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1. Introduction
This is a short summary of the progress of the last few years in exact non-perturbative

calculations in supersymmetric gauge and string theories, based on the formalism of the

instanton partition functions. We discuss theories in various spacetime dimensions, and

connect their partition functions to algebraic geometry, combinatorics, integrable systems,

representation theory of infinite-dimensional algebras, and topology, on the mathematical

side, and to the low-energy gauge theory dynamics, wall-crossing of the particle spectrum,

crystal melting, random growth models, and the models of electrons in random fields, on

the physical side. In these lectures we shall discuss instanton partition functions in two,

four, and six dimensions. These partition functions capture some information about the

spectrum of the supersymmetric gauge theories, more precisely their low-energy dynamics.

Some of these theories are not defined as quantum field theories, and need string theory

for their microscopic definition. Remarkably, as we shall discover, they know even about

the M -theory. Our conjectures include the identities between the generalization of the

MacMahon formula and the character of M-theory, compactified down to 0 + 1 dimension.

The organization of these notes is the following. We start, in the section 2, with the

quick review of M -theory. In the section 3 we discuss gauge theories in various spacetime

dimensions, ranging from two up to eight. These theories, as we shall explain in section

3, can be topologically twisted, or partially twisted, to give an integral representation of

intersection theory on some moduli space M, or its K-theoretic version. Mathematicians

usually study the moduli spaces MX of solutions of gauge theory equations defined over

a compact manifold X (which can be two, four, or six dimensional in our problems). The

twisted gauge theory correlation functions can be then used to define some invariants of

X. When X has some symmetry group H, which preserves the gauge theory equations,

the intersection theory and K-theory of MX have the H-equivariant version. In the

section 4 we introduce the main object of our study: the instanton partition functions.

These are the partition functions defined using the H-equivariant theory on MR2d for

H = SO(2d) or U(d). The section 5 presents the instanton partition functions as the

sums over N -tuples of various kinds of partitions, for G = U(N). The section 6 collects

various interesting facts about these partition functions. We relate the partition functions

in 2 and 2 + 1 dimensions to quantum integrable systems, the partition functions in 4 and

4 + 1 dimensions to the representation theory of infinite-dimensional Lie algebras, (2, 0)

tensor multiplet in six dimensions, statistical mechanical models and to algebraic integrable
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systems; finally, the partition functions in 6 dimensions are related to dimer models, free

fermions, two dimensional lattice electrons in random fields. Our final partition function,

that of 6 + 1 dimensional theory is then related, for G = U(1), to the partition function of

the eleven dimensional linearized supergravity.
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2. Combinatorial partition functions
Counting is in the human being’s nature. We count sigarette buds, or steam locomo-

tives, stars in the sky, or fish in a sea, or neighbour’s possessions. Abstractly speaking, we

count some objects, with, or without structure.

The first, trivial, generating function, just counts the objects without any structure,

only paying attention to the total number of objects:

ϕ1(q) = 1 + q + q2 + . . . =
1

1− q
= exp

( ∞∑
n=1

1
n
qn

)
(2.1)

The next level of sophistication arises when we try to remember how a collection of n

objects could have fallen on our hands. For example, it could have come as a union,

or as a bound state, of more elementary collections, of which we only care about their

total number, as in the first example. In this way we are led to the problem of counting

partitions of natural numbers. We define p2(n) as the number of ways to represent n as

a sum of natural numbers (up to permutation of summands). For example, p2(1) = 1,

p2(2) = 2, as 2 = 2, 2 = 1 + 1. Each partition λ, accounted for by p2(n) is a collection

λ =
(
λ1 ≥ λ2 ≥ λ3 ≥ . . . ≥ λ`(λ) > 0

)
(2.2)

of integers, so that by definition:

n = |λ| =
`(λ)∑
i=1

λi (2.3)

For the partition λ, |λ| = n is called the size of the partition, and `(λ), the number of

non-zero entries, is called the length of the partition. The notation p2(n) comes from the

two dimensional nature of the Young diagram of partition λ. The Young diagram is a

collection of squares attached one to another, so that the first row has λ1 squares, the

second row has λ2 squares, and so on. Given a partition λ, a dual partition λt is such that

its Young diagram is the flipped Young diagram of λ. In other words λti = #{ j |λj ≥ i }.
Of course, |λ| = |λt|.

The generating function of the numbers p2(n) is well-known:

ϕ2(q) =
∑
λ

q|λ| =
∞∑
n=1

p2(n)qn =
∞∏
n=1

1
1− qn

= exp

( ∞∑
n=1

1
n

qn

1− qn

)
(2.4)
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The amazing property of this generating function is its modularity:

ϕ2

(
e2πiτ

)
=
√
τ

i
e
πi
12 (τ+ 1

τ )ϕ2

(
e−

2πi
τ

)
(2.5)

which allows to estimate the large n behavior of p2(n) to a very good accuracy.

The simple counting of the two dimensional partitions can be generalized in a number

of ways.

For example, the partitions λ of size n = |λ| label the irreducible representations of the

symmetric group Sn. Indeed, the irreducible representations of a finite group are in one-

to-one correspondence with the conjugacy classes. For the symmetric group the conjugacy

classes are labeled by the multiplicities of the cycles of a given length. By ordering these

lengths we obtain a partition. For any finite group Γ one can define a natural measure on

the space Γ∨ of its irreducible representations:

µλ =
(

dim(λ)
|Γ|

)2

(2.6)

which is normalized so that ∑
λ∈Γ∨

µλ =
1
|Γ|

(2.7)

This so-called Plancherel measure is the Fourier transform of the Haar measure on the

group. For Γ = Sn, the measure (2.6) can be viewed as a Boltzmann weight for some sta-

tistical mechanical model. This model describes boundary of the Young diagram, viewed

as a discrete version of a sand pile. One rotates Young diagram by 135o degrees counter-

clockwise. The rotated Young diagram can be obtained as follows. Start with the wedge,

the plot of the function f(x) = |x|. Take n squares, rotated 45o clockwise, and start drop-

ping them, one by one, into the wedge. The squares will slide down, until they stop, at the

wedge, or at the square below. The measure (2.6) is simply the quantum mechanical prob-

ablity of creating a pile of squares which corresponds to the Young diagram of a partition

λ. In other words, the amplitude of getting λ is just the number of ways of arriving at it

by dropping one square after another, assuming that the dropping position is chosen at

random, dividing by the order of the permutation group, and the probability is the square

of the amplitude. Thus, µ(1) = 1, µ(2) = µ(1,1) = 1
22 , µ(3) = 1

62 , µ(2,1) = 1
32 , µ(1,1,1) = 1

62 .

The Boltzmann weight (2.6) can be also expressed as a product over the squares in the

Young diagram, or as the product over the pairs of boundary squares. In other words,
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the boundary of Young diagram behaves as a chain of interacting beads. The energy of

interaction is given by the logarithm of the so-called hook-length:

E (x, y) = log |h(i,j) |2 (2.8)

where x = (i, λi), y = (λtj , j), h(i,j) = λi − j + λtj − i + 1. The Plancherel measure is

thus the Boltzmann weight of the Coulomb-gas like interacting beads, at the temperature

β = 1:

µλ =
∏

(i,j)∈λ

1
h2

(i,j)

= exp

− ∑
x,y∈∂λ, x6=y

E(x, y)

 (2.9)

The Plancherel measure (2.9) has an asymmetric generalization, parametrized by two

numbers (ε1, ε2):

µλ(ε1, ε2) = exp

− ∑
x,y∈∂λ, x6=y

E(x, y; ε1, ε2)

 (2.10)

where

E(x, y; ε1, ε2) = log (ε1(ai,j + 1)− ε2(li,j)) (−ε1(ai,j) + ε2(li,j + 1)) (2.11)

where the “arm-length” ai,j = λi− j and the “leg-length” li,j = λtj − i (of course, in order

for (2.11) to define a meaningful energy, the parameters ε1, ε2 must obey some inequality,

which we shall not discuss here). There are more generalizations of importance: the

“massive”,

µλ(ε1, ε2,m) =
∏
∈λ

(ε1(a + 1)− ε2(l ) +m) (−ε1(a ) + ε2(l + 1) +m)
(ε1(a + 1)− ε2(l )) (−ε1(a ) + ε2(l + 1))

(2.12)

the trigonomentric,

µλ(q1, q2,m) = m−|λ|
∏

(i,j)∈λ

(
1− qai,j+1

1 q
−li,j
2 m

)(
1− q−ai,j1 q

li,j+1
2 m

)
(

1− qai,j+1
1 q

−li,j
2

)(
1− q−ai,j1 q

li,j+1
2

) (2.13)

the elliptic, and so on. They interpolate between the Plancherel measure (2.9) and the

uniform measure (2.4).

The generating functions, summing over all partitions with the measures (2.13),(2.12),

(2.10), (2.9) are quite beautiful, and exhibit unexpected symmetries, generalizing the mod-

ularity (2.5):

Z(ε1, ε2,m, q) =
∑
λ

q|λ|µλ (ε1, ε2,m) = ϕ2(q)
(m+ε1)(m+ε2)

ε1ε2 (2.14)
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Z inst(q1, q2; m, q) =
∑
λ

q|λ|
∏
∈λ

(1−mq
a( )+1
1 q

−l( )
2 )(1−mq

−a( )
1 q

l( )+1
2 )

m (1− qa( )+1
1 q

−l( )
2 )(1− q−a( )

1 q
l( )+1
2 )

Z inst(q1, q2; m, q) = exp

( ∞∑
n=1

qn

n(1− qn)
(1−mnqn1 )(1−mnqn2 )

mn(1− qn1 )(1− qn2 )

)
(2.15)

Actually, the formula (2.15) is still a conjecture, and the formula (2.14) is proven in [1] in

the special case ε1 + ε2 = 0. An equivalent form of (2.15):

Z inst(q1, q2; m, q) =
∞∏
n=1

∞∏
a,b=1

(1− qa1qb−1
2 qn)(1− qa−1

1 qb2q
n)

(1−m−1qa−1
1 qb−1

2 qn)(1−mqa1q
b
2q
n)

The next level of sophistication is counting the three dimensional partitions. The three

dimensional partition π is a stack of two dimensional partitions, which are non-increasing

in an obvious geometric sense:

π = {πi,j |πi,j ∈ Z≥0, hi,j ≥ πi+1,j , πi,j ≥ πi,j+1 } (2.16)

For fixed a, λi = πi,a defines a partition, similarly λj = ha,j also defines a partition. More

generally, for fixed a, b, λi = πa+pi,b+qi defines a partition, for p, q ≥ 0. We can view the

three dimensional partition as the set of points in Z3
+:

π = { (i, j, k) | i, j, k ∈ Z+ , 1 ≤ k ≤ πi,j }

= { (i, j, k) | i, j, k ∈ Z+ , 1 ≤ i ≤ π̃j,k }

= { (i, j, k) | i, j, k ∈ Z+ , 1 ≤ j ≤ π′i,k }

(2.17)

Finally, the three dimensional partition π defines three two dimensional partitions

πx, πy, πz, its shadows on the coordinate planes yz, xz, xy, respectively:

(i, j) ∈ πz ⇔ πi,j > 0

(i, k) ∈ πy ⇔ π′i,k > 0

(j, k) ∈ πx ⇔ π̃j,k > 0

(2.18)

The size, or rather the volume, of the partition π, is the sum:

|π| =
∑

(i,j)∈πz
πi,j =

∑
(j,k)∈πx

π̃j,k =
∑

(i,k)∈πy
π′i,k (2.19)
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The generating function of the number of the three dimensional partitions of a given size

is known as the MacMahon formula:

ϕ3(q) =
∑
π

q|π| =
∞∑
n=0

p3(n)qn =
∞∏
n=1

1
(1− qn)n

= exp
∞∑
n=1

1
n

qn

(1− qn)2
(2.20)

The two dimensional random partitions and the three dimensional random partitions can

be related in many ways. For example, one can define a measure on two dimensional

partitions λ by counting all three dimensional partitions which project inside λ:

µλ(q) =
∑

π:πi,j>0⇒(i,j)∈λ

q|π| =
1

1− qh(i,j)
(2.21)

The measures µλ(q1, q2,m) also have analogues for the three dimensional partitions:

µπ(q1, q2, q3) =
∏

x,y∈∂π

e−E3(x,y) (2.22)

Here, for x = (i, j, πi,j), y = (π̃j′,k, j′, k):

e−E3(x,y) =
1− qi−π̃j′,k1 qj−j

′+1
2 q

πi,j+1−k
3

1− qi−π̃j′,k1 qj−j
′

2 q
πi,j+1−k
3

× similar factors (2.23)

We write the precise formula in the following sections. The generating function is conjec-

tured to be (for Q = q (q1q2q3)−
1
2 ):

Z(q1, q2, q3, q) =
∑
π

q|π|µπ(q1, q2, q3) =

exp

(
−
∞∑
n=1

Qn

n(1−Qn)(1−Qnqn1 qn2 qn3 )
(1− qn1 qn2 )(1− qn1 qn3 )(1− qn2 qn3 )

(1− qn1 )(1− qn2 )(1− qn3 )

)

= exp

 ∞∑
n=1

1
n

sin
(
nβ(ε1+ε2)

2

)
sin
(
nβ(ε1+ε3)

2

)
sin
(
nβ(ε2+ε3)

2

)
sin
(
nβε1

2

)
sin
(
nβε2

2

)
sin
(
nβε3

2

)
sin
(
nβε4

2

)
sin
(
nβε5

2

)


(2.24)

where
q1 = eβε1 , q2 = eβε2 , q3 = eβε3 , q = eβε ,

ε4 = ε− 1
2 (ε1 + ε2 + ε3) ,

ε5 = −ε− 1
2 (ε1 + ε2 + ε3) ,

ε1 + ε2 + ε3 + ε4 + ε5 = 0

(2.25)

7



In the rational limit β → 0, q-finite, the measure (2.23) reduces to the so-called equivariant

vertex measure [2],[3], and the partition function (2.24) reduces to:

Z(ε1, ε2, ε3, q) = ϕ3(q)
(ε1+ε2)(ε1+ε3)(ε2+ε3)

ε1ε2ε3 (2.26)

This formula is actually rigorously proven, in [3].
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3. Geometric partition functions
The partition functions we presented in the previous section arises in the following

geometric problems. One studies K-theory or intersection theory of some moduli space

Mn, typically defined by some matrix polynomial equations. Among the matrices we shall

have n×n matrices Ba, where a = 1, . . . , d. In the first story d = 1, for the two dimensional

partitions d = 2, and d = 3 for the three dimensional partitions. The spaceMn is acted on

by the group T = U(1)d. In addition it may be acted upon by some other group G. The

partitions in one, two, and three dimensions are the T-fixed points inMn. The geometric

partition functions are the generating functions of the integrals

Z =
∞∑
n=0

qn
∫
Mn

Xn (3.1)

where Xn is some T-equivariant characteristic class ofMn, which depends on a particular

theory we wish to study. Let t = LieT. The localization with respect to the T-action then

expresses (3.1) as the sum over the fixed points:

Z =
∑
n

qn
∑

f∈MT
n

Xn(f)∏
i wi(f)

(3.2)

where wi(f) ∈ t∗ are the weights of the T-action on TfMn, and Xn(f) is the restriction

of Xn at the fixed point f . In the equivariant K-theory the formula (3.2) is similar except

that Xn stands for the equivariant K-theory class, and the denominator has
(
1− e−wi(f)

)
instead of wi(f).

ZK =
∑
n

qn
∑

f∈MT
n

Xn(f)∏
i

(
1− e−wi(f)

) (3.3)

3.1. One dimension

Let d = 1. Consider the space of pairs: (B, I), B ∈ End(Cn), I ∈ Cn. Define Mn to

be the symplectic quotient of that space by the action of U(n):

Mn = { (B, I) | [B,B†] + I ⊗ I† = r · 1n}/(B, I) ∼ (gBg−1, gI) (3.4)

for g ∈ U(n). Incidentally, the space Mn is the phase space of Calogero-Moser integrable

system, for r > 0. For r < 0 it is empty, and for r = 0 it is singular as a real manifold,

but it is a smooth complex variety, isomorphic to Cn.
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Let us assume that r > 0, and take Xn = 1. Take T = U(1) acting onMn by sending
the class of (B, I) to (q1B, I), q1 ∈ U(1). The fixed points of the T-action are easy to
classify: these are the operators B and the vector I such that the U(1)-transformation can
be undone by the U(n) transformation:

q1B = g(q1)Bg(q1)−1 , g(q1)I = I (3.5)

One can find a basis e1, e2, . . . , en in Cn, where g(q1) is a diagonal matrix, and

g(q1)ei = qi−1
1 ei , I =

√
n re1 , B =

n−1∑
i=1

√
r (n− i) ei+1 ⊗ e†i (3.6)

Thus, there is only one U(1)-fixed point f on Mn. The tangent space to Mn at f is a
representation of U(1). Its character:∑

i

ewi(f) = V ∗ − (1− q1)V V ∗ =
n∑
i=1

qn+1−i
1 (3.7)

where V = tr Cng(q1) , V ∗ = tr Cng(q1)−1, and the K-theoretic partition function is equal
to:

Z(q1; q) =
∞∑
n=0

qn

(1− q−1
1 )(1− q−2

1 ) . . . (1− q−n1 )

= exp

(
−
∞∑
n=1

qn

n

qn1
1− qn1

)

=
∞∏
n=1

(1− qn1 q)

(3.8)

If we choose as Xn a class of the virtual bundle:

Xn =
n∑
j=0

(−1)jmjΛjT ∗Mn
, (3.9)

then the contribution of the fixed point f is modified to:
(1−m q−1

1 ) . . . (1−m q−n1 )
(1− q−1

1 ) . . . (1− q−n1 )
while the partition function of the “massive theory” is equal to:

Z(q1; m, q) =
∞∑
n=0

qn
(1−m q−1

1 ) . . . (1−m q−n1 )
(1− q−1

1 ) . . . (1− q−n1 )

= exp

( ∞∑
n=1

qn

n

mn − qn1
1− qn1

)

=
∞∏
n=1

1− qn1 q
1−m qn−1

1 q

(3.10)

which for m = 1, the Euler characteristic, gives our first generating function ϕ1(q) (2.1).
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3.2. Two dimensions

In this problem the space Mn is the Hilbert scheme of n points on C2, which can be

given a description similar to (3.4):

Md=2
n = { (B1, B2, I, J) |B1,2 ∈ End(Cn) , I ∈ Cn , J ∈ Cn∗ ,

[B1, B2] + IJ = 0 , [B1, B
†
1] + [B2, B

†
2] + I ⊗ I† − J† ⊗ J = r 1n}/U(n)

(B1,2, I, J) ∼ (gB1,2g
−1, gI, Jg−1) , for g ∈ U(n)

(3.11)

The space Mn is acted upon by the group U(2) under which (B1, B2) transform as a

doublet, and (I, J†) as a doublet of SU(2) ⊂ U(2). With respect to the torus T =

U(1)× U(1) ⊂ U(2), the data (B1,2, I, J) transforms as follows:

(B1, B2, I, J) 7→ (q1B1, q2B2, (q1q2)1/2
I, (q1q2)1/2

J) (3.12)

Let us assume that r > 0 for definiteness. Then one can show that J = 0, and that

the set of polynomials P (x1, x2) such that P (B1, B2)I = 0 form an ideal in the ring of

polynomials in two variables, of codimension n. The fixed points of the T-action on Mn

are the monomial ideals, which are in one-to-one correspondence with the partitions λ of

size |λ| = n. The ideal Iλ corresponding to the partition λ is generated by

xi−1
1 xλi2 , i = 1, . . . , `(λ) .

Equivalently, it is generated by

x
λtj
1 xj−1

2 , j = 1, . . . , λ1 .

The character of the tangent space to Mn at λ is

tr TλMn
(q1, q2) = q1q2V + V ∗ − (1− q1)(1− q2)V V ∗ =∑

∈λ

q
a +1
1 q

−l
2 + q

−a
1 q

l +1
2

(3.13)

which explains our “arm-leg” measures on the space of two dimensional partitions, if we

use (3.9) as the equivariant K-theory class.
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3.2.1. Non-abelian version

The moduli space of U(N) instantons on (noncommutative) R4 have a similar de-

scription:

MU(N)
n = { (B1, B2, I, J) |

B1,2 ∈ End(Cn) , I ∈ Hom(CN ,Cn) , J ∈ Hom(Cn,CN ) ,

[B1, B2] + IJ = 0 , [B1, B
†
1] + [B2, B

†
2] + II† − J†J = r 1n}/U(n)

(B1,2, I, J) ∼ (gB1,2g
−1, gI, Jg−1) , for g ∈ U(n)

(3.14)

3.3. Three dimensions

Here the story is more involved. DefineMn as the space of quadruples (B1, B2, B3, Y )

of n× n matrices and a vector I ∈ Cn subject to the equations:

[B1, B2] + [B†3, Y ] = 0

[B3, B1] + [B†2, Y ] = 0

[B2, B3] + [B†1, Y ] = 0

[B1, B
†
1] + [B2, B

†
2] + [B3, B

†
3] + [Y, Y †] + I ⊗ I† = r 1n

Y I = 0

(3.15)

viewed up to the action of U(n) via:

(B1, B2, B3, Y, I) 7→
(
gB1g

−1, gB2g
−1, gB3g

−1, gY g−1, gI
)

(3.16)

On the solutions (3.15) we have: Y = 0, [Bi, Bj ] = 0, and one gets an ideal I in C[x1, x2, x3]

similarly to the two dimensional construction. The spaceMn being a quotient of the space

of eight Hermitian n×n matrices and a complex n-vector, by the action of U(n), subject to

7 matrix and one vector equations, should have dimension zero. Instead, it has the generic

complex dimension 3n. What it means is that each point in Mn one has an obstruction

vector space, of the same dimension as the tangent space. The integral overMn should be

viewed as the integral in the perfect obstruction theory [4] which allows localization with

respect to the torus action.

The three dimensional torus T = U(1)×U(1)×U(1) ⊂ SU(4) acts onMn. The fixed

points of the torus action are the monomial ideals, which are in one-to-one correspondence

with the three dimensional partitions.
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4. Gauge theories
We shall study theories in 2d or 2d + 1 dimensions, for d = 1, 2, 3. Our theories will

have a gauge field A, fermionic one-form ψ, a scalar fermion η and a complex boson σ in

2d dimensions, a real scalar ϕ in 2d+ 1 dimensions. In addition, there are some fermions

χ, and their bosonic superpartners H, which are 2d− 2 forms with some constraints. All

these fields are in the adjoint representation. In addition, one may add some matter fields.

We shall be discussing the topologically twisted theories.

4.1. Supersymmetry

Supersymmetry, if discovered, is both a remarkable manifestation of the possible pres-

ence of extra dimensions of the physical space-time and a great theoretical tool in the

almost century-long attempt in unification of all fundamental interactions. Mathemati-

cally, supersymmetry is a close cousin of such well-studied and deep notions as de Rham

or Dolbeault complexes, equivariant cohomology, and Dirac operators.

For example, we shall study four dimensional gauge theory, with N = 2 supersymme-

try. Mathematically the N = 2 supersymmetry (more precisely, what we describe here is

the so-called twisted supersymmetry algebra) is the algebra of odd derivations of the dif-

ferential graded algebra AR4 = Ω• (AR4), of differential forms on the space of connections

on a principal G-bundle P over R4. It is generated by eight supercharges. Four of them

are the de Rham operator and the three ∂-operators, ∂I , ∂J , ∂K , which correspond to the

three complex structures I, J,K on R4. The other four supercharges are the operators

Gm = ι ∂
∂xm

of contractions with the translation vector fields on R4. These operators

anti-commute to the Lie derivatives along the translational vector fields, or their (1, 0) and

(0, 1) components.

All our theories have a fermionic scalar symmetry Q which is a twisted version of the

supersymmetry of the physical theory.

The path integral computing the correlation functions of Q-invariant observables lo-

calizes onto the field configurations, preserved by Q. These configurations form a moduli

spaceM which depends on the spacetime manifold X. In 2d dimensions this moduli space

MX is finite dimensional, and can be compactified, for compact X. In 2d+ 1 dimensions,

for the spacetime of the form X × S1, these configurations should be viewed as constant

loops in MX , the moduli space of the 2d-dimensional theory on X.
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The equations of gauge theory which defineMX may depend on the metric on X, or

on its conformal class, or on the complex structure of X and some choice of polarization.

The group H in all these cases should preserve these structures. We shall study our theories

on X = R2d, where H = SO(2d), for d = 2, 4 or H = U(3) for d = 3.

4.2. Group theory notations

Let G denote a compact Lie group, g = LieG its Lie algebra, T ⊂ G its maximal torus,

and t ⊂ g its Lie algebra, Cartan subalgebra of g. Let r = dimt denotes the rank of G.

We have Cartan decomposition: g = t⊕n+⊕n−. LetW denote the Weyl group of G, ∆+

the set of positive roots, ∆ = ∆+∪∆− the set of all roots. Each root α ∈ ∆+ corresponds

to an element eα ∈ n+, also sometimes called a positive root and to an element e−α ∈ n−,

called the negative root. The root eα being an eigenvector for the adjoint action of t on g

also defines an element of t∗. Let ρ denote half the sum of the positive roots:

ρ = 1
2

∑
α∈∆+

α (4.1)

which we view as an element of t∗. Finally, Λw ⊂ t∗ denotes the weight lattice. It contains

the root lattice Λr, which is integrally generated by eα ∈ t∗, α ∈ ∆. The quotient Λw/Λr

is isomorphic to the center Z(G) of G.

We shall be using the notation φ for vectors in g, ϕ for vectors in t. An Ad(G)-

invariant function F (φ) on g is uniquely determined by its restriction f(ϕ) on t, where it

defines aW-invariant function. As such, it can be also expressed in terms of the Chevalley

generators (elementary symmetric polynomials in the case of G = SU(r + 1)), σ1, . . . , σr:

C[t]W = C[σ1, . . . , σr] (4.2)

We shall sometimes use the same notation for the W-invariant function f on t and for the

function on t/W:

f(ϕ) ∼ f(σ1, . . . , σr) (4.3)

An important rôle in what follows will be played by the identity:

dσ1 ∧ . . . ∧ dσr =
∏
α∈∆+

〈α,ϕ〉 dϕ1 ∧ . . . ∧ dϕr (4.4)
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4.3. Two dimensions

4.3.1. Pure super-Yang-Mills theory

The fields of the N = 2 theory in two dimensions are: the gauge field Am, the fermion

ψm, two scalar fermions χ, η, and a complex scalar σ, all in the adjoint representation.

The Lagrangian is given by:

L =
{
Q, tr (χ ∧ (F − ?H) + ψ ? DAσ + η ? [σ, σ])

}
(4.5)

where the Q-operator acts as follows:

QA = ψ , Qψ = DAφ

Qσ = η , Qη = [σ, σ]

Qχ = H , QH = [σ, χ]

Qφ = 0

(4.6)

4.3.2. Coupling to matter

Let Y be a Kähler manifold with G-isometry. For σ ∈ g let Vσ ∈ V ect(X) denote

the corresponding vector field. Let zm denote the coordinates on Y , yi the holomorphic

coordinates, yi the antiholomorphic coordinates. Let µ : Y → g∗ denote the moment map,

corresponding to the G-action.

Then the gauge theory can be coupled to the sigma model (type A topological sigma

model [5], which computes the number of pseudoholomorphic curves [6]) with the target

space Y . The Q-symmetry acts as follows:

Qzm = χm , Qχm = V mσ (z)

Qπi = pi , Qpi = LVσπi

Qπi = pi , Qpi = LVσπi

(4.7)

The Lagrangian (4.5) generalizes to:

L =
{
Q, tr (χ ∧ (F + ? (µ(z)−H)) +

πi∂Ay
i + πi∂Ay

i + gii
(
piπi − piπi

)
+ . . .

ψ ? DAσ + η ? [σ, σ])
} (4.8)
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where . . . stands for the terms with three fermions, which are irrelevant to our discussion.

The Q-fixed points are the solutions to the following equations:

∂Ay
i ≡ ∂yi + V i

A
(y) = 0

FA + µ(z)vol = 0

DAσ = 0 , Vσ(z) = 0

(4.9)

where vol is a volume form on the Riemann surface X constructed using the metric. The

moduli space MX of solutions to (4.9) is a fibration over BunG, the moduli stack of

holomorphic GC-bundles on X. The fiber over P without automorphisms is the space of

holomorphic sections H0 (X,P ×GC
Y ). For X a Riemann surface of genus g > 1, BunGC

is a positive dimension space. For X a Riemann sphere, the case of interest for our further

investigation, the stack GC-bundles have no continuous moduli, only automorphisms, so

the stack nature of BunGC
is quite important. However, for sufficiently ample Y the

moduli space MX is a positive dimension space and one can define an integration theory

over it. If P has automorphisms, these translate to the non-trivial solutions of the equation

DAσ = 0. Such a solution σ 6= 0 defines a solution of (4.9) only if Vσ(z) = 0, i.e. we land

in one of the AutP ⊂ GC-fixed points in Y . The “stability” condition FA + ?µ = 0 then

implies that A is a constant curvature T-connection on X which, in turn, implies some

quantization condition on 〈µ, σ〉 which can only be met for special values of r. As r crosses

such a value, the correlation functions may jump. This is an example of the wall-crossing

behavior of the topological correlation functions.

Note that the first line in (4.9), the equation describing the holomorphic section of the

associated bundle P ×GC
Y , is conformally invariant, i.e. it only depends on the complex

structure of X. The second line, the equation fixing the Hermitian structure on P, depends

on the conformal factor of the metric on X. In the limit where the metric on X is scaled

to infinity, i.e. when X is very large, almost everywhere on X the contribution of µ(z) in

(4.9) dominates. In other words, the holomorphic section of P ×GC
Y lands in the zero

locus of the moment map in Y , thereby defining a holomorphic map to the Kähler quotient

Y//G = µ−1(0)/G = Y s/GC. However, at some points on X the section of P×GC
Y passes

through the unstable points Y \Y s in Y , i.e. the points which cannot be translated by the

action of GC to the zero locus of µ. Thus, roughly speaking, the moduli space MX of

solutions to (4.9) is a completion of the moduli space of holomorphic maps X → Y//G by

the “ideal instantons”, or “freckles”, which are points on X colored by components of the

set of critial points of µ on Y . This compactification is related to Drinfeld’s “quasimaps”,

or to Uhlenbeck compactification.
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4.3.3. Examples

Take G = U(1), Y = CL, with the standard action of U(1) by multiplying all coordi-

nates by the same phase. The moment map is just a function:

µ(z) =
L∑
i=1

|yi|2 − r (4.10)

where r is some constant. The moduli space MX , for X = CP1 is a projective space

PLd+L−1, where d = c1(P) is the first Chern class:

d =
1

2πi

∫
X

F (4.11)

The instanton partition function for this example:

Z(ε;σ,Q) = Q
σ
ε

∞∑
d=0

Qd
d∏

n=1

1

(σ + nε)L
(4.12)

4.3.4. Generalized Gromov-Witten invariants

The topological sigma model coupled to the topological gauge theory is a simplified

version of the topological string. One can view the correlation functions of the Q-invariant

observables (which are nothing but the G-equivariant cohomology classes of Y ) as the

cohomology classes of BunGC
. One can also couple the theory to the topological gravity

(the subtle point is the metric dependence of (4.9)) to get cohomology classes of the moduli

space of curves with holomorphic bundles on them, thus .

4.3.5. Quantum integrable systems

Every topological sigma model defines an abstract quantum integrable system. The

three-point functions Cijk of the Q-invariant observables Oi on the sphere define a com-

mutative associative algebra. This algebra acts in the space H of the cohomology of the

target space of the sigma model. One can view O′is as the quantum Hamiltonians. The

spectrum of the algebra of O′is can be quite interesting. For example, for G = U(N),

Y ⊂ Hom
(
CN ,CL

)
× Hom

(
CL,CN

)
being the incidence subvariety {(A,B) |AB = 0},

the corresponding quantum integrable system is the Heisenberg spin chain [7].
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4.4. Three dimensions

We shall view the three dimensional theory as a lift of a two dimensional one. The 2+1

dimensional theory corresponding to our two dimensional models is quite simple. It has

the same fields, which now depend on an extra coordinate, t, except that the field σ which

used to be a complex adjoint scalar now mutates to the component At of the gauge field

and a real scalar ϕ. All formulae remain the same except for the change: σ → ∂t+At+ iϕ.

The perturbative 2 + 1 dimensional partition function is given by:

Z3d
pert(q;u) = exp

( ∞∑
n=1

1
n
F2 (qn;un)

)
(4.13)

where u ∈ T, and where the single particle partition function is given by the supertrace:

F2(q;u) =
1

(1− q)(1− q−1)

[∑
α∈∆

uα

]
×
(
q + q−1 + 1− 1− 1− q−1

)
(4.14)

where the expression in the brackets comes from the contribution of fields: A (q + q−1),

ϕ (+1), ψ, χ, η (−1− q−1), gauge invariance (−1), so that Zpert is given by an interesting

infinite product:

Z3d
pert(q;u) =

∏
α∈∆

∞∏
n=1

1
(1− qnuα)

(4.15)

The two dimensional partition function is given by the limit β → 0 where:

q = eβε , u = eβa , a ∈ t (4.16)

4.4.1. Instanton partition function in 2+1 dimensions

When the Higgs field φ has a vacuum expectation value, the gauge group G is broken

down to the maximal torus T, and the gauge bundle (which is topologically trivial principal

G-bundle P for the simple G) reduces to a possibly non-trivial T-bundle. It is classified

by λ ∈ H2(Σ, π1(T)). Take G = U(N) for simplicity. Then the possible topologies of the

T-bundles are labeled by the vectors ~d = (d1, . . . , dN ) ∈ ZN , and the partition function

will be a kind of a theta function obtained by summing over ~d’s. We shall not write an

explicit formula here.
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5. Higher dimensions
5.1. Gauge theory in four dimensions

The fields of the pure N = 2 twisted super-Yang-Mills theory in four dimensions
are the gauge field A, the adjoint fermion one-form ψ, the fermion self-dual two form
χ+, the fermion scalar η, and the complex adjoint scalar σ. The supersymmetric field
configurations are the solutions to the instanton equations

F+
A = 0

This theory [8] gives rise to the Donaldson invariants of the four dimensional manifolds,
and their K-theoretic analogues when lifted to 4 + 1 dimensions [9].

5.1.1. The instanton partition function

The moduli space of framed instantons Mn of charge n,

n = − 1
8π2

∫
X

trFA ∧ FA (5.1)

is a Riemannian manifold, with the metric induced from that on X:

g (δ1A, δ2A) =
∫
X

vg tr (δ1A ∧ ?δ2A) (5.2)

for
δ1A, δ2A ∈ Ω1(X)⊗ g .

The moduli space Mn is acted upon by the group

H = G× UX ,

where G is the gauge group, and UX is the group of isometries, preserving the framing
locus. Let (a, ε) be an element of the Cartan subalgebra of H, a ∈ LieG, ε ∈ LieUX . Let

V (a, ε) ∈ Vect(Mn) (5.3)

be the corresponding vector field. Let

λ(a, ε) = ιV (a,ε)g (5.4)

denote the corresponding one-form, where

a ∈ LieG , ε ∈ LieUX

[a, a] = 0 , [ε, ε] = 0

Then
Z(a, ε; q) =

∑
n

qn
∫
Mn

exp [dλ(a, ε)] e−g(V (a,ε),V (a,ε)) (5.5)
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5.1.2. Perturbative calculation in 4 + 1 dimensions

The perturbative partition function in 4 + 1 dimensions, for pure super-Yang-Mills is

given by:

Z5d
pert(q1, q2;u) = exp

( ∞∑
n=1

1
n
F4 (qn1 , q

n
2 ;un)

)

F4(q1, q2;u) =
2∏
i=1

1
(1− qi)

(
1− q−1

i

) [∑
α∈∆

uα

]
×

×

(
2∑
i=1

(
qi + q−1

i

)
+ 1− 1− 1−

(
2∑
i=1

q−1
i

)
− q1q2

)

= −

[∑
α∈∆

uα

]
×

2∏
i=1

1
1− q−1

i

(5.6)

where the following fields contribute to the sum

2∑
i=1

(
qi + q−1

i

)
+ 1− 1− 1−

(
2∑
i=1

q−1
i

)
− q1q2

A :
2∑
i=1

(
qi + q−1

i

)
ϕ : +1

η, χ : −1− q1q2

gauge invariance : −1

ψ : −
2∑
i=1

q−1
i

(5.7)

Thus,

Z5d
pert(q1, q2;u) =

∞∏
k,l=1

∏
α∈∆

(
1− qk1ql2uα

)
(5.8)

5.1.3. Four dimensional limit

Again, we set q1 = eiRε1 , q2 = eiRε2 , u = eiRa, and take the limit R→ 0 while keeping

a, ε1, ε2 finite. Again, the plethystic sum becomes the integral:

∞∑
n=1

1
n
f(einRx) −→ d

ds

∣∣∣∣∣
s=0

[
Λs

Γ(s)

∫ ∞
0

dt
t
tsf(eitx)

]
(5.9)
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where the right hand side is understood in a sense of analytic continuation in s. The whole

point of introducing the (tΛ)s

Γ(s) factor is to eliminate a possible singularity near t = 0, where

the argument of f(·) approaches 1. In the original 4 + 1 expression the sum over n started

with n = 1, and the singularity was absent. The price we pay for the regularization is the

(dynamical) generation of the scale, Λ. It is related to the β-function of the supersymmetric

Yang-Mills theory.

Thus:

Z4d
pert(ε1, ε2; a) = exp

∑
α∈∆

γε1,ε2 ( 〈α, a〉 ) (5.10)

where γε1,ε2 (x) is an analytic function solving the difference equation:

γε1,ε2 (x)− γε1,ε2 (x+ ε1)− γε1,ε2 (x+ ε2) + γε1,ε2 (x+ ε1 + ε2) = −log
(

(x+ ε1 + ε2)
Λ

)
(5.11)

which is an R→ 0 limit of the five dimensional function

ξq1,q2(y) =
∞∑
n=1

1
n

(yq1q2)n

(1− qn1 )(1− qn2 )
(5.12)

which solves:

ξq1,q2(y)− ξq1,q2(yq1)− ξq1,q2(yq2) + ξq1,q2(yq1q2) = −log (1− yq1q2) (5.13)

via:

ξeiRε1 ,eiRε2 (eiRx) = γε1,ε2(x) +
x2

2ε1ε2
log (ΛR) (5.14)

Explicitly, for Re(x) < 0, ε1, ε2 ∈ C\R,

γε1,ε2 (x) =
d

ds

∣∣∣∣∣
s=0

[
Λs

Γ(s)

∫ ∞
0

dt
t
ts

etx

(1− e−tε1)(1− e−tε2)

]
(5.15)

5.1.4. Instanton corrections in 4 + 1 dimensions

The instanton corrections can be represented as a sum over N -tuples of ordinary (two

dimensional) partitions ~λ =
(
λ1, . . . , λN

)
. A partition λ can be idenified with the set

{(i, j) ∈ Z2
+ | 1 ≤ j ≤ λi}, λ1 ≥ λ2 ≥ . . . ≥ λ`(λ), |λ| =

∑
i λi. The character of the

partition

chλ(q1, q2) =
∑

(i,j)∈λ

qi−1
1 qj−1

2 =
1

1− q2

∑
i

qi−1
1 (1− qλi2 ) =

1
1− q1

∑
j

qj−1
2 (1− qλ

′
j

1 )
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where λ′ is the partition, dual to λ. For the N -tuple ~λ we define |~λ| =
∑
l |λl|.

The instanton corresponding to ~λ contributes

Z~λ(q1, q2;u,Q, k) = Q|
~λ|χk~λ

∏
Υ

1
1− e−xΥ

(5.16)

where:

T~λ =
∑
Υ

exΥ =
WW ∗ − EE∗

(1− q−1
1 )(1− q−1

2 )

= WV ∗ + VW ∗q1q2 − (1− q1)(1− q2)V V ∗

=
∑
m,l

umu
−1
l

 ∑
(i,j)∈λl

q1−i
1 q1−j

2 +
∑

(i,j)∈λm
qi1q

j
2 +

`(λl)∑
i=1

λm1∑
j=1

qi1q
1−j
2 (1− q−λ

m′
j

1 )(1− qλ
l
i

2 )


E = W − (1− q1)(1− q2)V

W =
∑
l

ul , V =
∑
l

ul chλl(q1, q2)

(5.17)

For N = 1 one can further simplify:

Tλ =
∑

(i,j)∈λ

q
λ′j−i+1

1 qj−λi2 + q
i−λj
1 q−j+1+λi

2 =

∑
∈λ

q
arm( )+1
1 q

−leg( )
2 + q

−arm( )
1 q

leg( )+1
2

(5.18)

5.1.5. SU(2) specification

A certain simplifcation occurs for the special value of the rotation parameters: q1 =

q−1
2 = q. In addition, if one assumes that ul = qMl , Ml ∈ Z, then one can map the

non-abelian problem to the abelian one [1] and express the partition function in terms of

the representations of the chiral algebra of the system of N chiral fermions.

5.2. Six dimensions

The perturbative partition function in 6 + 1 dimensions, for pure super-Yang-Mills

(this is a unique theory up to a choice of the gauge group, it is the dimensional reduction
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of the N = 1 super-Yang-Mills theory in ten dimensions), is given by:

Z7d
pert(q1, q2, q3;u) = exp

( ∞∑
n=1

1
n
F6 (qn1 , q

n
2 , q

n
3 ;un)

)

F6(q1, q2, q3;u) =
3∏
i=1

1
(1− qi)

(
1− q−1

i

) [∑
α∈∆

uα

]
×

× (χA + χ~ϕ − χΨ − 1)

= −

[∑
α∈∆

uα

]
×

3∏
i=1

1
1− q−1

i

(5.19)

where the following fields contribute to the sum:

A :
3∑
i=1

(
qi + q−1

i

)
~ϕ : +1 + q1q2q3 + q−1

1 q−1
2 q−1

3

η, χ : −1− (q1q2q3)−1 −
3∑
i=1

q−1
i −

3∑
i<j

qiqj

gauge invariance : −1

ψ : −
3∑
i=1

q−1
i

(5.20)

Thus,

Z7d
pert(q1, q2, q3;u) =

∞∏
k1,k2,k3=1

∏
α∈∆

(
1− qk1

1 qk2
2 qk3

3 uα
)

(5.21)

5.2.1. Instanton corrections

The supersymmetry preserving equations in six dimensions are:

F 2,0
A = ∂†Au

F 0,2
A = ∂

†
Au

F 1,1
A ∧ ωX ∧ ωX = [u, u]

(5.22)

where

u ∈ Ω3,0(X)⊗ g (5.23)
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We now take G = U(N) and follow the familiar, by now, route. The instanton

corrections organize themselves into the sum over the coloured three dimensional partitions

~π = (π1, . . . , πN ). Each partition π defines a polynomial in (q1, q2, q3), the character chπ:

chπ(q1, q2, q3) =
∑

(i,j,k)∈π

qi−1
1 qj−1

2 qk−1
3 (5.24)

where the three dimensional partition is identified with the set π = {(i, j, k) ∈ Z3
+ | 1 ≤

k ≤ hi,j}, and hi,j is the so-called height function, hi,j ≥ hi+1,j , hi,j ≥ hi,j+1, hi,j ≥ 0.

The size of the partition |π| is the total number of elements in the corresponding set:

|π| =
∞∑

i,j=1

hi,j (5.25)

For the N -tuple ~π we define:

|~π| =
N∑
l=1

|πl|

We shall only consider the finite size partitions. Now, define:

E = W − (1− q1)(1− q2)(1− q3)V

E∗ = W ∗ − (1− q−1
1 )(1− q−1

2 )(1− q−1
3 )V ∗

W =
N∑
l=1

ul , W
∗ =

N∑
l=1

u−1
l

V =
N∑
l=1

ul chπl(q1, q2, q3)

V ∗ =
N∑
l=1

u−1
l chπl(q

−1
1 , q−1

2 , q−1
3 )

(5.26)

The instanton partition function is defined as:

Z7d(q1, q2, q3;u,Q) =
∑
~π

(−Q)|~π|
∏
Υ

e
xΥ
2 − e−

xΥ
2

e
yΥ
2 − e−

yΥ
2

(5.27)

where the exponents exΥ , eyΥ are all products of the form (ul, u−1
m , ulu

−1
m )× qk1

1 qk2
2 qk3

3 , for

k1, k2, k3 ∈ Z, and are defined as follows:

Tπ ≡
∑
Υ

eyΥ − exΥ

=
WW ∗ − EE∗

(1− q−1
1 )(1− q−1

2 )(1− q−1
3 )

= V ∗W − VW ∗q1q2q3 − V V ∗(1− q1)(1− q2)(1− q3)

(5.28)
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5.2.2. U(1) theory

The case N = 1 is already quite interesting.

Let us list the first few contributions to the partition function. For the single box

partition |π| = 1, V = 1,

Tπ =
3∑
i=1

(
qi −

q1q2q3

qi

)
and the contribution to the partition function:

Zone−box = − q

(q1q2q3)1/2

(1− q1q2)(1− q1q3)(1− q2q3)
(1− q1)(1− q2)(1− q3)

(5.29)

there are three two-box partitions, aligned in the 1, 2, 3d directions respectively. The sum

of their contributions is:

Ztwo−boxes = − q

(q1q2q3)1/2
Zone−box ×

 3∑
i=1

(1− q1q2q3/q
2
i )

qi(1− q2
i )

∏
j 6=i

(1− qjq2
i )

(1− qj/qi)

 (5.30)

Amasingly, after extracting the single particle contribution, i.e. by rewriting the partition

function in the form:

Zinst(q1, q2, q3; q) = exp

( ∞∑
n=1

1
n
F (qn1 , q

n
2 , q

n
3 , q

n)

)
(5.31)

the simplification emerges:

F (q1, q2, q3, q) =
Q

(1−Q)(1−Q(q1q2q3))
(1− q1q2)(1− q2q3)(1− q1q3)

(1− q1)(1− q2)(1− q3)
(5.32)

where

Q =
q

(q1q2q3)
1
2

which brings us to the combinatorial formula (2.24). The formula (5.32) also has an infinite

product form:

Zinst(q1, q2, q3; q) =
∞∏
n=1

[
(1−Qn)

(1− Q̃n)2
×
∞∏
m=1

1

1−QnQ̃m
(1− qn1Qm)(1− qn2Qm)(1− qn3Qm)

(1− qn1 Q̃m)(1− qn2 Q̃m)(1− qn3 Q̃m)

]
(5.33)

where

Q̃ = Qq1q2q3

q4 = Q , q5 = Q̃−1
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6. M-theory in a flash
M -theory [10] is the elusive quantum eleven dimensional theory whose low energy

E �MPlanck limit is the unique eleven dimensional supergravity and its compactification

on a circle of a finite radius R is equivalent to the IIA superstring theory with finite coupling

gs = (MPlanckR)
3
2 , and string tension M2

s = M3
PlanckR. The microscopic definition of the

theory is still lacking. It is known to contain some stable extended objects, the membrane

M2 and the fivebrane M5. The tensions of these extended objects are M3
Planck and M6

Planck,

respectively. The very IIA string should come from the membrane. The graviton Kaluza-

Klein modes, which have the mass scale 1/R, become the solitonic particles/black holes in

the IIA theory, described in the weak coupling limit as D0-branes, whose mass is Ms/gs =

1/R. The M2-brane descends to the D2-brane, whose tension is M3
s /gs = M3

Planck. In

addition, the IIA theory has other extended objects which we shall encounter later. The

NS5-brane is the descendent of the “elementary” M5-brane, the magnetic dual to M2 in

eleven dimensions. Its tension is M6
Planck = M6

s /g
2
s . In the IIA string theory it is described

as a closed string theory soliton, hence the 1/g2
s dependence of its tension. The M5-brane

wrapped on a circle of M -theory becomes D4-brane, whose tension is M6
PlanckR = M5

s /gs.

The D6-brane is the M -theory on TNR × R7, where TNR is the Taub-Nut space, a

hyperkähler four dimensional manifold which asymptotically looks locally like R3 × S1,

where metrically S1 has a finite radius R, however globally at infinity the S1 is non-trivially

fibered over S2
∞ (so that the total space is S3, topologically), and in TNR the circle S1

can be contracted to a point. The space TNR has a U(1)-isometry which preserves the

hyperkähler structure. The hyperkähler moment map [11] sends m : TNR → R3, the fiber

being S1 everywhere except the origin in R3, where the fiber is just a point. The origin

in R3 is interpreted by the IIA string as the location of the D6-brane. The open strings

ending on the D6-brane are nothing but disks in TNR which bound some particular fiber

of the projection m. The Taub-Nut space has a multi-center version TNN,R, which looks

asymptotically as a quotient of R3 × S1/ZN , so that the three-sphere S3
∞ of the Taub-

Nut space is replaced by the Lens space S3/ZN . When the moduli of the TNN,R space

are generic, the space has N − 1-noncontractible 2-cycles, on which the M2-branes can

wrap, giving rise to the massive particles in 6 + 1 dimensions, whose mass goes to zero

as the moduli are adjusted so that TNN,R space develops an orbifold singularity. This

is translated to the IIA string statement that when N parallel D6 branes coincide, their

worldvolume supports a maximal supersymmetric Yang-Mills theory, with the gauge group

U(N).
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If this theory is further compactified on a circle S1′ , one can get another IIA string

description of the resulting six dimensional theory, by taking S1′ to be the M -theory

circle, rather then the U(1)-fibration of the Taub-Nut space. In this way one concludes

that when the IIA string theory is compactified on a K3 manifold with the singularity

of A,D,E type then the effective six dimensional theory has, in addition to the obvious

spectrum of the Kaluza-Klein fields coming from the ten dimensional IIA supergravity, a

gauge multiplet, with the gauge group of the same A,D,E type. If, instead of the K3

manifold, one takes a fibration over P1 with the K3 fibers, such that the total space has

a Calabi-Yau metric, and the fiber has the A,D,E singularity fibered over the base P1

then the four dimensional gauge theory is the N = 2 supersymmetric Yang-Mills theory

with the gauge group G of the same A,D,E type. This is the way string theory realizes

McKay duality between the discrete SU(2) subgroups Γ, the corresponding singularities

C2/Γ and the simple Lie groups GΓ. In order to get pure gauge theory, so that the massive

string modes are decoupled and the gravity is non-dynamical, one takes a limit where the

K3 manifold becomes infinitely large, while the singularity remains. In other words one

studies IIA string in a non-compact background Y ×R4 where Y is a C2/Γ-bundle over

P1 such that the total space is a non-compact Calabi-Yau threefold [12].

6.1. Eleven dimensional supergravity

The fields of the eleven dimensional supergravity are the metric gIJ = ηmne
m
I e

n
J , with

the elfbein emI , and ηmn the Minkowski metric of the signature −11 + 110, the three form

C = 1
3!CIJKdx

I ∧ dxJ ∧ dxK , and the Rarita-Schwinger fermion field ψIdx
I , where the

components ψI ∈ S ≈ R32 are the Majorana spinors. One represents the Clifford algebra

{ΓI ,ΓJ} = 2gIJ in S. There is a real symplectic form C ∈ Λ2S∗. The Γ-matrices are

C-symmetric:

C(a,ΓIb) = C(b,ΓIa) , a, b ∈ S (6.1)

For the spinor ψα ∈ S define ψα = Cαβψβ . We also define

ΓI1I2...In =
1
n!

∑
σ∈Sn

(−1)σΓIσ(1)ΓIσ(2) . . .ΓIσ(n) (6.2)

– the representation of ΛnR11 in S.
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The Lagrangian of the eleven dimensional supergravity reads, up to the terms, quartic

in fermions:

LS =
1
κ2

∫
M11

vg

(
− 1

2R−
1
2ψIΓ

IJKDJψK −
1
48
GIJKLG

IJKL

−
√

2
192

(
ψIΓ

IJKLMNψN + 12ψ
J

ΓKLψM
)
GJKLM

)
−
√

2C ∧G ∧G

(6.3)

where

G = dC, C ∧G ∧G =
1

3!4!4!
CI1I2I3GI4...I7GI8...I11ε

I1I2...I11 (6.4)

In writing (6.3) one views the spin connection Ω as an independent variable. The Riemann

tensor is the curvature of Ω.

The local supersymmetry acts as follows:

δemI = 1
2e
m
J ηΓJψI

δCIJK = −
√

2
8
ηΓ[IJψK]

δψI = DIη +
√

2
288

(
ΓJKLMI − 8δJI ΓKLM

)
ηGJKLM + . . .

(6.5)

6.2. M-theory calculations

Consider M-theory compactified on a manifold X11 which is a R10-bundle over S1,

with the locally flat metric, such that the fiber is rotated by an element g ∈ SO(10) as

one is looping around the base circle. The metric depends only on the conjugacy class of

g, i.e. on the five angles ϑα, α = 1, . . . , 5:

g = expΩ =


R1 0 0 0 0
0 R2 0 0 0
0 0 R3 0 0
0 0 0 R4 0
0 0 0 0 R5

 , Rα =
(

cos(ϑα) sin(ϑα)
−sin(ϑα) cos(ϑα)

)
(6.6)

This background (which is the direct analogue of the Ω-background of [13] ) has a gener-

alization in the 11d sugra. The rotation (6.6) does not change the flat metric. However,

the global eleven dimensional metric is non-trivial:

ds2
11 = r2 (dt)2 + ηmn (dxm + vmdt) (dxn + vndt) , v = Ω · x

ds2
11 = r2 (dt)2 + ηmndymdyn , y = etΩ · x

(6.7)
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6.3. Equivariant K-vertex

The bound states of the single D6 brane and several D0 branes can be studied with the

help of an index, which is an equivariant version of Witten’s index for the supersymmetric

quantum mechanics, describing the low energy dynamics of the open strings stretched

between the D0’s and between D0’s and the D6 brane (this problem was analyzed in [14]

for the system of D0 branes only ).

This quantum mechanics [15] is a dimensional reduction of the supersymmetric Yang-

Mills theory down to 0 + 1 dimensions, augmented with some extra fields. Whether this

quantum mechanics is supersymmetric or not depends on the B-field, which can be turned

on along the D6 brane.

The index, however, does not depend on the actual value of the B-field. More precisely,

it does not change as the B-field is continuously varied. The index may jump, however,

when the B-field crosses certain critical values, i.e. the walls of marginal stability of the

D0−D6 system.

The quantum mechanical variables describing the motion of k D0-branes, are nine

Hermitian matrices XA, A = 1, . . . , 9. Of these nine matrices six describe the motion

along the D6 brane, and three describe the transverse motion. It is convenient to combine

the six longitudinal matrices into three complex matrices Bα, α = 1, 2, 3, via, e.g.

Xα =
1√
2

(
Bα +B†α

)
, X3+α =

i√
2

(
Bα −B†α

)
.

The quantum mechanics of the D0-branes has the U(k) gauge symmetry. The matrices

XA are all in the adjoint representation of U(k). In addition, there is a matrix I, which

is in the fundamental representation of U(k). This is a lowest energy mode of the 0 − 6

string.

Mathematically we are dealing with the space of four complex matrices Bα and Y , all

in End(Ck), and I ∈ Ck, considered up to the GL(k,C) action:

(B1, B2, B3, Y ; I) ∼ (gB1g
−1, gB2g

−1, gB3g
−1, gY g−1; gI) (6.8)

On this space we consider the holomorphic function (the superpotential) W ,

W = tr (B1[B2, B3]) (6.9)

We would like to study the space of the critical points of W . Ideally, it should have

dimension zero. However, in reality it has a positive dimension (3k). This discussion

brings us precisely to the setup of the three dimensional geometric partition function. The

D0 − D6 partition function therefore is identical to our formula (2.24). This result can

also be interpreted in terms of summing over geometries, a la [16].
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6.4. M-theory flesh

We now come to the conclusion of our analysis. The M -theory lift of the D0 −
D6 system in the Ω-background is the TNR × R6 fiber bundle over the circle S1. By

deforming it to R10 = R4 × R6 bundle, one gets the M -theory Ω-background. The

chemical potential for the D0-brane charge travelling around the circle S1 translates to

the extra twist parameter of the TN space. The SU(4) rotation of the D6 theory together

with this twist becomes the SU(5) rotation of R10. The eleven dimensional supergravity

partition function in this background can be calculated, similarly to the calculation we

performed for gauge theories so far. The result is:

Z11d sugra(q1, q2, q3, q4, q5) = exp

( ∞∑
n=1

1
n
F 11d sugra (qn1 , q

n
2 , q

n
3 , q

n
4 , q

n
5 )

)
(6.10)

where

F 11d sugra (q1, q2, q3, q4, q5) =
∑
i qi∏

i(1− qi)
+

∑
i q
−1
i∏

i(1− q
−1
i )

(6.11)

which coincides with (2.24), for q4 = Q(q1q2q3)−1/2, q5 = Q−1(q1q2q3)−1/2, after subtract-

ing the perturbative part:

F 11d sugra(q1, q2, q3, q4, q5) = F̃ 7d pert(q1, q2, q3) + F(q1, q2, q3, q) . (6.12)

where

F̃ 7d pert(q1, q2, q3) = F6(q1, q2, q3) + F6(q−1
1 , q−1

2 , q−1
3 ) = F 11d sugra(q1, q2, q3, q4, q5)|q=0

(we take the U(1) version of (5.19)).
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