊗Z B → Ru∗(u
−1L⊗Z B) is an almost isomorphism.

Proof. The morphism u is defined by the functor u+ : Eét
Y→X2

→ Eét
Y→X1

sending (V → U2) to (V →
U1) = (V → X1 ×X2 U2). We set V0 = Y ×X1 U1 = Y ×X2 U2. According to 3.17, UV0

1 → UV0
2 is the

base change of XY
1 → XY

2 by U2 → X2, and thus it is a separated v-covering. Notice that V0 is an open

subscheme in both UV0
1 and UV0

2 , and moreover V0 = V0 ×UV0
2
UV0
1 . Applying 3.15 to the commutative

diagram

V //

��

UV1 //

��

UV0
1

��
V // UV2 // UV0

2

(8.11.1)

it follows that UV1 → UV2 is also a separated v-covering. Let εi : IY→XY
i
→ Eét

Y→Xi
(i = 1, 2) be the

morphisms of sites defined in 8.2. The sheaf Rqu∗(u
−1L⊗Z B) is associated to the presheaf (V → U2) 7→

Hq(Eét
V→U1

, u−1L⊗Z B). We have

Hq(Eét
V→U1

, u−1L⊗Z B)→ Hq(IV→UV
1
, ε−1

1 u−1L⊗Z O)(8.11.2)

= Hq(IV→UV
2
, ε−1

2 L⊗Z O)← Hq(Eét
V→U2

,L⊗Z B),

where the equality follows from the fact that the morphism of representable sheaves associated to UV1 →
UV2 on Iη→S is an isomorphism by 3.24, and where the two arrows are almost isomorphisms by 8.9, which
completes the proof. □

8.12. Let ∆ be the category formed by finite ordered sets [n] = {0, 1, . . . , n} (n ≥ 0) with non-decreasing
maps ([Sta21, 0164]). For a functor from its opposite category ∆op to the category E of morphisms
of coherent schemes sending [n] to Yn → Xn, we simply denote it by Y• → X•. Then, we obtain a
fibred site Eét

Y•→X•
over ∆op whose fibre category over [n] is Eét

Yn→Xn
and the inverse image functor

f+ : Eét
Yn→Xn

→ Eét
Ym→Xm

associated to a morphism f : [m]→ [n] in ∆op is induced the base change by

the morphism (Ym → Xm) → (Yn → Xn) associated to f . We endow Eét
Y•→X•

with the total topology

(6.1) and call it the simplicial Faltings site associated to Y• → X• ([Sta21, 09WE.(A)]). The sheaf B on
each Eét

Yn→Xn
induces a sheaf B• = {[n] 7→ B} on Eét

Y•→X•
with the notation in 6.5.

For an augmentation (Y• → X•) → (Y → X) in E ([Sta21, 018F]), we obtain an augmentation of
simplicial site a : Eét

Y•→X•
→ Eét

Y→X ([Sta21, 0D6Z.(A)]). We denote by an : Eét
Yn→Xn

→ Eét
Y→X the

natural morphism induced by (Yn → Xn)→ (Y → X). Notice that for any sheaf F on Eét
Y→X , we have

a−1F = {[n] 7→ a−1
n F} with the notation in 6.5 ([Sta21, 0D70]).

Corollary 8.13. With the notation in 8.3, let L a finite locally constant abelian sheaf on Eét
Y→X , X• → X

an augmentation of simplicial coherent scheme. If we set Y• = Y ×X X• and denote by a : Eét
Y•→X•

→
Eét
Y→X the augmentation of simplicial site, assuming that XY•

• → XY is a hypercovering in Iη→S, then

the canonical morphism L⊗Z B → Ra∗(a
−1L⊗Z B•) is an almost isomorphism.

Proof. Let b : IY•→XY•
•
→ IY→XY be the augmentation of simplicial site associated to the augmentation

of simplicial object XY•
• → XY of Iη→S ([Sta21, 09X8]). The functorial morphism of sites ε : IY→XY →

Eét
Y→X defined in 8.2 induces a commutative diagram of topoi ([Sta21, 0D99])

I∼
Y•→XY•

•

ε• //

b

��

Eét∼
Y•→X•

a

��
I∼Y→XY

ε // Eét∼
Y→X

(8.13.1)

https://stacks.math.columbia.edu/tag/0164
https://stacks.math.columbia.edu/tag/09WE
https://stacks.math.columbia.edu/tag/018F
https://stacks.math.columbia.edu/tag/0D6Z
https://stacks.math.columbia.edu/tag/0D70
https://stacks.math.columbia.edu/tag/09X8
https://stacks.math.columbia.edu/tag/0D99
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We denote by an : Eét
Yn→Xn

→ Eét
Y→X and bn : IYn→XYn

n
→ IY→XY the natural morphisms of sites.

Consider the commutative diagram

Ra∗(a
−1L⊗B•)

α3

��

L⊗B
α2 //α1oo Rε∗(ε

−1L⊗ O)

α4

��
Ra∗Rε•∗ε

−1
• (a−1L⊗B•)

α5 // Rc∗(c−1L⊗ O•) Rε∗Rb∗b
−1(ε−1L⊗ O)

(8.13.2)

where c = a ◦ ε• = ε ◦ b, and α2 (resp. α5) is induced by the canonical morphism ε−1B → O (resp.

ε−1
• B• → O•), and other arrows are the canonical morphisms.
Notice that α2 is an almost isomorphism by 8.9, and that α4 is an isomorphism by [Sta21, 0D8N] as

XY•
• → XY is a hypercovering in Iη→S . It remains to show that α5 ◦α3 is an almost isomorphism. With

the notation in 6.5, we have

a−1L⊗B• = {[n] 7→ a−1
n L⊗B} and(8.13.3)

c−1L⊗ O• = {[n] 7→ ε−1
n a−1

n L⊗ O}.(8.13.4)

Moreover, by [Sta21, 0D97] we have

Rqε•∗(c
−1L⊗ O•) = {[n] 7→ Rqεn∗(ε

−1
n a−1

n L⊗ O)}(8.13.5)

for each integer q. Therefore, a−1L⊗B• → Rε•∗(c
−1L⊗O•) is an almost isomorphism by 8.9 and so is

α5 ◦ α3. □

9. Complements on Logarithmic Geometry

We briefly recall some notions and facts of logarithmic geometry which will be used in the rest of the
paper. We refer to [Kat89, Kat94, GR04, Ogu18] for a systematic development of logarithmic geometry,
and to [AGT16, II.5] for a brief summary of the theory.

9.1. We only consider logarithmic structures in étale topology. More precisely, let X be a scheme, Xét the
étale site ofX, OXét

the structure sheaf onXét, O×
Xét

the subsheaf of units of OXét
. A logarithmic struture

on X is a homomorphism of sheaves of monoids α : M → OXét
on Xét which induces an isomorphism

α−1(O×
Xét

)
∼−→ O×

Xét
. We denote by (X,M ) the associated logarithmic scheme (cf. [AGT16, II.5.11]).

9.2. Let (X,M ) be a coherent log scheme (cf. [AGT16, II.5.15]). Then, there is a maximal open
subscheme Xtr of X on which M is trivial, and moreover it is functorial in (X,M ) ([Ogu18, III.1.2.8]).
Let (X,M )→ (S,L )← (Y,N ) be a diagram of fine and saturated log schemes (cf. [AGT16, II.5.15]).
Then, the fibred product is representable in the category of fine and saturated log schemes by (Z,P) =
(X,M ) ×fs

(S,L ) (Y,N ). We remark that Ztr = Xtr ×Str Y tr, that Z → X ×S Y is finite, and that

Ztr → Z is Cartesian over Xtr ×Str Y tr → X ×S Y ([Ogu18, III 2.1.2, 2.1.6]). Moreover, if Xtr = X,
then Z = X ×S Y ([Ogu18, III.2.1.3]).

9.3. For an open immersion j : Y → X, we denote by jét : Yét → Xét the morphism of their étale
sites defined by the base change by j. Let MY→X be the preimage of jét∗O×

Yét
under the natural map

OXét
→ jét∗OYét

, and we endow X with the logarithmic structure MY→X → OXét
, which is called the

compactifying log structure associated to the open immersion j ([Ogu18, III.1.6.1]). Sometimes we write
MY→X as MX if Y is clear in the context.

9.4. Let (X,M ) be a fine and saturated log scheme which is regular ([Kat94, 2.1], [Niz06, 2.3]). Then,
X is locally Noetherian and normal, and Xtr is regular and dense in X ([Kat94, 4.1]). Moreover, there

is a natural isomorphism M
∼−→MXtr→X ([Kat94, 11.6], [Niz06, 2.6]). We remark that if X is a regular

scheme with a strict normal crossings divisor D, then (X,MX\D→X) is fine, saturated and regular
([Ogu18, III.1.11.9]).

Let f : (X,M ) → (S,L ) be a smooth (resp. saturated) morphism of fine and saturated log schemes
(cf. [AGT16, II 5.25, 5.18]). Then, f remains smooth (resp. saturated) under the base change in the
category of fine and saturated log schemes ([Ogu18, IV.3.1.2, IV.3.1.11], resp. [Ogu18, III.2.5.3]). We
remark that if f is smooth, then f tr : Xtr → Str is a smooth morphism of schemes. If moreover (S,L ) is
regular, then (X,M ) is also regular ([Ogu18, IV.3.5.3]). We also remark that if f is saturated, then for
any fibred product in the category of fine and saturated log schemes (Z,P) = (X,M ) ×fs

(S,L ) (Y,N ),

we have Z = X ×S Y ([Tsu19, II.2.13]).

https://stacks.math.columbia.edu/tag/0D8N
https://stacks.math.columbia.edu/tag/0D97
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9.5. Let K be a complete discrete valuation field with valuation ring OK , k the residue field of OK , π
a uniformizer of OK . We set η = Spec(K), S = Spec(OK) and s = Spec(k). Then, (S,Mη→S) is fine,
saturated and regular, since N → Γ(S,Mη→S) sending 1 to π forms a chart of (S,Mη→S) (cf. [AGT16,
II.5.13, II.6.1]). Recall that an open immersion Y → X of quasi-compact and separated schemes over
η → S is strictly semi-stable ([dJ96, 6.3]) if and only if the following conditions are satisfied ([dJ96, 6.4],
[EGA IV4, 17.5.3]):

(i) For each point x of the generic fibre Xη, there is an open neighborhood U ⊆ Xη of x and a
smooth K-morphism

f : U −→ Spec(K[s1, . . . , sm])(9.5.1)

such that f maps x to the point associated to the maximal ideal (s1, . . . , sm) and that U \ Y is
the inverse image of the closed subset defined by s1 · · · sm = 0.

(ii) For each point x of the special fibre Xs, there is an open neighborhood U ⊆ X of x and a smooth
OK-morphism

f : U −→ Spec(OK [t1, . . . , tn, s1, . . . , sm]/(π − t1 · · · tn))(9.5.2)

such that f maps x to the point associated to the maximal ideal (t1, . . . , tn, s1, . . . , sm) and that
U \ Y is the inverse image of the closed subset defined by t1 · · · tn · s1 · · · sm = 0.

In this case, (X,MY→X) is fine, saturated and regular which is smooth and saturated over (S,Mη→S),
since locally on X there exists a chart for the morphism (X,MY→X) → (S,Mη→S) subordinate to
the morphism N → Nn ⊕ Nm sending 1 to (1, . . . , 1, 0, . . . , 0) such that the induced morphism X →
S ×AN ANn⊕Nm is smooth (cf. [Ogu18, IV.3.1.18]).

9.6. Recall that a morphism of schemes f : X → S is called generically finite if there exists a dense open
subscheme U of S such that f−1(U) → U is finite. We remark that for a morphism f : X → S of finite
type between Noetherian schemes which maps generic points to generic points, f is generically finite if
and only if the residue field of any generic point η of X is a finite field extension of the residue field of
f(η) ([ILO14, II.1.1.7]).

9.7. Let K be a complete discrete valuation field with valuation ring OK , L an algebraically closed
valuation field of height 1 extension of K with valuation ring OL, K the algebraic closure of K in L.

Consider the category C of open immersions between integral affine schemes U → T over Spec(K)→
Spec(OK) under Spec(L) → Spec(OL) such that T is of finite type over OK and that Spec(L) → U
is dominant. Let Ccar be the full subcategory of C formed by those objects U → T Cartesian over
Spec(K)→ Spec(OK).

Spec(L) //

��

Spec(OL)

��
U = Spec(B) //

��

T = Spec(A)

��
Spec(K) // Spec(OK)

(9.7.1)

We note that the objects of C are of the form (U = Spec(B) → T = Spec(A)) where A (resp. B) is a
finitely generated OK-subalgebra of OL (resp. K-subalgebra of L) with A ⊆ B such that Spec(B) →
Spec(A) is an open immersion.

Lemma 9.8. With the notation in 9.7, we have:

(1) The category C is cofiltered, and the subcategory Ccar is initial in C .
(2) The morphism Spec(L)→ Spec(OL) represents the cofiltered limit of morphisms U → T indexed

by C in the category of morphisms of schemes (cf. 7.1).
(3) There exists a directed inverse system (Uλ → Tλ)λ∈Λ of objects of Ccar over a directed inverse

system (Spec(Kλ)→ Spec(OKλ
))λ∈Λ of objects of Ccar such that Kλ is a finite field extension of

K in L, that K =
∪
λ∈ΛKλ, that Uλ → Tλ is strictly semi-stable over Spec(Kλ) → Spec(OKλ

)
(9.5), and that (Uλ → Tλ)λ∈Λ forms an initial full subcategory of Ccar.

Proof. (1) For a diagram (U1 → T1)→ (U0 → T0)← (U2 → T2) in C , let T be the scheme theoretic image
of Spec(L)→ T1 ×T0 T2 and let U be the intersection of U1 ×U0 U2 with T . It is clear that T is of finite
type over OK as OK is Noetherian, that U and T are integral and affine, that Spec(L)→ U is dominant,
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and that Spec(L)→ T factors through Spec(OL). Thus, U → T is an object of C , which shows that C is
cofiltered. For an object (U = Spec(B)→ T = Spec(A)) of C , we write OL as a filtered union of finitely
generated A-subalgebras Ai. Let π be a uniformizer of K. Notice that L = OL[1/π] = colimAi[1/π]
and that HomK-Alg(B,L) = colimHomK-Alg(B,Ai[1/π]) by [EGA IV3, 8.14.2.2]. Thus, there exists an
index i such that Spec(Ai[1/π])→ Spec(Ai) is an object of Ccar over U → T .

(2) It follows immediately from the arguments above.
(3) Consider the category D of morphisms of Ccar,

U ′ //

��

T ′

��
Spec(K ′) // Spec(OK′)

(9.8.1)

such that K ′ is a finite field extension of K. Similarly, this category is also cofiltered with limit of
diagrams of schemes (Spec(L) → Spec(OL)) → (Spec(K) → Spec(OK)). It suffices to show that the
full subcategory of D formed by strictly semi-stable objects is initial. For any object U → T of Ccar, by
de Jong’s alteration theorem [dJ96, 6.5], there exists a proper surjective and generically finite morphism
T ′ → T of integral schemes such that U ′ = U ×T T ′ → T ′ is strictly semi-stable over Spec(K ′) →
Spec(OK′) for a finite field extension K → K ′. Since L is algebraically closed, the dominant morphism
Spec(L) → U lifts to a dominant morphism Spec(L) → U ′ (9.6), which further extends to a lifting
Spec(OL) → T ′ of Spec(OL) → T by the valuative criterion. After replacing T ′ by an affine open
neighborhood of the image of the closed point of Spec(OL), we obtain a strictly semi-stable object of D
over (U → T )→ (Spec(K)→ Spec(OK)), which completes the proof. □

Theorem 9.9 ([ILO14, X 3.5, 3.7]). Let K be a complete discrete valuation field with valuation ring
OK , (Y → X) → (U → T ) a morphism of dominant open immersions over Spec(K) → Spec(OK)
between irreducible OK-schemes of finite type such that X → T is proper surjective. Then, there exists a
commutative diagram of dominant open immersions between irreducible OK-schemes of finite type

(Y ′ → X ′)
(β◦,β) //

(f ′◦,f ′)

��

(Y → X)

(f◦,f)

��
(U ′ → T ′)

(α◦,α)
// (U → T )

(9.9.1)

satisfying the following conditions:

(i) We have Y ′ = β−1(Y )∩ f ′−1(U ′), i.e. Y ′ → X ′ is Cartesian over U ′×U Y → T ′×T X (cf. 7.1).
(ii) The morphism (X ′,MY ′→X′) → (T ′,MU ′→T ′) induced by (f ′◦, f ′) is a smooth and saturated

morphism of fine, saturated and regular log schemes.
(iii) The morphisms α and β are proper surjective and generically finite, and f ′ is projective surjective.

Proof. We may assume that T is nonempty. Recall that Spec(OK) is universally Q-resolvable ([ILO14,
X.3.3]) by de Jong’s alteration theorem [dJ96, 6.5]. Thus, T is also universally Q-resolvable by [ILO14,
X 3.5, 3.5.2] so that we can apply [ILO14, X.3.5] to the proper surjective morphism f and the nowhere
dense closed subset X \ Y . Then, we obtain a commutative diagram of schemes

X ′ β //

f ′

��

X

f

��
T ′

α
// T

(9.9.2)

and dense open subsets U ′ ⊆ T ′, Y ′ = β−1(Y )∩f ′−1(U ′) ⊆ X ′ such that (X ′,MY ′→X′) and (T ′,MU ′→T ′)
are fine, saturated and regular, that (X ′,MY ′→X′) → (T ′,MU ′→T ′) is smooth, that α, β are proper
surjective and generically finite morphisms which map generic points to generic points, and that f ′ is
projective (since f is proper, cf. [ILO14, X 3.1.6, 3.1.7]). Since X (resp. T ) is irreducible and X ′

(resp. T ′) is a disjoint union of normal integral schemes (9.4), after firstly replacing X ′ by an irreducible
component and then replacing T ′ by the irreducible component under X ′, we may assume that X ′ and
T ′ are irreducible. Then, Y ′ → U ′ is dominant (so that f ′ is projective surjective), since it is smooth
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and Y ′ is nonempty ([EGA IV2, 2.3.4]). We claim that α maps U ′ into U . Indeed, if there exists a point
u ∈ U ′ with α(u) /∈ U , then f ′−1(u) ∩ Y ′ = ∅. However, endowing u with the trivial log structure, the
log scheme (u,O×

uét
) is fine, saturated and regular, and the fibred product in the category of fine and

saturated log schemes

(u,O×
uét

)×fs
(T ′,MU′→T ′ ) (X

′,MY ′→X′)(9.9.3)

is regular with underlying scheme f ′−1(u) (9.4, 9.2). Thus, f ′−1(u) ∩ Y ′ is dense in f ′−1(u), which
contradicts the assumption that f ′−1(u)∩Y ′ = ∅ since f ′ is surjective. Thus, we obtain a diagram (9.9.1)
satisfying all the conditions except the saturatedness of (X ′,MY ′→X′)→ (T ′,MU ′→T ′).

To make (X ′,MY ′→X′)→ (T ′,MU ′→T ′) saturated, we apply [ILO14, X.3.7] to the morphism (f ′◦, f ′).
We obtain a Cartesian morphism (γ◦, γ) : (U ′′ → T ′′) → (U ′ → T ′) of dominant open immersions
such that (T ′′,MU ′′→T ′′) is a fine, saturated and regular log scheme, that γ is a proper surjective and
generically finite morphism which maps generic points of T ′′ to the generic point of T ′, and that the
fibred product in the category of fine and saturated log schemes

(T ′′,MU ′′→T ′′)×fs
(T ′,MU′→T ′ ) (X

′,MY ′→X′)(9.9.4)

is saturated over (T ′′,MU ′′→T ′′). The fibred product (9.9.4) is still smooth over (T ′′,MU ′′→T ′′), and thus
it is regular (9.4). Let X ′′ be the underlying scheme of it and let Y ′′ = (X ′′)tr. Then, the fibred product
(9.9.4) is isomorphic to (X ′′,MY ′′→X′′) (9.4). Thus, we obtain a commutative diagram of dominant open
immersions of schemes

(Y ′′ → X ′′)
(δ◦,δ) //

(f ′′◦,f ′′)

��

(Y ′ → X ′)

(f ′◦,f ′)

��
(U ′′ → T ′′)

(γ◦,γ)
// (U ′ → T ′)

(9.9.5)

Notice that Y ′′ = U ′′ ×U ′ Y ′ and X ′′ → T ′′ ×T ′ X ′ is finite, and that Y ′′ → X ′′ is Cartesian over
U ′′ ×U ′ Y ′ → T ′′ ×T ′ X ′ (9.2). Thus, we see that Y ′′ → X ′′ is Cartesian over U ′′ ×U Y → T ′′ ×T X and
that f ′′ is projective. Since T ′ (resp. X ′) is irreducible and T ′′ (resp. X ′′) is a disjoint union of normal
integral schemes (9.4), after firstly replacing T ′′ by an irreducible component and then replacing X ′′ by
an irreducible component on which the restriction of δ◦ is dominant, we may assume that T ′′ and X ′′

are irreducible. In particular, δ is generically finite and so is β ◦ δ (9.6), and again Y ′′ → U ′′ is dominant
so that f ′′ is projective surjective. □
Lemma 9.10. Let X be a scheme of finite type over a valuation ring A of height 1. Then, the underlying
topological space of X is Noetherian.

Proof. Let η and s be the generic point and closed point of Spec(A) respectively. Then, the generic fibre
Xη and the special fibre Xs are both Noetherian. As a union of Xη and Xs, the underlying topological
space of X is also Noetherian ([Sta21, 0053]). □
Proposition 9.11. With the notation in 9.7 and 9.8, let Y → X be a quasi-compact dominant open
immersion over Spec(L) → Spec(OL) such that X → Spec(OL) is proper of finite presentation. Then,
there exists a proper surjective OL-morphism of finite presentation X ′ → X, an index λ1 ∈ Λ, and a
directed inverse system of open immersions (Y ′

λ → X ′
λ)λ≥λ1 over (Uλ → Tλ)λ≥λ1 satisfying the following

conditions for each λ ≥ λ1:
(i) We have Y ′ = Y ×X X ′ = limλ≥λ1 Y

′
λ and X ′ = limλ≥λ1 X

′
λ.

(ii) The log scheme (X ′
λ,MY ′

λ→X′
λ
) is fine, saturated and regular.

(iii) The morphism (X ′
λ,MY ′

λ→X′
λ
) → (Tλ,MUλ→Tλ

) is smooth and saturated, and X ′
λ → Tλ is pro-

jective.
(iv) If moreover Y = Spec(L)×Spec(OL) X, then we can require that Y ′

λ = Uλ ×Tλ
X ′
λ.

Proof. We follow closely the proof of [ALPT19, 5.2.19]. Since the underlying topological space of X is
Noetherian by 9.10, each irreducible component Z of X admits a closed subscheme structure such that
Z → X is of finite presentation ([Sta21, 01PH]). After replacing X by the disjoint union of its irreducible
components, we may assume that X is irreducible. Then, the generic fibre of X → Spec(OL) is also
irreducible as an open subset of X. Using [EGA IV3, 8.8.2, 8.10.5], there exists an index λ0 ∈ Λ, a proper
Tλ0-scheme Xλ0 , and an open subscheme Yλ0 of Uλ0 ×Tλ0

Xλ0 , such that X = Spec(OL) ×Tλ0
Xλ0 and
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https://stacks.math.columbia.edu/tag/01PH


40 TONGMU HE

that Y = Spec(L)×Uλ0
Yλ0

. Let η denote the generic point of X, ηλ0
the image of η under the morphism

X → Xλ0 , Zλ0 the scheme theoretic closure of ηλ0 in Xλ0 . Notice that Spec(OL) ×Tλ0
Zλ0 → X is a

surjective finitely presented closed immersion. After replacing X by Spec(OL) ×Tλ0
Zλ0 and replacing

Xλ0 by Zλ0 , we may assume that X → Xλ0 is a dominant morphism of irreducible schemes. Since Tλ0 is
irreducible and L is algebraically closed, the generic fibre of f : Xλ0 → Tλ0 is geometrically irreducible.
In particular, if ξλ0 (resp. ηλ0) denotes the generic point of Tλ0 (resp. Xλ0), then η = Spec(L)×ξλ0

ηλ0

([EGA IV2, 4.5.9]). In the situation of (iv), we can moreover assume that Yλ0 = Uλ0 ×Tλ0
Xλ0 .

By 9.9, there exists a commutative diagram of dominant open immersions of irreducible schemes,

(Y ′
λ0
→ X ′

λ0
)

(β◦,β) //

(f ′◦,f ′)

��

(Yλ0 → Xλ0)

(f◦,f)

��
(U ′

λ0
→ T ′

λ0
)

(α◦,α)
// (Uλ0 → Tλ0)

(9.11.1)

where Y ′
λ0
→ X ′

λ0
is Cartesian over U ′

λ0
×Uλ0

Yλ0 → T ′
λ0
×Tλ0

Xλ0 , and where (X ′
λ0
,MY ′

λ0
→X′

λ0
) →

(T ′
λ0
,MU ′

λ0
→T ′

λ0
) is a smooth and saturated morphism of fine, saturated and regular log schemes, and

where α and β are proper surjective and generically finite, and where f ′ is projective surjective. We
take a dominant morphism γ◦ : Spec(L)→ U ′

λ0
which lifts Spec(L)→ Uλ0

since L is algebraically closed
and α is generically finite, the morphism Spec(OL) → Tλ0 lifts to γ : Spec(OL) → T ′

λ0
by the valuative

criterion. We set Y ′ = Spec(L) ×U ′
λ0
Y ′
λ0

and X ′ = Spec(OL) ×T ′
λ0
X ′
λ0
. It is clear that Y ′ → X ′ is

Cartesian over Y → X by base change. Let ξ′λ0
(resp. η′λ0

) be the generic points of T ′
λ0

(resp. X ′
λ0
).

Since the generic fibre of f is geometrically irreducible, ξ′λ0
×ξλ0

ηλ0 is a single point and η′λ0
maps to

it ([EGA IV2, 4.5.9]). Since Spec(L) ×ξλ0
ηλ0 is the generic point of X, we see that X ′ → X is proper

surjective and of finite presentation. It remains to construct (Y ′
λ → X ′

λ)λ≥λ1 .
After replacing T ′

λ0
by an affine open neighborhood of the image of the closed point of Spec(OL),

lemma 9.8 implies that there exists an index λ1 ≥ λ0 such that the transition morphism (Uλ1 → Tλ1)→
(Uλ0 → Tλ0) factors through (U ′

λ0
→ T ′

λ0
). For each index λ ≥ λ1, consider the fibred product in the

category of fine and saturated log schemes

(X ′
λ,MY ′

λ→X′
λ
) = (Tλ,MUλ→Tλ

)×fs
(T ′

λ0
,MU′

λ0
→T ′

λ0

) (X
′
λ0
,MY ′

λ0
→X′

λ0
),(9.11.2)

which is a fine, saturated and regular log scheme smooth and saturated over (Tλ,MUλ→Tλ
) (9.2, 9.4).

Moreover, we have Y ′
λ = Uλ ×U ′

λ0
Y ′
λ0
, X ′

λ = Tλ ×T ′
λ0
X ′
λ0
, and in the situation of (iv), Y ′

λ = Uλ ×Tλ
X ′
λ

by base change. Therefore, (Y ′
λ → X ′

λ)λ≥λ1 meets our requirements. □

10. Faltings’ Main p-adic Comparison Theorem: the Absolute Case

10.1. Let Y → X be a morphism of coherent schemes. Consider the functors

ψ+ : Eét
Y→X −→ Yét, (V → U) 7−→ V,(10.1.1)

β+ : Yfét −→ Eét
Y→X , V 7−→ (V → X).(10.1.2)

They are left exact and continuous (cf. [AGT16, VI 10.6, 10.7]). Then, we obtain morphisms of sites

Yét

ψ

��

ρ

##G
GG

GG
GG

GG

Eét
Y→X β

// Yfét

(10.1.3)

where ρ : Yét → Yfét is defined by the inclusion functor.

Lemma 10.2. Let Y be a coherent scheme, V a finite étale Y -scheme. Then, there exists a finite étale
surjective morphism Y ′ → Y such that Y ′ ×Y V is isomorphic to a finite disjoint union of Y ′.

Proof. If Y is connected, let y be a geometric point of Y , π1(Y, y) the fundamental group of Y with base
point y. Then, Yfét is equivalent to the category of finite π1(Y, y)-sets so that the lemma holds ([Sta21,
0BND]).
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In general, for any connected component Z of Y , let (Yλ)λ∈ΛZ
be the directed inverse system of all

open and closed subschemes of Y which contain Z and whose transition morphisms are inclusions. Notice
that limλ∈ΛZ Yλ is a closed subscheme of Y with underlying topological space Z by [Sta21, 04PL] and
[EGA IV3, 8.2.9]. We endow Z with the closed subscheme structure of limλ∈ΛZ

Yλ. The first paragraph
shows that there exists a finite étale surjective morphism Z ′ → Z such that Z ′ ×Y V =

⨿r
i=1 Z

′. Using
[EGA IV3, 8.8.2, 8.10.5] and [EGA IV4, 17.7.8], there exists an index λ0 ∈ ΛZ , a finite étale surjective
morphism Y ′

λ0
→ Yλ0 and an isomorphism Y ′

λ0
×Y V =

⨿r
i=1 Y

′
λ0
. Notice that Y ′

λ0
is also finite étale over

Y . Since Z is an arbitrary connected component of Y , the conclusion follows from the quasi-compactness
of Y . □

Lemma 10.3. Let Y be a coherent scheme, ρ : Yét → Yfét the morphism of sites defined by the in-

clusion functor. Then, the functor ρ−1 : Ỹfét → Ỹét of the associated topoi induces an equivalence
ρ−1 : LocSys(Yfét) → LocSys(Yét) between the categories of finite locally constant abelian sheaves with
quasi-inverse ρ∗.

Proof. Since any finite locally constant sheaf on Yét (resp. Yfét) is representable by a finite étale Y -scheme
by faithfully flat descent (cf. [Sta21, 03RV]), the Yoneda embeddings induce a commutative diagram

LocSys(Yfét)

ρ−1

��

// Yfét
hfét

//

��

Ỹfét

��
LocSys(Yét) // Yét

hét
// Ỹét

(10.3.1)

where the horizontal arrows are fully faithful. In particular, ρ−1 is fully faithful. For a finite locally
constant abelian sheaf F on Yét, let V be a finite étale Y -scheme representing F and let hétV (resp. hfétV ) be
the representable sheaf of V on Yét (resp. Yfét). We have F = hétV = ρ−1hfétV ([Sta21, 04D3]). By 10.2, hfétV
is finite locally constant. It is clear that the adjunction morphism hfétV → ρ∗h

ét
V is an isomorphism, which

shows that hfétV is an abelian sheaf. Thus, ρ−1 is essentially surjective. Moreover, the argument also
shows that ρ∗ induces a functor ρ∗ : LocSys(Yét)→ LocSys(Yfét) which is a quasi-inverse of ρ−1. □

Proposition 10.4. With the notation in 10.1, the functors between the categories of finite locally constant
abelian sheaves

LocSys(Yfét)
β−1

−→ LocSys(Eét
Y→X)

ψ−1

−→ LocSys(Yét)(10.4.1)

are equivalences with quasi-inverses β∗ and ψ∗ respectively.

Proof. Notice that for any finite locally constant abelian sheaf G on Yfét, the canonical morphism β−1G→
ψ∗ρ

−1G, which is induced by the adjunction id → ψ∗ψ
−1 and by the identity ψ−1β−1 = ρ−1, is an

isomorphism by 10.3 and the proof of [AGT16, VI.6.3.(iii)]. For a finite locally constant abelian sheaf F
over Yét, we write F = ρ−1G by 10.3. Then, F = ψ−1β−1G ∼−→ ψ−1ψ∗ρ

−1G = ψ−1ψ∗F, whose inverse
is the adjunction map ψ−1ψ∗F → F since the composition of ψ−1(β−1G) → ψ−1(ψ∗ψ

−1)(β−1G) =
(ψ−1ψ∗)ψ

−1(β−1G) → ψ−1(β−1G) is the identity. On the other hand, for a finite locally constant
abelian sheaf L over Eét

Y→X , we claim that L → ψ∗ψ
−1L is an isomorphism. The problem is local on

Eét
Y→X . Thus, we may assume that L is the constant sheaf with value L where L is a finite abelian

group. Let L be the constant sheaf with value L on Yfét. Then, L = β−1L, and the isomorphism
L = β−1L

∼−→ ψ∗ρ
−1L = ψ∗ψ

−1L coincides with the adjunction map L → ψ∗ψ
−1L. Therefore, ψ−1 :

LocSys(Eét
Y→X) → LocSys(Yét) is an equivalence with quasi-inverse ψ∗. The conclusion follows from

10.3. □

10.5. Let f : (Y ′ → X ′) → (Y → X) be a morphism of morphisms between coherent schemes over
Spec(Qp)→ Spec(Zp). The base change by f induces a commutative diagram of sites

Y ′
ét

fét

��

ψ′
// Eét
Y ′→X′

fE

��
Yét

ψ // Eét
Y→X

(10.5.1)
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Let F′ be a finite locally constant abelian sheaf on Y ′
ét. Remark that the sheaf B on Eét

Y→X is flat over

Z. Consider the natural morphisms in the derived category D(B-ModEét
Y →X

),

(Rψ∗Rfét∗F′)⊗L
Z B (RfE∗ψ

′
∗F′)⊗L

Z B
α1oo α2 // RfE∗(ψ

′
∗F′ ⊗Z B

′
),(10.5.2)

where α1 is induced by the canonical morphism ψ′
∗F′ → Rψ′

∗F′, and α2 is the canonical morphism.

10.6. We keep the notation in 10.5 and assume that X is the spectrum of an absolutely integrally
closed valuation ring A and that Y is a quasi-compact open subscheme of X. Applying the functor
RΓ(Y → X,−) on (10.5.2), we obtain the natural morphisms in the derived category D(A-Mod) by 7.8,

RΓ(Y ′
ét,F′)⊗L

Z A RΓ(Eét
Y ′→X′ , ψ′

∗F′)⊗L
Z A

α1oo α2 // RΓ(Eét
Y ′→X′ , ψ′

∗F′ ⊗Z B
′
).(10.6.1)

Definition 10.7 ([AG20, 4.8.13, 5.7.4]). With the notation in 10.5 (resp. 10.6), if α1 is an isomorphism
(for instance, if the canonical morphism ψ′

∗F′ → Rψ′
∗F′ is an isomorphism), then we call the canonical

morphism

α2 ◦ α−1
1 : (Rψ∗Rfét∗F′)⊗L

Z B −→ RfE∗(ψ
′
∗F′ ⊗Z B

′
)(10.7.1)

(resp. α2 ◦ α−1
1 : RΓ(Y ′

ét,F′)⊗L
Z A −→ RΓ(Eét

Y ′→X′ , ψ′
∗F′ ⊗Z B

′
))(10.7.2)

the relative (resp. absolute) Faltings’ comparison morphism associated to f : (Y ′ → X ′) → (Y → X)
and F′. In this case, we say that Faltings’ comparison morphisms exist.

Theorem 10.8 ([Ach17, Cor.6.9], cf. [AG20, 4.4.2]). Let OK be a strictly Henselian discrete valuation
ring with fraction field K of characteristic 0 and residue field of characteristic p. We fix an algebraic
closure K of K. Let X be an OK-scheme of finite type, F a finite locally constant abelian sheaf on XK,ét,

ψ : XK,ét → Eét
XK→X the morphism of sites defined in 10.1. Then, the canonical morphism ψ∗F→ Rψ∗F

is an isomorphism.

Corollary 10.9. Let OK be a strictly Henselian discrete valuation ring with fraction field K of charac-
teristic 0 and residue field of characteristic p. We fix an algebraic closure K of K. Let X be a coherent
OK-scheme, Y = Spec(K)×Spec(OK)X, F a finite locally constant abelian sheaf on Yét, ψ : Yét → Eét

Y→X

the morphism of sites defined in 10.1. Then, the canonical morphism ψ∗F→ Rψ∗F is an isomorphism.

We emphasize that we don’t need any finiteness condition of X over OK in 10.9. In fact, one can

replace OK by Zp without loss of generality, where Zp is the integral closure of Zp in an algebraic closure
of Qp. We keep working over OK only for the continuation of our usage of notation.

Proof of 10.9. We take a directed inverse system (Xλ → Spec(OKλ
))λ∈Λ of morphisms of finite type of

schemes by Noetherian approximation, such that Kλ is a finite field extension of K and K =
∪
λ∈ΛKλ,

and that the transition morphisms Xλ′ → Xλ are affine and X = limλ∈ΛXλ (cf. [Sta21, 09MV]). For
each λ ∈ Λ, we set Yλ = Spec(K) ×Spec(OKλ

) Xλ. Notice that Y = limYλ. Then, there exists an index

λ0 ∈ Λ and a finite locally constant abelian sheaf Fλ0 on Yλ0,ét such that F is the pullback of Fλ0 by
Yét → Yλ0,ét (cf. [Sta21, 09YU]). Let Fλ be the pullback of Fλ0 by Yλ,ét → Yλ0,ét for each λ ≥ λ0. Notice
that OKλ

also satisfies the conditions in 10.8. Let ψλ : Yλ,ét → Eét
Yλ→Xλ

be the morphism of sites defined

in 10.1, φλ : Eét
Y→X → Eét

Yλ→Xλ
the morphism of sites defined by the transition morphism. Then, we

have Rqψλ∗Fλ = 0 for each integer q > 0 by 10.8, and moreover

Rqψ∗F = colim
λ≥λ0

φ−1
λ Rqψλ∗Fλ = 0(10.9.1)

by 7.11, [SGA 4II, VII.5.6] and [SGA 4II, VI.8.7.3] whose conditions are satisfied because each object in
each concerned site is quasi-compact. □

Lemma 10.10. With the notation in 10.5, let F be a finite locally constant abelian sheaf on Yét. Then,
the canonical morphism f−1

E ψ∗F→ ψ′
∗f

−1
ét F is an isomorphism.

Proof. The base change morphism f−1
E ψ∗F → ψ′

∗f
−1
ét F is the composition of the adjunction morphisms

([SGA 4III, XVII.2.1.3])

f−1
E ψ∗F→ ψ′

∗ψ
′−1(f−1

E ψ∗F) = ψ′
∗f

−1
ét (ψ−1ψ∗F)→ ψ′

∗f
−1
ét F(10.10.1)

which are both isomorphisms by 10.4. □
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10.11. Let K be a complete discrete valuation field of characteristic 0 with valuation ring OK whose
residue field k is algebraically closed (a technical condition required by [AG20, 4.1.3, 5.1.3]) of character-
istic p > 0, K an algebraic closure of K, OK the integral closure of OK in K, η = Spec(K), η = Spec(K),

S = Spec(OK), S = Spec(OK), s = Spec(k). Remark that K is a pre-perfectoid field with valuation ring
OK so we are also in the situation 8.3.

10.12. With the notation in 10.11, let X be an S-scheme, Y an open subscheme of the generic fibre Xη.
We simply denote by MX the compactifying log structure MXη→X (9.3). Following [AGT16, III.4.7], we
say that Y → X is adequate over η → S if the following conditions are satisfied:

(i) X is of finite type over S;
(ii) Any point of the special fibre Xs admits an étale neighborhood U such that Uη → η is smooth

and that Uη \ Y is the support of a strict normal crossings divisor on Uη;
(iii) (X,MY→X) is a fine log scheme and the structure morphism (X,MY→X)→ (S,MS) is smooth

and saturated.

In this case, (X,MY→X)→ (S,MS) is adequate in the sense of [AGT16, III.4.7]. We remark that for any
adequate (S,MS)-log scheme (X,M ), Xtr → X is adequate over η → S and (X,M ) = (X,MXtr→X)
(cf. 9.4, 9.5). Note that if Y → X is strictly semi-stable over η → S then it is adequate (cf. 9.5).

10.13. We recall the statement of Faltings’ main p-adic comparison theorem following Abbes-Gros [AG20].
We take the notation in 10.11. Firstly, recall that for any adequate open immersion of schemes X◦ → X
over η → S and any finite locally constant abelian sheaf F on X◦

η,ét, the canonical morphism ψ∗F→ Rψ∗F
is an isomorphism, where ψ : X◦

η,ét → Eét
X◦

η→X is the morphism of sites defined in 10.1 ([AG20, 4.4.2]).

Let (X ′▷ → X ′) → (X◦ → X) be a morphism of adequate open immersions of schemes over η → S
such that X ′ → X is projective and that the induced morphism (X ′,MX′▷→X′) → (X,MX◦→X) is
smooth and saturated. Let Y ′ = η ×η X ′▷, Y = η ×η X◦, f : (Y ′ → X ′) → (Y → X) the natural
morphism, F′ a finite locally constant abelian sheaf on Y ′

ét. By the first paragraph, we have the relative
Faltings’ comparison morphism associated to f and F′ (10.7.1),

(Rψ∗Rfét∗F′)⊗L
Z B −→ RfE∗(ψ

′
∗F′ ⊗Z B

′
).(10.13.1)

Remark that under our assumption, the sheaf Rqfét∗F′ on Yét is finite locally constant for each integer q
([AG20, 5.7.2]).

Theorem 10.14 ([Fal02, Thm.6, page 266], [AG20, 5.7.4]). With the notation in 10.13, the relative
Faltings’ comparison morphism associated to f and F′ is an almost isomorphism in the derived category
D(OK-ModEét

Y →X
) (5.7), and it induces an almost isomorphism

(ψ∗R
qfét∗F′)⊗Z B −→ RqfE∗(ψ

′
∗F′ ⊗Z B

′
)(10.14.1)

of OK-modules for each integer q.

Proposition 10.15. With the notation in 10.11, let A be an absolutely integrally closed valuation ring
of height 1 extension of OK , X a proper A-scheme of finite presentation, Y = Spec(A[1/p])×Spec(A) X,
F a finite locally constant abelian sheaf on Yét. Then, there exists a proper surjective morphism X ′ → X
of finite presentation such that the relative and absolute Faltings’ comparison morphisms associated to
f ′ : (Y ′ → X ′) → (Spec(A[1/p]) → Spec(A)) and F′ (which exist by 10.9) are almost isomorphisms,
where Y ′ = Y ×X X ′ and F′ is the pullback of F on Y ′

ét.

Proof. Since the underlying topological space of X is Noetherian by 9.10, each irreducible component Z
of X admits a closed subscheme structure such that Z → X is of finite presentation ([Sta21, 01PH]). After
replacing X by the disjoint union of its irreducible components, we may assume that X is irreducible. If
Y is empty, then we take X ′ = X and thus the relative (resp. absolute) Faltings’ comparison morphism
associated to f ′ and F′ is an isomorphism between zero objects. If Y is not empty, then we are in the
situation of 9.11.(iv) by taking OL = A. With the notation in 9.11, we check that the morphism X ′ → X
meets our requirements. We set ηλ = Spec(Kλ), Sλ = Spec(OKλ

), Tλ,ηλ = η ×ηλ Uλ, X ′
λ,ηλ

= η ×ηλ Y ′
λ,

and denote by f ′λ : (X ′
λ,ηλ

→ X ′
λ) → (Tλ,ηλ → Tλ) the natural morphism. We obtain a commutative
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44 TONGMU HE

diagram

Eét
Y ′→X′

gλ,E //

f ′
E

��

Eét
X′

λ,ηλ
→X′

λ

f ′
λ,E

��

Y ′
ét

gλ,ét //

f ′
ét

��

ψ′
hhRRRRRRRRRRRRRRRRR

X ′
λ,ηλ,ét

f ′
λ,ét

��

ψ′
λ

99sssssssss

Spec(A[1/p])ét
hλ,ét //

ψ

uullll
lll

lll
lll

l
Tλ,ηλ,ét

ψλ

&&LL
LLL

LLL
LL

Eét
Spec(A[1/p])→Spec(A)

hλ,E // Eét
Tλ,ηλ

→Tλ

(10.15.1)

Firstly notice that the site Y ′
ét (resp. Spec(A[1/p])ét) is the limit of the sites X ′

λ,ηλ,ét
(resp. Tλ,ηλ,ét)

and the site Eét
Y ′→X′ (resp. Eét

Spec(A[1/p])→Spec(A)) is the limit of the sites Eét
X′

λ,ηλ
→X′

λ
(resp. Eét

Tλ,ηλ
→Tλ

)

([SGA 4II, VII.5.6] and 7.11). There exists an index λ0 ∈ Λ and a finite locally constant abelian sheaf
F′
λ0

on X ′
λ0,ηλ0

,ét such that F′ is the pullback of F′
λ0

by Y ′
ét → X ′

λ0,ηλ0
,ét (cf. [Sta21, 09YU]). Let F′

λ be

the pullback of F′
λ0

by X ′
λ,ηλ,ét

→ X ′
λ0,ηλ0

,ét for each λ ≥ λ0. We also have B
′
= colim g−1

λ,EB
′
(resp.

B = colimh−1
λ,EB) by 7.11. According to [SGA 4II, VI.8.7.3], whose conditions are satisfied because each

object in each concerned site is quasi-compact, there are canonical isomorphisms for each integer q,

(Rq(ψ ◦ f ′ét)∗F′)⊗Z B
∼−→ colimh−1

λ,E((R
q(ψλ ◦ f ′λ,ét)∗F′

λ)⊗Z B),(10.15.2)

Rqf ′E∗(ψ
′
∗F′ ⊗Z B

′
)

∼−→ colimh−1
λ,ER

qf ′λ,E∗(ψ
′
λ∗F′

λ ⊗Z B
′
).(10.15.3)

On the other hand, (X ′
λ,MX′

λ
)→ (Tλ,MTλ

) is a smooth and saturated morphism of adequate (Sλ,MSλ
)-

log schemes with X ′
λ → Tλ projective for each λ ∈ Λ by construction. Thus, we are in the situation of

10.14, which implies that the relative Faltings’ comparison morphism associated to f ′λ and F′
λ,

(Rq(ψλ ◦ f ′λ,ét)∗F′
λ)⊗Z B −→ Rqf ′λ,E∗(ψ

′
λ∗F′

λ ⊗Z B
′
)(10.15.4)

is an almost isomorphism for each λ ≥ λ0. Combining with (10.15.2) and (10.15.3), we see that the
relative Faltings’ comparison morphism associated to f ′ and F′,

Rψ∗(Rf
′
ét∗F′)⊗L

Z B −→ Rf ′E∗(ψ
′
∗F′ ⊗Z B

′
),(10.15.5)

is an almost isomorphism (and thus so is the absolute one). □

Corollary 10.16. With the notation in 10.15, there exists a proper hypercovering X• → X of coherent
schemes ([Sta21, 0DHI]) such that for each degree n, the relative and absolute Faltings’ comparison
morphisms associated to fn : (Yn → Xn) → (Spec(A[1/p]) → Spec(A)) and Fn (which exist by 10.9)
are almost isomorphisms, where Yn = Y ×X Xn and Fn is the pullback of F by the natural morphism
Yn,ét → Yét. In particular, Y• → Y is a proper hypercovering and XY•

• → XY is a hypercovering in Iη→S.

Proof. Let C be the category of proper A-schemes of finite presentation endowed with the pretopology
formed by families of morphisms {fi : Xi → X}i∈I with I finite and X =

∪
i∈I fi(Xi). Consider the

functor u+ : C → ISpec(A[1/p])→Spec(A) sending X to XY where Y = Spec(A[1/p]) ×Spec(A) X. It is
well-defined by 3.19.(4) and commutes with fibred products by 3.21 and continuous by 3.15. Lemma
10.15 allows us to take a hypercovering X• → X in C meeting our requirement by [Sta21, 094K and
0DB1]. We see that Y• → Y is a proper hypercovering and that XY•

• → XY is a hypercovering in Iη→S

by the properties of u+ ([Sta21, 0DAY]). □

Lemma 10.17. Let Zp be the integral closure of Zp in an algebraic closure of Qp, A a Zp-algebra
which is an absolutely integrally closed valuation ring, X a proper A-scheme of finite presentation, Y =
Spec(A[1/p])×Spec(A)X, F a finite locally constant abelian sheaf on Yét. Let A′ = ((A/∩n>0 p

nA)√pA)
∧

(p-adic completion), X ′ = XA′ , Y ′ = YA′ , F′ the pullback of F on Y ′
ét. Then, the following statements

are equivalent:

https://stacks.math.columbia.edu/tag/09YU
https://stacks.math.columbia.edu/tag/0DHI
https://stacks.math.columbia.edu/tag/094K
https://stacks.math.columbia.edu/tag/0DB1
https://stacks.math.columbia.edu/tag/0DAY
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(1) The absolute Faltings’ comparison morphism associated to f : (Y → X) → (Spec(A[1/p]) →
Spec(A)) and F (which exists by 10.9) is an almost isomorphism.

(2) The absolute Faltings’ comparison morphism associated to f ′ : (Y ′ → X ′) → (Spec(A′[1/p]) →
Spec(A′)) and F′ (which exists by 10.9) is an almost isomorphism.

Proof. If p is zero (resp. invertible) in A, then the absolute Faltings’ comparison morphisms are both
isomorphisms between zero objects, since Y and Y ′ are empty (resp. the abelian sheaves F and F′ are
zero after inverting p). Thus, we may assume that p is a nonzero element of the maximal ideal of A.
Notice that ∩n>0p

nA is the maximal prime ideal of A not containing p and that
√
pA is the minimal

prime ideal of A containing p (2.1). Thus, (A/∩n>0 p
nA)√pA is an absolutely integrally closed valuation

ring of height 1 extension of Zp (2.1) and thus so is its p-adic completion A′.

We denote by u : (Y ′ → X ′) → (Y → X) the natural morphism. We have F′ = u−1
ét F. The natural

morphisms in (10.6.1) induce a commutative diagram

RΓ(Yét,F)⊗L
Z A

γ1

��

RΓ(Eét
Y→X , ψ∗F)⊗L

Z A
α1oo α2 //

γ2

��

RΓ(Eét
Y→X , ψ∗F⊗Z B)

γ3

��
RΓ(Y ′

ét,F′)⊗L
Z A

′ RΓ(Eét
Y ′→X′ , ψ′

∗F′)⊗L
Z A

′α′
1oo α′

2 // RΓ(Eét
Y ′→X′ , ψ′

∗F′ ⊗Z B
′
)

(10.17.1)

where γ1 is induced by the canonical morphism F → Ruét∗u
−1
ét F, and γ2 (resp. γ3) is induced by the

composition of ψ∗F → RuE∗u
−1
E ψ∗F → RuE∗ψ

′
∗u

−1
ét F (resp. and by the canonical morphism B →

RuE∗B
′
). Since α1 and α′

1 are isomorphisms by 10.9, it suffices to show that γ1 and γ3 are almost
isomorphisms.

Since A/ ∩n>0 p
nA → (A/ ∩n>0 p

nA)√pA is injective whose cokernel is killed by
√
pA (4.7), the

morphism A→ A′ induces an almost isomorphism A/pnA→ A′/pnA′ for each n. Then, for any torsion
abelian group M , the natural morphism M ⊗Z A → M ⊗Z A

′ is an almost isomorphism. Therefore,
γ1 is an almost isomorphism by the proper base change theorem over the strictly Henselian local ring
A[1/p] ([SGA 4III, XII 5.5, 5.4]). For γ3, it suffices to show that the canonical morphism ψ∗F ⊗B →
RuE∗(ψ

′
∗F′ ⊗B

′
) is an almost isomorphism. The problem is local on Eét

Y→X , thus we may assume that
ψ∗F is the constant sheaf with value Z/pnZ by 10.4. Then, ψ′

∗F′ is also the constant sheaf with value

Z/pnZ by 10.10. Let V → U be an object of Eproét
Y→X such that UV = Spec(R) is the spectrum of an

Zp-algebra R which is almost pre-perfectoid. Since the almost isomorphisms R/pn → (R ⊗A A′)/pn

(n ≥ 1) induces an almost isomorphism of the p-adic completions R̂→ R⊗̂AA′, the Zp-algebra R ⊗A A′

is still almost pre-perfectoid (5.18). The pullback of V → U in Eproét
Y ′→X′ is the object VA′ → UA′ and

U
VA′
A′ is the spectrum of the integral closure R′ of R ⊗A A′ in R ⊗A A′[1/p]. Since R ⊗A A′ is almost

pre-perfectoid, R′ is also almost pre-perfectoid and the morphism (R ⊗A A′)/pn → R′/pn is an almost

isomorphism by 5.26. Therefore, the morphism B/pnB → RuE∗(B
′
/pnB

′
) is an almost isomorphism

by 7.30, 8.7 and 8.8. □

Theorem 10.18. Let Zp be the integral closure of Zp in an algebraic closure of Qp, A a Zp-algebra
which is an absolutely integrally closed valuation ring, X a proper A-scheme of finite presentation, Y =
Spec(A[1/p]) ×Spec(A) X, F a finite locally constant abelian sheaf on Yét. Then, the absolute Faltings’
comparison morphism associated to f : (Y → X) → (Spec(A[1/p]) → Spec(A)) and F (10.7.2) (which
exists by 10.9),

RΓ(Yét,F)⊗L
Z A −→ RΓ(Eét

Y→X , ψ∗F⊗Z B),(10.18.1)

is an almost isomorphism in D(Zp-Mod) (5.7).

Proof. Let K be the p-adic completion of the maximal unramified extension of Qp. By 10.17, we may
assume that A is a valuation ring of height 1 extension of OK . Let X• → X be the proper hypercovering
of coherent schemes constructed in 10.16. For each degree n the canonical morphisms (10.7.2)

RΓ(Yn,ét,Fn)⊗L
Z A←− RΓ(Eét

Yn→Xn
, ψn∗Fn)⊗L

Z A −→ RΓ(Eét
Yn→Xn

, ψn∗Fn ⊗Z B)(10.18.2)
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are an isomorphism and an almost isomorphism, where Fn is the pullback of F by the natural morphism
Yn,ét → Yét. Consider the commutative diagram

RΓ(Yét,F)⊗L
Z A

��

RΓ(Eét
Y→X , ψ∗F)⊗L

Z A
α2 //

��

α1oo RΓ(Eét
Y→X , ψ∗F⊗Z B)

��
RΓ(Y•,ét,F•)⊗L

Z A RΓ(Eét
Y•→X•

, ψ•∗F•)⊗L
Z A

α1•oo α2• // RΓ(Eét
Y•→X•

, ψ•∗F• ⊗Z B•)

(10.18.3)

where F• = {[n] 7→ Fn} with the notation in 6.5. By the functorial spectral sequence of simplicial sites
([Sta21, 09WJ]), we deduce from (10.18.2) that α1• is an isomorphism and α2• is an almost isomorphism.
Since α1 is an isomorphism by 10.9, it remains to show that the left vertical arrow is an isomorphism
and the right vertical arrow is an almost isomorphism.

We denote by a : Eét
Y•→X•

→ Eét
Y→X the augmentation of simplicial site and by an : Eét

Yn→Xn
→ Eét

Y→X

the natural morphism of sites. Notice that a−1ψ∗F = {[n] 7→ a−1
n ψ∗F} = {[n] 7→ ψn∗Fn} = ψ•∗F• by

10.10 ([Sta21, 0D70]). Since XY•
• → XY forms a hypercovering in Iη→S , the right vertical arrow is

an almost isomorphism by 10.4 and 8.13. Finally, the left vertical arrow is an isomorphism by the
cohomological descent for étale cohomology [Sta21, 0DHL]. □

11. Faltings’ Main p-adic Comparison Theorem: the Relative Case for More General
Coefficients

11.1. Let Y → X be a morphism of coherent schemes such that Y → XY is an open immersion. We
obtain from 3.26, 8.2 and 10.1 a commutative diagram of sites

(Schcoh
/Y )v

a //

Ψ

��

Yét

ψ

��

ρ

""E
EE

EE
EE

EE
E

IY→XY
ε // Eét

Y→X

β // Yfét

(11.1.1)

where a : (Schcoh
/Y )v → Yét and ρ : Yét → Yfét are defined by the inclusion functors.

Lemma 11.2. With the notation in 11.1, for any finite locally constant abelian sheaf F on Yét, the
canonical morphism ε−1ψ∗F→ Ψ∗a

−1F is an isomorphism.

Proof. The base change morphism ε−1ψ∗F → Ψ∗a
−1F is the composition of the adjunction morphisms

([SGA 4III, XVII.2.1.3])

ε−1ψ∗F→ Ψ∗Ψ
−1(ε−1ψ∗F) = Ψ∗a

−1(ψ−1ψ∗F)→ Ψ∗a
−1F(11.2.1)

which are both isomorphisms by 3.27.(2) and 10.4. □

11.3. We fix an algebraic closure Qp of the p-adic number field Qp and we denote by Zp the integral

closure of Zp in Qp. We set η = Spec(Qp), η = Spec(Qp), S = Spec(Zp), S = Spec(Zp). Remark that

Qp is a pre-perfectoid field with valuation ring Zp so we are also in the situation 8.3. Let f : (Y ′ →
X ′)→ (Y → X) be a Cartesian morphism of morphisms of coherent schemes with a Cartesian morphism

(Y → XY )→ (η → S) (then, Y ′ → X ′Y ′
is Cartesian over η → S by 3.19.(4)). Thus, XY and X ′Y ′

are
objects of Iη→S . Consider the following commutative diagram of sites associated to f .

Y ′
ét

fét

��

ψ′

))
(Schcoh

/Y ′)v
a′oo Ψ′

//

fv

��

IY ′→X′Y ′
ε′ //

fI

��

Eét
Y ′→X′

fE

��
Yét

ψ

55(Schcoh
/Y )v

aoo Ψ // IY→XY
ε // Eét

Y→X

(11.3.1)

https://stacks.math.columbia.edu/tag/09WJ
https://stacks.math.columbia.edu/tag/0D70
https://stacks.math.columbia.edu/tag/0DHL
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11.4. Following 11.3, let g : (Ỹ → X̃) → (Y → X) be a morphisms of coherent schemes such that

Ỹ → X̃ Ỹ is also Cartesian over η → S. We denote by g′ : (Ỹ ′ → X̃ ′)→ (Y ′ → X ′) the base change of g

by f , and denote by f̃ : (Ỹ ′ → X̃ ′)→ (Ỹ → X̃) the natural morphism which is Cartesian by base change.

Thus, X̃ Ỹ and X̃ ′Ỹ
′

are also objects of Iη→S . We write the diagram (11.3.1) associated f̃ equipping all
labels with tildes.

Lemma 11.5. With the notation in 11.3 and 11.4, let F′ be a finite locally constant abelian sheaf on Y ′
ét

and we set F ′ = Ψ′
∗a

′−1F′. Let X̃ be an object of IY→XY , Ỹ = η ×S X̃, F̃′ = g′−1
ét F′, q an integer.

(1) The sheaf RqfI∗F ′ on IY→XY is canonically isomorphic to the sheaf associated to the presheaf

X̃ 7→ Hq
ét(Ỹ

′, F̃′).
(2) The sheaf RqfI∗(F ′ ⊗Z O ′) on IY→XY is canonically almost isomorphic to the sheaf associated

to the presheaf X̃ 7→ Hq(Eét
Ỹ ′→X̃′ , ψ̃

′
∗F̃′ ⊗Z B

′
).

(3) The canonical morphism (RqfI∗F ′) ⊗Z O → (RqfI∗F ′ ⊗Z O ′) is compatible with the canonical

morphisms Hq
ét(Ỹ

′, F̃′)⊗Z R
α1←− Hq(Eét

Ỹ ′→X̃′ , ψ̃
′
∗F̃′)⊗Z R

α2−→ Hq(Eét
Ỹ ′→X̃′ , ψ̃

′
∗F̃′ ⊗Z B

′
), where

R = B(Ỹ → X̃) (cf.10.6.1).

Proof. Let F̃ ′ be the restriction of F ′ on I
Ỹ ′→X̃′Ỹ

′ . We have F̃ ′ = Ψ̃′∗ã′
−1

F̃′. We set L̃′ = ψ̃′
∗F̃′

which is a finite locally constant abelian sheaf on Eét
Ỹ ′→X̃′ by 10.4. Notice that the canonical morphisms

ψ̃′−1
L̃′ → F̃′ and ε̃′

−1
L̃′ → F̃ ′ are isomorphisms by 10.4 and 11.2 respectively.

(1) It follows from the canonical isomorphisms

Hq(I
Ỹ ′→X̃′Ỹ

′ , ε̃′
−1

L̃′)
γ1−→ Hq

v(Ỹ
′, Ψ̃′−1

ε̃′
−1

L̃′) = Hq
v(Ỹ

′, ã′
−1
ψ̃′−1

L̃′)
γ2←− Hq

ét(Ỹ
′, ψ̃′−1

L̃′),(11.5.1)

where γ1 is induced by the canonical isomorphism ε̃′
−1

L̃′ ∼−→ RΨ̃′∗Ψ̃′−1
ε̃′

−1
L̃′ (3.27.(2)), and γ2 is

induced by the canonical isomorphism ψ̃′−1
L̃′ → Rã′∗ã′

−1
ψ̃′−1

L̃′ (3.9).
(2) It follows from the canonical almost isomorphism

γ3 : Hq(Eét
Ỹ ′→X̃′ , L̃′ ⊗Z B

′
) −→ Hq(I

Ỹ ′→X̃′Ỹ
′ , ε̃′

−1
L̃′ ⊗ O ′)(11.5.2)

which is induced by the canonical almost isomorphism L̃′ ⊗Z B
′ → Rε̃′∗(ε̃′

−1
L̃′ ⊗ O ′) (8.9).

(3) Consider the following diagram

Hq
ét(Ỹ

′, ψ̃′−1
L̃′)⊗R

γ2⊗idR ≀
��

Hq(Eét
Ỹ ′→X̃′ , L̃′)⊗Rα1oo α2 //

��

Hq(Eét
Ỹ ′→X̃′ , L̃′ ⊗Z B

′
)

γ3

��

Hq
v(Ỹ

′, Ψ̃′−1
ε̃′

−1
L̃′)⊗R Hq(I

Ỹ ′→X̃′Ỹ
′ , ε̃′

−1
L̃′)⊗R∼

γ1⊗idR

oo // Hq(I
Ỹ ′→X̃′Ỹ

′ , ε̃′
−1

L̃′ ⊗ O ′)

(11.5.3)

where the unlabelled vertical arrow is induced by the canonical morphism L̃′ → Rε̃′∗ε̃′
−1

L̃′, and the
unlabelled horizontal arrow is the canonical morphism which induces (RqfI∗F ′)⊗ZO → RqfI∗(F ′⊗ZO ′)
on IY→XY by sheafification. It is clear that the diagram (11.5.3) is commutative, which completes the
proof. □

11.6. We remark that 11.5 gives a new definition of the relative (resp. absolute) Faltings’ comparison
morphism without using 10.9. Following 11.3, let F′ be a finite locally constant abelian sheaf on Y ′

ét and
we set F ′ = Ψ′

∗a
′−1F′. We set L′ = ψ′

∗F′, which is a finite locally constant abelian sheaf on Eét
Y ′→X′ by

10.4. Remark that the canonical morphisms ψ′−1L′ → F′ and ε′−1L′ → F ′ are isomorphisms by 10.4
and 11.2 respectively. We also remark that B, O are flat over Z. The canonical morphisms in the derived
category D(B-ModEét

Y →X
) (cf. 10.5.2),

(Rψ∗Rfét∗ψ
′−1L′)⊗L

Z B (RfE∗L′)⊗L
Z B

α1oo α2 // RfE∗(L′ ⊗Z B
′
),(11.6.1)
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fit into the following commutative diagram

Rψ∗(Rfét∗ψ
′−1L′)⊗L

Z B

≀α3

��

(RfE∗L′)⊗L
Z B

α1oo α2 //

��

RfE∗(L′ ⊗Z B
′
)

α4

��
Rψ∗(Ra∗Rfv∗Ψ

′−1ε′−1L′)⊗L
Z B Rε∗(RfI∗ε

′−1L′)⊗L
Z B

∼
α5

oo
α6

// Rε∗RfI∗(ε′−1L′ ⊗Z O ′)

(11.6.2)

(1) The morphism α3 is induced by the canonical isomorphism ψ′−1L′ → Ra′∗a
′−1(ψ′−1L′) by 3.9,

and thus α3 is an isomorphism.
(2) The morphism α5 is induced by the canonical isomorphism ε′−1L′ → RΨ′

∗Ψ
′−1ε′−1L′ by 3.27,

and thus α5 is an isomorphism.
(3) The unlabelled arrow is induced by the canonical morphism L→ Rε′∗ε

′−1L.
(4) The morphism α4 is induced by the canonical almost isomorphism L′⊗Z B

′ → Rε′∗(ε
′−1L′⊗Z O ′)

by 8.9, and thus α4 is an almost isomorphism.
(5) The morphism α6 is the composition of

Rε∗(RfI∗ε
′−1L′)⊗L

Z B −→ Rε∗((RfI∗ε
′−1L′)⊗L

Z O)(11.6.3)

with Rε∗((RfI∗ε
′−1L′)⊗L

Z O) −→ Rε∗RfI∗(ε
′−1L′ ⊗Z O ′).(11.6.4)

In conclusion, the arrows α3, α5, α6 and α4 induce an arrow

α−1
4 ◦ α6 ◦ α−1

5 ◦ α3 : Rψ∗(Rfét∗F′)⊗L
Z B −→ RfE∗(ψ

′
∗F′ ⊗Z B

′
)(11.6.5)

in the derived category of almost Zp-modules on Eét
Y→X (5.7). Remark that we don’t assume that α1 is an

isomorphism here. We also call (11.6.5) the relative Faltings’ comparison morphism. Indeed, if α1 is an

isomorphism, then the relative Faltings’ comparison morphism (10.7.1) induces (11.6.5) in D(Zp
al
-Mod)

due to the commutativity of the diagram (11.6.2).
If X is the spectrum of an absolutely integrally closed valuation ring A and if Y = η ×S X, then

applying the functor RΓ(Y → X,−) on (11.6.2) we obtain the natural morphisms in the derived category
D(A-Mod) by 7.8,

RΓ(Y ′
ét, ψ

′−1L′)⊗L
Z A

≀α3

��

RΓ(Eét
Y ′→X′ ,L′)⊗L

Z A
α1oo α2 //

��

RΓ(Eét
Y ′→X′ ,L′ ⊗Z B

′
)

α4

��
RΓ((Schcoh

/Y ′)v,Ψ
′−1ε′−1L′)⊗L

Z A RΓ(IY ′→X′Y ′ , ε′−1L′)⊗L
Z A

∼
α5

oo
α6

// RΓ(IY ′→X′Y ′ , ε′−1L′ ⊗Z O ′)

(11.6.6)

The arrows α3, α5, α6 and α4 induce an arrow

α−1
4 ◦ α6 ◦ α−1

5 ◦ α3 : RΓ(Y ′
ét,F′)⊗L

Z A −→ RΓ(Eét
Y ′→X′ , ψ′

∗F′ ⊗Z B
′
)(11.6.7)

in the derived category D(Zp
al
-Mod) of almost Zp-modules (5.7). We also call (11.6.7) the absolute

Faltings’ comparison morphism.

Lemma 11.7. With the notation in 11.3, let F′ be a finite locally constant abelian sheaf on Y ′
ét and we

set F ′ = Ψ′
∗a

′−1F′. Assume that X ′ → X is proper of finite presentation. Then, the canonical morphism

(RfI∗F
′)⊗L

Z O −→ RfI∗(F
′ ⊗Z O ′)(11.7.1)

is an almost isomorphism.

Proof. Following 11.5, consider the following presheaves on IY→XY for each integer q:

Hq1 : X̃ 7−→ Hq
ét(Ỹ

′, F̃′)⊗Z B(Ỹ → X̃),(11.7.2)

Hq2 : X̃ 7−→ Hq(Eét
Ỹ ′→X̃′ , ψ̃

′
∗F̃′)⊗Z B(Ỹ → X̃),(11.7.3)

Hq3 : X̃ 7−→ Hq(Eét
Ỹ ′→X̃′ , ψ̃

′
∗F̃′ ⊗Z B

′
),(11.7.4)
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They satisfy the limit-preserving condition 3.25.(ii) by 7.11, [SGA 4II, VII.5.6] and [SGA 4II, VI 8.5.9,

8.7.3]. Moreover, if X̃ = Spec(A) where A is an absolutely integrally closed valuation ring with p nonzero
in A, then the canonical morphisms

Hq1(Spec(A))← H
q
2(Spec(A))→ H

q
3(Spec(A))(11.7.5)

are an isomorphism and an almost isomorphism by 10.18. Thus, the canonical morphismsHq1 ← H
q
2 → H

q
3

induce an isomorphism and an almost isomorphism of their sheafifications by 3.25. The conclusion follows
from 11.5. □

Lemma 11.8. Let Y → X be an open immersion of coherent schemes, Y ′ → Y a finite morphism of
finite presentation. Then, there exists a finite morphism X ′ → X of finite presentation whose base change
by Y → X is Y ′ → Y .

Proof. Firstly, assume that X is Noetherian. We have Y ′ = Y ×X XY by 3.19.(4). We write XY =
SpecX(A) where A is an integral quasi-coherent OX -algebra on X, and we write A as a filtered colimit of
its finite quasi-coherent OX -subalgebras A = colimAα ([Sta21, 0817]). Let Bα be the restriction of Aα to
Y . Then, B = colimBα is a filtered colimit of finite quasi-coherent OY -algebras with injective transition
morphisms. Since Y ′ = SpecY (B) is finite over Y , there exists an index α0 such that Y ′ = SpecY (Bα0

).
Therefore, X ′ = SpecX(Aα0) meets our requirements.

In general, we write X as a cofiltered limit of coherent schemes of finite type over Z with affine
transition morphisms X = limλ∈ΛXλ ([Sta21, 01ZA]). Since Y → X is an open immersion of finite
presentation, using [EGA IV3, 8.8.2, 8.10.5] there exists an index λ0 ∈ Λ, an open immersion Yλ0 → Xλ0

and a finite morphism Y ′
λ0
→ Yλ0 such that the base change of the morphisms Y ′

λ0
→ Yλ0 → Xλ0 by

X → Xλ0 are the morphisms Y ′ → Y → X. By the first paragraph, there exists a finite morphism
X ′
λ0
→ Xλ0 of finite presentation such that Y ′

λ0
= Yλ0 ×Xλ0

X ′
λ0
. We see that the base change X ′ → X

of X ′
λ0
→ Xλ0 by X → Xλ0 meets our requirements. □

Lemma 11.9. With the notation in 11.3, let g : Y ′′ → Y ′ be a finite morphism of finite presentation,
F′′ a finite locally constant abelian sheaf on Y ′′

ét and we set F ′ = Ψ′
∗a

′−1(gét∗F′′). Assume that X ′ → X
is proper of finite presentation. Then, the canonical morphism

(RfI∗F
′)⊗L

Z O −→ RfI∗(F
′ ⊗Z O ′)(11.9.1)

is an almost isomorphism.

Proof. There exists a Cartesian morphism g : (Y ′′ → X ′′) → (Y ′ → XY ×X X ′) of open immersions of
coherent schemes such that X ′′ → XY ×X X ′ is finite and of finite presentation by 11.8. Consider the
diagram (11.3.1) associated to g:

Y ′′
ét

gét

��

(Schcoh
/Y ′′)v

a′′oo Ψ′′
//

gv

��

IY ′′→X′′Y ′′

gI

��
Y ′
ét (Schcoh

/Y ′)v
a′oo Ψ′

// IY ′→X′Y ′

(11.9.2)

We set G ′′ = Ψ′′
∗a

′′−1F′′. The base change morphism a′−1gét∗ → gv∗a
′′−1 induces a canonical isomorphism

F ′ ∼−→ gI∗G ′′ by 3.10. Moreover, the canonical morphism gI∗G ′′ → RgI∗G ′′ is an isomorphism by 11.5.(1)
and 3.25, since g : Y ′′ → Y ′ is finite ([SGA 4II, VIII.5.6]). By applying 11.7 to g and F′′, the canonical
morphism

(RgI∗G
′′)⊗L

Z O ′ −→ RgI∗(G
′′ ⊗Z O ′′)(11.9.3)

is an almost isomorphism. Let h be the composition of (Y ′′ → X ′′)→ (Y ′ → XY ×X X ′)→ (Y → XY ).
Note that X ′′ → XY is also proper of finite presentation. By applying 11.7 to h and F′′, the canonical
morphism

(RhI∗G
′′)⊗L

Z O −→ RhI∗(G
′′ ⊗Z O ′′)(11.9.4)

is an almost isomorphism. It is clear that hI = fI ◦ gI. The conclusion follows from the canonical
isomorphism F ′ → RgI∗G ′′ and the canonical almost isomorphisms (11.9.3) and (11.9.4). □

https://stacks.math.columbia.edu/tag/0817
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Lemma 11.10. With the notation in 11.3, let F ′ be a constructible abelian sheaf on Y ′
ét and we set

F ′ = Ψ′
∗a

′−1F ′. Assume that X ′ → X is proper of finite presentation. Then, the canonical morphism

(RfI∗F
′)⊗L

Z O −→ RfI∗(F
′ ⊗Z O ′)(11.10.1)

is an almost isomorphism.

Proof. We prove by induction on an integer q that the canonical morphism (RqfI∗F ′)⊗ZO → RqfI∗(F ′⊗Z
O ′) is an almost isomorphism. It holds trivially for each q ≤ −1. Notice that there exists a finite mor-
phism g : Y ′′ → Y ′ of finite presentation, a finite locally constant abelian sheaf F′′ on Y ′′

ét and an injective
morphism F ′ → gét∗F′′ by [Sta21, 09Z7] (cf. [SGA 4III, IX.2.14]). Let G′ be the quotient of F ′ → gét∗F′′,
which is also a constructible abelian sheaf on Y ′

ét since gét∗F′′ is so ([Sta21, 095R, 03RZ]). The exact
sequence 0→ F ′ → gét∗F′′ → G′ → 0 induces an exact sequence by 3.27.(1),

0 // Ψ′
∗a

′−1F ′ // Ψ′
∗a

′−1(gét∗F′′) // Ψ′
∗a

′−1G′ // 0.(11.10.2)

We set H ′ = Ψ′
∗a

′−1(gét∗F′′) and G ′ = Ψ′
∗a

′−1G′. Then, we obtain a morphism of long exact sequences

(Rq−1fI∗H
′)⊗ O

γ1

��

// (Rq−1fI∗G
′)⊗ O

γ2

��

// (RqfI∗F
′)⊗ O

γ3

��

// (RqfI∗H
′)⊗ O

γ4

��

// (RqfI∗G
′)⊗ O

γ5

��
Rq−1fI∗(H

′ ⊗ O ′) // Rq−1fI∗(G
′ ⊗ O ′) // RqfI∗(F

′ ⊗ O ′) // RqfI∗(H
′ ⊗ O ′) // RqfI∗(G

′ ⊗ O ′)

(11.10.3)

Notice that γ1 and γ2 are almost isomorphisms by induction, and that γ4 is an almost isomorphism by
11.9. Thus, applying the 5-lemma ([Sta21, 05QA]) in the abelian category of almost Zp-modules over
IY→XY , we see that γ3 is almost injective. Since F ′ is an arbitrary constructible abelian sheaf, the
morphism γ5 is also almost injective. Thus, γ3 is an almost isomorphism. □
Theorem 11.11. With the notation in 11.3, let F ′ be a torsion abelian sheaf on Y ′

ét and we set F ′ =
Ψ′

∗a
′−1F ′. Assume that X ′ → X is proper of finite presentation. Then, the canonical morphism

(RfI∗F
′)⊗L

Z O −→ RfI∗(F
′ ⊗Z O ′)(11.11.1)

is an almost isomorphism in the derived category D(Zp-ModIY →XY
) (5.7).

Proof. We write F ′ as a filtered colimit of constructible abelian sheaves F ′ = colimλ∈Λ F ′
λ ([Sta21, 03SA],

cf. [SGA 4III, IX.2.7.2]). We set F ′
λ = Ψ′

∗a
′−1Fλ. We have F ′ = colimλ∈Λ F ′

λ by [SGA 4II, VI.5.1]
whose conditions are satisfied since each object in each concerned site is quasi-compact. Moreover, for
each integer q, we have

(RqfI∗F
′)⊗Z O =colim

λ∈Λ
(RqfI∗F

′
λ)⊗Z O,(11.11.2)

RqfI∗(F
′ ⊗Z O ′) = colim

λ∈Λ
RqfI∗(F

′
λ ⊗Z O ′).(11.11.3)

The conclusion follows from 11.10. □
Lemma 11.12. With the notation in 11.3 and 11.4, let F ′ be a torsion abelian sheaf on Y ′

ét, H = Rfét∗F ′,

and we set F ′ = Ψ′
∗a

′−1F ′, H = RΨ∗a
−1H. Let X̃ be an object of IY→XY , Ỹ = η ×S X̃, F̃ ′ = g′−1

ét F ′.

(1) The sheaf RqfI∗F ′ is canonically isomorphic to the presheaf X̃ 7→ Hq
ét(Ỹ

′, F̃ ′) for each integer q.

(2) If Y ′ → Y is proper, then there exists a canonical isomorphism H
∼−→ RfI∗F ′.

Proof. Note that the canonical morphism F ′ → RΨ′
∗a

′−1F ′ is an isomorphism by 3.27.(1). Thus,

RfI∗F ′ = R(Ψ ◦ fv)∗a′−1F ′, whose q-th cohomology is the sheaf associated to the presheaf X̃ 7→
Hq

v(Ỹ
′, ã′

−1
F̃ ′) = Hq

ét(Ỹ
′, F̃ ′) by 3.9, and thus (1) follows. If Y ′ → Y is proper, then the base change

morphism a−1Rfét∗ → Rfv∗a
′−1 induces an isomorphism a−1H ∼−→ Rfv∗a

′−1F ′ by 3.10, and thus (2)
follows. □
Theorem 11.13. With the notation in 11.3, let F′ be a finite locally constant abelian sheaf on Y ′

ét.
Assume that

(i) the morphism X ′ → X is proper of finite presentation, and that
(ii) the sheaf Rqfét∗F′ is finite locally constant for each integer q and nonzero for finitely many q,

and that

https://stacks.math.columbia.edu/tag/09Z7
https://stacks.math.columbia.edu/tag/095R
https://stacks.math.columbia.edu/tag/03RZ
https://stacks.math.columbia.edu/tag/05QA
https://stacks.math.columbia.edu/tag/03SA
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(iii) we have Rqψ∗H = 0 (resp. Rqψ′
∗H = 0) for any finite locally constant abelian sheaf H on Yét

(resp. Y ′
ét) and any integer q > 0.

Then, the relative Faltings’ comparison morphism associated to f and F′ (10.7.1) (which exists by (iii))
is an almost isomorphism in the derived category D(Zp-ModEét

Y →X
) (5.7), and it induces an almost

isomorphism

(ψ∗R
qfét∗F′)⊗Z B −→ RqfE∗(ψ

′
∗F′ ⊗Z B

′
)(11.13.1)

of Zp-modules for each integer q.

Proof. We follow the discussion of 11.6 and set F ′ = Ψ′
∗a

′−1F′. The canonical morphism (11.6.4)

Rε∗((RfI∗F
′)⊗L

Z O) −→ Rε∗RfI∗(F
′ ⊗Z O ′)(11.13.2)

is an almost isomorphism by 11.7. It remains to show that the canonical morphism (11.6.3)

Rε∗(RfI∗F
′)⊗L

Z B −→ Rε∗((RfI∗F
′)⊗L

Z O)(11.13.3)

is also an almost isomorphism. With the notation in 11.12 by taking F ′ = F′, the complex H is a bounded
complex whose cohomologies Hq(H) are finite locally constant abelian sheaves by condition (ii). Consider
the commutative diagram (11.1.1),

(Schcoh
/Y )v

a //

Ψ

��

Yét

ψ

��
IY→XY

ε // Eét
Y→X

(11.13.4)

We set L = Rψ∗H. Then, Hq(L) = ψ∗H
q(H) by Cartan-Leray spectral sequence and condition (iii).

Hence, L is a bounded complex of abelian sheaves whose cohomologies are finite locally constant by 10.4
so that the canonical morphism

L ⊗L
Z B −→ Rε∗(ε

−1L ⊗L
Z O)(11.13.5)

is an almost isomorphism by 8.10.
On the other hand, Hq(H ) = Ψ∗a

−1Hq(H) by Cartan-Leray spectral sequence and 3.27.(1). Thus,

the base change morphism ε−1Rψ∗ → RΨ∗a
−1 induces an isomorphism ε−1L ∼−→H by 11.2. Moreover,

the canonical morphism L → Rε∗ε
−1L = Rε∗H = Rψ∗Ra∗a

−1H is an isomorphism by 3.9. Thus, the
canonical morphism

(Rε∗ε
−1L)⊗L

Z B −→ Rε∗(ε
−1L ⊗Z O)(11.13.6)

is an almost isomorphism by (11.13.5). In conclusion, (11.13.3) is an almost isomorphism by (11.13.6)

and by the canonical isomorphisms ε−1L ∼−→H
∼−→ RfI∗F ′. □

Remark 11.14. We give two concrete situations where the conditions in 11.13 are satisfied:

(1) Let Zp be the integral closure of Zp in an algebraic closure Qp of Qp, X ′ → X a proper and

finitely presented morphism of coherent Zp-schemes, Y ′ → Y the base change of X ′ → X by

Spec(Qp) → Spec(Zp). Assume that Y ′ → Y is smooth. Then, the condition (ii) is guaranteed
by [SGA 4III, XVI.2.2 and XVII.5.2.8.1], and the condition (iii) is guaranteed by 10.9.

(2) Let OK be a strictly Henselian discrete valuation ring with fraction field K of characteristic 0
and residue field of characteristic p, K an algebraic closure of K, X ′ → X a proper morphism
of OK-schemes of finite type, Y ′ → Y the base change of X ′ → X by Spec(K) → Spec(OK).
Assume that Y ′ → Y is smooth. Then, the condition (ii) is guaranteed by [SGA 4III, XVI.2.2
and XVII.5.2.8.1], and the condition (iii) is guaranteed by 10.8.
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[Fal02] Gerd Faltings. Almost étale extensions. Astérisque, (279):185–270, 2002. Cohomologies p-adiques et applications

arithmétiques, II.

[GR03] Ofer Gabber and Lorenzo Ramero. Almost ring theory, volume 1800 of Lecture Notes in Mathematics. Springer-
Verlag, Berlin, 2003.

[GR04] Ofer Gabber and Lorenzo Ramero. Foundations for almost ring theory – release 7.5. https://arxiv.org/abs/
math/0409584v13, 2004.

[Guo19] Haoyang Guo. Hodge-tate decomposition for non-smooth spaces. https://arxiv.org/abs/1909.09917v1, 2019.
[HJ14] Annette Huber and Clemens Jörder. Differential forms in the h-topology. Algebr. Geom., 1(4):449–478, 2014.
[ILO14] Luc Illusie, Yves Laszlo, and Fabrice Orgogozo, editors. Travaux de Gabber sur l’uniformisation locale et la
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