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1 Abstract

The Hochschild and (periodic) cyclic homology of the algebra of continuous
functions on a smooth manifold are trivial, see Connes [1], [2]. In this paper
we create an analogue of the Hochschild and periodic cyclic homology which
gives the right result (i.e. Alexander-Spanier co-homology) when applied
onto the algebra of continuous functions on smooth manifolds. This will
be realized by replacing the Connes periodic bi-complex (b, B), see Connes
[1], [2] and Loday [5], by the bi-complex (b̃, d), where the operator b̃ is
obtained by blending the Hochschild boundary b with the Alexander-Spanier
boundary d; the operator b̃ anti-commutes with the operator d.

In order to reach this objective, as in the classical case, one has to
consider the Alexander-Spanier complex of germs of functions. As the notion
of germ is a locality notion, our procedure will apply to topological algebras.

More precisely, we show that the modified periodic cyclic homology of
the algebra of continuous functions on a smooth manifold is the ordinary
Z2-graded de Rham co-homology of the manifold.

The problem of producing a tool able to extract the correct homology
from the algebra of continuous functions was addressed before by Puschnigg
[8].

2 Introduction

The Hochschild complex has the critical limitation that in the case of the C∗-
algebra of continuous functions the Hochschild homology vanishes in positive
degrees. The purpose of the present paper is to correct this deficiency.

The main idea of our procedure consists of replacing the Hochschild
boundary operators b by operators of the form b̃ = bUb. Such operators will
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be called modified Hochschild operators and the corresponding homology
will be called modified Hochschild homology. The effect of such a replace-
ment is that there are more b̃− cycles and less b̃−boundaries than those in
the Hochschild complex and hence the modified Hochschild homology will
be bigger than the Hochschild homology.

In addition, whilst the Hochschild boundary does not behave well with
respect to the Alexander-Spanier boundary operator, the new operator b̃ will
anti-commute with it. This crucial commutativity relation will allow us to
correct the above mentioned limitation of the original Hochschild homology
and to replace the (b, B) Connes bi-complex by the (b̃, d) bi-complex, called
modified periodic cyclic bi-complex. The total homology of the modified
periodic cyclic bi-complex will be called modified periodic cyclic homology.

The boundary operator b̃ will be realized by blending the Hochschild
boundary b with the Alexander-Spanier boundary. In order to reach this
objective we will have to restrict the Alexander-Spanier complex to germs
of functions. As the notion of germ is a locality notion, it will apply on
topological algebras. In the sequel we will be careful to perform only oper-
ations which are compatible with the locality phenomena, to encompass at
least the case of scalar functions, sections in vector bundles and quasi-local
operators. We stress on the observation that the Hochschild homology is
local in nature, see Connes [1] and Teleman [10].

The construction of the operator b̃ will be based on the operator σ defined
by the formula

db + bd = 1− σ, (2.1)

discussed in Sect.5-6.
Although the next considerations are general, to the end, in order to

get interesting results, we will have to involve locality. As long as we per-
form algebraic operations only with the Alexander-Spanier and Hochschild
operators, this objective is not obstructed.

In particular, it follows that the modified Hochschild homology of the
algebra of continuous functions is not trivial. This result should provide the
correct definition of non commutative differential forms for the algebra of
continuous, or more singular, functions.

We stress that all our considerations do not make any kind of commu-
tativity assumption on the associative algebra or the ground ring of the
algebra.

In a subsequent note we intend to show that the modified periodic cyclic
homology allows one to extract the Chern character from continuous direct
connections (for direct connections see Teleman [11], [12], Kubarski-Teleman
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[4]) in continuous vector bundles. For applications of linear direct connec-
tions, used as a tool, see Connes-Moscovici [3] and Mishchenko-Teleman
[7].

The author thanks J.-M. Lescure for valuable remarks.

3 Alexander-Spanier Complex

Let A be an arbitrary associative algebra with unit 1 over an arbitrary ring
K. Any commutativity assumption is made neither on the algebra A nor
on the ground ring K. We assume of course that A is a K-bimodule.

In what follows we require only that the unit 1 commutes with all ele-
ments of the ring K and we assume that the tensor products are circular
over K, i. e.

f0 ⊗K f1 ⊗K ...⊗K fk.α = α.f0 ⊗K f1 ⊗K ...⊗K fk (3.2)

for any α ∈ K. If K is a field, any tensor product over K is automatically
circular.

For any non negative integer r define

Ck(A) := ⊗k+1
K A; (3.3)

its elements are called non commutative chains of degree k over A. In the
sequel the tensor product ⊗ is understood to mean ⊗K . The formula

α(a0 ⊗ a1 ⊗ ...⊗ ak)β := (αa0)⊗ a1 ⊗ ...⊗ (akβ) (3.4)

defines an A bi-module structure on Ck(A).
We define the Alexander-Spanier co-boundary face map di : Ck(A) →

Ck+1(A) by the formulas

di(a0 ⊗ a1 ⊗ ...⊗ ak) := a0 ⊗ ....⊗ 1⊗ ai ⊗ ...⊗ ak, for 0 ≤ i ≤ k, (3.5)

and

dk+1(a0 ⊗ a1 ⊗ ...⊗ ak) := a0 ⊗ a1 ⊗ ...⊗ ak ⊗ 1, for i = k + 1. (3.6)

The Alexander-Spanier boundary is defined by

d :=
i=k+1∑

i=0

(−1)idi; (3.7)
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it agrees with the classical Alexander-Spanier co-boundary operator, see e.g.
Spanier [9]. It satisfies d2 = 0.

In particular, for any a ∈ A one has

da = 1⊗ a− a⊗ 1 and d1 = 0. (3.8)

If α ∈ K and a ∈ A, and as α.1 = 1.α then

d(α.a) = 1⊗ (α.a)− (α.a)⊗ 1 = 1.α⊗ a− (αa)⊗ 1 = α.da (3.9)

The product
× : Cr(A)⊗ Cs(A) → Cr+s(A) (3.10)

of chains over A is defined precisely as in the case of the classical Alexander-
Spanier co-chains

(a0⊗a1⊗...⊗ar)×(b0⊗b1⊗...⊗bs) := a0⊗a1⊗...⊗(arb0)⊗b1⊗...⊗bs. (3.11)

The complex C∗(A) := {
∑∞

r=0 Cr(A), d} is a graded differential complex:
for any ω ∈ Cr(A) and σ ∈ Cs(A) one has

d(ω × σ) = (dω)× σ + (−1)rω × (dσ). (3.12)

If ρ : A → K is a K−homorphism and ρ(1A) = 1K , then h : Cr(A) →
Cr−1(A), defined by the formula

h(a0 ⊗ a1 ⊗ ...⊗ ar) = ρ(a0)a1 ⊗ ...⊗ ar (3.13)

satisfies the identity
dh + hd = 1 (3.14)

and hence the complex {C∗(A), d} is acyclic. In the case of the classical
Alexander-Spanier complex the homomorphism ρ is given by the valuation
of functions at one point.

If the algebra A has a locally convex topology, it is natural and cus-
tomary (see Connes [1]) to replace the algebraic tensor product Ci(A) by
a topological tensor product completion Ĉi(A). The elements of Ĉr(A) are
called continuous Alexander-Spanier co-chains.

In the particular case of the algebra A = C∞(M), endowed with the
Fréchèt topology, where M is a smooth manifold, for the projective ten-
sor product completion, the continuous Alexander-Spanier co-chains consist
of all smooth functions on various powers of M . The homology of this
complex is acyclic, as explained above. If, however, the complex of contin-
uous Alexander-Spanier chains is replaced by the complex of germs of such
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functions about the diagonals, the classical Alexander-Spanier theorem, see
Spanier [9], states that its homology is canonically isomorphic to the de
Rham cohomology.

It is very important to recall that the Alexander-Spanier theorem holds
if smooth functions are replaced by arbitrary functions, or by special classes
of functions (like measurable, Lipschitz, etc.); such generalizations hold if
M is merely a CW-complex.

The main objective of this paper is to create an analogue of the Hochschild
and periodic cyclic homology which does not give trivial results on algebras
of functions as the algebra of continuous functions. This will be realized by
blending the Hochschild boundary b with the Alexander-Spanier boundary
d.

Although the suiving considerations are general, in order to get interest-
ing results, we will have to involve locality.

4 Recall of Hochschild and Periodic Cyclic Ho-
mology

In this section we recall some basic notions and results due to A. Connes
[1], [2] which lay to the foundations of non commutative geometry.

We keep the hypotheses and notations from the previous section.
Let br : Ck(A) → Ck−1(A), be the Hochschild boundary face operator

defined on generators by

br(f0⊗f1⊗....fk−1⊗fk) = f0⊗f1⊗....⊗(fr.fr+1)⊗...⊗fk, for 0 ≤ r ≤ k−1
(4.15)

and

bk(f0 ⊗ f1 ⊗ ....fk−1 ⊗ fk) = (fkf0)⊗ f1 ⊗ ...⊗ fk−1, for r = k. (4.16)

Two boundary operators, b′ and b : Ck(A) → Ck−1(A) are introduced
by the formulas

b′ =
r=k−1∑

r=0

(−1)rbr (4.17)

and
b = b′ + (−1)kbk. (4.18)

It is true that (b′)2 = b2 = 0.
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The complex {C∗(A), b′} is the bar complex; if the algebra A is unitary,
as assumed, the bar complex is acyclic; it provides the so called bar resolu-
tion of the algebra A, see [6]. The acyclicity of the bar resolution is provided
by the homotopy

χ(f0 ⊗ f1 ⊗ ....fk−1 ⊗ fk) = 1⊗ (f0 ⊗ f1 ⊗ ....fk−1 ⊗ fk). (4.19)

The complex {C∗(A), b} is the Hochschild complex of the algebra A; its
homology, denoted H∗(A), is the Hochschild homology of the algebra.

IfA is a topological real or complex algebra, the homology of the complex
{Ĉ∗(A), b} is the continuous Hochschild homology of the algebra A, see A.
Connes [1], [2].

The following theorem, proven by A. Connes [1] on compact manifolds
was extended by N. Teleman [10] to paracompact manifolds.

Theorem 4.1 For any smooth paracompact manifold

Hk(C∞(M)) ≈ Ωk(M), (4.20)

where Ωk(M) denotes the space of k forms.

5 The Operator σ.

Definition 5.1 Let σ be the operator given by the formula

db + bd := 1− σ. (5.21)

A general remark shows that σ commutes both with d and b, that is σ is
a chain homomorphism both in the Alexander-Spanier and in the Hochschild
complex. Consequently, the range of the operator σ, and its (fixed) powers,
are subcomplexes both in the Alexander-Spanier and Hochschild complexes.
Additionally, as σ is homotopic to the identity, the inclusions of these sub-
complexes into the Alexander-Spanier, resp. Hochschild, complexes induce
isomorphisms between their respective homologies.

Lemma 5.2
-i) b′ anticommutes with d

b′d + db′ = 0 (5.22)

-ii) one has the identity

(bd+db)(f0⊗f1⊗...⊗fk) = f0⊗f1⊗...⊗fk−(−1)k+1((dfk)f0)⊗f1⊗...⊗fk−1.
(5.23)
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-ii’) and therefore

σ(f0 ⊗ f1 ⊗ ...⊗ fk) = (−1)k+1((dfk)f0)⊗ f1 ⊗ ...⊗ fk−1 (5.24)

-iii) the kth power of σ has the explicite expression

σk(f0 ⊗ f1 ⊗ ...⊗ fr) = df1.df2...dfr.f0. (5.25)

Proof of Lemma 5.2 -i) The Alexander-Spanier and Hochschild bound-
ary face operators satisfy the following relations on Ck(A)

dibj = bj+1di for 0 ≤ i ≤ j ≤ k − 1 (5.26)

dibj = bjdi+1 for 0 ≤ j < i ≤ k (5.27)

dibi = bi−1di = Id for 0 ≤ i ≤ k (5.28)

b0d0 = bkdk+1 = Id (5.29)

In virtue of the relations (5.26), (5.27) one has

db′ =
∑

0≤i≤j≤k−1

(−1)i+jdibj +
∑

0≤j<i≤k

(−1)i+jdibj =

∑
0≤i≤j≤k−1

(−1)i+jbj+1di +
∑

0≤j<i≤k

(−1)i+jbjdi+1. (5.30)

On the other hand

b′d =
∑

0≤i<j+1≤k

(−1)i+(j+1)bj+1di +
∑

0≤j<i≤k

(−1)(i+1)+jbjdi+1+ (5.31)

∑
0≤j=i≤k

(−1)(j+j)bjdj +
∑

0≤j≤k,i=j+1

(−1)(j+j)bjdj+1 = (5.32)

(relations (5.28), (5.29))

∑
0≤i<j+1≤k

(−1)i+(j+1)bj+1di +
∑

0≤j<i≤k

(−1)(i+1)+jbjdi+1+ (5.33)

∑
0≤j=i≤k

(−1)(j+j)Id +
∑

0≤j≤k,i=j+1

(−1)j+(j+1)Id. = (5.34)

∑
0≤i<j+1≤k

(−1)i+(j+1)bj+1di +
∑

0≤j<i≤k

(−1)(i+1)+jbjdi+1 = −db′ (5.35)
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in virtue of relations (5.31).
-ii) Where confusion might occur, the underscript (k) will specify that

the corresponding operator is acting on chains of degree k. We have

(bd + db)(k) = (b′ + (−1)k+1bk+1)d + d(b′ + (−1)kbk) = (5.36)

(−1)k+1(bk+1d− dbk). (5.37)

A direct calculation shows that

(−1)k+1(bk+1d− dbk)(f0 ⊗ f1 ⊗ ...⊗ fk) = (5.38)

f0 ⊗ f1 ⊗ ...⊗ fk + (−1)k((dfk)f0)⊗ f1 ⊗ ...⊗ fk−1. (5.39)

Therefore

(1− σ)(f0 ⊗ f1 ⊗ ...⊗ fk) = (5.40)

f0 ⊗ f1 ⊗ ...⊗ fk + (−1)k((dfk)f0)⊗ f1 ⊗ ...⊗ fk−1. (5.41)

We have proved that

σ(f0 ⊗ f1 ⊗ ...⊗ fk) = (−1)k+1((dfk).f0)⊗ f1 ⊗ ...⊗ fk−1, (5.42)

which completes the proof of -ii) and -ii’).
By iterating σ, one gets

σk(f0 ⊗ f1 ⊗ ...⊗ fk) = df1.df2...dfk.f0, (5.43)

which completes the proof of the lemma.

Definition 5.3 We introduce the operator

Π(k) := (1− bd)σk
(k). (5.44)

Proposition 5.4
-i) The operator Π(k) has the explicite formula

Π(k)(f0 ⊗ f1 ⊗ ...⊗ fk) = f0 . df1 ... dfk (5.45)

-ii) Π(k) is a projector
(Π(k))

2 = Π(k) (5.46)
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-iii) the operators d commute with the projectors Π(k) and hence they keep
the ranges of Π(k) invariant

d Π(k) = Π(k+1) d (5.47)

-iv) the operators b commute with the projectors Π(k) and hence they keep
the ranges of Π(k) invariant

b Π(k) = Π(k−1) b. (5.48)

Proof of Proposition 5.4
-i) From the Definition 5.3 and formula (5.43) we get

Π(k)(f0 ⊗ f1 ⊗ ...⊗ fk) = (1− bd) df1 ... dfk f0 = (5.49)

df1 ... dfk f0 − (−1)kb (df1 ... dfk df0) = (5.50)

df1 ... dfk f0 − (−1)kb [df1 ... dfk (1⊗ f0 − f0 ⊗ 1)] = (5.51)

f0 df1 ... dfk (5.52)

because the Hochschild boundary faces bi contract the factors 1 ⊗ fi−1 −
fi−1 ⊗ 1 into zero, for 0 ≤ i ≤ k − 1.
-ii) We recall that in the literature a chain of the form f0 ⊗ f1 ⊗ ...⊗ fk in
which at least one of the factors fi = 1, 1 ≤ i ≤ k, is called degenerate.
Then, it is easy to see that

∆(f0 ⊗ f1 ⊗ ...⊗ fk) := (1−Π(k))(f0 ⊗ f1 ⊗ ...⊗ fk) = (5.53)

f0 ⊗ f1 ⊗ ...⊗ fk − f0 df1 ... dfk (5.54)

is a finite sum of degenerate chains.
As d 1 = 0, Π(k) carries any degenerate chain into zero. Therefore,

0 = Π(k)∆ = Π(k)(1−Π(k)), (5.55)

which proves the assertion.
It follows also that the range of the complementary projector 1 − Π(k)

consists precisely of degenerate chains.
-iii) In view of the identity (i) already proven, one has

d Π(k)(f0 ⊗ f1 ⊗ ...⊗ fk) = d(f0 . df1 ... dfk) = (5.56)

df0 . df1 ... dfk = 1.df0 . df1 ... dfk = (5.57)
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Π(k+1) d0 (f0 ⊗ f1 ⊗ ...⊗ fk) = Π(k+1) d (f0 ⊗ f1 ⊗ ...⊗ fk) (5.58)

because Π(k+1) di (f0 ⊗ f1 ⊗ ...⊗ fk) = 0 for 1 ≤ i ≤ k + 1.
-iv)

b Π(k) = b (1− bd)σk
(k) = b (1− bd)(1− bd− db)σk−1

(k) = (5.59)

b (1− bd− db)σk−1
(k) = b (1− db)σk−1

(k) = (5.60)

(1− bd) b σk−1
(k) = (1− bd) σk−1

(k−1) b = Π(k−1)b. (5.61)

Definition 5.5 Define the complex

C̃k(A) := Π(k)(Ck(A)) = (5.62)

{
∑

finite/series

f0 df1 df2 ... dfk, fi ∈ A }. (5.63)

Proposition 5.6
-i) One has the inclusion of complexes

{C̃∗(A), d} is a sub− complex of {C∗(A), d} (5.64)

-ii) one has the inclusion of complexes

{C̃∗(A), b} is a sub− complex of {C∗(A), b} (5.65)

-iii) on the sub-complex C̃k(A) one has the identity

(1− bd)σk
(k) = 1 (5.66)

-iv) the above sub-complex inclusions induce isomorphisms in the Alexander-
Spanier, resp. Hochschild, homology.

In the literature the Hochschild complex modulo degenerate chains is
known as the normalized Hochschild complex, see e.g. Loday’s book [5]. It
is also well known [5] that the Hochschild and the normalized Hochschild
complexes have isomorphic homologies. Our considerations show also that
the normalized Hochschild complex is precisely the sub-complex C̃k(A). The
formula Proposition 5.6 -iii) is the formula (2.6.8.1-2) from Loday’s book [5],
pag. 85 formulated onto the normalized complex. Although the normalized
complex and the sub-complex C̃k(A) coincide, we stress that from the very
beginning we resisted the temptation to work into the normalized complex
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for the purpose of getting exact formulas in the non-normalized Hochschild
and Alexander-Spanier complexes.
Proof of Proposition 5.6
The defining formula for σ shows that it (and any of its powers) is chain
homotopic (both, with respect to d or b) to the identity. If ω ∈ Ck(A) and
dω = 0, then σk

(k)(ω) is co-homologous to ω.

Moreover, (σ(k) + db)σk
(k)(ω) = (1− bd)σk

(k)(ω) is co-homologous to σk
(k)(ω);

hence any homology class in the Alexander-Spanier complex is co-homologous
to its projection into the subcomplex {C̃∗(A), d}. Therefore, the homology
of the subcomplex is at least as big as the Alexander-Spanier homology.

The same argument works for the Hochschild complex, using the original
definition of the projection Π(k).

On the other hand, suppose ω is a d−cycle in C̃∗(A) and that ω = dφ,
where φ ∈ Ck−1(A). Then, in virtue of Proposition 5.4 -iii)

ω = Π(k)(ω) = Π(k)(dφ) = dΠ(k−1)(φ), (5.67)

which shows that ω is a boundary in the subcomplex C̃∗(A).
The same argument works for the Hochschild complex.

Corollary 5.7 -i) The Alexander-Spanier, resp. Hochschild, complex de-
composes in a direct sum of complexes

{C̃∗(A), d} ⊕ {degenerate chains, d} (5.68)

respectively,
{C̃∗(A), b} ⊕ {degenerate chains, b} (5.69)

-ii) the Alexander-Spanier, resp. Hochschild, sub-complex of degenerate
chains is acyclic.

6 Modified Hochschild boundary.

From now on we will be working only on the sub-spaces {C̃∗(A)}, which are
Alexander-Spanier and Hochschild sub-complexes.

In the previous section we introduced the operator σ defined by the
formula

db + bd = 1− σ. (6.70)

We have shown that σ satisfies on {C̃∗(A)} the identity

σk = 1 + bdσk. (6.71)
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Replacing
σ = 1− (db + bd) (6.72)

in the above identy one gets

1 = (1− bd)σn = (1− bd)[1− (bd + db)]n = (6.73)

(1− bd)[1 +
n∑

k=1

(−1)kCk
n(bd + db)k] = (6.74)

(1− bd){1 +
n∑

k=1

(−1)kCk
n[(bd)k + (db)k]} = (6.75)

1 +
n∑

k=1

(−1)kCk
n[(bd)k + (db)k]− bd−

n∑
k=1

(−1)kCk
n(bd)k+1, (6.76)

and hence

0 = bd +
n∑

k=1

(−1)k−1Ck
n[(bd)k + (db)k] +

n∑
k=1

(−1)kCk
n(bd)k+1 = (6.77)

bd +
n∑

k=1

(−1)k−1Ck
n(bd)k +

n∑
k=1

(−1)kCk
n(bd)k+1 +

n∑
k=1

(−1)k−1Ck
n(db)k =

(6.78)

(1+n)bd+
n∑

k=2

(−1)k−1Ck
n(bd)k +

n∑
k=1

(−1)kCk
n(bd)k+1+

n∑
k=1

(−1)k−1Ck
n(db)k =

(6.79)

(1+n)bd+
n∑

k=2

(−1)k−1Ck
n(bd)k+

n−1∑
k=1

(−1)kCk
n(bd)k+1+(−1)nCn

n (bd)n+1+
n∑

k=1

(−1)k−1Ck
n(db)k =

(6.80)

(1+n)bd+
n∑

k=2

(−1)k−1Ck
n(bd)k+

n∑
k=2

(−1)k−1Ck−1
n (bd)k+(−1)nCn

n (bd)n+1+
n∑

k=1

(−1)k−1Ck
n(db)k =

(6.81)

(1+n)bd+
n∑

k=2

(−1)k−1(Ck
n+Ck−1

n )(bd)k+(−1)nCn
n (bd)n+1+

n∑
k=1

(−1)k−1Ck
n(db)k =

(6.82)
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(Ck
n + Ck−1

n = Ck
n+1)

= (1+n)bd+
n∑

k=2

(−1)k−1Ck
n+1(bd)k+(−1)nCn+1

n+1 (bd)n+1+
n∑

k=1

(−1)k−1Ck
n(db)k

(6.83)
or

0 =
n+1∑
k=1

(−1)k−1Ck
n+1(bd)k +

n∑
k=1

(−1)k−1Ck
n(db)k. (6.84)

The operator b̃n, acting on n-forms, is defined by the formula

b̃n :=
n∑

k=1

(−1)k−1Ck
n(bd)k−1b. (6.85)

The above relation (6.84) becomes

0 = b̃n+1dn + dn−1b̃n (6.86)

and hence, the operators b̃ and d anti-commute.
As the operator b̃n is of the form b̃n = bTb, it follows that b̃b̃ = 0

and hence it a boundary operator. The complex obtained by replacing the
operator b by b̃ will be called modified Hochschild complex, denoted C∗(b̃, d).
We intend to study its homology.

Given the above mentioned stucture of the operator b̃n, it follows im-
mediately that in the modified Hochschild complex the Hochschild cycles
remain cycles and no new boundaries appear. Therefore, the homology of
the modified Hochschild complex, called modified Hochschild homology, is
bigger than the Hochschild homology (characteristic zero assumed).

7 Modified Periodic Cyclic Homology

In analogy with the periodic cyclic complex due to A. Connes [2], see also J.-
L. Loday [5] Sect. 5.1.7., pag.159, we introduce the modified periodic cyclic
bi-complex of the (topological) algebra A, by

C̃
λ,per

(A) = {C̃p,q}(p,q)∈Z×Z, (7.87)

where

C̃p,q = C̃q−p(A) for p ≤ q, and C̃p,q = 0 for q < p, (7.88)
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while the bi-complex operators b̃ and d are acting as such

b̃ : C̃p,q → C̃p,q−1

d : C̃p,q → C̃p,q+1;

as seen in the previous section, they anti-commute and hence they are legit-
imate bi-complex operators.

The modified periodic cyclic homology of the algebra A, H̃λ,per
∗ (A), is

by definition the homology of the total complex associated to the modified
cyclic periodic complex C̃

λ,per
(b̃, d).

As applications of the above considerations, in the next subsections 7.1,
7.2 we are going to compute the modified periodic cyclic homology both in
the case of the algebra of smooth functions and the algebra of continuous
functions, on smooth manifolds. We recall the expression of the boundary
operator b̃

b̃r := b
r∑

k=1

(−1)k−1Ck
n(db)k−1 (7.89)

and the expression of the Alexander-Spanier boundary operator d

(dfr)(x0, x1, ..., xr, xr+1) =
i=r+1∑

i=0

(−1)ifr(x0, ...x̂i, ..., xk+1). (7.90)

In both application we consider d to be the Alexander-Spanier co-boundary
acting on germs of smooth, resp. continuous, functions defined on neighbor-
hoods of the diagonal in the different powers of the base space.

7.1 The smooth case.

It is clear that the operator d is well defined on germs of functions about the
diagonals. It is also important to notice that the Hochschild boundary is
also well defined on germs and that the Hochschild homology depends only
on the quotient complex consisting of germs, see Teleman [10].

We use the spectral sequence associated to the first filtration of the
bicomplex (with respect to the d−degree of chains) to compute the homology
of the total complex. We are going to prove that the corresponding terms
E1

p,q and E2
p,q of the spectral sequence, in the case of the algebra A :=

C∞(M), are
E1

p,q = Hp(C∗,q, d) ∼= Hq−p
dR (M)

and
E2

p,q = Hq(E1
p,∗, b̃) ∼= Hq−p

dR (M).
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For the computation of the term E1 we use the isomorphism of the
Alexander-Spanier homology of the complex of smoth chains with the de
Rham cohomology.

For the computation of the term E2
p,q = Hq(E1

p,∗, b̃) we show that the
differential d1 = b̃∗ on the complex E1 is equal to zero. Indeed, the operator
b̃ being local, we may express it in local co-ordinates (x1, x2, ..., xn). Let
γ ∈ Hp

dR(M). We may represent γ, locally, by a smooth closed differential
form

γ =
∑

i1,i2,...,ip

ωi1,i2,...,ip(x)dxi1 ∧ dxi2 ∧ ... ∧ dxip =

or by the differentiable function expressed locally by∑
i1,i2,...,ip

ωi1,i2,...,ip(x0)(xi1
1 − xi1

0 ) ∧ (xi2
2 − xi2

0 ) ∧ .... ∧ (xip
p − x

ip
0 ),

where ∧ signifies anti-symmetrization. The Hochschild boundary b of such
a representative is clearly zero, and hence, a fortiori, b̃γ = 0; this proves the
assertion.

From here it follows that

E2
p,q = Hq−p

dR (M).

Therefore, we have proven the

Theorem 7.1 In the case of the algebra of smooth functions C∞(M) on the
smooth manifold M , the modified periodic cyclic homology and the periodic
cyclic homology defined by A. Connes [2] coincide

Hλ,per
k = Hk(Cper(b̃, d)) = ⊕r∼=k(mod.2)Hr

dR(M).

7.2 The continuous case.

In this subsection we compute the modified periodic cyclic homology of the
algebra of continuous functions, C(M), on the smooth manifold M .

For its computation we proceed along the same lines as in the case of
smooth functions. To begin with, we observe that the modified periodic
cyclic bicomplex of the algebra of smooth functions is a sub-bicomplex of
the modified periodic cyclic bicomplex of the algebra of continuous functions.
Given that the inclusion of the Alexander-Spanier complex of smooth func-
tions into the Alexander-Spanier complex of continuous functions induces
isomorphism in homology, one infers that the bicomplex inclusion induces
isomorphisms between the corresponding terms E1 and therefore E2

15



E1
p,q = Hp(C∗,q, d) ∼= Hq−p

dR (M) (7.91)

E2
p,q = Hq(E1

p,∗, b̃) ∼= Hq−p
dR (M). (7.92)

This proves the

Theorem 7.2 The modified periodic cyclic homology of the algebra of real
valued continuous functions C0(M) on the smooth manifold M , coincides
with the periodic cyclic homology of the algebra of smooth functions

Hλ,per
k (C0(M)) = ⊕r∼=k(mod.2)Hr

dR(M) ∼= ⊕r∼=k(mod.2)Hr(M,R). (7.93)

We expect, of course, the same result to hold if M is merely a topological
manifold, or a CW -complex.

Corollary 7.3 The modified Hochschild homology of the algebra (C0(M))
is not trivial.

This result should be used as the correct definition of non commutative
differential forms in the case of algebras of continuous, or more singular,
functions.
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