
HOMOTOPY GRAPH-COMPLEX FOR CONFIGURATION AND KNOT

SPACES

PASCAL LAMBRECHTS AND VICTOR TURCHIN

Abstract. In the paper we prove that the primitive part of the Sinha homology spectral sequence
E2-term for the space of long knots is rationally isomorphic to the homotopy E 2-term. We also
define natural graph-complexes computing the rational homotopy of configuration and of knot
spaces.

1. Introduction

In [27, 28] D. Sinha defined a cosimplicial model for the space Emb of long knots R ↪→ Rd,
d ≥ 4. It was proven in [3, 21] that the associated homology Bousfield-Kan spectral sequence
collapses rationally at the second term. The same result was established for the associated
homotopy spectral sequence (over Q). The proof will appear in [2]. But Emb is an H-space with
a homotopy commutative product1. It implies in particular that the E 2 term of the (co)homotopy
spectral sequence must be rationally isomorphic to the primitive part of the E 2 (co)homology
term.
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Figure 1. Homology E2
p,q and homotopy E2

p′,q′ terms.

The (co)homology E2
p,q-term is concentrated in the second quadrant between two lines [31]:

q = −d−1
2

p (lower line)
q = −(d − 1)(p + 1) (upper line)
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The (co)homotopy E2
p′,q′-term is also concentrated in the second quadrant and bounded by the

lines [26]:

q′ = −(d − 2)p′ − d + 3 (lower line)
p′ = −2 (right line)

In Part 1 of the paper we will give a simple and purely algebraic proof of this isomorphism:

E2
∗,∗ = Prim(E2

∗,∗).

In particular we will see in Section 4 how via this isomorphism the bigradings of both spectral
sequences are related to each other. We will see that the lower line of the homotopy spectral
sequence corresponds to the lower line of the homology one. The right line p ′ = −2 of E2

corresponds to the upper line q = −(d − 1)(p + 1) of E2. In general any vertical line p′ = −n
corresponds to q = −(d − 1)(p + n − 1).

This isomorphism in the case of the lower lines (on the level of the bialgebra of chord diagrams)
was proved by J. Conant [9]. He gives an elegant reformulation of his result using 3-valent graphs.

Part 2, which actually gave the name to the paper, is devoted to graph-complexes. Our motiva-
tion was to produce new graph-complexes whose homology has a nice geometrical interpretation.
We define a series of graph-complexes that compute the rational homotopy of configuration spaces.
Building up on this series of complexes we define a bigger complex whose homology is the rational
homotopy of the space of long knots. A more thorough introduction for Part 2 is Section 7.

Part 1. Isomorphism E2 = Prim(E2)

2. Cosimplicial model for the space of long knots modulo immersions

The space Emb of long knots modulo immersions is the homotopy fiber of the inclusion

Emb ↪→ Imm

of the space of long knots Emb in the space of long immersions Imm. By the word “long” we
understand smooth map R1 → Rd that coincide with a fixed linear map outside a compact subset
of R1. (We will deliberately omit d to simplify notation, assuming that the dimension d ≥ 4 is
fixed once and forever.2)

D. Sinha showed in [28] that Emb is homotopy equivalent to Emb×ΩImm ' Emb×Ω2Sd−1.
So, the homology and homotopy of Emb are easily related to those of Emb and the results for
Emb that we obtain in the first part of the paper can be obviously reestablished for Emb.

In [27] D. Sinha defined a cosimplicial space whose homotopy totalization is Emb. The n-th
component Cn of the cosimplicial space is some compactification of the configuration space of
points in I × Rd−1 = [0, 1] × Rd−1:

{

(x0, x1, . . . , xn+1)

∣

∣

∣

∣

xi ∈ I × Rd−1; xi 6= xj

x0 = (0, 0̄); xn+1 = (1, 0̄)

}

Given 0 ≤ i ≤ n + 1, the coface map di is doubling of the i-th point xi of the configuration in
the direction (1, 0̄). The codegeneracy map si, for i = 1 . . . n, is given by forgetting of xi.

In [28] D. Sinha provides another “operadic” construction for the cosimplicial replacement of
Emb (this cosimplicial space is homotopy equivalent to the previous one).

2When we consider configuration spaces we assume d ≥ 3.
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For any symmetric monoidal category (C,⊗,1) denote by ASS = {1}n≥0 the associative non-Σ
operad.3

Provided an operad O in (C,⊗,1) is endowed with a morphism ASS → O, the collection
{On}n≥0 = {O(n)}n≥0 becomes a cosimplicial object in this category. Cofaces di : On → On+1,
i = 0 . . . n + 1, are compositions with m = 1 = ASS(2):

d0(−) = m ◦2 −; di(−) = − ◦i m, i = 1 . . . n; dn+1(−) = m ◦1 −.

Codegeneracies are compositions with e = 1 = ASS(0)

si(−) = − ◦i e, i = 1 . . . n.

Sinha applies this standard construction to an operad {C〈n〉}n≥0 homotopy equivalent to the

operad of little d-cubes. Each space Cn = C〈n〉 of this operad is the compactification in (Sd−1)(
n

2)

of the space of reciprocal directions of n distinct points in Rd:
{

(

xj − xi

|xj − xi|

)

1≤i<j≤n

∣

∣

∣

∣

xi ∈ Rd;
xi 6= xj

}

⊂ (Sd−1)(
n

2).

We will assume that we work with one of these cosimplicial models. The operadic and cosim-
plicial structures of C• induce similar structures on the (co)homology and (co)homotopy of C •.
The cohomology simplicial algebra will be denoted by

A• = {An}n≥0 = {H∗(Cn)}n≥0.

We will consider the cohomology only with rational coefficients.
The rational cohomotopy simplicial Lie coalgebra will be denoted by

L• = {Ln}n≥0 = {Mor(π∗(C
n), Q)}n≥0.

We will also work with the rational homotopy cosimplicial Lie algebra

L• = {Ln}n≥0 = {π∗(C
n) ⊗ Q}n≥0.

3. Explicit description of An = H∗(Cn) and of Ln = π∗(C
n) ⊗ Q

The algebras An, n ≥ 0, are well known [1, 7]. Being graded commutative they are generated
by aij , 1 ≤ i 6= j ≤ n, of degree d − 1, that satisfy the relations:

aji = (−1)daij

quadratic
relations

{

a2
ij = 0

aijajk + ajkaki + akiaij = 0
(3.1)

We assume that the component C〈0〉 is a point, so A0 = Q.
Any monomial can be viewed as a directed graph on the set {1, 2, . . . , n}: the directed edge

(i, j) is put exactly the number of times the generator aij is represented in the monomial, see
Figure 2.

It can be easily seen that a monomial in An is non-zero if and only if the corresponding graph
is a forest. On such a graph Γ the face map d0(Γ) is non-zero if and only if the valence of vertex 1
is zero. In this case d0 simply removes the vertex 1, all other vertices are shifted by 1. Face di(Γ),
i = 1 . . . n − 1, is obtained by collapsing the segment [i, i + 1]. If Γ contains the edge (i, i + 1),
then di(Γ) = 0. Face dn acts similarly to d0 removing the last n-th vertex.

3Dually we will denote by COASS = {1}n≥0 the associative non-Σ cooperad in (C,⊗,1).
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1 432

Figure 2. Graph corresponding to a13a32a23 ∈ A4.
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Figure 3

The degeneracy map si, for i = 1 . . . n + 1, inserts a new vertex between i − 1 and i.

1 2 1 2 3
( ) =

1 2 1 2 3
( ) =

1 2
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Figure 4

The normalized part NAn of An

NAn = An/ +n
i=1 Im si

is spanned by the forests with each vertex 1, . . . , n of positive valence.
The first term E1 = (⊕∞

p=0E
−p,∗
1 , d) of the cohomology Sinha spectral sequence is the normalized

complex Tot A• = (⊕∞
p=0s

−pNAp, d), where s−p denotes p-fold desuspension. The differential is
as usual the alternated sum of faces di.

The Lie algebra Ln, n ≥ 0, is generated by αij , 1 ≤ i 6= j ≤ n, of degree d − 1 [16]. The
relations are

αji = (−1)dαij

quadratic
relations

{

[αij , αkl] = 0, if #{i, j, k, l} = 4
[αij , αjk + αki] = 0

(3.2)

The bracket in Ln is the Whitehead bracket which is of degree −1.

It is well known that An and Ln are Koszul dual [8]. This means that the
(

n
2

)

-dimensional space

Vn of generators of An is dual to the space V n of generators of Ln. And the space Rn ⊂ S2Vn

spanned by the quadratic relations (3.1) is orthogonal to the space Rn ⊂ S2V n of quadratic
relations of Ln. Moreover An and Ln are Koszul which means some nice homological property of
their bar-constructions. This property will be used in the proof of our main result Theorem 3.1.
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The cofaces dk : Ln → Ln+1, for k = 0 . . . n + 1; and the codegeneracies sk : Ln → Ln−1, for
k = 1 . . . n, are defined on generators as follows:

dk(αij) =































αij , if i < j < k;

αij + αi,j+1, if i < j = k;

αi,j+1, if i < k < j;

αi,j+1 + αi+1,j+1, if i = k < j;

αi+1,j+1, if k < i < j.

sk(αij) =































αij , if i < j < k;

0, if i < j = k;

αi,j−1, if i < k < j;

0, if i = k < j;

αi−1,j−1, if k < i < j.

In particular d0(αij) = αi+1,j+1, dn+1(αij) = αij .
The normalized part

NLn =
n
⋂

i=1

ker si ⊂ Ln

is spanned by the monomials that use each index i = 1 . . . n. The space NLn is isomorphic to
a subspace of a graded free Lie algebra generated by x1 = α12, x2 = α13, . . ., xn−1 = α1,n−1

spanned by the monomials using each xi, 1 ≤ i ≤ n − 1.
The first term E1 = (⊕∞

p=0E
1
−p,∗, d) of the homotopy Sinha spectral sequence is the normalized

complex Tot L• = (⊕∞
p=0s

−pNLp, d).

Here is our main result.

Theorem 3.1. (i) The E2 term of the homotopy Sinha spectral sequence (for Emb) is rationally
isomorphic to the primitive part of the homology E2 term.

(ii) The E2 term of the cohomotopy Sinha spectral seqence (for Emb) is rationally isomorphic
to the primitive part of the cohomology E2-term.

Since E2-homology term is a polynomial bialgebra4, assertions (i) and (ii) are equivalent. So,
we will prove only (ii). The proof will be given in Section 6.

4. Correspondence of bigradings

In this section we describe how the homotopy spectral sequence bigradings (p ′, q′) are related
to the homology spectral sequence bigradings (p, q) via the isomorphism of Theorem 3.1.

We will give an heuristic explanation of this correspondence. But one can easily establish it
by a simple analysis of the proof given in Section 6.

A monomial of degree i in NAj is an element of Ep,q
1 with p = −j, q = (d − 1)i. A monomial

of degree i′ in NLj′ is an element of E1
p′,q′ with p′ = −j′, q′ = (d − 1)i′ − (i′ − 1) = (d − 2)i′ + 1

(recall that the bracket in L• is of degree −1).
The degree i, i′ in both cases will be called complexity. The complexity is preserved by the

differential.
Up to a shift of grading the complexes Tot A•, Tot L• depend only on the parity of d. So it

is natural to expect that the isomorphism of Theorem 3.1 respects this periodicity and therefore
preserves the complexity. The total grading p + q, p′ + q′ must be also unchanged.

4This is true for any field of coefficients [32, Corollary 13.4].
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Let us find the bigrading (i′, j′) = (i, j′) of Tot L• that should correspond to the bigrading (i, j)
of Tot A•. We have

p + q = (d − 1)i − j
p′ + q′ = (d − 2)i + 1 − j ′

So p + q = p′ + q′ implies
j′ = j − i + 1. (4.1)

For example if j = 2i (the case of the lower line in E2, which corresponds to the bialgebra of
chord diagrams), one has j ′ = i + 1. This corresponds to the lower line in E2.

The case j = i+1 (upper line in E2) produces j ′ = 2 (right line in E2). This situation produces
exactly the homotopy of the factor Ω2Sd−1 of Emb [31].

In general for a non-trivial monomial of degree i in NAj the number j − i is the number of
connected components in the corresponding forest, see Section 3. So, the correspondence 4.1 can
be resumed as follows: the number of connected components of forests in the cohomological case
corresponds to the number of points (of configuration spaces) minus 1 in the homotopy case.

5. Fixing notations

In this section we review some of necessary background and fix some notation.

5.1. B/B2. By CDGA we understand the category of graded connected differential graded alge-
bras with differential raising the degree by 1. Almost all algebras we deal with are 1-connected,
i.e. their 1-degree component is trivial.

Consider a functor from CDGA to the category of differential graded vector spaces (complexes):

P : CDGA −→ dg−Vect
B 7−→ B>0/(B>0)

2.

For simplicity of notation P (B) = B>0/(B>0)
2 will be denoted by B/B2.

5.2. L(B). By L we denote the cobar construction

L : CDGA → dg−coLie,

which assigns to any commutative dg-algebra B a free dg-Lie coalgebra with cobracket of degree 1:

L(B) =
⊕

n≥1

(coLie(n) ⊗ (B>0)
⊗n)Sn

,

whose differential is a sum of two things — one arising from the initial differential of B, the
other — from multiplication in B. A nice explicit description of this construction is given in [29].
Notice that in our construction the degree of each space coLie(n) is 1 − n.

One has a natural transformation

α : L −→ P

L(B)
αB−→ B/B2

which is a morphism of complexes sending
⊕

n≥2(coLie(n) × (B>0)
⊗n)Sn

to zero and coLie(1) ⊗

B>0 = B>0 to the quotient B>0/(B>0)
2.

The following is a standard result in the rational homotopy theory [13].

Proposition 5.1. If B is a polynomial algebra then the map L(B)
α

−→ B/B2 is a quasi-
isomorphism.
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5.3. Totalization. Let V• be a simplicial dg-vector space. If not stated otherwise we always
assume that the differential raises the degree by 1. We define Tot V• as a complex whose space is
⊕n≥0s

−nNVn and the differential is the sum of inner differential of each Vn plus the alternated
sum of faces. Notice that Tot V• might be negatively graded, however in all the considered cases
the totalization always produces positively graded complexes.

Let V• and W• be two simplicial dg-spaces. Assume that Tot V• and Tot W• are left-bounded.
One has the Eilenberg-MacLane quasi-isomorphism [23, § 29]:

Tot V• ⊗ Tot W•
EM
−→ Tot(V• ⊗ W•).

This map permits to define a product on the totalization of any simplicial commutative dg-
algebra B•:

Tot B• ⊗ Tot B•
EM
−→ Tot(B• ⊗ B•)

µ•
−→ Tot B•.

The Eilenberg-MacLane map has nice properties. It is associative and Sn-equivariant. This
implies that Tot B• is a commutative dg-algebra. For example, for the simplicial algebra A• =
H∗(C•) the product on A = Tot A• is the shuffle of diagrams:

* =

PSfrag replacements

±

±

±

±

±

±

±

±

±

±

Figure 5. The product in A.

Consider any polynomial functor

P : dg−Vect −→ dg−Vect
V 7−→ ⊕n≥0(P(n) ⊗ V ⊗n)Sn

.

The property that Eilenberg-MacLane map is associative and Sn-equivariant permits to define
a morphism:

P(Tot V•)
EMP−→ TotP(V•) (5.1)

Lemma 5.2. For a field of characteristic zero, the morphism (5.1) is always a quasi-isomorphism
for any simplicial dg-vector space V• (provided Tot V• is left-bounded).

Proof. One has

(Tot V•)
⊗n EMn−→ Tot(V ⊗n

• )

is an Sn-equivariant quasi-isomorphism. In characteristic zero it implies that

(P(n) ⊗ (Tot V•)
⊗n)Sn

EMP(n)
−→ Tot((P(n) ⊗ V ⊗n

• )Sn
)

is also a quasi-isomorphism. �
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Lemma 5.3. For any simplicial commutative dg-algebra B• (provided Tot B• is positively graded)
the map EML is a quasi-isomorphism:

L(Tot B•)
'

−−−→
EML

TotL(B•).

Proof. First one has to check that EML is a morphism of complexes. This is so because the
product part of the differential in L(Tot B•) goes exactly to the product part of the differential in
TotL(B•) (here one uses the fact that the product in Tot B• was defined through the Eilenberg-
MacLane map). To see that EML is isomorphism in homology one can consider the spectral
sequences for both complexes assigned to the filtration by the degree n of the polynomial functor
L = ⊕n≥1Ln. It follows from Lemma 5.2 that the induced map of spectral sequences is an
isomorphism starting from the first page. �

6. Proof of Theorem 3.1

The proof is the following sequence of quasi-isomorphisms.

A/A2 L(A) = L(Tot A•)
'

α
oooo

'

EML

// TotL(A•) Tot(L•)? _
'

oo (6.1)

It is well known that A = Tot A• is a commutative non-cocommutative dg-bialgebra, moreover
its homology bialgebra H∗(A) is polynomial [30, 31]. We have by Proposition 5.1 that the first
arrow α is a quasi-isomorphism. So the homology of both complexes A, L(A) is the space of
generators of H∗(A) which is exactly the space of primitives.

The second arrow is a quasi-isomorphism by Lemma 5.3.
Let us explain the last quasi-isomorphism

Tot(L•)
� � '

// TotL(A•). (6.2)

The algebra Ln is the Lie Koszul dual of An [8]. One has the natural inclusion (of Lie coalgebras):

Ln ↪→ L(An). (6.3)

The map (6.3) describes the so called “diagonal” homology of L(An). The property An is
Koszul means that L(An) has only diagonal (non-trivial) homology. In other words (6.3) is a
quasi-isomorphism. But (6.3) is a simplicial morphism. As a consequence (6.2) is also a quasi-
isomorphism.

To see that the bigradings correspond by the way described in Section 4, one should generalize
the grading complexity on all the intermediate complexes of the zig-zag (6.1), and to show that
all the morphismes preserve it. We leave it as an exercise to the reader. �

Part 2. Graph-complexes

7. Introduction

Graph-complexes are widely used to study the homology of interesting spaces and to prove
interesting theorems [10, 11, 12, 14, 15, 17, 18, 20, 24]. One series of such graph-comples (its
slight modification will be denoted by {Dn}n≥0 throughout the paper) was used by M. Kontsevich
to prove the formality of the operad of little d-cubes [19]. The idea of the proof is that {Dn}n≥0 are
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quasi-isomorphic to the cochains of the operad, and also one has projections inducing homology
isomorphism

Dn
'

Īn

// // An = H∗(C〈n〉). (7.1)

An is considered as a commutative dg-algebra with zero differential.
A more thorough account on this result was given by I. Volic and the first author in [22].
In [5, 6] another graph-complex was defined (its slight modification will be denoted by D in the

paper). By means of integration over configuration spaces this complex was naturally mapped
to the De Rahm complex of the space Emb of long knots. One conjectures that this map is a
quasi-isomorphism. The reason why it might be so is that D is quasi-isomorphic to A = Tot A•,
see Theorem 8.6, and therefore the homology of D is exactly the rational homology of Emb.

The complexes {Dn}n≥0 form a simplicial commutative dg-algebra. Its totalization Tot D• is
exactly the complex D.

Another motivation for us to study graph-complexes is that they generalize on higher homology
of knot spaces the 3-valent diagrams calculus developed by Dr. Bar Natan [4] (in the relation with
the finite type knot invariants). For example, Theorem 6 of [4], which says that the bialgebra of
chord diagrams is isomorphic to the bialgebra of 3-valent diagrams, is an obvious consequence
of the fact that A is quasi-isomorphic to D: the lower line homology of the dual to A is the
bialgebra of chord diagrams and the lower line homology of the dual to D is the bialgebra of
3-valent diagrams modulo STU , AS, and IHX relations.

In Section 9 we define a new series of graph-complexes {Pn}n≥0 satisfying H∗(Pn) = Ln =
Hom(π∗(C

n), Q). We show that the totalization complex P = Tot P• is quasi-isomorphic to
Tot L• and therefore H∗(P) = Hom(π∗(Emb), Q).

8. Cohomology graph-complex for configuration and knot spaces

Our definition of the space Dn of diagrams is very close to that of [19, 22].
A diagram Γ on n external and q internal vertices is any graph with n external vertices (lying

on the line R1 and labeled consequently 1, 2, . . . , n) and q (non-labeled) internal vertices, and
some number of oriented segments connecting them. Those segments that connect two external
vertices are called chords and all others are edges.

The orientation set of a diagram is the union of the set of internal vertices (such elements are
considered to be of degree −d) and the set of edges (such elements are of degree d − 1). An
orientation of a diagram is any ordering of its orientation set. The degree of a diagram is the
total degree of the elements from the orientation set.

Definition 8.1. A diagram is called admissible if
(1) it does not contain an internal vertex of valence ≤ 2;
(2) it contains neither edges nor chords connecting a vertex to itself (no loops);
(3) every internal vertex is connected by a path to an external one.

Remark 8.2. The distinction between our definition and the one given in [19, 22] is that we
do permit multiple edges and multiple chords. This will be important for Theorem 9.3. This
difference is essential only if d is odd, for even d graphs with multiple edges/chords cancel out by
the orientation relation, see below.
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Definition 8.3. The space Dn is defined as the Q-vector space spanned by the admissible dia-
grams Γ with n external vertices, modulo the relations

(1) if Γ1 and Γ2 differ only by an orientation of an edge, then

Γ1 = (−1)dΓ2;

(2) if Γ1 and Γ2 differ only by a permutation of the orientation set, then

Γ1 = ±Γ2

where the sign is the Koszul sign of permutation (taking into account the degrees of elements).

D0 is defined to be Q being spanned by the empty diagram.
The differential in Dn is defined as the sum of contractions of edges.

( ) =

PSfrag replacements

±±±dD3

Figure 6. The differential in D3.

For the signs convention, see [19, 22].
The multiplication in Dn is defined by superimposing:

* =

Figure 7. The product in D3.

Proposition 8.4. [19, 22] Complexes Dn, n ≥ 0, with multiplication as above are commutative
dg-algebras.

Lemma-definition 8.5. The morphisms

Īn : Dn → An (8.1)

which send any diagram having internal vertices to zero, and all others to the corresponding
monomials in An (see Section 3), are quasi-isomorphisms of commutative dg-algebras.

Proof. Our complexes are slightly different from those used in [19, 22], but the proof is the same,
see [22]. �

The complexes {Dn}n≥0 form a cooperad in CDGA. For the definition of structure maps
see [19, 22]. This cooperad is endowed with a morphism to the cooperad COASS:

D• → COASS.

Any non-trivial diagram is sent to zero and the trivial diagram with n external vertices — to
1 ∈ Q = COASS(n). This endows D• with a structure of a simplicial commutative dg-algebra,
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see Section 2. The simplicial structure of D• is completely analogous to that of A•, see Figures 3-
4. For Γ ∈ Dn, the face map d0 removes the vertex 1 if it was of valence 0, otherwise d0(Γ) = 0.
Face di(Γ), i = 1 . . . n − 1, is obtained by contracting the segment [i, i + 1] of R1. And finally
dn removes the last point n (if it was of valence 0, otherwise dn(Γ) = 0). The degeneracy si,
i = 1 . . . n + 1, is defined as insertion of a new external point between i − 1 and i.

The normalized part ND• of D• is spanned by the diagrams whose all external vertices are of
positive valence. We will define a graph-complex D as the totalization of D•.

Theorem 8.6. The complex D = Tot D• is quasi-isomorphic to A = Tot A• and therefore the
homology of D is the rational cohomology of Emb:

H∗(D) = H∗(Emb).

Proof. The map (8.1) is a quasi-isomorphism of simplicial commutative dg-algebras, which induces
a quasi-isomorphism of totalizations:

D = Tot(D•)
'

−→ Tot(A•) = A.

But H∗(A) = E∗,∗
2 (C•) = H∗(Emb). �

Since d0 and dn act always as zero on NDn, the differential in D is the sum of contractions of
edges and of line segments of R1, see Figure 8.

( ) =
PSfrag replacements

± ±

±±±
dD

Figure 8. The differential in D.

In D = Tot D• a degree of a graph Γ ∈ Dn is desuspended by n. Geometrically we add to
the orientation set of Γ n elements of degree −1 that correspond to the external vertices of Γ.
The product in D, which is defined via the Eilenberg-MacLane map, acts as a shuffle of external
points. For each summand the ordering of its orientation set is obtained by concatenation.

= + +*

Figure 9. The product in D.

The coproduct in D is the coconcatenation.

( ) = + +

PSfrag replacements

⊗⊗⊗∆

Figure 10. The coproduct in D.
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9. Cohomotopy graph-complex for configuration and knot spaces

A non-trivial graph Γ ∈ Dn is called non-decomposable if it can not be represented as a product
Γ = Γ1 · Γ2 of two non-trivial graphs Γ1,Γ2 ∈ Dn.5 The space spanned by non-decomposable
graphs will be denoted by Pn.

Remark 9.1. In other words a graph is non-decomposable if it is connected (and non-empty)
when we remove from it all the external vertices with their little neighborhoods.

Notice however that a non-decomposable graph might be disconnected: together with its main
connected part it can have a number of singletons — external vertices of valence 0.

The complex Pn is a quotient-complex of Dn. It is easy to see that Pn = Dn/D 2
n .

Proposition 9.2. Dn is a polynomial algebra whose space of generators is Pn.

Proof. Obvious. It is here where it is important that we permit multiple edges/chords. �

Theorem 9.3. The homology of Pn is the rational cohomotopy of the configuration space:

H∗(Pn) = Ln = Mor(π∗(C
n), Q).

Proof. We have the quasi-isomorphisms

Pn = Dn/D 2
n L(Dn)

α

'
oooo

'
// // L(An) Ln.? _

'
oo (9.1)

The first arrow α is a quasi-isomorphism by Proposition 5.1, the second one is induced by the
quasi-isomorphism 8.1, the last one is due to the Koszul property. �

It follows from Remark 9.1 that P• is a simplicial subspace of D• — the simplicial structure
maps preserve P•. Its noramalized part NP• is spanned by the connected non-decomposable
diagrams, i.e. by the diagrams without singletons. Now define complex P as the totalization of
P•. Obviously, P is a quotient-complex of D.

( ) =

PSfrag replacements

±±dP

Figure 11. The differential in P.

Theorem 9.4. The complex P = Tot P• is quasi-isomorphic to Tot L• and therefore the homology
of P is the rational cohomotopy of Emb:

H∗(P) = Mor(π∗(Emb), Q).

Proof. Diagram (9.1) is a sequence of quasi-isomorphisms of simplicial dg-spaces. Passing to
totalization one gets the result. �

5We consider the inner product of Dn, see Figure 7.
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Remark 9.5. P• is a simplicial L∞-coalgebra. Indeed, given B is a polynomial dg-algebra, any
section B/B2 ↪→ B of the projection B � B/B2 defines an L∞-coalgebra structure on B/B2.
We have natural inclusions

Dn/D 2
n = Pn ↪→ Dn. (9.2)

Since (9.2) is a map of simplicial vector spaces P• → D•, the L∞-coalgebra operations on Pn,
n ≥ 0, commute with the simplicial structure maps.

We finish by giving some examples of cycles in P. Obviously the diagram

is the first non-trivial cycle (for both even and odd d). Its degree is d − 3. It can be easily seen
that the sum of diagrams (taken with appropiate signs)

+

is a non-trivial cycle in case when d is odd (and therefore multiple edges are possible). The degree
of this cycle is 2d − 5. Recall that Emb is homotopy equivalent to Emb × Ω2Sd−1. The above
cycles descibe the rational cohomotopy coming from the second factor Ω2Sd−1.

The first non-trivial cohomotopy coming from the first factor Emb is of degree 2d − 6. In case
of even d it is given by the diagram:

For odd d it is given by the sum:

+
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