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We compute the leading post-Newtonian and quantum corrections to the Coulomb

and Newtonian potentials using the full modern arsenal of on-shell techniques; we

employ spinor-helicity variables everywhere, use the Kawai-Lewellen-Tye (KLT) re-

lations to derive gravity amplitudes from gauge theory and use unitarity methods to

extract the terms needed at one-loop order. We stress that our results are univer-

sal and thus will hold in any quantum theory of gravity with the same low-energy

degrees of freedom as we are considering. Previous results for the corrections to

the same potentials, derived historically using Feynman graphs, are verified explic-

itly, but our approach presents a huge simplification, since starting points for the

computations are compact and tedious index contractions and various complicated

integral reductions are eliminated from the onset, streamlining the derivations. We

also analyze the spin dependence of the results using the KLT factorization, and

show how the spinless correction in the framework are easily seen to be independent

of the interacting matter considered.



2

CONTENTS

I. Introduction 3

II. The gravitational Compton amplitude 5

A. Covariant notation 5

B. Massive trees amplitude in gravity from Yang-Mills tree amplitudes 6

C. Application of KLT to the gravitational Compton scattering:

Reduction to QED amplitudes 9

D. Helicity tree amplitudes for QED and Gravity 11

1. The QED amplitudes 11

2. The gravity amplitudes 12

III. The one-loop amplitude in the helicity formalism 13

A. The one-loop correction to Coulomb potential 14

B. The one-loop correction to Newton potential 17

IV. The one-loop amplitude in harmonic gauge 20

A. The graviton and ghost contributions 20

B. Comparison with the Feynman graph approach 22

V. Matter-independence of the quantum corrections 23

A. The spin 1 case 24

B. The spin 1
2

case 25

VI. Conclusion 26

Acknowledgements 27

A. Vertices and Propagators 28

B. Dispersion relations 29

References 31



3

I. INTRODUCTION

Unitarity based methods combined with the helicity formalism have proven exceptionally

successful in gauge theory calculations at one loop (see e.g. [1, 2]). Such methods have

so far been less frequently applied to general relativity [3–5], and quantum corrections to

gravitational systems with massive matter have not been studied in this framework at all.

However, such techniques are well-suited for effective field theory considerations in low energy

quantum gravity. Early treatments of gravitational loops tended to focus on the ultraviolet

divergences, but effective field theory methods have allowed us to separate these ultraviolet

divergences from the universal reliable predictions of the low energy portion of the theory [6–

12]. The unitarity methods deal directly with on-shell and low energy amplitudes, and

products of on-shell tree amplitudes can therefore yield the low energy one-loop results in a

conceptually simple manner.

In this paper, we apply new on-shell amplitude methods to the gravitational scattering

of massive matter [6–9]. The unitarity cut for the leading quantum corrections involves

the gravitational Compton amplitude, i.e. the two on-shell gravitons coupled to matter.

For matter fields of all spins, this amplitude has a simple structure, as it is related to the

square of the electromagnetic Compton amplitude (involving photons) [3, 13–16]. A useful

observation for our calculation is that computing the massless two-particle cut gives us

exactly everything we need. The cut of the amplitude is precisely one-to-one with the non-

analytic parts of the amplitude that contributes to the long-distance leading corrections to

the scattering potential at one-loop. Hence, we do not need to reconstruct the full amplitude

- we only need to consider the terms contributing to the massless two-particle cut.

Moreover, there is an added bonus in using the cut and decomposing the amplitudes

using KLT; in such a setup one can easily dissect the interaction between the two particles

into a series of spin corrections; i.e. a coefficient for the spinless interaction and coefficients

of spin-spin interactions, etc. It has been seen before in direct calculations [11] that such

a series of spin corrections is always independent of the type of interacting matter. For

example, if we disregard the spin couplings, fermions and bosons couple generically only

through the energy of their currents. This observation appears however to be somewhat

puzzling in the context of Feynman diagrams, because here the vertex rules (and even the

diagrams that need to be calculated) differ greatly for different types of matter particles. In
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this paper our focus will be on the spinless interaction part of the series of spin corrections.

We will demonstrate directly using the on-shell cut method and KLT that this coupling

is always identical for any type of matter interaction, and in the non-relativstic limit only

dependent on the masses of the interacting particles.

The classical and quantum corrections to the Newtonian potential can addressed by

studying the scattering matrix element in the non-relativistic limit

〈p1, p2|iT |p3, p4〉 = −iM(q) (2π)4 δ(4)(p− p′) , (I.1)

where ~q is the momentum transfer. In momentum space (in the non-relativistic and free

particle limit) we employ the following definition of the potential V (q) from the amplitude

V (q) =
M(q)

4m1m2

. (I.2)

The one-loop diagrams produce modifications to the tree interaction leading to a potential

of the form

V (q) =
GNm1m2

~q 2

[
−4π + CNP GN(m1 +m2)

√
|~q|2 +GN~ ~q 2

(
CQG log(~q 2) + C̃QG

)]
.

(I.3)

If this object is Fourier transformed to form a spatial potential, the term with the square-

root yields the classical GNm/r general relativistic correction to the potential, and the term

with the logarithm produces a long-distance GN~/r2 quantum correction. The analytic

correction without a logarithm will yield a short range δ3(r) effect in the potential. The non-

analytic terms (the square-root and the logarithm) arise from long-distance propagation of

the massless gravitons, and hence are genuinely low-energy quantum predictions. These can

be calculated in the effective field theory approach. The analytic correction C̃QG, however

is not a prediction of the low-energy theory as it is sensitive to the coefficients of higher

curvature terms in the gravitational action.

Our work in the present paper will focus on the square-root and logarithmic non-analytic

terms of the scattering potential.

The plan of the paper is as follows. In Sec. II we discuss the relations between the gravita-

tional Compton amplitude to the square of the electromagnetic one. In Sec. III we compute

the one-loop amplitude in the helicity formalism. Here we first calculate the electromagnetic

case as a warm up before moving on to our primary interest of the gravitational interac-

tion. In Sec. IV we evaluate the amplitude in the covariant harmonic gauge and compare
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with the Feynman approach used in earlier computations. In Sec. V we discuss the matter-

independence of the non-analytic long-range contributions to the amplitude. Finally, Sec. VI

contains our conclusions and discussion. In Appendix A we list the covariant Feynman rules

and Appendix B discusses an alternative evaluation of the cut using dispersion relations.

II. THE GRAVITATIONAL COMPTON AMPLITUDE

In this section we will show how one can represent the gravitational Compton scattering

of two gravitons off a massive target of spin s = 0, 1
2
, 1 as the square of the QED (Abelian)

Compton scattering. We will do this first using covariant amplitudes, and then more com-

pactly using the helicity formalism. The advantage of this approach is that one can use the

known expressions for the massive tree-level amplitudes in Yang-Mills and QED to obtain

in a condensed way the massive tree-level amplitudes in gravity. As well, the connection

between the gravity and the QED amplitude will be instrumental in deriving the matter-

independence results in section V.

A. Covariant notation

We will evaluate the one-loop amplitude by considering the unitarity cut across the

graviton lines in section II C and III B, thus we need to construct the tree-level amplitudes

for the emission of two gravitons.

The tree amplitudes needed in this analysis can be constructed in various way. One direct

covariant approach is to use the background field vertices derived in [7, 8]. These vertices

are listed in Appendix A. The vertex τµν1 (p1, p2) given in eq. (A.1) describes the emission of

a graviton from a massive scalar exchange. Because the metric is realized through the stress-

energy tensor, the vertex couples identically to quantum hµν or background fields Hµν (as

used in refs. [7, 8]). The vertex τµν;ρσ2 (p1, p2) given in eq. (A.2) is the four point interaction

between two massive scalars and two gravitons. Again the coupling between gravity and the

scalar through the stress-energy tensor implies that these vertices are the same for quantum

or background fields.

In order to compute the general relativity correction and the quantum correction arising

from the one-loop diagram we need the tree-level amplitude for emitting two gravitons as
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FIG. 1. The various contributions to the tree-amplitude φ + φ → 2 gravitons: (a) s-channel, (b)

t-channel, (c) u-channel, (d) contact term.

illustrated in figure 1. In the covariant approach using the background field vertices the tree-

level amplitude for emitting two quantum gravitons h of polarization εαβ1 (k1) and εγδ2 (k2) is

given by (with all incoming external momenta)

iM tree(p1, p2, k1, k2) = τµν1 (p1, p2)
iPµν;ρσ
q2 + iε

τ ρσ3 αβ;γδ(k1, k2, p1 + p2) ε
αβ
1 (k1)ε

γδ
2 (k2)

+
τ1αβ(p1,−p1 − k1) i τ1 γδ(p1 + k1, p2)

(p1 + k1)2 −m2 + iε
εαβ1 (k1)ε

γδ
2 (k2)

+
τ1 γδ(p1,−p1 − k2) i τ1αβ(p1 + k2, p2)

(p1 + k2)2 −m2 + iε
εαβ1 (k1)ε

γδ
2 (k2)

+ τ2αβ;γδ(p1, p2) ε
αβ
1 (k1)ε

γδ
2 (k2) , (II.1)

with

Pαβ;γδ =
1

2
[ηαγηβδ + ηβγηαδ − ηαβηγδ] , (II.2)

in harmonic or de Donder gauge [17]. The three-graviton vertex τµν3 αβ;γδ, given in eq. (A.3),

between two quantum fields h and one background field H differs from the vertex for three

quantum gravitons derived by De Witt [18] and Sannan [19]. We have checked that the

on-shell amplitude constructed with the three-graviton vertices derived in [18, 19] leads to

the same answer as ours. Notice that its expression given in (A.3) is much simpler than the

three-graviton vertex of these references.

We have also checked that our amplitude correctly satisfies the relation to the QED

amplitude [20] which we discuss below in the context of the helicity formalism.

B. Massive trees amplitude in gravity from Yang-Mills tree amplitudes

A different approach is to construct the gravity amplitudes by applying the KLT method

to the emission of two gluons from massive scalars.
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The KLT relation between massless four-point gravity amplitudes and Yang-Mills ampli-

tudes reads [21, 22]

iM tree
s (p1, p2, k1, k2) =

κ2(4)
2

(p1 · k1)Atree
s (p1, p2, k2, k1)Ã

tree
0 (p1, k2, p2, k1) . (II.3)

Where M tree
s (p1, p2, k1, k2) is the tree-level scattering between a matter field Xs of spin

s = 0, 1
2
, 1 and gravitons Xs(p1)g(k1) → Xs(−p2)g(−k2) with p1 + p2 + k1 + k2 = 0, given

by the sum of diagrams in fig. 1. We use κ2(4) = 32πGN . The gauge theory amplitude

Atree
s (p1, p2, k2, k1) is the tree-level scattering amplitude between a matter field φs of spin

s = 0, 1
2
, 1 and gluons φs(p1)(φ

s(p2))
∗ → g(−k1)g(−k2). The amplitude Atree

0 (p1, k2, p2, k1)

is the tree-level scattering between a scalar matter field φ0 and gluons φ0(p1)g(k1) →
φ0(−p2)g(−k2).

The color-ordered Yang-Mills amplitudes satisfy the amplitude relation [22]

Ãtree
s (p1, p2, k2, k1) =

p1 · k2
k1 · k2

Ãtree
s (p1, k2, p2, k1) , (II.4)

allowing us to express the amplitude in (II.3) in the following manner,

iM tree
s (p1, p2, k1, k2) =

κ2(4)
2e2

(p1 · k1) p1 · k2
k1 · k2

Atree
s (p1, k2, p2, k1)Ã

tree
0 (p1, k2, p2, k1) . (II.5)

We will now explain that these amplitude relations are valid in the same form replacing

massless fields Xs with massive matter fields X̃s. The general form of these massless am-

plitudes for n-point color-ordered gauge theory amplitudes Atree
n (σ) and the n-point gravity

amplitudes M tree
n takes the form [21, 23, 24]

M tree =
∑

σ,γ∈Sn−3

S[σ(2, · · · , n− 2)|γ(2, · · · , n− 2)]|k1×

× Atree(1, σ(2, · · · , n− 2), n− 1, n)Atree(n, n− 1, γ(2, · · · , n− 2), 1) . (II.6)

with the momentum kernel given by the expression

S[i1, . . . , ir|j1, . . . , jr]|p =
r∏
t=1

(p · kir +
r∑
s>t

θ(ir, is) kir · kis) . (II.7)

Here θ(it, is) equals 1 if the ordering of the legs ir and is is opposite in the sets {i1, . . . , ir}
and {j1, . . . , jr}, and 0 if the ordering is the same.
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This relation can be rewritten in various equivalent way thanks to the annihilation prop-

erty satisfied by the color-ordered gauge theory amplitudes [24, 25]

∑
n∈Sn−2

S[σ(2, · · · , n−1)|γ(2, · · · , n−2)]|k1×Atree(1, σ(2, · · · , n−1), n) = 0; ∀γ ∈ Sn−2 ,

(II.8)

generalizing the relation in eq. (II.4).

These relations have been derived for a number of different types of matter including,

massless scalars, vectors (gluons or photons), and gravitons [26]. The derivation shows that

the relation is the same in any space-time dimensions. However, the key point is that a

massive scalar in four dimensions is equivalent to a massless scalar in higher dimensions.

Therefore, an amplitude between massive scalars and gravitons in four dimensions, can be

seen as a tree-level amplitude between massless scalars in higher dimensions with gravitons

polarized in four-dimensions. In this higher-dimensional setup the relation between gravity

and gauge theory can be applied.

The validity of the amplitude relations with massive scalars and gravitons also follows

directly from string theory. The case of tachyons was already considered in [27]. The

relations in [21, 24] relies on the monodromy properties of the colored-ordered open string

amplitudes

Aα′(i1, . . . , in) =

∫
xi1<···<xin

f(xi − xj)
n∏

i,j=1
i6=j

(xi − xj)2α
′ki·kj

n∏
i=1

dxi . (II.9)

The monodromy property however does not depend on detailed expression of the function

f(xi − xj) and are derived from momentum conservation
∑

i ki = 0 and the phase factor

that arises when going around the branch cut given the factors (xi − xj)2α′ki·kj . The phase

factor is not affected by any integer shifts of 2α′ki · kj arising e.g. from a pole from a

massive scalar in the function f(xi− xj). Thus the massive field theory amplitude relations

obtained by considering the α′ → 0 limit, satisfy the same properties as explained in [24] as

corresponding massless ones.

Assured that the KLT relation applies for various types of matter fields, massless and

massive, we will now study the case of four-point amplitudes describing the emission of two

gravitons from a matter field of spin s.
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C. Application of KLT to the gravitational Compton scattering:

Reduction to QED amplitudes

(a)
p1

p2

k1

k2

(b)

p2

p1 k2

k1

(c)

p1

p2

k1

k2

FIG. 2. Compton scattering given by the t-channel contribution in (a), the u-channel contribution

in (b) and the contact term in (c).

Our starting point for deriving the gravitational Compton amplitude is the KLT expres-

sion from the previous section

iM tree
s (p1, p2, k1, k2) =

κ2(4)
2e2

p1 · k1 p1 · k2
k1 · k2

Atree
s (p1, k2, p2, k1)Ã

tree
0 (p1, k2, p2, k1) , (II.10)

where the gravity amplitude is expressed as a product of Yang-Mills amplitudes without a

s-channel pole and we thus have no Yang-Mills diagrams involving the non-Abelian three-

gluon vertex. This KLT representation of the gravitational Compton scattering is key to

the reduction of the amplitude to a product of QED amplitudes that we will consider in

this section. The color ordered-amplitude Atree
s (p1, k2, p2, k1) represents the scattering of two

gauge boson from a spin s matter field depicted in figure 2

Atree
s (p1, k2, p2, k1) = e2

(
nst

p1 · k1
+

nsu
p1 · k2

+ nsct

)
, (II.11)

where p21 = p22 = m2 are the momenta of the massive particles and k21 = k22 = 0 are the

momentum of the gluons with all incoming momenta p1 + p2 + k1 + k2 = 0.

We will now explain that we can always express the amplitude Atree
s (p1, k2, p2, k1) solely

in terms of QED (abelian) Compton scattering amplitudes. The t- and u-channel diagrams

in figure 2(a)-(b) are composed of three-point amplitudes between two matter fields of the

same spin s of the same flavor and one gauge boson. The coupling of a matter fields of

spin 0 of the same species and one gauge boson is given by

e (p1 − p2)µ (2π)4 δ(p1 + p2 + k1) , (II.12)
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or for particles of spins 1
2

of the same species and one gauge boson

eγµ (2π)4 δ(p1 + p2 + k1) . (II.13)

Finally the coupling between two massive spin 1 fields of the same species and one gauge

boson is given by

− e (gµν(k1 − p2)ρ + gνρ(p2 − p1)µ + gρµ(p1 − k1)ν) (2π)4 δ(p1 + p2 + k1) , (II.14)

where in all cases e is the coupling constant.

There is no quartic coupling between two spinorial fields and one gauge boson and the

four-point interaction in fig. 2(c) between two scalars (without flavor changing) and two

gauge bosons

− ie2gµν (2π)4 δ(p1 + p2 + k1 + k2) (II.15)

is the same in an non-Abelian as in an Abelian theory.

The four-point interaction between two massive vectors of the same species and two gauge

bosons is in an non-Abelian theory given by

− ie2
∑
e

[fabefecc(gµρgνσ − gµσgνρ) + facefebc(gµνgρσ − gµσgρν) + facefebc(gµνgσρ − gµρgσν)]

× (2π)4δ4(p1 + p2 + k1 + k2) . (II.16)

By antisymmetry of the structure constant fecc = 0 the interaction reduces to

− ie2 (
∑
e

facefebc)[(2gµνgρσ − gµσgρν − gµρgσν)]× (2π)4δ4(p1 + p2 + k1 + k2) , (II.17)

which has the same kinematic part as the Abelian one.

We can thus conclude that the amplitudes Atree
s with s = 0, 1

2
appearing in the factoriza-

tion of the gravity amplitudes in (II.5) can be thought of as QED amplitudes for Compton

scattering off massive matter fields1.

The numerators of the QED Compton amplitudes Atree
s (p1, k2, p2, k2) are given by

n0
t = 2ε1 · p1 ε2 · p2 , (II.18)

n
1
2
t =

1

2
ū(−p2)/ε2(/p1 + /k1 +m)/ε1u(p1) , (II.19)

n1
t = 2[(h1 · h2) (ε1 · p1) (ε2 · p2)− h1 · F1 · F2 · h2

1 The representation of the massive gravitational Compton scattering of a massive matter field of spin

s = 0, 1/2, 1 in terms of (Abelian) Compton amplitude was already noticed in [14, 20] and [28]. It would

be interesting to understand if this factorization using purely Abelian interactions can be achieved with

other types of gravitational amplitudes.
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− (h1 · F2 · h2) (ε1 · p1)− (h1 · F1 · h2)(ε2 · p2)] , (II.20)

and with similar expressions for nsu with the exchange of p1 and p2 and finally2

n0
ct = 2ε1 · ε2 , (II.21)

n
1
2
ct = 0 , (II.22)

n1
ct = −2h1 · h2 ε1 · ε2 . (II.23)

We have here made use of the notation h1·F1·h2 = hµ1h
ν
2F1µν and h1·F1·F2·h2 = hµ1F1µρF2

ρ
νh

ν
2

with Fi µν = ki µεi ν − εi νhi µ defining the field-strengths of the photons. With the given nu-

merators factors we have checked that the spin 0 amplitude constructed from (II.5) correctly

reproduces the covariant expression in (II.1).

One important consequence of the factorization of the gravitational Compton amplitude

into a product of two Compton amplitudes is that it gives a rationale for the value g = 2 of

the classical gyromagnetic momenta for all types of matter fields, as shown in ref. [15]. An

evaluation of the Compton amplitude for massive particles shows that amplitude has a pole

for m = 0 with residue (g − 2)2. The two derivative nature of the gravitational interaction

forbids the present of a singularity of the gravitational Compton amplitude when the mass

of the particles goes to zero. Therefore the KLT relation in (II.5) implies that the right

hand side cannot have a pole in the zero mass limit for generic values of the momenta. This

implies the natural classical value g = 2 for all types of matter fields.

D. Helicity tree amplitudes for QED and Gravity

1. The QED amplitudes

In this section we compare the QED amplitudes in (II.11) with the scattering of two

gluons off a massive scalar derived using the helicity formalism (see ref. [29]). We use here

e2 = 1. We have

Atree
0 (p1, p2, k

+
2 , k

+
1 ) = − m2 [k1 k2]

2

k1 · k2 2k1 · p1
, Atree

0 (p1, p2, k
−
2 , k

+
1 ) =

〈k2|p1|k1]2
k1 · k2 2k1 · p1

, (II.24)

2 Notice that this is not a BCJ parameterization [22] because the numerators do not satisfying a dual Jacobi

identity. One can define a set of BCJ numerators as ñss = 2(nst + nsu) + tnsct and ñst = −2nst − tnsct and

ñsu = −2nsu, satisfying ñss + ñst + ñsu = 0. Other expressions are possible, depending on the distribution of

contact terms amongst the pole terms.
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with

Atree
0 (p1, p2, k

−
2 , k

−
1 ) = (Atree

0 (p1, p2, k
+
2 , k

+
1 ))∗ ,

Atree
0 (p1, p2, k

+
2 , k

−
1 ) = (Atree

0 (p1, p2, k
−
2 , k

+
1 ))∗ . (II.25)

It is immediate to check that the Compton scalar amplitude Atree
0 (p1, k2, p2, k1) is related to

the helicity amplitudes by the excepted monodromy relations (p1 · k2)Atree
0 (p1, k2, p2, k1) =

(k1 · k2)Atree
0 (p1, p2, k2, k1) and read

Atree
0 (p1, k

+
2 , p2, k

+
1 ) = − m2e2 [k1 k2]

2

4(p1 · k1) (p1 · k2)
,

Atree
0 (p1, k

−
2 , p2, k

+
1 ) = e2

〈k2|p1|k1]2
4 (k1 · p1)(p1 · k2)

. (II.26)

This expression is (although not manifestly) symmetric under the exchanges of k1 and k2

and p1 and p2.

2. The gravity amplitudes

Using the relation in (II.3) we can write the expression for the four-point amplitudes for

the emission of two gravitons. In this situation, we have

M tree
0 (p1, p2, k

+
1 , k

+
2 ) =

κ2(4)
16

1

(k1 · k2)
m4 [k1 k2]

4

(k1 · p1)(k1 · p2)
,

M tree
0 (p1, p2, k

−
1 , k

+
2 ) =

κ2(4)
16

1

(k1 · k2)
〈k1|p1|k2]2 〈k1|p2|k2]2

(k1 · p1)(k1 · p2)
, (II.27)

with

M tree
0 (p1, p2, k

−
1 , k

−
2 ) = (M tree

0 (p1, p2, k
+
1 , k

+
2 ))∗ ,

and

M tree
0 (p1, p2, k

+
1 , k

−
2 ) = (M tree

0 (p1, p2, k
−
1 , k

+
2 ))∗.

We have checked that these expressions match the covariant ones and the expression obtained

from (II.5). The massive amplitude M tree
0 (p1, p2, k

+
1 , k

−
2 ) reproduces the one given in [4,

eq. (5.4)] and its massless limit reproduces the results of [4, eq. (4.5)]. We note that using

the KLT factorization property to construct the amplitudes that go into the cut avoids

having to deal with tensor contractions of the complicated triple graviton vertex, which is a

normal tedious feature of any off-shell Feynman diagram computation.
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←−
ℓ1

ℓ2
−→

p1

p2 p3

p4

FIG. 3. The cut considered. The loop momenta are flowing clockwise. And the on-shell conditions

are `21 = 0 and `22 = (`1 + k1 + k2)
2 = 0. Solid lines are massive and wiggly lines are massless.

III. THE ONE-LOOP AMPLITUDE IN THE HELICITY FORMALISM

In this section, we obtain the non-analytic terms that give the leading classical and

quantum corrections to the scattering potential for QED and for general relativity. For this

purpose we do not need to reconstruct the full amplitude, but only identify those terms

in the cut that lead to non-analytic contributions, i.e. CNP , the classical correction from

general relativity, and CGQ, the quantum gravity correction to Newton’s potential in (I.3).

We obtain these respectively from the coefficients of the non-analytic 1/
√
−q2 and log(−q2)

contributions in cut.

To extract the non-analytic parts of the amplitude, we will proceed as in ref. [30]. In-

stead of evaluating the phase-space integrals directly we simply reinstate the off-shell cut

propagators but impose strictly the on-shell cut condition everywhere in the numerator. We

thus evaluate the following types of expressions

M1−loop∣∣
disc

=

∫
dD`

(2π)D

∑
λ1,λ2

M tree
λ1λ2

(p1, p2,−`λ22 , `λ11 )(M tree
λ1λ2

(p3, p4, `
λ2
2 ,−`λ11 ))∗

`21`
2
2

∣∣∣
cut
,

(III.1)

with `21 = `22 = 0 and where λ1 and λ2 are the helicities of the massless particles (gravi-

tons/photons) across the cut. In this formula, we are using the notation |cut to indicate the

cut is taken in this integral. Whenever we discuss the discontinuity singularity it is under-

stood that we are on the cut, although we will not explicitly indicate this in the integral for

simplicity. This procedure allows us to directly identify the box, triangle and bubble inte-

gral functions which contribute to the amplitude, and use them to identify the non-analytic
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terms which we are seeking3.

We will illustrate our discontinuity cut method by first calculating the case of the Coulomb

potential. Here the cut is a little simpler and it is easier to demonstrate the techniques. In

the next subsection we will then use the cut technique in the case of pure gravity.

A. The one-loop correction to Coulomb potential

In this section we will compute the quantum correction to the Coulomb potential between

two spin 0 particles of the same charge but non-zero masses m1 and m2.

We are constructing the one-loop amplitude by computing its discontinuity cut across the

massless photon lines (double wavy-line in figure 3). We not are interested in reconstructing

the full one-loop amplitude but only the parts that contain the infra-red logarithms and

square-root contributions.

In the cut in Eq. (III.1) we have the following on-shell kinematic relations p1 + p2 +

p3 + p4 = 0, p21 = p22 = m2
1 and p23 = p24 = m2

2. We define the momentum transfer q from

q = p1 + p2 = −(p3 + p4). We have in the static non-relativistic limit p1,−p2 ' (m1,~0) and

p4,−p3 ' (m2,~0), and furthermore that (in the mostly minus metric)

s = (p1 + p2)
2 ' −~q 2 ,

t = (p1 + p4)
2 ' (m1 +m2)

2 , (III.2)

u = (p1 + p3)
2 ' (m1 −m2)

2 + ~q 2 .

The tree-level helicity amplitudes are given in (II.26) hence the discontinuity of the one-loop

amplitude takes the form

M1−loop∣∣
disc

=
e4

16

∫
dD`

(2π)D
N

`21`
2
2

∏4
i=1(pi · `1)

. (III.3)

We deduce that

1

`1 · p1 `1 · p2
= −2

s

(
1

`1 · p1
+

1

`1 · p2

)
,

3 By considering only this two-particle discontinuity across the massless momenta, we do not have enough

information to reconstruct the full amplitude. To achieve this, we would need to consider all the discon-

tinuities across the massive legs and evaluate the cut to all orders in ε with D ≡ 4 − 2ε. However, the

discontinuities across the massive propagators will not contribute to the leading order massless threshold,

not will higher order terms from an ε expansion of the cut. Thus we will ignore all these contributions

here as they are not important for our analysis.
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1

`1 · p3 `1 · p4
=

2

s

(
1

`1 · p3
+

1

`1 · p4

)
, (III.4)

using that q = p1 + p2 = `2− `1 = −p3− p4 and `1 · q = −s/2. This allows us to express the

one-loop cut as a sum of integrals with numerator N

M1−loop∣∣
disc

= −e
4

4

2∑
i=1

4∑
j=3

∫
dD`

(2π)D
N

s2`21`
2
2(pi · `1)(pj · `1)

. (III.5)

where we will distinguish between the cases of the photons having the same helicity on each

side of the cut (this is traditionally in the literature called a singlet contribution) or opposite

helicity (called a non-singlet contribution).

For the singlet cut the numerator is given by

N singlet = m2
1m

2
2s

2 . (III.6)

Giving a contribution from the singlet cut of only scalar boxes

M singlet = −e4 2m2
1m

2
2(I4(s, t) + I4(s, u)) , (III.7)

Here we have in D = 4− 2ε using the normalization of ref. [8] that

I4(s, t) =

∫
dD`

(2π)D
1

`2(`+ q)2 ((`+ p1)2 −m2
1)((`− p4)2 −m2)

,

I4(s, u) =

∫
dD`

(2π)D
1

`2(`+ q)2((`+ p1)2 −m2
1)((`− p3)2 −m2)

, (III.8)

where w = p1 · p4 − m1m2 = and W = −p1 · p3 − m1m2 and it should be remarked that

w = W − 1
2
q2. In the non-relativistic limit where w → 0 and to leading order in q2, we

have [8]

I4(s, t) + I4(s, u) =
log(−~q2)

96π2m2
1m

2
2

I4(s, u)− I4(s, u) =
log(−~q2)

8π2m2
1m

2
2 q

2
. (III.9)

Thus the singlet cut amplitude in (III.7) in the non-relativistic limit gives

M singlet(q) ' − e4

(4π)2
1

3
log(~q 2) , (III.10)

to leading order in q2 ∼ −~q · ~q.
For the non-singlet cut contribution the numerator is given by

N non−singlet =
1

2
(tr−(`2p1`1p4)

2 + tr+(`2p1`1p4)
2) , (III.11)
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where the traces are defined by tr±(abcd) = 2(a ·b c ·d−a ·c b ·d+a ·d b ·c)±2iεµνρσaµbνcρdσ .

Expanding the traces we see that one can rewrite the numerator in terms of two contributions

N non−singlet ≡ E2 − 4O where

E := 2(`1 · p1 `2 · p3 − `1 · `2 p1 · p3 + `1 · p3 `2 · p1) ,
O := (εµνρσ`1µp1 ν`2 ρp3σ)2 . (III.12)

This leads in the non-relativistic approximation to a rather simple form for the numerator

N non−singlet ' (sm2
1 + 4(p1 · `1)2) (sm2

2 + 4(p4 · `1)2) . (III.13)

Evaluating the contributions from the non-singlet cut (in the non-relativistic limit) lead

to the following combinations of scalar box, triangle and bubble integrals to leading order

Mnon−singlet = −e4
(

2m2
1m

2
2(I4(s, t) + I4(s, u)) +m2

1(I3(p1, q,m1) + I3(p2, q,m2))

+m2
2(I3(−p3, q,m2) + I3(−p4, q,m2)) + I2(q)

)
. (III.14)

The scalar triangle and bubbles integrals are defined following the conventions of ref. [8]

I3(p, q,m) :=

∫
dD`

(2π)D
1

`2(`+ q)2((`+ p)2 −m2)
,

I2(q) :=

∫
dD`

(2π)D
1

`2(`+ q)2
. (III.15)

Where we in the non-relativistic limit have

I3(p, q,m) ∼ − i

32π2m2

(
log(−q2) + S(m)

)
, (III.16)

I2(q) ∼
i

16π2
log(−q2) , (III.17)

defining S(m) = −π2m/|~q|.
Thus the contribution from the non-singlet cut amplitude in (III.14) yields in the non-

relativistic limit w → 0 (to the first order in q2 ∼ −~q 2)

Mnon−singlet(q) ' e4

(4π)2

(
8

3
log(−q2)− π2m1 +m2

|~q|

)
(III.18)

Summing (III.10) and (III.18) we obtain the total amplitude

Mnon−rel.(q) ' e4

(4π)2

(
7

3
log(~q 2)− π2m1 +m2

|~q|

)
, (III.19)

and the one-loop correction to the non-relativistic potential is given by

V one−loop(q) =
Mnon−rel.(q)

4m1m2

=
e4

8π2m1m2

(
7

3
log(~q 2)− π2m1 +m2

|~q|

)
. (III.20)

This reproduces the result of [31, eqs. (4.50a), (4.51a), (4.54)] and [32], although we want

to point out the huge simplicity of our cut derivation.
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B. The one-loop correction to Newton potential

In this section we will perform the evaluation of the correction to the Newton potential

using the on-shell cut in the helicity formalism. This computation will as expected not

require any ghost contributions.

Proceeding as in the QED case, the cut discontinuity of the amplitude can be expressed

as a sum of integrals with numerator N

M1−loop∣∣
disc

= −
κ4(4)
16 s4

2∑
i=1

4∑
j=3

∫
dD`

(2π)D
N

`21`
2
2(pi · `1)(pj · `1)

. (III.21)

We will evaluate the amplitude in the static non-relativistic limit (III.2).

As in the QED case, we will here as well distinguish between the cases of the graviton

having the same helicity on each side of the cut (singlet) or opposite helicity (non-singlet),

and we separate the numerator factor N in these two contributions.

The singlet-cut numerator is easily evaluated and gives

N singlet = 2m4
1m

4
2 (`1 · `2)4 =

m4
1m

4
2

8
s4 , (III.22)

therefore its contribution to the one-loop amplitude is given by scalar boxes only

M singlet(q) = −
κ4(4)
16

m4
1m

4
2 (I4(s, t) + I4(s, u)) . (III.23)

This is readily evaluated in the non-relativistic limit to give

M singlet(q) ' −G2
N

4m2
1m

2
2

3
log(~q 2) , (III.24)

where we have made use of the relation κ2(4) = 32πGN .

The numerator for the non-singlet cut contribution is evaluated to

N non−singlet =
1

2

(
(tr−(`1p1`2p3))

4 + (tr+(`1p3`2p1))
4
)
. (III.25)

The evaluation of this contribution is a bit more involved since the expression contains

integrals with up to eight powers of loop momentum in the numerator. We note that in the

gravity case the cut is not the square of the QED cut but the sum of the squares of the

corresponding QED terms in the cut.

Decomposing the trace as in the QED case (keeping only terms that give a contribution

in the non-relativistic limit) the numerator factor takes the form

N non−singlet = ((E2 − 4O)2 − 16E2O)
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= 16s2(m2 p1 · `1 −m1 p4 · `1)4

+ 24s(m2 p1 · `1 −m1 p4 · `1)2(m1m2s+ 4p1 · `1p4 · `1)2

+ (m1m2s+ 4p1 · `1p4 · `1)4 . (III.26)

In the non-relativistic limit evaluating the discontinuity cut integrals leaves us with a sum

of scalar boxes, scalar, linear and quadratic triangles and bubbles integral functions ranging

from scalar to quartic, i.e.

Mnon−singlet(q) = Mnon−singlet
boxes (q) +Mnon−singlet

triangles (q) +Mnon−singlet
bubbles (q) . (III.27)

To the leading order in the non-relativistic limit, we have scalar box integral functions Mboxes

given by

Mnon−singlet
boxes (q) = −

κ4(4)
8

(
m4

1m
4
2(I4(s, t) + I4(s, u) + 2m3

1m
3
2 s(I4(s, t)− I4(s, u)

)
. (III.28)

This gives in the non-relativistic limit (using (III.9))

Mnon−singlet
boxes ' −G2

N

100m2
1m

2
2

3
log(~q 2) . (III.29)

For the triangles, we have integrals from scalars up to quadratic terms M triangles,

Mnon−singlet
triangles = −

κ2(4)
16

[
(III.30)

6m4
1m

2
2(I3(p1) + I3(p2)) + 6m2

1m
4
2(I3(−p3) + I3(−p4))

− 2m4
1(I3(p1, {p4}) + I3(p2, {p4})) + 8m3

1m2(I3(p1, {p4})− I3(p2, {p4}))
+ 2m4

2(I3(−p3, {p1}) + I3(−p4, {p1})) + 8m1m
3
2(I3(−p3, {p1})− I3(−p4, {p1}))

+ 4m2
1(I3(p1, {p4, p4}) + I3(p2, {p4, p4})) + 4m2

2(I3(−p3, {p1, p1}) + I3(−p4, {p1, p1}))
+

4

q2

(
m4

1(I3(p1, {p4, p4}) + I3(p2, {p4, p4})) +m4
2(I3(−p3, {p1, p1}) + I3(−p4, {p1, p1}))

)]
,

with linear and quadratic triangles defined via

I3(p, q,m; {K1, . . . , Kr}) :=

∫
dD`

(2π)D

∏r
i=1 ` ·Ki

`2(`+ q)2((`+ p)2 −m2)
, (III.31)

were we have r = 0 for scalar triangles, r = 1 for linear triangles and r = 2 for quadratic

triangles. We use here the short hand notation that I3(pr, · · · ) = I3(pr, q,m1, · · · ) for r = 1, 2

and I3(−pr, · · · ) = I3(−pr, q,m2, · · · ) for r = 3, 4.

Taking the non-relativistic limit leaves us with

I3(p, q,m;K1) ∼
i

32π2m2

[
(K1 · p)

(
−1− q2

2m2

)
log(−q2) +K1 · q (log(−q2) +

1

2
S(m))

]
,
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I3(p, q,m;K1, K2) ∼
i

32π2m2

[
(K1 · q)(K2 · q)(− log(−q2)− 3

8
S(m))

− (K1 · p)(K2 · p)
q2

8m2
(4 log(−q2) + S(m))

+ ((K1 · q)(K2 · p) + (K1 · p)(K2 · q))
(
q2 +m2

2m2
log(−q2) +

3q2

16m2
S(m)

)
+

1

8
K1 ·K2 q2 (2 log(−q2) + S(m))

]
, (III.32)

so that

Mnon−singlet
triangles (q) ' G2

N m
2
1m

2
2

(
120 log(~q · ~q)− 24π2 m1 +m2

|~q|

)
. (III.33)

To the leading order in the non-relativistic limit, the bubble contribution Mnon−singlet
bubble is

given by

Mnon−singlet
bubbles = −

κ4(4)
16

[16

s2
I2(q, {p1, p1, p4, p4}) (III.34)

− 4
(

3m2
1m

2
2I2(q)−m2(2m1 + 3m2)I2(q, {p1}) +m1(3m1 + 2m2)I2(q, {p4})

+ I2(q, {p1, p1}) + I2(q, {p4, p4}) + 3I2(q, {p1, p4})
)

+
8

s

(
3(m2

2I2(q, {p1, p1}) +m2
1I2(q, {p4, p4}))− 4m1m2I2(q, {p1, p4})

+ I2(q, {p1, p4, p4})− I2(q, {p1, p1, p4})
)
, (III.35)

where

I2(q, {K1, · · · , Kr}) :=

∫
dD`

(2π)D

∏r
i=1 ` ·Kr

`2(`+ q)2
, (III.36)

with r = 0, 1, 2, 3, 4. The bubble integrals are all given by

I2(q, {K1, · · · , Kr}) = I2(q)Pr(q
2) + rational part , (III.37)

where I2(q) is the scalar bubble function given in (III.15) and Pr(q,K1, . . . , Kr) is a poly-

nomial. The rational part does not contribute to our analysis. The polynomials are given

by

P1(q,K1) = −q ·K1

2
, (III.38)

P2(q,K1, K2) =
1

12
(4q ·K1 q ·K2 − q2K1 ·K2) ,

P3(q,K1, K2, K3) =
1

24

(
q2 (K1 ·K3K2 · q +K1 ·K2K3 · q +K1 · qK2 ·K3)

− 6K1 · qK2 · qK3 · q)
)
,

P4(q,K1, K2, K3, K4) =
1

240

(
(q2)2(K1 ·K4K2 ·K3 +K1 ·K3K2 ·K4 +K1 ·K2K3 ·K4)

− 6q2(K1 · qK2 · qK3 ·K4 +K1 ·K4K2 · qK3 · q +K1 ·K3K2 · qK4 · q+
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K1 ·K2K3 · qK4 · q +K1 · qK2 ·K4K3 · q +K1 · qK2 ·K3K4 · q)
+ 48K1 · qK2 · qK3 · qK4 · q

)
.

Leaving us with

Mnon−singlet
bubbles (q) = G2

N

788m2
1m

2
2

15
log(~q 2) . (III.39)

Thus the total contribution is given by summing (III.24), (III.29), (III.33) and (III.39)

yielding

M total(q) = G2
N 4m2

1m
2
2

(
−6π2m1 +m2

|~q| +
41

5
log(~q 2)

)
, (III.40)

leading to the one-loop correction to the non-relativistic potential

V one−loop(q) =
M total(q)

4m1m2

= G2
Nm1m2

(
−6π2m1 +m2

|~q| +
41

5
log(~q 2)

)
. (III.41)

This matches refs. [8, 9]. We point out that other computations can be carried out with

much greater ease using the cut method as well, for example the mixed electromagnetic-

gravitational scattering case, previous computed in refs. [33, 34].

IV. THE ONE-LOOP AMPLITUDE IN HARMONIC GAUGE

We can also use the discontinuity cut technique to evaluate the potential using the co-

variant notation, in harmonic gauge. This has two interesting features. One is that this

gauge requires ghost fields, and we will see that the discontinuity from the ghosts must be

added in order to obtain the full result. In addition, this calculation lets us make direct

contact with the Feynman diagram approach in harmonic gauge [8, 9]. We will describe in

this section how one can compare with the individual diagrams of the effective field theory

calculation.

A. The graviton and ghost contributions

Our starting point is the tree-level amplitude which takes the generic form

M tree(p1, p2, k1, k2) = M tree
µν,ρσ(p1, p2, k1, k2)ε

µν(k1)ε
ρσ(k2) . (IV.1)

When we take the discontinuity across the massless graviton lines we use the harmonic

gauge polarization sum Pαβ,γδ given in Eq. II.2. This yields the expression for the on-shell
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discontinuity (in D = 4− 2ε dimensions)

M1−loop∣∣
disc

=

∫
dD`

(2π)D
M tree

µν,ρσ(p1, p2,−`2, `1)Pµν,αβPρσ,γδ(M tree
αβ,γδ(p4, p3, `2,−`1))∗

`21`
2
2

.

(IV.2)

A significant simplification in evaluating the discontinuity across the cut in (IV.2) is due to

the following remarkable identities noticed in [8]

τ2µν,ρσ(p1, p2,m)PµναβPρσγδ = τ2αβ,γδ(p1, p2,m) , (IV.3)

τ ρσ3µν,ρσ(k1, k2, q)PµναβPρσγδ = τ ρσ3αβ,γδ(k1, k2, q) . (IV.4)

The identification of the boxes, triangles and bubbles is not as neat as in the helicity ap-

proach, and we do not display the intermediate formulas. Performing the index contraction

with Mathematica and taking the non-relativistic limit as described in [8] we obtain for the

contribution of the cut in eq. (IV.2)

Mdisc(q) ' G2
N 4m2

1m
2
2

(
−26

3
log(~q 2)− 6π2m1 +m2

|~q|

)
. (IV.5)

Since we used the harmonic gauge in this covariant computation we need to include the

p1

p2
p3

p4

FIG. 4. The ghost contribution from the vacuum polarization of the graviton

extra graph of figure 4 from the contribution of the ghost to the vacuum polarization of

the graviton. The ghost Lagrangian for the de Donder harmonic gauge used in this work

reads [17, 35]

Sghost =

∫
d4x
√
g η∗µ (∇λ∇ληµ +∇λ∇µηλ −∇µ∇λη

λ) . (IV.6)

Evaluating the graph in figure 4 leads to the contribution in the non-relativistic limit

Mghost(q) ' G2
N

1012

15
m2

1m
2
2 log(~q 2) . (IV.7)

Summing the contributions in (IV.5) and (IV.7) leads to the result given by the helicity

computation (III.40) and verifies again ref. [8, eq. (44)]

M1−loop(q) ' GN 4m2
1m

2
2

(
−6π2m1 +m2

|~q| +
41

5
log(~q 2)

)
. (IV.8)
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By way of comparison, we note that the helicity amplitude calculation of the previous section

corresponds to a sum over the physical helicities

M1−loop∣∣
disc

=

∫
dD`

(2π)D
M tree

µν,ρσ(p1, p2,−`2, `1)Sµν,αβSρσ,γδ(M tree
αβ,γδ(p4, p3, `2,−`1))∗

`21`
2
2

, (IV.9)

where Sµν,ρσ arises from the axial-gauge polarization sum

Sµν,ρσ :=
∑
λ=±1

ελλµν(k)(ελλρσ(k))∗ =
1

2
(SµρSνσ + SνρSµσ − SµνSρσ) , (IV.10)

with Sµν the axial-gauge spin 1 polarization sum

Sµν :=
∑
λ=±1

ελµ(k)(ελν(k))∗ = −ηµν +
(qref)µkν + (qref)νkµ

qref · k
, (IV.11)

where (qref)µ is an arbitrary massless reference momentum. That this sum includes only the

two transverse modes can be seen from the condition

ηµρηνσSµν,ρσ = 2 , (IV.12)

corresponding to the normalization condition for the two polarization vectors ελλµν(k). Our

work therefore confirms the expected gauge invariance of the quantum correction.

B. Comparison with the Feynman graph approach

One useful feature of this method is that one can confirm the analysis of ref. [8] diagram

by diagram. Squaring the tree amplitude shown in Fig. 1 leads to discontinuities with the

same topology of all the Feynman diagrams evaluated in [8]. Evaluating these individually

confirms not only the total result, but also the result of each of the separate diagrams.4

The advantage of doing the diagrams by the unitarity approach is that one does not have

to worry about symmetry factors between Feynman graphs, it is automatically taken care

of by the cut.

The precise relation with the analysis of [8] is the following. We decompose the expression

for the tree in (II.1) in a sum of three contributions. The first contribution corresponds to

the sum of the graph in figure 1(a)

M (a)
µν,ρσ(p1, p2,−`2, `1) = ταβ1 (p1, p2)

iPαβ;γδ
q2 + iε

τ γδ3 µν;ρσ(k1, k2, p1 + p2) , (IV.13)

4 In [8] the result for each diagrams has been divided by 4m1m2, whereas in this work the amplitudes are

not divided by this factor.
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the second contribution corresponds to the graphs in figure 1(b) and (c) and is given by

M (b)+(c)
µν,ρσ (p1, p2,−`2, `1) =

τ1µν(p1,−p1 − `1) i τ1 ρσ(−p2 + `2, p2)

2 p1 · `1 + iε

+
τ1 ρσ(p1,−p1 + `2) i τ1µν(−p2 + `1, p2)

−2 p1 · `2 + iε
. (IV.14)

The third contribution corresponding to the graph in figure 1(d)

M (d)
µν,ρσ(p1, p2,−`2, `1) = τ2µν,ρσ(p1, p2) . (IV.15)

In the cut we get a total of of six different contributions from the multiplication of the

trees. Multiplication of the contributions of type (IV.14) on both sides of the cut gives

the discontinuity of the box diagram of [8, sec. 3.2]. Multiplying the contribution (IV.14)

and (IV.13) leads to the the discontinuity of the vertex correction contributions in figure 5(a)

and 5(b) of [8, sec. 3.5]. Multiplying the contribution (IV.14) and (IV.13) leads to the dis-

continuity of the triangle contribution of [8, sec. 3.3]. Multiplying the contribution (IV.13)

and (IV.13) on both side of the cut gives the discontinuity of the vacuum graph contribution

in figure 6(a) of [8, sec. 3.6] without the ghost contribution from figure 4. Multiplying the

contribution (IV.13) and (IV.15) leads to the discontinuity of the vertex correction contribu-

tions in figure 5(c) and 5(d) of [8, sec. 3.5]. Finally multiplying the contribution (IV.15) on

both sides of the cut leads to the discontinuity of the double-seagull diagrams of [8, sec. 3.4].

V. MATTER-INDEPENDENCE OF THE QUANTUM CORRECTIONS

In this section we will address the previously noted matter-independence of the coefficients

CNP and CQG. It was found in ref. [11] that the values of these coefficients are independent

of the type of the external matter under consideration.

Within the unitarity-based methods, the logic for matter-independence is quite simple.

The on-shell gravitational Compton amplitude has a generic form in the low-energy limit.

Therefore the discontinuity is matter-independent in the low energy limit, and since we can

extract the quantum correction from the discontinuity, the leading quantum corrections also

inherits this matter-independence.

That the on-shell gravitational Compton amplitude is matter-independent can be argued

for in various ways. Weinberg [36] has shown that the corresponding electromagnetic am-

plitude is matter-independent using only gauge invariance. It then follows that the on-shell
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gravitational amplitude is also matter-independent because the latter can be expressed as

the square of the electromagnetic amplitude as discussed in Section II. Alternatively, as

Weinberg also noted, we know that the electromagnetic amplitude can be expressed by an

effective Lagrangian, whose non-relativistic limit is determined by the charge and magnetic

moment. In the gravitational case, there is also a low-energy effective Lagrangian for a mas-

sive system, described by its energy-momentum and spin [37, 38]. This yields the leading

couplings of two gravitons to the heavy particle, which is equivalent to the low-energy limit

of our gravitational Compton amplitudes.

In this section we will provide general arguments for the matter-independence of the

coefficients CNP and CQG based on the KLT amplitude relation. We will here only consider

the spinless contribution to the correction of the classical non-relativistic potential. An more

general analysis of the spin multipole expansion will be done elsewhere.

A. The spin 1 case

In the non-relativistic limit the orthogonality conditions on the spin 1 polarizations,

p1 · h1 = p2 · h2 = 0, imply that

h01 '
1

m
~h1 · ~p1, h02 '

1

m
~h2 · ~p2 . (V.1)

Using the relation (~u × ~v) · (~x × ~y) = (~u · ~x)(~v · ~y) − (~u · y)(~v · ~x) we have the following

multipole decomposition

h1 · h2 ' −S
(

1 +
q2

6m2

)
− i

2m2
~S · (~p1 × ~p2) +

1

m2
~p1 ·Q · ~p2 , (V.2)

where S = ~h1 · ~h2 is the spinless singlet, ~S := i~h1 × ~h2 is the spin vector, and Qij =

1
2

(hi1h
j
2 + hj1h

i
2) − 1

3
δij(~h1 · ~h2) is the (traceless) quadrupole tensor. We have used that in

the non-relativistic limit q2 = (p1 + p2)
2 ' −2~p1 · ~p2.

In the non-relativistic limit we can perform an 1/m expansion of the Compton tree

amplitudes. The Compton scattering of a massive spin 1 vector given in section II C reads

Atree
1 (p1, k2, p2, k1) = −(h1 · h2)Atree

0 (p1, k2, p2, k1)

− h1 · F1 · F2 · h2 + (h1 · F2 · h2) (ε1 · p1) + (h1 · F1 · h2) (ε2 · p2)
2p1 · k1

− h1 · F2 · F1 · h2 + (h1 · F1 · h2) (ε1 · p1) + (h1 · F2 · h2) (ε2 · p2)
2p1 · k2

.(V.3)
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To leading order in 1/m the amplitude approximates to

Atree
1 (p1, k2, p2, k1) ' S Atree

0 (p1, k2, p2, k1)

− hi1F1 ijF2
j
kh

k
2 + i(~S · ~B2) (ε1 · p1) + i(~S · ~B1) (ε2 · p2)

2p1 · k1

−h
i
1F2 ijF1

j
kh

k
2 + i(~S · ~B1) (ε1 · p1) + i(~S · ~B2) (ε2 · p2)

2p1 · k2
. (V.4)

The first line receives a contribution from the spin-independent operator S and the last two

lines from the spin-orbit and quadrupole operator. The indices i, j, k = 1, 2, 3 run over the

spatial components.

The singlet spin-independent contribution S = ~h1 · ~h2 in this amplitude is multiplied

by the scalar Compton amplitude. Using the KLT relation the same property is true for

the gravitational Compton amplitude. Therefore the spin-independent contribution of the

one-loop correction to Coulomb’s potential QED and Newton’s potential in gravity, will be

the same as the one finds for scalar scattering, even with spin 1 external states.

B. The spin 1
2 case

For the spin 1
2

matter we have a similar decomposition in terms of a spin-independent

piece and a spin-orbit part. The spin 1
2

amplitude takes the form

Atree
1
2

(p1, k2, p2, k1) =
n

1
2
t

p1 · k1
+

n
1
2
u

p1 · k2
. (V.5)

The expression for n
1
2
t is given in eq. (II.19) with an equivalent expression for n

1
2
u with the

exchange of the labels k1 and k2.

We start by rewriting these numerators factors using the identity ( 6 p1 + m)γµu(p1) =

2pµ1u(p1), which is a consequence of the equation of motion (6p1 −m)u(p1) = 0, to get5

n
1
2
t = 2ū(−p2) 6ε2u(p1) (ε1 · p1)−

2

3
εµνρλ ε2µF1 νρSλ − 2ū(−p2)γνu(p1) ε

µ
2F1µν . (V.6)

Here we have introduced the spin vector

Sµ :=
i

2
ū(−p2)γ5γµu(p1) . (V.7)

5 Where we used that {γµ, γν} = 2ηµν and γ5 = −iεµνρσγµνρσ, and γµνρ = − i
3!ε

µνρσγ5γλ.
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Using Gordon’s identities one gets that [32]

ū(−p2)γµu(p1) =
1

1− q2

4m2

(
S
pµ1 − pµ2

2m
+

i

m2
εµνρσp1 νp2 ρSσ

)
, (V.8)

where S = ū(−p2)u(p1) is the spinless singlet.

Since our spinor are normalized according to ū(p)u(p) = 2m, following the conventions

of [39], the non-relativistic limit gives

Sµ ' −2m

(
0, ~S :=

1

2
ξ†2~σξ1

)
, (V.9)

S ' −2m

(
ξ†2ξ1 +

i

m2
~S · (~p1 × ~p2)

)
. (V.10)

In this limit, the numerator factor approximates to

n
1
2
t ' (ξ†2ξ1) (2(ε2 · p2)(ε1 · p1) + 2(p1 · k1)(ε1 · ε2)) +

2m

3
εµνρε2µF1νρSi . (V.11)

Therefore the leading 1/m expansion of the spin 1
2

Compton scattering takes the form

Atree
1
2

(p1, k2, p2, k1) = (ξ†2ξ1)A
tree
0 (p1, k2, p2, k1) +

2m

3
εµν iSi

(
ε2µF1νρ

p1 · k1
+
ε1µF2νρ

p1 · k2

)
. (V.12)

We observe that the spin-independent part is again equal to the scalar amplitude and the

spin-orbit part is identical to the one derived for spin 1 amplitudes. Using the KLT relation

the same property is true for the gravitational Compton amplitude. Therefore the spin-

independent contribution of the one-loop correction to Coulomb’s potential in QED and in

Newton’s potential in gravity, will be the same as the one finds for scalar scattering, even

with massive fermionic external states.

VI. CONCLUSION

In this paper we have computed the leading classical and quantum corrections to the

Coulomb and Newton potentials. This has been done using modern techniques employing

spinor-helicity variables and on-shell unitarity methods at one-loop order for the first time.

This approach greatly simplifies the evaluation of these corrections. It is possible to

compare our computation directly to previous Feynman diagram computations by staying

in a covariant formalism, and explicitly put in the ghost loop contribution. By doing so, we

have verified the gauge invariance of the quantum correction. Such unitarity based methods
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also emphasize that the quantum correction come from only the low energy limit of the

on-shell gravitational amplitudes, and are insensitive to the unknown high energy behavior

of the full theory of quantum gravity.

We also considered matter-independence properties of the results for the non-analytic con-

tributions, and we showed directly using the KLT formalism that the spinless corrections to

the amplitude theoretically has to be manifestly independent of the nature of the interacting

particles as have been observed in the literature previously [11]. Such matter-independence

statements for low energy quantum gravity appears to be equivalent to previously noted

statements at low energy in QED [36]. The results are low-energy theorems of quantum

gravity.

The ultimate and ultraviolet safe theory of quantum gravity is still not known, however it

is gratifying to learn that it is possible to compute universal results in the theory of quantum

gravity. They are universal in the sense that any theory having the same low-energy spectrum

of particles will have the same answer for the leading corrections independent of what the

high-energy completion might turn out to be. Although quantum gravity is at times an

exhaustive discipline [35] is important to realize that the treament using modern on-shell

methods presents a huge advantage in efficiency. For example it might be possible to apply

some of our techniques to the recent paper [40] and more generally it might be of interest to

reconsider many historical computations in the light of new computational methods. The

recent progress in computational techniques will here most likely allow an extended analysis.
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Appendix A: Vertices and Propagators

We will here list the Feynman rules which are employed in our calculation. For the

derivation of these forms, see [7, 41]. Our convention differs from these work by having all

incoming momenta.

The propagators are given by

• The massive scalar propagator is
i

q2 −m2 + iε
.

• The graviton propagator in harmonic gauge can be written in the form
iPαβ,γδ
q2 + iε

where

Pαβ,γδ is defined in (II.2).

In the background field methods used in [7, 41], one develops the metric into an expansion

gµν = Hµν + κ(4) hνµ where Hµν is the classical background field and hµν is the quantum

field. The relation between the vertices given below and the vertices derived by De Witt is

discussed in sec. II A.

The vertices are given by

• The 2-scalar-1-graviton vertex τµν1 (p1, p2) is

τµν1 (p1, p2) =
iκ(4)

2

[
pµ1p

ν
2 + pν1p

µ
2 −

1

2
ηµν (p1 + p2)

2

]
. (A.1)

• The 2-scalar-2-graviton vertex τ ηλρσ2 (p1, p2) is

τ ηλρσ2 (p1, p2) = −iκ2(4)
[{
Pηλ,αδPρσ,βδ +

1

4

{
ηηλPρσ,αβ + ηρσPηλ,αβ

}}
(p1αp2β + p2αp1β)

+
1

4
Pηλ,ρσ (p1 + p2)

2

]
. (A.2)

• The 3-graviton vertex, between two quantum fields and one classical field, derived via
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the background field method has the form [41], where k + q + π = 0,

τ3
µν
αβγδ(k, q) = −iκ(4)

2
×
(
Pαβγδ

[
kµkν + πµπν + qµqν − 3

2
ηµνq2

]
+ 2qλqσ

[
I σλ
αβ I µν

γδ + I σλ
γδ I µν

αβ − I µσ
αβ I νλ

γδ − I µσ
γδ I νλ

αβ

]
+

[
qλq

µ

(
ηαβI

νλ
γδ + ηγδI

νλ
αβ

)
+ qλq

ν
(
ηαβI

µλ
γδ + ηγδI

µλ
αβ

)
− q2

(
ηαβI

µν
γδ + ηγδI

µν
αβ

)
− ηµνqσqλ

(
ηαβI

σλ
γδ + ηγδI

σλ
αβ

) ]
+

[
2qλ
(
I λσ
αβ I ν

γδσ πµ + I λσ
αβ I µ

γδσ πν + I λσ
γδ I ν

αβσ kµ + I λσ
γδ I µ

αβσ kν
)

+ q2
(
I µ
αβσ I νσ

γδ + I νσ
αβ I µ

γδσ

)
+ ηµνqσqλ

(
I λρ
αβ I σ

γδρ + I λρ
γδ I σ

αβρ

)]
+

{
(k2 + π2)

[
P µσ
αβ P ν

γδ,σ + P µσ
γδ P ν

αβ,σ −
1

2
ηµν(Pαβ,γδ − ηαβηγδ)

]
+
(
P µν
γδ ηαβπ

2 + P µν
αβ ηγδk

2
)})

,

(A.3)

where Iαβ,γδ ≡ Pαβ,γδ + 1
2
ηαβηγδ. In section II A we explained that the on-shell tree level

amplitudes obtained using these vertices are equivalent to the ones computed with the

vertices given by De Witt [18] and Sannan [19]. We remark that the expression for τ3 is

simpler than the three-graviton vertex in these references.

Appendix B: Dispersion relations

In the main text, we calculated the unitarity cut by projecting it onto discontinuities of

box, triangle and bubble integrals. A complementary method involves using the discontinu-

ities to provide the input to a dispersion relation. We have carried this out in both the de

Donder gauge (with ghosts) and using the helicity basis (which has only physical degrees of

freedom). We briefly describe the dispersive treatment in this appendix.

The dispersive approach to potentials was pioneered by Feinberg and Sucher [31] for

QED6. They argue for a dispersive representation of the scattering potential

V (s, q2) = − 1

π

∫ ∞
0

dt
1

t− q2ρ(s, t)+R.H.cut . (B.1)

6 We have already compared to their QED result in Section III.
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where the right-hand cut involves only massive states and does not influence the low energy

behavior of the amplitude. Depending on the ultimate high energy theory, this dispersion

relation may require subtractions. However, an important point is that the subtraction

constants are analytic functions of powers of q2. The subtraction constants then are related

to local, analytic terms in the effective Lagrangian [42], and cannot modify the non-analytic

terms that come from the low energy end of the dispersion relation. In the case of gravity,

the subtraction constants correspond to higher curvature terms in the gravitational action.

If we are interested in the low-energy non-analytic terms we can use either subtracted or

unsubtracted forms of the dispersion relation.

The spectral function ρ(s, t) is formed by multiplying together the on-shell gravitational

Compton amplitudes. In the axial gauge of the helicity basis we have only the physical

degrees of freedom

ρ(s, t) = − 1

π

∫
dΩ`

4π
M tree

µν,ρσ(p1, p2,−`2, `1)Sµν,αβSρσ,γδ(M tree
αβ,γδ(p4, p3, `2,−`1))∗ , (B.2)

where Sµν,ρσ is the polarization sum of Eq. IV.10. The graviton momenta in the numerator

are taken to be on-shell. If we work in harmonic gauge we have a similar relation with the

harmonic gauge polarization sum of Eq. II.2

ρ(s, t) = − 1

π

∫
dΩ`

4π
M tree

µν,ρσ(p1, p2,−`2, `1)Pµν,αβPρσ,γδ(M tree
αβ,γδ(p4, p3, `2,−`1))∗ . (B.3)

Of course, in the harmonic gauge we expect to also need to include ghost fields, and this

will be verified.

Feinberg and Sucher describe how to do the angular phase-space integrals. It is useful to

go to the frame where p1 = (ω, ~p), p2 = (ω,−~p) with ~p = im1ζ1p̂ and ζ1 =
√

1− t/4m2
1. In

the gravity case there are more momentum factors in the numerator than with QED, but

the phase space integrals are simple generalizations of the ones described in [31]. After the

phase-space integration, the spectral functions can be expanded at low-energy with the form

ρ(s, t) = a1(s)
1√
t

+ a2(s) + .... (B.4)

yielding a potential function

V (s, q2) =
1

π
[a1(s)

π√
−q2

+ a2(s) ln(−q2) + ....] (B.5)

which is to be evaluated in the non-relativistic limit.
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We have carried out this program in both the helicity basis and in harmonic gauge. In the

helicity basis, for simplicity we chose the reference momentum for `1 to be `2 and visa-versa.

The covariant amplitudes were multiplied together, the phase-space integral done and the

result was Taylor expanded at low energy using Mathematica. In the helicity basis, this

directly reproduced both the classical and quantum non-analytic terms as described in the

text. For the harmonic gauge calculation, ghost fields were needed and a separate spectral

function for ghosts was included, with the sum of graviton and ghost effects again yielding

the expected answer.

The main technical difference between the methods described in the text and this dis-

persive method is that in the latter method the phase space integral is explicitly calculated

while in the former the discontinuity is used to identify the contributions of box, triangle

and bubble diagrams. Of course, these yield the same results because the box, triangle and

bubble diagrams respect the causality and analyticity properties that go into the dispersion

relations.
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