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Abstract

It is shown that the E7 trigonometric Olshanetsky-Perelomov Hamiltonian, when written in

terms of the Fundamental Trigonometric Invariants (FTI), is in algebraic form, i.e., has polynomial

coefficients, and preserves the infinite flag of polynomial spaces with the characteristic vector

~α = (1, 2, 2, 2, 3, 3, 4). Its flag coincides with one of the minimal characteristic vector for the E7

rational model, which in turn coincides with the E7 highest root.
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I. INTRODUCTION

As mentioned in [1] (thereafter addressed as I), about 30 years ago, Olshanetsky and

Perelomov (for a review, see [2]) discovered a remarkable family of quantum mechanical

Hamiltonians with trigonometric potentials, which are associated to the crystallographic

root spaces of the classical (AN , BN , CN , DN) and exceptional (G2, F4, E6,7,8) Lie algebras.

The Olshanetsky and Perelomov Hamiltonians have the property of complete integrability

(the number of integrals of motion in involution is equal to the dimension of the configuration

space) and that of exact solvability (the spectrum can be found explicitly, in a closed ana-

lytic form that is a second-degree polynomial in the quantum numbers). The Hamiltonian

associated to a Lie algebra g of rank N , with root space ∆, is

H∆ =
1

2

N∑

k=1

[
− ∂2

∂y2
k

]
+

β2

8

∑
α∈R+

g2
|α|

|α| 2
sin2 β

2
(α · y)

, (1)

where R+ is the set of positive roots of ∆, β ∈ R is a parameter introduced for convenience,

g2
|α| = µ|α|(µ|α| − 1) are coupling constants depending only on the root length, and y =

(y1, y2, . . . , yN) is the coordinate vector. The configuration space here is the Weyl alcove of

the root space (see [2]). The ground state eigenfunction and its eigenvalue are

Ψ0(y) =
∏

α∈R+

∣∣∣∣sin
β

2
(α · y)

∣∣∣∣
µ|α|

, E0 =
β2

8
ρ2 , (2)

where ρ =
∑

α∈R+
µ|α|α is the so-called ‘deformed Weyl vector’ (see [2], eqs.(5.5), (6.7)).

It is known that any eigenfunction Ψ has the form of (2) multiplied by a polynomial in

exponential (trigonometric) coordinates, i.e. Ψ = ΦΨ0 (see [2]). Such polynomials Φ are

called (generalized) Jack polynomials.

Following I, we make three definitions.

Definition 1. A multivariate linear differential operator is said to be in algebraic form

if its coefficients are polynomials in the independent variable(s). It is called algebraic if by

an appropriate change of the independent variable(s), it can be written in an algebraic form.

Definition 2. Consider a finite-dimensional (linear) space of multivariate polynomials

defined as a linear span in the following way:

P
(d)
n,{α} = 〈xp1

1 xp2

2 . . . xpd

d |0 ≤ α1p1 + α2p2 + . . . + αdpd ≤ n〉 ,
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where the α’s are positive integers and n ∈ N. Its characteristic vector is the d-dimensional

vector with components αi[11]:

~α = (α1, α2, . . . αd) . (3)

For some characteristic vectors, the corresponding polynomial spaces may have a Lie-

algebraic interpretation, in that they are the finite-dimensional representation spaces for

some Lie algebra of differential operators.

Definition 3. Take the infinite set of spaces of multivariate polynomials Pn ≡ P
(d)
n,{α},

n ∈ N, defined as above, and order them by inclusion:

P0 ⊂ P1 ⊂ P2 ⊂ . . . ⊂ Pn ⊂ . . . .

Such an object is called an infinite flag (or filtration), and is denoted P
(d)
{α}. If a linear

differential operator preserves such an infinite flag, it is said to be exactly-solvable. It is

evident that every such operator is algebraic (see [3]). If the spaces Pn can be viewed as the

finite-dimensional representation spaces of some Lie algebra g, then g is called the hidden

algebra of the exactly-solvable operator.

Any crystallographic root space ∆ is characterized by its fundamental weights wa, a =

1, 2, . . . r, where r = rank(∆). One can take a fundamental weight wa and generate its orbit

Ωa, by acting on it by all elements of the Weyl group of ∆. By averaging over this orbit, i.e.

by computing

τa(y) =
∑
ω∈Ωa

eiβ(w·y) , (4)

one obtains a trigonometric Weyl invariant for any specified β ∈ C. For a given root space

∆ and a fixed β, there thus exist r independent trigonometric Weyl invariants τ generated

by r fundamental weights wa. We call them Fundamental Trigonometric Invariants (FTI)

[1].

In I it was shown that for the root spaces AN , BCN , BN , CN , DN , G2, F4 and E6 (i) the

Jack polynomials arising from the eigenfunctions of the Hamiltonian (1), being rewritten in

terms of FTI, remain polynomials in these invariants, (ii) a similarity-transformed version

of (1), namely h ∝ Ψ−1
0 (H−E0)Ψ0, acting on the space of trigonometric invariants (i.e., the

space of trigonometric orbits) is an operator in algebraic form, and (iii) that h preserves an

infinite flag of spaces of polynomials, with a certain characteristic vector. The goal of this
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paper is to show that it holds for root space E7. Although similar results might seem to

be obtainable for E8, an analysis of this root space is absent, mainly due to great technical

complications.

II. THE CASE ∆ = E7

The Hamiltonian of the trigonometric E7 model is built using the root system of the E7

algebra (see (1)). A convenient way to represent the Hamiltonian in coordinate form is to use

an 8-dimensional space with coordinates x1, x2, . . . x8 imposing the constraint: x7 = −x8.

In terms of these coordinates,

HE7 = −1

2
∆(8) +

gβ2

4

6∑
j<i=1

[
1

sin2 β
2
(xi + xj)

+
1

sin2 β
2
(xi − xj)

]
(5)

+
gβ2

4 sin2 β
2
(x7 − x8)

+
gβ2

4

∑

{νj}

1[
sin2 β

4

(
−x8 + x7 −

∑6
j=1(−1)νjxj

)] ,

the second summation being one over sextuples {νj} where each νj = 0, 1, and
∑6

j=1 νj is odd. Here g = ν(ν − 1) > −1/4 is the coupling constant. The configuration

space is the principal E7 Weyl alcove.

In order to resolve the constraints, we introduce new variables:

yi = xi , i = 1 . . . 6

y7 = x7 − x8 , (with the constraint y7 = 2x7),

Y =
1

2
(x7 + x8) , (with the constraint Y = 0). (6)

In terms of these coordinates, the Laplacian has the representation

∆(8) = ∆(6)
y + 2

∂2

∂y2
7

+
1

2

∂2

∂Y 2
, (7)

while the potential part of (5) depends on y1 . . . y7 only:

V =
gβ2

4

6∑
j<i=1

[
1

sin2 β
2
(yi + yj)2

+
1

sin2 β
2
(yi − yj)

]
+

gβ2

4 sin2 β
2
y7

+
gβ2

4

6∑
νj ,j=1

1[
sin2 β

4

(
y7 −

∑6
j=1(−1)νjyj

)] . (8)
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In this formalism, imposing the constraints requires that one should study only eigenfunc-

tions having no dependence on Y . Hence, the Y -dependent part of the Laplacian standing

in (7) can simply be dropped.

The ground state eigenfunction and its eigenvalue are

Ψ0 = (∆
(6)
+ ∆

(6)
− sin

β

2
y7)

ν∆ν
E7

, E0 =
399

4
β2 ν2 , (9)

where

∆
(6)
± =

6∏
j<i=1

sin
β

2
(yi ± yj) , (10)

∆E7 =
∏

{νj}
sin

β

4
(y7 +

6∑
j=1

(−1)νj yj) . (11)

where the second product being one over sextuples {νj} where each νj = 0, 1, and
∑6

j=1 νj is odd. Evidently, the ground state eigenfunction (9) does not vanish in the config-

uration space for (5).

The main object of our study is the gauge-rotated Hamiltonian (5), with the ground state

eigenfunction (9) taken as a factor, i.e.

hE7 = − 2

β2
(Ψ0)

−1(HE7 − E0)(Ψ0) , (12)

where E0 is given by (9).

The E7 root space is characterized by 7 fundamental weights, which generate orbits

of lengths ranging from 56 to 10080. Let us introduce an ordering of the fundamental

trigonometric invariants τa defined by (4) following the length of the orbit, namely:

orbit variable weight vector orbit size weight length

(squared)

τ1 e6 − e7 56 3
2

τ2 −2e7 126 2

τ3
1
2
(e1 + e2 + e3 + e4 + e5 + e6)− 2e7 576 7

2

τ4 e5 + e6 − 2e7 756 4

τ5 −1
2
(e1 − e2 − e3 − e4 − e5 − e6)− 3e7 2016 6

τ6 e4 + e5 + e6 − 3e7 4032 15
2

τ7 e3 + e4 + e5 + e6 − 4e7 10080 12
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It is interesting to note that, for β ∈ R, all τ ’s invariants are real, Imτa = 0. After some

calculations one can show that the similarity-transformed Hamiltonian (12), in terms of the

FTI (τ -variables), takes on an algebraic form. This is the following:

hE7 =
7∑

i,j=1

Aij(τ)
∂2

∂τi∂τj

+
7∑

i=1

Bi(τ)
∂

∂τi

, Aij = Aji , (13)

where

A11 = 168 + 24τ2 + 2τ4 − 3

2
τ 2
1 , A12 = 54τ1 + 7τ3 − τ1τ2 ,

A13 = 96τ2 + 32τ4 + 6τ5 − 3

2
τ1τ3 , A14 = −432τ1 − 77τ3 + 3τ6 − 2τ1τ4 + 20τ1τ2 ,

A15 = 864τ1 + 210τ3 − 10τ6 − 48τ1τ2 + 6τ2τ3 − 2τ1τ5 ,

A16 = 24192 + 5856τ2 + 1248τ4 + 146τ5 + 4τ7 − 51τ1τ3 + 16τ2τ4 − 432τ 2
1 −

5

2
τ1τ6 ,

A17 = 22464τ1 + 4032τ3 − 224τ6 + 1440τ1τ2 + 408τ1τ4 + 80τ1τ5 + 320τ2τ3 ,

A22 = 504 + 96τ2 + 20τ4 + 2τ5 − 2τ 2
2 , A23 = −576τ1 − 119τ3 + 5τ6 + 32τ1τ2 − 2τ2τ3 ,

A24 = −3024− 600τ2 − 108τ4 − 6τ5 + 54τ 2
1 + 6τ1τ3 − 2τ2τ4 ,

A25 = 12096 + 2976τ2 + 408τ4 − 6τ5 + 3τ7 − 432τ 2
1 − 51τ1τ3 + 96τ 2

2 + 16τ2τ4 − 3τ2τ5 ,

A26 = −3456τ1 − 623τ3 + 41τ6 + 80τ1τ2 − 32τ1τ4 − 5τ1τ5 + 15τ2τ3 − 3τ2τ6 + 5τ3τ4 ,

A27 = −217728− 67776τ2 − 12096τ4 − 936τ5 − 84τ7 + 1296τ 2
1 − 18τ1τ3 + 78τ1τ6 − 3456τ 2

2

−1040τ2τ4 − 20τ2τ5 + 14τ 2
3 + 4τ3τ6 − 64τ 2

4 − 4τ4τ5 − 4τ2τ7 + 384τ 2
1 τ2 + 10τ1τ2τ3 ,

A33 = −192τ2 − 208τ4 − 56τ5 + 2τ7 − 144τ 2
1 − 36τ1τ3 + 96τ 2

2 + 16τ2τ4 − 7

2
τ 2
3 ,

A34 = 5184τ1 + 980τ3 − 56τ6 − 176τ1τ2 + 32τ1τ4 + 5τ1τ5 − 3τ3τ4 ,

A35 = −13824τ1 − 2408τ3 + 152τ6 − 448τ1τ2 − 224τ1τ4 − 44τ1τ5 − 92τ2τ3 + 4τ2τ6 − 4τ3τ5

+ 32τ1τ
2
2 ,

A36 = −96768− 19776τ2 − 5104τ4 − 824τ5 − 10τ7 + 4752τ 2
1 + 968τ1τ3 − 44τ1τ6 + 1056τ 2

2

+240τ2τ4 + 21τ 2
3 + 32τ 2

4 + 4τ4τ5 − 9

2
τ3τ6 − 224τ 2

1 τ2 ,

A37 = −207360τ1 − 35392τ3 + 2080τ6 − 15104τ1τ2 − 3232τ1τ4 − 616τ1τ5 − 12τ1τ7

−2720τ2τ3 + 96τ2τ6 − 88τ3τ4 − 45τ3τ5 − 6τ3τ7 + 3τ5τ6 + 864τ 3
1 + 216τ 2

1 τ3 + 320τ1τ
2
2

−96τ1τ2τ4 + 15τ1τ
2
3 ,
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A44 = 24192 + 4896τ2 + 784τ4 + 32τ5 + 4τ7 − 864τ 2
1 − 122τ1τ3 + 2τ1τ6 − 8τ2τ4 − 4τ 2

4

+20τ 2
1 τ2 ,

A45 = −145152− 36864τ2 − 5920τ4 − 320τ5 − 52τ7 + 5184τ 2
1 + 773τ1τ3 − 5τ1τ6 − 960τ 2

2

−192τ2τ4 + 7τ 2
3 − 4τ4τ5 − 32τ 2

1 τ2 + 5τ1τ2τ3 ,

A46 = 62208τ1 + 8288τ3 − 596τ6 + 6256τ1τ2 + 1400τ1τ4 + 131τ1τ5 + 3τ1τ7

+560τ2τ3 − 32τ2τ6 + 30τ3τ4 + 5τ3τ5 − 5τ4τ6 − 432τ 3
1 − 51τ 2

1 τ3 − 80τ1τ
2
2 + 16τ1τ2τ4 ,

A47 = 870912 + 200448τ2 + 48064τ4 + 4256τ5 + 184τ7 + 10368τ 2
1 + 508τ1τ3 − 484τ1τ6

−5760τ 2
2 + 128τ2τ4 − 224τ2τ5 − 40τ2τ7 − 476τ 2

3 + 4τ3τ6 + 176τ 2
4 + 24τ4τ5 − 6τ4τ7

+6τ 2
5 + 1856τ 2

1 τ2 + 384τ 2
1 τ4 + 78τ 2

1 τ5 + 624τ1τ2τ3 − 4τ1τ2τ6 + 10τ1τ3τ4 + 4τ1τ3τ5

−384τ 3
2 − 96τ 2

2 τ4 + 6τ2τ
2
3 − 64τ 2

1 τ 2
2 ,

A55 = 774144 + 206208τ2 + 33952τ4 + 2192τ5 + 316τ7 − 25056τ 2
1 − 4304τ1τ3 + 8τ1τ6

+5760τ 2
2 + 784τ2τ4 − 152τ2τ5 + 2τ2τ7 − 126τ 2

3 + 4τ3τ6 − 64τ 2
4 − 24τ4τ5 − 6τ 2

5

−208τ 2
1 τ2 − 36τ1τ2τ3 + 96τ 3

2 + 16τ 2
2 τ4 ,

A56 = −283392τ1 − 23576τ3 + 1736τ6 − 48640τ1τ2 − 8912τ1τ4 − 716τ1τ5 − 42τ1τ7 − 2436τ2τ3

+140τ2τ6 − 72τ3τ4 + 4τ3τ5 − 6τ5τ6 + 3888τ 3
1 + 528τ 2

1 τ3 − 176τ1τ2τ4 + 6τ1τ
2
3 + 4τ2τ3τ4 ,

A57 = 387072 + 152064τ2 − 62848τ4 − 5696τ5 + 560τ7 − 65664τ 2
1 + 6344τ1τ3 + 184τ1τ6

+15360τ 2
2 − 17472τ2τ4 − 1184τ2τ5 + 56τ2τ7 + 3087τ 2

3 − 240τ3τ6 − 3840τ 2
4 − 704τ4τ5

−32τ4τ7 − 64τ 2
5 − 8τ5τ7 + 5τ 2

6 − 14144τ 2
1 τ2 + 192τ 2

1 τ4 − 312τ 2
1 τ5 − 2976τ1τ2τ3 + 104τ1τ2τ6

+320τ1τ3τ4 − τ1τ3τ5 − 384τ 3
2 − 576τ 2

2 τ4 − 9τ2τ
2
3 + 3τ2τ3τ6 − 128τ2τ

2
4 + 5τ 2

3 τ4 + 576τ 2
1 τ 2

2 ,

A66 = −193536− 108480τ2 + 9584τ4 − 2744τ5 − 166τ7 + 66096τ 2
1 + 13492τ1τ3 − 376τ1τ6

−13344τ 2
2 + 4048τ2τ4 − 224τ2τ5 − 40τ2τ7 − 70τ 2

3 + 78τ3τ6 + 1520τ 2
4 + 224τ4τ5

+2τ4τ7 + 6τ 2
5 −

15

2
τ 2
6 + 512τ 2

1 τ2 − 208τ 2
1 τ4 + 8τ 2

1 τ5 + 824τ1τ2τ3 − 24τ1τ2τ6

−36τ1τ3τ4 + 4τ1τ3τ5 − 384τ 3
2 − 96τ 2

2 τ4 + 6τ2τ
2
3 + 16τ2τ

2
4 − 64τ 2

1 τ 2
2 ,

A67 = −276480τ1 − 166432τ3 + 11008τ6 + 71680τ1τ2 + 60704τ1τ4 + 3752τ1τ5 + 588τ1τ7

−19360τ2τ3 + 992τ2τ6 + 5272τ3τ4 + 153τ3τ5 + 57τ3τ7 − 320τ4τ6 + 13τ5τ6 − 9τ6τ7

+7776τ 3
1 + 1800τ 2

1 τ3 − 312τ 2
1 τ6 − 11072τ1τ

2
2 − 608τ1τ2τ4 − 288τ1τ2τ5 − 32τ1τ2τ7

−74τ1τ
2
3 − τ1τ3τ6 + 576τ1τ

2
4 + 104τ1τ4τ5 + 5τ1τ

2
5 − 1968τ 2

2 τ3 + 80τ 2
2 τ6 − 64τ2τ3τ4

−20τ2τ3τ5 + 7τ 3
3 + 3τ3τ4τ5 + 192τ 3

1 τ2 + 320τ 2
1 τ2τ3 − 128τ1τ

2
2 τ4 + 5τ1τ2τ

2
3 ,
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A77 = 17031168 + 13400064τ2 + 1549312τ4 − 139264τ5 − 8960τ7 − 525312τ 2
1 + 197824τ1τ3

+5312τ1τ6 + 2881536τ 2
2 + 677888τ2τ4 − 16896τ2τ5 − 768τ2τ7 + 41496τ 2

3 − 1216τ3τ6

+44416τ 2
4 − 6464τ4τ5 − 560τ4τ7 − 1120τ 2

5 − 128τ5τ7 − 88τ 2
6 − 12τ 2

7 − 270592τ 2
1 τ2

−11904τ 2
1 τ4 + 1056τ 2

1 τ5 + 288τ 2
1 τ7 − 4608τ1τ2τ3 − 1216τ1τ2τ6 + 4736τ1τ3τ4

+860τ1τ3τ5 + 36τ1τ3τ7 − 96τ1τ4τ6 + 84τ1τ5τ6 + 150528τ 3
2 + 35072τ 2

2 τ4 − 384τ 2
2 τ5

+96τ 2
2 τ7 + 4492τ2τ

2
3 − 320τ2τ3τ6 + 2368τ2τ

2
4 − 480τ2τ4τ5 − 24τ2τ4τ7 − 24τ2τ

2
5

+4τ2τ
2
6 + 288τ 2

3 τ4 + 70τ 2
3 τ5 − 16τ3τ4τ6 + 2τ3τ5τ6 + 256τ 3

4 + 32τ 2
4 τ5 + 4τ4τ

2
5

+10368τ 4
1 + 2592τ 3

1 τ3 − 23808τ 2
1 τ 2

2 − 2112τ 2
1 τ2τ4 − 96τ 2

1 τ2τ5 + 216τ 2
1 τ 2

3

−3680τ1τ
2
2 τ3 + 32τ1τ

2
2 τ6 + 80τ1τ2τ3τ4 − 16τ1τ2τ3τ5 + 6τ1τ

3
3 + 1536τ 4

2 + 128τ 3
2 τ4

−24τ 2
2 τ 2

3 − 64τ 2
2 τ 2

4 + 4τ2τ
2
3 τ4 + 256τ 2

1 τ 3
2 ,

and

B1 =− 3

2
(1− 9ν)τ1 , B2 = 126ν − (2− 17ν)τ2 , B3 = 72ντ1 − 7

2
(1− 7ν)τ3 ,

B4 = 60ντ2 − 2(2− 13ν)τ4 , B5 = 96ντ2 + 40ντ4 − 3(2− 11ν)τ5 ,

B6 =− 1080ντ1 − 175ντ3 − 15

2
(1− 5ν)τ6 + 40ντ1τ2 ,

B7 = 36288ν + 9024ντ2 + 1952ντ4 + 204ντ5 − 12(1− 4ν)τ7 − 648ντ 2
1 − 84ντ1τ3 + 24ντ2τ4 .

It is worth mentioning that Aii contains the term −d2
i τ

2
i (see [4]) where d2

i is the square of

the ith fundamental weight length. Also for the coefficient Bi(ν = 0) = −d2
i τi [4]. The last

observation leads to quite interesting consequence.

The Laplacian written in FTI variables hE7(ν = 0) has infinitely many polynomial eigen-

functions ϕ (see a discussion below). The lowest polynomial eigenfunction ϕ0 = const with

the eigenvalue ε0 = 0. There are seven eigenfunctions in a form of linear function in τ ,

ϕ1,2,...7 = τ1,2,...7 , ε1,2,...7 = −d2
1,2,...7 .

Thus, the variables τ ’s leading to the algebraic form of the Hamiltonian (5) are nothing but

the seven eigenfunctions of the Laplacian next after the ground state! Their eigenvalues are

square of the fundamental vector lengths.
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After some analysis, one finds that the operator (13) preserves the infinite flag

P
(7)
{1,2,2,2,3,3,4}. Its characteristic vector ~α = (1, 2, 2, 2, 3, 3, 4) coincides with the minimal char-

acteristic vector for the corresponding rational model [5]. This confirms the conjecture from

I that the characteristic vector for a trigonometric model always coincides with the min-

imal characteristic vector for the corresponding rational model. The characteristic vector

(1, 2, 2, 2, 3, 3, 4) coincides with the highest root in the E7 root system written in the basis

of simple roots (Kac conjecture, see [5]). It can be checked that the flag is invariant wrt a

weighted-projective transformation

τ1 → τ1 ,

τ2 → τ2 + a2τ
2
1 + b2,1τ3 + b2,2τ4 ,

τ3 → τ3 + a3τ
2
1 + b3,1τ2 + b3,2τ4 ,

τ4 → τ4 + a4τ
2
1 + b4,1τ2 + b4,2τ3 ,

τ5 → τ5 + a12τ
3
1 + b5,1τ1τ2 + b5,2τ1τ3 + b5,3τ1τ4 + c5τ6 ,

τ6 → τ6 + a6τ
3
1 + b6,1τ1τ2 + b6,2τ1τ3 + b6,3τ1τ4 + c6τ5 ,

τ7 → τ7 + a18τ
4
1 + b7,1τ

2
1 τ2 + b7,2τ

2
1 τ3 + b7,3τ

2
1 τ4 + c7,1τ1τ5 + c7,2τ1τ6

+d7,1τ
2
2 + d7,2τ

2
3 + d7,3τ

2
4 + d7,4τ2τ3 + d7,4τ2τ4 + d7,4τ3τ4 , (14)

where {a, b, c, d} are arbitrary real numbers. It is a hidden invariance of the Hamiltonian

(5). It is seen in a clear way in the space of orbits only.

The E7 model depends on the parameter ν, and the nodal structure of eigenpolynomials

(i.e. where they vanish) at fixed ν remains an open question.

III. CONCLUSIONS

Weyl-invariant coordinates leading to the algebraic forms of the trigonometric

Olshanetsky-Perelomov Hamiltonians associated to the crystallographic root spaces

AN , BCN , G2, F4, E6 were found in I. In this paper, we have shown that the fundamen-

tal trigonometric invariants (FTI), if used as coordinates, provide a way of reducing the

trigonometric Hamiltonian associated to E7 to algebraic form. The eigenfunctions of the

trigonometric Hamiltonian E7 (i.e., the Jack polynomials) remain polynomials in the FTI.

The use of FTI enabled us to find an algebraic form of the Hamiltonian associated to E7,
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which did not seem feasible at all, in the past. The calculations in this paper were based

on a straightforward change of variables from Cartesian coordinates to FTI. Although there

are clear indications of the existence of a representation-theoretic formalism that may allow

such results to be derived differently [6–9] our results were obtained very fast without any

technical difficulties.

So far each of the Olshanetsky-Perelomov Hamiltonians, in algebraic form, preserves an

infinite flag of polynomial spaces, with a characteristic vector ~α that coincides with the

minimal characteristic vector for the corresponding rational model (see [5]). The present

study of the E7 case confirms this correspondence. It is worth noting that the matrices Aij in

the algebraic-form Hamiltonians, in particular, given explicitly in Eqs. (13), with polynomial

entries, correspond to flat-space metrics, in the sense that the associated Riemann tensor

vanishes. The change of variables in the corresponding Laplace-Beltrami operator, from

FTI to Cartesian coordinates, transforms these metrics to diagonal form. This procedure

provides a set of non-trivial metrics with polynomial entries with vanishing Riemann tensor.

It should be stressed that each Hamiltonian of the form (1) is completely integrable. This

implies the existence of a number of operators (the ‘higher Hamiltonians’) which commute

with it and which are in involution forming a commutative algebra. It is evident that these

commuting operators take on an algebraic form after a gauge rotation (with the correspond-

ing ground state eigenfunction as a gauge factor), and a change of variables from Cartesian

coordinates to the FTI, i.e., to the τ ’s. It is a consequence of the fact that all commuting

operators preserve the same flag of polynomials (for a discussion, see [3]).

An analysis similar to the analysis of this paper has not yet been presented for the case

of the trigonometric Olshanetsky-Perelomov Hamiltonians related to the exceptional root

space E8. We conjecture that in this case as well, the FTI taken as coordinates will yield

an algebraic form for the Hamiltonian, and that the infinite flag of polynomial spaces with

the same characteristic vector as the minimal [12] characteristic vector in the corresponding

rational model will be preserved. In concluding, we mention that the existence of algebraic

form of the E7 trigonometric Olshanetsky-Perelomov Hamiltonian makes possible the study

of their perturbations by purely algebraic means: one can develop a perturbation theory

in which all corrections are found by linear-algebraic methods [10]. It also gives a hint

that quasi-exactly solvable generalizations of the E7 trigonometric Olshanetsky-Perelomov

Hamiltonian may exist.
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