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Abstract. We discuss the structure of topological invariants in two different media. The first
example relates to the problem of reconnection in magnetohydrodynamics and the second one
to the supercoiling of DNA. Despite the apparently different systems, the behavior of magnetic
spread lines and supercoiling process in DNA display some common features based on the
existence of topological invariants of Hopf’s type.

1. Introduction
The Gauss linking coefficient (1833), determining the necessary condition of unlinkability of
two closed curves, was the first example of topological invariants of an ensemble of linked
curves. Despite relatively simple form of Gauss formula, a lot of topological depths hidden
in it. It became clear only in the XXth century. In parallel, and mainly independently from
mathematicians, similar constructions (helicity) were discovered by specialists in magneto and
hydrodynamics. But only in the second part of the XXth century it has become clear how the
relation between topology and certain appropriate areas of physics and even molecular biology
can benefit from topological methods known to mathematicians.

In this paper we restrict ourselves to study topological invariants in two apparently different
media. We consider the behavior of magnetic spread lines in the process of reconnection and
DNA supercoiling. We prove the existence of Hopf’s type topological invariants and give their
explicit formulae in both cases.

2. Magnetic Hydrodynamics
2.1. Introduction
In perfectly conducting moving plasma, the magnetic and electric fields, H⃗ and E⃗, respectively,

obey the following relationship: c E⃗ +
(
v⃗ × H⃗

)
= 0 [1, 2], where v⃗ is the velocity field of

its macroscopic motions1. The so called freezing-in theorem is fulfilled in this case. It states,
in particular, that the topological structure of the magnetic field lines is conserved, and only
smooth deformations are possible. This leads also to the conservation of linking numbers. To
draw such a conclusion one should assume, of course, that the vector fields E⃗, H⃗, and v⃗ are
smooth enough.

1 It should be reminded that ∇ · H⃗ ≡ 0 as for any magnetic field.



When the electric conductivity is finite, then the equation for H⃗ in the frame of (isotropic)
magnetic hydrodynamics (MHD) takes the form:

∂H⃗

∂t
= ∇×

(
v⃗ × H⃗

)
−∇× ν

(
∇× H⃗

)
. (1)

where ν > 0 is the so called magnetic viscosity. Generally, Eq. (1) shows that no invariant,
characterizing the structure of set of magnetic field lines exist in this case. Indeed, at v⃗ = 0, for
example, the magnetic field dissipate at t → ∞. It means that only a mode of H⃗ (x⃗) with lowest
damping rate survives for sufficiently long times, whose topological structure does not depend
on the topology of the set of magnetic field lines at t = 0.

For this reason, the topic of this paper looks, at first glance, quite trivial: any topological
invariant is conserved at ν = 0 (perfectly conducting plasma), and there are no topological
invariants at all for ν > 0. The question becomes less trivial if we ask ourselves about the rates
of disruption of invariants at very low magnetic viscosities ν > 0.

Consider configuration of plasma and magnetic field of characteristic size L. Let the time
evolution of this configuration be described by Eq. (1) and by the remaining MHD equations [1, 2]
determining in particular v⃗ (x⃗, t). In this case, there are two typical time scales: the diffusion
time scale τd = L2/ν and the hydrodynamic time scale τH = L/cA, where cA =

√
H2/4πρ is

the Alfven velocity, and ρ is the plasma density. The dimensionless parameter, the magnetic
Reynolds number Rem = τd/τH , becomes very large when ν → 0. In this case, changing of
the magnetic field topological structure may take place at time intervals that are much shorter
that τd. Indeed, it is possible that the nature of MHD motions is such that there occurs a
spontaneous sharp decrease in the spatial scales of v⃗ and H⃗ at times τ ∼ τH . Examples of such
kind are encountered in various problems: in turbulence [3], during formation of shock waves [3],
and current sheets [4, 5]. Therefore, the role of the second term in (1) becomes important at
times τ ∼ τH . In this case, the topological structure of the magnetic field lines is not completely
destroyed, as it happens when τ ∼ τd. Accordingly, the question of the existence of topological
invariants that are conserved in time periods τ ≪ τd is entirely well-posed and quite important.

Taylor [6] was the first author who addressed this question with a similar formulation. His
result can be formulated as follows. If in a system there is a very small-scale MHD turbulence

resulting in a situation in which
⟨⃗
j2
⟩
≫

⟨⃗
j
⟩2

(here ⟨. . .⟩ denotes spatial averaging), and if rapid

topological changes are also possible, then, the following invariant is conserved:

h =

∫
Ω

A⃗ · H⃗ dV . (2)

Here A⃗ is the vector potential of the field H⃗ (H⃗ = ∇ × A⃗) and Ω is the whole domain of

the system, at the boundary of which H⃗n|∂Ω = 0. This invariant admits an interpretation in
terms of the total link of the magnetic field lines [7, 8]. Following Arnold, we shall call it the
asymptotic Hopf invariant. For simply connected domains, which are the only domains that will
be considered in the present paper, relation (2) is gauge invariant. For multi-connected domains,
this is not so, which calls for minor technical complications [including limitations on the form

of A⃗]. All the results, with minor specifications, remain valid in the general case.
Taylor’s result can be reformulated in another equivalent form. The rapid reconstruction of

the topology of the field lines at τ ≪ τd can modify the link of the individual field lines as a
result of small-scale turbulence, but preserves the overall link. Kadomtsev [9] formulated the
analogous result for magnetic-field configurations that vary during large-scale reconnections of
the field lines.

In our paper [10], a formal definition of of the large-scale reconnection process was presented
in terms of cuts and splices. It allowed us to impart precise meaning to the principal assertion



concerning the conservation of the sole topological invariant – the asymptotic Hopf invariant –
in the problem of rapid reconnection in simply connected domains. In multi-connected domains
(such as tokamaks) the total magnetic fluxes are also conserved. This definition gives specific
form to Kadomtsev’s idea, eliminating an uncertainty in the introduction of the reconnection
concept.

In our publication [11], these results were further developed. For a magnetic field H⃗,
approximated by a system magnetic flux tubes with internal winding, a set of topological
invariants was explicitly defined. The invariants are conserved on smooth large-scale flows
v⃗ (x⃗, t). This definition generalizes ideas of topological invariants of higher order [14].
Introducing the process of reconnection, as discussed above, we obtain a way of changing
the internal winding of each magnetic flux tube as well as of such mutual linking of different
flux tubes. This consideration allows us to take a fresh approach to conservation of the only
topological invariant during the process of reconnection, that is, the asymptotic Hopf invariant.

These results were applied recently to investigation of magnetic field structure in solar
corona [12].

2.2. Definitions
Here we introduce definitions of the concepts considered in the previous section.

Firstly, let us consider the linking coefficient of the link l consisting of a finite number of
oriented closed curves lj (j = 1, 2, . . .) in sphere S3 [13]. The linking coefficient of the first order
k1 (l1, l2) is well defined for every pair of nonintersecting curves. The linking coefficient k1 (l1, l2)
is equal to the algebraic sum of intersections numbers of the curve l1 with the surface Z spanned
on l2, with the orientation induced by the orientation of l2.

The linking coefficient of order p is defined for p+ 1 closed lines. The definition uses the so
called Milnor coefficients [14]. A more convenient definitions using differential forms is presented
in the book [13] and will be used below. We give the construction of coefficient kp in the simplest
nontrivial case p = 2, when k1 (li, lj) = 0 (where i, j = 1, 2, 3). The generalization to an
arbitrary p (under condition ki = 0 at i < p) and comparison with other link invariants l = {li}
along with the proofs were also presented in the book [13].

Let Bi ⊂ S3 be the boundary of some tubular neighborhood of the closed li. Suppose that
Bi does not intersect any lj . Then

2∫
B1

u1 ∧ u2 = −
∫
B2

u2 ∧ u1 = k1 (l1, l2) , (3)

where ui are one-forms dual (by Alexander) to li. Equations similar to Eq. (3) can be defined
directly on the whole S3 with the help of closed two-forms vi defined on S3\li, so that∫
Zi

vi = Ind (Zi, li), where Zi is a two-dimensional cycle in S3\li, and Ind (Z, l) is the index
of intersection of l with Z. The three-forms u1 ∧ v2 and v1 ∧ u2 are defined now on the whole
S3 and ∫

S3

u1 ∧ v2 = −
∫
S3

v1 ∧ u2 = k1(l1, l2) . (4)

We shall call the first order linking coefficient k̄1 for the link l = (l1, . . . , ln) the value

k̄1 (l) = max
1≤i<j≤n

|k1 (li, lj)| . (5)

One can show that, if k1 (l1, l2) = 0, the following condition is true. There exist such one-form
u12 on S3\ (l1 ∪ l2) and such two-forms v12 and v′12 on S3, that d u12 = u1 ∧u2, d v12 = −v1 ∧u2

2 We omit some topological details connected with the definition of forms on the manifolds of the type of S3\lj [13].



and d v′12 = u1 ∧ v2. Let us suppose that k̄1 (l) = 0 for l = (l1, l2, l3). Then the following
differential forms

ũ123 = u12 ∧ u3 + u1 ∧ u23 ,

ṽ123 = −v12 ∧ u3 + v1 ∧ u23 ,

ṽ′123 = u12 ∧ v3 + u1 ∧ v23

are closed and ṽ123 and ṽ′123 may be determined on the whole S3. Here uij and vij are defined
similarly to u12 and v12. As it was shown in Ref. [13], all the following integrals∫

B1

ũ123 = −
∫
B3

ũ123 =

∫
S3

ṽ123 =

∫
S3

ṽ′123

are integers. This integer is called the linking coefficient of degree 2: k2 (l1, l2, l3).
Let us now consider some class of magnetic fields denoted as D and satisfying the conditions

quoted below. A magnetic field of this class does not vanish only into a finite number N of
magnetic flux tubes Ti = D2 × S1 (i = 1, . . . , N). The flux tube Ti carries magnetic induction
flux Φi. Different magnetic fields of the class D may have different {Ti}, {Φi} and N . Let us also
consider cross-sections of any magnetic flux tube Ti. The field lines flow entails a diffeomorphism
of these cross-sections. We assume that the “polar” coordinate system can be introduced so that
a diffeomorphism, mentioned above, transforms coordinate lines of the coordinate system into
each other. This means that the field lines in Ti belong to magnetic surfaces which are two-
dimensional tori embedded one in other while the winding number does not depend on the
magnetic surface belonging to the tube Ti. Thus the class D is defined.

One may assume that an arbitrary magnetic field is in some sense well approximated by fields
of the class D. We consider below only fields of the class D.

Let us introduce closed field lines l(Ti) belonging Ti and corresponding to the poles of the
coordinate systems mentioned above. The curves l(Ti) may be knotted. Let us consider a field
line γ ⊂ Ti\l(Ti) and a surface Z(Ti) spanned on l(Ti). Then the winding number φi is defined
as an average number of intersections of γ with Z(Ti) per a revolution along l(Ti).

Now define the flux tubes linking number:

k̂1 (Ti, Tj) =

{
φi for i = j
k1 (l (Ti) , l (Tj)) for i ̸= j

, (6)

and
k̂p

(
Ti0 , . . . , Tip

)
= kp

(
l (Ti0) , . . . , l

(
Tip

))
(7)

for p ≥ 2. The latter definition implies that all first order linking coefficients are vanish. See
above.

Let us introduce also

hp, σ
{
H⃗
}
=

∑
i0,...,ip

[ p∏
m=0

Φim

]
k̂p

(
Ti0 , . . . , Tip

) [
sgn k̂p

(
Ti0 , . . . , Tip

)]σ
, (8)

where the “parity”σ ∈ (0, 1).
These quantities, defined on the class D, depend neither on the way of partition of the field

H⃗ on the flux tubes nor on their ordering. Different ways of these partitions are possible if some
winding numbers φi are rational.

The freezing-in theorem [1, 2] leads to conservation (at ν ≡ 0) of topological structure of
magnetic field lines as well as magnetic fluxes Φi of each magnetic flux tubes Ti. It means



a) b)

Figure 1. Shown is ‘process’ of reconnection: a) before the reconnection; b) after the
reconnection.

conservation of all hp,σ
{
H⃗
}
, if the field evolves in time according to Eq. (1), when ν ≡ 0, and

the field v⃗ is smooth enough.
Using [8], it is easy to understand that

h1, 0
{
H⃗
}
= h . (9)

Of course, the conservation of h at ν = 0 is well known. Other conservation laws are apparently
new.

Now we introduce the concept of reconnection on the class D1 ⊂ D. The class D1 is
determined be the condition:

Φi = Φj for any i and j .

Below, we imply by the reconnection in a restricted sense, a transformation of H⃗ such that
D1 → D1. This transformation implies a cut and a glue of two neighboring flux tubes (see
Fig. 1), so that no other flux tubes are carried through the formed gap in the process of the
instant reconnection. The cut-and-glue procedure should obey the following conditions:

(i) A map arising from gluing together the cut end-walls is smooth.

(ii) If two parts of cut field lines are glued together, then two remaining parts of the lines are
glued together also.

(iii) The condition ∇ · H⃗ = 0 is conserved.

(iv) Magnetic surfaces are glued together with magnetic surfaces. It means that this gluing
process follows the definition of the class D.

Here, by the reconnection in broad sense, we imply the reconnection in the restricted sense
combined with an evolution according to Eq. (1) with the smooth velocity field v⃗ and ν = 0. The
more detailed analysis of the concept of MHD reconnection are carried out in our paper [10],
where we have presented a phenomenological basis of such definition. It should be point out
that the definition of reconnection (for a wider class of magnetic fields) presented in Ref. [10]
required more restrictive conditions than the conditions 1-4. However the present less restrictive
conditions are sufficient for our goals.

Let us note, that the reconnection’s transformation determined above, is reversible, i.e. in
the sense the reconversion is also a reconnection transformation.



2.3. Statements
The topological structure of the set of magnetic field lines is changed by a reconnection. It is
easy to see that if two magnetic flux tubes T1 and T2 are reconnected in a resulting flux tube
T ′: (T1, T2) −→ T ′, then

k̂1
(
T ′, T ′) = k̂1 (T1, T1) + k̂1 (T2, T2) + 2k̂1 (T1, T2) , (10)

k̂1
(
T3, T

′) = k̂1 (T3, T1) + k̂1 (T3, T2) . (11)

As far as we know, these formulae were first introduced in Ref. [11].
The coefficient 2 in Eq. (10) can be explained qualitatively in the following way. Any field

line γ′ belonging T ′ consists of two parts γ1 and γ2. The part γ1 belonged initially (priory the
reconnection) T1, whereas γ2 belonged initially T2. The line l (T ′) can also be considered as
composition of l (T1) and l (T2). Hence the surface Z (T ′) spanned on l (T ′) can be considered
as composition of two surfaces Z (T1) and Z (T2), spanned on l (T1) and l (T2), correspondingly.

The average number of intersections of γ1 with Z (T ′) is equal to k̂1 (T1, T1) + k̂1 (T1, T2). The
first term of this sum comes from intersections with Z (T1), whereas the second one comes
from intersections with Z (T2). The number of intersections of the path γ2 with Z (T ′) is equal

analogously to k̂1 (T2, T2) + k̂1 (T1, T2). As a result we obtain Eq. (10).
The conservation of h [see Eq. (9)] during the reconnection is a consequence of Eqs. (10)

and (11), and the definition (7). I.e. the topological structure of a magnetic field under the
reconnection process is not destroyed completely.

Let us show that in general case there are no additional to h integrals of motion conserved
under the reconnection’s process.

Let us consider, for example, the special case h = 0. Due to a finite number of reconnections
we are able to transform the set of flux tubes {Ti} with the flux Φ0 in each flux tube into one
unknotted tube T with the same Φ0. Since h is conserved, so T has the winding number φ = 0.
Thus all field lines are unlinked. Then all magnetic fields belonging to D1 with given Φ0 can be
transformed into each other. The extension to the case h ̸= 0 is quite evident. This means the
absence of quantities determined only by H⃗ other than h and conserved by the reconnections.

3. Supercoiling in DNA
Topological methods were successfully applied to the description of the DNA supercoiling. The
DNA described by the Calǔgareanǔ formula (CF) [15]3 :

Lk = Tw +Wr ,

where Lk is the Gauss linking coefficient and Tw is the twist and Wr is the writhing number
correspondingly. For the readers convenience we add the definitions of these quantities, see
details in the book [13] and the references cited there.

Let γ be a closed smooth curve embedded in R3 and v a normal vector on γ. We choose a
vector v(t) with length small enough, that v(t) intersects γ only in one point. The v terminals
sweep a curve γv which inherits the orientation of γ. The vector v sweeps a band embedded in
R3. The Lk will be the the Gauss linking coefficient of γ and γv. We define the twist of v as:

Tw =
1

2π

∫
γ
v⊥ · dv ,

3 The paper [16] includes an interesting history of the creation of the CF formula, its future fate and the relation
with the notion of Helicity.



where v⊥ is the normal vector to γ. The twist is a continuous quantity. Now we define another
continuous quantity the writhing number Wr. Wr only depends on γ. Let us consider the
Gauss map for γ × γ, i.e.

ϕ : γ × γ → S2 , ϕ(x, y) =
y − x

|y − x|
,

pairs (x, y) ∈ γ. Let dS be the area element on S2. Then ϕ⋆(dS) is induced by ϕ.
The writhing number Wr is the integral

Wr =
1

4π

∫
γ×γ

ϕ⋆(dS) .

Usually, the (CF) formula applies for a continuous ribbon but in the realistic process removal
supercoils takes place exclusively by cutting edges of the DNA ribbon, twisting and sewing the
ribbon. We call this ”discrete” ribbon as a ladder, following the paper [17]. Thus the (CF)
should be modified as:

(Lk − q) = T̃w + W̃ r .

Here q is the number of cutting-sewing events and T̃w and W̃r are modified parameters of the
(CF). Since we deal with with the ensemble of cuts and sews the final formula after averaging
over all states looks like

⟨Lk − q⟩ =
⟨
T̃w

⟩
+

⟨
W̃r

⟩
.

This explains the applicability of topological methods to study scDNA relaxation caused by
enzymatic activity of topoisomeras. We would like to show, following a brief remark in [17]
that intrinsic hydrodynamics behavior of a the free-rotating DNA is closely related to the
hydrodynamics behavior of uniaxial nematic liquid crystal [18].

The order parameter of an uniaxial nematic has the form

Aik = A0

(
nink −

1

3
δik

)
,

where n⃗ = (n1, n2, n3) is the unit vector, and δik is the Kronecker delta function. The order
parameter is invariant under the reflection n⃗ → −n⃗.

Topological characteristics of the DNA are related to hydrodynamics equations by the formula

∂n⃗

∂t
= {H, n⃗} ,

where H is the Hamiltonian of the energy density: H =
∫
E dr3. E depends of the states of the

system and {H, n⃗} denotes the Poisson bracket. On the other hand, director n⃗ in the case of
appropriate boundary conditions relates to the Gauss coefficient Lk:

Lk(γ, γv) =

∫
(n⃗,∇, n⃗) dV .

Here dV is the volume element of a ball embracing the band (γ, γv).

4. Conclusion
Let us formulate two main results of this paper.

(i) We determined the set of topological invariants in terms of of magnetic flux tubes and
proved the conservation of asymptotic Hopf’s invariant under reconnection.



(ii) We generalized Calǔgareanǔ formula for the DNA ladder and relate DNA kinetic to the
equation similar to the hydrodynamics equation of nematic liquid crystal. It makes possible
the development the theory of dynamic of the supercoiling DNA parallel to nematodynamics
and its comparison with experiment (see[17]).

In connection with our paper we would like to formulate some unsolved problems.

(i) The Calǔgareanǔ formula derived in conjecture that a band formed a trivial knot. What is
a generalization of the formula in case of non-trivial band knotting?

(ii) Does a generalization of the CH formula exist when γ and γv have a trivial Gauss coefficient
but non- trivial high order coefficient?

Similar question is interesting in the case of several linking curves. In this case the role of band
is played by a Seifert surface. This result would be interesting for applications in interacting
chains of DNA. However, at present there are no experimental confirmations of existence of such
structures.
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