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Abstract
In this paper, we extend the uniqueness theorem for meromorphic
mappings to the case where the family of hyperplanes depends on the
meromorphic mapping and where the meromorphic mappings may be
degenerate.

1 Introduction

The uniqueness problem of meromorphic mappings under a condition on the
inverse images of divisors was first studied by Nevanlinna [6]. He showed
that for two nonconstant meromorphic functions f and g on the complex
plane C, if they have the same inverse images for five distinct values, then
f = g. In 1975, Fujimoto [3] generalized Nevanlinna’s result to the case of
meromorphic mappings of C™ into CP™. He showed that for two linearly
nondegenerate meromorphic mappings f and g of C™ into CP", if they have
the same inverse images counted with multiplicities for (3n + 2) hyperplanes
in general position in CP", then f = g.
In 1983, Smiley [9] showed that

Theorem 1. Let f,g be linearly nondegenerate meromorphic mappings of
C™ into CP™. Let {H;}i_, (q > 3n+2) be hyperplanes in CP"™ in general
position. Assume that

a) [HH;) =g "(Hj), foral 1<j<q (as sets),

b) dim (fTHH)NfHH;) <m—2 foralll1<i<j<q,

c) f=gon Ui, f(H).
Then f = g.
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In 2006 Thai-Quang [11] generalized this result of Smiley to the case where
q > 3n+ 1 and n > 2. In 2009, Dethloff-Tan [2] showed that for every
nonnegative integer ¢ there exists a positive integer N(c) depending only on
¢ such that Theorem 1 remains valid if ¢ > (3n + 2 — ¢) and n > N(c).
They also showed that the coefficient of n in the formula of ¢ can be replaced
by a number which is smaller than 3 for all n >> 0. Furthermore, they
established a uniqueness theorem for the case of 2n + 3 hyperplanes and
multiplicities are truncated by n. At the same time, they strongly generalized
many uniqueness theorems of previous authors such as Fujimoto [4], Ji [5]
and Stoll [10]. Recently, by using again the technique of Dethloff-Tan [2],
Chen-Yan [1] showed that the assumption “multiplicities are truncated by n”
in the result of Dethloff-Tan can be replaced by “multiplicities are truncated
by 17. In [8], Quang examined the uniqueness problem for the case of 2n + 2
hyperplanes.

We would like to note that so far, all results on the uniqueness prob-
lem have still been restricted to the case where meromorphic mappings are
sharing a common family of hyperplanes. The purpose of this paper is to
introduce a uniqueness theorem for the case where the family of hyperplanes
depends on the meromorphic mapping. We also will allow that the meromor-
phic mappings may be degenerate. For this purpose we introduce some new
techniques which can also be used to obtain simpler proofs for many other
uniqueness theorems.

We shall prove the following uniqueness theorem:

Theorem 2. Let f,g be nonconstant meromorphic mappings of C™ into
CP™. Let {H;}i_, and {L;}i_, (¢ > 2n + 2) be families of hyperplanes in
CP™ in general position. Assume that

o) FUH)=g (L) forall 1<5<q,

b) dim (fHH)NfTHH;) <m—2 foralll <i<j<gq,

i Hj - - _
¢) L = L) on UL, [ (HW) \ (f7H(H) U fTN(H)) for all 1<
1<J<gq.

Then the following assertions hold :

i) dim(Imf) = dim(Img) 2 D,

where for a subset X C CP"™, we denote by (X) the smallest projective sub-
space of CP™ containing X.




i) If

(*) 0> 2n+3—p+\/(2n+3—§)2—|—8(17_1)(2n_P+1> (2 2n+2)’

then
(faHl) _ _ (fqu)

(gaLl) N N (ga Lq) .
Furthermore, there exists a linear projective transformation L of CP™ into
itself such that L(f) = g and L(H; N (Imf)) = L; N L({Imf)) for all j €
{1,...,q}.

Remark. 1.) In Theorem 2 condition c¢) is well defined since, by condition
a), ((J; f)) is a (nonvanishing) holomorphic function outside f~!(H;).
2.) The condition (x) is satisfied in the following cases:
+) ¢>2n+3andpe{l,2,n—1,n},neZ".
+) ¢>2n+p+landpe{2,3,...,n},neZ".

3.) If there exists a subset {jo,...,Jn} C {1,...,¢} such that H;, = L;,
for all i € {0,...,n}, then the proof of Theorem 2 implies that f = g.

4.) For the special case where f, g are linearly nondegenerate (i.e. p =n)
and H; = L;, from Theorem 2 we get again the results of Dethloff-Tan [2]

and Chen-Yan [1].

2 Preliminaries
We set [|z]| :== (|z|* + -+ |zm\2)1/2 for 2 = (z1,...,2m) € C™ and define
B(r)={ze€C™:|z| <r}, S(r):={z€C™:|z||=r}

for all 0 < r < co. Define

c -1 = c m—
4= —V47T(a—a>, v = (dd|| 2%

o = d°log||z|* A (ddclog||z||2)mfl.

Let F' be a nonzero holomorphic function on C™. For each a € C™,
expanding F' as F' = ) P,(z—a) with homogeneous polynomials P; of degree
1 around a, we define

vr(a) :==min {i : P, # 0}.
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Let ¢ be a nonzero meromorphic function on C™. We define the zero divisor
v, as follows: For each z € C™, we choose nonzero holomorphic functions F
and G on a neighborhood U of z such that ¢ = F/G on U and dim (F~(0)N
G71(0)) < m — 2. Then we put v,(2) := vp(z).
Let v be a divisor in C™ and k be positive integer or +oco. Set |v| :=
{z: v(z) # 0} and v¥(2) := min{v(2), k}.

The truncated counting function of v is defined by

[k
NE(r, v) ::/n (t)dt (1 <r<+00),

t2m71
1

where

/ LY for m > 2,

nM(t) = {inBe)
S vlFl(z) for m =1.
|2 <t
We simply write N(r,v) for NFHl(r 1)

For a nonzero meromorphic function ¢ on C™, we set ~ N&(r) := N (r, V)
and N, (r) := NFl(r 1,). We have the following Jensen’s formula:

o(r) = N1(r) = /10g|s0|0— /loglwla-

5(r) 5(1)

Let f: C™ — CP"™ be a meromorphic mapping. For an arbitrary fixed
homogeneous coordinate system (wq : -+ : w,) in CP", we take a reduced
representation f = (fo : -+ : f,), which means that each f; is a holomorphic
function on C™ and f(z) = (fo(2) : -+ : fu(z)) outside the analytic set

{fo="--+= f, =0} of codimension > 2. Set ||f|| = (|fo]*+ -+ |fn|2)1/2.
The characteristic function T(r) of f is defined by

Th(r) = /longHa— /longHa, | <7< +o0c.
S(r) S(1)

For a meromorphic function ¢ on C™, the characteristic function 7,(r) of ¢
is defined by considering ¢ as a meromorphic mapping of C™ into CP!.
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We state the First and Second Main Theorems in Value Distribution
Theory: For a hyperplane H : agwg + - -+ + a,w, = 0 in CP™ with Imf ¢
H, we put (f,H) = aofo + -+ + anfn, where (fo : -+ : fn) is a reduced
representation of f.

First Main Theorem. Let f be a meromorphic mapping of C™ into CP™,

and H be a hyperplane in CP™ such that (f, H) # 0. Then
N(f,H)(T) <Ty(r)+O(1)  forallr > 1.

Let n, IV, ¢ be positive integers with ¢ > 2N —n+1 and N > n. We say that
hyperplanes Hy, ..., H, in CP™ are in N-subgeneral position if NN H;, =
for every subset {]0, vt CAL L g)

Cartan-Nochka Second Main Theorem ([7], Theorem 3.1). Let f be a
linearly nondegenerate meromorphic mapping of C™ into CP"™ and Hy, ..., H,
hyperplanes in CP™ in N-subgeneral position (¢ > 2N —n +1). Then

(¢ — 2N +n — 1)Ty(r) ZN([;]H) ) + o(Ty(r))
for all v except for a subset E of (1,400) of finite Lebesgue measure.

3 Proof of Theorem 3

We first remark that f~'(H;) = g *(L;) # CP" for all j € {1,...,q},
and that therefore {H; N (Imf)}i_, (respectively {L; N (Img)}_,) are hy-
perplanes in (Imf) (respectively (Img)) in n—subgeneral position: Indeed,
otherwise there exists ¢t € {1,. ..,q} such that f~!'(H;) = CP". Then by
the assumptlon b) we have dimf~'(H;) <m — 2 for all j € {1,...,q} \ {t}.
Therefore, f~1(H;) = @ for all j € {1 ..,q} \ {t}. Then (Imf) ¢ H; for

all 7 € {1,...,q} \ {t}. Thus, {H; N (Imf)}?_, are hyperplanes in (Imf) in
it

n-subgeneral position.

By the Cartan-Nochka Second Main Theorem, we have

(¢ — 2n + dim(Imf) — 2)T)(r Z NS ) + o(Ty(r)) = o(Ty(r)).

J#t



This is a contradiction to the fact that ¢ > 2n + 2.
Since {H "+l and {L "+l are families of hyperplanes in general position,

f : ((ﬁHl) S (van+1)) and g = ((9;L1)~3 T (gaLn—H)) are
reduced representations of meromorphic mappings f and g respectively of

C™ into CP". Furthermore, dim(Imf) = dim(Imf), dim(Img) = dim(Img),
Ti(r) =Ty(r) + O(1) and T5(r) = T,(r) + O(1).
By assumptions a) and ¢) we that

f=g on UL, f7(H,). (3.1)
We now prove that
dim(Imf) = dim(Img) = (3.2)

This is equivalent to prove that dim(Imf) = dim(Img). Therefore, it suffices
to show that for any hyperplane H in CP" then

(H, f)=0 if and only if (H,g) =0.

Suppose that the above assertion does not hold. Without loss of the gener-
ality, we may assume that there exists a hyperplane H such that (H, f) #Z 0
and (H,g) = 0. Then by (3.1) we have

(f,H)=0 on UL, f~'(H;). (3.3)

By (3.3) and by the First Main Theorem and the Cartan-Nochka Second
Main Theorem we have

(¢ — 2n + dim(Imf) — 1)Ts(r) Z NEEI ) + o(Ty(r))
< dim(Imf) ZN[fH) )+ o(T¢(r))

i (Im f) Nz gy (r) + o(Ty(r))
im (Im f) T ( ) o(Ty(r))
= dim(Im f) T (r) + o(Ty(r)).

This is a contradiction to the fact that ¢ > 2n + 2. We complete the proof
of (3.2).

S
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Now we prove that

0.1 (0.5, (34)

We distinguish the following two cases:
Case 1: There exists a subset J := {jo,..., 7} C {1,...,q} such that

(f ) (f7 Hn) Def.

= U.

(97 L ) B (97 L )
We have Pole(u)UZero(u) C f~'(H,,)N f~'(Hj,), which is an analytic set
of codimension at least 2 by assumption b). Hence Pole(u) U Zero(u) = &.
Since Hj, ..., H;, are hyperplanes in general position, F' := ((f, Hj) :
- (f, H; n)) is the reduced representation of a meromorphic mapping F' of
C™ into CP™. Still by the same reason Tp(r) = T¢(r) + O(1).
Suppose that (3.4) does not hold. Then, there exists ig € {1,...,q} \
{Jjo,- -, jn} such that

<f7 Hio)

(gv Lio)
Since the families {H;}9_, and {L;}7_, are in general position, there exist
hyperplanes H" : agwo + - - - + ap,w, = 0, L™ : bowg + - - - + bpw, = 0 in CP"
such that (f, H;,) = (F, H"), and (g, Li,) = bo(g, Lj,) + -+ + bu(g, Lj,) =
(FL ) Therefore, by (3.5) we have

(F7Hlo) _ (f?Hio)

£ u. (3.5)

) £ 1.
(F7 LZO) U(g, Lio)
By assumption ¢) and since Pole(u) U Zero(u) = &, we have u = ((J;IL{—JO)) =
»Hi0
(f,Higy) F,H' - - - ~ (fHj)
Gy = iRz on ( HH)\(f 71 (Hi)Uf 7 (Hjy)) and u = 772y =

)
o = ulii on (Ui, £ (HO)\(F 7 (Hig)Uf ~(H,))- Then G =1
on (Ul_, f~H(H) \ fH(Hyy).

Therefore,
Z N () < Nigwo, (1)
k=1,k#io (F,L10)
< Tipmioy (1) + O(1) < Tr(r) + O(1) = Ty(r) + O(1).
(F,L%0)



Therefore, by the Cartan-Nochka Second Main Theorem we have

Tf( Z N Z NfHk )

k=1,k#io k=1 k;ﬁzo

> q‘z”; P20 (r) - ofTy (1)),

This implies that ¢ < 2n + 2. This is a contradiction. Hence, we get (3.4) in
this case.
Case 2: For any subset J C {1,...,q} with #J = n + 1, there exists a

pair 7,5 € J such that
<f7 Hl) (f7 HJ)

e :
(gv Lz) (97 L])
We introduce an equivalence relation on L := {1,--- ¢} as follows: i ~ j if
and only if

(f, Hi) ([, Hj)

(9: L) (9, L3)
Set {Ly,---,Ls} = L/ ~. It is clear that §Ly < n for all k € {1,---,s}.
Without loss of generality, we may assume that Ly := {i_1 + 1, - ,ix}
(ke {l,---,s}) where 0 =iy < -+ <is = gq.
We define the map o : {1,--- ¢} — {1, -+ ,q} by

Il
e

det

ofi) =1 . .
i+n—q ifi+n>q.

It is easy to see that o is bijective and | o(i) — ¢ |> n (note that ¢ > 2n + 2).
This implies that ¢ and o(z) belong to distinct sets of {L;,---,Ls}. This
implies that for all i € {1,...,q},

(f7 HZ) (f7 HU(Z))
P; := det Z 0.
(9:Li) (9, Lo@i))

By the assumption and by the definition of function P;, we have

vp, 2 min{ V(s i), Yg,Lo b+ 0I{V(1 0, ))s Vg Logy) b T Z Vi, (36)

j=
J#i, 0(1)



outside an analytic set of codimension > 2.
On the other hand, since f~!(H}) = g~ (L) we have

min{v(s.m,), V(gL } = Min{v(s.m,), p} + min{v (g r,), p} — pmin{vs m,), 1}

_ W 7 1]
= Yrmo t VgL — PV

for k € {i,o(i)}.
Therefore, by (3.6) we have

] B ] v
vh Z V(pmy t Vg T Vi m,0) T Ve, Lff@))

(1] 1]
— PV T PV, T Z V(fH)
j=
J?ﬁzvl)

outside an analytic set of codimension > 2.
Then for all i € {1,...,q} we have

) ) ) )
Np,(r) 2 N () + Nig o (1) + Ny >>( r) + N, bes ()

(1] (1]
N(fH )< ) N(fH @) Z N (3'7)

=1
J#l o (i)

On the other hand, by Jensen’s formula
N (r) :/ log [Bilo + O(1)
S(r)
1
< [ Toml B+ (5. Hoy) )

*Lmbﬂ“ L) +1(g. Low)?) 0 + O()
< Ts(r) +T,(r)+ O(1).
Therefore, by (3.7) for all i € {1,...,q} we have
N([?}H )< ) + N([gLi)(T) + N([?]:Hcr(i))<7a) + N(@Lg(i))(r)
q
N([fH (r) — N[}]H())(T>+ Z N(%”H)( )

j=1
J#4,0(4)

< Ty(r)+Ty(r)+ O(1). (3.8)



By summing-up of both sides of the above inequality for all i € {1,...,q},
we have

q

22 W )+ NEL ) + (= 2p—2) > NG, ()

j=1

< q(Tf(r) + Tg(r)) +0(1). (3.9)

Therefore, since f~'(H;) = g~'(L;) we have

23 (Bl ) ¥ )+ T2 0 (5 )+ N )
< q(Ty(r) + Ty(r)) + O(1). (3.10)
Then
(24 TE2) 30 (Wi () + N () < a(Ty () + () + O,
" (3.11)

By (3.11) and by the Cartan-Nochka Second Main Theorem we have

(q+2p—2)(q—2n+p—1)
2p

(Tf('r’) + Tg('r)) < q(Tf('r’) + Tg('r’)) + O(Tf(r) + Tg(r)).

It follows that (¢ +2p —2)(¢—2n+p—1) < 2pq. Then ¢* — (2n +3 —p)q —
2(p—1)(2n+1—p) < 0. This is a contradiction to condition (x) of Theorem
2. Thus we have completed the proof of (3.4).

Assume that H; : ajowy + -+ + ajnwn = 0, L; : bjowo + - -+ + bjnwy, =
0 (j=1,...,9).

Set
a1 o ain, bio o by,
A a?o ) a?n B b?o ) b?n Cand £ — BA.
a(n‘+1)o . a(n‘+1)n b(n'+1)0 . b(n41)n

By (3.4), we have A(f) = B(g), so we get L(f) = g.
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Set Hy = (ajo,...,a;0) € C*, L = (bjo,...,bjn) € C™'. We write
H; = Cl/leik —|— ce + aj(n+1)H;+1 and L;k = ﬁﬂ[f{ —|— s ‘l‘ ﬁj(n+1)LZ+1~
By (3.4) we have

a/jl(.ﬂHl)+"'+04j(n+1)(f>Hn+1) (f7H1> (fa Hn—H)

Bir(g, Lr) + -+ Bim1) (9, Lnt1) (9,Ln) h (9, Lnt1)

for all j € {1,...,q}.
This implies that

(aji = B)(f, Hy) + - - + (@jmsr) — Bimen) (f, Hapr) =0 (3.12)

forall j € {1,...,q}.
On the other hand f : C™ — (Imf) is linearly nondegenerate and {H; ;L;rll
are in general position in CP™. Thus, by (3.12) we have

(aj1 = Bji)(w, Hy) + -+ -+ (Qjns1) — 5j(n+1))<w7 H,1) =0 (3.13)

for all w € (Imf) for all j € {1,...,q}.
Let hyperplanes o : ajiwg + -+ + @jnyywn = 0 and 3; : Bjiwg + -+ - +

ﬁj(n+1)wn =0 (] = 17)‘])
By (3.13) we have

(Aw), o) = (A(w), ;) (3.14)

for all w € (Imf) and j € {1,...,q}.
For any j € {1,...,q} and for any w € (Imf) we have

(w, Hj) = aji(w, Hi) + - + ajminy(w, Hng1)
= (A(w), ay)
(3.14)

=" (A(w), B)
= (B - L(w), )
= Bi(L(w), L1) + - + Bjtnr1)(L(Ww), Lnt1)
= (L(w), Ly).

This implies that L({(Imf)NH;) = L;NL((Imf)) for all j € {1,..., ¢}, which
completes the proof of Theorem 2. O

11



References

1]

Z. Chen and Q. Yan, Uniqueness theorem of meromorphic maps into
PN (C) sharing 2N + 3 hyperplanes regardless of multiplicities, Internat.
J. Math. 20 (2009), 717-726.

G. Dethloftf and T. V. Tan, Uniqueness theorems for meromorphic map-
pings with few hyperplanes, Bulletin des Sciences Mathématiques, 133
(2009), 501-514.

H. Fujimoto, The uniqueness problem of meromorphic maps into the
complex projective space, Nagoya Math. J. 58 (1975), 1-23.

H. Fujimoto, Uniqueness problem with truncated multiplicities in value
distribution theory, Nagoya Math. J. 152 (1998), 131-152.

S. Ji, Uniqueness problem without multiplicities in value distribution
theory, Pacific J. Math. 135 (1988), 323-348.

R. Nevanlinna, Finige Findeutigkeitssatze in der Theorie der mero-
morphen Funktionen, Acta. Math. 48 (1926), 367-391.

J. Noguchi, A note on entire pseudo-holomorphic curves and the proof
of Cartan-Nochka’s theorem, Kodai Math. J. 28 (2005), 336-346.

S. D. Quang, Unicity problem of meromorphic mappings sharing few
hyperplanes, preprint.

L. Smiley, Geometric conditions for unicity of holomorphic curves,
Contemp. Math. 25 (1983), 149-154.

W. Stoll, On the propagation of dependences, Pacific J. Math. 139
(1989), 311-337.

D. D. Thai and S. D. Quang, Uniqueness problem with truncated mul-
tiplicities of meromorphic mappings in several complex variables, Inter.
J. Math., 17 (2006), 1223-1257.

Gerd Dethloff' 2

! Université Européenne de Bretagne, France

12



2 Université de Brest

Laboratoire de mathématiques
UMR CNRS 6205

6, avenue Le Gorgeu, BP 452
29275 Brest Cedex, France

e-mail: gerd.dethloff@Quniv-brest.fr

Si Duc Quang and Tran Van Tan

Department of Mathematics

Hanoi National University of Education

136-Xuan Thuy street, Cau Giay, Hanoi, Vietnam

e-mails: ducquang.s@gmail.com and tranvantanhn@yahoo.com

13



