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1. Introduction

This is a short summary of the progress of the last few years in exact non-perturbative
calculations in supersymmetric gauge and string theories, based on the formalism of the
instanton partition functions. We discuss theories in various spacetime dimensions, and
connect their partition functions to algebraic geometry, combinatorics, integrable systems,
representation theory of infinite-dimensional algebras, and topology, on the mathematical
side, and to the low-energy gauge theory dynamics, wall-crossing of the particle spectrum,
crystal melting, random growth models, and the models of electrons in random fields, on
the physical side. In these lectures we shall discuss instanton partition functions in two,
four, and six dimensions. These partition functions capture some information about the
spectrum of the supersymmetric gauge theories, more precisely their low-energy dynamics.
Some of these theories are not defined as quantum field theories, and need string theory
for their microscopic definition. Remarkably, as we shall discover, they know even about
the M-theory. Our conjectures include the identities between the generalization of the
MacMahon formula and the character of M-theory, compactified down to 0+ 1 dimension.
The organization of these notes is the following. We start, in the section 2, with the
quick review of M-theory. In the section 3 we discuss gauge theories in various spacetime
dimensions, ranging from two up to eight. These theories, as we shall explain in section
3, can be topologically twisted, or partially twisted, to give an integral representation of
intersection theory on some moduli space M, or its K-theoretic version. Mathematicians
usually study the moduli spaces M x of solutions of gauge theory equations defined over
a compact manifold X (which can be two, four, or six dimensional in our problems). The
twisted gauge theory correlation functions can be then used to define some invariants of
X. When X has some symmetry group H, which preserves the gauge theory equations,
the intersection theory and K-theory of Mx have the H-equivariant version. In the
section 4 we introduce the main object of our study: the instanton partition functions.
These are the partition functions defined using the H-equivariant theory on Mg2a for
H = S0(2d) or U(d). The section 5 presents the instanton partition functions as the
sums over N-tuples of various kinds of partitions, for G = U(N). The section 6 collects
various interesting facts about these partition functions. We relate the partition functions
in 2 and 2+ 1 dimensions to quantum integrable systems, the partition functions in 4 and
4 + 1 dimensions to the representation theory of infinite-dimensional Lie algebras, (2,0)

tensor multiplet in six dimensions, statistical mechanical models and to algebraic integrable
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systems; finally, the partition functions in 6 dimensions are related to dimer models, free
fermions, two dimensional lattice electrons in random fields. Our final partition function,
that of 6 + 1 dimensional theory is then related, for G = U(1), to the partition function of

the eleven dimensional linearized supergravity.



2. Combinatorial partition functions

Counting is in the human being’s nature. We count sigarette buds, or steam locomo-
tives, stars in the sky, or fish in a sea, or neighbour’s possessions. Abstractly speaking, we
count some objects, with, or without structure.

The first, trivial, generating function, just counts the objects without any structure,

only paying attention to the total number of objects:

1 =1
sol(q)=1+q+q2+---:ﬁ:exp (ngﬁ) (2.1)

n=1

The next level of sophistication arises when we try to remember how a collection of n
objects could have fallen on our hands. For example, it could have come as a union,
or as a bound state, of more elementary collections, of which we only care about their
total number, as in the first example. In this way we are led to the problem of counting
partitions of natural numbers. We define p2(n) as the number of ways to represent n as
a sum of natural numbers (up to permutation of summands). For example, po(1) = 1,

p2(2) =2, as 2 =2,2=1+ 1. Each partition A\, accounted for by p2(n) is a collection
A= (M >X>X3>...> M >0) (2.2)

of integers, so that by definition:

£(N)
n=IA=) X\ (2.3)
i=1
For the partition A, |A\| = n is called the size of the partition, and ¢()), the number of
non-zero entries, is called the length of the partition. The notation ps(n) comes from the
two dimensional nature of the Young diagram of partition A\. The Young diagram is a
collection of squares attached one to another, so that the first row has \; squares, the
second row has Ay squares, and so on. Given a partition A, a dual partition A is such that
its Young diagram is the flipped Young diagram of . In other words A\ = #{j|\; > i }.
Of course, [A\| = |\f|.

The generating function of the numbers py(n) is well-known:

erl@) = 300 = D pa)g” = [[ 1= = e <2%1 f"qn) (24)
A n=1

n=1 n=1
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The amazing property of this generating function is its modularity:

@2 (e2™'7) = \/;8712(”%)@2 (e_ 2:i> (2.5)

which allows to estimate the large n behavior of ps(n) to a very good accuracy.

The simple counting of the two dimensional partitions can be generalized in a number
of ways.

For example, the partitions \ of size n = |\| label the irreducible representations of the
symmetric group S,. Indeed, the irreducible representations of a finite group are in one-
to-one correspondence with the conjugacy classes. For the symmetric group the conjugacy
classes are labeled by the multiplicities of the cycles of a given length. By ordering these
lengths we obtain a partition. For any finite group I' one can define a natural measure on

the space I'V of its irreducible representations:
dim(X\)\”
o= (%) 20

1
Z KX = m (2.7)

This so-called Plancherel measure is the Fourier transform of the Haar measure on the

which is normalized so that

group. For I = §,,, the measure (2.6) can be viewed as a Boltzmann weight for some sta-
tistical mechanical model. This model describes boundary of the Young diagram, viewed
as a discrete version of a sand pile. One rotates Young diagram by 135° degrees counter-
clockwise. The rotated Young diagram can be obtained as follows. Start with the wedge,
the plot of the function f(z) = |z|. Take n squares, rotated 45° clockwise, and start drop-
ping them, one by one, into the wedge. The squares will slide down, until they stop, at the
wedge, or at the square below. The measure (2.6) is simply the quantum mechanical prob-
ablity of creating a pile of squares which corresponds to the Young diagram of a partition
A. In other words, the amplitude of getting A is just the number of ways of arriving at it
by dropping one square after another, assuming that the dropping position is chosen at
random, dividing by the order of the permutation group, and the probability is the square
of the amplitude. Thus, puy =1, ey = a1 = 2%, pez)y = 6%#(271) = 3%,;/41,171) = 6%.
The Boltzmann weight (2.6) can be also expressed as a product over the squares in the

Young diagram, or as the product over the pairs of boundary squares. In other words,
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the boundary of Young diagram behaves as a chain of interacting beads. The energy of

interaction is given by the logarithm of the so-called hook-length:
& (x,y) =log|hiz |° (2.8)

where © = (i,\i), y = (N, ), Ry = A\ —J + Ab —i+ 1. The Plancherel measure is
thus the Boltzmann weight of the Coulomb-gas like interacting beads, at the temperature
6=1:
=TI o =em |- Y &) (2.9
(i,5)EX  (6:3) z,yE€ON, Ty
The Plancherel measure (2.9) has an asymmetric generalization, parametrized by two

numbers (€1, €3):

pa(€1,€2) =exp |— Z E(x,y;€1,€2) (2.10)
T,YyEON, xF#Y
where
5(:13,’3/; €1, 62) = 10g (61 (ai,j + 1) — 62([1‘73')) (—61 (CLZ"J') + Gz(li’j + 1)) (211)

where the “arm-length” a; ; = \; — j and the “leg-length” [; ; = )\§- — i (of course, in order
for (2.11) to define a meaningful energy, the parameters €7, e must obey some inequality,
which we shall not discuss here). There are more generalizations of importance: the

“massive”,

(e1(aa+ 1) — ea(lg) + m) (—e€1(aq) + e2(lz+ 1) + m)

€1,€2, M) = 2.12
maleneam) = L e o et + eallo 4 1) (212)
the trigonomentric,
a; j —liyj —Qg,j li,j
e )
(g1, g2, m) = m 11 (2.13)

i,'+1 —li" —Ui,5 li,.'+1
cijer (1—ai e ) (1 gl

the elliptic, and so on. They interpolate between the Plancherel measure (2.9) and the
uniform measure (2.4).

The generating functions, summing over all partitions with the measures (2.13),(2.12),
(2.10), (2.9) are quite beautiful, and exhibit unexpected symmetries, generalizing the mod-

ularity (2.5):

(m+ey)(m+tes)

Z(er,e2,m,q) = Y g (e1,e2,m) = pa(q) w12 (2.14)
X
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VOO (1 — mg, @ g0

. 1—m
Z™ (g1, qm,q) = > ¢ ] ( a

T oo m(1— i@ )1 - g Pg O

' as n 1 —-m"q7)(1 - m"gy)
Zlnst . — g ( ! : 2.1
(41,2, 9) = exp (223 (=g (1 —gf)(1— gj) 1)

Actually, the formula (2.15) is still a conjecture, and the formula (2.14) is proven in [1] in

the special case €; + €2 = 0. An equivalent form of (2.15):

—1,a—1 _b—1 _pn

0 O a b_]- n —1 n
7% gy qrm.q) = [[ ] (1-qfgs "q")(1—dqi "¢3q")
s 42, 1, (1_m )(1_mabn)
n=1a,b=1 a 42 ¢ 41429

The next level of sophistication is counting the three dimensional partitions. The three
dimensional partition 7 is a stack of two dimensional partitions, which are non-increasing

in an obvious geometric sense:

T =A{mij|mij € Zxo, hij = i1, Wiy = i1} (2.16)

For fixed a, \; = m; , defines a partition, similarly A\; = h, ; also defines a partition. More
generally, for fixed a,b, \; = Tqypip+q: defines a partition, for p,q > 0. We can view the

three dimensional partition as the set of points in Zi’_:
W:{(i,j,k)|i,j,k6 Z+7 1< k Sﬂ-i,j}
:{(%.77]{:)’@7.77]{:62—}—71§2§’7F‘7,k:} (217)
={(,5,k)|i,5k €2y, 1<j<m;}

Finally, the three dimensional partition 7 defines three two dimensional partitions
w* w¥, %, its shadows on the coordinate planes yz, xz, ry, respectively:

(t,j)en® & m,; >0

(i,k) e ¥ < 7r§’,C >0 (2.18)

(j,k)en” & mir>0

The size, or rather the volume, of the partition 7, is the sum:

|7T|: Z 772',]': Z ;T/ij: Z Wg,k (219)

(i,j)en* (4:k)em® (4,k)emy

6



The generating function of the number of the three dimensional partitions of a given size

is known as the MacMahon formula:

oo

9)=>_¢d" = ps(n)g Hl_q = Z%l_q (2.20)

The two dimensional random partitions and the three dimensional random partitions can
be related in many ways. For example, one can define a measure on two dimensional

partitions A by counting all three dimensional partitions which project inside A:

ralg) = > g™ = T gon (2.21)

wimy i >0=(1,5)EX

The measures ) (q1, g2, m) also have analogues for the three dimensional partitions:

pr(qr,g2,q3) = [ e &Y (2.22)
T, yeoT

Here, for x = (i,7,m ), y = (Tjr 1, j', k):

1_q’L 7T /kqj ] +1q7r1 ]+1 k
e &3(@y) — 2 3 x similar factors (2.23)
T—T j—j5 i i+1—k
1 — q J ,kq% J q;" J

We write the precise formula in the following sections. The generating function is conjec-

tured to be (for Q =g (qlngg)_%):
Z(q1,42,43,9) = Y q" e (01, 42, 03) =

R Q" (1 —qi'g3)(1 —gi'g5)(1 — g5 qt)
o ( 2= a0 - aaEE (- - @0 - )

n=

> sin <M> sin <M) sin <n5(e2+€3 )

2

Z 1

(2.24)

where
Be

Bex — oPe2 g = e’

, @2 = €72, gz = e’

g =e¢

6426—%(61—|—62—|—63), (2.25)
65:—6—%(61+62+63),

€1 t+ex+e3+es+es =0
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In the rational limit 8 — 0, ¢-finite, the measure (2.23) reduces to the so-called equivariant

vertex measure [2],[3], and the partition function (2.24) reduces to:

(e1te2)(e1+e3)(ea+te3)

Z(€1,€2,€3,9) = p3(q) €1€z¢3 (2.26)

This formula is actually rigorously proven, in [3].



3. Geometric partition functions

The partition functions we presented in the previous section arises in the following
geometric problems. One studies K-theory or intersection theory of some moduli space
M., typically defined by some matrix polynomial equations. Among the matrices we shall
have n xn matrices B,, where a = 1,...,d. In the first story d = 1, for the two dimensional
partitions d = 2, and d = 3 for the three dimensional partitions. The space M,, is acted on
by the group T = U(1)?. In addition it may be acted upon by some other group G. The
partitions in one, two, and three dimensions are the T-fixed points in M,,. The geometric

partition functions are the generating functions of the integrals
Z=)Y ¢ X, (3.1)

where &, is some T-equivariant characteristic class of M,,, which depends on a particular
theory we wish to study. Let t = LieT. The localization with respect to the T-action then

expresses (3.1) as the sum over the fixed points:
X (f)
2oy 2
" FEMT [ wi(f)

where w;(f) € t* are the weights of the T-action on TyM,,, and X,,(f) is the restriction
of X, at the fixed point f. In the equivariant K-theory the formula (3.2) is similar except
that X, stands for the equivariant K-theory class, and the denominator has (1 — e~ wilf ))

instead of w;(f).
25 =3 d" ) L, (1 — e~ (3.3)

n  femr Lli

3.1. One dimension
Let d = 1. Consider the space of pairs: (B,I), B € End(C"),I € C". Define M,, to
be the symplectic quotient of that space by the action of U(n):

M, ={(B,I)|[B,BN+I®I=r-1,}/(B,I) ~ (gBg~*,gI) (3.4)

for g € U(n). Incidentally, the space M,, is the phase space of Calogero-Moser integrable
system, for » > 0. For r < 0 it is empty, and for » = 0 it is singular as a real manifold,

but it is a smooth complex variety, isomorphic to C™.
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Let us assume that r > 0, and take X,, = 1. Take T = U(1) acting on M,, by sending
the class of (B,I) to (¢1B,1I), ¢ € U(1). The fixed points of the T-action are easy to
classify: these are the operators B and the vector I such that the U(1)-transformation can

be undone by the U(n) transformation:

@B = g(q1)Bg(q) ™, g(q)I =1 (3.5)

One can find a basis ey, es, ..., e, in C", where g(¢;) is a diagonal matrix, and

n—1
glq)ei=q¢ " te;, I =/nre;, B = Z Vr(n—i)e @el (3.6)
i=1

Thus, there is only one U(1)-fixed point f on M,. The tangent space to M,, at f is a

representation of U(1). Its character:

Z el =V — (11— q)VV* = Z gt (3.7)

=1
where V = trcng(q1),V* = traong(qi) !, and the K-theoretic partition function is equal

to:

oo n

q
qla — —
Z 1—C]1 1—6112)---(1—Q1n)

= exp ( qn ) (3.8)

= [0 -aq

If we choose as X, a class of the virtual bundle:

n
X, = (-1Ym/NT;, (3.9)
§=0
then the contribution of the fixed point f is modified to:
(1—mq1_1)...(1—mq1_")
Q=g ). Q=g ™)
while the partition function of the “massive theory” is equal to:

oo

,(1-mgh)...1-mg™")
,;q I-qh. (1-q"

- ( q_m_—gl) (3.10)

Z(qi;m,q) =

n 1—qj
_ﬁ 1—qfq
= 1
n:ll_mq? q

which for m = 1, the Euler characteristic, gives our first generating function ¢1(q) (2.1).
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3.2. Two dimensions

In this problem the space M,, is the Hilbert scheme of n points on C?, which can be

given a description similar to (3.4):

M=% = {(By,By,1,J)| By2 € End(C"),[ € C™,J € C™,
[B1,By] +1J =0, [By,Bl]|+[By, Bl + I I —J @J=r1,}/Un)  (3.11)
(B12,1,J) ~ (gBl,gg_l,gI, Jg_l) ,for g € U(n)

The space M,, is acted upon by the group U(2) under which (B;, Bs) transform as a
doublet, and (I,J') as a doublet of SU(2) C U(2). With respect to the torus T =
U(1l) x U(1) C U(2), the data (B2, I, J) transforms as follows:

(B1, B2, 1, J) = (q1B1, g2 Ba, (Q1Q2)1/2 I, (CJ1C]2)1/2 J) (3.12)

Let us assume that r > 0 for definiteness. Then one can show that J = 0, and that
the set of polynomials P(x1,z2) such that P(By, B2)I = 0 form an ideal in the ring of
polynomials in two variables, of codimension n. The fixed points of the T-action on M,,
are the monomial ideals, which are in one-to-one correspondence with the partitions A\ of

size |[A\| = n. The ideal Z) corresponding to the partition \ is generated by
et i =1, 00\ .

Equivalently, it is generated by

AL g

J ped M
x'wy L =1,

The character of the tangent space to M,, at \ is

troom, (1,2) = eV +V = (1 —q1)(1 — q)VV* =

Zqﬁcﬁqu;lU i q;agqécﬂrl (3.13)
OeA

which explains our “arm-leg” measures on the space of two dimensional partitions, if we

use (3.9) as the equivariant K-theory class.
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3.2.1. Non-abelian version

The moduli space of U(N) instantons on (noncommutative) R? have a similar de-
scription:
M) = {(By, By, 1,J)|
By € End(C™), I € Hom(C",C"),J € Hom(C",C"),
[Bi1,By] +1J =0, [By, Bi] + [Ba, B + II1 — JTJ = r1,}/U(n)
(Bi2,1,J) ~ (gBl,ggfl,gI, Jg~1) for g € U(n)

(3.14)

3.3. Three dimensions

Here the story is more involved. Define M,, as the space of quadruples (B, Be, B3, Y)

of n x n matrices and a vector I € C" subject to the equations:

[B1, Bs] + B, Y]

[Bs, By] + [B1,Y]

[Bs, B3] + [Bl, Y]

[B1, BI] + [Bs, B] + [Bs, Bl
YI=0

|
+ o o o

(3.15)
VY +IeI =r1,

viewed up to the action of U(n) via:
(B1, B2, B, Y, 1) — (9Brg™ ", 9B29" ", 9Bsg ™", 9Y g™, 9) (3.16)

On the solutions (3.15) we have: Y = 0, [B;, B;] = 0, and one gets an ideal 7 in Clz1, x2, 3]
similarly to the two dimensional construction. The space M,, being a quotient of the space
of eight Hermitian n x n matrices and a complex n-vector, by the action of U(n), subject to
7 matrix and one vector equations, should have dimension zero. Instead, it has the generic
complex dimension 3n. What it means is that each point in M,, one has an obstruction
vector space, of the same dimension as the tangent space. The integral over M,, should be
viewed as the integral in the perfect obstruction theory [4] which allows localization with
respect to the torus action.

The three dimensional torus T = U (1) x U(1) x U(1) C SU(4) acts on M,,. The fixed
points of the torus action are the monomial ideals, which are in one-to-one correspondence

with the three dimensional partitions.
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4. Gauge theories

We shall study theories in 2d or 2d + 1 dimensions, for d = 1,2,3. Our theories will
have a gauge field A, fermionic one-form 1, a scalar fermion 7 and a complex boson ¢ in
2d dimensions, a real scalar ¢ in 2d + 1 dimensions. In addition, there are some fermions
X, and their bosonic superpartners H, which are 2d — 2 forms with some constraints. All
these fields are in the adjoint representation. In addition, one may add some matter fields.

We shall be discussing the topologically twisted theories.

4.1. Supersymmetry

Supersymmetry, if discovered, is both a remarkable manifestation of the possible pres-
ence of extra dimensions of the physical space-time and a great theoretical tool in the
almost century-long attempt in unification of all fundamental interactions. Mathemati-
cally, supersymmetry is a close cousin of such well-studied and deep notions as de Rham
or Dolbeault complexes, equivariant cohomology, and Dirac operators.

For example, we shall study four dimensional gauge theory, with N/ = 2 supersymme-
try. Mathematically the N' = 2 supersymmetry (more precisely, what we describe here is
the so-called twisted supersymmetry algebra) is the algebra of odd derivations of the dif-
ferential graded algebra Ags = Q°® (ARa4), of differential forms on the space of connections
on a principal G-bundle P over R*. It is generated by eight supercharges. Four of them
are the de Rham operator and the three d-operators, d;,0 s, 0, which correspond to the
three complex structures I,J, K on R*. The other four supercharges are the operators
Gn =1 2. of contractions with the translation vector fields on R*. These operators
anti-commute to the Lie derivatives along the translational vector fields, or their (1,0) and
(0,1) components.

All our theories have a fermionic scalar symmetry ) which is a twisted version of the
supersymmetry of the physical theory.

The path integral computing the correlation functions of @)-invariant observables lo-
calizes onto the field configurations, preserved by ). These configurations form a moduli
space M which depends on the spacetime manifold X. In 2d dimensions this moduli space
M x is finite dimensional, and can be compactified, for compact X. In 2d + 1 dimensions,
for the spacetime of the form X x S', these configurations should be viewed as constant

loops in M x, the moduli space of the 2d-dimensional theory on X.
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The equations of gauge theory which define M x may depend on the metric on X, or
on its conformal class, or on the complex structure of X and some choice of polarization.
The group H in all these cases should preserve these structures. We shall study our theories

on X = R?? where H = SO(2d), for d = 2,4 or H = U(3) for d = 3.

4.2. Group theory notations

Let G denote a compact Lie group, g = LieG its Lie algebra, T' C G its maximal torus,
and t C g its Lie algebra, Cartan subalgebra of g. Let r = dimt denotes the rank of G.
We have Cartan decomposition: g =t®&n, &n_. Let W denote the Weyl group of G, A,
the set of positive roots, A = A, UA_ the set of all roots. Each root o € A, corresponds
to an element e, € n,, also sometimes called a positive root and to an element e_, € n_,
called the negative root. The root e, being an eigenvector for the adjoint action of t on g

also defines an element of t*. Let p denote half the sum of the positive roots:

p=1 Z o (4.1)
aEA,

which we view as an element of t*. Finally, Ay, C t* denotes the weight lattice. It contains
the root lattice A,, which is integrally generated by e, € t*, a € A. The quotient Ay, /A;

is isomorphic to the center Z(G) of G.
We shall be using the notation ¢ for vectors in g, ¢ for vectors in t. An Ad(G)-
invariant function F'(¢) on g is uniquely determined by its restriction f(¢) on t, where it
defines a W-invariant function. As such, it can be also expressed in terms of the Chevalley

generators (elementary symmetric polynomials in the case of G = SU(r + 1)), o1,...,0,:
C[t]"Y = Cloy,...,0,] (4.2)

We shall sometimes use the same notation for the W-invariant function f on t and for the

function on t/W:
flp) ~ flor,...,0o0) (4.3)

An important role in what follows will be played by the identity:

doy A\ ... Ndo, = H(a,gp}dgpl/\.../\d% (4.4)
OAEA+
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4.3. Two dimensions
4.3.1. Pure super-Yang-Mills theory

The fields of the A/ = 2 theory in two dimensions are: the gauge field A,,, the fermion
¥, two scalar fermions y, 7, and a complex scalar o, all in the adjoint representation.

The Lagrangian is given by:
L:{Q, tr (X/\(F—*H)—I—@D*DAE—i-n*[U,E])} (4.5)

where the Q-operator acts as follows:

QA=1v¢,Q¢=Day¢

Q7 =1, Qn = [0,7]

Qx=H,QH = [0,X]
Qe =0

(4.6)

4.3.2. Coupling to matter

Let Y be a Kéhler manifold with G-isometry. For o € g let V, € Vect(X) denote
the corresponding vector field. Let 2™ denote the coordinates on Y, y* the holomorphic
coordinates, yg the antiholomorphic coordinates. Let i1 : Y — g* denote the moment map,
corresponding to the G-action.

Then the gauge theory can be coupled to the sigma model (type A topological sigma
model [5], which computes the number of pseudoholomorphic curves [6]) with the target

space Y. The Q-symmetry acts as follows:

Q" = X", QX" =V,"(2)
Qmi =pi, Qpi = Ly, m; (4.7)

Qm; = p;, Qp; = Ly, 73
The Lagrangian (4.5) generalizes to:
L= {Q, tr (x A (F+x(u(z)—H))+
04y’ + Wg(?AyZT + gi; (pm; - p;m) +... (4.8)

w*DAE+n*[J,E])}
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where ... stands for the terms with three fermions, which are irrelevant to our discussion.

The Q-fixed points are the solutions to the following equations:
04y’ = 0y + Vzi(y) =0
Fa+ p(z)vol =0 (4.9)
Dyo=0,V,(2)=0

where vol is a volume form on the Riemann surface X constructed using the metric. The
moduli space Mx of solutions to (4.9) is a fibration over Bung, the moduli stack of
holomorphic G¢-bundles on X. The fiber over P without automorphisms is the space of
holomorphic sections H? (X, P xg. Y). For X a Riemann surface of genus g > 1, Bung,
is a positive dimension space. For X a Riemann sphere, the case of interest for our further
investigation, the stack G¢-bundles have no continuous moduli, only automorphisms, so
the stack nature of Bung, is quite important. However, for sufficiently ample Y the
moduli space M x is a positive dimension space and one can define an integration theory
over it. If P has automorphisms, these translate to the non-trivial solutions of the equation
Do = 0. Such a solution o # 0 defines a solution of (4.9) only if V,(2) = 0, i.e. we land
in one of the AutP C G¢-fixed points in Y. The “stability” condition F4 + x4 = 0 then
implies that A is a constant curvature T-connection on X which, in turn, implies some
quantization condition on (u, o) which can only be met for special values of r. As r crosses
such a value, the correlation functions may jump. This is an example of the wall-crossing
behavior of the topological correlation functions.

Note that the first line in (4.9), the equation describing the holomorphic section of the
associated bundle P X Y, is conformally invariant, i.e. it only depends on the complex
structure of X. The second line, the equation fixing the Hermitian structure on P, depends
on the conformal factor of the metric on X. In the limit where the metric on X is scaled
to infinity, i.e. when X is very large, almost everywhere on X the contribution of u(z) in
(4.9) dominates. In other words, the holomorphic section of P X, Y lands in the zero
locus of the moment map in Y, thereby defining a holomorphic map to the Kéhler quotient
Y//G = 1(0)/G = Y*/Gc. However, at some points on X the section of P XY passes
through the unstable points Y\Y® in Y, i.e. the points which cannot be translated by the
action of G¢ to the zero locus of p. Thus, roughly speaking, the moduli space Mx of
solutions to (4.9) is a completion of the moduli space of holomorphic maps X — Y//G by
the “ideal instantons”, or “freckles”, which are points on X colored by components of the
set of critial points of p on Y. This compactification is related to Drinfeld’s “quasimaps”,

or to Uhlenbeck compactification.

16



4.3.3. Examples

Take G = U(1), Y = C¥, with the standard action of U(1) by multiplying all coordi-

nates by the same phase. The moment map is just a function:

L
wz) =Y P -r (4.10)
=1

where r is some constant. The moduli space Mx, for X = CP! is a projective space

PLd+L=1"where d = ¢;(P) is the first Chern class:

1
d=— | F (4.11)
23 b'e
The instanton partition function for this example:

o0

d
2e0,Q) =5 S Q' [ ——— (1.12)

4.3.4. Generalized Gromov-Witten invariants

The topological sigma model coupled to the topological gauge theory is a simplified
version of the topological string. One can view the correlation functions of the Q-invariant
observables (which are nothing but the G-equivariant cohomology classes of Y) as the
cohomology classes of Bung.. One can also couple the theory to the topological gravity
(the subtle point is the metric dependence of (4.9)) to get cohomology classes of the moduli

space of curves with holomorphic bundles on them, thus .

4.3.5. Quantum integrable systems

Every topological sigma model defines an abstract quantum integrable system. The
three-point functions Cjjj of the Q-invariant observables O; on the sphere define a com-
mutative associative algebra. This algebra acts in the space H of the cohomology of the
target space of the sigma model. One can view O}s as the quantum Hamiltonians. The
spectrum of the algebra of O}s can be quite interesting. For example, for G = U(N),
Y C Hom (C¥,C*) x Hom (C¥, C") being the incidence subvariety {(A4, B)|AB = 0},

the corresponding quantum integrable system is the Heisenberg spin chain [7].
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4.4. Three dimensions

We shall view the three dimensional theory as a lift of a two dimensional one. The 2+1
dimensional theory corresponding to our two dimensional models is quite simple. It has
the same fields, which now depend on an extra coordinate, t, except that the field o which
used to be a complex adjoint scalar now mutates to the component A; of the gauge field
and a real scalar ¢. All formulae remain the same except for the change: o — 9; + A; +i¢p.

The perturbative 2 + 1 dimensional partition function is given by:

738 (q;u) = exp (Z %Fz (qn;un)> (4.13)

n=1

where v € T, and where the single particle partition function is given by the supertrace:

Fy(q;u) =

Zu] (g+q¢ ' +1-1-1-¢7") (4.14)
aEA

(1 —a)( 1—q [

where the expression in the brackets comes from the contribution of fields: A (¢ + ¢~ 1),
¢ (+1), ¥, x,n (=1 — ¢~ 1), gauge invariance (—1), so that Z,ey is given by an interesting
infinite product:
3d
Z3(qu) = ] H - qnua (4.15)
aEA n= 1

The two dimensional partition function is given by the limit 3 — 0 where:
g=e u=€% act (4.16)

4.4.1. Instanton partition function in 2+1 dimensions

When the Higgs field ¢ has a vacuum expectation value, the gauge group G is broken
down to the maximal torus T, and the gauge bundle (which is topologically trivial principal
G-bundle P for the simple G) reduces to a possibly non-trivial T-bundle. It is classified
by A € Ho(X,71(T)). Take G = U(N) for simplicity. Then the possible topologies of the
T-bundles are labeled by the vectors d = (di,...,dy) € ZY, and the partition function
will be a kind of a theta function obtained by summing over d’s. We shall not write an

explicit formula here.
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5. Higher dimensions

5.1. Gauge theory in four dimensions

The fields of the pure N' = 2 twisted super-Yang-Mills theory in four dimensions
are the gauge field A, the adjoint fermion one-form 1, the fermion self-dual two form
x ", the fermion scalar n, and the complex adjoint scalar . The supersymmetric field

configurations are the solutions to the instanton equations
Ff=0
This theory [8] gives rise to the Donaldson invariants of the four dimensional manifolds,
and their K-theoretic analogues when lifted to 4 4+ 1 dimensions [9)].
5.1.1. The instanton partition function

The moduli space of framed instantons M,, of charge n,

1
is a Riemannian manifold, with the metric induced from that on X:
g (51A,52A) = / Vg tr ((SlA /\*(52/1) (52)
X

for
51A, 0 A € QI(X) Kg .

The moduli space M,, is acted upon by the group
H=GxUx ;

where G is the gauge group, and Ux is the group of isometries, preserving the framing

locus. Let (a,¢€) be an element of the Cartan subalgebra of H, a € LieG, € € LieUx. Let
V(a,e) € Vect(M,,) (5.3)
be the corresponding vector field. Let
@, €) = @y (5.4)
denote the corresponding one-form, where
a € LieGG, € € LieUx
la,a] =0, [€,e] =0

Then
Z(a,€q) = Z q”/ exp [dA(@, €)] e~ 9V @8V (ae) (5.5)
n Mun
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5.1.2. Perturbative calculation in 4 + 1 dimensions

The perturbative partition function in 4 + 1 dimensions, for pure super-Yang-Mills is

given by:

o0
1
Zggrt(%,%;u) = exp <Z ~F, (q?,qg;un)>
n=1
2

1 lo'
Fi(q1, g2;u )—H(l_qi)(l—qi_l) [Zu ] )

=1 acEA
) (5.6)
(Sl (S0t )
i=1
2
1
— S e
LeA ] o1 1=
where the following fields contribute to the sum
2 2
S(ait+gt)+1-1-1- (Zqﬁ) — Q102
=1 =1
2
A Z (i +a;
i=1
w41
mx =1 —=aqae (5.7)
gauge invariance : —1
2
b=

Thus,
Z3% (a1, q2iu H I (- aidhu) (5.8)

k,l=1a€ceA

5.1.3. Four dimensional limit

’iREl

Again, we set g1 = e ,qo = e'fte2 4 = etfe and take the limit R — 0 while keeping

a, €1, €9 finite. Again, the plethystic sum becomes the integral:

i H:) /000 %tsf (em)} (5.9)

20

> 1 inRx d
Zﬁf(e )—>ds




where the right hand side is understood in a sense of analytic continuation in s. The whole

point of introducing the (IE/(\S?; factor is to eliminate a possible singularity near t = 0, where

the argument of f(-) approaches 1. In the original 4 + 1 expression the sum over n started
with n = 1, and the singularity was absent. The price we pay for the regularization is the
(dynamical) generation of the scale, A. It is related to the S-function of the supersymmetric
Yang-Mills theory.

Thus:

ngrt(ela €2;a) = exp Z Ver,eo ({a,a)) (5.10)
aEA

where 7, ¢, () is an analytic function solving the difference equation:

(x+e +62)>

Sevs () = T (04 1) =Ty (54 €0) + s (54 €1+ a) = g (5%

(5.11)

which is an R — 0 limit of the five dimensional function

— 1 192)"
o 0) = 3 el (5.12)

n=1
which solves:
Earao (V) — Eqvoae (U01) — Equ g2 (Wa2) + Equ qo (W@102) = —log (1 — yq1¢2) (5.13)
via: 5
€ iRey giRes (ein) = Ye1,e2 (:L‘) + log (AR) (514)
’ 2€1€9

Explicitly, for Re(x) < 0,€1,e5 € C\R,

As o dt s et
[F(s) /0 Tt (1—eter)(1— e te) (5.15)

5.1.4. Instanton corrections in 4 + 1 dimensions

d
Ver,e2 (x) = s

The instanton corrections can be represented as a sum over N-tuples of ordinary (two
dimensional) partitions X = ()\1, AN ) A partition A\ can be idenified with the set
{(i,) € Z2 11 < j < N} M > X2 > .0 > My, [A] = X5, Ao The character of the

partition

chi(q, )= > ¢ 'a)” %@Zfﬁ_l(l—% Z—Zqz (1-q")
A

(1,5) €A
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where X’ is the partition, dual to A. For the N-tuple X we define |X| = S I

The instanton corresponding to X contributes

ZX((IlyQQ;Uaka Q|A| H . (516)
where
= =
T (I—q )1—aq)
=Wwv* + VW*(]1QQ - (1 - ql)(l - QQ)VV*
LAY AT / l
_ —q AT A
= umu | D AT+ Y dd YD de T 0-q 7 )1 -¢)
m,l (i,7)EN (i,7)EX™ i=1 j=1
E=W-10-q)(1-¢)V
W=> u,V=> wch,(q,q)
l l
(5.17)
For N =1 one can further simplify:
’\;’_H_l | — A4 i=Aj —j i
To= Y q’ @ Vg Yl TN =
(e (5.18)
arm —le —arm le
qu (E')Jrlq2 (o) tq (D)q2 g@+1
oeX

5.1.5. SU(2) specification

A certain simplifcation occurs for the special value of the rotation parameters: ¢ =
c12_1 = ¢. In addition, if one assumes that w; = ¢™', M; € Z, then one can map the
non-abelian problem to the abelian one [1] and express the partition function in terms of

the representations of the chiral algebra of the system of N chiral fermions.

5.2. Six dimensions

The perturbative partition function in 6 + 1 dimensions, for pure super-Yang-Mills

(this is a unique theory up to a choice of the gauge group, it is the dimensional reduction
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of the N/ = 1 super-Yang-Mills theory in ten dimensions), is given by:

3 X )
Fs(q1,q2, q3; )211:[1 (1—gq) (l—qi’l) L;Au ] X

where the following fields contribute to the sum:

3
A Z q’L + qz
=1

@ +1+q1g2g3 + 91_1(]2_193_1

3
X —1=(q192q3)~ Zq ) aig

1<j

gauge invariance : —1
3
) —1
(O § a;
i=1

Thus,

o0
k
Z;grt(QDQZ;QB;U) = H H (1 - Q1 QQ Q33 a)
k17k27k3:1 a€A
5.2.1. Instanton corrections

The supersymmetry preserving equations in six dimensions are:

2,0 — 61T4U
Fg’Q :gAﬂ
Fiyl Awx Awx = [u,T]
where

ue P X)®g
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We now take G = U(N) and follow the familiar, by now, route.

The instanton
corrections organize themselves into the sum over the coloured three dimensional partitions
T =(m,...,

7n ). Each partition 7 defines a polynomial in (g1, g2, ¢3), the character ch;:

chrlqr,go,98) = Y ai ‘@b g5 (5.24)
(irg,k) €T

where the three dimensional partition is identified with the set m = {(,7,k) € Z3 |1 <

k S hiJ}, and h@j is the so-called height function, h@j Z hi+17j, h@j Z hi7j_|_1, hz‘yj > 0.

The size of the partition |7| is the total number of elements in the corresponding set:

7= hi

(5.25)
ij=1
For the N-tuple @ we define:
N
7l =) Iml
1=1
We shall only consider the finite size partitions. Now, define:
E=W-(1-q)1-¢)1-g¢)V
B =W —(1-¢ )1 -g")(1—g)V"
N N
WY =Y
1=1 1=1
N (5.26)
V= Zuz chr, (g1, 92, ¢3)
1=1
N
VE= u ehe (gt g5t as )
1=1
The instanton partition function is defined as:
@y _ax
7d ) _ |7| ez —¢€ 2
Z"q1, 42,431, Q) = > _(-Q [ 77— (5.27)
7 y €2 —€ 2

where the exponents e**, e¥T are all products of the form (uy, u, ', wu, ') x ¢¥g52¢ks, for
k1, ko, k3 € Z, and are defined as follows:

T, = ZeyT — e’

T

WWwW* — EE* (5.28)
- H1-gH1-g")

=V'W —VW*q1g2q5 = VV*(1 —q1)(1 — ¢2)(1 — g3)
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5.2.2. U(1) theory

The case N =1 is already quite interesting.

Let us list the first few contributions to the partition function. For the single box

T. = 23: ( Q1Q2Q3)

=1

partition |r| =1, V =1,

and the contribution to the partition function:

g q (1 —q192)(1 — q193)(1 — g243) (5.29)

(rgags)? (L—a1)(1—q2)(1 — g3)

there are three two-box partitions, aligned in the 1,2, 3d directions respectively. The sum

of their contributions is:

3
q (1 - q19203/4}) 77 (0 — 4;47)
tho—boxes = _—Zone—box X : n (530)
(q14203)""” 1—21 ¢i(1~q) g (1—g;/a)

Amasingly, after extracting the single particle contribution, i.e. by rewriting the partition

function in the form:

1
Zins s 425 435 - - ’ n, n, " 5.31
e(q1, 42,433 ¢) = exp (Z::n (af - q5. 454 )) (5.31)
the simplification emerges:
Q 1 —q1g2)(1 — q2q3)(1 — q1gs3
F(q1,92,43,9) = ( ) ) ) (5.32)

(1-Q)(1-Q(q192¢3)) (1 —q1)(1 —g2)(1—gs)
where

q
Q=—1—
(¢19293)
which brings us to the combinatorial formula (2.24). The formula (5.32) also has an infinite

N[

product form:

Zinst(q1, 92,931 9) =
11 a-on 11 L (-dQn(i-dom)(l - 49) (5:33)
ot L1—Q@M)2 25 1-QmQm (1—¢7Q™)(1 — Q™) (1 — ¢5Q™)

where

Q = Q14243
Gu=Q,q=0Q"
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6. M-theory in a flash

M-theory [10] is the elusive quantum eleven dimensional theory whose low energy
E < Mpanek limit is the unique eleven dimensional supergravity and its compactification
on a circle of a finite radius R is equivalent to the ITA superstring theory with finite coupling

gs = (MplanckR)%, and string tension M2 = M3

Planck [t- The microscopic definition of the

theory is still lacking. It is known to contain some stable extended objects, the membrane
M2 and the fivebrane M5. The tensions of these extended objects are M3, and M3

respectively. The very ITA string should come from the membrane. The graviton Kaluza-

lanc lanck?

Klein modes, which have the mass scale 1/ R, become the solitonic particles/black holes in
the ITA theory, described in the weak coupling limit as D0-branes, whose mass is My/gs =
1/R. The M2-brane descends to the D2-brane, whose tension is M3/g; = M3
addition, the ITA theory has other extended objects which we shall encounter later. The

lanck* In
N S5-brane is the descendent of the “elementary” M5-brane, the magnetic dual to M2 in
eleven dimensions. Its tension is M3, . = MS/g?. In the IIA string theory it is described

as a closed string theory soliton, hence the 1/g? dependence of its tension. The M5-brane
lanckR = Ms5/9s
The D6-brane is the M-theory on TNr x R”, where TNy is the Taub-Nut space, a
hyperkahler four dimensional manifold which asymptotically looks locally like R? x S!,

wrapped on a circle of M-theory becomes D4-brane, whose tension is M3

where metrically S! has a finite radius R, however globally at infinity the S! is non-trivially
fibered over S2_ (so that the total space is S3, topologically), and in T'Ng the circle S*
can be contracted to a point. The space TNy has a U(1)-isometry which preserves the
hyperkihler structure. The hyperkiihler moment map [11] sends m : TNz — R?3, the fiber
being S! everywhere except the origin in R3, where the fiber is just a point. The origin
in R? is interpreted by the ITA string as the location of the D6-brane. The open strings
ending on the D6-brane are nothing but disks in T'Ni which bound some particular fiber
of the projection m. The Taub-Nut space has a multi-center version T'Ny, g, which looks
asymptotically as a quotient of R® x S!'/Zy, so that the three-sphere S of the Taub-
Nut space is replaced by the Lens space S3/Zy. When the moduli of the TNy g space
are generic, the space has N — 1-noncontractible 2-cycles, on which the M2-branes can
wrap, giving rise to the massive particles in 6 + 1 dimensions, whose mass goes to zero
as the moduli are adjusted so that T'Nx r space develops an orbifold singularity. This
is translated to the IIA string statement that when N parallel D6 branes coincide, their
worldvolume supports a maximal supersymmetric Yang-Mills theory, with the gauge group
U(N).
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If this theory is further compactified on a circle S one can get another ITA string
description of the resulting six dimensional theory, by taking S to be the M -theory
circle, rather then the U(1)-fibration of the Taub-Nut space. In this way one concludes
that when the ITA string theory is compactified on a K3 manifold with the singularity
of A, D, E type then the effective six dimensional theory has, in addition to the obvious
spectrum of the Kaluza-Klein fields coming from the ten dimensional ITA supergravity, a
gauge multiplet, with the gauge group of the same A, D, E type. If, instead of the K3
manifold, one takes a fibration over P! with the K3 fibers, such that the total space has
a Calabi-Yau metric, and the fiber has the A, D, E singularity fibered over the base P!
then the four dimensional gauge theory is the N' = 2 supersymmetric Yang-Mills theory
with the gauge group G of the same A, D, FE type. This is the way string theory realizes
McKay duality between the discrete SU(2) subgroups I', the corresponding singularities
C? /T and the simple Lie groups Gr. In order to get pure gauge theory, so that the massive
string modes are decoupled and the gravity is non-dynamical, one takes a limit where the
K3 manifold becomes infinitely large, while the singularity remains. In other words one
studies ITA string in a non-compact background Y x R* where Y is a C?/I-bundle over

P! such that the total space is a non-compact Calabi-Yau threefold [12].

6.1. Eleven dimensional supergravity

The fields of the eleven dimensional supergravity are the metric gr; = nmnej'e’;, with
the elfbein €7, and 7,,, the Minkowski metric of the signature —1* + 110, the three form
C = %C’I grcdx’ A dx? A dx®, and the Rarita-Schwinger fermion field ;da!, where the
components ¥y € S ~ R3? are the Majorana spinors. One represents the Clifford algebra
{T';,T';} = 2975 in S. There is a real symplectic form C € A2S*. The I'-matrices are
C-symmetric:

C(a,I'1b) =C(b,T1a), a,be S (6.1)

For the spinor ¢® € S define ¥, = Cop1”. We also define

Ptz dn — i‘ Y (-nrlewrfee e (6.2)
n:
gES,

— the representation of A"R!! in S.
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The Lagrangian of the eleven dimensional supergravity reads, up to the terms, quartic

in fermions:

1 — 1
Ls=— \Z <—%R — 2 TR D e — —Gryr G
K M1 48
V2 — —J
— (wIFIJKLMNwN 129 FKL¢M> Gxin (6.3)
—V2CANGAG
where
1

G = dC? C A G A G = mcll[2[3GI4...I7G18...111611[2“.111 (6‘4)

In writing (6.3) one views the spin connection {2 as an independent variable. The Riemann
tensor is the curvature of (2.

The local supersymmetry acts as follows:

V2_
0Crik = —?nfuﬂﬁm (6.5)

V2
oy = D+ 283 (F{KLM — 851‘]I‘KLM) NGy + - -

6.2. M-theory calculations

Consider M-theory compactified on a manifold X;; which is a R!°-bundle over S!,
with the locally flat metric, such that the fiber is rotated by an element g € SO(10) as
one is looping around the base circle. The metric depends only on the conjugacy class of

g, i.e. on the five angles v,, a =1,...,5:

R 0 0 0 0
0 R, 0 0 0 .
g=expQ=|0 0 Ry 0 0| ,6 Ry= ( c05(Va) Smw“)) (6.6)
0 0 0 R, 0 —sin(d,) cos(Vy)
0

0 0 0 Rs

This background (which is the direct analogue of the Q-background of [13] ) has a gener-
alization in the 11d sugra. The rotation (6.6) does not change the flat metric. However,
the global eleven dimensional metric is non-trivial:

ds?, = 72 (dt)? + Npn (dz™ + 0™"dt) (dz" +v"dt) , v=Q -z

ds?y =12 (dt)* + Nndy™dy" , y = € 0D
11 = NMmndy - dy—, y =€ T
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6.3. Equivariant K-vertex

The bound states of the single D6 brane and several D0 branes can be studied with the
help of an index, which is an equivariant version of Witten’s index for the supersymmetric
quantum mechanics, describing the low energy dynamics of the open strings stretched
between the D0’s and between D0’s and the D6 brane (this problem was analyzed in [14]
for the system of DO branes only ).

This quantum mechanics [15] is a dimensional reduction of the supersymmetric Yang-
Mills theory down to 0 + 1 dimensions, augmented with some extra fields. Whether this
quantum mechanics is supersymmetric or not depends on the B-field, which can be turned
on along the D6 brane.

The index, however, does not depend on the actual value of the B-field. More precisely,
it does not change as the B-field is continuously varied. The index may jump, however,
when the B-field crosses certain critical values, i.e. the walls of marginal stability of the
D0 — D6 system.

The quantum mechanical variables describing the motion of £ DO-branes, are nine
Hermitian matrices X4, 4 = 1,...,9. Of these nine matrices six describe the motion
along the D6 brane, and three describe the transverse motion. It is convenient to combine

the six longitudinal matrices into three complex matrices B, o = 1,2, 3, via, e.g.

1 )
X*=—=(By+B}), X*"=—
7 Bt BL) V2

The quantum mechanics of the DO0-branes has the U(k) gauge symmetry. The matrices

(Ba - BY) -

X4 are all in the adjoint representation of U(k). In addition, there is a matrix I, which
is in the fundamental representation of U(k). This is a lowest energy mode of the 0 — 6
string.

Mathematically we are dealing with the space of four complex matrices B, and Y, all
in End(CF), and I € C¥, considered up to the GL(k, C) action:

(B1,Ba, B, Y; 1) ~ (gB1g™",9Bag ™", 9Bsg™ ", gY g '; gI) (6.8)
On this space we consider the holomorphic function (the superpotential) W,
W = tr (Bl [BQ, Bg]) (69)

We would like to study the space of the critical points of W. Ideally, it should have
dimension zero. However, in reality it has a positive dimension (3k). This discussion
brings us precisely to the setup of the three dimensional geometric partition function. The
D0 — D6 partition function therefore is identical to our formula (2.24). This result can

also be interpreted in terms of summing over geometries, a la [16].
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6.4. M-theory flesh

We now come to the conclusion of our analysis. The M-theory lift of the DO —
D6 system in the Q-background is the TN x R® fiber bundle over the circle S'. By
deforming it to R'© = R* x R® bundle, one gets the M-theory -background. The
chemical potential for the DO-brane charge travelling around the circle S' translates to
the extra twist parameter of the TN space. The SU(4) rotation of the D6 theory together
with this twist becomes the SU(5) rotation of R!Y. The eleven dimensional supergravity
partition function in this background can be calculated, similarly to the calculation we

performed for gauge theories so far. The result is:

o0

1
ZHASER (g1, 2, 3, 4a, G5) = exp (Z e R q§)> (6.10)

n=1

where .
> Qi 4 >4
i(l1—a) L -g )

which coincides with (2.24), for ¢4 = Q(q1¢2¢3) "2, ¢5 = Q *(q1q2q3)~*/?, after subtract-

FUHAsuer (0 g0 43, G4, q5) = 0 (6.11)

ing the perturbative part:

Flldsugra(qhC]27(]3>Q4»Q5) = ﬁmpert(QhQ%Q:’,) + F(Ql;q27Q37q) : (612)

where

FTPert (g1 g0, q3) = Fs(q1,q2,93) + Fe(qy a5 ', a5 ") = FPY58(q1 g9, G5, G4, G5) | g=0

(we take the U(1) version of (5.19)).
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