THIRD KIND ELLIPTIC INTEGRALS AND 1-MOTIVES
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with an appendiz by M. Waldschmidt

ABSTRACT. In [5] we have showed that the Generalized Grothendieck’s Conjecture of Pe-
riods applied to 1-motives, whose underlying semi-abelian variety is a product of elliptic
curves and of tori, is equivalent to a transcendental conjecture involving elliptic integrals of
the first and second kind, and logarithms of complex numbers.

In this paper we investigate the Generalized Grothendieck’s Conjecture of Periods in
the case of 1-motives whose underlying semi-abelian variety is a mon trivial extension of a
product of elliptic curves by a torus. This will imply the introduction of elliptic integrals of
the third kind for the computation of the period matrix of M and therefore the Generalized
Grothendieck’s Conjecture of Periods applied to M will be equivalent to a transcendental
conjecture involving elliptic integrals of the first, second and third kind.
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INTRODUCTION

Let € be an elliptic curve defined over C with Weierstrass coordinate functions x and .
On € we have the differential of the first kind w = %”, which is holomorphic, the differential

of the second kind n = —%, which has a double pole with residue zero at each point of the
lattice H1(€(C),Z) and no other pole, and the differential of the third kind
_1y—y(@)da
fo= 5oL 5,
2z -2(Q) y

for any point @ of £(C),Q # 0, whose residue divisor is D = —(0) + (—Q). Let 1,72 be
two closed paths on &(C) which build a basis for the lattice H1(£(C),Z). In his Peccot
lecture at the College de France in 1977, M. Waldschmidt observed that the periods of the
Weierstrass gp-function (1.4) are the elliptic integrals of the first kind f% w=w; (1=1,2), the
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quasi-periods of the Weierstrass (-function (1.5) are the elliptic integrals of the second kind
fv‘ n=mn; (i =1,2), but there is no function whose quasi-quasi-periods are elliptic integrals
of the third kind. J.-P. Serre answered this question furnishing the function

_ U(Z + q) —C(q)z :
fq(z) = 7a(z)a(q)€ with g e C\ A
whose quasi-quasi periods (1.8) are the exponentials of the elliptic integrals of the third kind
f%_ &g = 1iq — wiC(q) (1 = 1,2), where ¢ is an elliptic logarithm of the point Q.

Consider now an extension G of € by G,,, parameterized by the divisor D = (—Q) — (0) of
Pic’(€) = &* = Ext'(€,G,,). Since the three differentials {w,n, o} build a basis of the De
Rham cohomology HéR(G) of the extension G, elliptic integrals of the third kind play a role
in Grothendieck’s Conjecture of Periods, more precisely in its generalization (0.4). The aim
of this paper is to understand this role applying the Generalized Grothendieck’s Conjecture
of Periods to 1-motives whose underlying semi-abelian variety is a non trivial extension of a
product of elliptic curves by a torus.

We start recalling Grothendieck’s Conjecture of Periods (0.2) and its generalization (0.4).
Let Q be the algebraic closure of Q in C and let K be an algebraically closed sub-field of
the field of complex numbers C which is not necessarily algebraic over Q. Consider a smooth
and projective algebraic variety X defined over K. The periods of X are the coefficients of
the matrix which represents (with respect to K-bases) the canonical isomorphism given by
the integration of differentials forms

(0.1) Bx t Hing(X) @K C — HE,, (X(C), K) @k C

sing
wr— [y /w]
2

between the algebraic De Rham cohomology H}; (X) and the singular cohomology

sing (X(C), K) = Hg,,, (X(C),Q) ®g K of X. In Note 10 of [13], Grothendieck conjectures
that any polynomial relation with rational coefficients between the periods of X should have
a geometrical origin. More precisely, any algebraic cycle on X and on the products of X
with itself, will give rise to a polynomial relation with rational coefficients among the periods
of X (see [15, Chp. IV, Historical Note]). We can reformulate this in the following way:
the existence of algebraic cycles on X and on the products of X with itself, should affect the
transcendence degree of the field generated by the periods of X.

Grothendieck has never written down a precise statement for this conjecture on periods
of X. In [1, §7.5], André does it using the notion of motivic Galois group of X, whose
dimension is strictly related to the existence of algebraic cycles on X and on the products
of X with itself. Grothendieck’s dream about motives was first to construct the tannakian
category of mixed motives, and then, by tannakian duality, to define the motivic Galois group
of mixed motives as the group pro-scheme whose category of representations is equivalent
to the tannakian category of mixed motives (in other words, as the fundamental group of
the tannakian category of mixed motives, see [11, 6.1] or [12, 8.13]). This dream remained
unachieved for several years (except for some special cases as abelian varieties, 1-motives, ...).
Recently, in two different, independent and equivalent ways, Nori and Ayoub have furnished
a definition of the tannakian category of mixed motives with rational coefficients using a
weak version of the tannakian duality (see [3] and [19]). More precisely, they construct
first a group pro-scheme Galy,ot(MM) over Q, that they call the motivic Galois group of
mixed motives, and then they define the tannakian category of mixed motives (with rational
coefficients over a sub-field of C) as the category of representations of this group pro-scheme
Galot (MM). The inclusion i :< X >®— MM of the tannakian sub-category generated by
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a smooth and projective algebraic variety X in MM corresponds to a surjective morphism
Galmet (MM) — iGalnet(X) of group pro-schemes, that is the motivic Galois group of X is
a quotient of the motivic Galois group of the tannakian category of mixed motives (see [7,
§2]). With these notation, André states the Conjecture of Periods in the following way

Conjecture 0.1 (Grothendiegi’s Conjecture of Periods). Let X be a smooth and projective
algebraic variety defined over Q, then

(0.2) {eq:CP} tran.degg Q(periods(X)) = dim Galyet (X),
where Q(periods(X)) is the field generated over Q by the periods of X.

This conjecture is independent of the choice of the K-bases that we do in order to compute
the periods of X. André extends Grothendieck’s Conjecture of Periods (0.2) to smooth and
projective algebraic varieties defined over an algebraically closed sub-field K of C which is
not necessarily algebraic over Q ([1, §23.4]), and also to mixed motives defined over K (see
end of [1, §23.4.1]). In this paper we are involved with this last generalization applied to
1-motives.

A 1-motive M = [u : X — G| over K consists of a finitely generated free Z-module X, an
extension G of an abelian variety by a torus, and a homomorphism u : X — G(K). Denote
by Mc the 1-motive defined over C obtained from M extending the scalars from K to C. In
[10] Deligne associates to the 1-motive M

e its De Rham realization Tqg (M): it is the finite dimensional K-vector space Lie(GY),
with M® = [u : X — GY] the universal extension of M by the vector group
Hom(Ext!(M,G,),G,),

e its Hodge realization Tg(Mc): it is the finite dimensional Q-vector space Tz(Mc¢) ®z,
Q, with Tz(Mc) the fibered product of Lie(G) and X over G via the exponential
map exp : Lie(G) — G and the homomorphism u : X — G. The Z-module is in fact
endowed with a structure of Z-mixed Hodge structure, without torsion, of level < 1
and of type {(0,0),(0,—1),(—1,0),(=1,—1)}.

Since the Hodge realizations attached to 1-motives are mixed Hodge structures, 1-motives
are mixed motives. In particular they are the mixed motives coming geometrically from
varieties of dimension < 1. In [10, (10.1.8)], Deligne shows that the De Rham and the Hodge
realizations of M are isomorphic

(0.3)  {eq:betaM} By Tar(M) ®x C — To(Mc) ®k C,

generalizing the isomorphism (0.1) to 1-motives. We can then define the periods of M as the
coefficients of the matrix which represents the isomorphism (0.3) with respect to K-bases.

In the particular case of 1-motives, Grothendieck’s dream came true: using the category
of mixed realizations (see [11, 2.3] and [9, (2.2.5)]), it is possible to endow the category of
1-motives with a tannakian structure with rational coefficients, and therefore to define the
motivic Galois group

Salmot (M)

of a 1-motive M as the fundamental group of the tannakian category < M >® generated by
M (see [11, Def 6.1] or [12, Def 8.13]). By [2, Thm 1.2.1], Nori and Ayoub’s motivic Galois
groups of a 1-motive coincide with that of Grothendieck. Applying the generalizations of
Grothendieck’s Conjecture of Periods proposed by André to 1-motives we get

Conjecture 0.2 (Generalized Grothendieck’s Conjecture of Periods by Y. André). Let M
be a 1-motive defined over an algebraically closed sub-field K of C which is not necessarily
algebraic over Q, then

(0.4) {eq:GCP} tran.degg K (periods(M)) > dim Galyo (M)
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where K (periods(M)) is the field generated over K by the periods of M.
In [5] we showed that the conjecture (0.4) applied to a 1-motive of type
M=[u:Z" — Ij_,&; x G;)]

is equivalent to the elliptico-toric conjecture (see [5, 1.1]) which involves elliptic integrals of
the first and second kind and logarithms of complex numbers.
Consider now the 1-motive

(0.5) M=u:72"— G

where G is a non trivial extension of a product II7_;€; of pairwise not isogenous elliptic
curves by the torus G?,. In this paper we introduce the I-motivic elliptic conjecture (§4)
which involves elliptic integrals of the first, second and third kind. Our main Theorem is that
this 1-motivic elliptic conjecture is equivalent to the Generalized Grothendieck’s Conjecture
of Periods applied to the 1-motive (0.5) (Theorem 4.1). The presence of elliptic integrals of
the third kind in the 1-motivic elliptic conjecture corresponds to the fact that the extension G
underlying M is not trivial. If in the 1-motivic elliptic conjecture we assume that the points
defining the extension G are trivial, then this conjecture coincides with the elliptico-toric
conjecture stated in[5, 1.1] (see Remarks 4.2). Observe that the 1-motivic elliptic conjecture
contains also the Schanuel conjecture (see Remarks 4.3).

In Section 1 we recall basic facts about differential forms on elliptic curves.

In Section 2 we study the short exact sequences which involve the Hodge and De Rham
realizations of 1-motives and which are induced by the weight filtration of 1-motives. In
Lemma 2.2 we prove that instead of working with the 1-motive (0.5) we can work with a
direct sum of 1-motives having r = n = s = 1. In [8, §2] D. Bertrand has computed the
periods of the 1-motive (0.5) with » = n = s = 1 using Deligne’s construction of a 1-motive
starting from an open singular curve. Putting together Lemma 2.2 and Bertrand’s calculation
of the periods in the case r = n = s = 1, we compute explicitly the periods of the 1-motive
(0.5) (see Proposition 2.3).

In section 3 we study the motivic Galois group of 1-motives. We will follow neither
Ayoub and Nori’s theories nor Grothendieck’s theory involving mixed realizations, but using
[6] we will work in a completely geometrical setting using algebraic geometry on tannakian
categories. In Theorem 3.4 we compute explicitly the dimension of the unipotent radical of
the motivic Galois group of an arbitrary 1-motive over K. Then, as a corollary, we calculate
explicitly the dimension of the motivic Galois group of the 1-motive (0.5) (see Corollary 3.7).
For this last result, we restrict to work with a 1-motive whose underlying extension G involves
a product of elliptic curves, because only in this case we know explicitly the dimension of the
reductive part of its motivic Galois group (in general, the dimension of the motivic Galois
group of an abelian variety is not known).

In section 4 we state the 1-motivic elliptic conjecture and we prove our main Theorem 4.1.

In section 5 we compute explicitly the Generalized Grothendieck’s Conjecture of Periods
in the low dimensional case, that is assuming r = n = s = 1 in (0.5). In particular we
investigate the cases where End(€) ®7z Q-linear dependence and torsion properties affect the
dimension of the unipotent radical of Galy,(M).

We finish with a remark about the Generalized Grothendieck’s Conjecture of Periods: as
pointed out by André in in [1, §7.5], the transcendent degree of the field generated over K
by the periods of a mixed motive is always upper-bounded by the dimension of its motivic
Galois group. In fact, if we denote respectively by wy and wgr the fibre functors Hodge
realization and de Rham realizations of the tannakian category of mixed motives, the affine



THIRD KIND ELLIPTIC INTEGRALS AND 1-MOTIVES 5

K-group scheme Is&?} (wqr,wp) of isomorphisms of fibre functors is an wy(Galye,(IMM))-
torsor, called the torsor of periods, which is endowed with a C-valued point /3 : Spec (C) —
mg(wd}{, wyy) that defines for each object of MM the isomorphism between its de Rham
realization and its Hodge realization (for the smooth and projective algebraic variety X we
get (0.1), for the 1-motive M, we get (0.3), ...). If N is any object of MM defined over K, the
isomorphism By is a K (periods(V))-rational point of the torsor of periods Isom% (war,wn ).
Therefore for any mixed motive N of MM, we have

tran.deg K (periods(N)) < dimwg(Galmoet(V))

that is
tran.degg K (periods(N)) < dimwy(Salmet(NV)) + tran.degg K.

By [2, Thm 1.2.1], the motivic galois group Galyi (M) of a 1-motive M coincides with its
Hodge realization wygSGalpet(M), which is the Mumford-Tate group of M, and so in the
above inequality we can replace wy(Salmoet(M)) with Galyet(M). In particular, if K = Q,
the conjecture (0.4) becomes

(0.6) tran.degg Q(periods(M)) = dim Galyet (M).

ACKNOWLEDGEMENTS

I want to express my gratitude to M. Waldschmidt for pointing out to me the study of
third kind elliptic integrals and for the several discussions we had on this subject. I want to
thank Y. André, D. Bertrand and P. Philippon for their comments on an earlier version of
this paper. This paper was written during a 2 months stay at the IHES. The author thanks
the Institute for the wonderful work conditions.

NOTATION

Let Q be the algebraic closure of Q in C and let K be an algebraically closed sub-field of
the field of complex numbers C which is not necessarily algebraic over Q.

A 1-motive M = [u : X — G] over K consists of a group scheme X which is locally for
the étale topology a constant group scheme defined by a finitely generated free Z-module,
an extension G of an abelian variety A by a torus 7', and a homomorphism u : X — G(K).
In this paper we will consider above all 1-motives in which X = Z", and G is an extension of
a finite product II7_, &; of elliptic curves by the torus G7, (here r,n and s are integers bigger
or equal to 0).

There is a more symmetrical definition of 1-motives. In fact to have the 1-motive M =
[u:Z" — G] is equivalent to have the 7-tuple (Z",Z°,117_, &;,117_, €%, v, v, 1)) where

e Z° is the character group of the torus G;, underlying the 1-motive M.

o v: 7" — H}lzlﬁj and v* : Z° — H?:18j are two morphisms of K-group varieties (here
&= Ext'(&;,Gyy,) is the Cartier dual of the elliptic curve €;). To have the morphism
v is equivalent to have r points Py = (Pig, ..., Pu) of H?ZIEj(K) withk=1,...,r,
whereas to have the morphism v* is equivalent to have s points Q; = (Q14, .- -, Qni)
of II}_; &5(K) with i = 1,...,s. Via the isomorphism
Ext! (H;LZIEJ', Gs,) = (H;»LZIF,;)S, to have the s points Q; = (Q1i, - - ., Qns) is equivalent
to have the extension G of II7_, €; by Gy,.

e 1 is a trivialization of the pull-back (v, v*)*P via (v,v*) of the Poincaré biextension
P of (Hyzlélj,l'[?:lﬁ;*) by G,,. To have this trivialization v is equivalent to have
points Ry € G(K) with k = 1,...,r such that the image of Ry via the projection
G, &is By = (Pik, ..., Pak), and so to have the morphism u : Z" — G.
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The index k, 0 < k < 7, is related to the lattice Z", the index j, 0 < j < n, is related to
the elliptic curves, and the index ¢, 0 < i < s, is related to the torus GJ,. For j =1,...,n, we
index with a j all the data related to the elliptic curve &;: for example we denote by p;(2)
its Weierstrass p-function of €;, by wj1,w;s its periods, ...

On a 1-motive M = [u: X — @] is defined an increasing filtration W,, called the weight
filtration of M: Wo(M) = M,W_1(M) = [0 = G],W_o(M) = [0 — T)]. If we set Gr} :=
W,./W,_1, we have Gr¥ (M) = [X — 0], Gt (M) = [0 — A] and Gr"(M) = [0 — T7.

Two 1-motives M; = [u; : X; — G;] over K (for i = 1,2) are isogeneous is there exists a
morphism of complexes (fx, fa) : M1 — Mj such that fx : X7 — X5 is injective with finite
cokernel, and fg : G1 — G2 is surjective with finite kernel. Now, since [10, Thm (10.1.3)]
is true modulo isogenies, two isogeneous 1-motives have the same periods. Moreover, two
isogeneous 1-motives build the same tannakian category and so they have the same motivic
Galois group. Hence in this paper we can work modulo isogenies. In particular the elliptic
curves &1, ..., &, will be pairwise not isogenous.

1. ELLIPTIC INTEGRALS OF THIRD KIND

Let € be an elliptic curve defined over C with Weierstrass coordinate functions x and y.
Set A := H;(E(C),Z). Let p(z) be the Weierstrass p-function relative to the lattice A: it is
a meromorphic function on C having a double pole with residue zero at each point of A and
no other poles. Consider the elliptic exponential

expg : C — &(C) C P?(C)
z — expg(2) = [p(2), p(2), 1]

whose kernel is the lattice A. In particular the map exp, induces a complex analytic isomor-
phism between the quotient C/A and the C-valuated points of the elliptic curve €. In this
paper, we will use small letters for elliptic logarithms of points on elliptic curves which are
written with capital letters, that is expg(p) = P € E(C) for any p € C.

Let o(z) be the Weierstrass o-function relative to the lattice A: it is a holomorphic function
on all of C and it has simple zeros at each point of A and no other zeros. Finally let {(z) be
the Weierstrass (-function relative to the lattice A: it is a meromorphic function on C with
simple poles at each point of A and no other poles. We have the well-known equalities

D rogo(:)=(2) and L) = ().

Recall that a meromorphic differential 1-form is of the first kind if it is holomorphic
everywhere, of the second kind if the residue at any pole vanishes, and of the third kind in
general. On the elliptic curve € we have the following differential 1-forms:

(1) the differential of the first kind

(1.1) w = dﬁ,
Yy
which has neither zeros nor poles and which is invariant under translation. We have
that expi(w) = dz.
(2) the differential of the second kind

xdx
1.2 n= -2
(1.2) y
In particular expi(n) = —g(z)dz which has a double pole with residue zero at each

point of A and no other poles.
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(3) the differential of the third kind

1y —y(Q) dw
1.3 o = 2y ylQ)dr
(5) “T22-2Qy
for any point @ of E(C), @ # 0. The residue divisor of {g is —(0) + (—@Q). If we denote
g € C an elliptic logarithm of the point @, that is expg(q) = @, we have that

. 19'(2) — ¢'(q)
expi(6q) = 5 1)

Q) =5 ) T ela)
which has residue -1 at each point of A.

The 1-dimensional C-vector space of differentials of the first kind is HO(E,Q}:), the 1-
dimensional C-vector space of differentials of the second kind modulo holomorphic differen-
tials and exact differentials is H' (€, O¢). In particular the first De Rham cohomology group
H!y (&) of the elliptic curve € is the direct sum H°(&,Q}) @ H!(E, O¢) of these two spaces and
it has dimension 2. The C-vector space of differentials of the third kind is infinite dimensional.

The inverse map of the complex analytic isomorphism C/A — £(C) induced by the elliptic

exponential is given by the integration £(C) — C/A, P — fgw modA, where O is the
neutral element for the group law of the elliptic curve.

Let 71,72 be two closed paths on €(C) which build a basis of Hy(Ec, Q). Then the elliptic
integrals of the first kind f%_ w=w; (i =1,2) are the periods of the Weierstrass g-function:
(1.4) {eq:periods-wp} p(z +wi) = p(z) fori=1,2.

Moreover the elliptic integrals of the second kind f,y. n=mn; (i =1,2) are the quasi-periods of
the Weierstrass (-function:
(1.5) {eq:periods-zeta} ((z+w;)=C((z)+mn fori=1,2.

Consider Serre’s function
(1.6) {eq:def-fq} fq(2) = (76 with g € C\ A

whose logarithmic differential is
2, 1¢'(2) = ¢'(9)
fa(2) 2 p(2) — p(q)
(see [22] and [8, §2]). The exponentials of the elliptic integrals of the third kind f% &o =
niq —wiC(q) (i = 1,2) are the quasi-quasi periods of the function fy(z) :
(1.8) {eq:periods-fq} fy(z +w;) = fq(z)emq_wig(Q) fori=1,2.
As observed in [22], we have that
(1.9) {eq:fq-sigma} falzi+22)  olg+ 21+ 29)0(q)a(z1)0(2)

fo(z1) fg(22)  o(q+ z1)o(21 + 22)0(q + 22)

Consider now an extension G of our ellitic curve € by G,,, which is defined over C. Via
the isomorphism Pic?(€) = €* = Ext!(€,G,,), to have the extension G is equivalent to have
a divisor D = (—Q) — (0) of Pic’(€) or a point —Q of £*(C). In this paper we identify &
with €*. A basis of the first De Rham cohomology group Hly (G) of the extension G is given
by {w,n,&g}. Consider the semi-abelian exponential

expg : C? — G(C) C P5(C)

(1.7) {eq:expEXiq} dz = expg (£0)

o'(z) — @’(q))}

=a(2)?|0(2), (), 1,e" f,(2), " f. (2 z
(w, 2) — expg(w, z) = 0(2)” | p(2), p(2)', 1, " f4(2), e fq )(p()—l— o(2) — o(q)
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whose kernel is H;(G(C),Z). A basis of the Hodge realization H; (G(C), Q) of the extension
G is given by a closed path g around @ on G(C) and two closed paths 71,42 on G(C) which
lift a basis {v1,7v2} of Hi(Ec, Q) via the surjection Hi (G, Q) — Hi(Ec, Q). We have that

fo(2)
fq(2)

2. PERIODS OF 1-MOTIVES INVOLVING ELLEPTIC CURVES

(1.10) expi (&) = dw + dz.

Let M = [u: X — G] be a 1-motive over K with G an extension of an abelian variety A by
a torus T'. As recalled in the introduction, to the 1-motive M¢ obtained from M extending
the scalars from K to C, we can associate its Hodge realization Tg(Mc) = (Lie(Gc) x¢
X) ®Q which is endowed with the weight filtration (defined over the integers) WoTz(Mc) =
Lie(Gc) x¢ X, W_1Tz(Mc) = Hi(Gc,Z), W_2T7z(Mc) = Hi(T¢,Z). In particular we have
that Gry Tz(Mc) = X, GrWY,Tz(Mc) = Hy(Ac, Z) and Gr¥W, Tz (Mc) = Hy (T, Z).

Moreover to M we can associate its De Rham realization Tqr(M) = Lie(G%), where
M* = [X — G] is the universal vectorial extension of M, which is endowed with the Hodge
filtration FOTqr(M) = ker (Lie(Gh) — Lie(G)).

The weight filtration induces for the Hodge realizations the short exact sequence

(2.1) 0 — Hi(Ge,Z) — Tz(Mc) — Tz(X) — 0
which is not split in general. On the other hand, for the De Rham realizations we have that

Lemma 2.1. The short exact sequence, induced by the weight filtration,
(2.2) 0 — T4r(G) — Tgr(M) — Tyr(X) — 0
1s canonically split.
Proof. Consider the short exact sequence 0 — G — M — X|[1] — 0. Applying Hom(—, G,)
we get the short exact sequence of finitely dimensional K-vector spaces
0 — Hom(X,G,) — Ext'(M,G,) — Ext'(G,G,) — 0

Taking the dual we obtain the short exact sequence

0 — Hom(Ext'(G,G,),G,) — Hom(Ext!(M,G,),G,) — X — 0

which is split since Extl(X ,Gg) = 0. Now consider the composite of the section X —
Hom(Ext!(M,G,),G,) with the inclusion Hom(Ext!(M,G,),G,) — G% Recalling that
FOT4r(M) = Hom(Ext'(M,G,),G,), taking Lie algebras we get the arrow Tar(X) =
X®K — FOT4r(M) — Tqr(M) = Lie(G?) which is a section of the exact sequence (2.2). O

By the above Lemma, if we denote by Hqr (M) the dual K-vector space of Tyr(M) we
have that

(2.3) Har (M) = Hig(G) @ Hap(X).

Consider now a l-motive M = [u : Z" — G] defined over K, where G is an extension
of a finite product H?Zlé'j of elliptic curves by the torus Gj,. Let {z}r=1_ , a basis of
Z" and let {ti}i:h_,,s a basis of the character group Z° of G;,. For the moment, in order
to simplify notation, denote by A the product of elliptic curves I7_,€;. Denote by G;
the push-out of G by t¢; : GJ, — G,,, which is the extension of A by G,, parameterized
by the point v*(t;) = Qi = (Qui,-..,Qni), and by R;; the K-rational point of G; above
v(zg) = Pr = (Pig, - - ., Pax). Consider the 1-motive defined over K,

M, = [wik : 2,2 — G
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with wp(zx) = Ry, for i = 1,...,s and &k = 1,...,7. In [4, Thm 1.7] we have proved
geometrically that the 1-motives M = [u : Z" — G] and ®{_; ®}_, M, generate the same
tannakian category. Via the isomorphism Ext! (I7_1€,Gp) = Hyzlml(ﬁj,(@m), for i =
1,...,s, the extension G; of A by G, parameterized by the point v*(y;) = Q; = (Qui, - - -, Qni)
corresponds to the product of extensions Gi; X Ga; x - -+ x Gy; where Gj; is an extension
of &; by Gy, parameterized by the point @);;. Via the above isomorphism the point R;. the
K-rational point of G; living above Py = (Pig, . .., Py) corresponds to the K-rational points
(Riik, - - -, Rpir) with Ry, € Gj;(K) living above Py, € €;(K) for j =1,...,n. Consider the
1-motive defined over K,

(2.4) {eq:jik} Mjik = [u]'ik szl — Gﬂ]

with wjik(2x) = Ry fori=1,...,s,k=1,...,rand j = 1,...,n. Let (Ljir,pjr) € C? be a
semi-abelian logarithm of Rj;, that is

(2.5) {eq:1} expg,, (Ljik, Pjk) = Rjik-

Lemma 2.2. The I-motives M and ®;_; ®j_y ®7_; Mj;, generate the same tannakian cat-
egory.

Proof. As in [4, Thm 1.7] we will work geometrically and because of loc. cit. it is enough to
show that the 1-motives ®;_; ®)_; M;, and &7, ®)_; ©]_, Mji; generate the same tannakian
category. Clearly

By ( @iy By Mir /[0 — Migicn Gu]) = @1 Op=1 Bj=1 Mjin

and so < ©F; @) O My >® C < @i, Oy My >® . On the other hand, if
dyz : Z — 7" is the diagonal morphism, for fixed ¢ and k we have that

B My /(2" |dz(Z) — 0] = Mjugep - dz(Z) — GrixGoix- X Gyl = [ugy, : Z — Gi] = M;
and so

i1 @y (@51 Mjin/127/d2(Z) = 0]) = 1y Sy Mix
that is < @f_; ©p_; Mix >® C <@L, @) B My > . O

The matrix, which represents the isomorphism (0.3) for the 1-motive M = [u : Z" — G,
where G is an extension of H?zlﬁ ; by Gy, is a huge matrix difficult to write down, but the
above Lemma implies that, instead of studying this huge matrix, it is enough to study the
rsn matrices which represent the isomorphism (0.3) for the rsn l1-motives Mj;, = [uji :
ZkZ -G j’L]

Following [8, §2], now we compute explicitly the periods of the 1-motive M = [u : Z —
G], where G is an extension of one elliptic curve € by the torus G,,. We need Deligne’s
construction of M starting from an open singular curve (see [10, (10.3.1)-(10.3.2)-(10.3.3])
that we recall briefly.

Via the isomorphism Pic’(€) = €* = Ext!(€,G,,), to have the extension G of & by G,,
underlying the 1-motive M is equivalent to have the divisor D = (—=Q) — (0) of Pic?(€) or
the point —@Q of = £*. We assume @ to be a non torsion point. According to [18, page 227],
to have the point u(1) = R € G(K) is equivalent to have a couple

(P,gr) € E(K) x K(€)

where 7(R) = P € &(K) (here # : G — & the surjective morphism of group varieties
underlying the extension G), and where gr : € — Gy, — R + p(x) — p(x + P) (here
p: &€ = G asection of ), is a rational function on €& whose divisor is TpD —D = (—Q+ P) —

{lem:decomposition
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(P) — (—Q) + (0) (here Tp : € — €& is the translation by the point P). We assume also R to
be a non torsion point. Let p,q € C be elliptic logarithms of the points P, Q) respectively.
Now pinch the elliptic curve € at the two points —@Q and O and puncture it at two K-
rational points P, and P; whose difference (according to the group law of €) is P, that is
P = P, — P;. The motivic H! of the open singular curve obtained in this way from & is the
l-motive M = [u : Z — G], with u(1) = R. We will apply Deligne’s construction to each
1-motive Mjik = [ujik szl — Gﬂ] with ujik(zk) = Rjik'
Proposition 2.3. Choose the following basis of the Q-vector space TQ(Mjik c):

e a closed path éq,; around —Qj; on Gji(C);

e two closed paths Yj1,%j2 on Gj;(C) which lift the basis {v;1,7;2} of Hi(€;c,Q) via
the surjection Hi(Gj; c, Q) = Hi(€; ¢, Q); and

e a closed path B, , which lifts the basis {21} of Tq(2xZ) via the surjection To(Mjiy, c) —
Tq(2kZ), and whose restriction to Hi(Gj;i ¢, Q) is a closed path Br,,,|c;; on Gji(C)
having the following properties: BRM|GJ.Z. lifts a path 'BP‘lkP'Qk on €;(C) from lek to

J Jr
szk (with Pj2k — lek = Pj;,) via the surjection Hi(Gj;c,Q) — Hi(€;c,Q), and its
restriction to Hy(Gp, Q) is a path Bjir, on Gy, (C) = C* from 1 to 11(2.5);
and the following basis of the K-vector space Har(Mjix) :

o the differentials of the first kind w; = % (1.1) and of the second kind n; =

J
(1.2) of &;

e the differential of the third kind {q,, = %%% (1.3), whose residue divisor
is D = (—=Qj;) — (0) and which lifts the basis {‘%l} of Hir(Gy,) via the surjection
Hig(Gji) = Hig(Gm);

o the differential df; of a rational function f; on &; such that fj(Pfk) differs from
fi(Pjy) by 1.

These periods of the 1-motive M = [u : Z" — G], where G is an extension of H?:18j by G,
are then

7wjd:vj
Yj

L, wjt, Wiz, Mi1s Mj2s Piks GG (Pjx), M1y — winCi (i), njedji — wieli(qji),10g fo;: (Pjk) + Lik, 207

with et € K*, for j=1,...,n,k=1,...,randi=1,...,s.
Proof. By Lemma 2.2, the 1-motives M = [u : Z" — G| and &;_; &} _ B)_; [ujir : 26Z — Gji]
have the same periods and therefore, we are reduced to prove the case r =n = s = 1.

Consider the 1-motive M = [u : 2Z — G], where G is an extension of an elliptic curve &
by G,, parameterized by v*(t) = —Q € E(K), and u(z) = R is a point of G(K) living over
v(z) = P € &(K). Let (I,p) € C? be a semi-abelian logarithm of R, that is

expg(lp) = R.
In particular expg(p) = P. Let P, and P; K-rational points whose difference is P.
Because of the weight filtration of M we have the non-split short exact sequence
0 — Hig (&) — Hir(G) — Hir(G,) — 0

As K-basis of Hi (G) we choose the differentials of the first kind w and of the second kind 7
of €, and the differential of the third kind {g, which lifts the only element % of the basis of
H!; (Gy,). Then, because of the decomposition (2.3), we complete the basis of Hqg (M) with

the differential df of a rational function f on & such that f(Ps) differs from f(P;) by 1.
Always because of the weight filtration of M we have the non-split short exact sequence

0 — H1(Gp,Z) — Hi(Gc,Z) — Hi(Ec, Z) — 0
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As Q-basis of H; (G¢, Q) we choose a closed path g around —@Q), and two closed paths 71,52
which lift the basis 71,72 of Hi(Ec,Q). Because of the non-split exact sequence (2.1), we
complete the basis of Tg(M) with a closed path Sr, which lifts the only element z of the
basis of Tg(2Z) = Z ® Q via the surjection Tg(Mc) — Tg(2Z), and whose restriction to
Hi(Gc, Q) is a closed path Bgj¢ on G(C) having the following properties: Bp| lifts a path
Bp,p, on E(C) from P; to Pe, and its restriction to Hy(G,,, Q) is a path 5; on G,,(C) = C*
from 1 to I. With respect to these bases of Tg(M) and Hggr (M), the matrix which represents
the isomorphism (0.3) for the 1-motive M = [u : 2Z — G] is

f,BR df fﬁplpz w fﬁplpz g fﬁR\G e

matrirei L N A FR <)

(2.6) {eq:matrix-integr 1eﬁﬂ: J 12 " f; 0 f% £
fdQ df fdQ w féQ n faQ £Q

Recalling that expi(w) = dz,expi(n) = d((z), (1.7) and (1.10) we can now compute
explicitly all these integrals:

o [5.df = f(P2) = f(P1) =1,
. f% df = f% df = faQ df = 0 because of the decomposition (2.3),
_ (P2 g, _ _
* fﬂﬁPQW _Afpf dz =pz —p1 = p,
° f%w:fg%dz:wi fori=1,2,
° faQ w= f(SQ n = 0 since the image of d¢g via Hi(Gc,Q) — Hi(Ec, Q) is zero,
o [,n=Jy"dC={((wi)—¢(0) = fori= 1,2,
© Jonr, 1= Jpr dC(2) = C(p2) = (1),

By the pseudo addition formula for the Weierstrass (-function (see [24, Example 2, p 451]),
C(z+y)—C(z)—C(y) = %% € K (&), and so it exists a rational function g on € such
that g(p2) — g(p1) = —C(p + p1) + ¢(p) + {(p1). Since the differential of the second kind 7
lives in the quotient space H!(€, O¢), we can add to the class of 1 the exact differential dg,

getting
& [ipyn, (1+dg) = [22(dC() + dg) = C(p2) = Cp1) + 9(p2) — 9(p1) = (),
* Jomeba = Jodw+ [37 5 ~ (z =1+ [1? dlog fy(2) =1 +log fqﬁmg

By [24, 20-53], the quotient of o-functions is a rational function on €, and so from the equality

(1.9) it exists a rational function g4(z) on € such that gqg?; = ( f‘(l(?;j;i))_l, getting

i

° Js. - (Eg+dloggy(z fo dw+ (dlogfq( z)+dlog gq(2)) = l+1log (ﬁzggfggzgf)) =

L+ log (4423 —fq;j{;;f D) ~ 1+ logl (). with ¢ € K,

. f% &g = fw’ fq Z)d = [ dlog fo(z) = log fq((w’)) =n;q —w;((q) by (1.8) for i = 1,2,
° f(LQ §o = 2@7rRes Qo = 2im.

The addition of the differential dlog g4(%) to the differential of the third kind &g will modify
the last two integrals by an integral multiple of 27 (see [21, Thm 10-7]) and this is irrelevant
for the computation of the field generated by the periods of M.
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Explicitly the matrix, which represents the isomorphism (0.3) for M = [u : 2Z —
G],u(z) = R, and whose coefficients are the periods of M, is therefore

1 p ((p) logfelp)+1
o wi o mg—wit(q)
(2.7) {eq:matrix-periods} 0 we 1o 1oq— WQC(Q)
0 0 0 2im
with el € K*. -

Remark 2.4. The determination of the complex and elliptic logarithms, which appear in the
first line of the matrix (2.7), are not well-defined since they depend on the lifting 8p, p, of the
basis of Tg(2Z) (recall that the short exact sequence (2.1) is not split). Nevertheless, the field
K (periodes(M)), which is involved in the Generalized Grothendieck’s Conjecture of Periods,
is totally independent of this choice since it contains 2im, the periods of the Weierstrass -
function, the quasi-periods of the Weierstrass (-function, and finally the quasi-quasi-periods
of Serre’s function f,(z) (1.6).

We finish this section with an example: Consider the l1-motive M = [u : Z?> — @],
where G is an extension of & x £y by G2, parameterized by the K-rational points Q =
(Q11,Q21), Q2 = (Q12, Q22), Q3 = (Q13, Qa3) of & x &5, and the morphism u corresponds to
two K-rational points Rj, Re of G leaving over two points P = (P11, Po1), Py = (P12, Pe2) of
&1 X €. The more compact way to write the matrix which represents the isomorphism (0.3)
for our 1-motive M = [u : Z? — G] is to consider the 1-motive

M' = M/[0 — &1]® M/[0 — &9],

that is, with the above notation M’ = [uy = Z% — II3_,G1;] @ [ug = Z* — TI3_; G;] with uy
corresponding to two K-rational points (Ri11, Ri21, R131) and (Ri12, Ri22, Ri32) of II3_,Gy;
living over Py and Pj2, and ug corresponding to two K-rational points (Ra11, Ra21, Res1) and
(Ra12, Roga, Rasa) of II3_;Ga; living over Py and Pyp. The 1-motives M and M’ generate
the same tannakian category: in fact, it is clear that < M’ >® C < M >% and in the
other hand M = M'/[Z?/dz(Z) — 0]. The matrix representing the isomorphism (0.3) for
the 1-motive M’ with respect to the bases chosen in the above Corollary is

In general, for a 1-motive of the kind M = [u : Z" — G] where G is an extension of a finite

2imlds«3

p11 C1(p11) 0 0 log fq11(P11)+l111 log fgy5 (p11)+l121  log fgq5(p11)-+l131

Idgxa P12 C1(p12) 0 0 log fgq; (p12)+l112  log fg5(P12)+l121  log fqq5(P12)+l131
0 0 P21 Ca(p21)  log fp (P21)+l211 108 fyge (P21)+l221  log feos (p21)+1231

0 0 P22 (2(p22)  log fygq (P22)+l212 108 fgoq (P22)+l222  log fooq (P22)+-l232

w11 11 mi1qi1—wi11€1(q11) migiz—wi1€i(q12) miqiz—wi1¢i(qi3)

w12 N2 Mm2q11—w12€1(q11)  ma2qi2—wi2€1(q12)  Mma2q13—wi12¢1(q13)

wa1 M21 M21921—w21C82(q21)  M21922—w2182(g22)  M21923—w21(2(q23)

w22 722 M22q21—w2282(q21)  M22g22—w22(2(q22)  M22q23—w22(2(q23)

product II7_, €; of elliptic curves by the torus Gy,, we will consider the 1-motive

M = EB;-L:I (M/[O — Ili<icn 8]'])

1%
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whose matrix representing the isomorphism (0.3) with respect to the bases chosen in the
above Corollary is

A B C
0 D E
0 0 F

with A = Id;nxn, B the rn X 2n matrix involving the periods coming from the morphism
v:Z" — 17 €; , C the rn x s matrix involving the periods coming from the trivialization ¥
of the pull-back via (v,v*) of the Poincaré biextension P; of (€;,€7) by Gy, , D the 2n x 2n
matrix having in the diagonal the period matrix of each elliptic curves €;, E the 2n x s matrix
involving the periods coming from the morphism v* : Z° — II7_, €7, and finally I = 2imldsx,
the period matrix of GJ,.

3. DIMENSION OF THE UNIPOTENT RADICAL OF THE MOTIVIC GALOIS GROUP OF A
1-MOTIVE

Denote by MM« (K) the category of 1-motives defined over K. Using mixed realizations
(see [11, 2.3] and [9, (2.2.5)]) or Nori ans Ayoub’s works (see [3] and [19]), it is possible to
endow the category of 1-motives with a tannakian structure with rational coefficients (roughly
speaking a tannakian category T with rational coefficients is an abelian category endowed
with a functor ® : T xJ — T defining the tensor product of two objects of T, and with a fibre
functor over Spec(Q) - see [12, 2.1, 1.9, 2.8] for details). We use neither Nori and Ayoub’s
theories nor mixed realizations: we work in a completely geometrical setting using algebraic
geometry on tannakian category and defining as one goes along the objects, the morphisms
and the tensor products that we will need (essentially we tensorize motives with pure motives
of weight 0, and as morphisms we use projections and biextensions).

The unit object of the tannakian category MM<;(K) is the 1-motive Z(0) = [Z — 0].
In this section we use the notation Y (1) for the torus whose cocharacter group is Y. In
particular Z(1) = [0 — G,,]. If M is a 1-motive, we denote by M" = Hom(M, Z(0)) its dual
and by evyr - M@ MY — Z(0),0p : Z(0) — MY @ M the arrows of MM<;(K') characterizing
this dual. The Cartier dual of M is M* = MV ® Z(1). If My, My are two 1-motives, we set

(3.1) {eq:BiextHomHomypy_, (k) (M1 @ My, M) := Biext!(My, My; Ms)

where Biextl((Ml,Mg;Mg) is the abelian group of isomorphism classes of biextensions of
(My, Ms) by Ms. In particular the isomorphism class of the Poincaré biextension P of (A, A*)
by G,, is the Weil pairing Py : A ® A* — Z(1) of A.

The tannakian sub-category < M >© generated by the 1-motive M is the full sub-category
of MM<1(K) whose objects are sub-quotients of direct sums of M®" @ MV ® ™ and whose
fibre functor is the restriction of the fibre functor of MM<1(K) to < M >%. Because of
the tensor product of < M >%, we have the notion of commutative Hopf algebra in the
category Ind < M >%® of Ind-objects of < M >® and so we can define the category of
affine < M >®-group schemes, just called motivic affine group schemes, as the opposite of
the category of commutative Hopf algebra in Ind < M >® . The Lie algebra of a motivic
affine group scheme is a pro-object L of (M)® endowed with a Lie algebra structure, i.e. L is
endowed with an anti-symmetric application [, | : L ® L — L satisfying the Jacobi identity.

The motivic Galois group SGalmet(M) of M is the fundamental group of the tannakian
category < M >%® generated by M, i.e. the motivic affine group scheme Sp(A) where A is
the object of < M >® universal for the following property: for any object X of < M >, it
exists a morphism

(3.2) {eq:lambdaXx} Ay XV ®X — A

{motivicGaloisgrou
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functorial on X, i.e. such that for any morphism f: X — Y in < M >® the diagram

t
YWex 9 xvex

1®f I ax

YWeov X A

is commutative. The universal property of A is that for any object U of < M >©, the map
Hom(A,U) — {ux : XY ® X — U, functorial on X }
fr—foAx
is bijective. The morphisms (3.2), which can be rewritten as X — X ® A, define the action
of the motivic Galois group Saly,et(M) on each object X of < M >©.
If wg is the fibre functor Hodge realization realization of the tannakian category
< M >%, wg(A) is the Hopf algebra whose spectrum Spec(w(A)) is the Q-group scheme
Aut®Q (wq), i.e. the Mumford-Tate group MT(M) of M. In other words, the motivic Galois

group of M is the geometric interpretation of the Mumford-Tate group of M. By [2, Thm
1.2.1] these two group schemes coincides, and in particular they have the same dimension

(3.3) dim Galye (M) = dim MT(M).

Let M = [u: X — G] be a 1-motive defined over K, with G an extension of an abelian

variety A by a torus T. The weight filtration W, of M induces a filtration on its motivic
Galois group Galmet (M) ([20, Chp IV §2]):

Wo(Galmot(M)) = Galmet (M)

W (Galumer (M) = {g € Salmor (M) | (g — id)M € W_1(M), (g — id)W_1(M) € W_5(M),
(9 — id)W (M) = 0},

W_2(Galmot (M) {g€9a1mot< ) | (g —id)M C W_(M), (g — id)W_1(M) =0},
W_3(Galyot (M)

)
)

Clearly W_1(Galmot (M)) is unipotent. Denote by UR(M ) the unipotent radical of Galmet (M).
Consider the graduated 1-motive

M=CGV(M)=X+A+T

associated to M and let < M >® be the tannakian sub- category of < M >® generated by
M. The functor ”"take the graduated” GrYV :< M >®—»< M >® which is a projection,
induced the inclusion of motivic affine group schemes

(3.4) 9almot(M) s Gr Galyet (M).

Lemma 3.1. Let M = [u: X — G] be a I-motive defined over K, with G an extension of an
abelian variety A by a torus T. The quotient Gry' (Salmes(M)) is reductive and the inclusion

of motivic group schemes (3.4) identifies Galymot (M) with this quotient.
Moreover, if X =Z" and T = G,

dim Galyet(A)  if A #0,
dim Gz (Galmet (M)) = dim Galpe (M) = { 1 if A=0,T #0,
0 if A=T =0.



THIRD KIND ELLIPTIC INTEGRALS AND 1-MOTIVES 15

Proof. By a motivic analogue of [9, §2.2], GryY (Galumo (M)) acts via Gal(K/K) on Grl/ (M),
by homotheties on Gr',(M), and its image in the group of authomorphisms of Gr™;(M)
is the motivic Galois group Galpot(A) of the abelian variety A underlying M. Therefore

Gry (Galmo (M)) is reductive, and via the inclusion (3.4) it coincides with Galye(M). To
conclude, observe that Lie Galyot(Gy,) = Gy, which has dimension 1, and Galye(Z) =
Sp(Z(0)) which has dimension 0. O

The inclusion < M >®<s< M >® of tannakian categories induces the following surjection
of motivic affine group schemes, which is the restriction g — 97r

(3.5) {eq:RestrictionGr_0}  Galyey(M) — Salyot(M).
As an immediate consequence of the above Lemma we have
Corollary 3.2. Let M = [u: X — G] be a 1-motive defined over K. Then
W _1(Galmot(M)) = ker [Salyos (M) — Galper (M)].
In particular, W_1(Galmet(M)) is the unipotent radical UR(M) of Galmet (M) and
dim Galmet (M) = dim Galyet (M) + dim UR(M).

Observe that we can prove the equality W_;(Galy,o(M)) = ker [Salmot(M ) = Galmot (]\A/.f )}
directly using the definition of the weight filtration:
g € W_1(Salnet(M)) <= (g — id)Cry (M) = 0, (g — id)Cr™, (M) = 0, (g — id)Gr (M) = 0
= YV () = id, i.e. g=1id in 9alm0t(ﬂ).

The inclusion < M + MY /W_o(M + MY) >®—< M >% of tannakian categories in-
duces the following surjection of motivic affine group schemes, which is the restriction

9= GIM+MY )W _o(M+MV)>
(3.6) {eq:Gr_1} Galmot (M) — Galmot (M + MY /W_o(M + MY)).
Lemma 3.3. Let M = [u: X — G| be a 1-motive defined over K. Then
W _g(Galmot (M)) = ker [Salpot (M) — Galmot (M + MY /W _o(M + MY))].

In particular, the quotient Gr', (Galyes (M) of the unipotente radical UR(M) is the unipotent
radical W_1 (Galmot (M + MY /W_o(M + M"))) of Galmet (M + MY /W_o(M + MV)).

Proof. Using the definition of the weight filtration, we have:
g9 € W_a(Galmet(M)) <= (g — id)M/W_o(M) =0, (g —id)W_1(M) =0
= gywoo () =1y gy wp vy =1d
<= g=id in Galpe(M + MY /W_o(M + M")).

Since the surjection of motivic affine group schemes (3.6) respects the weight filtration,
W _o(Galmet(M)) is in fact the kernel of W_1(Galyet (M) — W _1(Galmot (M +MY /W _o( M +
MVY))). Hence we get the second statement. O

From the definition of weight filtration, we observe that
W_2(Salyet(M)) € Hom(X,Y (1)) =2 XV @ Y(1).
By the above Lemma, we have that

GrY (Galyot (M)) € Hom(X + YV, A+ A") = XV @ A+Y © A",

{eq:DecomDim}

{eq:DecomRU}
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In order to compute the dimension of the unipotent radical UR(M) of Galmot (M) we use
notations of [6, §3], that we recall briefly. Let (X, YV, A, A* v: X — Av*: YV — A* ) :
X®YVY — (vxv*)*P) be the 7T-tuple defining the 1-motive M = [u: X — G] over K, where
G an extension of A by the torus Y (1). Let

E = W_;(End(M)).

It is the direct sum of the pures motives E_1 = XV®@ A+ AY®Y (1) and E_y = XV ®Y (1) of
weight -1 and -2. As observed in [6, §3], the composition of endomorphisms furnishes a ring
structure to E given by the arrow P : EQ E — E of (M)® whose only non trivial component
is

EL4®E ;1 —(X'RA)eA*®Y) —Z1)eX'®Y =FE_,
where the first arrow is the projection from F_; @ E_1 to (X¥ ® A) ® (A* ® Y) and the
second arrow is the Weil pairing Pp : A ® A* — Z(1) of A.

Because of the definition (3.1), the product P : E_; ® E_; — E_5 defines a biextension B
of (E_1,E_1) by E_, whose pull-back d*B via the diagonal morphism d: E_1 — F_1 x F_;
isaX— XV ® Y (1)-torsor over E_;. By [6, Lem 3.3] this ¥ — XV ® Y (1)-torsor d*B induces
a Lie bracket [, | : E® E' — E on E which becomes therefore a Lie algebra.

The action of £ = W_;(End(M )) on M is given by the arrow E® M — M of (M (M)® whose
only non trivial components are

(3.7) a (XY eA) X — A
ag (A"RY)® A—Y()
(XY eY(1)e X —Y(1)
where the first and the last arrows are induced by evyxv : XV ® X — Z(0), while the second
one is rk(Y')-copies of the Weil pairing Py : A ® A* — Z(1). By [6, Lem 3.3], via the arrow
(a1, 2,7) : E®@ M — M, the 1-motive M is in fact a (E, [,])-Lie module.
As observed in [6, Rem 3.4 (3)] E acts also on the Cartier dual M* =YV 4+ A* + XV (1)
of M and this action is given by the arrows
(3.8) a3 (A RY)YY — A*
af (XY@ A) e A" — XV(1)
VXV eY)eYY — XY(1)
where o et y* are projections, while o is rk(X")-copies of the Weil pairing Pp : A®@ A* —
Z(1) of A.
Via the arrows dxv : Z(0) = X ® XY et dy : Z(0) — YV ® Y, to have the morphisms
v:X — Aand v*:YY — A* underlying the 1-motive M is the same thing as to have the

morphisms V : Z(0) - A® XV and V* : Z(0) — A* ® Y. Therefore to have v and v* is
equivalent to have a point

b= (b1,be) EE_1(K)=A® XV(K)+ A*® Y(K).

Fix now an element (z,3") in the character group X ® YV of the torus XV ® Y (1). By
construction of the point b, it exists an element (s,t) € X ® YV (K) such that

v(z) = ay1(by, s) € A(K)
v (y") = as(be,t) € AT(K).

Let iy vd*B be the pull-back of d*B via the inclusion iz, : {(v(z),v W)} = B
in F_; of the abelian sub-variety generated by the point (v(z),v*(y"Y)). The push-down
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(2,y")«iy vd*B of i} d*B via the character (z,y") : XV ®@ V(1) — Z(1) is a ¥ — Z(1)-
torsor over {(v(z),v*(y"))}:

(@, y")uify o d*B — it v d*B — d*B
! ! ol
(W), @)} = (@), yY)} =5 B

To have the point 1 (z,y") is equivalent to have a point (fl;)xvyv of (z,y").i* v ad*B over
(v(z),v*(y")), and so to have the trivialization 1) is equivalent to have a point

be (d*B),

in the fibre of d*B over b = (b1, ba).
Consider now the following pure motives:

(1) Let B be the smallest abelian sub-variety (modulo isogenies) of XV ® A+ A*® Y
which contains the point b = (by,b) € XV ® A(k) x A*®Y (K). The pull-back i*d*B
of d*B via the inclusion i : B < E_1 of Bon F_1,isa ¥ — X' ®Y (1)-torsor over B.

(2) Let Z; be the smallest Gal(K /K )-sub-module of XV ® Y such that the torus Z(1)
contains the image of the Lie bracket [,]: B® B —+ XY ® Y(1). The push-down
psi*d*B of the ¥ — XV ® Y (1)-torsor i*d*B via the projection p : XV @ Y(1) —»
(XV®Y/Z1)(1) is a trivial ¥ — (XY ® Y/Z;)(1)-torsor over B, i.e.

pi*d*B = B x (XV®Y/Z)(1).

Note by 7 : pyi*d*B — (XY ® Y/Z1)(1) the canonical projection and by s : B <
p«t*d*B the canonical section. We still note b the points of *d*B and of p,i*d*B
living over b € B.
(3) Let Z be the smallest Gal(K /K )-sub-module of XV ®Y containing Z; and such that
the sub-torus (Z/Z;)(1) of (XY ® Y/Z;)(1) contains 7 (b).
Let Ac be the abelian variety defined over C obtained from A extending the scalars from
K to the complexes. Denote by g the dimension of A. Consider the abelian exponential

expy : LieAc — Ac

whose kernel is the lattice H; (Ac(C),Z), and denote by log 4 an abelian logarithm of A, that
is a choice of an inverse map of exp 4. Consider the composite

Ppo(vxv*): XYY — Z(1)

where Pp : A ® A* — Z(1) is the Weil pairing of A. Since we work modulo isogenies, we
identify the abelian variety A with its Cartier dual A*. Let w1, ...,w, be differentials of the
first kind which build a basis of the K-vector space H°(A, 9}4) of holomorphic differentials,
and let 71, ...,n4 be differentials of the second kind which build a basis of the K-vector space
HY(A,04) of differentials of the second kind modulo holomorphic differentials and exact
differentials. As in the case of elliptic curves, the first De Rham cohomology group H(llR(A)
of the abelian variety A is the direct sum H?(A, QL) @ H'(A4,04) of these two vector spaces
and it has dimension 2g. Let v1,...,724 be closed paths which build a basis of the Q-vector
space H1(Ac,Q). Forn=1,...,9g and m = 1,...,2g, the abelian integrals of the first kind

f'Ym Wn = Wnm are the periods of the abelian variety A, and the abelian integrals of the second

kind fvm NMn = Nnm are the quasi-periods of A.

Theorem 3.4. Let M = [u: X — G] be a 1I-motive defined over K, with G an extension of
an abelain variety A by a torus Y (1). Denote by F' = End(A)®zQ the field of endomorphisms

{eq:dimUR}
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of the abelian variety A. Let 1, ..., 7 (x) be generators of the character group X and let
yys. .. ,yrvk(yv) be generators of the character group Y. Then
dimg UR(M) =

2dimp AbLog Tm(v,v*) + dimg Log Im(Pp o (v x v*)) + dimg Log Im (Y| ker(Pyo(vxv*)))
where
o AbLog Im(v, v*) is the F'-sub-vector space of C/(3 n=1,...s Fwnm) generated by the
m=1 2

=1,...,

e Log Im(Ppo(vxw )) is the Q _sub-vector space 0f(C/2z7rQ generated by the logarithms
{log Pp(v(ak), v* (1))} k=r.emecx)

=1,...,rk(YV)

o Log Im (Y| ker(Ppo(vxuv+))) 18 the Q -sub-vector space of C/2imQ generated by the loga-
(

rithms {log ¥ (zy, ?JZ/)} oY) Eker(Ppo(uxv®)) -
1<k:/<rk(X) 1<i/ <rk(YV)

Proof. By the main theorem of [6, Thm 0.1], the unipotent radical W_; (LieGalyot(M)) is the
semi-abelian variety extension of B by Z(1) defined by the adjoint action of the Lie algebra
(B,Z(1),[, ]) over B+ Z(1). Since the tannakian category < M >* has rational coefficients,
we have that dimg W_1(Salyet(M)) = 2dim B + dim Z(1). Concerning the abelian part we
have that

dim B = dimp AbLog Im(v, v*).

On the other hand, for the toric part we have by construction dim Z(1) = dim(Z/Z;)(1) +
Z1(1). Because of the explicit description the Lie bracket [, ]: B® B — XY ®@ Y (1) given in
[6, (2.8.4)], we have that

dim Z;(1) = dimg Log Im(Pp o (v x v*)).
Finally by construction we have that
dlm(Z/Zl)(l) - dlm@ Log Im(¢| ker(Pyo(va*)))'
0

Remark 3.5. The dimension of the quotient Gr™(Galumei(M)) of the unipotent radical
UR(M) is equal to the dimension of the abelian sub-variety B of XV ® A+ A* ® Y , that is

dimg Gr"Y, (Salpet (M) = dimp AbLog Tm(v, v*).
The dimension of W_g(Galyet(M)) is the dimension of the sub-torus Z(1) of XV ®Y (1), that
is
dimg W_2(Galmet (M)) = dimg Log Im(Pp o (v x v*)) + dimg Log Im (¥ ker(Ppo(vxv+)))

Remark 3.6. A l-motive M = [u : X — @] defined over K is said to be deficient if
W_s(Galyot(M)) = 0. In [14] Jacquinot and Ribet construct such a l-motive in the case
rk(X) = rk(YV) = 1. By the above Theorem we have that M is deficient if and only if for
any (z,y") € X @Y,

PfP(,U(x)aU*(yv)) =1 and ¢| ker(Pg:o(vXU*))(:anv) =1,

that is if and only if the two arrows Ppo (v x v*) : X @ YV — Z(1) and Y|ker(Ppo(vxv*))
X ®YY — Z(1) are the trivial arrow.
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Now let M = [u : Z" — G| be a 1-motive defined over K, with G an extension of a
product II7_, €; of pairwise not isogenous elliptic curves by the torus G7,. We go back to
the notation used in Section 2. Denote by pry, : H?:pgj — &p, and prj : H?Zlﬁj — &} the
projections into the h-th elliptic curve and consider the composites v, = prjov : Z" — &,
and v} = prj ov* : Z° — &}. Let P be the Poincaré biextension of (H?Zlc‘ij, H?Zlco,;f) by G,,
and let P; be the Poincaré biextension of (€;,E}) by Gy,. The category of biextensions is
additive in each variable, and so we have that Pp = II"_, Py, where Py, : €; ® &7 — Z(1) is
the Weil pairing of the elliptic curve &;.

Corollary 3.7. Let M = [u: Z" — G| be a 1-motive defined over K, with G an extension
of a product H?Zlﬁj of pairwise not isogenous elliptic curves by the torus G;,. Denote by
kj = End(€;) ®z Q the field of endomorphisms of the elliptic curve €; for j =1,...,n. Let
T1,...,2, be generators of the character group Z" and let yy,...,y. be generators of the
character group 7°. Then

dimg Galmet (M) =4 (dimg ;)" —n+ 1+ 2dimy, AbLog Im(v;, v})+
: =
dimg Log Im(Pp o (v X v*)) + dimg Log Im(Y| er(Pyo(vxv+)))
o AbLog Im(vj,v}) is the kj-sub-vector space of C/kjwj1 + kjwja generated by the
elliptic logamthms {pjk,qu}k Lo of the points { P, k,QjZ}k Lo fO?"j =1,...,m

..........

,,,,,

rithms {log w(xk/ Yy )}(zk,,yi,)eker(p,yjo(vjmj.))-
1<K/ <r, 1<i/<s, j=1,..., n

Proof. Since the elliptic curves are pairwise not isogenous, by [17, §2] and (3.3) we have that

n
dim Galmet (T, €;) =4 > (dimg ky) ™" —n + 1.
j=1
Therefore putting together Corollary 3.2, Lemma 3.1 and Theorem 3.4 we can conclude. [

Remark 3.8. We can express the dimension of the motivic Galois group of a product of
elliptic curves also as 3n; +mn9 + 1, where ny is the number of elliptic curves without complex
multiplication and ns is the number of elliptic curves with complex multiplication. Therefore

dim Galyot (M) = dim UR(M) 4 3nqy + ng + 1

4. GENERALIZED GROTHENDIECK’S CONJECTURE OF PERIODS FOR 1-MOTIVES
INVOLVING ELLIPTIC CURVES

The 1-motivic elliptic conjecture
Consider

e &i,...,&y be elliptic curves pairwise not isogenous. Denote by k; = End(€;) ®z Q
the field of endomorphisms of &; for j =1,...,n;

e Q; = (Qui,...,Qn;) be s points of H?ZIE;-‘((C) fori=1,...,s. These points determine
an extension G of II7_, €; by GJ,;

e Ry,..., R, ber points of G(C). Denote by (Pi, ..., Py) € 7, &; (C) the projection
of the point Ry, on II7_,&; for k= ...,

{eq:dimGalMot}

{conjecture}
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Then
tran.degg Q(Qiﬂ, 925, 935> Qji, Riy wjt, Wi, m51, M2, Pik» GG (i)
njrgi — winGj(g5i), mj2dji — wi2€i(g5i), 108 foz: (pjn) + ljz‘k) -
k=1,...,r
n n
4Z(dim@ ki)l —n+1+ Z 2 dimyg; AbLog Im(vj, v})+
; =
dimg Log Im(Pyp o (v x v™)) + dimg Log Im (V| er(Ppo(vxv*)))

where

e AbLog Im(vj,v}) is the kj-sub-vector space of C/kjwj1 + kjwjo generated by the
elliptic logarlthms {Pjk, qﬂ}k Lo of the points { Pjy, Qﬂ}k Lo »forj=1,...,n;

..........

e Log Im(Ppo(vxv*)) is the Q sub vector space of C/2irQ generated by the logarlthms
{IOngy ( jk‘vQ]z)}k 1, " i:l,..,,s,

,,,,,

o Log Im (V) ker(Ppo(vxuv* ))) is the Q-sub-vector space of C/2imQ generated by the loga-
fﬁhms{bg¢@7y)}uywaam]< X)) -
(=, yV)EZT@JZS
Because of Proposition 2.3 and Corollary 3.7, we can conclude that

Theorem 4.1. Let M = [u : Z" — G] be a 1-motive defined over K, with G an extension
of a product 1I7_,&; of pairwise not isogenous elliptic curves by the torus G;,. Then the
Generalized Grothendieck’s Conjecture of Periods applied to M is equivalent to the 1-motivic
elliptic conjecture.

Remark 4.2. If Q;; =0forj=1,...,nandi=1,...,s, the above conjecture is the elliptic-
toric conjecture stated in [5, 1.1], which is equivalent to the Generalized Grothendieck’s
Conjecture of Periods applied to the 1-motive M = [u : IIj_;2:Z — Gj, x II}_, ;] with
u(zk) = (le, ceey Rsk, Plk, ey Pnk‘) € an(K) X H?Zlej(K).

Remark 4.3. If Q;; = P;; =&;=0forj=1,...,nand i =1,...,s, the above conjecture is
equivalent to the Generalized Grothendieck’s Conjecture of Periods applied to the 1-motive
M =[u:1I}_ 2,7 — G3,] with u(z) = (Rug, - ., Rer) € G5, (K), which in turn is equivalent
to the Schanuel conjecture (see [5, Cor 1.3 and §3]).

5. LOW DIMENSIONAL CASE: r=n=s=1

In this section we work with a 1-motive M = [u : Z — G] defined over K whose underlying
extension G is an extension of just one elliptic curve € by the torus G,,, i.e. r=s=n = 1.

Let go = 60 G4 and g3 = 140 Gg with G4 and Gg the Eisenstein series relative to the lattice
A :=H;(E(C),Z) of weight 4 and 6 respectively. The field of definition K of the 1-motive
M=u:7Z— GJ,u(l)=Ris

Q(927 g3, Q: R)

By Proposition 2.3, the field K (periods(M)) generated over K by the periods of M, which
are the coefficients of the matrix (2.7), is

Q<927g37 Q7 R7 2i7r,w17w277717772a]97 C(P)ﬂ?lq - W1C(Q), 2q — O.)QC((]),IOg fq(p) + l) .

End(&) ®z Q-linear dependence between the points P and @ and torsion properties of the
points P, @, R affect the dimension of the unipotent radical of Galy,ot(M). By Corollary 3.7
we have the following table concerning the dimension of the motivic Galois group Galyet (M)
of M:
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dim UR(M) | dit Galiog (M) | dim Galuor (M) M
& CM € not CM
Q, R torsion 0 2 4 M=u:Z— & x Gy
(= P torsion) u(l) =(0,1)
P,Q torsion 1 3 5 M=[u:7Z— & x Gy
(R not torsion) u(l) = (0, R)
R torsion 2 4 6 M=u:7— G]
(= P torsion) u(l)=0
Q torsion 3 5 7 M=[u:7Z— & x Gy
(P and R not torsion) u(l) = (P, R)
P torsion 3 5 7 M=u:7Z— & x Gy
(R and Q not torsion) u(l) = (Q, R)
P,Q 5 7 9 M=u:7Z— G]
End(€) ®z Q-lin indep u(l)=R

We can now state explicitly the Generalized Grothendieck’s Conjecture of Periods (0.4)
for the 1-motives involved on the above table:

e R and Q@ are torsion: We work with the 1-motive M = [u : Z — & X Gy, ], u(1) = (0, 1)
or M =1[0— &]. If € is not CM,

tran.degQ Q(gz, g3, w1, w2, M, 772) >4

that is 4 at least of the 6 numbers go, g3, w1, w2, N1, 72 are algebraically independent
over Q. If € is CM,

tran.degQ Q(QQ, g3, Wi, 771) >2

that is 2 at least of the 4 numbers g¢o, g3, w1, n1 are algebraically independent over Q.
If g, g3 € Q this is Chudnovsky Theorem: tran.degg Q(wi,n1) = 2

P and @ are torsion: We work with the 1-motive M = [u: Z — EXGy,],u(l) = (0, R)
(we deal with this case in author’s Ph.D, see [5]). If € is not CM,

tran.deg@ Q (927 g3,w1,w2, 11,12, R7 10g(R)) > D

that is 5 at least of the 8 numbers g9, g3, w1, w2, N1, 72, R, log(R) are algebraically
independent over Q. If € is CM,

tran.degg Q9. g5, w1, m, R, log(R)) > 3

that is 3 at least of the 6 numbers go, g3, w1, M1, R, log(R) are algebraically independent
over Q.

R is torsion: We work with the 1-motive M = [u : Z — G],u(l) =0 or M = [v* :
Z — E*],v*(1) = Q. If € is not CM,

tran'deg(@ @(.92793’ w1, w2, M, 172, Qv q, C(Q)) > 6

that is 6 at least of the 9 numbers g9, g3, w1, w2, 11,12, @, q,((q) are algebraically
independent over Q. If € is CM,

tran.degQ Q(927 93, w1, M1, Q7 q, C(Q)) >4

that is 4 at least of the 7 numbers g2, g3, w1, M, @, ¢, ((q) are algebraically independent
over Q.
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e () is torsion: We work with the 1-motive M = [u: Z — & x Gp],u(1l) = (P, R) (we
deal with this case in author’s Ph.D, see [5]). If € is not CM,

tran'deg(@ Q(QZag?)vwlaWZanl’nZan Rapvg(p)’log(R)) > 7

that is 7 at least of the 11 numbers ¢, g3, w1, w2, M1, 72, P, R, p,((p),log(R) are alge-
braically independent over Q. If € is CM,

tran.degg Q(gz, g3,w1,n1, P, R, p,¢(p), IOg(R)> 25

that is 5 at least of the 9 numbers g9, g3, w1,m, P, R, p,((p),log(R) are algebraically
independent over Q.

e P is torsion: We work with the 1-motive M = [u : Z — G],u(l) = R € G, (K) or
M=u:Z— & xGpl,u(l) =(Q, R). If £ is not CM,

tra‘n‘deg(@ Q (.927 g3, w1,w2, 171,172, Q) R) q, C(q)J log(R)) Z 7

that is 7 at least of the 11 numbers g2, g3, w1, w2, M1, 72, @, R, q,((q),log(R) are alge-
braically independent over Q. If € is CM,

tran.degQ Q(g2, 93, WwW1,11, Qv R7 q, C(Q>7 IOg(R)> Z 5

that is 5 at least of the 9 numbers g9, g3, w1,m1, @, R, q,((q),log(R) are algebraically
independent over Q.

e P, R are not torsion and P,Q are End(€) ®z Q-linearly independent: We work
with the 1-motive M = [u:Z — G],u(l) = R € G(K). If € is not CM,

tran'deg(@ Q <927 93, Q7 R7 w1, w2, M1, 72, P, C(p)7 q, g(Q)? Ulq—w1<<Q)7 772(1_“2(((1)7 1Og fq(p)_H) > 9

that is 9 at least Of the 15 numbers 92, g3, Q? R? wi,w2,M,M2,D, C(p)7 q, C(Q)7 mq —
w1€(q), m2q — w2((q),log fy(p) are algebraically independent over Q. If € is CM,

tran‘deg(@ Q<927 g3, Qa RJ wi,M, P, C(p)7 q, C(Q)7 mq — wlC(q)7 29 — WQC(Q)v lOg fq(p) + l) Z 7

that is 7 at least of the 13 numbers 92,93, Q7 R7 w1, M1, P, C(p)7 q, C(Q)7 T,lq_wlg(Q)7 24—
w2((q),log fq(p) are algebraically independent over Q.
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THIRD KIND ELLIPTIC INTEGRALS AND TRANSCENDENCE

MICHEL WALDSCHMIDT

ABSTRACT. This short appendix aims at giving references on papers related with transcen-
dence results concerning elliptic integrals of the third kind. So far, results on transcendence
and linear independence are known, but there are very few results on algebraic independence.

In his book on transcendental numbers [Sc1957], Th. Schneider proposes eight open prob-
lems, the third of which is : Try to find transcendence results on elliptic integrals of the third
kind.

In [Lal966, Historical Note of Chapter IV], S. Lang explains the connections between
elliptic integrals of the second kind, Weierstrass zeta function and extensions of an elliptic
curve by G,. He applies the so—called Schneider—Lang criterion to the Weierstrass elliptic
and zeta functions and deduces the transcendence results due to Th. Schneider on elliptic
integrals of the first and second kind. At that time, it was not known how to use this method
for proving results on elliptic integrals of the third kind.

The solution came from [Se1979], where J-P. Serre introduces the functions f, (with the
notation of [B2019]) related to elliptic integrals of the third kind, which satisfy the hypotheses
of the Schneider-Lang criterion and are attached to extensions of an elliptic curve by G,,. This
is how the first transcendence results on these integrals were obtained [Wal979al, Wal979b)].
In [BeLaul981], D. Bertrand and M. Laurent give further applications of the Schneider-Lang
criterion involving elliptic integrals of the third kind. Applications are given in [Bel983a
Be1983bl [ST986], dealing with the Neron—Tate canonical height on an elliptic curve (including
the p—adic height) and the arithmetic nature of Fourier coefficients of Eisenstein series. A first
generalization to abelian integrals of the third kind is quoted in [Bel983b]. Transcendence
measures are given in [R1980a].

Properties of the smooth Serre compactification of a commutative algebraic group and of
the exponential map, together with the links with integrals, are studied in [FWuI1984]. See
also [KL1985]. In [M2016, Chapter 20 — Elliptic functions| (see in particular Theorem 20.11
and exercises 20.104 and 20.105) more details are given on the functions associated with
elliptic integrals of the third kind, the associated algebraic groups, which are extensions of
an elliptic curve by G,,, and the consequences of the Schneider-Lang criterion.

The first results of linear independence of periods of elliptic integrals of the third kind are
due to M. Laurent [Laul980, Laul982] (he announced his results in [Laul979a, [Laul979b]).
The proof uses Baker’s method. More general results on linear independence are due to
G. Wiistholz [Wu1984] (see also [BaW1ui2007, § 6.2]), including the following one, which
answers a conjecture that M. Laurent stated in [Laul982] where he proved special cases of
it. Let p be a Weierstrass elliptic function with algebraic invariants gs, gs. Let ( be the
corresponding Weierstrass zeta function, w a nonzero period of p and n the corresponding
quasi-period of . Let ug,...,u, be complex numbers which are not poles of o, which are Q
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linearly independent modulo Zw and such that p(u1),...,o(u,) are algebraic. Define
Mug, w) = wl(u;) — nu,.

Then the n + 3 numbers
Liw,my A(u), ..., Muy)

are linearly independent over Q.

The question of the transcendence of the nonvanishing periods of a meromorphic differ-
ential form on an elliptic curve defined over the field of algebraic numbers is now solved
[BaW1i2007, Theorem 6.6]. See also [HW1i2018], as well as [T2017, § 1.5] for abelian inte-
grals of the first and second kind. A reference of historical interest to a letter from Leibniz
to Huygens in 1691 is quoted in [BaWii2007, § 6.3] and [Wii20012].

The only results on algebraic independence related with elliptic integrals of the third kind
so far are those obtained by E. Reyssat [R1980b, [R1982] and by R. Tubbs [T1987, [T1990].
We are very far from anything close to the conjectures in [B2019].

For a survey (with an extensive bibliography including 254 entries), see [Wa2008].

The references below are listed by chronological order.
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