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We compute the leading post-Newtonian and quantum corrections to the Coulomb
and Newtonian potentials using the full modern arsenal of on-shell techniques; we
employ spinor-helicity variables everywhere, use the Kawai-Lewellen-Tye (KLT) re-
lations to derive gravity amplitudes from gauge theory and use unitarity methods to
extract the terms needed at one-loop order. We stress that our results are univer-
sal and thus will hold in any quantum theory of gravity with the same low-energy
degrees of freedom as we are considering. Previous results for the corrections to
the same potentials, derived historically using Feynman graphs, are verified explic-
itly, but our approach presents a huge simplification, since starting points for the
computations are compact and tedious index contractions and various complicated
integral reductions are eliminated from the onset, streamlining the derivations. We
also analyze the spin dependence of the results using the KLT factorization, and
show how the spinless correction in the framework are easily seen to be independent

of the interacting matter considered.
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I. INTRODUCTION

Unitarity based methods combined with the helicity formalism have proven exceptionally
successful in gauge theory calculations at one loop (see e.g. [1, 2]). Such methods have
so far been less frequently applied to general relativity [3-5], and quantum corrections to
gravitational systems with massive matter have not been studied in this framework at all.
However, such techniques are well-suited for effective field theory considerations in low energy
quantum gravity. Early treatments of gravitational loops tended to focus on the ultraviolet
divergences, but effective field theory methods have allowed us to separate these ultraviolet
divergences from the universal reliable predictions of the low energy portion of the theory [6—
12]. The unitarity methods deal directly with on-shell and low energy amplitudes, and
products of on-shell tree amplitudes can therefore yield the low energy one-loop results in a

conceptually simple manner.

In this paper, we apply new on-shell amplitude methods to the gravitational scattering
of massive matter [6-9]. The unitarity cut for the leading quantum corrections involves
the gravitational Compton amplitude, i.e. the two on-shell gravitons coupled to matter.
For matter fields of all spins, this amplitude has a simple structure, as it is related to the
square of the electromagnetic Compton amplitude (involving photons) [3, 13-16]. A useful
observation for our calculation is that computing the massless two-particle cut gives us
exactly everything we need. The cut of the amplitude is precisely one-to-one with the non-
analytic parts of the amplitude that contributes to the long-distance leading corrections to
the scattering potential at one-loop. Hence, we do not need to reconstruct the full amplitude

- we only need to consider the terms contributing to the massless two-particle cut.

Moreover, there is an added bonus in using the cut and decomposing the amplitudes
using KLT; in such a setup one can easily dissect the interaction between the two particles
into a series of spin corrections; i.e. a coefficient for the spinless interaction and coefficients
of spin-spin interactions, etc. It has been seen before in direct calculations [11] that such
a series of spin corrections is always independent of the type of interacting matter. For
example, if we disregard the spin couplings, fermions and bosons couple generically only
through the energy of their currents. This observation appears however to be somewhat
puzzling in the context of Feynman diagrams, because here the vertex rules (and even the

diagrams that need to be calculated) differ greatly for different types of matter particles. In



this paper our focus will be on the spinless interaction part of the series of spin corrections.
We will demonstrate directly using the on-shell cut method and KLT that this coupling
is always identical for any type of matter interaction, and in the non-relativstic limit only
dependent on the masses of the interacting particles.

The classical and quantum corrections to the Newtonian potential can addressed by

studying the scattering matrix element in the non-relativistic limit

(1, paliT |3, pa) = —i M(q) 2m)* 6W(p — p), (L1)

where ¢ is the momentum transfer. In momentum space (in the non-relativistic and free

particle limit) we employ the following definition of the potential V' (¢) from the amplitude

V(g = ona)

= . 1.2
dmime (1.2)

The one-loop diagrams produce modifications to the tree interaction leading to a potential

of the form

G ~
Vi) = S [ 07 GiOm + )7+ G (09 o) + 0]

(1.3)
If this object is Fourier transformed to form a spatial potential, the term with the square-
root yields the classical Gym/r general relativistic correction to the potential, and the term
with the logarithm produces a long-distance Gyhi/r? quantum correction. The analytic
correction without a logarithm will yield a short range §(r) effect in the potential. The non-
analytic terms (the square-root and the logarithm) arise from long-distance propagation of
the massless gravitons, and hence are genuinely low-energy quantum predictions. These can
be calculated in the effective field theory approach. The analytic correction C9C, however
is not a prediction of the low-energy theory as it is sensitive to the coefficients of higher
curvature terms in the gravitational action.

Our work in the present paper will focus on the square-root and logarithmic non-analytic
terms of the scattering potential.

The plan of the paper is as follows. In Sec. II we discuss the relations between the gravita-
tional Compton amplitude to the square of the electromagnetic one. In Sec. III we compute
the one-loop amplitude in the helicity formalism. Here we first calculate the electromagnetic
case as a warm up before moving on to our primary interest of the gravitational interac-

tion. In Sec. IV we evaluate the amplitude in the covariant harmonic gauge and compare



with the Feynman approach used in earlier computations. In Sec. V we discuss the matter-
independence of the non-analytic long-range contributions to the amplitude. Finally, Sec. VI
contains our conclusions and discussion. In Appendix A we list the covariant Feynman rules

and Appendix B discusses an alternative evaluation of the cut using dispersion relations.

II. THE GRAVITATIONAL COMPTON AMPLITUDE

In this section we will show how one can represent the gravitational Compton scattering
of two gravitons off a massive target of spin s = 0, %, 1 as the square of the QED (Abelian)
Compton scattering. We will do this first using covariant amplitudes, and then more com-
pactly using the helicity formalism. The advantage of this approach is that one can use the
known expressions for the massive tree-level amplitudes in Yang-Mills and QED to obtain
in a condensed way the massive tree-level amplitudes in gravity. As well, the connection

between the gravity and the QED amplitude will be instrumental in deriving the matter-

independence results in section V.

A. Covariant notation

We will evaluate the one-loop amplitude by considering the unitarity cut across the
graviton lines in section II C and III B, thus we need to construct the tree-level amplitudes
for the emission of two gravitons.

The tree amplitudes needed in this analysis can be constructed in various way. One direct
covariant approach is to use the background field vertices derived in [7, 8]. These vertices
are listed in Appendix A. The vertex 71" (p1, p2) given in eq. (A.1) describes the emission of
a graviton from a massive scalar exchange. Because the metric is realized through the stress-
energy tensor, the vertex couples identically to quantum A*” or background fields H* (as
used in refs. [7, 8]). The vertex 757 (p1, p2) given in eq. (A.2) is the four point interaction
between two massive scalars and two gravitons. Again the coupling between gravity and the
scalar through the stress-energy tensor implies that these vertices are the same for quantum
or background fields.

In order to compute the general relativity correction and the quantum correction arising

from the one-loop diagram we need the tree-level amplitude for emitting two gravitons as
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FIG. 1. The various contributions to the tree-amplitude ¢ + ¢ — 2 gravitons: (a) s-channel, (b)

t-channel, (c) u-channel, (d) contact term.

illustrated in figure 1. In the covariant approach using the background field vertices the tree-
level amplitude for emitting two quantum gravitons h of polarization e‘f"g (k1) and egé(l@) is
given by (with all incoming external momenta)

. rtree v iPuV;pff po ap Y6

iM(pr, p2, ki, ko) = 11 (P, p2) 2+ ic 75" aps(k1, k2, p1 + p2) €77 (k1)es” (ko)
Tlaﬁ(pb —DP1 — kl)iTlfyé(pl + lﬁ,pz) Eaﬁ(k )ew(k: )

(p1 + k1)2 —m? +ie LARR2 AR
76p7_p_k Z.7—0¢p—|—k:7p «

+

+ ,
(p1 + k2)? —m? +ie !
+ T2a6;76(p1>p2) E?ﬁ(kl)egé(k’z) ) (IL.1)
with
Paprs = B} [Ny + M8yNas — Nashys) » (I1.2)

in harmonic or de Donder gauge [17]. The three-graviton vertex 74" 4.5, given in eq. (A.3),
between two quantum fields h and one background field H differs from the vertex for three
quantum gravitons derived by De Witt [18] and Sannan [19]. We have checked that the
on-shell amplitude constructed with the three-graviton vertices derived in [18, 19] leads to
the same answer as ours. Notice that its expression given in (A.3) is much simpler than the
three-graviton vertex of these references.

We have also checked that our amplitude correctly satisfies the relation to the QED

amplitude [20] which we discuss below in the context of the helicity formalism.

B. Massive trees amplitude in gravity from Yang-Mills tree amplitudes

A different approach is to construct the gravity amplitudes by applying the KLT method

to the emission of two gluons from massive scalars.



The KLT relation between massless four-point gravity amplitudes and Yang-Mills ampli-

tudes reads [21, 22]

2
o)

iM(py, pa, kr, ko) = T(pl k1) AT (py, po, kg, i) AT (py, ko, pa, K ) - (I1.3)

Where M™(py, pa, k1, ko) is the tree-level scattering between a matter field X* of spin

s =0,1,1 and gravitons X*(p1)g(k1) = X*(—p2)g(—ks) with p; + ps + k1 + ko = 0, given

by the sum of diagrams in fig. 1. We use /{?4) = 327Gpy. The gauge theory amplitude

Ate(py, po, ko, k1) is the tree-level scattering amplitude between a matter field ¢* of spin

s =0, %,1 and gluons ¢*(p1)(¢°(p2))* — g(—k1)g(—ks). The amplitude A§®(py, k2, pa, k1)

is the tree-level scattering between a scalar matter field ¢° and gluons ¢°(p1)g(k1) —
O (=p2)g(—Fk2).
The color-ordered Yang-Mills amplitudes satisfy the amplitude relation [22]

- ko -
A';ree(pl,pz, ks, kl) = Zl k:2 Airee(pl, k2, pa, ]ﬁ) ) (11‘4)
1 K2

allowing us to express the amplitude in (II.3) in the following manner,

“%4) (p1- k1) p1- ko
262 k?l . k?g

Z'Mstree(pl,])za k1, kz) = Af:”ee(pl, ks, pa, kl)/lffee(pl, ks, p2, ]ﬁ) . (H~5)

We will now explain that these amplitude relations are valid in the same form replacing
massless fields X* with massive matter fields X*. The general form of these massless am-
plitudes for n-point color-ordered gauge theory amplitudes A%*¢(o) and the n-point gravity

amplitudes M takes the form [21, 23, 24]

Mtree — Z 8[0-(27 ,TL—2)|’7(2, ’n—2)]|k1><

U?’YEGTL—B

X Atree(170(2> e, N — 2)7” - Ln)Atree(nan - 177(27 N 2)7 1) : (IIG)

with the momentum kernel given by the expression
S[ila cee 7iT|j17 cee aj?"”p = H(p : kir + ZH(ZT,ZS) kir : kls) . <II7>
t=1 s>t

Here 0(iy, is) equals 1 if the ordering of the legs i, and i is opposite in the sets {i1,...,.}

and {j1,...,Jr}, and 0 if the ordering is the same.



This relation can be rewritten in various equivalent way thanks to the annihilation prop-

erty satisfied by the color-ordered gauge theory amplitudes [24, 25|

> Sl n=D(2, - n=2)]k xA™(L, (2,5 ;n—1),n) =0; Yy €S, .,
neS,_2

(11.8)

generalizing the relation in eq. (I11.4).

These relations have been derived for a number of different types of matter including,
massless scalars, vectors (gluons or photons), and gravitons [26]. The derivation shows that
the relation is the same in any space-time dimensions. However, the key point is that a
massive scalar in four dimensions is equivalent to a massless scalar in higher dimensions.
Therefore, an amplitude between massive scalars and gravitons in four dimensions, can be
seen as a tree-level amplitude between massless scalars in higher dimensions with gravitons
polarized in four-dimensions. In this higher-dimensional setup the relation between gravity

and gauge theory can be applied.

The validity of the amplitude relations with massive scalars and gravitons also follows
directly from string theory. The case of tachyons was already considered in [27]. The
relations in [21, 24] relies on the monodromy properties of the colored-ordered open string

amplitudes
Aa’(ih A 7’Ln) = / f(l’z — $‘j) H (1‘7, — xj)QOC'ki'kj H d$z . (IIQ)
Ty < <ZTjy, i,j=1 1=1
i#]

The monodromy property however does not depend on detailed expression of the function
f(x; — ;) and are derived from momentum conservation ) . k; = 0 and the phase factor
that arises when going around the branch cut given the factors (x; — xj)%"ki‘kﬂ' . The phase
factor is not affected by any integer shifts of 2a/k; - k; arising e.g. from a pole from a
massive scalar in the function f(z; — ;). Thus the massive field theory amplitude relations
obtained by considering the o/ — 0 limit, satisfy the same properties as explained in [24] as

corresponding massless ones.

Assured that the KLT relation applies for various types of matter fields, massless and
massive, we will now study the case of four-point amplitudes describing the emission of two

gravitons from a matter field of spin s.



C. Application of KLT to the gravitational Compton scattering:

Reduction to QED amplitudes

FIG. 2. Compton scattering given by the ¢-channel contribution in (a), the u-channel contribution

in (b) and the contact term in (c).

Our starting point for deriving the gravitational Compton amplitude is the KLT expres-

sion from the previous section

“%4) P ki pr - ko
262 kl . kg

iMﬁree(p1,p2, k1, kz) = Airee(pl, k2, p2, kl)fléree(pl, ks, pa, kl); (H.lO)

where the gravity amplitude is expressed as a product of Yang-Mills amplitudes without a
s-channel pole and we thus have no Yang-Mills diagrams involving the non-Abelian three-
gluon vertex. This KLT representation of the gravitational Compton scattering is key to
the reduction of the amplitude to a product of QED amplitudes that we will consider in
this section. The color ordered-amplitude AY**(py, k2, p2, k1) represents the scattering of two

gauge boson from a spin s matter field depicted in figure 2

Atree k ki) = 2 nf TLZ s I1.11
2 (p1, ks o, k1) = e <p1‘k1+p1'k2+nct ; ( )

where p? = p3 = m? are the momenta of the massive particles and k¥ = k2 = 0 are the
momentum of the gluons with all incoming momenta p; + ps + k1 + ko = 0.

We will now explain that we can always express the amplitude A%®(py, ka, pa, k1) solely
in terms of QED (abelian) Compton scattering amplitudes. The ¢- and u-channel diagrams
in figure 2(a)-(b) are composed of three-point amplitudes between two matter fields of the
same spin s of the same flavor and one gauge boson. The coupling of a matter fields of

spin 0 of the same species and one gauge boson is given by

e(pr—pa)u (2m) 8(p1 + p2 + k1), (IL.12)
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or for particles of spins % of the same species and one gauge boson
e (2m) 8(p1 + P2 + Ku) - (I1.13)

Finally the coupling between two massive spin 1 fields of the same species and one gauge

boson is given by

—¢€ (guvufl - p2)p + 9Vp(p2 - pl)u + gpu(pl — k1)) (27)4 S(p1 +p2+ k1), (I11.14)

where in all cases e is the coupling constant.

There is no quartic coupling between two spinorial fields and one gauge boson and the
four-point interaction in fig. 2(c) between two scalars (without flavor changing) and two
gauge bosons

— z'ezg,“, (2m)* 5(p1 + po + k1 + k) (I1.15)
is the same in an non-Abelian as in an Abelian theory.

The four-point interaction between two massive vectors of the same species and two gauge
bosons is in an non-Abelian theory given by

- iez Z[fabefecc(g,upgyo - g,uogyp) + facefebc(Quugpa - g/ufgpu) + facefebc(g,uzxgcrp - g,upgol/)]

e

x (2m)*0* (py +p2 + by + ko). (IL16)

By antisymmetry of the structure constant f... = 0 the interaction reduces to

- i€2 (Z facefebc)[(quugpa - g;wgpu - gupgcru)] X (27’[’)454(]?1 +p2 + kl + k2) 3 (1117)

e

which has the same kinematic part as the Abelian one.

We can thus conclude that the amplitudes A% with s =0, % appearing in the factoriza-
tion of the gravity amplitudes in (I1.5) can be thought of as QED amplitudes for Compton
scattering off massive matter fields!.

The numerators of the QED Compton amplitudes A%°(py, ko, p2, ko) are given by

nY = 2e; - p1 € pa, (I1.18)
nt = Su(-p)s(p, + b+ m)fyuen), (11.19)

ntl = 2[(h1 : h2) (61 'p1) (62 'p2) —hy - Iy - Fy - hy

I The representation of the massive gravitational Compton scattering of a massive matter field of spin
s=0,1/2,1 in terms of (Abelian) Compton amplitude was already noticed in [14, 20] and [28]. It would
be interesting to understand if this factorization using purely Abelian interactions can be achieved with

other types of gravitational amplitudes.
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— (h1- Fy-ho) (e1-p1) — (h1 - Fi - ho)(ea - p2)], (I1.20)

and with similar expressions for n? with the exchange of p; and p, and finally?

nd, = 2¢ - €, (I1.21)
1

ng =0, (11.22)

’)”L}:t = —2h1 : hg €1 €2 (1123)

We have here made use of the notation hy-Fy-hy = hYhYFy ,, and hy-Fy-Fy-hy = W Fy,,,F5", hb
with Fj ., = ki€, — €0, defining the field-strengths of the photons. With the given nu-
merators factors we have checked that the spin 0 amplitude constructed from (I1.5) correctly
reproduces the covariant expression in (IL.1).

One important consequence of the factorization of the gravitational Compton amplitude
into a product of two Compton amplitudes is that it gives a rationale for the value g = 2 of
the classical gyromagnetic momenta for all types of matter fields, as shown in ref. [15]. An
evaluation of the Compton amplitude for massive particles shows that amplitude has a pole
for m = 0 with residue (g — 2)?. The two derivative nature of the gravitational interaction
forbids the present of a singularity of the gravitational Compton amplitude when the mass
of the particles goes to zero. Therefore the KLT relation in (II.5) implies that the right
hand side cannot have a pole in the zero mass limit for generic values of the momenta. This

implies the natural classical value g = 2 for all types of matter fields.

D. Helicity tree amplitudes for QED and Gravity
1. The QED amplitudes

In this section we compare the QED amplitudes in (II.11) with the scattering of two
gluons off a massive scalar derived using the helicity formalism (see ref. [29]). We use here
e? = 1. We have

m2 [k’l k’g]2
ky - ko 2k ']917

<k/’2 |P1 |k1]2

Atree kJr k+ —
0 (p17p27 2 1) kl-k22/€1~p17

AT (p1, 2, by K) = (I1.24)

2 Notice that this is not a BCJ parameterization [22] because the numerators do not satisfying a dual Jacobi
identity. One can define a set of BCJ numerators as n = 2(n{ + nd) + tn?, and 7] = —2nf — tn?, and
n; = —2n;, satisfying n? + nj + n; = 0. Other expressions are possible, depending on the distribution of

contact terms amongst the pole terms.
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with

Agree(pl,p% l{?;, k’;) = (Agree(plvp% k;7 k;r))* ’
A (py o, ki k) = (AT (py, pa, by, k)" (I1.25)

It is immediate to check that the Compton scalar amplitude A (py, ka, pa, k1) is related to
the helicity amplitudes by the excepted monodromy relations (p; - ko) A (py, ko, pa, k1) =
(k1 - ko) AGe(p1, P2, ko, k1) and read

m2€2 [k’l k2]2
Apr - k) (p1 - ko)’

_ o |p1 | K
Atree ey ,k’+ — 2 < 2 ‘
0 (pl 2 P2, Ry ) 4 (kl pl)(pl . kQ)

This expression is (although not manifestly) symmetric under the exchanges of k; and ko

Agree(ph k;:p% kf) = -

(I1.26)

and p; and po.

2. The gravity amplitudes

Using the relation in (I1.3) we can write the expression for the four-point amplitudes for
the emission of two gravitons. In this situation, we have

"i?4) 1 m4 [k’l k2]4

126 (k- k) (K -pl)(k; “p2)’ ,
_ K L (kilpi|ko]™ (k1|palks]
Mtree k k,-‘r — (4)
0 (p17p27 1> 2) 16 (k?lkg) (k?lpl)(k?po) ’

Mgree(php% ki’—a k;_) =

(I1.27)

with
Mg (1, pa. by ks ) = (M (1, pa. b K5))"
and

Méree(pl’p% ki"’ ]{;2_) — (Mgree(pl>p27 kl_’ k;))*

We have checked that these expressions match the covariant ones and the expression obtained
from (I1.5). The massive amplitude M{™(py, ps, ki, ky ) reproduces the one given in [4,
eq. (5.4)] and its massless limit reproduces the results of [4, eq. (4.5)]. We note that using
the KLT factorization property to construct the amplitudes that go into the cut avoids
having to deal with tensor contractions of the complicated triple graviton vertex, which is a

normal tedious feature of any off-shell Feynman diagram computation.
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FIG. 3. The cut considered. The loop momenta are flowing clockwise. And the on-shell conditions

are /2 = 0 and (3 = ({1 + k1 + k2)? = 0. Solid lines are massive and wiggly lines are massless.
III. THE ONE-LOOP AMPLITUDE IN THE HELICITY FORMALISM

In this section, we obtain the non-analytic terms that give the leading classical and
quantum corrections to the scattering potential for QED and for general relativity. For this
purpose we do not need to reconstruct the full amplitude, but only identify those terms
in the cut that lead to non-analytic contributions, i.e. CVF, the classical correction from
general relativity, and C“%, the quantum gravity correction to Newton’s potential in (I.3).
We obtain these respectively from the coefficients of the non-analytic 1/ \/—_q2 and log(—q¢?)
contributions in cut.

To extract the non-analytic parts of the amplitude, we will proceed as in ref. [30]. In-
stead of evaluating the phase-space integrals directly we simply reinstate the off-shell cut
propagators but impose strictly the on-shell cut condition everywhere in the numerator. We

thus evaluate the following types of expressions

ree A A ree A ALY )
leloop’ =/ AP0 2o 00 MAS, (P1, 2, —00%, 6 ) (MRS, (ps, pa, 6%, —417))
disc (27T)D K%E% cut’

(I11.1)
with 2 = (3 = 0 and where \; and ), are the helicities of the massless particles (gravi-
tons/photons) across the cut. In this formula, we are using the notation |.,; to indicate the
cut is taken in this integral. Whenever we discuss the discontinuity singularity it is under-
stood that we are on the cut, although we will not explicitly indicate this in the integral for
simplicity. This procedure allows us to directly identify the box, triangle and bubble inte-

gral functions which contribute to the amplitude, and use them to identify the non-analytic
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terms which we are seeking?.
We will illustrate our discontinuity cut method by first calculating the case of the Coulomb
potential. Here the cut is a little simpler and it is easier to demonstrate the techniques. In

the next subsection we will then use the cut technique in the case of pure gravity.

A. The one-loop correction to Coulomb potential

In this section we will compute the quantum correction to the Coulomb potential between
two spin 0 particles of the same charge but non-zero masses m; and ms.

We are constructing the one-loop amplitude by computing its discontinuity cut across the
massless photon lines (double wavy-line in figure 3). We not are interested in reconstructing
the full one-loop amplitude but only the parts that contain the infra-red logarithms and
square-root contributions.

In the cut in Eq. (III.1) we have the following on-shell kinematic relations p; + po +
p3+ps =0, pt = p2 =m? and p2 = p? = m3. We define the momentum transfer ¢ from
q =p1 +p2 = —(ps + ps). We have in the static non-relativistic limit py, —ps >~ (my, 0) and

P4, —p3 = (Mg, 6), and furthermore that (in the mostly minus metric)

s = (p1 +P2)2 ~ —q?
t=(p1+ps)? = (ml +my)?, (I11.2)
u=(p1 +p3)* = (my —my)® + q*

The tree-level helicity amplitudes are given in (I1.26) hence the discontinuity of the one-loop

amplitude takes the form

4 D
T p—— / d ﬁD 4N _ (IIL3)
we 16 ) (2m)P 243 [Tici(pi - 1)

1 B 2( 1 + 1 )
by -prly - po s \ 1P Uy - py 7

3 By considering only this two-particle discontinuity across the massless momenta, we do not have enough

We deduce that

information to reconstruct the full amplitude. To achieve this, we would need to consider all the discon-
tinuities across the massive legs and evaluate the cut to all orders in € with D = 4 — 2e. However, the
discontinuities across the massive propagators will not contribute to the leading order massless threshold,
not will higher order terms from an e expansion of the cut. Thus we will ignore all these contributions

here as they are not important for our analysis.
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1 2 1 1
- - _Z 4 , 111.4
Uy -p3ly-pa ] <€1-p3 514)4) ( )

using that ¢ = p; +ps = o — {1 = —p3 — py and {1 - ¢ = —s/2. This allows us to express the

one-loop cut as a sum of integrals with numerator N’

4 2 4 D
dPt N
M| = / . T,
disc 4 12:: 2:: 82£2€2 (pz El)( él) ( 5)

where we will distinguish between the cases of the photons having the same helicity on each

side of the cut (this is traditionally in the literature called a singlet contribution) or opposite
helicity (called a non-singlet contribution).

For the singlet cut the numerator is given by
N e L (I1L.6)
Giving a contribution from the singlet cut of only scalar boxes
MEmelet — et om2m2(I4(s, t) + Iy(s,u)), (I11.7)

Here we have in D = 4 — 2¢ using the normalization of ref. [8] that

dDE 1
I‘*(S’t):/(zw)D Cl+q)? (C+p1)2—m3) (€ —pa)? —mg)

Py 1
s = [ @D B+ Q2+ pr)? — mD)((—paff —mma) (L8)

where w = p1 - py — myme = and W = —p; - p3 — mymo and it should be remarked that

w =W — 1 ¢* In the non-relativistic limit where w — 0 and to leading order in ¢*, we

have [§]

log(—4)

96m2m3m3
log(—¢*)

8m2mim3 q?

Ii(s,t) + Iy(s,u) =
Iy(s,u) — I4(s,u) = (I11.9)

Thus the singlet cut amplitude in (I11.7) in the non-relativistic limit gives

) 1
Msmglet(q) ~ _ - log(q—*2) 7 (11110)

to leading order in ¢ ~ —q- .

For the non-singlet cut contribution the numerator is given by

) 1
Nnon—smglet — §(tl"_ (€2p1€1p4)2 + tr+(€2p1£1p4)2) , (11111)
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where the traces are defined by try(abed) = 2(a-be-d—a-cb-d+a-db-c)£2ie""a,b,c,d, .
Expanding the traces we see that one can rewrite the numerator in terms of two contributions

Nmon—singlet = 2 4 where

E:=2(0y-pily-ps—L1-Lapr-ps+Ly-p3la-p1),
O .= (Euz/po'gl nP1 l,ggppga-)Q . (11112)
This leads in the non-relativistic approximation to a rather simple form for the numerator

Nnonfsinglet ~ (S m% + 4(])1 . gl)2> (S m% + 4<p4 . 61)2) . (11113)

Evaluating the contributions from the non-singlet cut (in the non-relativistic limit) lead

to the following combinations of scalar box, triangle and bubble integrals to leading order

Mnon—singlet — ¢t (Zm%mg(Ll(S, t) + I4(S, u)) + mf(];;(pl, q, ml) + I3<p2’ q, m2))
+ m3(I3(—ps, q,m2) + I3(—ps, ¢, m2)) + ]2(q)> . (IIL14)

The scalar triangle and bubbles integrals are defined following the conventions of ref. [§]
I( ) / dPe 1

) ) m = )

e 2m)P 20+ qP(((+p)* —m?)

I5(q) :Z/(gﬂfl) 62(£1+q)2' (I11.15)

Where we in the non-relativistic limit have

7
327r2m2

¢ 2
62 log(—q?), (II1.17)

I3(p, q,m) ~ (log(—¢*) +S(m)) , (I1.16)

I5(q)
defining S(m) = —7*m/|q].

Thus the contribution from the non-singlet cut amplitude in (II1.14) yields in the non-

relativistic limit w — 0 (to the first order in ¢* ~ —¢?)

. 4 8 my -+ Mmea
Mnonfsmglet q) ~ e (_ log _q2 _ 7T2—) II1.18
( ) (471’)2 3 ( ) |cﬂ ( )
Summing (I11.10) and (II1.18) we obtain the total amplitude
et 7 my + mo

Aol () (_ log(72) — W2_) 7 11119
(9) (47)2 \ 3 (@) 4] ( )

and the one-loop correction to the non-relativistic potential is given by

Mnonfrel.(q) 64 7 my + mo

Vone—loop — — — 1 72 — 2 . I11.20
(q) 4m1m2 87T2m17Tl2 3 Og(q ) 4 |Lﬂ ( )

This reproduces the result of [31, egs. (4.50a), (4.51a), (4.54)] and [32], although we want

to point out the huge simplicity of our cut derivation.
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B. The one-loop correction to Newton potential

In this section we will perform the evaluation of the correction to the Newton potential
using the on-shell cut in the helicity formalism. This computation will as expected not
require any ghost contributions.

Proceeding as in the QED case, the cut discontinuity of the amplitude can be expressed

as a sum of integrals with numerator N/

dPe N
T / I11.21
e = 16 54 ZZ 2m)P 05(pi - ) (pj - 1) ( )

We will evaluate the amplitude in the static non-relativistic limit (II1.2).

As in the QED case, we will here as well distinguish between the cases of the graviton
having the same helicity on each side of the cut (singlet) or opposite helicity (non-singlet),
and we separate the numerator factor N in these two contributions.

The singlet-cut numerator is easily evaluated and gives

4,4
mim
1M 4

Nsinglet le m2 (f 62) — < 7

(I11.22)

therefore its contribution to the one-loop amplitude is given by scalar boxes only
singlet H?4) 4
M () = 16 mims (Is(s,t) + Ly(s,u)). (I11.23)
This is readily evaluated in the non-relativistic limit to give

4m3m3 o

Msinglet(q) ~ _G2 3 ( 2) , (111.24)

where we have made use of the relation K,?4) = 327Gy.

The numerator for the non-singlet cut contribution is evaluated to

. 1
NrenTsinglet — B ((tr—(p1laps))* + (try (Gipstopr))t) - (IIL.25)

The evaluation of this contribution is a bit more involved since the expression contains
integrals with up to eight powers of loop momentum in the numerator. We note that in the
gravity case the cut is not the square of the QED cut but the sum of the squares of the
corresponding QED terms in the cut.

Decomposing the trace as in the QED case (keeping only terms that give a contribution

in the non-relativistic limit) the numerator factor takes the form

Nnon—singlet — ((52 o 4@)2 . 16520)
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= 165*(map; - {1 —myps - 6)*
+ 248(ma p1 - €1 — my pa - €1)*(mamas + 4py - lips - €1)°
+ (mlmzs + 4p1 . €1p4 . 61)4 . (11126)

In the non-relativistic limit evaluating the discontinuity cut integrals leaves us with a sum
of scalar boxes, scalar, linear and quadratic triangles and bubbles integral functions ranging

from scalar to quartic, i.e.

Mnon—singlet(q) _ Mnon—singlet( )+Mnon smglet< )_’_Méll(l)kr)lblzlsnglet(q)' (11127)

boxes triangles

To the leading order in the non-relativistic limit, we have scalar box integral functions M Poxes

given by
- /1214)
Mgg:e;smget(q) = (m1m2(14(s t) + Iy(s,u) + 2m3m3 s(Iy(s,t) — ]4(s,u)) . (T11.28)

This gives in the non-relativistic limit (using (II1.9))

100m2m?
non—single —
Mboxes B _G?V 31 : 1 ( 2) (11129)
For the triangles, we have integrals from scalars up to quadratic terms M/ tiansles
2
. K
non—singlet (4)
Mtr(i)angiesge == 16 (IIISO>

6mima(Is(py) + Is(pa)) + 6mims(I3(—ps) + Is(—ps))
—2mi(Is(p1, {pa}) + Is(p2, {pa})) + 8mima(Is(p1, {pa}) — Is(p2, {pa}))
+ 2my(I3(=ps, {p1}) + L(=pa, {p1})) + 8mami3(Ls(—ps, {p1}) — Li(—ps, {p1}))
+ 4m1(ls(p {Pa; pa}) + Is(p2, {pa, pa})) + 4m3(Ls(=ps, {p1, p1}) + Is(=pa, {p1,1}))
+ 5 (Tl {prpad) + Do pas i) + b=, i)+ Bns (i)

with linear and quadratic triangles defined via

vl [, ¢ K,

Is(p, g, m; { Ky, ..., K, }) ::/(277)13 ElT 0 (1 p)—m?)’ (I11.31)

were we have r = 0 for scalar triangles, » = 1 for linear triangles and r = 2 for quadratic
triangles. We use here the short hand notation that I3(p,,---) = Is(pr, ¢, mq,- -+ ) forr = 1,2
and I3(—py, -+ ) = I3(=py, q,ma, - - -) for r = 3,4.

Taking the non-relativistic limit leaves us with

2

Bl 50) ~ 35 s (K p) (<1 5 ) os(-2) 4 K g os(") + 5 S(m)

b
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T, Ko, o) ~ 2o | (K 0) (6 - g) (~ los(—7) — 5(m)

3272m2
q
~ (K, - p) (R ) 5 (4log(~?) + S(m)
(K- ) (Ko p) + (K p) (K- ) (2 log(—g?) + —L_S(m)
1-g)(fL2-p 1-p)L2-q o2 0gl—¢q 16m2m
1
+ §K1 - K? ¢ (21og(—¢%) +S(m))} ; (I11.32)
so that
Mgt (g) ~ GX mimj (120 log(q - §) — 24x> L2 ‘; mZ) : (I11.33)

To the leading order in the non-relativistic limit, the bubble contribution Msﬁgb_lzinglet is

given by
1
My & = _% E_S[Z(Q: {p1.p1,p4,pa}) (I11.34)
— 4(3mim3Ly(q) — ma(2m1 + 3ma)La(g. {p1}) + ma (8mi + 2ma) (g, {p})
+ L, {prpi}) + Bla, {papid) + 3000, {p1,p1}) )
+ 2 (30m3 00, tpr,mi}) + miDa(a. (e pa})) — Amimala(a, {pr, )
+ I2(q, {p1, ps, pa}) — I2(q, {p17p17p4})> ; (I1.35)
where
(g, {Ky, - K, }) = / (;ff[, 1}2@1iq§§ , (I11.36)
with r =0,1,2,3,4. The bubble integrals are all given by
L(q,{Ky, -, K,.}) = L(q) P.(¢°) + rational part, (I11.37)

where I5(q) is the scalar bubble function given in (II1.15) and P,(q, K3, ..., K,) is a poly-

nomial. The rational part does not contribute to our analysis. The polynomials are given

by

q- K
5

Pq, K;) = — (111.38)

1
Py(q, Ky, Ks) = E(4Q'K1Q'K2 - K, Ky),

1
P3(q7 Ky, Ko, Ks) = ﬂ((lz (K1 cK3Ky-q+ Ky - KoKs-q+ Ky - qKs - K3)

—6K1~qKz-qK3'q)),

1
Py(q, K1, Ky, K5, Ky) = %((C]Q)?(Kl KKy - Ky + Ky - KsKy - Ky + Ky - KoK - Ky)

- 6q2(K1~qK2~qK3-K4+K1~K4K2'qK3~q+K1-K3K2~qK4-q+
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Ky - KoK3-qKy-q+ Ky - qKy- KyK3-q+ Ky - qKy - K3Ky - q)
+48K1-qK2-qK3-qK4-q>.

Leaving us with
2,2
788mims; o
15

Thus the total contribution is given by summing (II1.24), (II1.29), (II1.33) and (II1.39)

M (g) = G 8(7?). (I11.39)

yielding

41
Mtotal(q) _ G?V 4m%m§ (—GFQM 4+ = 1Og(g’2)) ’ (IH40>

I7 5
leading to the one-loop correction to the non-relativistic potential

B Mtotal(q) 2 mi +mqe 41 _,2)) (111.41)

Vone—loop(q) — W — G?lemQ <_6 T + E log(q

This matches refs. [8, 9]. We point out that other computations can be carried out with
much greater ease using the cut method as well, for example the mixed electromagnetic-

gravitational scattering case, previous computed in refs. [33, 34].

IV. THE ONE-LOOP AMPLITUDE IN HARMONIC GAUGE

We can also use the discontinuity cut technique to evaluate the potential using the co-
variant notation, in harmonic gauge. This has two interesting features. One is that this
gauge requires ghost fields, and we will see that the discontinuity from the ghosts must be
added in order to obtain the full result. In addition, this calculation lets us make direct
contact with the Feynman diagram approach in harmonic gauge [8, 9]. We will describe in
this section how one can compare with the individual diagrams of the effective field theory

calculation.

A. The graviton and ghost contributions

Our starting point is the tree-level amplitude which takes the generic form

M™(p1,pa, k1, ko) = M, (D1, p2, ki, )€ (ki )€ (k) - (IV.1)

pv,po

When we take the discontinuity across the massless graviton lines we use the harmonic

gauge polarization sum P,s.s given in Eq. 11.2. This yields the expression for the on-shell
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discontinuity (in D = 4 — 2¢ dimensions)

/ APl M (1, pa, —La, ) PR PP (MU s(pa, p3, Lo, —b1))*
(2m)P 0 '

1—loop o

M |d’isc -
(IV.2)

A significant simplification in evaluating the discontinuity across the cut in (IV.2) is due to

the following remarkable identities noticed in [§]

T2 L, po (pl;pQ; m)P'uyaBPpgfyS = T2 aB,yé (p17p27 m) ) (IVS)
Ti’)pZu,pa(kla k’g, Q>Puyaﬁppg'y§ = 7_525775(]{17 k27 Q) . (IV4)

The identification of the boxes, triangles and bubbles is not as neat as in the helicity ap-
proach, and we do not display the intermediate formulas. Performing the index contraction
with Mathematica and taking the non-relativistic limit as described in [8] we obtain for the

contribution of the cut in eq. (IV.2)

. 26
M5¢(q) ~ G3 4m3m (—— log(q?) — 67 mt m2> . (IV.5)

3 [

Since we used the harmonic gauge in this covariant computation we need to include the

FIG. 4. The ghost contribution from the vacuum polarization of the graviton

extra graph of figure 4 from the contribution of the ghost to the vacuum polarization of
the graviton. The ghost Lagrangian for the de Donder harmonic gauge used in this work

reads [17, 35]
Sehost — / d'z /g0 " (VIVan, + VAV, — V. Vant) . (IV.6)

Evaluating the graph in figure 4 leads to the contribution in the non-relativistic limit

N 1012 )
Meh *(q) ~ G% 1—5m%m§ log(q?). (IV.7)

Summing the contributions in (IV.5) and (IV.7) leads to the result given by the helicity
computation (I11.40) and verifies again ref. [8, eq. (44)]

oMy +my 41 ﬁ2)>

Ml—loop(q) ~ Gy 4m%m2 (—671' T + E log(q (IV8)
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By way of comparison, we note that the helicity amplitude calculation of the previous section

corresponds to a sum over the physical helicities

i = [ 2 Vil o 01 S M By
disc (27T)D g%g% )
where S, - arises from the axial-gauge polarization sum
A\ Mpye L
Spv,po = Z Ew(k)(epo(k)) = 2 (SupSve + SupSue — SuSpe) (IV.10)
A=+1
with S, the axial-gauge spin 1 polarization sum
re: kV re Vk
S = 3 AEN AR =~y + Ltk T el an

A—+1 Qref * k

where (gref),, is an arbitrary massless reference momentum. That this sum includes only the

two transverse modes can be seen from the condition
n,upnlloswj’pg = 27 (IV12)

corresponding to the normalization condition for the two polarization vectors e;};}(k) Our

work therefore confirms the expected gauge invariance of the quantum correction.

B. Comparison with the Feynman graph approach

One useful feature of this method is that one can confirm the analysis of ref. [8] diagram
by diagram. Squaring the tree amplitude shown in Fig. 1 leads to discontinuities with the
same topology of all the Feynman diagrams evaluated in [8]. Evaluating these individually
confirms not only the total result, but also the result of each of the separate diagrams.*
The advantage of doing the diagrams by the unitarity approach is that one does not have
to worry about symmetry factors between Feynman graphs, it is automatically taken care
of by the cut.

The precise relation with the analysis of [8] is the following. We decompose the expression
for the tree in (II.1) in a sum of three contributions. The first contribution corresponds to

the sum of the graph in figure 1(a)

M;S?/?pa(plap% —lo, ly) =T, 5(2917292) = _SZZ Tgéuu;pa(kl, ko, p1+p2), (IV.13)

4 In [8] the result for each diagrams has been divided by 4mjms, whereas in this work the amplitudes are

not divided by this factor.
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the second contribution corresponds to the graphs in figure 1(b) and (c¢) and is given by

Tl,ul/(pla —p1 — €1>i7—1pa<_p2 + 627p2)

M O)+(e) —lo ) =
UV, po (p17p27 2 1) 2p1 ) gl T e
o y e ) v\ — g s
1 D B)inw(Cr T hpy) gy gy
-2 P1 - EQ + 1€
The third contribution corresponding to the graph in figure 1(d)
M;S;d/?;w(plap% _627 gl) = T2;Ll/,po(p1’p2> . (IV15>

In the cut we get a total of of six different contributions from the multiplication of the
trees. Multiplication of the contributions of type (IV.14) on both sides of the cut gives
the discontinuity of the box diagram of [8, sec. 3.2]. Multiplying the contribution (IV.14)
and (IV.13) leads to the the discontinuity of the vertex correction contributions in figure 5(a)
and 5(b) of [8, sec. 3.5]. Multiplying the contribution (IV.14) and (IV.13) leads to the dis-
continuity of the triangle contribution of [8, sec. 3.3]. Multiplying the contribution (IV.13)
and (IV.13) on both side of the cut gives the discontinuity of the vacuum graph contribution
in figure 6(a) of [8, sec. 3.6] without the ghost contribution from figure 4. Multiplying the
contribution (IV.13) and (IV.15) leads to the discontinuity of the vertex correction contribu-
tions in figure 5(c) and 5(d) of [8, sec. 3.5]. Finally multiplying the contribution (IV.15) on
both sides of the cut leads to the discontinuity of the double-seagull diagrams of [8, sec. 3.4].

V. MATTER-INDEPENDENCE OF THE QUANTUM CORRECTIONS

In this section we will address the previously noted matter-independence of the coefficients
CNF and C¥C. Tt was found in ref. [11] that the values of these coefficients are independent
of the type of the external matter under consideration.

Within the unitarity-based methods, the logic for matter-independence is quite simple.
The on-shell gravitational Compton amplitude has a generic form in the low-energy limit.
Therefore the discontinuity is matter-independent in the low energy limit, and since we can
extract the quantum correction from the discontinuity, the leading quantum corrections also
inherits this matter-independence.

That the on-shell gravitational Compton amplitude is matter-independent can be argued
for in various ways. Weinberg [36] has shown that the corresponding electromagnetic am-

plitude is matter-independent using only gauge invariance. It then follows that the on-shell
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gravitational amplitude is also matter-independent because the latter can be expressed as
the square of the electromagnetic amplitude as discussed in Section II. Alternatively, as
Weinberg also noted, we know that the electromagnetic amplitude can be expressed by an
effective Lagrangian, whose non-relativistic limit is determined by the charge and magnetic
moment. In the gravitational case, there is also a low-energy effective Lagrangian for a mas-
sive system, described by its energy-momentum and spin [37, 38]. This yields the leading
couplings of two gravitons to the heavy particle, which is equivalent to the low-energy limit
of our gravitational Compton amplitudes.

In this section we will provide general arguments for the matter-independence of the
coefficients OV and C?% based on the KLT amplitude relation. We will here only consider
the spinless contribution to the correction of the classical non-relativistic potential. An more

general analysis of the spin multipole expansion will be done elsewhere.

A. The spin 1 case

In the non-relativistic limit the orthogonality conditions on the spin 1 polarizations,

p1 - hi = pa - hg = 0, imply that

1 1
R ~ — hy - pi, R~ — hy-Ps. (V.1)
m m

~—>

Using the relation (@ x ¥) - (Z x ¢) = (4 - Z)(V - §) — (@ - y)(¥ - ) we have the following

multipole decomposition

2m?2

2 .
q Lg o L .
hi-hy~-=5S|(14+— | — S - X +—p1-Q-p2, V.2
1 ho ( 6m2) (P1 X p2) D@ P (V.2)
where S = El . ]_7:2 is the spinless singlet, S = iﬁl X ]_7:2 is the spin vector, and QU =
3 (hihd + Wb — %5’7(51 - hy) is the (traceless) quadrupole tensor. We have used that in
the non-relativistic limit ¢* = (p; + p2)? ~ —2p1 - Pa.
In the non-relativistic limit we can perform an 1/m expansion of the Compton tree

amplitudes. The Compton scattering of a massive spin 1 vector given in section II C reads

Airee(ph ko, pa, k1) = —(h1 - ha) Agree(pl, ko, p2, k1)
hi-Fi-Fy-hy+ (I 'FQ'hz) (e1 -p1)+(h1-F1-h2) (€2 - p2)
2p1 - ky
hi-Fy-Fy-hg+ (hy- Fy-hy) (e1-p1) + (ha - Fy - h) (€2 - p2)

_ V.3
2p1 - ko ( )
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To leading order in 1/m the amplitude approximates to

AT, oo, k) = S A (pr, Ko )
WPy B wh + (S Ba) (e - 1) +(S - By) (e po)
- 2]91 : kl
R\ Fyi i Fy7phl + Z(g él) (€1-p1) + Z(g EZ) (c2 - p2)
- 2]91 - ko .

(V.4)

The first line receives a contribution from the spin-independent operator S and the last two
lines from the spin-orbit and quadrupole operator. The indices 7, j, k = 1,2,3 run over the
spatial components.

The singlet spin-independent contribution S = hy - ho in this amplitude is multiplied
by the scalar Compton amplitude. Using the KLT relation the same property is true for
the gravitational Compton amplitude. Therefore the spin-independent contribution of the
one-loop correction to Coulomb’s potential QED and Newton’s potential in gravity, will be

the same as the one finds for scalar scattering, even with spin 1 external states.

B. The spin % case

For the spin % matter we have a similar decomposition in terms of a spin-independent

piece and a spin-orbit part. The spin % amplitude takes the form
1 1
n; ng

+ . V.5
D1 - k1 D1 - ko ( )

Atgee(pl,k%p%kl) =

1 1
The expression for n? is given in eq. (I1.19) with an equivalent expression for n; with the

exchange of the labels k; and ks.
We start by rewriting these numerators factors using the identity (1 + m)y u(p;) =

2p4u(py), which is a consequence of the equation of motion (#; — m)u(p;) = 0, to get®
1 2
ni = 2u(—ps) fou(pr) (e1-p1) — ggwm €2, F10pS) — 2u(—p2)y u(pr) €, F1pu - (V.6)

Here we have introduced the spin vector

!

St = Eﬂ(—pg)’yg,’y“u(pl). (V.7)

5 Where we used that {y*,7"} = 2" and 75 = —i€pey"""7, and YP = — LelPT sy,
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Using Gordon’s identities one gets that [32]

_ " 1 pllL - pg i Qv po
u(—pa)y"ulp:) = | & S om +—m25 P1vP2pSs | (V.8)
4m?

where S = u(—py)u(py) is the spinless singlet.
Since our spinor are normalized according to u(p)u(p) = 2m, following the conventions

of [39], the non-relativistic limit gives
T
St~ —2m (0,5 := §§20§1 : (V.9)
Lo
S~ —2m (f;fl +55 (1 x p2)) : (V.10)

In this limit, the numerator factor approximates to

nf =~ (€)@ p)(ep) + 2 B)(e @) + ot e, P, S (V)

Therefore the leading 1/m expansion of the spin % Compton scattering takes the form

2 , F, Fa,
Atlree<pl7 k27p27 kl) = (6561) A(gree(pbk%p%kl) + _mguuzsi (62# P + 61“ 2 p) . (V12)
2 3 p1 -k p1 - ko

We observe that the spin-independent part is again equal to the scalar amplitude and the
spin-orbit part is identical to the one derived for spin 1 amplitudes. Using the KLT relation
the same property is true for the gravitational Compton amplitude. Therefore the spin-
independent contribution of the one-loop correction to Coulomb’s potential in QED and in
Newton’s potential in gravity, will be the same as the one finds for scalar scattering, even

with massive fermionic external states.

VI. CONCLUSION

In this paper we have computed the leading classical and quantum corrections to the
Coulomb and Newton potentials. This has been done using modern techniques employing
spinor-helicity variables and on-shell unitarity methods at one-loop order for the first time.

This approach greatly simplifies the evaluation of these corrections. It is possible to
compare our computation directly to previous Feynman diagram computations by staying
in a covariant formalism, and explicitly put in the ghost loop contribution. By doing so, we

have verified the gauge invariance of the quantum correction. Such unitarity based methods
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also emphasize that the quantum correction come from only the low energy limit of the
on-shell gravitational amplitudes, and are insensitive to the unknown high energy behavior

of the full theory of quantum gravity.

We also considered matter-independence properties of the results for the non-analytic con-
tributions, and we showed directly using the KLT formalism that the spinless corrections to
the amplitude theoretically has to be manifestly independent of the nature of the interacting
particles as have been observed in the literature previously [11]. Such matter-independence
statements for low energy quantum gravity appears to be equivalent to previously noted
statements at low energy in QED [36]. The results are low-energy theorems of quantum
gravity.

The ultimate and ultraviolet safe theory of quantum gravity is still not known, however it
is gratifying to learn that it is possible to compute universal results in the theory of quantum
gravity. They are universal in the sense that any theory having the same low-energy spectrum
of particles will have the same answer for the leading corrections independent of what the
high-energy completion might turn out to be. Although quantum gravity is at times an
ezhaustive discipline [35] is important to realize that the treament using modern on-shell
methods presents a huge advantage in efficiency. For example it might be possible to apply
some of our techniques to the recent paper [40] and more generally it might be of interest to
reconsider many historical computations in the light of new computational methods. The

recent progress in computational techniques will here most likely allow an extended analysis.
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Appendix A: Vertices and Propagators

We will here list the Feynman rules which are employed in our calculation. For the
derivation of these forms, see [7, 41]. Our convention differs from these work by having all

incoming momenta.

The propagators are given by

e The massive scalar propagator is —————.
q° — m* +¢€

iPaBe

e The graviton propagator in harmonic gauge can be written in the form where

PB9 s defined in (I1.2).

q* +ie

In the background field methods used in [7, 41], one develops the metric into an expansion
9w = H,, + K4y by, where H,, is the classical background field and h,, is the quantum
field. The relation between the vertices given below and the vertices derived by De Witt is

discussed in sec. ITA.
The vertices are given by
e The 2-scalar-1-graviton vertex 74" (p1, ps) is

ili(4)
2

" (p1,p2) =

% 12 1 v
[ﬁm+mﬁ—§W(m+mﬂ- (A1)

e The 2-scalar-2-graviton vertex 757 (py, ps) is

7 (p1,p2) = —iK(y [ {PM PP+ 1 {nPPrrel P B}} (P1aP2s + P2al1p)

1
+ 17’”’\”)0 (p1 +p2)2} : (A.2)

e The 3-graviton vertex, between two quantum fields and one classical field, derived via
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the background field method has the form [41], where k + ¢+ 7 =0,

v iﬁ; 4 v v v 3 v
T3nys Ky @) = —# X (Paw lk:“k + it + ¢tg” — 577“ qﬂ

+ QQ)\(]U |:‘[aﬁ UAI’Y[S 1224 + ]75 JAIa,B po [aﬁ lwlwcs vA Ifyé MU[aB u)\:|

+ |:Q)\qu (nab’[ws v + 7776[(15 VA) + g’ <77a6175 nA + nvéjaﬁ W\>
= ¢" (Maslys "+ Molap") = 0" Goar (Maplys ™ + 16lap ™) }

" |:2Q)\ ([aﬁ )\U[’Yéﬁ Yt + [aﬁ )\U[’Y&T Hﬂ.u + [’YJ )\U[aﬁayku + I’y& )\U[aﬁauky)

(e}

vo vo v A o A o
+ q2 (I ﬁauLfé + Iaﬁ [760 #) + 7"t (Iaﬁ p]“ffsp + IMS ’ afp ) :|

o v ag 14 1 v
—+ {(kQ + 7T2) [Paﬁ“ P’y5,0' + P’)«S a ,Pa670' - 57]# (Paﬂ,w? - naﬂn75):|

+ (P " apm® + Pog ™ 11rsk?) }) ;
(A.3)

where 1,55 = Papys + %nagmg. In section ITA we explained that the on-shell tree level
amplitudes obtained using these vertices are equivalent to the ones computed with the
vertices given by De Witt [18] and Sannan [19]. We remark that the expression for 73 is

simpler than the three-graviton vertex in these references.

Appendix B: Dispersion relations

In the main text, we calculated the unitarity cut by projecting it onto discontinuities of
box, triangle and bubble integrals. A complementary method involves using the discontinu-
ities to provide the input to a dispersion relation. We have carried this out in both the de
Donder gauge (with ghosts) and using the helicity basis (which has only physical degrees of
freedom). We briefly describe the dispersive treatment in this appendix.

The dispersive approach to potentials was pioneered by Feinberg and Sucher [31] for
QEDS. They argue for a dispersive representation of the scattering potential

1 o
V(s,q?) = ——/ dt
0

™

. qu(s,t)—i-R.H.cut. (B.1)

6 We have already compared to their QED result in Section III.
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where the right-hand cut involves only massive states and does not influence the low energy
behavior of the amplitude. Depending on the ultimate high energy theory, this dispersion
relation may require subtractions. However, an important point is that the subtraction
constants are analytic functions of powers of ¢2. The subtraction constants then are related
to local, analytic terms in the effective Lagrangian [42], and cannot modify the non-analytic
terms that come from the low energy end of the dispersion relation. In the case of gravity,
the subtraction constants correspond to higher curvature terms in the gravitational action.
If we are interested in the low-energy non-analytic terms we can use either subtracted or
unsubtracted forms of the dispersion relation.

The spectral function p(s,t) is formed by multiplying together the on-shell gravitational
Compton amplitudes. In the axial gauge of the helicity basis we have only the physical

degrees of freedom

1 [dQ
p(s,t) = —— E M (D1, pa, — Lo, £1)SM ISP (MESE (pay ps, Lo, — 1)), (B.2)

T 47T nv,po aByyd

where S, ,» is the polarization sum of Eq. IV.10. The graviton momenta in the numerator
are taken to be on-shell. If we work in harmonic gauge we have a similar relation with the

harmonic gauge polarization sum of Eq. I1.2

1 [dSy

p(s,t) = ——

gl Mpse (p1, p2, —La, () PH P PP (MUSS 5 (pas ps, L, — 1)) . (B.3)

wv,po

Of course, in the harmonic gauge we expect to also need to include ghost fields, and this
will be verified.

Feinberg and Sucher describe how to do the angular phase-space integrals. It is useful to
go to the frame where p; = (w, p), p2 = (w, —p) with p'=im(1p and {; = /1 —t/4m?. In
the gravity case there are more momentum factors in the numerator than with QED, but
the phase space integrals are simple generalizations of the ones described in [31]. After the

phase-space integration, the spectral functions can be expanded at low-energy with the form

p(s,t) = al(s)i +as(s) + ... (B.4)

Vit

yielding a potential function

Vis,q) = ~[ar(s) + as(s) In(—g?) + ... (B.5)

Vs —q2

which is to be evaluated in the non-relativistic limit.
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We have carried out this program in both the helicity basis and in harmonic gauge. In the
helicity basis, for simplicity we chose the reference momentum for ¢; to be ¢5 and visa-versa.
The covariant amplitudes were multiplied together, the phase-space integral done and the
result was Taylor expanded at low energy using Mathematica. In the helicity basis, this
directly reproduced both the classical and quantum non-analytic terms as described in the
text. For the harmonic gauge calculation, ghost fields were needed and a separate spectral
function for ghosts was included, with the sum of graviton and ghost effects again yielding

the expected answer.

The main technical difference between the methods described in the text and this dis-
persive method is that in the latter method the phase space integral is explicitly calculated
while in the former the discontinuity is used to identify the contributions of box, triangle
and bubble diagrams. Of course, these yield the same results because the box, triangle and
bubble diagrams respect the causality and analyticity properties that go into the dispersion

relations.

[1] L. J. Dixon, “Calculating Scattering Amplitudes Efficiently,” In *Boulder 1995, QCD and
beyond* 539-582 [hep-ph/9601359].

[2] R. K. Ellis, Z. Kunszt, K. Melnikov and G. Zanderighi, “One-Loop Calculations in Quantum
Field Theory: from Feynman Diagrams to Unitarity Cuts,” Phys. Rept. 518 (2012) 141
[arXiv:1105.4319 [hep-ph]].

[3] Z. Bern, “Perturbative Quantum Gravity and Its Relation to Gauge Theory,” Living Rev.
Rel. 5 (2002) 5 [arXiv:gr-qc/0206071].

[4] D. C. Dunbar and P. S. Norridge, “Infinities Within Graviton Scattering Amplitudes,” Class.
Quant. Grav. 14 (1997) 351 [arXiv:hep-th/9512084].

[5] D. Neill and I. Z. Rothstein, “Classical Space-Times from the S Matrix,” arXiv:1304.7263
[hep-th].

[6] J. F. Donoghue, “General Relativity As An Effective Field Theory: The Leading Quantum
Corrections,” Phys. Rev. D 50 (1994) 3874 [arXiv:gr-qc/9405057].

[7] N. E. J. Bjerrum-Bohr, J. F. Donoghue and B. R. Holstein, “Quantum Corrections to the
Schwarzschild and Kerr Metrics,” Phys. Rev. D 68 (2003) 084005 [Erratum-ibid. D 71 (2005)



[10]

[11]

[21]

32

069904] [arXiv:hep-th/0211071].

N. E. J. Bjerrum-Bohr, J. F. Donoghue and B. R. Holstein, “Quantum Gravitational Cor-
rections to the Nonrelativistic Scattering Potential of Two Masses,” Phys. Rev. D 67 (2003)
084033 [Erratum-ibid. D 71 (2005) 069903] [arXiv:hep-th/0211072].

I. B. Khriplovich and G. G. Kirilin, “Quantum power correction to the Newton law,” J. Exp.
Theor. Phys. 95, 981 (2002) [Zh. Eksp. Teor. Fiz. 95, 1139 (2002)] [gr-qc/0207118].

C. P. Burgess, “Quantum gravity in everyday life: General relativity as an effective field
theory,” Living Rev. Rel. 7, 5 (2004) [gr-qc/0311082].

A. Ross and B. R. Holstein, “Spin effects in the effective quantum field theory of general rel-
ativity,” J. Phys. A 40 (2007) 6973; “Spin Effects in Long Range Gravitational Scattering,”
arXiv:0802.0716 [hep-ph]; “Long Distance Effects in Mixed Electromagnetic-Gravitational
Scattering,” arXiv:0802.0717 [hep-ph].

J. F. Donoghue, “The effective field theory treatment of quantum gravity,” AIP Conf. Proc.
1483, 73 (2012) [arXiv:1209.3511 [gr-qc]].

S. Y. Choi, J. S. Shim and H. S. Song, “Factorization in Graviton Interactions,” Phys. Rev.
D 48 (1993) 5465 [arXiv:hep-ph/9310259].

S. Y. Choi, J. S. Shim and H. S. Song, “Factorization of Gravitational Compton Scattering
Amplitude in the Linearized Version of General Relativity,” Phys. Rev. D 48 (1993) 2953
[arXiv:hep-ph/9306250].

B. R. Holstein, “Factorization in Graviton Scattering and the ‘Natural’ Value of the g-Factor,”
Phys. Rev. D 74 084030 (2006) [arXiv:gr-qc/0607058].

B. R. Holstein, “Graviton Physics,” Am. J. Phys. 74, 1002 (2006) [gr-qc/0607045].

M. J. G. Veltman, “Quantum Theory of Gravitation,” Conf. Proc. C 7507281 (1975) 265.
B. S. Dewitt, “Quantum Theory Of Gravity. 1. The Canonical Theory,” “Quantum Theory Of
Gravity. Ii. The Manifestly Covariant Theory,” “Quantum Theory Of Gravity. [ii. Applications
Of The Covariant Theory,” Phys. Rev. 160 (1967), 1113; 162 (1967) 1195; 162 (1967) 1239.
S. Sannan, “Gravity as the Limit of the Type II Superstring Theory,” Phys. Rev. D 34 (1986)
1749.

S. Y. Choi, J. S. Shim and H. S. Song, “Factorization and Polarization in Linearized Gravity,”
Phys. Rev. D 51 (1995) 2751 [arXiv:hep-th/9411092].

H. Kawai, D. C. Lewellen and S. H. H. Tye, “A Relation Between Tree Amplitudes of Closed



23]

[28]

[29]

33

and Open Strings,” Nucl. Phys. B 269 (1986) 1.

Z. Bern, L. J. Dixon, M. Perelstein and J. S. Rozowsky, “Multileg one loop gravity amplitudes
from gauge theory,” Nucl. Phys. B 546 (1999) 423 [hep-th/9811140]; Z. Bern, J. J. M. Carrasco
and H. Johansson, “New Relations for Gauge-Theory Amplitudes,” Phys. Rev. D 78 (2008)
085011 [arXiv:0805.3993 [hep-ph]].

N. E. J. Bjerrum-Bohr, P. H. Damgaard, B. Feng and T. Sondergaard, “Gravity and Yang-
Mills Amplitude Relations,” Phys. Rev. D 82 (2010) 107702 [arXiv:1005.4367 [hep-th]]; “New
Identities among Gauge Theory Amplitudes,” Phys. Lett. B 691 (2010) 268 [arXiv:1006.3214
[hep-th]]; “Proof of Gravity and Yang-Mills Amplitude Relations,” JHEP 1009 (2010) 067
[arXiv:1007.3111 [hep-thl]].

N. E. J. Bjerrum-Bohr, P. H. Damgaard, T. Sondergaard and P. Vanhove, “The Momentum
Kernel of Gauge and Gravity Theories,” JHEP 1101 (2011) 001 [arXiv:1010.3933 [hep-th]].
N. E. J. Bjerrum-Bohr, P. H. Damgaard and P. Vanhove, “Minimal Basis for Gauge Theory
Amplitudes,” Phys. Rev. Lett. 103 (2009) 161602 [arXiv:0907.1425 [hep-th]].

Z. Bern, A. De Freitas and H. L. Wong, “On the coupling of gravitons to matter,” Phys. Rev.
Lett. 84 (2000) 3531 [hep-th/9912033]; N. E. J. Bjerrum-Bohr, “String theory and the mapping
of gravity into gauge theory,” Phys. Lett. B 560 (2003) 98 [hep-th/0302131]; “Generalized
string theory mapping relations between gravity and gauge theory,” Nucl. Phys. B 673 (2003)
41 [hep-th/0305062]; N. E. J. Bjerrum-Bohr and K. Risager, “String theory and the KLT-
relations between gravity and gauge theory including external matter,” Phys. Rev. D 70
(2004) 086011 [hep-th/0407085]; N. E. J. Bjerrum-Bohr and O. T. Engelund, “Gravitino
Interactions from Yang-Mills Theory,” Phys. Rev. D 81 (2010) 105009 [arXiv:1002.2279 [hep-
th]]; P. H. Damgaard, R. Huang, T. Sondergaard and Y. Zhang, “The Complete KLT-Map
Between Gravity and Gauge Theories,” JHEP 1208 (2012) 101 [arXiv:1206.1577 [hep-th]].
N. E. J. Bjerrum-Bohr, P. H. Damgaard, T. Sondergaard and P. Vanhove, “Mon-
odromy and Jacobi-Like Relations for Color-Ordered Amplitudes,” JHEP 1006 (2010) 003
[arXiv:1003.2403 [hep-th]].

J. S. Shim and H. S. Song, “Factorization in Processes of Graviton Scattering Off Electron
for Z and W Productions,” Phys. Rev. D 53 (1996) 1005 [arXiv:hep-th/9510024].

S. D. Badger, E. W. N. Glover, V. V. Khoze and P. Svrcek, “Recursion Relations for Gauge
Theory Amplitudes with Massive Particles,” JHEP 0507 (2005) 025 [arXiv:hep-th/0504159].



[30]

[31]

32]

[33]

[37]

[38]

39]

[41]

[42]

34

Z. Bern, L. J. Dixon, D. C. Dunbar and D. A. Kosower, “Fusing Gauge Theory Tree Ampli-
tudes into Loop Amplitudes,” Nucl. Phys. B 435 (1995) 59 [hep-ph/9409265].

G. Feinberg and J. Sucher, “The Two Photon Exchange Force Between Charged Systems. 1.
Spinless Particles,” Phys. Rev. D 38 (1988) 3763 [Erratum-ibid. D 44 (1991) 3997].

B. R. Holstein and A. Ross, “Spin Effects in Long Range FElectromagnetic Scattering,”
arXiv:0802.0715 [hep-ph].

N. E. J. Bjerrum-Bohr, “Leading quantum gravitational corrections to scalar QED,” Phys.
Rev. D 66 (2002) 084023 [hep-th/0206236].

S. Faller, “Effective Field Theory of Gravity: Leading Quantum Gravitational Corrections to
Newtons and Coulombs Law,” Phys. Rev. D 77 (2008) 124039 [arXiv:0708.1701 [hep-th]].

G. 't Hooft and M. J. G. Veltman, “One Loop Divergencies in the Theory of Gravitation,”
Annales Poincare Phys. Theor. A 20 (1974) 69.

S. Weinberg, “Dynamic and Algebraic Symmetries”, in Lectures on Elementary Particles and
Quantum Field Theory, Proc. Summer Institute, Brandeis Univ. (1970), ed. S. Deser, MIT
Press, Cambridge, MA (1970), Vol. 1.

W. D. Goldberger and 1. Z. Rothstein, “An Effective Field Theory of Gravity for Extended
Objects,” Phys. Rev. D 73 (2006) 104029 [hep-th/0409156].

R. A. Porto and I. Z. Rothstein, “The Hyperfine Einstein-Infeld-Hoffmann potential,” Phys.
Rev. Lett. 97, 021101 (2006) [gr-qc/0604099].

M. E. Peskin and D. V. Schroeder, “An Introduction to quantum field theory,” Reading, USA:
Addison-Wesley (1995) 842 p.

R. Akhoury, R. Saotome and G. Sterman, “High Energy Scattering in Perturbative Quantum
Gravity at Next to Leading Power,” arXiv:1308.5204 |[hep-th].

J. F. Donoghue, “Leading quantum correction to the Newtonian potential,” Phys. Rev. Lett.
72 (1994) 2996 [gr-qc/9310024].

J. F. Donoghue, “Dispersion relations and effective field theory,” hep-ph/9607351.



	On-shell Techniques and Universal Results in Quantum Gravity
	Abstract


