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This research expository article contains a survey of earlier work
(in §2-§4) but also contains a main new result (in §5), which
we first describe. Given ¢ > 0, the spectral operator a = a. can be
thought of intuitively as the operator which sends the geometry
onto the spectrum of a fractal string of dimension not exceeding
c. Rigorously, it turns out to coincide with a suitable quantization
of the Riemann zeta function ¢ =(¢(s): a=¢(0), where 9 =0,
is the infinitesimal shift of the real line acting on the weighted
Hilbert space L2(R, e 2!dt). In this paper, we establish a new
asymmetric criterion for the Riemann hypothesis, expressed in
terms of the invertibility of the spectral operator for all values
of the dimension parameter ¢ € (0,1/2) (i.e., for all ¢ in the left
half of the critical interval (0, 1)). This corresponds (conditionally)
to a mathematical (and perhaps also, physical) “phase transition”
occurring in the midfractal case when ¢ = 1/2. Both the universality
and the non-universality of ¢ = ¢(s) in the right (resp., left) critical
strip {1/2 < Re(s) < 1} (resp., {0 <Re(s) < 1/2}) play a key role
in this context. These new results are presented in §5. In §2, we
briefly discuss earlier joint work on the complex dimensions of fractal
strings, while in §3 and §4, we survey earlier related work of the
author with H. Maier and with H. Herichi, respectively, in which were
established symmetric criteria for the Riemann hypothesis, expressed
respectively in terms of a family of natural inverse spectral problems
for fractal strings of Minkowski dimension D € (0,1), with D #
1/2, and of the quasi-invertibility of the family of spectral operators
ac (withc € (0,1),c#1/2).
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1. Introduction

Our main goal in this paper is to first briefly explain (in §2) the general ideas and results concerning fractal strings and
their complex dimensions which led to the intimate connections (discussed in §3) between the vibrations of fractal
strings and the Riemann zeta function ¢ = {(s) and then, the Riemann hypothesis, discovered in the early 1990s
by the author and his collaborators (Carl Pomerance [LapPom1,2] and Helmut Maier [LapMail,2], respectively).
The resulting geometric interpretation of the critical strip 0 < Re(s) <1 for ¢ = {(s) was made entirely rigorous by
means of the mathematical theory of complex dimensions developed by the author and Machiel van Frankenhuijsen
in a series of research monographs [Lap-vFr1-3] (and papers). Due to space limitations, we will not be able to do
justice to this theory, for which the interested reader can refer to the latest book in the above series, [Lap-vFr3], and
many relevant references therein.

In §6.3.1 and §6.3.2 of [Lap-vFr2,3] was introduced, at the semi-heuristic level, the notion of spectral operator
a = ac, which sends the geometry onto the spectrum of a fractal string. Intuitively, the parameter c plays here the
role of the upper bound for the Minkowski dimensions of the fractal strings on which a = a. acts. In the forthcoming
book, [HerLap1], and in an associated series of papers, [HerLap2-5], Hafedh Herichi and the author have developed a
mathematical theory of the spectral operator, within a rigorous functional analytic framework. In particular, they have
precisely determined its spectrum as well as that of the closely related infinitesimal shift (of the real line) 0 = Ok,
viewed as the first order differential operator d/dt acting on a suitable Hilbert space of functions, the weighted
L%-space H. = L?(R, e 2! dt), where ¢ € R is arbitrary. It turns out that a. = ¢(dc) or, more briefly, a = ¢(9),
in the sense of the functional calculus for the unbounded normal operator d = Oc. In this manner, the spectral
operator a = a. can be viewed as a suitable quantization of the Riemann zeta function. Actually, in [HerLap1] (see
also [HerLap5]), a quantized (i.e., an operator-valued) Dirichlet series, Euler product representation and “analytic
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continuation” of a. = {(9.) are obtained (for suitable values of ¢ and/or under appropriate assumptions).

In this context, the question of the invertibility of the spectral operator is a key question. It is shown
in [HerLapl] (see also [HerLap2,3]) that a = a. is “quasi-invertible” for all ¢ € (0, 1), ¢ # 1/2 [equivalently, for
all c€(0,1/2) or forall c € (1/2, 1), respectively] if and only the Riemann hypothesis is true (i.e., iff {(s) = 0 with
0 < Re(s) < 1 implies that Re(s) = 1/2). This result provides a natural operator theoretic counterpart of the result of
the author and H. Maier in [LapMal,2] showing that a suitable inverse spectral problem, (ISP) p, for fractal strings (of
dimension D) is true in all possible dimensions D in (0, 1), D # 1/2 (or, equivalently, due to the functional equation
of {,forall D € (0,1/2) orelse forall D € (1/2, 1), respectively) if and only if the Riemann hypothesis (RH) is true.

In [HerLapl] (see also [HerLap2,3]), the spectrum of a = a. is shown to obey several “mathematical phase
transitions™; one conditionally (i.e., if RH holds), in the midfractal case (in the sense of [Lap1-3]) when D = 1/2, and
another one unconditionally (i.e., independently of the truth of RH), at D = 1. The first phase transition is intimately
connected with the universality of the Riemann zeta function (see [HerLap1,4]). A brief exposition of some of the
most relevant results of [HerLap1-5] is provided in §4 of the present article.

The spectral reformulation of the Riemann hypothesis obtained in [LapMaiZ2], revisited and extended in [Lap-
vFr1-3] in the light of the mathematical theory of complex dimensions, and given a rigorous operator theoretic
version in [HerLap1-3], is a symmetric criterion for RH. Indeed, due to the functional equation satisfied by ¢ = {(s)
(and thus connecting {(s) and (1 — s)), it can be equivalently formulated for all values of the underlying parameter
(D in [LapMail,2] and [Lap-vFr1-3] or cin [HerLap1-5]). By contrast, the new criterion for the Riemann hypothesis
obtained in this paper is asymmetric, in the sense that it is only stated (and valid) for all values of the underlying
parameter ¢ in the open interval (0,1/2). In fact, its counterpart for all values of ¢ in the symmetric interval
(1/2,1) cannot be true, due to the universality of the Riemann zeta function ¢ = ((s) in the right critical strip
1/2 < Re(s) < 1. More specifically, the main new result of this paper is the following (see §5 and Theorem 1.1
below): The spectral operator a = a. is invertible (in the usual sense of the invertibility of an unbounded operator)
for all values of c in (0,1/2) if and only if the Riemann hypothesis is true. Again, this new asymmetric spectral
reformulation of RH does not have any analog for the interval (1/2, 1) because the spectral operator is not invertible
for any value of ¢ in (1/2,1). This raises the question of finding an appropriate physical interpretation for this
asymmetry, which amounts to finding “the” physical origin of the phase transition (conditionally) occurring in the
midfractal case where ¢ =1/2.

In the previous context of the results of [LapMail,2], early speculations were made by the author in [Lap2,3]
to find a physical interpretation of the corresponding mathematical phase transition at D = 1/2 in terms of Wilson’s
notion of complex dimension within the realm of his theory of phase transitions and critical phenomena in quantum
statistical physics and quantum field theory [Wil]. We leave it to the interested reader to find his or her physical
interpretation of the asymmetric criterion for RH obtained in the present paper. Our own expectation is that physically,
this asymmetry or phase transition finds its source in the symmetry breaking associated to an appropriate (and
possibly yet to be discovered) quantum field theory. (Unlike in [BosConl,2] or [Con, §V.11], it would occur at
1/2 rather than at 1, the pole of ¢.) Presumably, this quantum field theory should be intimately associated with
number theory (or “arithmetic”), geometry, dynamics and spectral theory, and probably formulated in the spirit of the
conjectural picture for the generalized Riemann hypothesis (GRH) proposed in the author’s earlier book, In Search
of the Riemann Zeros: Strings, Fractal Membranes and Noncommutative Spacetimes [Lap6], in terms of a Riemann
flow on the moduli space of quantized fractal strings (called “fractal membranes”) and the associated flows of zeta
functions (or partition functions) and of their zeros. However, we invite the readers to follow their own intuition and
to be led into unknown mathematical and physical territory, wherever their own imagination will guide them.

In closing this introduction, we stress that the main goal of this paper (beside providing in §2—-§4 a brief
survey of earlier relevant work which partly motivates it) is to obtain the following theorem, in §5. (See Theorem
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5.3 and the comments surrounding it for additional information.) Let b = aa™ = a*a be the nonnegative self-adjoint
operator naturally associated with the normal operator a. For notational simplicity, we write a and b instead of ac
and b, respectively. Note that for ¢ <1, both a and b are unbounded linear operators (according to the results of
[HerLap1-4] discussed in §4).

Theorem 1.1 (Asymmetric criterion for RH). Each of the following statements is equivalent to the Riemann
hypothesis (RH) :

(i) Forevery c€ (0,1/2), the spectral operator a is invertible.
(i) For every c € (0,1/2), the unbounded operator b is invertible.
(iii) For every c € (0,1/2), the nonnegative self-adjoint operator b is bounded away from zero.

Finally, we point out that for the reader’s convenience, we have included (just before the references) a glossary
of some of the main notation and terminology used in this paper.

2. Geometry and Spectra of Fractal Strings

In this section, we give a brief overview of the theory of fractal strings and their complex dimensions (see [Lap-vFr3]).

(a) Geometric zeta function and Minkowski dimension.

A fractal string is a one-dimensional drum with fractal boundary. Hence, it can be realized geometrically as a
bounded open subset of the real line: {2 C R. As is well known, {2 is then the disjoint union of its connected
components (open intervals). Therefore, we can write it as a countable union of disjoint (bounded) open intervals
Ijj=1,2,---: Q:U;il I;. Denoting by £; the length of I; (£; =|I;]), we may assume without loss of
generality that £ = {£;}72 is nonincreasing and (if £ is infinite, which will always be assumed from now on,
in order to avoid trivial special cases) that £; | 0 as j — oo. Since all of the key notions considered in fractal string
theory are independent of the geometric realization (2, we may consider that a fractal string is equivalently given
by the sequence of lengths (or scales) £ = {/; };-”;1, with the distinct lengths written in nonincreasing order and
according to their multiplicities.

The geometric point of view, however, is essential to motivate and define the spectral problem associated with
L, as well as to connect and contrast the theory of fractal strings with the higher-dimensional geometric and spectral
theory of fractal drums.

To a given fractal string £ = {/;}72, (or {2 CR), we associate the geometric zeta function of L, denoted
by . and defined (for s € C with Re(s) large enough) by (. (s) =>"72, 3+ As it turns out, (¢ is holomorphic
in the open, right half-plane IT := {Re(s) > D} (the set of all s € C such that Re(s) > D), and IT is the largest
such half-plane. Here, the unique extended real number D € R U {£oo} is called the abscissa of convergence
of (r: D=inf{a €R: Z?i1 K;" < o0}; see, e.g., [HardWr, Ser]. Early on (see [Lap2-3] and [Lap-vFr3, §1.2]),
the author observed that D coincides with the Minkowski dimension of £ (i.e., of the boundary 942 of any of its
geometric realizations §2): D = D). Recall that this notion of fractal dimension (often also called “box dimension”
in the applied literature) and very different mathematically and physically from the classic Hausdorff dimension
(see [Lapl]), can be defined as follows: Given € > 0, let 2. = {x € 2 : dist(z, 912) < £} denote the e-neighborhood
(or tubular neighborhood) of (2, and let V() = |f2|, the volume (i.e., length or 1-dimensional Lebesgue measure)
of £2. (It is shown in [LapPom1,2] that for a fixed € >0, V/(¢) depends only on £ = {¢;}72;. Hence, as was
mentioned earlier, all of the notions discussed here depend only on £ and not on the geometric representation of
L by 2CR.) Then, given d >0, let M} (resp., M, 4) denote the upper (resp., lower) limit of Vie)/et ™ as
e — 0T, called, respectively, the d-dimensional upper (tesp., lower) Minkowski content of L. Clearly, we always
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have 0 < M, g < M7 < oco.

The Minkowski dimension of L (or, equivalently, of its boundary 92), denoted by Dp; = Dps(L), is then
given by Dy :=inf{d > 0: M} < oo} =sup{d > 0: M}, = +oo}. In fact, D, is the unique real number such
that M} = +oo for d < Dps and M}; =0 for d > Djy. (See, e.g., [Fall, Fed, Mat, Lap-vFr3, Tri].) Physically,
it can be thought of as a critical exponent since it gives information about the behavior of V(&) as a power of ¢.
In the sequel, for brevity and in light of the aforementioned identity D = Dj;, we will use D instead of D, to
denote the Minkowski dimension of L. A fractal string £ (or, equivalently, its boundary 0{2) is said to be Minkowski
nondegenerate if 0 < My (<) M* < oo, where M* := M7, and My := M, p denote, respectively, the upper and
the lower Minkowski content of L (i.e., of 8§2). In addition, if M. = M™*, we denote by M this common value and
say that £ (i.e., 012) is Minkowski measurable and has Minkowski content M. Hence, L is Minkowski measurable
with Minkowski content M if and only if the following limit exists in (0, +00) and lim__, o+ V (g)/e1 ™2 = M.

(b) Geometric interpretation of the critical strip.

For a fractal string, we always have 0 < D = D)y < 1; that is, D = D) lies in the (closed) critical interval [0, 1],
where (in the terminology of [Lapl], later adopted in [Lap2-3, 6-9], [LapPom1-3], [LapMail-2], [HeLap], [Lap-
vFr1-3] and [HerLap1-5]), the case when D = 0 (resp., D = 1) is referred to as the least (resp., most) fractal case,
while the case when D =1/2 is called the midfractal case. As we shall see, the latter midfractal case D =1/2
plays a key role in the theory, in connection with the Riemann zeta function and the Riemann hypothesis. Recall that
according to the celebrated Riemann hypothesis [Rie] (translated in [Edw, App.]), the critical zeros (also called
the nontrivial zeros) of the Riemann zeta function ¢ = ((s), that is, the zeros of ¢ located in the critical strip
0 < Re(s) <1, all lie on the critical line {Re(s) =1/2}. Equivalently, {(s) =0 with 0 <Re(s) <1 implies that
Re(s) =1/2.

Indeed, towards the very beginning of the mathematical theory of fractal strings (starting with [Lap2-3],
[LapPom1-3] and [LapMail-2]), one conjectured the existence of a notion of complex dimension such that the left-
hand side of the (closed) critical strip 0 < Re(s) <1 (the vertical line {Re(s) = 0}) corresponds to the least fractal
(or nonfractal) case D = 0, the right-hand side (the vertical line {Re(s) = 1}) corresponds to the most fractal case
D =1, while the middle of the critical strip (the critical line {Re(s) =1/2}) corresponds to the midfractal case
D =1/2. The answer turned out to be positive, as was intuitively clear after the works in [LapPom1-2], [Lap2-3]
and, especially, in [LapMail-2], and as was fully and rigorously justified in the mathematical theory of complex
dimensions developed in [Lap-vFr1-3] (as well as in earlier and later papers by the same authors). We refer to the
research monograph [Lap-vFr3] for a complete exposition of the theory of complex dimensions of fractal strings. We
will briefly introduce it in §2(d) below, but first of all, we wish to explain the origins of the connections between the
Riemann zeta function and fractal strings, viewed as vibrating objects.

(c) From the geometry to the spectrum of a fractal string, via ( = C(s).

A fractal string, {2 = U;‘;II j» can be viewed as countably many ordinary strings (the intervals I; of lengths £;),
vibrating independently of one another. Equivalently, the strings I; can be thought of as the strings of a fractal harp.
The (normalized frequency) spectrum o (L) of the fractal string £ is given by the union (counting multiplicities)
of the spectra of the intervals I; : o(£) = |72 o(I;). Note that the fundamental frequency of the j-th string I is
equal to Zj_l; so that for each fixed integer j > 1, we have o(1;) = {n - éj_l :n > 1} and hence, o (L) = {n - Zj_l :
n > 1,7 > 1}. Therefore, the spectral zeta function of L (or, equivalently, of the Dirichlet Laplacian on {2), denoted
by (v and defined by Gy (s) = > e gy f° for Re(s) large enough, is given by the following product formula:

Cv(s)=C(s) - Cels), @n
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where ( is the geometric zeta function of £ (given by its expression in §2(a) or by its meromorphic continuation
thereof). Formula (2.1) was first observed in [Lap2-3]. It, along with its counterpart just below, was key to
our later developments. (We note that formula (2.1) was later reinterpreted and extended to various settings, in
terms of complex dynamics; see [Tep] and [LalLapl-2].) At the level of the counting functions, (2.1) becomes
Ny(z) =372, Ne(z/n), for >0, where N (resp., N,) denotes the geometric (tesp., spectral or frequency)
counting function of L, counting respectively the number of reciprocal lengths Z;l or of frequencies f not exceeding
x>0: Np(z) = Ze;lgz 1and Ny (z) = ZfEU(L) 1, where both the lengths and the frequencies (essentially, the

square roots of the eigenvalues) are counted according to their multiplicities. (See [Lap-vFr3, Thm. 1.21].)

For the reader who is not that familiar with analytic number theory, we next state some of the basic properties
of ( =((s) used throughout this paper, most often implicitly. The Riemann zeta function has a meromorphic
extension to all of C, still denoted by ¢ = {(s). Furthermore, for all s € C such that Re(s) > 1, ((s) is given by the
classic Dirichlet series > o~ 1 n~* (used to prove Equation (2.1)) and Euler product [erp(1— p~*)"1, where P
denotes the set of prime numbers. It follows that {(s) # 0 for Re(s) > 1. Therefore, in light of the functional equation
satisfied by ¢ (namely, £(s) = &(1 — s), where £(s) := m~*/2I"(s/2)((s) denotes the completed or global Riemann
zeta function and I is the classic gamma function), it follows that ((s) # 0 for Re(s) < 0, except at the frivial zeros
of ¢, located at s =—2, —4, —6,--- . Also, according to Hadamard’s theorem (and the functional equation), we
have ((s) # 0 for Re(s) =1 (and hence also for Re(s) = 0). Therefore, the other zeros of ¢ (called the critical or
nontrivial zeros) must lie in the (open) critical strip 0 < Re(s) < 1. See, e.g., [Edw, Ing, KarVor, Pat, Ti] for these
and other key properties of (.

(d) Complex dimensions of fractal strings, via explicit formulas.

Let £={{;}72; be a given fractal string and (, = (. (s) denote its geometric zeta function, given in §2(a) for
Re(s) > D, where D = D is the Minkowski dimension of L. Briefly, the complex dimensions of L (or of 912,
where (2 is any geometric representation of £) are the poles of the meromorphic continuation of (. More precisely,
let U C C be a domain to which s can be meromorphically continued. Then, the visible complex dimensions of
Cr (in U) are the poles of (, in U. If U =C or when no ambiguity may arise, we just call them the complex
dimensions of L. We denote by D =D, the set of complex dimensions of L. In light of the definition of the
abscissa of convergence of { recalled in §2(a), (. is holomorphic for Re(s) > D. In fact, it can be shown (using
well-known results about Dirichlet series, see [Ser, §VI.2.3]) that (,(s) = +oo as s — D+7 s € R. Therefore,
{Re(s) > D} is the largest open right half-plane (of the form {Re(s) > a}, for some a € R U {£00}) to which
Cr can be holomorphically continued. (Furthermore, {Re(s) > D} is the largest such half-plane in which the series
Z?‘;l é? is convergent or equivalently here, absolutely convergent; see, e.g., [Ser, §V1.3].) It follows, in particular,
that we must always have D C {Re(s) < D}. If, in addition, , can be meromorphically extended to an open
neighborhood of D, then D € D and D = max{Re(s):w € D}. Here and thereafter, we (often) use the short-
hand notation {Re(s) > a} :={s € C:Re(s) > a}. Similarly, if a € R, {Re(s) = a} stands for the vertical line
{s € C:Re(s) = a}; and analogously for the vertical strip {& < Re(s) < 8}, with a < S.

Since we do not aim here at giving a full description of the theory of complex dimensions, for which we
refer to [Lap-vFr1-3] (and especially, to the book [Lap-vFr3]), we will simply provide here a few examples and
results. We note that in the present exposition, we reverse the chronological order since the results from [LapPom1-
2] and [LapMail-2] to be presented in §3 below were obtained before the rigorous theory of complex dimensions
was developed by the author and Machiel van Frankenhuijsen in [Lap-vFr1-3], and in fact (along with the work in
[Lap1-3, HeLap], in particular), provided a natural heuristic and mathematical motivation for it.

Let £ = C'S be the Cantor string; it is associated with the bounded open set {2 C R defined as the complement
in [0, 1] of the classic (ternary) Cantor set C. Note that {2 is merely the union of the sequence of disjoint open
intervals (the “middle thirds”) which are deleted in the standard construction of C'. So that £ is given by the sequence

H
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of lengths %7 L %, 2%, 2%7 2%7 2—17, .-+, or 37" repeated with multiplicity 2" ! forn=1,2,3,---. Hence, (. has

a meromorphic continuation to all of C given by (,(s) =37°/(1 — 2.37°), for all s € C. It follows that the set
of complex dimensions of C (or, equivalently, of the Cantor set C' = 9{2) is given by Dcg = {D + inp:n € Z},
where i :=+/—1, D =logs 2 is the Minkowski dimension of C'S (or, equivalently, of C) and p := 27/ logs is the
oscillatory period of C'S. Here and in the sequel, we let Z := {0, +1,£2,--- }.

In [Lap-vFr3, Chs. 5, 6 & 8] are given general explicit formulas expressing, for instance, the geometric
and spectral counting functions Ny = N (z) and N, = Ny (x), respectively, as well as the volume (i.e., length)
V=V(e):=|{zx € R2:dist(x,02) < e}| of the (inner) e-tubes of a fractal string £, in terms of the underlying
complex dimensions of £. For example, under suitable growth conditions on (, the general fractal tube formula
obtained in [Lap-vFr3, Ch. 8] is of the following form (for notational simplicity, we assume here that all the poles
are simple):

(25)17“’

Vi)=Y Tes(Cc;w)m

w€eD,

+ R(e), 2.2)

where the error term R = R(e) can be explicitly estimated. Here and in the sequel, res((,;w) denotes the residue
of the meromorphic function (s = (. (s) evaluated at s = w.

For a self-similar string, we have R(¢) =0 in (2.2) and so the formula is exact. In particular, for the above
Cantor string C'S, we have g~(1-D )VCS = G(logs 571) —2eP , where G is a nonconstant periodic function (of
period 1) which is bounded away from 0 and infinity. Therefore, the Cantor string C'S (and hence also, the Cantor
set C') is not Minkowski measurable (as was first shown in [LapPom?2] via a direct computation) and its lower and
upper Minkowski content are respectively given by My = min G > 0 and M* = max G < oo (with explicit values
first calculated in [LapPom?2], see also [Lap-vFr3, Eq. (1.12)]).

At the level of the counting functions Nog and Ny = N, ¢, we have the following explicit formulas, still
for the Cantor string C'S"

1 wD+inp
N, = —1
os(®) 2log3 D +inp
ne”Z
and D
1 ) L P+inp

(See [Lap-vFr3, §1.2.2 & §6.4.3].) The first explicit formula was obtained by Riemann [Rie] in 1858 and is certainly
one of the most beautiful formulas in mathematics. It expresses the counting function of the primes in terms of the
zeros and the (single) pole of ¢ (i.e., in terms of the poles of —¢’/¢). A modern version of Riemann’s explicit formula
can be stated as follows: Let N (z) :=

weight % Then

<z % be the function counting all of the prime powers p” < z with a

+oo
N(z)=Li(z) = > Li(2") + J L de log 2,
P

s T2—1zlogx
where the sum is taken over the zeros p of ¢ and Li(z) := fg % is the integral logarithm. (See, e.g., [Edw, §1.16],
[Lap-vFr3, pp. 3 & 141], [Ing], [Pat] or [Ti].) The explicit formulas obtained in [Lap-vFr3] extend this explicit

formula to a general setting where the corresponding zeta function does not typically satisfy a functional equation or
have an Euler product representation. (See [Lap-vFr3, Chs. 5-11].)

From our present point of view, an important application of the general explicit formulas of [Lap-vFr3] is
that if we write 72 = Z;’il Sp-randve =3 e, (c) 0> Where 5 denotes the Dirac measure (or distribution) at
i

x, then (under suitable assumptions and if the complex dimensions are simple, see [Lap-vFr3, §6.3.1]) we have the
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distributional identities: 7z =, cp,. Tes((c; W)z Land vy = (1) + > wep, Tes(Cc; w)¢(w)z“ L, where
we have neglected the error term. In [Lap-vFr3, §6.3.1], these formulas are respectively called the density of geometric
states and the density of spectral states. At the level of the measures, the spectral operator, which will play a
key role in the sequel (see, especially, §4 and §5) can be intuitively interpreted (as in [Lap-vFr3, §6.3.2]) as the
operator sending the geometry (represented by 7,) onto the spectrum (represented by v,) of a fractal string L.
In light of the above explicit formulas for 7, and v, it amounts (essentially) to multiplying by {(w) the local
term res(Cz; w)z® ! associated with each complex dimension w € D . In §4(a), we will discuss another heuristic
interpretation of the spectral operator, based on [Lap-vFr3, §6.3.2] and given at the level of the counting functions
Ny and N, while in §4(b), we will give a rigorous definition of the spectral operator (obtained in [HerLap1-5]).

Remark 2.1. (a) At a fundamental level, the theory of complex dimensions developed in [Lap-vFr1-3] is a theory of
geometric, spectral, dynamical, or arithmetic oscillations (or “vibrations™). More concretely, as is apparent in the
explicit formulas discussed in this subsection (see, e.g., Eq. (2.2)), the real (resp., imaginary) parts of the complex
dimensions are associated with the amplitudes (resp., frequencies) of these oscillations (viewed at the geometric
level, for example, as waves propagating in the space of “scales”).

(b) In [Lap-vFr1=-3], an object is said to be fractal if its associated zeta function has at least one nonreal
complex dimension (i.e., pole), with positive real part. Accordingly, all self-similar fractal strings are fractals.
Furthermore, the Cantor curve (or “devil’s staircase”) is fractal in this new sense, whereas (contrary to everyone’s
geometric intuition), it is not fractal in the sense of Mandelbrot’s definition [Man] (according to which the
Hausdorff dimension must be strictly greater than the topological dimension). We refer to the definition of fractality
provided in [Lap-vFr3, §12.1 & 12.2]. We note that in [Lap-vFr3, §13.4.3], the above definition of fractality is
extended to allow for the zeta function to have a natural boundary along some suitable curve (i.e., not to have a
meromorphic continuation beyond that curve); such objects are now called hyperfractals in [LapRaZul-5]. Recently,
in [LapRaZul-2), the authors have constructed maximally hyperfractal strings (and also compact subsets of RrY, for
any N > 1), in the sense that the geometric (or fractal) zeta functions have singularities at every point of the vertical
line {Re(s) = D}.

(¢) The mathematical theory of complex dimensions of fractal strings has many applications to a variety
of subjects, including fractal geometry, spectral geometry, number theory, arithmetic geometry, geometric measure
theory, probability theory, dynamical systems, and mathematical physics. See, for example, [ChrlvLap, EllLapMaRo,
HamlLap, Fal2, HeLap, HerLapl-5, LalLapl-2, Lap1-5 & Lap7-9, LapLéRo, LapLul-3, LapLu-vFri-2, LapMail—
2, LapNe, LapPel-3, LapPeWil-2, LapPoml-3, LapRaZu]—S, LapRo, LapRoZu, LéMen, MorSepVi, Pe, PeWi, Ra,
Tep, Zu), along with the three monographs [Lap-vFr1-3] (and the relevant references therein) and the author’s
book [Lap6). We note that recent developments in the theory are described in [Lap-vFr3, Ch. 13], including a first
attempt at a higher-dimensional theory of complex dimensions for the special case of fractal sprays (in the sense of
[LapPom3]) and self-similar tilings (see [Lap-vFr3, §13.1), based on [LapPe2-3, LapPeWil-2, PeWi]), p-adic fractal
strings and associated nonarchimedean fractal tube formulas (see [Lap-vFr3, §13.2], based on [LapLul-3, LapLu-
vFri-2]), multifractal zeta functions and their “tapestries” of complex dimensions (see [Lap-vFr3, §13.3], based on
[LapRo, LapLéRo, EllLapMaRo)), random fractal strings (such as stochastically self-similar strings and the zero-set
of Brownian motion) and their spectra (see [Lap-vFr3, §13.4], based on [HamLap)), as well as a new approach to
the Riemann hypothesis based on a conjectural Riemann flow of fractal membranes (i.e., quantized fractal strings)
and correspondingly flows of zeta functions (or “partition functions”) and of the associated zeros (see [Lap-vFr3,
§13.5), which gives a brief overview of the aforementioned book [Lap6], In Search of the Riemann Zeros).

(d) Recently, in [LapRaZul-5], the theory of complex dimensions of fractal strings developed in [Lap-vFri-3)
has been extended to any bounded subset of Euclidean space RN (and even to “relative fractal drums” of RN ) for
any N > 1, via the use of new “fractal zeta functions”, namely, the “distance zeta function” (introduced by the author
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in 2009) and the closely related “tube zeta function”. For a comprehensive exposition of the resulting theory, we refer
to the forthcoming book [LapRaZul], along with the papers [LapRaZu2—4] and survey articles [LapRaZu5,6).

3. Direct and Inverse Spectral Problems for Fractal Strings

In the present section, we study direct (§3(a)) and inverse (§3(b)) spectral problems for fractal strings, based on
the work in [LapPom1,2] and [LapMail,2], respectively, and exploring in the one-dimensional case some of the
ramifications of the work in [Lapl] on a partial resolution of the Weyl-Berry conjecture for fractal drums (see the
discussion surrounding Eq. (3.1) below); see also [Lap7] for a recent and more detailed survey on this topic. In the
process, we will be led naturally to establishing close connections between these problems and the values of the
Riemann zeta function ¢ = ((s) in the critical interval 0 < s < 1 (see §3(a)) as well as with the critical zeros (see
§3(b)); that is, the zeros of () located in the critical strip 0 < Re(s) < 1.

(a) Minkowski measurability of fractal strings and spectral asymptotics with a
monotonic second term.

In [LapPom?2] (announced in [LapPom1]), the author and Carl Pomerance have established (in the case of fractal
strings, that is, in dimension one) the modified Weyl-Berry conjecture (MWB conjecture) formulated by the author
in [Lap1] and according to which if a fractal string L = {£;}72 of Minkowski dimension D € (0, 1) is Minkowski
measurable with Minkowski content M (see the discussion at the end of §2(a) above), then its spectral (or frequency)
counting function Ny = N,, r admits a monotonic asymptotic second term, of the form —c D./\/lxD , where cp is a
positive constant depending only on D:

Ny(z) =W (z) — cpMaP —|—o(9[:D)7 as x — 400, 3.1)

where the Weyl (or leading) term W is given by W (x) := |2|z, with |2| = Zjoil £; being the “volume” (or really,
the “length”) of any geometric realization {2 of L.

Theorem 3.1 (Resolution of the MWB conjecture for fractal strings, [LapPom?2]). If L is a Minkowski measurable
fractal string of dimension D € (0, 1), then (3.1) holds, with the Weyl term given by W (z) := |2|x as above and the
positive constant cpy given by cp := (1 — D)2P~1(—¢(D)).

Note that ¢p > 0 because the Riemann zeta function is negative in the critical interval (0, 1) (see, e.g., [Ti]):
¢(D) < 0 since D € (0,1). The proof of Thm. 3.1 provided in [LapPom2] is given in two different steps. The first
step consists in proving the following key characterization of Minkowski measurability for fractal strings (i.e., in one
dimension), due to [LapPom?2] and also of independent geometric interest:

The fractal string £ = {{; };’11 (of Minkowski dimension D € (0, 1)) is Minkowski measurable if and only if

L~ Ljfl/D as j — oo, for some L € (0,400);i.e.,iff L :=lim;_, o ¢; ~j1/D

Minkowski content M is given by M =2'"PLP /(1 — D).

exists in (0, 4+00). In that case, its

The second step of the proof of Thm. 3.1, also due to [LapPom?2], consists in first observing that (since the
intervals or substrings of which the fractal string {2 is comprised are vibrating independently of one another) N, (z) =
Z?’;l[ﬁjx], where [y] is the integer part of y € R, and then establishing the following (monotonic) two-term
asymptotic expansion holds: If £; ~ Li=YP as j — oo, then Z;’;l[éjx] = (Z;’il Li)x + ¢D)zP + o(aP), as
x — +00. (Observe that the leading term in this formula coincides with the Weyl term, W (x) = |§2|z.) In the proof
given in [LapPom1,2], one uses, in particular, the following form of the analytic continuation of ¢ = {(s) to the open
right half-plane {Re(s) > 0} (see, e.g., [Ser, §VL.3.2]): {(s) = Sll + fg_oo([t]_s —t~®)dt, for Re(s) > 0. Note
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that on the right-hand side of this identity, the first term yields the single, simple pole of  at s = 1, while the second
term defines a holomorphic function of s for Re(s) > 0. This identity also plays an important role in [HerLap1,5];
see §4(c) below. We mention that later proofs of a part of Step 1 above were provided in [Fal2] and in [RatWi], using
different techniques from the theory of dynamical systems or from geometric measure theory, respectively.

Remark 3.1. (a) The original Weyl conjecture was stated (in 1912) for “nice” smooth (or piecewise smooth)
bounded domains 2 CRYN (N >1) in [We], where the mathematician Hermann Weyl also obtained his classic
formula (see, e.g., [CouHil, Kac] or [ReSi, vol. IV]) for the leading spectral asymptotics of the Dirichlet (or Neumann)
Laplacian on §2 in the case of a (piecewise) smooth boundary 812. The original and stimulating Berry conjecture was
stated (in the late 1970s) by the physicist Michael Berry in [Berrl,2] for bounded open sets §2 C RN with “fractal”
boundary. It was expressed in terms of the Hausdor{f dimension and measure of the boundary, and in that form, was
disproved in [BroCarl; see also [Lapl), for general mathematical reasons and a simple family of counterexamples,
valid in any dimension. A partial resolution of the Weyl-Berry conjecture for fractal drums was obtained by the
author in [Lapl], where it was proved that for the Dirichlet (as well as, under suitable hypotheses, the Neumann)
Laplacian on a bounded open set 2 CRY (for N > 1) with boundary 082 satisfying D = D(8£2) € (N — 1, N)
and M™* < oo, we have

No(z) =W (z) + O(z), as z— +oo, (3.2)

where W () := Cn| 2|y is the N-dimensional Weyl term and || is the N-dimensional volume of 2. Here,
D notes the (upper) Minkowski dimension of 92 and, as noted in [Lapl], we always have D € [N — 1, N|. The
error estimate in (3.2) was also shown to be sharp for every N > 1 and every D € (N — 1, N); see [Lapl, Examples
5.1 and 5.1°). In the nonfractal case when D = N — 1, the error term in the counterpart of (3.2) then involves a
logarithm term; see [Lap1] and the earlier work by G. Métivier in [Met]. For further results concerning the (modified)
Weyl-Berry conjecture and discussion of its many physical applications [Berrl-2], we refer the interested reader to
[Lap1-3), [Lap-vFr3, §12.5 and App. B), [LapRaZul,5) and [Lap7, §4.1], along with the relevant references therein,
including [BroCar, FlVas, Ger, GerSchm, HamLap, HeLap, LapPom1-3, LapMail-2, MolVai, Sch]. (We note that
the analog of the MWB conjecture is not true, in general, when N > 2, although no counterexample seems to be
known for simply connected planar domains; see [FIVas| and, especially, [LapPom3].) For the case of “drums with
fractal membrane" (Laplacians on fractals, [Ki], rather than on open sets with fractal boundary, [Lap1-3]), we refer
to [KiLapl] and [Lap3] along with, e.g., [RamTo, Ham, KiLap2, Sab, ChrlvLap, LapSar, Tep, LalLap1-2)] and the
relevant references therein.

(b) It is shown in [LapPom2] that a fractal string (of dimension D € (0,1)) is Minkowski nondegenerate (i.e.,
0 < My (S)M™ < 00) if and only if £; ~ji P as j— 0o and if and only if p(z) :=|N,(z) — W(z)| ~ 2"
as x — 00, where the symbol ~ means that we have two-sided error estimates; e.g., ozl < p(x) < Ba:D, for
some constants o, 3 > 0. We will next see (in §3(b) just below) that the situation is very different when “Minkowski
nondegeneracy” is replaced by “Minkowski measurability”.

(b) The sound of fractal strings and the Riemann zeros.

In §3(a) just above, we have studied a direct spectral problem for fractal strings since in Thm. 3.1 based on
[LapPom?2] (as well as in the corresponding MWB conjecture from [Lap1]), we assume something about the geometry
of the fractal string £ (namely, the Minkowski measurability of £) and deduce some information about the spectrum
of £ (namely, that N, (x) admits a monotonic asymptotic second term). Conversely, it is natural to consider (as was
done in [LapMail,2]) the following associated inverse spectral problem:

(ISP)p If the fractal string (of Minkowski dimension D € (0, 1)) is such that its spectral counting function Ny (z)
admits a monotonic asymptotic second term as x — 400, proportional to 2P (i.e., of the form CaP, where the
nonzero constant C depends only on D and £, compare with (3.1) above), is it true that L is necessarily Minkowski
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measurable?

As was shown by the author and Helmut Maier in [LapMai2] (announced in [LapMail]), it turns out that this
question (a la Mark Kac, but of a very different nature than in [Kac]) “Can one hear the shape of a fractal string?” is
intimately related to the existence of critical zeros of ¢ = {(s) on the vertical line {Re(s) = D}, and therefore to the
Riemann hypothesis. In the sequel, we will say that the inverse spectral problem (ISP)p has an affirmative answer
for a given value of D € (0, 1) if the above fractal strings version of Kac’s question has an affirmative answer for all
fractal strings of dimension D. Equivalently, (ISP)p has a negative answer for some given D € (0, 1) if there exists
a non Minkowski measurable fractal string £ of (Minkowski) dimension D such that its spectral counting function
Ny, = N, r has a monotonic asymptotic second term (proportional to zP). Note, however, that in light of the result
of [LapPom?2] discussed in Remark 3.1(b), such a fractal string £ must be Minkowski nondegenerate.

Theorem 3.2 (Riemann zeros and the inverse problem (ISP)p, [LapMai2]). Fix D € (0,1). Then, the inverse
spectral problem (ISP)p has an affirmative answer for this value of D if and only if ( = ((s) does not have any
zeros on the vertical line {Re(s) = D}.

It follows from Thm. 3.2 that in the midfractal case when D = 1/2, the inverse problem (ISP)  has a negative
answer since ¢ has a zero on the critical line {Re(s) = 1/2}. (Actually, {(s) vanishes infinitely often for Re(s) = 1/2
but this result, due to Hardy, see [Ti], is not needed here. One zero, and its complex conjugate, which is also a zero
of ¢ since ¢(3) :@, suffices.) Furthermore, any counterexample to the Riemann hypothesis would show that
(ISP)p fails to have an affirmative answer for some D # 1/2. (None is expected, however.) Hence, we obtain the
following result, which is really a corollary of Thm. 3.2 (in light of the functional equation satisfied by ¢ = ((s),
which exchanges s and 1 — s) but that we state as a theorem because it is the central result of [LapMail,2] and is a
key motivation for several of the main results stated in the later sections (§4 and §5).

Theorem 3.3 (Riemann hypothesis and inverse spectral problems for fractal strings, [LapMai2]). The inverse spectral
problem (ISP)p has an affirmative answer for all D € (0,1) other than D =1/2 [or, equivalently, for all D €
(0,1/2) or else, for all D € (1/2,1), respectively] if and only if the Riemann hypothesis is true.

Thm. 3.3 provides a spectral and geometric reformulation of the Riemann hypothesis. For the purpose of this
paper, we will refer to Thm. 3.3 (as well as to Thm. 4.5, a corresponding operator theoretic version of Thm. 3.3
obtained in [HerLap1-3] and discussed in §4(d) below) as a symmetric criterion for the Riemann hypothesis (RH).
Obtaining an unsymmetric criterion for RH will be the object of §5.

Remark 3.2. The proof of Thm. 3.3 relies on the Wiener-lkehara Tauberian theorem [Pos| (for one of the
implications) and (for the reverse implication) on the intuition of the notion of complex dimension which, at the time,
was still conjectural (see [LapPom1-2, Lap2-3]). On the other hand, Thm. 3.3, along with results and conjectures in
[Lap1-3], [LapPom1-3), [KiLapl] and [HeLap), in particular, provided some of the key motivations for developing
in [Lap-vFr1-3] a rigorous theory of complex (fractal) dimensions via (generalized) explicit formulas and geometric
zeta functions. We also refer to [Lap-vFr1-3], especially [Lap-vFr3, Ch. 9], where Thm. 3.3 is reformulated in terms of
explicit formulas and extended to all arithmetic zeta functions for which the generalized Riemann hypothesis (GRH),
is expected to hold. For information about GRH, see, e.g., [ParSh], [Sarn], [Lap6, Apps. B, C & E| or [Lap-vFr3, App.
Al.

4. The Spectral Operator as a Quantized Riemann Zeta Function

In this section, we give a brief overview of the work of Hafedh Herichi and the author on aspects of quantized number
theory. This work is presented in the series of research and survey articles [HerLap2-5], and described in detail in
the forthcoming book, [HerLapl], titled Quantized Number Theory, Fractal Strings and the Riemann Hypothesis:
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From Spectral Operators to Phase Transitions and Universality. More specifically, in [HerLap1-5], the main object
of investigation is the spectral operator, sending the geometry onto the spectrum of a fractal string. Originally seen
as acting on the space of (generalized) fractal strings, it is now viewed mathematically (and physically) as a suitable
quantization of the Riemann zeta function: a = ((0), where 9 is a suitable version of the differentiation operator
d/dt, called the infinitesimal shift of the real line and acting on the Hilbert space H. = LQ(R7 e_2°tdt), a weighted
L2—space; see §4(b). Accordingly, the spectral operator a = a. depends on a parameter ¢ which can be thought of
heuristically as providing an upper bound for the Minkowski dimensions of the fractal strings on which the operator a
acts. In fact, as we shall see in §4(a), it is more convenient to replace the fractal strings themselves by their associated
(geometric and spectral) counting functions. As it turns out, the spectral operator, a = {(8), which was originally
introduced at the semi-heuristic level in [Lap-vFr2, §6.3.1 & §6.3.2] (see also [Lap-vFr3, §6.3.1 & §6.3.2]) satisfies
(at the operator theoretic level) most of the properties of the classic Riemann zeta function ¢ = ((s), including a
quantized Dirichlet series, a quantized Euler product and an operator-valued “analytic continuation”. (See §4(c),
along with [HerLap1, Ch. 7] and [HerLap5].) One of the key motivations of the work in [HerLap1-5] is to obtain
a rigorous functional analytic version of the work of the author and H. Maier in [LapMai2] on inverse spectral
problems for fractal strings and the Riemann hypothesis briefly described in §3(b) above. This goal is achieved (see
§4(d) below) by studying the quasi-invertibility of the spectral operator as a function of the parameter c in the critical
interval (0, 1), which is the natural range of possible dimensions of fractal strings, leaving aside the least and most
fractal cases. In this light, the Riemann hypothesis is true if and only if the midfractal case ¢ =1/2 is the only
exception to the quasi-invertibility of a; see §4(d).

(a) Heuristic spectral operator.

As we have seen in §2(c), the analog (at the level of the counting functions) of the factorization formula (2.1),
connecting the geometric and the spectral zeta functions of a fractal string £, via the Riemann zeta function
¢, is provided by the following formula, connecting the geometric and spectral counting functions N, and Ny,
respectively, of a given fractal string £: Ny (z) =3 o> | Nz (z/n), for all z>0. (Note that for a fixed z >0,
only finitely many terms contribute to this sum; however, the number of these terms tends to infinity as © — +00.)
The (heuristic) spectral operator, at the level of the counting functions, is then given by the map g(z) = Nz (z) —
Nu(9)(z) =372 g(z/n). Hence, it can be thought of as sending the geometry onto the spectrum of a fractal string
L. At an even more fundamental level, and using the notation of §2(d), the heuristic spectral operator can be thought
of as being the map 7 := 2311 Sp-1v=v(n):= Zfeo(ﬁ) d 5, where o(L) denotes the (frequency) spectrum of
L (given at the beginning of §2(C)J) and the measures 1 and v respectively represent the geometry and the spectrum
of £, viewed as generalized fractal strings (in the sense of [Lap-vFr3, Ch. 4]). (For a brief discussion of the spectral
operator expressed in terms of the complex dimensions of the fractal string £, see the text immediately preceding
Remark 2.1 in §2(d) about the densities of geometric and of spectral states of £; see also [Lap-vFr2-3, §6.3.1].)

The spectral operator was first introduced (in this semi-heuristic context) in [Lap-vFr2, §6.3.2] (see also [Lap-
vFr3, §6.3.2]). The above version is referred to in [HerLap1-5] as the multiplicative version of the (heuristic) spectral
operator. From now on, we will only work with the (equivalent) additive version, which we next describe.

Viewed additively (that is, after having made the change of variable z = e, t = log x, with z > 0 and ¢ € R),
we obtain the additive spectral operator a, to be briefly referred to henceforth as the (heuristic) “spectral operator”:

oo
F@)y=a(f)(t)=">_ f(t—logn), @.1)
n=1
where the functions f = f(¢) are viewed as functions of the variable ¢ € R = (—o00, +00). (The precise mathematical
setting will be specified in §4(b).) Given a prime p (i.e., p € P, where P denotes the set of all prime numbers), the
associated local (operator-valued) Euler factor ap is given by f(t) — >_1~_ f(t — mlog p). Formally, the spectral
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operator a is connected to its local Euler factors a;, (with p € P) via the following Euler product representation:
a= HpeP ap, where the infinite product is to be understood in the sense of the composition of operators. Next,
assuming for now that the function f is infinitely differentiable, we formally define the differentiation operator
d=ad/dt (so that Of = f’, the derivative of f,- - ,8kf = f(k), the k-th derivative of f, for any integer k£ > 0).
Then, e~ acts a shift or translation operator. Namely, f(t — k) = (e ") (f)(t).

Let us close this discussion by giving the heuristic motivations for the above Euler product formula and
for the following Dirichlet series representation of a, which will serve as the basis for our rigorous discussion in
§4(b) and §4(c): a=> 07 n~9 = ¢(8). In light of the above discussion, we have for any prime p € P, ap =
Sooge BT =57 ((pm )" =(1-p ) and so a= Y07 e 1EMI =52 | (n79) =((0), as
desired. All of these formulas should be verified by applying the corresponding expression to the function f and
evaluating at a generic ¢ € R. In actuality, the rigorous justification of these heuristic formulas requires a lot more

work and is provided (under suitable assumptions) in [HerLap1-5], as we next briefly discuss in §4(b) and §4(c).

(b) The infinitesimal shift J and the spectral operator a = ((0).

Given c € R, let H, = L? (R, e_2Ctdt) be the complex Hilbert space of (complex-valued, Lebesgue measurable)

square-integrable functions with respect to the absolutely continuous measure u(dt) = e~ 2" d¢. The inner product

of H is given (for f,g € He) by < f, g >¢c:= f_rz eiQth(t)g(t)dt and thus, the associated norm || - || is naturally
. + _

givenby ||f|[Z =< f, f >c = [T e 2 f(1)]2dt < o0.

Let Cyps(R) denote the space of (locally) absolutely continuous functions on R; see, e.g., [Foll] or [Rul].
Let 9 = 0. = d/dt denote the differentiation operator, acting on H and with domain D(9) = {f € He N Cyps(R) :
fe He}, where f " denotes the distributional (or weak) derivative of f (see, e.g., [Bre, JoLap, Ru2, Schw]), which
(since f is absolutely continuous) can be interpreted as the usual pointwise derivative of f existing (Lebesgue) almost
everywhere (a.e., in short) on R. Then, for every f € D(8), we have df := f’. The operator O so defined is called
the infinitesimal shift of the real line. (Note that it depends on the choice of the parameters ¢ € R.)

Theorem 4.1 ( [HerLapl]). For every c € R, the infinitesimal shift O = Oc is an unbounded normal operator on
He, with spectrum o (0) given by () = {Re(s) = c} = c + iR, the vertical line of abscissa c. (Here, i :=+/—1.)
Furthermore, its adjoint 8 is given by 8 = 2c — 9; so that we also have o(0*) = {Re(s) = c}. In addition, neither
9 nor 0" has any eigenvalues (hence, its point spectrum is empty).

Recall that given a (closed) unbounded, linear operator L on a complex Hilbert space H, its spectrum, denoted
by o (L), is defined as the set of all A € C such that L — AI is not invertible, where I denotes the identity operator. (In
finite dimensions, this amounts to requiring that L — AI is not 1-1, and hence, X is an eigenvalue of L; so that o(L)
is the finite set of eigenvalues of L, in that case.) The spectrum o (L) is always a closed subset of C. Furthermore, L
is invertible if and only if 0 ¢ o(L). Moreover, an (unbounded, linear) operator M, with domain D (M), is said to
be invertible if the linear map M : D(M) — H is bijective and its set theoretic inverse M ~': H — D(M) C H is
bounded (which, by the closed graph theorem, is automatically true if M is closed, as will always be the case in this
paper). Finally, if M is closed (i.e., if its graph is a closed subspace of H x H for the graph norm), then it is said to
be normal if M* M = M M™ (equality between unbounded operators), where M * denotes the adjoint of M. For all
of these notions, we refer, e.g., to [DunSch, JoLap, Kat, Ru2] and [ReSi, vol. I].

In the next result, which is needed (in particular) to rigorously justify the formulas provided in §4(a) (see
§4(c) below), we will implicitly use the theory of strongly continuous contraction semigroups of bounded linear
operators and their infinitesimal generators (i.e., m-accretive operators; see, e.g., [Go, HiPh, JoLap, Kat, ReSi]).
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Proposition 4.1 ( [HerLapl]). The semigroup {e_ha}hzo (resp., {eha}hzo) with infinitesimal generator O = O,
(resp., —0) is a contraction semigroup on He if ¢ >0 (resp., ¢ <0). Furthermore, if the roles of 8 and —9 (or
equivalently, of c and —c) are interchanged, so are the roles of “contraction” and “expansion” semigroups in this
statement. Moreover, for every f € He and h € R, we have ||e " f||c = e "||f||c and (¢~"? f)(t) = f(t — h),
fora.e.t €R (sothate " f = f(- — h) inH.). As a result, d is also referred to as the infinitesimal shift of the real
line.

Remark 4.1. Given c € R, the c-momentum operator is given by pc := %Bc, where i :=+/—1. It is self-adjoint if
and only if ¢ =0, in which case it coincides with the classic momentum operator po of quantum mechanics, acting
on Hy = L?(R) and with spectrum o(po) = R; see, e.g., [Kat, ReSi, Sc|. Similarly, if we let —Ac = (pe)? = —(dc)?
denote the free c-Hamiltonian, then the group {eiih Ae Yner is unitary if and only if ¢ = 0.

We can next proceed to rigorously define the spectral operator a = a. by the expression da. := {(9.) or, more
concisely, a := ¢(0), in the sense of the functional calculus for unbounded normal operators (see, e.g., [Ru2]). Of
course, we are using here the fact that (according to Thm. 4.1 above), J. is an unbounded normal operator. Note that,
by definition, the domain of a is given by D(a) = {f € He: af € He}. In the sequel, ¢/(E) denotes the closure of
ECCinC.

Theorem 4.2 ( [HerLap1]). Forevery c € R, the spectral operator a = a. is a (possibly unbounded) normal operator
on He, with spectrum o(a) given by o(ac) = cl({((s): Re(s) =c,s € C}). (When c=1, the pole of (, we must
exclude s =1 on the right-hand side of the above expression for o(ac).)

In words, Thm. 4.2 states that the spectrum of a coincides with the closure (i.e., the set of limit points) of the
range of ¢ along the vertical line {Re(s) = ¢}. This result follows from Thm. 4.1 combined with a suitable version of
the spectral theorem for unbounded normal operators (see [HerLapl, App. E]) according to which [since 0 does not
have any eigenvalue and ¢ is continuous for ¢ # 1 (resp., meromorphic for ¢ = 1) in an open connected neighborhood
of 0(9) = {Re(s) = c}], we have that o(a) = 0(¢(9)) = c£({(c(d))), for ¢ # 1. (For ¢ = 1, the extended spectrum
is given by &(a) :=o(a) U {oo} =((5(9)), where the meromorphic function ¢ is now viewed as a continuous

function from C to the Riemann sphere C := C U {oco}; from which the result also follows for ¢ =1.)

(c) Justification of the definition of a: Quantized Dirichlet series and Euler
product.

The first justification for the definition of a given by a = {(9) comes from the following result. In the sequel, 5(H.)
stands for the Banach algebra (and even, C*-algebra) of bounded linear operators on H, equipped with its natural
norm: || L[| :=sup{[|Lf||c : f € He, [[f[]e <1}.

Theorem 4.3. ([HerLapl,5]). For ¢>1,a=((0) is given by the following operator-valued (or “quantized”)
Dirichlet series and Euler product, respectively: a=((0) =3 7", n9= [Lep(l— p_a)_l7 where the series
and the infinite product both converge in B(Hc). Furthermore, for any integer m >1 and f € H,, we have
(m=9)(f)(t) = f(t —logm), fora. e. t € R (and hence, (m~2)(f) = f(- — logm) in H.).

9 — ¢=(08m)9 ip the sense of the functional
calculus. Naturally, Thm. 4.3 also provides a rigorous justification of the heuristic discussion (based on [Lap-vFr2-3,
§6.3.2]) given in §4(a) above. The following results (also from [HerLap5] and [HerLapl, Ch. 7]) go well beyond

that discussion but will not be precisely or fully stated here, by necessity of concision:

The latter part of Thm. 4.3 follows from Prop. 4.1 since m™

(1) (Analytic continuation of ac = ((8c), for ¢ > 0). For ¢ >0, a = a. coincides with the operator-valued
“analytic continuation” of the quantized Dirichlet series and Euler product (defined only for ¢ > 1, initially).
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More specifically, for a dense subspace of functions f in D(9) (and hence also in He), we have for all ¢ >0,
a(f)= (ﬁ) (f)+ J"Sroo([t]fa(f) —t=9(f))dt, where [t] is the integer part of ¢. Note that this identity is an

operator theoretic version of the analytic continuation of ¢ = ((s) to {Re(s) > 0} given in §3(a).

(2) (Analytic continuation of Ac=£(0¢), for c €R, and quantized functional equation). Let the global
spectral operator be defined by A=¢(9), where £ is the global (or completed) zeta function £(s):=
7%/2(s/2)¢(s). Then, for all ¢ € R, the operator-valued analytic continuation of A = A, is given by a formula
analogous to the one in (1) just above, but in which the symmetry s <> 1 — s is more immediately manifest. (This
is a quantized counterpart of the corresponding formula for £(s); see, e.g., [Edw, Ti] or [Lap6, Eq. (2.4.10)].) One
deduces from this identity an operator-valued analog (for A.) of the classic functional equation £(s) =¢(1 — s).
Namely, Ac = Be, where Be := (I — Oc). In particular, {(9 /2) = 5(8;‘/2).

(3) (Inverse of a for ¢ > 1). For ¢ > 1 (as in Thm. 4.3), a = ¢(8) is invertible (in B(H,.)), with inverse a !
given by a=t = (1/£)(8) =322, p(n)n~?, where the series is convergent in B(H..) and y is the classic Mbius
function (see, e.g., [Edw]), defined by u(n) =0 if n is not square-free and p(n) = £1 depending on whether n is
the product of an even or odd number of primes, respectively. We leave it to the reader to obtain a similar formula,
but now expressed in terms of an infinite product, using the quantized Euler product given in Thm. 4.3.

We hope that the above discussion provides a sufficiently convincing sample of formulas from “quantized
number theory”, in the terminology of [HerLapl-5] and [Lap8-9]. Many additional formulas can be obtained,
involving either ¢(9) (or £(9)) or, more generally, (7, (9), where (7, is any of the classic L-functions of number
theory and arithmetic geometry; see, e.g., [ParSh, Sarn, Lap6] and [Lap-vFr3, App. A]. Further exploration in this
direction is conducted in [Lap8] and in [Lap9], either in the present framework or else in a different functional
analytic and operator theoretic framework (using Bergman spaces, [AtzBri, HedKorZh]); see Rem. 5.2(b) below.

(d) Quasi-invertibility of a and the Riemann hypothesis.

In §3(b) above, we have briefly described the work of [LapMai2] in which a spectral reformulation of the Riemann
hypothesis was obtained; see, specifically, Thm. 3.3. We will provide here an operator theoretic analog of this
reformulation, based on the work of [HerLap1-3].

Given T > 0, let a() := ¢ (3(T)) denote the T-truncated spectral operator, where 9(T) := p(T)(E?) is the
T-truncated infinitesimal shift, defined (thanks to Thm. 4.1 above) via the functional calculus for unbounded normal
operators. In practice, one simply refers to a™ and 9T) as the truncated spectral operator and the truncated
infinitesimal shift, respectively. The precise definition of the cut-off function p(T) is unimportant, provided p(T)
is chosen so that the following computation of the spectrum of o) is justified (since o(9) = ¢ + R, by Thm. 4.1):
U(G(T)) = cﬂ(p(T) (0(9))) :=[c—1iT,c+4T). Since o = p'T)(8), the first equality follows from the spectral
mapping theorem (SMT), (applied to the unbounded normal operator O and the function p(T), see [HerLapl, App.
E]), while the second equality follows from the construction of p(T). In fact, when ¢ # 1, the only requirement about
p(T) is that it be a C-valued, continuous function on ¢ + iR = {Re(s) = ¢} whose (closure of the) range is exactly
equal to the vertical segment [¢c — T, ¢ 4+ ¢T']. When ¢ = 1 (which corresponds to the pole of ((s) at s = 1), instead
of requiring that p(T) is continuous, we assume that p(T) has a meromorphic continuous to a connected neighborhood
of {Re(s) = c}. Indeed, when ¢ # 1 (resp., ¢ = 1), we can then apply the continuous (resp., meromorphic) version of
the spectral mapping theorem (SMT) given in [HerLap1, App. E].

Again, in light of the functional calculus form of the spectral theorem and of SMT, given in [HerLap1, App. E]
(applied to the operator O and to the function ¢ = ¢(s), which is continuous along o(8) = {Re(s) =c} if c# 1 and
meromorphic in a connected open neighborhood of o(9) if ¢ = 1, the pole of {), we have (since al™) = ¢ (O(T)))
that U(a(T)) = CE(C(U(G(T) )) =cl(¢([c — T, c+ ¢T)). Hence, we conclude (see [HerLap1] for the proof) that the
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spectrum of a(™) is given by U(a(T)) ={¢(s) :Re(s) = ¢, |Im(s)| < T}, which is a compact subset of C for ¢ # 1.
For ¢ = 1, the same formula holds provided one keeps the closure and also requires that s # 1 on the right side of the
above expression for o ( al?) ). Alternatively, one can view ¢ as a continuous C-valued function, with C := C U {0},
and replace the left side by 5(a(T)) = a(u(T)) U {00}, the extended spectrum of (™) Note that for ¢ # 1, aT) is
bounded, so that 5(a(T)) = cr(a(T))7 following the traditional notation.

Remark 4.2. Since, as follows easily from Thm. 4.1, we have 0 = ¢ + iV, where V := (0 — ¢) /i is an unbounded
self-adjoint operator with spectrum o(V') given by o(V) =R (and with no eigenvalues), one can equivalently
define 8" by 81) .= c + iV ") where V() .= &) (V) and &) : R — R satisfies ct(#T)(R)) = [T, T).
In addition, when ¢ # 1, one requires that o) is continuous while when ¢ =1, one assumes that o) admits a
meromorphic extension to a connected neighborhood of R in C.

We can now introduce the following key definition. The spectral operator a is said to be quasi-invertible if
each of its truncations a(”" is invertible (for T > 0), in the usual sense (and hence, if for every 7' > 0,0 ¢ a(a(T)).
Using Thm. 4.2 and the above expression for a(a(T)), along with the fact that an operator is invertible if its spectrum
does not contain the origin, it is easy to check that if a is invertible, then it is quasi-invertible. The converse, however,
need not be true, as we shall see in §5. (It turns out that assuming that for all ¢ € (0, 1/2), the quasi-invertibility of
a = ac is equivalent to its invertibility, is equivalent to the Riemann hypothesis; see Thm. 5.3.)

The first result in this context is the exact operator theoretic analog of Thm. 3.2 (from §4(c) above).

Theorem 4.4 (Riemann zeros and quasi-invertibility of a, [HerLapl], [HerLap3]). Fix c € R. Then, the spectral
operator a = ac is quasi-invertible if and only if ¢ = ((s) does not have any zeros on the vertical line {Re(s) = c}.

It follows that in the midfractal case when ¢=1/2, a; /2 is not quasi-invertible (since ¢ has a zero along the
critical line {Re(s) = 1/2}) and that for ¢ > 0 (in order to avoid the trivial zeros of , located at s = —2, —4,- - ),
a is expected to be quasi-invertible everywhere else. (Recall that according to Hadamard’s theorem (see, e.g., [Edw,
Ti]) and the functional equation for ¢, ¢ = {(s) does not have any zeros along the vertical lines {Re(s) =1} and
{Re(s) = 0}.) In particular, we have the following operator theoretic counterpart of Thm. 3.3 (from §3(b)).

Theorem 4.5 (Riemann hypothesis and quasi-invertibility of a, [HerLap1], [HerLap3]). The spectral operator a = a.
is quasi-invertible for all c € (0,1) (other than for ¢ =1/2) [or equivalently, for all c € (0,1/2) or else, for all
c € (1/2,1), respectively] if and only if the Riemann hypothesis is true.

Just as for Thm. 3.3, we refer to Thm. 4.5 as a symmetric criterion for the Riemann hypothesis (the symmetry of
the roles played by the intervals (0,1/2) and (1/2, 1) being due to the functional equation satisfied by (). Finally,
we close this section by noting that Thm. 4.5 also provides a precise and correct functional analytic formulation of
the semi-heuristic result stated in Cor. 9.6 of [Lap-vFr2,3] about the “invertibility” of a.

5. Invertibility of the Spectral Operator and an Asymmetric
Reformulation of the Riemann Hypothesis

We have discussed in §3(b) (based on [LapMail,2]) and in §4(d) (based on [HerLap1-3]) two different, but related
(at least in spirit) symmetric reformulations of the Riemann hypothesis; see Thm. 3.3 (from §3(b)) and Thm. 4.5
(from §4(d)), respectively. Our goal in this section is to provide a new asymmetric reformulation of the Riemann
hypothesis (due to the author), as well as to explain why it cannot be modified so as to become symmetric (with
respect to the midfractal dimension ¢ = 1/2), without drastically changing the nature of the problem. As we shall
see, this new reformulation is directly expressed in terms of the invertibility of a.
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In §4(d), we have studied the quasi-invertibility of the spectral operator a = a. (that is, the invertibility of
each of its truncations a(7) = aET), where T' > 0 is arbitrary). In fact, both Thm. 4.4 and Thm. 4.5 (from §4(d)) are
stated in terms of the quasi-invertibility of ac, either for a fixed ¢ € (0, 1), with ¢ # 1/2 (in Thm. 4.4) or (in Thm.
4.5) for all c € (0,1) with ¢ # 1/2 (equivalently, for all ¢ € (0,1/2) or else, for all ¢ € (1/2,1)). (Recall from the
discussion following Thm. 4.4 that ay /5 is not quasi-invertible and hence, not invertible.) However, although very
convenient in the context of §4(d), the new notion of “quasi-invertibility”, because it involves a truncation of the
infinitesimal shift 9 (and hence, also of a as well as of its spectrum o (a); see the beginning of §4(d)), is perhaps not
so easy to grasp or to verify explicitly. Indeed, we lack concrete formulas for a(T) whereas we have several explicit
expressions for a to our disposal, even when ¢ € (0, 1).

It is therefore natural to wonder whether the (usual) notion of invertibility of the spectral operator a = a.
cannot be used to reformulate the Riemann hypothesis in this context. (See the discussion following Thm. 4.1 for the
usual notion of invertibility of a possibly unbounded operator.) The answer to this question is affirmative, as we shall
explain below; see Thm. 5.1. Moreover, in light of Thm. 4.5 (based on the results of [HerLap1-4]), the asymmetry
of the resulting criterion for RH turns out to be intimately connected to the universality of the Riemann zeta function
¢ =¢(s) in the right critical strip {1/2 < Re(s) < 1} as well as to its (presumed) non-universality in the left critical
strip {0 < Re(s) < 1/2}. This last statement will become clearer as we progress in §5. We can now state and prove
the main result of this section. (See also Thm. 5.3.)

Theorem 5.1 (Asymmetric criterion for RH and invertibility of a). The spectral operator a = a. is invertible for all
c € (0,1/2) if and only the Riemann hypothesis is true.

By contrast, we have the following result, which was already observed in [HerLap1-4] and clearly shows that
the reformulation of RH obtained in Thm. 5.1 is asymmetric, in a strong sense.

Theorem 5.2. The spectral operator a = ac is not invertible for any ¢ € (1/2,1).

Proof of Thms. 5.1 and 5.2. (i) Let us first prove Thm. 5.1. Recall that a is invertible if and only if 0 ¢ o(a). In
light of Thm. 4.2, we know that for any ¢ € R (with ¢# 1) and with a = ac, as usual, o(ac) coincides with the
closure of the range of ¢ = ((s) along the vertical line {Re(s) = c}. Now, according to a result of Garunkstis and
Steuding in [GarSte] concerning the non-universality of ¢ in the left critical strip {0 < Re(s) < 1/2}, we know that
conditionally (i.e., under the Riemann hypothesis), we have that for all ¢ € (0,1/2), o(a) (that is, the closure of the
range of ¢ on {Re(s) = c¢}) is a strict subset of C and, in fact, that 0 ¢ o (a); see [GarSte, Lemma 4 & Prop. 5] and
their proofs. Hence, a is invertible.

Conversely, assume that a = ac is invertible (i.e., 0 ¢ o(a)) for every c € (0,1/2). Then, since (by Thm. 4.2)
o(a) D{¢(s) : Re(s) = c}, it follows that {(s) # 0 for all s € C with Re(s) = c and every c € (0,1/2). In light of
the functional equation for ¢, we then deduce that {(s) # 0 for all s € C with 0 < Re(s) < 1,Re(s) # 1/2; i.e., the
Riemann hypothesis holds. This concludes the proof of Thm. 5.1.

(ii) According to the Bohr—Courant theorem [BohCou], which itself is implied by the universality of ¢ in the right
critical strip {1/2 < Re(s) < 1} (see, e.g., [Ste] for an exposition), the range of { is dense along every vertical line
{Re(s) =c}, with 1/2 < ¢ < 1; i.e., in light of Thm. 4.2, o(a) = C and hence, 0 € o(a). Therefore, the conclusion
of Thm. 5.2 holds: a is not invertible for any ¢ € (0, 1/2), as desired. This completes the proof of Thm. 5.2. O

Remark 5.1. (a) The universality of ¢ implies a much stronger result than the one used in the proof of Thm. 5.2 (part
(ii) of the above proof). Namely, for every integer n > 0 and every c € (1/2,1), the range (along the vertical line
{Re(s) =c}) of (¢(s),¢'(s),- - ,C(")(s)) is dense in C"*1, where C(k)(s) denotes the k-th complex derivative
of C at s€ C and C(O) := (. This generalization of the Bohr—Courant theorem (from [BohCoul) is due to Voronin
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in [Vorl] and was probably a key motivation for Voronin’s discovery in [Vor2] of the universality of ¢ (in the right
critical strip). The universality theorem was extended to (suitable) compact subsets of the right critical strip by
Bagchi and Reich in [Bag| and [Rei]. We refer; e.g., to the books [KarVor, Lau, Ste] along with [HerLap1,4] for many
other relevant references and extensions of the universality theorem to other L-functions.

(b) The universality of ¢ in the right critical strip roughly means that given any compact subset K of
{1/2 < Re(s) < 1} with connected complement in C, and given any nowhere vanishing (complex-valued) continuous
function g on K that is holomorphic on the interior of K (which may be empty), then g can be uniformly
approximated by some (and, in fact, by infinitely many) vertical translates of ¢ on K.

(¢) A quantized (i.e., operator-valued) version of universality is provided in [HerLap1,4]. Interestingly, in that
context, the natural replacement for the complex variable s is the family of truncated spectral operators { o7 Yr>o-

The spectral operator a = a. is bounded (and hence invertible, with a compact spectrum o (a) not containing
the origin), for every ¢ > 1; it is unbounded (and therefore its spectrum o (a) is a closed unbounded subset of C)
for every ¢ < 1. It is not invertible for 1/2 < ¢ < 1 since 0 € o(a) = C; by contrast, according to Thm. 5.1, it is
invertible (i.e., 0 ¢ o(a)) for every c € (0, 1/2) if and only if the Riemann hypothesis is true. For a discussion of the
mathematical phase transition occurring (conditionally) in the midfractal case when ¢ = 1/2, we refer to [Lap2,3]
and [HerLap1,2]. In the present context of §5, we also refer to the brief discussion at the end of the introduction (§1).

Let b=a"a (= aa”, since a is normal). Then b = b. is a nonnegative self-adjoint operator. It is bounded
(resp., invertible) if and only if a is; that is, iff ¢ > 1 (resp., ¢ > 1 or, conditionally, 0 < ¢ < 1/2). Furthermore, b is
invertible if and only if it is bounded away from zero (i.e., b > «, for some constant « > 0, which may depend on
c). We may now close this section by stating the following theorem, which provides several reformulations of the
Riemann hypothesis discussed in this paper, as well as a new one (the last one given in Thm. 5.3).

Theorem 5.3. The following statements are equivalent:

(i
(ii
(iii

(iv

The Riemann hypothesis is true.
The spectral operator a is invertible for every c € (0,1/2).
The spectral operator a is quasi-invertible for every c € (0,1/2) (or equivalently, for every c € (1/2,1)).

-_

For every ¢ € (0,1/2), the unbounded, nonnegative, self-adjoint operator b is bounded away from zero (i.e.,
is invertible).

Proof. (i) < (ii): This follows from Thm. 5.1.
(i) & (iii): This follows from Thm. 4.5.
(i1) < (iv): This follows from the discussion immediately preceding the statement of this theorem. O

We note that, as was discussed earlier, the equivalence between (i) and (iii) is a symmetric criterion for RH. By
contrast, the equivalence between (i) and (ii) is an asymmetric criterion for RH. Therefore, so is the equivalence
between (i) and (iv), which, in practice, might provide the most hopeful way to try to prove the Riemann hypothesis
along those lines. The author has obtained some preliminary (but not definitive) results in this direction, based on
explicit computations and by using a suitable class of “test functions” in D(b), the domain of b, but it is premature
to discuss them here.

Remark 5.2. (a) It is natural to wonder what is the inverse of a=a. when 0 < c<1/2. We conjecture that,
under RH, it is given by a=1(f) = S w(n)n=2(f) (so that a=L(f)(t) = Soo 1 m(n) f(t —logn)), for all
f € D(a) =He, where jn = p(n) is the Mobius function (compare with part (3) of §4(c)). Accordingly, the quantized
Riemann zeta function a = {(0) would behave very differently from the ordinary (complex-valued) Riemann zeta
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function { =((s). Indeed, even under RH, the Dirichlet series >, 1 p(n)n™° cannot converge for any so € C
such that 0 < Re(so) < 1/2. If it did, then its sum would have to be holomorphic (see [HardWr| or [Ser, §VI.2]) and
to coincide with (1/¢)(s) on {Re(s) > Re(so)}, which is impossible because 1/( must have a pole at every zero of
¢ along the critical line {Re(s) = 1/2}. (See also, e.g., [Edw].)

(b) The same methods as those discussed in this paper can be applied to a very large class of L-functions (or
arithmetic zeta functions), all of which are expected to satisfy the generalized Riemann hypothesis (GRH); see, e.g.,
[Sarn, ParSh), [Lap-vFr3, App. A] and [Lap6, Apps. B,C & E|. For obtaining the analog of the results of §5, we would
need to use, in particular, the universality results discussed in [Ste]. The relevant results of [GarSte] used in the proof
of Thm. 5.1 would also need to be extended to this broader setting.

(¢) In [Lap8,9), the author has adapted (and extended in various directions), the present theory to a new
functional analytic framework (based on weighted Bergman spaces of entire functions, see [HedKorZh, AtzBri)).
At this early stage, it seems that depending on the goal being pursued, one approach or the other may be more
appropriate. In particular, the approach discussed in the present article (beginning with §4) is ideally suited for
formulating and obtaining the new results of §5.
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He := L?(R, e 24 dt), weighted HIlbert SPACE . ... ... .. omee st 14
T = /=1, IMaginary UNit. ... .......ooou ittt et e et e e e e e e 7
INVEIHDILILY . . oot e 4,17
(ISP) p, inverse spectral problem for the fractal strings of Minkowski dimension D ................... 11
& =£&(s), completed (or global) Riemann zeta function...............cooiiiiiiiiiiiniinenen... 7
log,, z, the logarithm of z > 0 withbase a > 0; y =log, z <z =a¥... ... .o, 7
log = :=log, , the natural logarithm of z; y =logz <o =e¥. ... ..o 8
L= {;}721, afractal string with lengths £; . ... 5
midfractal Case. ... ... .. 4,6,12,13,17,19
Minkowski content (of a Minkowski measurable fractal string)............ ..o, 6
Minkowski nondegenerate (fractal String) . . ... ...ttt e 6
Minkowski measurable (fractal String) ... ......c..ou ottt e 6
M, 4 and M}, lower and upper d-dimensional contents of a fractal string £ (or of a bounded set A C RrRY)
............................................................................................. 5,11
M, M, and M*, Minkowski content, lower and upper Minkowski content (of £ or of A C RY) ... 611
(1), MODIUS FUNCHON . . . ..ottt et e e e e e e e 19
N, geometric counting function of a fractal string £...........o i, 5-6
Ny, spectral (or frequency) counting function of a fractal stringordrum ........................... 7,11
{2, e-neighborhood of a fractal string (or of a fractal drum)........... ... ... ..., 5,11
P, the set Of Prime NUMDETS . . . . ...ttt ettt et e ettt et et 7
QUAST-INVETtIDIIILY . . . e e 13,16
res(f;w), residue of the meromorphic function fatw €C........c.ooiii i 8
Riemann hypothesis . ... ... e 3,12,16,17,18
Riemann’s explicit formula. ... ... ... e 8
o (L), spectrum of a fractal string £ ... ... .. .. o e 6
0 (T), spectrum Of the OPErator T ... ..ottt et et e ettt e e e et 14
o (T), extended spectrum of the OPerator 1" .. ... ........uuutiu ettt 16
V (¢), volume of the e-neighborhood of a fractal string (or drum).............c.ooovuiinieninaen.... 5,11
L0670 TR L2557 1 1= ' P 10-11
[],integer part of @ € IR ..o .t 10
C(s) =352 77 %, Riemann zeta function. . ............oouuuuiuiiuiineiiiaainiiiiiieeeenn. 6-7
Ce(s)= Z]oil (€)%, geometric zeta function of a fractal string £ = {£;}72; ...l 6
Cv = (. spectral zeta function of a fractal string £............... ... ... 6,10
[| - ||es norm of the Hilbert space He . . ... c.ounenin ettt e 14
< -, >¢, inner product of the Hilbert space He. ..o 14
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