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with an appendix by M. Waldschmidt

Abstract. In [5] we have showed that the Generalized Grothendieck’s Conjecture of Pe-
riods applied to 1-motives, whose underlying semi-abelian variety is a product of elliptic
curves and of tori, is equivalent to a transcendental conjecture involving elliptic integrals of
the first and second kind, and logarithms of complex numbers.

In this paper we investigate the Generalized Grothendieck’s Conjecture of Periods in
the case of 1-motives whose underlying semi-abelian variety is a non trivial extension of a
product of elliptic curves by a torus. This will imply the introduction of elliptic integrals of
the third kind for the computation of the period matrix of M and therefore the Generalized
Grothendieck’s Conjecture of Periods applied to M will be equivalent to a transcendental
conjecture involving elliptic integrals of the first, second and third kind.
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Introduction

Let E be an elliptic curve defined over C with Weierstrass coordinate functions x and y.
On E we have the differential of the first kind ω = dx

y , which is holomorphic, the differential

of the second kind η = −xdx
y , which has a double pole with residue zero at each point of the

lattice H1(E(C),Z) and no other pole, and the differential of the third kind

ξQ =
1

2

y − y(Q)

x− x(Q)

dx

y
,

for any point Q of E(C), Q 6= 0, whose residue divisor is D = −(0) + (−Q). Let γ1, γ2 be
two closed paths on E(C) which build a basis for the lattice H1(E(C),Z). In his Peccot
lecture at the Collège de France in 1977, M. Waldschmidt observed that the periods of the
Weierstrass ℘-function (1.4) are the elliptic integrals of the first kind

∫
γi
ω = ωi (i = 1, 2), the
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quasi-periods of the Weierstrass ζ-function (1.5) are the elliptic integrals of the second kind∫
γi
η = ηi (i = 1, 2), but there is no function whose quasi-quasi-periods are elliptic integrals

of the third kind. J.-P. Serre answered this question furnishing the function

fq(z) =
σ(z + q)

σ(z)σ(q)
e−ζ(q)z with q ∈ C \ Λ

whose quasi-quasi periods (1.8) are the exponentials of the elliptic integrals of the third kind∫
γi
ξQ = ηiq − ωiζ(q) (i = 1, 2), where q is an elliptic logarithm of the point Q.

Consider now an extension G of E by Gm parameterized by the divisor D = (−Q)− (0) of
Pic0(E) ∼= E∗ = Ext1(E,Gm). Since the three differentials {ω, η, ξQ} build a basis of the De
Rham cohomology H1

dR(G) of the extension G, elliptic integrals of the third kind play a role
in Grothendieck’s Conjecture of Periods, more precisely in its generalization (0.4). The aim
of this paper is to understand this role applying the Generalized Grothendieck’s Conjecture
of Periods to 1-motives whose underlying semi-abelian variety is a non trivial extension of a
product of elliptic curves by a torus.

We start recalling Grothendieck’s Conjecture of Periods (0.2) and its generalization (0.4).
Let Q be the algebraic closure of Q in C and let K be an algebraically closed sub-field of
the field of complex numbers C which is not necessarily algebraic over Q. Consider a smooth
and projective algebraic variety X defined over K. The periods of X are the coefficients of
the matrix which represents (with respect to K-bases) the canonical isomorphism given by
the integration of differentials forms

βX : H∗dR(X)⊗K C −→ H∗sing (X(C),K)⊗K C(0.1){eq:betaX}

ω 7−→
[
γ 7→

∫
γ
ω
]

between the algebraic De Rham cohomology H∗dR(X) and the singular cohomology
H∗sing (X(C),K) = H∗sing (X(C),Q) ⊗Q K of X. In Note 10 of [13], Grothendieck conjectures
that any polynomial relation with rational coefficients between the periods of X should have
a geometrical origin. More precisely, any algebraic cycle on X and on the products of X
with itself, will give rise to a polynomial relation with rational coefficients among the periods
of X (see [15, Chp. IV, Historical Note]). We can reformulate this in the following way:
the existence of algebraic cycles on X and on the products of X with itself, should affect the
transcendence degree of the field generated by the periods of X.

Grothendieck has never written down a precise statement for this conjecture on periods
of X. In [1, §7.5], André does it using the notion of motivic Galois group of X, whose
dimension is strictly related to the existence of algebraic cycles on X and on the products
of X with itself. Grothendieck’s dream about motives was first to construct the tannakian
category of mixed motives, and then, by tannakian duality, to define the motivic Galois group
of mixed motives as the group pro-scheme whose category of representations is equivalent
to the tannakian category of mixed motives (in other words, as the fundamental group of
the tannakian category of mixed motives, see [11, 6.1] or [12, 8.13]). This dream remained
unachieved for several years (except for some special cases as abelian varieties, 1-motives, ...).
Recently, in two different, independent and equivalent ways, Nori and Ayoub have furnished
a definition of the tannakian category of mixed motives with rational coefficients using a
weak version of the tannakian duality (see [3] and [19]). More precisely, they construct
first a group pro-scheme Galmot(MM) over Q, that they call the motivic Galois group of
mixed motives, and then they define the tannakian category of mixed motives (with rational
coefficients over a sub-field of C) as the category of representations of this group pro-scheme
Galmot(MM). The inclusion i :< X >⊗→ MM of the tannakian sub-category generated by
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a smooth and projective algebraic variety X in MM corresponds to a surjective morphism
Galmot(MM) → iGalmot(X) of group pro-schemes, that is the motivic Galois group of X is
a quotient of the motivic Galois group of the tannakian category of mixed motives (see [7,
§2]). With these notation, André states the Conjecture of Periods in the following way

Conjecture 0.1 (Grothendieck’s Conjecture of Periods). Let X be a smooth and projective
algebraic variety defined over Q, then

(0.2) {eq:CP} tran.degQQ(periods(X)) = dimGalmot(X),

where Q(periods(X)) is the field generated over Q by the periods of X.

This conjecture is independent of the choice of the K-bases that we do in order to compute
the periods of X. André extends Grothendieck’s Conjecture of Periods (0.2) to smooth and
projective algebraic varieties defined over an algebraically closed sub-field K of C which is
not necessarily algebraic over Q ([1, §23.4]), and also to mixed motives defined over K (see
end of [1, §23.4.1]). In this paper we are involved with this last generalization applied to
1-motives.

A 1-motive M = [u : X → G] over K consists of a finitely generated free Z-module X, an
extension G of an abelian variety by a torus, and a homomorphism u : X → G(K). Denote
by MC the 1-motive defined over C obtained from M extending the scalars from K to C. In
[10] Deligne associates to the 1-motive M

• its De Rham realization TdR(M): it is the finite dimensional K-vector space Lie(G\),
with M \ = [u : X → G\] the universal extension of M by the vector group
Hom(Ext1(M,Ga),Ga),
• its Hodge realization TQ(MC): it is the finite dimensional Q-vector space TZ(MC)⊗Z
Q, with TZ(MC) the fibered product of Lie(G) and X over G via the exponential
map exp : Lie(G)→ G and the homomorphism u : X → G. The Z-module is in fact
endowed with a structure of Z-mixed Hodge structure, without torsion, of level ≤ 1
and of type {(0, 0), (0,−1), (−1, 0), (−1,−1)}.

Since the Hodge realizations attached to 1-motives are mixed Hodge structures, 1-motives
are mixed motives. In particular they are the mixed motives coming geometrically from
varieties of dimension ≤ 1. In [10, (10.1.8)], Deligne shows that the De Rham and the Hodge
realizations of M are isomorphic

(0.3) {eq:betaM} βM : TdR(M)⊗K C −→ TQ(MC)⊗K C,
generalizing the isomorphism (0.1) to 1-motives. We can then define the periods of M as the
coefficients of the matrix which represents the isomorphism (0.3) with respect to K-bases.

In the particular case of 1-motives, Grothendieck’s dream came true: using the category
of mixed realizations (see [11, 2.3] and [9, (2.2.5)]), it is possible to endow the category of
1-motives with a tannakian structure with rational coefficients, and therefore to define the
motivic Galois group

Galmot(M)

of a 1-motive M as the fundamental group of the tannakian category < M >⊗ generated by
M (see [11, Def 6.1] or [12, Def 8.13]). By [2, Thm 1.2.1], Nori and Ayoub’s motivic Galois
groups of a 1-motive coincide with that of Grothendieck. Applying the generalizations of
Grothendieck’s Conjecture of Periods proposed by André to 1-motives we get

Conjecture 0.2 (Generalized Grothendieck’s Conjecture of Periods by Y. André). Let M
be a 1-motive defined over an algebraically closed sub-field K of C which is not necessarily
algebraic over Q, then

(0.4) {eq:GCP} tran.degQK(periods(M)) ≥ dimGalmot(M)



4 CRISTIANA BERTOLIN

where K(periods(M)) is the field generated over K by the periods of M .

In [5] we showed that the conjecture (0.4) applied to a 1-motive of type

M = [u : Zr → Πn
j=1Ej ×Gs

m]

is equivalent to the elliptico-toric conjecture (see [5, 1.1]) which involves elliptic integrals of
the first and second kind and logarithms of complex numbers.

Consider now the 1-motive

(0.5){eq:M} M = [u : Zr −→ G]

where G is a non trivial extension of a product Πn
j=1Ej of pairwise not isogenous elliptic

curves by the torus Gs
m. In this paper we introduce the 1-motivic elliptic conjecture (§4)

which involves elliptic integrals of the first, second and third kind. Our main Theorem is that
this 1-motivic elliptic conjecture is equivalent to the Generalized Grothendieck’s Conjecture
of Periods applied to the 1-motive (0.5) (Theorem 4.1). The presence of elliptic integrals of
the third kind in the 1-motivic elliptic conjecture corresponds to the fact that the extension G
underlying M is not trivial. If in the 1-motivic elliptic conjecture we assume that the points
defining the extension G are trivial, then this conjecture coincides with the elliptico-toric
conjecture stated in[5, 1.1] (see Remarks 4.2). Observe that the 1-motivic elliptic conjecture
contains also the Schanuel conjecture (see Remarks 4.3).

In Section 1 we recall basic facts about differential forms on elliptic curves.
In Section 2 we study the short exact sequences which involve the Hodge and De Rham

realizations of 1-motives and which are induced by the weight filtration of 1-motives. In
Lemma 2.2 we prove that instead of working with the 1-motive (0.5) we can work with a
direct sum of 1-motives having r = n = s = 1. In [8, §2] D. Bertrand has computed the
periods of the 1-motive (0.5) with r = n = s = 1 using Deligne’s construction of a 1-motive
starting from an open singular curve. Putting together Lemma 2.2 and Bertrand’s calculation
of the periods in the case r = n = s = 1, we compute explicitly the periods of the 1-motive
(0.5) (see Proposition 2.3).

In section 3 we study the motivic Galois group of 1-motives. We will follow neither
Ayoub and Nori’s theories nor Grothendieck’s theory involving mixed realizations, but using
[6] we will work in a completely geometrical setting using algebraic geometry on tannakian
categories. In Theorem 3.4 we compute explicitly the dimension of the unipotent radical of
the motivic Galois group of an arbitrary 1-motive over K. Then, as a corollary, we calculate
explicitly the dimension of the motivic Galois group of the 1-motive (0.5) (see Corollary 3.7).
For this last result, we restrict to work with a 1-motive whose underlying extension G involves
a product of elliptic curves, because only in this case we know explicitly the dimension of the
reductive part of its motivic Galois group (in general, the dimension of the motivic Galois
group of an abelian variety is not known).

In section 4 we state the 1-motivic elliptic conjecture and we prove our main Theorem 4.1.
In section 5 we compute explicitly the Generalized Grothendieck’s Conjecture of Periods

in the low dimensional case, that is assuming r = n = s = 1 in (0.5). In particular we
investigate the cases where End(E)⊗Z Q-linear dependence and torsion properties affect the
dimension of the unipotent radical of Galmot(M).

We finish with a remark about the Generalized Grothendieck’s Conjecture of Periods: as
pointed out by André in in [1, §7.5], the transcendent degree of the field generated over K
by the periods of a mixed motive is always upper-bounded by the dimension of its motivic
Galois group. In fact, if we denote respectively by ωH and ωdR the fibre functors Hodge
realization and de Rham realizations of the tannakian category of mixed motives, the affine
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K-group scheme Isom⊗K(ωdR, ωH) of isomorphisms of fibre functors is an ωH(Galmot(MM))-
torsor, called the torsor of periods, which is endowed with a C-valued point β : Spec (C) →
Isom⊗K(ωdR, ωH) that defines for each object of MM the isomorphism between its de Rham
realization and its Hodge realization (for the smooth and projective algebraic variety X we
get (0.1), for the 1-motive M , we get (0.3), ...). If N is any object of MM defined over K, the
isomorphism βN is a K(periods(N))-rational point of the torsor of periods Isom⊗K(ωdR, ωH).
Therefore for any mixed motive N of MM, we have

tran.degK K(periods(N)) ≤ dimωH(Galmot(N))

that is

tran.degQK(periods(N)) ≤ dimωH(Galmot(N)) + tran.degQK.

By [2, Thm 1.2.1], the motivic galois group Galmot(M) of a 1-motive M coincides with its
Hodge realization ωHGalmot(M), which is the Mumford-Tate group of M , and so in the
above inequality we can replace ωH(Galmot(M)) with Galmot(M). In particular, if K = Q,
the conjecture (0.4) becomes

(0.6) tran.degQQ(periods(M)) = dimGalmot(M).
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Notation

Let Q be the algebraic closure of Q in C and let K be an algebraically closed sub-field of
the field of complex numbers C which is not necessarily algebraic over Q.

A 1-motive M = [u : X → G] over K consists of a group scheme X which is locally for
the étale topology a constant group scheme defined by a finitely generated free Z -module,
an extension G of an abelian variety A by a torus T , and a homomorphism u : X → G(K).
In this paper we will consider above all 1-motives in which X = Zr, and G is an extension of
a finite product Πn

j=1Ej of elliptic curves by the torus Gs
m (here r, n and s are integers bigger

or equal to 0).
There is a more symmetrical definition of 1-motives. In fact to have the 1-motive M =

[u : Zr → G] is equivalent to have the 7-tuple (Zr,Zs,Πn
j=1Ej ,Π

n
j=1E

∗
j , v, v

∗, ψ) where

• Zs is the character group of the torus Gs
m underlying the 1-motive M .

• v : Zr → Πn
j=1Ej and v∗ : Zs → Πn

j=1E
∗
j are two morphisms of K-group varieties (here

E∗j := Ext1(Ej ,Gm) is the Cartier dual of the elliptic curve Ej). To have the morphism

v is equivalent to have r points Pk = (P1k, . . . , Pnk) of Πn
j=1Ej(K) with k = 1, . . . , r,

whereas to have the morphism v∗ is equivalent to have s points Qi = (Q1i, . . . , Qni)
of Πn

j=1E
∗
j (K) with i = 1, . . . , s. Via the isomorphism

Ext1(Πn
j=1Ej ,Gs

m) ∼= (Πn
j=1E

∗
j )
s, to have the s points Qi = (Q1i, . . . , Qni) is equivalent

to have the extension G of Πn
j=1Ej by Gs

m.

• ψ is a trivialization of the pull-back (v, v∗)∗P via (v, v∗) of the Poincaré biextension
P of (Πn

j=1Ej ,Π
n
j=1E

∗
j ) by Gm. To have this trivialization ψ is equivalent to have

points Rk ∈ G(K) with k = 1, . . . , r such that the image of Rk via the projection
G→ Πn

j=1Ej is Pk = (P1k, . . . , Pnk), and so to have the morphism u : Zr → G.
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The index k, 0 ≤ k ≤ r, is related to the lattice Zr, the index j, 0 ≤ j ≤ n, is related to
the elliptic curves, and the index i, 0 ≤ i ≤ s, is related to the torus Gs

m. For j = 1, . . . , n, we
index with a j all the data related to the elliptic curve Ej : for example we denote by ℘j(z)
its Weierstrass ℘-function of Ej , by ωj1, ωj2 its periods, ...

On a 1-motive M = [u : X → G] is defined an increasing filtration W•, called the weight
filtration of M : W0(M) = M,W−1(M) = [0 → G],W−2(M) = [0 → T ]. If we set GrWn :=
Wn/Wn−1, we have GrW0 (M) = [X → 0],GrW−1(M) = [0→ A] and GrW−2(M) = [0→ T ].

Two 1-motives Mi = [ui : Xi → Gi] over K (for i = 1, 2) are isogeneous is there exists a
morphism of complexes (fX , fG) : M1 →M2 such that fX : X1 → X2 is injective with finite
cokernel, and fG : G1 → G2 is surjective with finite kernel. Now, since [10, Thm (10.1.3)]
is true modulo isogenies, two isogeneous 1-motives have the same periods. Moreover, two
isogeneous 1-motives build the same tannakian category and so they have the same motivic
Galois group. Hence in this paper we can work modulo isogenies. In particular the elliptic
curves E1, . . . ,En will be pairwise not isogenous.

1. Elliptic integrals of third kind{EllipticIntegral}
Let E be an elliptic curve defined over C with Weierstrass coordinate functions x and y.

Set Λ := H1(E(C),Z). Let ℘(z) be the Weierstrass ℘-function relative to the lattice Λ: it is
a meromorphic function on C having a double pole with residue zero at each point of Λ and
no other poles. Consider the elliptic exponential

expE : C −→ E(C) ⊆ P2(C)

z 7−→ expE(z) = [℘(z), ℘(z)′, 1]

whose kernel is the lattice Λ. In particular the map expE induces a complex analytic isomor-
phism between the quotient C/Λ and the C-valuated points of the elliptic curve E. In this
paper, we will use small letters for elliptic logarithms of points on elliptic curves which are
written with capital letters, that is expE(p) = P ∈ E(C) for any p ∈ C.

Let σ(z) be the Weierstrass σ-function relative to the lattice Λ: it is a holomorphic function
on all of C and it has simple zeros at each point of Λ and no other zeros. Finally let ζ(z) be
the Weierstrass ζ-function relative to the lattice Λ: it is a meromorphic function on C with
simple poles at each point of Λ and no other poles. We have the well-known equalities

d

dz
log σ(z) = ζ(z) and

d

dz
ζ(z) = −℘(z).

Recall that a meromorphic differential 1-form is of the first kind if it is holomorphic
everywhere, of the second kind if the residue at any pole vanishes, and of the third kind in
general. On the elliptic curve E we have the following differential 1-forms:

(1) the differential of the first kind

(1.1){eq:diffFirstk} ω =
dx

y
,

which has neither zeros nor poles and which is invariant under translation. We have
that exp∗E(ω) = dz.

(2) the differential of the second kind

(1.2){eq:diffSecondk} η = −xdx
y
.

In particular exp∗E(η) = −℘(z)dz which has a double pole with residue zero at each
point of Λ and no other poles.
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(3) the differential of the third kind

(1.3){eq:diffThirdk} ξQ =
1

2

y − y(Q)

x− x(Q)

dx

y

for any point Q of E(C), Q 6= 0. The residue divisor of ξQ is −(0)+(−Q). If we denote
q ∈ C an elliptic logarithm of the point Q, that is expE(q) = Q, we have that

exp∗E(ξQ) =
1

2

℘′(z)− ℘′(q)
℘(z)− ℘(q)

dz

which has residue -1 at each point of Λ.

The 1-dimensional C-vector space of differentials of the first kind is H0(E,Ω1
E), the 1-

dimensional C-vector space of differentials of the second kind modulo holomorphic differen-
tials and exact differentials is H1(E,OE). In particular the first De Rham cohomology group
H1

dR(E) of the elliptic curve E is the direct sum H0(E,Ω1
E)⊕H1(E,OE) of these two spaces and

it has dimension 2. The C-vector space of differentials of the third kind is infinite dimensional.
The inverse map of the complex analytic isomorphism C/Λ→ E(C) induced by the elliptic

exponential is given by the integration E(C) → C/Λ, P →
∫ P
O ω modΛ, where O is the

neutral element for the group law of the elliptic curve.
Let γ1, γ2 be two closed paths on E(C) which build a basis of H1(EC,Q). Then the elliptic

integrals of the first kind
∫
γi
ω = ωi (i = 1, 2) are the periods of the Weierstrass ℘-function:

(1.4) {eq:periods-wp} ℘(z + ωi) = ℘(z) for i = 1, 2.

Moreover the elliptic integrals of the second kind
∫
γi
η = ηi (i = 1, 2) are the quasi-periods of

the Weierstrass ζ-function:

(1.5) {eq:periods-zeta} ζ(z + ωi) = ζ(z) + ηi for i = 1, 2.

Consider Serre’s function

(1.6) {eq:def-fq} fq(z) =
σ(z + q)

σ(z)σ(q)
e−ζ(q)z with q ∈ C \ Λ

whose logarithmic differential is

(1.7) {eq:expEXiq}
f ′q(z)

fq(z)
dz =

1

2

℘′(z)− ℘′(q)
℘(z)− ℘(q)

dz = exp∗E(ξQ)

(see [22] and [8, §2]). The exponentials of the elliptic integrals of the third kind
∫
γi
ξQ =

ηiq − ωiζ(q) (i = 1, 2) are the quasi-quasi periods of the function fq(z) :

(1.8) {eq:periods-fq} fq(z + ωi) = fq(z)e
ηiq−ωiζ(q) for i = 1, 2.

As observed in [22], we have that

(1.9) {eq:fq-sigma}
fq(z1 + z2)

fq(z1)fq(z2)
=
σ(q + z1 + z2)σ(q)σ(z1)σ(z2)

σ(q + z1)σ(z1 + z2)σ(q + z2)
.

Consider now an extension G of our ellitic curve E by Gm, which is defined over C. Via
the isomorphism Pic0(E) ∼= E∗ = Ext1(E,Gm), to have the extension G is equivalent to have
a divisor D = (−Q) − (0) of Pic0(E) or a point −Q of E∗(C). In this paper we identify E

with E∗. A basis of the first De Rham cohomology group H1
dR(G) of the extension G is given

by {ω, η, ξQ}. Consider the semi-abelian exponential

expG : C2 −→ G(C) ⊆ P5(C)

(w, z) 7−→ expG(w, z) = σ(z)3
[
℘(z), ℘(z)′, 1, ewfq(z), e

wfq(z)
(
℘(z) +

℘′(z)− ℘′(q)
℘(z)− ℘(q)

)]



8 CRISTIANA BERTOLIN

whose kernel is H1(G(C),Z). A basis of the Hodge realization H1(G(C),Q) of the extension
G is given by a closed path δQ around Q on G(C) and two closed paths γ̃1, γ̃2 on G(C) which
lift a basis {γ1, γ2} of H1(EC,Q) via the surjection H1(GC,Q)→ H1(EC,Q). We have that

(1.10){eq:expGXiq} exp∗G(ξQ) = dw +
f ′q(z)

fq(z)
dz.

2. Periods of 1-motives involving elleptic curves{periods}
Let M = [u : X → G] be a 1-motive over K with G an extension of an abelian variety A by

a torus T . As recalled in the introduction, to the 1-motive MC obtained from M extending
the scalars from K to C, we can associate its Hodge realization TQ(MC) = (Lie(GC) ×G
X)⊗Q which is endowed with the weight filtration (defined over the integers) W0TZ(MC) =
Lie(GC) ×G X,W−1TZ(MC) = H1(GC,Z),W−2TZ(MC) = H1(TC,Z). In particular we have
that GrW0 TZ(MC) ∼= X,GrW−1TZ(MC) ∼= H1(AC,Z) and GrW−2TZ(MC) ∼= H1(TC,Z).

Moreover to M we can associate its De Rham realization TdR(M) = Lie(G\), where
M \ = [X → G\] is the universal vectorial extension of M , which is endowed with the Hodge
filtration F0TdR(M) = ker

(
Lie(G\)→ Lie(G)

)
.

The weight filtration induces for the Hodge realizations the short exact sequence

(2.1){eq:Hodge} 0 −→ H1(GC,Z) −→ TZ(MC) −→ TZ(X) −→ 0

which is not split in general. On the other hand, for the De Rham realizations we have that

Lemma 2.1. The short exact sequence, induced by the weight filtration,

(2.2){eq:DRham0} 0 −→ TdR(G) −→ TdR(M) −→ TdR(X) −→ 0

is canonically split.

Proof. Consider the short exact sequence 0 → G → M → X[1] → 0. Applying Hom(−,Ga)
we get the short exact sequence of finitely dimensional K-vector spaces

0 −→ Hom(X,Ga) −→ Ext1(M,Ga)→ Ext1(G,Ga) −→ 0

Taking the dual we obtain the short exact sequence

0 −→ Hom(Ext1(G,Ga),Ga) −→ Hom(Ext1(M,Ga),Ga) −→ X → 0

which is split since Ext1(X,Ga) = 0. Now consider the composite of the section X →
Hom(Ext1(M,Ga),Ga) with the inclusion Hom(Ext1(M,Ga),Ga) → G\. Recalling that
F0TdR(M) ∼= Hom(Ext1(M,Ga),Ga), taking Lie algebras we get the arrow TdR(X) =
X⊗K → F0TdR(M)→ TdR(M) = Lie(G\) which is a section of the exact sequence (2.2). �

By the above Lemma, if we denote by HdR(M) the dual K-vector space of TdR(M) we
have that

(2.3){eq:DRham} HdR(M) = H1
dR(G)⊕H1

dR(X).

Consider now a 1-motive M = [u : Zr → G] defined over K, where G is an extension
of a finite product Πn

j=1Ej of elliptic curves by the torus Gs
m. Let {zk}k=1,...,r a basis of

Zr and let {ti}i=1,...,s a basis of the character group Zs of Gs
m. For the moment, in order

to simplify notation, denote by A the product of elliptic curves Πn
j=1Ej . Denote by Gi

the push-out of G by ti : Gs
m → Gm, which is the extension of A by Gm parameterized

by the point v∗(ti) = Qi = (Q1i, . . . , Qni), and by Rik the K-rational point of Gi above
v(zk) = Pk = (P1k, . . . , Pnk). Consider the 1-motive defined over K,

Mik = [uik : zkZ→ Gi]
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with uik(zk) = Rik for i = 1, . . . , s and k = 1, . . . , r. In [4, Thm 1.7] we have proved
geometrically that the 1-motives M = [u : Zr → G] and ⊕si=1 ⊕rk=1 Mik generate the same

tannakian category. Via the isomorphism Ext1(Πn
j=1Ej ,Gm) ∼= Πn

j=1Ext1(Ej ,Gm), for i =

1, . . . , s, the extensionGi of A by Gm parameterized by the point v∗(yi) = Qi = (Q1i, . . . , Qni)
corresponds to the product of extensions G1i × G2i × · · · × Gni where Gji is an extension
of Ej by Gm parameterized by the point Qji. Via the above isomorphism the point Rik the
K-rational point of Gi living above Pk = (P1k, . . . , Pnk) corresponds to the K-rational points
(R1ik, . . . , Rnik) with Rjik ∈ Gji(K) living above Pjk ∈ Ej(K) for j = 1, . . . , n. Consider the
1-motive defined over K,

(2.4) {eq:jik} Mjik = [ujik : zkZ→ Gji]

with ujik(zk) = Rjik for i = 1, . . . , s, k = 1, . . . , r and j = 1, . . . , n. Let (ljik, pjk) ∈ C2 be a
semi-abelian logarithm of Rjik, that is

(2.5) {eq:l} expGji
(ljik, pjk) = Rjik.

{lem:decomposition}
Lemma 2.2. The 1-motives M and ⊕si=1 ⊕rk=1 ⊕nj=1Mjik generate the same tannakian cat-
egory.

Proof. As in [4, Thm 1.7] we will work geometrically and because of loc. cit. it is enough to
show that the 1-motives ⊕si=1⊕rk=1Mik and ⊕si=1⊕rk=1⊕nj=1Mjik generate the same tannakian
category. Clearly

⊕nj=1

(
⊕si=1 ⊕rk=1Mik

/
[0→ Π 16l6n

l 6=j
Gli]

)
= ⊕si=1 ⊕rk=1 ⊕nj=1Mjik

and so < ⊕si=1 ⊕rk=1 ⊕nj=1Mjik >⊗ ⊂ < ⊕si=1 ⊕rk=1 Mik >⊗ . On the other hand, if
dZ : Z→ Zn is the diagonal morphism, for fixed i and k we have that

⊕nj=1Mjik

/
[Zn/dZ(Z)→ 0] = [Πjujik : dZ(Z) −→ G1i×G2i×· · ·×Gni] = [uik : Z −→ Gi] = Mik

and so

⊕si=1 ⊕rk=1

(
⊕nj=1 Mjik

/
[Zn/dZ(Z)→ 0]

)
= ⊕si=1 ⊕rk=1 Mik

that is < ⊕si=1 ⊕rk=1 Mik >
⊗ ⊂ < ⊕si=1 ⊕rk=1 ⊕nj=1Mjik >

⊗ . �

The matrix, which represents the isomorphism (0.3) for the 1-motive M = [u : Zr → G],
where G is an extension of Πn

j=1Ej by Gs
m, is a huge matrix difficult to write down, but the

above Lemma implies that, instead of studying this huge matrix, it is enough to study the
rsn matrices which represent the isomorphism (0.3) for the rsn 1-motives Mjik = [ujik :
zkZ→ Gji].

Following [8, §2], now we compute explicitly the periods of the 1-motive M = [u : Z →
G], where G is an extension of one elliptic curve E by the torus Gm. We need Deligne’s
construction of M starting from an open singular curve (see [10, (10.3.1)-(10.3.2)-(10.3.3])
that we recall briefly.

Via the isomorphism Pic0(E) ∼= E∗ = Ext1(E,Gm), to have the extension G of E by Gm

underlying the 1-motive M is equivalent to have the divisor D = (−Q) − (0) of Pic0(E) or
the point −Q of ∼= E∗. We assume Q to be a non torsion point. According to [18, page 227],
to have the point u(1) = R ∈ G(K) is equivalent to have a couple

(P, gR) ∈ E(K)×K(E)∗

where π(R) = P ∈ E(K) (here π : G → E the surjective morphism of group varieties
underlying the extension G), and where gR : E → Gm, x 7→ R + ρ(x) − ρ(x + P ) (here
ρ : E→ G a section of π), is a rational function on E whose divisor is T ∗PD−D = (−Q+P )−
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(P )− (−Q) + (0) (here TP : E→ E is the translation by the point P ). We assume also R to
be a non torsion point. Let p, q ∈ C be elliptic logarithms of the points P,Q respectively.

Now pinch the elliptic curve E at the two points −Q and O and puncture it at two K-
rational points P2 and P1 whose difference (according to the group law of E) is P , that is
P = P2 − P1. The motivic H1 of the open singular curve obtained in this way from E is the
1-motive M = [u : Z → G], with u(1) = R. We will apply Deligne’s construction to each
1-motive Mjik = [ujik : zkZ→ Gji] with ujik(zk) = Rjik.

{proof-periods}
Proposition 2.3. Choose the following basis of the Q-vector space TQ(Mjik C) :

• a closed path δQji around −Qji on Gji(C);
• two closed paths γ̃j1, γ̃j2 on Gji(C) which lift the basis {γj1, γj2} of H1(Ej C,Q) via

the surjection H1(Gji C,Q)→ H1(Ej C,Q); and
• a closed path βRjik

, which lifts the basis {zk} of TQ(zkZ) via the surjection TQ(Mjik C)→
TQ(zkZ), and whose restriction to H1(Gji C,Q) is a closed path βRjik|Gji

on Gji(C)

having the following properties: βRjik|Gji
lifts a path βP 1

jkP
2
jk

on Ej(C) from P 1
jk to

P 2
jk (with P 2

jk − P 1
jk = Pjk) via the surjection H1(Gji C,Q) → H1(Ej C,Q), and its

restriction to H1(Gm,Q) is a path βjik on Gm(C) = C∗ from 1 to ljik(2.5);

and the following basis of the K-vector space HdR(Mjik) :

• the differentials of the first kind ωj =
dxj
yj

(1.1) and of the second kind ηj = −xjdxj
yj

(1.2) of Ej;

• the differential of the third kind ξQji = 1
2
yj−yj(Qji)
xj−xj(Qji)

dxi
yj

(1.3), whose residue divisor

is D = (−Qji) − (0) and which lifts the basis {dtiti } of H1
dR(Gm) via the surjection

H1
dR(Gji)→ H1

dR(Gm);
• the differential dfj of a rational function fj on Ej such that fj(P

2
jk) differs from

fj(P
1
jk) by 1.

These periods of the 1-motive M = [u : Zr → G], where G is an extension of Πn
j=1Ej by Gs

m,
are then

1, ωj1, ωj2, ηj1, ηj2, pjk, ζj(pjk), ηj1qji − ωj1ζj(qji), ηj2qji − ωj2ζj(qji), log fqji(pjk) + ljik, 2iπ

with eljik ∈ K∗, for j = 1, . . . , n, k = 1, . . . , r and i = 1, . . . , s.

Proof. By Lemma 2.2, the 1-motives M = [u : Zr → G] and ⊕si=1⊕rk=1⊕nj=1[ujik : zkZ→ Gji]
have the same periods and therefore, we are reduced to prove the case r = n = s = 1.

Consider the 1-motive M = [u : zZ → G], where G is an extension of an elliptic curve E

by Gm parameterized by v∗(t) = −Q ∈ E(K), and u(z) = R is a point of G(K) living over
v(z) = P ∈ E(K). Let (l, p) ∈ C2 be a semi-abelian logarithm of R, that is

expG(l, p) = R.

In particular expE(p) = P. Let P2 and P1 K-rational points whose difference is P .
Because of the weight filtration of M we have the non-split short exact sequence

0 −→ H1
dR(E) −→ H1

dR(G) −→ H1
dR(Gm) −→ 0

As K-basis of H1
dR(G) we choose the differentials of the first kind ω and of the second kind η

of E, and the differential of the third kind ξQ, which lifts the only element dt
t of the basis of

H1
dR(Gm). Then, because of the decomposition (2.3), we complete the basis of HdR(M) with

the differential df of a rational function f on E such that f(P2) differs from f(P1) by 1.
Always because of the weight filtration of M we have the non-split short exact sequence

0 −→ H1(Gm,Z) −→ H1(GC,Z) −→ H1(EC,Z) −→ 0
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As Q-basis of H1(GC,Q) we choose a closed path δQ around −Q, and two closed paths γ̃1, γ̃2
which lift the basis γ1, γ2 of H1(EC,Q). Because of the non-split exact sequence (2.1), we
complete the basis of TQ(M) with a closed path βR, which lifts the only element z of the
basis of TQ(zZ) = Z ⊗ Q via the surjection TQ(MC) → TQ(zZ), and whose restriction to
H1(GC,Q) is a closed path βR|G on G(C) having the following properties: βR|G lifts a path
βP1P2 on E(C) from P1 to P2, and its restriction to H1(Gm,Q) is a path βl on Gm(C) = C∗
from 1 to l. With respect to these bases of TQ(M) and HdR(M), the matrix which represents
the isomorphism (0.3) for the 1-motive M = [u : zZ→ G] is

(2.6) {eq:matrix-integrales}


∫
βR
df

∫
βP1P2

ω
∫
βP1P2

η
∫
βR|G

ξQ∫
γ̃1
df

∫
γ1
ω

∫
γ1
η

∫
γ̃1
ξQ∫

γ̃2
df

∫
γ2
ω

∫
γ2
η

∫
γ̃2
ξQ∫

δQ
df

∫
δQ
ω

∫
δQ
η

∫
δQ
ξQ


Recalling that exp∗E(ω) = dz, exp∗E(η) = dζ(z), (1.7) and (1.10) we can now compute

explicitly all these integrals:

•
∫
βR
df = f(P2)− f(P1) = 1,

•
∫
γ̃1
df =

∫
γ̃2
df =

∫
δQ
df = 0 because of the decomposition (2.3),

•
∫
βP1P2

ω =
∫ p2
p1
dz = p2 − p1 = p,

•
∫
γi
ω =

∫ ωi

0 dz = ωi for i = 1, 2,

•
∫
δQ
ω =

∫
δQ
η = 0 since the image of δQ via H1(GC,Q)→ H1(EC,Q) is zero,

•
∫
γi
η =

∫ ωi

0 dζ = ζ(ωi)− ζ(0) = ηi for i = 1, 2,

•
∫
βP1P2

η =
∫ p2
p1
dζ(z) = ζ(p2)− ζ(p1).

By the pseudo addition formula for the Weierstrass ζ-function (see [24, Example 2, p 451]),

ζ(z + y)− ζ(z)− ζ(y) = 1
2
℘′(z)−℘′(y)
℘(z)−℘(y) ∈ K(E), and so it exists a rational function g on E such

that g(p2) − g(p1) = −ζ(p + p1) + ζ(p) + ζ(p1). Since the differential of the second kind η
lives in the quotient space H1(E,OE), we can add to the class of η the exact differential dg,
getting

•
∫
βP1P2

(η + dg) =
∫ p2
p1

(dζ(z) + dg) = ζ(p2)− ζ(p1) + g(p2)− g(p1) = ζ(p),

•
∫
βR|G

ξQ =
∫ l
0 dw +

∫ p2
p1

f ′q(z)

fq(z)
dz = l +

∫ p2
p1
d log fq(z) = l + log

fq(p2)
fq(p1)

.

By [24, 20-53], the quotient of σ-functions is a rational function on E, and so from the equality

(1.9) it exists a rational function gq(z) on E such that
gq(p2)
gq(p1)

= (
fq(p+p1)
fq(p)fq(p1)

)−1, getting

•
∫
βR|G

(ξQ+d log gq(z)) =
∫ l
0 dw+

∫ p2
p1

(d log fq(z)+d log gq(z)) = l+log
(fq(p2)
fq(p1)

gq(p2)
gq(p1)

)
=

l + log
(fq(p2)
fq(p1)

fq(p)fq(p1)
fq(p2)

)
= l + log(fq(p)), with el ∈ K∗,

•
∫
γ̃i
ξQ =

∫ ωi

0

f ′q(z)

fq(z)
dz =

∫ ωi

0 d log fq(z) = log
fq(ωi)
fq(0)

= ηiq − ωiζ(q) by (1.8) for i = 1, 2,

•
∫
δ−Q

ξQ = 2iπRes−QξQ = 2iπ.

The addition of the differential d log gq(z) to the differential of the third kind ξQ will modify
the last two integrals by an integral multiple of 2iπ (see [21, Thm 10-7]) and this is irrelevant
for the computation of the field generated by the periods of M.
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Explicitly the matrix, which represents the isomorphism (0.3) for M = [u : zZ →
G], u(z) = R, and whose coefficients are the periods of M , is therefore

(2.7) {eq:matrix-periods}


1 p ζ(p) log fq(p) + l
0 ω1 η1 η1q − ω1ζ(q)
0 ω2 η2 η2q − ω2ζ(q)
0 0 0 2iπ

 .

with el ∈ K∗. �

Remark 2.4. The determination of the complex and elliptic logarithms, which appear in the
first line of the matrix (2.7), are not well-defined since they depend on the lifting βP1P2 of the
basis of TQ(zZ) (recall that the short exact sequence (2.1) is not split). Nevertheless, the field
K(periodes(M)), which is involved in the Generalized Grothendieck’s Conjecture of Periods,
is totally independent of this choice since it contains 2iπ, the periods of the Weierstrass ℘-
function, the quasi-periods of the Weierstrass ζ-function, and finally the quasi-quasi-periods
of Serre’s function fq(z) (1.6).

We finish this section with an example: Consider the 1-motive M = [u : Z2 → G],
where G is an extension of E1 × E2 by G3

m parameterized by the K-rational points Q1 =
(Q11, Q21), Q2 = (Q12, Q22), Q3 = (Q13, Q23) of E∗1 × E∗2, and the morphism u corresponds to
two K-rational points R1, R2 of G leaving over two points P1 = (P11, P21), P2 = (P12, P22) of
E1 × E2. The more compact way to write the matrix which represents the isomorphism (0.3)
for our 1-motive M = [u : Z2 → G] is to consider the 1-motive

M ′ = M/[0 −→ E1]⊕M/[0 −→ E2],

that is, with the above notation M ′ = [u1 = Z2 → Π3
i=1G1i]⊕ [u2 = Z2 → Π3

i=1G2i] with u1
corresponding to two K-rational points (R111, R121, R131) and (R112, R122, R132) of Π3

i=1G1i

living over P11 and P12, and u2 corresponding to two K-rational points (R211, R221, R231) and
(R212, R222, R232) of Π3

i=1G2i living over P21 and P22. The 1-motives M and M ′ generate
the same tannakian category: in fact, it is clear that < M ′ >⊗ ⊂ < M >⊗ and in the
other hand M = M ′/[Z2/dZ(Z) → 0]. The matrix representing the isomorphism (0.3) for
the 1-motive M ′ with respect to the bases chosen in the above Corollary is



p11 ζ1(p11) 0 0 log fq11 (p11)+l111 log fq12 (p11)+l121 log fq13 (p11)+l131

Id4×4 p12 ζ1(p12) 0 0 log fq11 (p12)+l112 log fq12 (p12)+l121 log fq13 (p12)+l131

0 0 p21 ζ2(p21) log fq21 (p21)+l211 log fq22 (p21)+l221 log fq23 (p21)+l231

0 0 p22 ζ2(p22) log fq21 (p22)+l212 log fq22 (p22)+l222 log fq23 (p22)+l232

ω11 η11 η11q11−ω11ζ1(q11) η11q12−ω11ζ1(q12) η11q13−ω11ζ1(q13)

ω12 η12 η12q11−ω12ζ1(q11) η12q12−ω12ζ1(q12) η12q13−ω12ζ1(q13)

ω21 η21 η21q21−ω21ζ2(q21) η21q22−ω21ζ2(q22) η21q23−ω21ζ2(q23)

ω22 η22 η22q21−ω22ζ2(q21) η22q22−ω22ζ2(q22) η22q23−ω22ζ2(q23)

2iπId3×3


In general, for a 1-motive of the kind M = [u : Zr → G] where G is an extension of a finite

product Πn
j=1Ej of elliptic curves by the torus Gs

m, we will consider the 1-motive

M ′ = ⊕nj=1

(
M/[0 −→ Π 1≤l≤n

l 6=j
Ej ]
)
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whose matrix representing the isomorphism (0.3) with respect to the bases chosen in the
above Corollary is A B C

0 D E
0 0 F


with A = Idrn×rn, B the rn × 2n matrix involving the periods coming from the morphism
v : Zr → Πn

j=1Ej , C the rn×s matrix involving the periods coming from the trivialization Ψ

of the pull-back via (v, v∗) of the Poincaré biextension Pj of (Ej ,E
∗
j ) by Gm , D the 2n× 2n

matrix having in the diagonal the period matrix of each elliptic curves Ej , E the 2n×s matrix
involving the periods coming from the morphism v∗ : Zs → Πn

j=1E
∗
j , and finally F = 2iπIds×s

the period matrix of Gs
m.

3. Dimension of the unipotent radical of the motivic Galois group of a
1-motive {motivicGaloisgroup}

Denote by MM≤1(K) the category of 1-motives defined over K. Using mixed realizations
(see [11, 2.3] and [9, (2.2.5)]) or Nori ans Ayoub’s works (see [3] and [19]), it is possible to
endow the category of 1-motives with a tannakian structure with rational coefficients (roughly
speaking a tannakian category T with rational coefficients is an abelian category endowed
with a functor ⊗ : T×T → T defining the tensor product of two objects of T, and with a fibre
functor over Spec(Q) - see [12, 2.1, 1.9, 2.8] for details). We use neither Nori and Ayoub’s
theories nor mixed realizations: we work in a completely geometrical setting using algebraic
geometry on tannakian category and defining as one goes along the objects, the morphisms
and the tensor products that we will need (essentially we tensorize motives with pure motives
of weight 0, and as morphisms we use projections and biextensions).

The unit object of the tannakian category MM≤1(K) is the 1-motive Z(0) = [Z → 0].
In this section we use the notation Y (1) for the torus whose cocharacter group is Y . In
particular Z(1) = [0→ Gm]. If M is a 1-motive, we denote by M∨ ∼= Hom(M,Z(0)) its dual
and by evM : M⊗M∨ → Z(0), δM : Z(0)→M∨⊗M the arrows of MM≤1(K) characterizing
this dual. The Cartier dual of M is M∗ = M∨ ⊗ Z(1). If M1,M2 are two 1-motives, we set

(3.1) {eq:BiextHom}HomMM≤1(K)(M1 ⊗M2,M3) := Biext1(M1,M2;M3)

where Biext1((M1,M2;M3) is the abelian group of isomorphism classes of biextensions of
(M1,M2) by M3. In particular the isomorphism class of the Poincaré biextension P of (A,A∗)
by Gm is the Weil pairing PP : A⊗A∗ → Z(1) of A.

The tannakian sub-category < M >⊗ generated by the 1-motive M is the full sub-category
of MM≤1(K) whose objects are sub-quotients of direct sums of M⊗ n ⊗M∨ ⊗ m, and whose
fibre functor is the restriction of the fibre functor of MM≤1(K) to < M >⊗. Because of
the tensor product of < M >⊗, we have the notion of commutative Hopf algebra in the
category Ind < M >⊗ of Ind-objects of < M >⊗ and so we can define the category of
affine < M >⊗-group schemes, just called motivic affine group schemes, as the opposite of
the category of commutative Hopf algebra in Ind < M >⊗ . The Lie algebra of a motivic
affine group scheme is a pro-object L of 〈M〉⊗ endowed with a Lie algebra structure, i.e. L is
endowed with an anti-symmetric application [ , ] : L⊗ L→ L satisfying the Jacobi identity.

The motivic Galois group Galmot(M) of M is the fundamental group of the tannakian
category < M >⊗ generated by M , i.e. the motivic affine group scheme Sp(Λ) where Λ is
the object of < M >⊗ universal for the following property: for any object X of < M >⊗, it
exists a morphism

(3.2) {eq:lambdaX} λX : X∨ ⊗X −→ Λ
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functorial on X, i.e. such that for any morphism f : X → Y in < M >⊗ the diagram

Y ∨ ⊗X f t⊗1−→ X∨ ⊗X
1⊗f ↓ ↓ λX
Y ∨ ⊗ Y λY−→ Λ

is commutative. The universal property of Λ is that for any object U of < M >⊗, the map

Hom(Λ, U) −→
{
uX : X∨ ⊗X → U, functorial on X

}
f 7−→ f ◦ λX

is bijective. The morphisms (3.2), which can be rewritten as X → X ⊗ Λ, define the action
of the motivic Galois group Galmot(M) on each object X of < M >⊗.

If ωQ is the fibre functor Hodge realization realization of the tannakian category
< M >⊗, ωQ(Λ) is the Hopf algebra whose spectrum Spec(ω(Λ)) is the Q-group scheme
Aut⊗Q(ωQ), i.e. the Mumford-Tate group MT(M) of M . In other words, the motivic Galois

group of M is the geometric interpretation of the Mumford-Tate group of M . By [2, Thm
1.2.1] these two group schemes coincides, and in particular they have the same dimension

(3.3){dimGalMT} dimGalmot(M) = dim MT(M).

Let M = [u : X → G] be a 1-motive defined over K, with G an extension of an abelian
variety A by a torus T . The weight filtration W• of M induces a filtration on its motivic
Galois group Galmot(M) ([20, Chp IV §2]):

W0(Galmot(M)) = Galmot(M)

W−1(Galmot(M)) =
{
g ∈ Galmot(M) | (g − id)M ⊆W−1(M), (g − id)W−1(M) ⊆W−2(M),

(g − id)W−2(M) = 0
}
,

W−2(Galmot(M)) =
{
g ∈ Galmot(M) | (g − id)M ⊆W−2(M), (g − id)W−1(M) = 0

}
,

W−3(Galmot(M)) = 0.

Clearly W−1(Galmot(M)) is unipotent. Denote by UR(M) the unipotent radical of Galmot(M).
Consider the graduated 1-motive

M̃ = GrW∗ (M) = X +A+ T

associated to M and let < M̃ >⊗ be the tannakian sub-category of < M >⊗ generated by

M̃ . The functor ”take the graduated” GrW∗ :< M >⊗�< M̃ >⊗, which is a projection,
induced the inclusion of motivic affine group schemes

(3.4){eq:Gr_0} Galmot(M̃) ↪→ GrW∗ Galmot(M).
{eq:dimGr0}

Lemma 3.1. Let M = [u : X → G] be a 1-motive defined over K, with G an extension of an
abelian variety A by a torus T . The quotient GrW0 (Galmot(M)) is reductive and the inclusion

of motivic group schemes (3.4) identifies Galmot(M̃) with this quotient.
Moreover, if X = Zr and T = Gs

m

dim GrW0
(
Galmot(M)

)
= dimGalmot(M̃) =


dimGalmot(A) if A 6= 0,

1 if A = 0, T 6= 0,

0 if A = T = 0.



THIRD KIND ELLIPTIC INTEGRALS AND 1-MOTIVES 15

Proof. By a motivic analogue of [9, §2.2], GrW0 (Galmot(M)) acts via Gal(K/K) on GrW0 (M),
by homotheties on GrW−2(M), and its image in the group of authomorphisms of GrW−1(M)
is the motivic Galois group Galmot(A) of the abelian variety A underlying M . Therefore

GrW0 (Galmot(M)) is reductive, and via the inclusion (3.4) it coincides with Galmot(M̃). To
conclude, observe that LieGalmot(Gm) = Gm, which has dimension 1, and Galmot(Z) =
Sp(Z(0)) which has dimension 0. �

The inclusion < M̃ >⊗↪→< M >⊗ of tannakian categories induces the following surjection
of motivic affine group schemes, which is the restriction g 7→ g|M̃ ,

(3.5) {eq:RestrictionGr_0} Galmot(M) � Galmot(M̃).

As an immediate consequence of the above Lemma we have
{eq:DecomDim}

Corollary 3.2. Let M = [u : X → G] be a 1-motive defined over K. Then

W−1(Galmot(M)) = ker
[
Galmot(M) � Galmot(M̃)

]
.

In particular, W−1(Galmot(M)) is the unipotent radical UR(M) of Galmot(M) and

dimGalmot(M) = dimGalmot(M̃) + dim UR(M).

Observe that we can prove the equality W−1(Galmot(M)) = ker
[
Galmot(M) � Galmot(M̃)

]
directly using the definition of the weight filtration:

g ∈W−1(Galmot(M))⇐⇒ (g − id)GrW0 (M) = 0, (g − id)GrW−1(M) = 0, (g − id)GrW−2(M) = 0

⇐⇒ g|GrW∗ (M) = id, i.e. g = id in Galmot(M̃).

The inclusion < M + M∨/W−2(M + M∨) >⊗↪→< M >⊗ of tannakian categories in-
duces the following surjection of motivic affine group schemes, which is the restriction
g 7→ g|M+M∨/W−2(M+M∨),

(3.6) {eq:Gr_1} Galmot(M) � Galmot

(
M +M∨/W−2(M +M∨)

)
.

{eq:DecomRU}
Lemma 3.3. Let M = [u : X → G] be a 1-motive defined over K. Then

W−2(Galmot(M)) = ker
[
Galmot(M) � Galmot(M +M∨/W−2(M +M∨))

]
.

In particular, the quotient GrW−1(Galmot(M)) of the unipotente radical UR(M) is the unipotent

radical W−1
(
Galmot(M +M∨/W−2(M +M∨))

)
of Galmot

(
M +M∨/W−2(M +M∨)

)
.

Proof. Using the definition of the weight filtration, we have:

g ∈W−2(Galmot(M))⇐⇒ (g − id)M/W−2(M) = 0, (g − id)W−1(M) = 0

⇐⇒ g|M/W−2(M) = id, g|M∨/W−2(M∨) = id

⇐⇒ g = id in Galmot(M +M∨/W−2(M +M∨)).

Since the surjection of motivic affine group schemes (3.6) respects the weight filtration,
W−2(Galmot(M)) is in fact the kernel of W−1(Galmot(M)) � W−1(Galmot(M+M∨/W−2(M+
M∨))). Hence we get the second statement. �

From the definition of weight filtration, we observe that

W−2(Galmot(M)) ⊆ Hom(X,Y (1)) ∼= X∨ ⊗ Y (1).

By the above Lemma, we have that

GrW−1(Galmot(M)) ⊆ Hom(X + Y ∨, A+A∗) ∼= X∨ ⊗A+ Y ⊗A∗.
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In order to compute the dimension of the unipotent radical UR(M) of Galmot(M) we use
notations of [6, §3], that we recall briefly. Let (X,Y ∨, A,A∗, v : X → A, v∗ : Y ∨ → A∗, ψ :
X ⊗Y ∨ → (v× v∗)∗P) be the 7-tuple defining the 1-motive M = [u : X → G] over K, where
G an extension of A by the torus Y (1). Let

E = W−1(End(M̃)).

It is the direct sum of the pures motives E−1 = X∨⊗A+A∨⊗Y (1) and E−2 = X∨⊗Y (1) of
weight -1 and -2. As observed in [6, §3], the composition of endomorphisms furnishes a ring
structure to E given by the arrow P : E⊗E → E of 〈M〉⊗ whose only non trivial component
is

E−1 ⊗ E−1 −→ (X∨ ⊗A)⊗ (A∗ ⊗ Y ) −→ Z(1)⊗X∨ ⊗ Y = E−2

where the first arrow is the projection from E−1 ⊗ E−1 to (X∨ ⊗ A) ⊗ (A∗ ⊗ Y ) and the
second arrow is the Weil pairing PP : A⊗A∗ → Z(1) of A.

Because of the definition (3.1), the product P : E−1⊗E−1 → E−2 defines a biextension B

of (E−1, E−1) by E−2, whose pull-back d∗B via the diagonal morphism d : E−1 → E−1×E−1
is a Σ−X∨⊗ Y (1)-torsor over E−1. By [6, Lem 3.3] this Σ−X∨⊗ Y (1)-torsor d∗B induces
a Lie bracket [ , ] : E ⊗ E → E on E which becomes therefore a Lie algebra.

The action of E = W−1(End(M̃)) on M̃ is given by the arrow E⊗M̃ → M̃ of 〈M〉⊗ whose
only non trivial components are

α1 :(X∨ ⊗A)⊗X −→ A(3.7){eq:alpha1}
α2 :(A∗ ⊗ Y )⊗A −→ Y (1)

γ :(X∨ ⊗ Y (1))⊗X −→ Y (1)

where the first and the last arrows are induced by evX∨ : X∨ ⊗X → Z(0), while the second
one is rk(Y )-copies of the Weil pairing PP : A ⊗ A∗ → Z(1). By [6, Lem 3.3], via the arrow

(α1, α2, γ) : E ⊗ M̃ → M̃ , the 1-motive M̃ is in fact a (E, [, ])-Lie module.

As observed in [6, Rem 3.4 (3)] E acts also on the Cartier dual M̃∗ = Y ∨ + A∗ + X∨(1)

of M̃ and this action is given by the arrows

α∗2 :(A∗ ⊗ Y )⊗ Y ∨ −→ A∗(3.8){eq:alpha2*}

α∗1 :(X∨ ⊗A)⊗A∗ −→ X∨(1)

γ∗ :(X∨ ⊗ Y (1))⊗ Y ∨ −→ X∨(1)

where α∗2 et γ∗ are projections, while α∗1 is rk(X∨)-copies of the Weil pairing PP : A⊗A∗ →
Z(1) of A.

Via the arrows δX∨ : Z(0) → X ⊗ X∨ et δY : Z(0) → Y ∨ ⊗ Y , to have the morphisms
v : X → A and v∗ : Y ∨ → A∗ underlying the 1-motive M is the same thing as to have the
morphisms V : Z(0) → A ⊗ X∨ and V ∗ : Z(0) → A∗ ⊗ Y. Therefore to have v and v∗ is
equivalent to have a point

b = (b1, b2) ∈ E−1(K) = A⊗X∨(K) +A∗ ⊗ Y (K).

Fix now an element (x, y∨) in the character group X ⊗ Y ∨ of the torus X∨ ⊗ Y (1). By
construction of the point b, it exists an element (s, t) ∈ X ⊗ Y ∨(K) such that

v(x) = α1(b1, s) ∈ A(K)

v∗(y∨) = α∗2(b2, t) ∈ A∗(K).

Let i∗x,y∨d
∗B be the pull-back of d∗B via the inclusion ix,y∨ : {(v(x), v∗(y∨))} ↪→ E−1

in E−1 of the abelian sub-variety generated by the point (v(x), v∗(y∨)). The push-down
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(x, y∨)∗i
∗
x,y∨d

∗B of i∗x,y∨d
∗B via the character (x, y∨) : X∨ ⊗ Y (1) → Z(1) is a Σ − Z(1)-

torsor over {(v(x), v∗(y∨))} :

(x, y∨)∗i
∗
x,y∨d

∗B ←− i∗x,y∨d
∗B −→ d∗B

↓ ↓ ↓

{(v(x), v∗(y∨))} = {(v(x), v∗(y∨))}
ix,y∨−→ E−1

To have the point ψ(x, y∨) is equivalent to have a point (̃b)x,y∨ of (x, y∨)∗i
∗
x,y∨d

∗B over

(v(x), v∗(y∨)), and so to have the trivialization ψ is equivalent to have a point

b̃ ∈ (d∗B)b

in the fibre of d∗B over b = (b1, b2).
Consider now the following pure motives:

(1) Let B be the smallest abelian sub-variety (modulo isogenies) of X∨ ⊗ A + A∗ ⊗ Y
which contains the point b = (b1, b2) ∈ X∨⊗A(k)×A∗⊗Y (K). The pull-back i∗d∗B
of d∗B via the inclusion i : B ↪→ E−1 of B on E−1, is a Σ−X∨⊗Y (1)-torsor over B.

(2) Let Z1 be the smallest Gal(K/K)-sub-module of X∨ ⊗ Y such that the torus Z1(1)
contains the image of the Lie bracket [ , ] : B ⊗ B → X∨ ⊗ Y (1). The push-down
p∗i
∗d∗B of the Σ − X∨ ⊗ Y (1)-torsor i∗d∗B via the projection p : X∨ ⊗ Y (1) �

(X∨ ⊗ Y/Z1)(1) is a trivial Σ− (X∨ ⊗ Y/Z1)(1)-torsor over B, i.e.

p∗i
∗d∗B = B × (X∨ ⊗ Y/Z1)(1).

Note by π : p∗i
∗d∗B � (X∨ ⊗ Y/Z1)(1) the canonical projection and by s : B ↪→

p∗i
∗d∗B the canonical section. We still note b̃ the points of i∗d∗B and of p∗i

∗d∗B
living over b ∈ B.

(3) Let Z be the smallest Gal(K/K)-sub-module of X∨⊗Y containing Z1 and such that

the sub-torus (Z/Z1)(1) of (X∨ ⊗ Y/Z1)(1) contains π(̃b).

Let AC be the abelian variety defined over C obtained from A extending the scalars from
K to the complexes. Denote by g the dimension of A. Consider the abelian exponential

expA : LieAC −→ AC

whose kernel is the lattice H1(AC(C),Z), and denote by logA an abelian logarithm of A, that
is a choice of an inverse map of expA. Consider the composite

PP ◦ (v × v∗) : X ⊗ Y ∨ −→ Z(1)

where PP : A ⊗ A∗ → Z(1) is the Weil pairing of A. Since we work modulo isogenies, we
identify the abelian variety A with its Cartier dual A∗. Let ω1, . . . , ωg be differentials of the
first kind which build a basis of the K-vector space H0(A,Ω1

A) of holomorphic differentials,
and let η1, . . . , ηg be differentials of the second kind which build a basis of the K-vector space
H1(A,OA) of differentials of the second kind modulo holomorphic differentials and exact
differentials. As in the case of elliptic curves, the first De Rham cohomology group H1

dR(A)
of the abelian variety A is the direct sum H0(A,Ω1

A)⊕H1(A,OA) of these two vector spaces
and it has dimension 2g. Let γ1, . . . , γ2g be closed paths which build a basis of the Q-vector
space H1(AC,Q). For n = 1, . . . , g and m = 1, . . . , 2g, the abelian integrals of the first kind∫
γm
ωn = ωnm are the periods of the abelian variety A, and the abelian integrals of the second

kind
∫
γm
ηn = ηnm are the quasi-periods of A.

{eq:dimUR}
Theorem 3.4. Let M = [u : X → G] be a 1-motive defined over K, with G an extension of
an abelain variety A by a torus Y (1). Denote by F = End(A)⊗ZQ the field of endomorphisms
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of the abelian variety A. Let x1, . . . , xrk(X) be generators of the character group X and let
y∨1 , . . . , y

∨
rk(Y ∨) be generators of the character group Y ∨. Then

dimQ UR(M) =

2 dimF AbLog Im(v, v∗) + dimQLog Im(PP ◦ (v × v∗)) + dimQLog Im(ψ| ker(PP◦(v×v∗)))

where

• AbLog Im(v, v∗) is the F -sub-vector space of C/(
∑

n=1,...,g
m=1,...,2g

F ωnm) generated by the

abelian logarithms {logA v(xk), logA v
∗(y∨i )} k=1,...,rk(X)

i=1,...,rk(Y ∨)
;

• Log Im(PP◦(v×v∗)) is the Q -sub-vector space of C/2iπQ generated by the logarithms
{logPP(v(xk), v

∗(y∨i ))} k=1,...,rk(X)

i=1,...,rk(Y ∨)
;

• Log Im(ψ| ker(PP◦(v×v∗))) is the Q -sub-vector space of C/2iπQ generated by the loga-
rithms {logψ(xk′ , y

∨
i′ )} (xk′ ,y

∨
i′
)∈ker(PP◦(v×v∗))

1≤k′≤rk(X), 1≤i′≤rk(Y ∨)

.

Proof. By the main theorem of [6, Thm 0.1], the unipotent radical W−1(LieGalmot(M)) is the
semi-abelian variety extension of B by Z(1) defined by the adjoint action of the Lie algebra
(B,Z(1), [ , ]) over B+Z(1). Since the tannakian category < M >∗ has rational coefficients,
we have that dimQW−1(Galmot(M)) = 2 dimB + dimZ(1). Concerning the abelian part we
have that

dimB = dimF AbLog Im(v, v∗).

On the other hand, for the toric part we have by construction dimZ(1) = dim(Z/Z1)(1) +
Z1(1). Because of the explicit description the Lie bracket [ , ] : B ⊗B → X∨ ⊗ Y (1) given in
[6, (2.8.4)], we have that

dimZ1(1) = dimQLog Im(PP ◦ (v × v∗)).

Finally by construction we have that

dim(Z/Z1)(1) = dimQLog Im(ψ| ker(PP◦(v×v∗))).

�

Remark 3.5. The dimension of the quotient GrW−1(Galmot(M)) of the unipotent radical
UR(M) is equal to the dimension of the abelian sub-variety B of X∨ ⊗A+A∗ ⊗ Y , that is

dimQ GrW−1(Galmot(M)) = dimF AbLog Im(v, v∗).

The dimension of W−2(Galmot(M)) is the dimension of the sub-torus Z(1) of X∨⊗Y (1), that
is

dimQW−2(Galmot(M)) = dimQLog Im(PP ◦ (v × v∗)) + dimQLog Im(ψ| ker(PP◦(v×v∗)))

Remark 3.6. A 1-motive M = [u : X → G] defined over K is said to be deficient if
W−2(Galmot(M)) = 0. In [14] Jacquinot and Ribet construct such a 1-motive in the case
rk(X) = rk(Y ∨) = 1. By the above Theorem we have that M is deficient if and only if for
any (x, y∨) ∈ X ⊗ Y ∨,

PP(v(x), v∗(y∨)) = 1 and ψ| ker(PP◦(v×v∗))(x, y
∨) = 1,

that is if and only if the two arrows PP ◦ (v × v∗) : X ⊗ Y ∨ → Z(1) and ψ| ker(PP◦(v×v∗)) :
X ⊗ Y ∨ → Z(1) are the trivial arrow.
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Now let M = [u : Zr → G] be a 1-motive defined over K, with G an extension of a
product Πn

j=1Ej of pairwise not isogenous elliptic curves by the torus Gs
m. We go back to

the notation used in Section 2. Denote by prh : Πn
j=1Ej → Eh and pr∗h : Πn

j=1E
∗
j → E∗h the

projections into the h-th elliptic curve and consider the composites vh = prh ◦ v : Zr → Eh
and v∗h = pr∗h ◦ v∗ : Zs → E∗h. Let P be the Poincaré biextension of (Πn

j=1Ej ,Π
n
j=1E

∗
j ) by Gm

and let Pj be the Poincaré biextension of (Ej ,E
∗
j ) by Gm. The category of biextensions is

additive in each variable, and so we have that PP = Πn
j=1PPj

, where PPj
: Ej ⊗ E∗j → Z(1) is

the Weil pairing of the elliptic curve Ej .
{eq:dimGalMot}

Corollary 3.7. Let M = [u : Zr → G] be a 1-motive defined over K, with G an extension
of a product Πn

j=1Ej of pairwise not isogenous elliptic curves by the torus Gs
m. Denote by

kj = End(Ej) ⊗Z Q the field of endomorphisms of the elliptic curve Ej for j = 1, . . . , n. Let
x1, . . . , xr be generators of the character group Zr and let y∨1 , . . . , y

∨
s be generators of the

character group Zs. Then

dimQ Galmot(M) = 4
n∑
j=1

(dimQ kj)
−1 − n+ 1 +

n∑
j=1

2 dimkj AbLog Im(vj , v
∗
j )+

dimQLog Im(PP ◦ (v × v∗)) + dimQLog Im(ψ| ker(PP◦(v×v∗)))

• AbLog Im(vj , v
∗
j ) is the kj-sub-vector space of C/kj ωj1 + kj ωj2 generated by the

elliptic logarithms {pjk, qji} k=1,...,r
i=1,...,s

of the points {Pjk, Qji} k=1,...,r
i=1,...,s

for j = 1, . . . , n;

• Log Im(PP◦(v×v∗)) is the Q -sub-vector space of C/2iπQ generated by the logarithms
{logPPj

(Pjk, Qji)} k=1,...,r, i=1,...,s
j=1,...,n

;

• Log Im(ψ| ker(PP◦(v×v∗))) is the Q -sub-vector space of C/2iπQ generated by the loga-
rithms {logψ(xk′ , y

∨
i′ )} (xk′ ,y

∨
i′
)∈ker(PPj

◦(vj×v∗
j
))

1≤k′≤r, 1≤i′≤s, j=1,...,n

.

Proof. Since the elliptic curves are pairwise not isogenous, by [17, §2] and (3.3) we have that

dimGalmot

(
Πn
j=1Ej

)
= 4

n∑
j=1

(dimQ kj)
−1 − n+ 1.

Therefore putting together Corollary 3.2, Lemma 3.1 and Theorem 3.4 we can conclude. �

Remark 3.8. We can express the dimension of the motivic Galois group of a product of
elliptic curves also as 3n1 +n2 +1, where n1 is the number of elliptic curves without complex
multiplication and n2 is the number of elliptic curves with complex multiplication. Therefore

dimGalmot(M) = dim UR(M) + 3n1 + n2 + 1

4. Generalized Grothendieck’s Conjecture of Periods for 1-motives
involving elliptic curves {conjecture}

The 1-motivic elliptic conjecture
Consider

• E1, . . . ,En be elliptic curves pairwise not isogenous. Denote by kj = End(Ej) ⊗Z Q
the field of endomorphisms of Ej for j = 1, . . . , n;
• Qi = (Q1i, . . . , Qni) be s points of Πn

j=1E
∗
j (C) for i = 1, . . . , s. These points determine

an extension G of Πn
j=1Ej by Gs

m;

• R1, . . . , Rr be r points of G(C). Denote by (P1k, . . . , Pnk) ∈ Πn
j=1Ej(C) the projection

of the point Rk on Πn
j=1Ej for k = . . . , r.
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Then

tran.degQQ
(

2iπ, g2j , g3j , Qji, Rk, ωj1, ωj2, ηj1, ηj2, pjk, ζj(pjk),

ηj1qji − ωj1ζj(qji), ηj2qji − ωj2ζj(qji), log fqji(pjk) + ljik

)
j=1,...,n i=1,...,s

k=1,...,r

≥

4
n∑
j=1

(dimQ kj)
−1 − n+ 1 +

n∑
j=1

2 dimkj AbLog Im(vj , v
∗
j )+

dimQLog Im(PP ◦ (v × v∗)) + dimQLog Im(ψ| ker(PP◦(v×v∗)))

where

• AbLog Im(vj , v
∗
j ) is the kj-sub-vector space of C/kj ωj1 + kj ωj2 generated by the

elliptic logarithms {pjk, qji} k=1,...,r
i=1,...,s

of the points {Pjk, Qji} k=1,...,r
i=1,...,s

for j = 1, . . . , n;

• Log Im(PP◦(v×v∗)) is the Q -sub-vector space of C/2iπQ generated by the logarithms
{logPPj

(Pjk, Qji)} k=1,...,r, i=1,...,s
j=1,...,n

;

• Log Im(ψ| ker(PP◦(v×v∗))) is the Q -sub-vector space of C/2iπQ generated by the loga-
rithms {logψ(x, y∨)} (x,y∨)∈ker(PPj

◦(vj×v∗
j
))

(x,y∨)∈Zr⊗Zs

.

Because of Proposition 2.3 and Corollary 3.7, we can conclude that
{thmMain}

Theorem 4.1. Let M = [u : Zr → G] be a 1-motive defined over K, with G an extension
of a product Πn

j=1Ej of pairwise not isogenous elliptic curves by the torus Gs
m. Then the

Generalized Grothendieck’s Conjecture of Periods applied to M is equivalent to the 1-motivic
elliptic conjecture.

{Rk1}
Remark 4.2. If Qji = 0 for j = 1, . . . , n and i = 1, . . . , s, the above conjecture is the elliptic-
toric conjecture stated in [5, 1.1], which is equivalent to the Generalized Grothendieck’s
Conjecture of Periods applied to the 1-motive M = [u : Πr

k=1zkZ → Gs
m × Πn

j=1Ej ] with

u(zk) = (R1k, . . . , Rsk, P1k, . . . , Pnk) ∈ Gs
m(K)×Πn

j=1Ej(K).
{Rk2}

Remark 4.3. If Qji = Pij = Ej = 0 for j = 1, . . . , n and i = 1, . . . , s, the above conjecture is
equivalent to the Generalized Grothendieck’s Conjecture of Periods applied to the 1-motive
M = [u : Πr

k=1zkZ→ Gs
m] with u(zk) = (R1k, . . . , Rsk) ∈ Gs

m(K), which in turn is equivalent
to the Schanuel conjecture (see [5, Cor 1.3 and §3]).

5. Low dimensional case: r = n = s = 1{lowDim}
In this section we work with a 1-motive M = [u : Z→ G] defined over K whose underlying

extension G is an extension of just one elliptic curve E by the torus Gm, i.e. r = s = n = 1.
Let g2 = 60 G4 and g3 = 140 G6 with G4 and G6 the Eisenstein series relative to the lattice

Λ := H1(E(C),Z) of weight 4 and 6 respectively. The field of definition K of the 1-motive
M = [u : Z→ G], u(1) = R is

Q
(
g2, g3, Q,R

)
.

By Proposition 2.3, the field K(periods(M)) generated over K by the periods of M , which
are the coefficients of the matrix (2.7), is

Q
(
g2, g3, Q,R, 2iπ, ω1, ω2, η1, η2, p, ζ(p), η1q − ω1ζ(q), η2q − ω2ζ(q), log fq(p) + l

)
.

End(E)⊗Z Q-linear dependence between the points P and Q and torsion properties of the
points P,Q,R affect the dimension of the unipotent radical of Galmot(M). By Corollary 3.7
we have the following table concerning the dimension of the motivic Galois group Galmot(M)
of M :
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dim UR(M) dimGalmot(M) dimGalmot(M) M
E CM E not CM

Q, R torsion 0 2 4 M = [u : Z→ E×Gm]
(⇒ P torsion) u(1) = (0, 1)

P,Q torsion 1 3 5 M = [u : Z→ E×Gm]
(R not torsion) u(1) = (0, R)

R torsion 2 4 6 M = [u : Z→ G]
(⇒ P torsion) u(1) = 0

Q torsion 3 5 7 M = [u : Z→ E×Gm]
(P and R not torsion) u(1) = (P,R)

P torsion 3 5 7 M = [u : Z→ E∗ ×Gm]
(R and Q not torsion) u(1) = (Q,R)

P,Q 5 7 9 M = [u : Z→ G]
End(E)⊗Z Q-lin indep u(1) = R

We can now state explicitly the Generalized Grothendieck’s Conjecture of Periods (0.4)
for the 1-motives involved on the above table:

• R and Q are torsion: We work with the 1-motive M = [u : Z→ E×Gm], u(1) = (0, 1)
or M = [0→ E]. If E is not CM,

tran.degQQ
(
g2, g3, ω1, ω2, η1, η2

)
≥ 4

that is 4 at least of the 6 numbers g2, g3, ω1, ω2, η1, η2 are algebraically independent
over Q. If E is CM,

tran.degQQ
(
g2, g3, ω1, η1

)
≥ 2

that is 2 at least of the 4 numbers g2, g3, ω1, η1 are algebraically independent over Q.
If g2, g3 ∈ Q this is Chudnovsky Theorem: tran.degQQ(ω1, η1) = 2
• P and Q are torsion: We work with the 1-motive M = [u : Z→ E×Gm], u(1) = (0, R)

(we deal with this case in author’s Ph.D, see [5]). If E is not CM,

tran.degQQ
(
g2, g3, ω1, ω2, η1, η2, R, log(R)

)
≥ 5

that is 5 at least of the 8 numbers g2, g3, ω1, ω2, η1, η2, R, log(R) are algebraically
independent over Q. If E is CM,

tran.degQQ
(
g2, g3, ω1, η1, R, log(R)

)
≥ 3

that is 3 at least of the 6 numbers g2, g3, ω1, η1, R, log(R) are algebraically independent
over Q.
• R is torsion: We work with the 1-motive M = [u : Z → G], u(1) = 0 or M = [v∗ :
Z→ E∗], v∗(1) = Q. If E is not CM,

tran.degQQ
(
g2, g3, ω1, ω2, η1, η2, Q, q, ζ(q)

)
≥ 6

that is 6 at least of the 9 numbers g2, g3, ω1, ω2, η1, η2, Q, q, ζ(q) are algebraically
independent over Q. If E is CM,

tran.degQQ
(
g2, g3, ω1, η1, Q, q, ζ(q)

)
≥ 4

that is 4 at least of the 7 numbers g2, g3, ω1, η1, Q, q, ζ(q) are algebraically independent
over Q.
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• Q is torsion: We work with the 1-motive M = [u : Z → E × Gm], u(1) = (P,R) (we
deal with this case in author’s Ph.D, see [5]). If E is not CM,

tran.degQQ
(
g2, g3, ω1, ω2, η1, η2, P,R, p, ζ(p), log(R)

)
≥ 7

that is 7 at least of the 11 numbers g2, g3, ω1, ω2, η1, η2, P,R, p, ζ(p), log(R) are alge-
braically independent over Q. If E is CM,

tran.degQQ
(
g2, g3, ω1, η1, P,R, p, ζ(p), log(R)

)
≥ 5

that is 5 at least of the 9 numbers g2, g3, ω1, η1, P,R, p, ζ(p), log(R) are algebraically
independent over Q.
• P is torsion: We work with the 1-motive M = [u : Z → G], u(1) = R ∈ Gm(K) or
M = [u : Z→ E∗ ×Gm], u(1) = (Q,R). If E is not CM,

tran.degQQ
(
g2, g3, ω1, ω2, η1, η2, Q,R, q, ζ(q), log(R)

)
≥ 7

that is 7 at least of the 11 numbers g2, g3, ω1, ω2, η1, η2, Q,R, q, ζ(q), log(R) are alge-
braically independent over Q. If E is CM,

tran.degQQ
(
g2, g3, ω1, η1, Q,R, q, ζ(q), log(R)

)
≥ 5

that is 5 at least of the 9 numbers g2, g3, ω1, η1, Q,R, q, ζ(q), log(R) are algebraically
independent over Q.
• P,Q,R are not torsion and P,Q are End(E) ⊗Z Q-linearly independent: We work

with the 1-motive M = [u : Z→ G], u(1) = R ∈ G(K). If E is not CM,

tran.degQQ
(
g2, g3, Q,R, ω1, ω2, η1, η2, p, ζ(p), q, ζ(q), η1q−ω1ζ(q), η2q−ω2ζ(q), log fq(p)+l

)
≥ 9

that is 9 at least of the 15 numbers g2, g3, Q,R, ω1, ω2, η1, η2, p, ζ(p), q, ζ(q), η1q −
ω1ζ(q), η2q − ω2ζ(q), log fq(p) are algebraically independent over Q. If E is CM,

tran.degQQ
(
g2, g3, Q,R, ω1, η1, p, ζ(p), q, ζ(q), η1q − ω1ζ(q), η2q − ω2ζ(q), log fq(p) + l

)
≥ 7

that is 7 at least of the 13 numbers g2, g3, Q,R, ω1, η1, p, ζ(p), q, ζ(q), η1q−ω1ζ(q), η2q−
ω2ζ(q), log fq(p) are algebraically independent over Q.
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mas et Synthèses [Panoramas and Syntheses], 17. Société Mathématique de France,
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Daniel Bertrand and Jean-Pierre Serre. Astérisque No. 69–70 (1987).
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THIRD KIND ELLIPTIC INTEGRALS AND TRANSCENDENCE

MICHEL WALDSCHMIDT

Abstract. This short appendix aims at giving references on papers related with transcen-
dence results concerning elliptic integrals of the third kind. So far, results on transcendence
and linear independence are known, but there are very few results on algebraic independence.

In his book on transcendental numbers [Sc1957], Th. Schneider proposes eight open prob-
lems, the third of which is : Try to find transcendence results on elliptic integrals of the third
kind.

In [La1966, Historical Note of Chapter IV], S. Lang explains the connections between
elliptic integrals of the second kind, Weierstrass zeta function and extensions of an elliptic
curve by Ga. He applies the so–called Schneider–Lang criterion to the Weierstrass elliptic
and zeta functions and deduces the transcendence results due to Th. Schneider on elliptic
integrals of the first and second kind. At that time, it was not known how to use this method
for proving results on elliptic integrals of the third kind.

The solution came from [Se1979], where J-P. Serre introduces the functions fq (with the
notation of [B2019]) related to elliptic integrals of the third kind, which satisfy the hypotheses
of the Schneider-Lang criterion and are attached to extensions of an elliptic curve by Gm. This
is how the first transcendence results on these integrals were obtained [Wa1979a, Wa1979b].
In [BeLau1981], D. Bertrand and M. Laurent give further applications of the Schneider-Lang
criterion involving elliptic integrals of the third kind. Applications are given in [Be1983a,
Be1983b, S1986], dealing with the Neron–Tate canonical height on an elliptic curve (including
the p–adic height) and the arithmetic nature of Fourier coefficients of Eisenstein series. A first
generalization to abelian integrals of the third kind is quoted in [Be1983b]. Transcendence
measures are given in [R1980a].

Properties of the smooth Serre compactification of a commutative algebraic group and of
the exponential map, together with the links with integrals, are studied in [FWü1984]. See
also [KL1985]. In [M2016, Chapter 20 – Elliptic functions] (see in particular Theorem 20.11
and exercises 20.104 and 20.105) more details are given on the functions associated with
elliptic integrals of the third kind, the associated algebraic groups, which are extensions of
an elliptic curve by Gm, and the consequences of the Schneider-Lang criterion.

The first results of linear independence of periods of elliptic integrals of the third kind are
due to M. Laurent [Lau1980, Lau1982] (he announced his results in [Lau1979a, Lau1979b]).
The proof uses Baker’s method. More general results on linear independence are due to
G. Wüstholz [Wü1984] (see also [BaWü2007, § 6.2]), including the following one, which
answers a conjecture that M. Laurent stated in [Lau1982] where he proved special cases of
it. Let ℘ be a Weierstrass elliptic function with algebraic invariants g2, g3. Let ζ be the
corresponding Weierstrass zeta function, ω a nonzero period of ℘ and η the corresponding
quasi-period of ζ. Let u1, . . . , un be complex numbers which are not poles of ℘, which are Q
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linearly independent modulo Zω and such that ℘(u1), . . . , ℘(un) are algebraic. Define

λ(ui, ω) = ωζ(ui)− ηui.

Then the n+ 3 numbers

1, ω, η, λ(u1), . . . , λ(un)

are linearly independent over Q.
The question of the transcendence of the nonvanishing periods of a meromorphic differ-

ential form on an elliptic curve defined over the field of algebraic numbers is now solved
[BaWü2007, Theorem 6.6]. See also [HWü2018], as well as [T2017, § 1.5] for abelian inte-
grals of the first and second kind. A reference of historical interest to a letter from Leibniz
to Huygens in 1691 is quoted in [BaWü2007, § 6.3] and [Wü20012].

The only results on algebraic independence related with elliptic integrals of the third kind
so far are those obtained by É. Reyssat [R1980b, R1982] and by R. Tubbs [T1987, T1990].
We are very far from anything close to the conjectures in [B2019].

For a survey (with an extensive bibliography including 254 entries), see [Wa2008].
The references below are listed by chronological order.

References
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