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Abstract. As a first step towards a successful field theory of Brownian particles in

interaction, we study exactly the non-interacting case, its combinatorics and its non-

linear time-reversal symmetry. Even though the particles do not interact, the field

theory contains an interaction term: the vertex is the hallmark of the original particle

nature of the gas and it enforces the constraint of a strictly positive density field, as

opposed to a Gaussian free field. We compute exactly all the n-point density correlation

functions, determine non-perturbatively the Poissonian nature of the ground state and

emphasize the futility of any coarse-graining assumption for the derivation of the field

theory. We finally verify explicitly, on the n-point functions, the fluctuation-dissipation

theorem implied by the time-reversal symmetry of the action.

PACS numbers: 05.40.Jc

Introduction

Glassy features in the dynamical behavior of colloidal suspensions are among the most

intriguing aspects of their phenomenology. Their idealization as fluids of interacting

Brownian particles might provide the key to understand glassiness for continuous, finite

dimensional systems. A satisfying analytic treatment seems, however, still out of reach.

The evolution of a system of N Brownian particles can be described either by a system

of N stochastic ordinary differential equations or, after introducing a density field, by

a stochastic partial differential equation [1], [2] which in turn can be recast into a field

theory. A field-theoretic approach is the ideal framework for the study of conservation

laws, encoded as symmetries of the action. The appeal of a field theory is then

twofold: the ease to conceive perturbative series expansions in the (weak) inter-particle
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potential, and the possibility to obtain non-perturbative results deriving approximate

self-consistent equations for the correlators. In either case, the symmetries of the action

should act as a guidance and a constraint for any approximation scheme.

In order to study the glassy dynamics it is necessary to examine a field-theory in its

strongly-interacting regime and, to this aim, attempts have been made to re-sum whole

classes of diagrams, at all orders in the interaction potential [3], [4], [5], [6]. The main

obstacle towards a successful resummation scheme is that the time-reversal symmetry of

the appropriate action involves non-linear transformations of the fields, relating n-point

functions for different n’s in an intricate fashion: this precludes the possibility of writing

easily-solvable self-consistent closure relations for the n-point functions which respect

the symmetry. In general, a symmetry enforces relations between the field-theoretic

correlators; in particular, the time-reversal symmetry of the field theory we are about to

study leads to the correct fluctuation-dissipation relations expected between correlation

and linear response functions. The fluctuation-dissipation theorem (FDT) is a firmly

grounded physical requirement for an equilibrated system: solutions violating FDT may

arise because of terms which drive the system out of equilibrium, explicitly breaking

time-reversal symmetry, or as a consequence of the spontaneous symmetry breaking

occurring in glassy phases. However, any solution describing the liquid phase would

clearly be unsatisfactory if it were incompatible with FDT.

The aim of this paper is a thorough study of the Brownian gas, which is the 0th order

term of any perturbative expansion in the inter-particle potential. Here, the challenge

posed by the non-linear symmetry is isolated from further complications due to the

interactions, the origin of the non-linearity being purely entropic. The material is

organized as follows: in Section 1 we define the Brownian gas and compute exactly the

space-time dependence of all the n-point correlation functions for the particle density. In

Section 2 we briefly review how to formulate a path-integral description of the system

and solve the field theory exactly, re-computing all the n-point correlation functions

in agreement with the results of Section 1. Calculations with field-theoretic methods

are non-trivial since the Martin-Siggia-Rose (MSR) action describes an interacting field

theory, even though the original system contains non-interacting particles. In Section

3 we emphasize the role of the vertex in enforcing the constraint of a strictly positive

density field as opposed to a Gaussian free field. No coarse-graining procedure and

no cut-off scale are in principle necessary for a proper definition of the theory. A

central, non-perturbative result is the proof that the statistics of the ground state of

the field theory is Poissonian. In Section 4 we compute the Jacobian of the non-linear

field transformation and show explicitly how the n-point functions computed in the

previous sections satisfy the fluctuation-dissipation theorem associated to the time-

reversal symmetry of the action.
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1. The particle formalism

1.1. Brownian particles

In natural units (kB = 1 and drag coefficient γ = 1) the equation of motion for a

Brownian particle labeled by j moving in R
d is:

ẋj(t) = ηj(t) (1)

ηj is a Gaussian white noise with probability distribution:

P[ηj ] ∝ e−
1

4T

R

dt η2j (t)

and correlators:

〈ηi,a(t)ηj,b(t′)〉 = 2Tδijδabδ(t− t′)

where a and b label the vector components. The solution of equation (1) is:

xj(t) = xj(0) +

∫ t

0

dt′ηj(t
′) (2)

Note that for any j, ∆j(t) = xj(t) − xj(0) =
∫ t

0
dt′ηj(t

′) is a Gaussian random variable.

Soon we will be interested in the value of 〈(∆xa(t1) −∆xb(t2))
2〉η , which can be easily

computed using:

〈∆xi,a(t1)∆xj,b(t2)〉η =

∫ t1

0

dt′
∫ t2

0

dt′′ 〈ηi,a(t′)ηj,b(t′′)〉η

=

∫ t1

0

dt′
∫ t2

0

dt′′ 2Tδijδabδ(t
′ − t′′) = 2Tδijδab min(t1, t2) (3)

The result in (3) is non-vanishing only if ∆x’s relative to the same particle are considered

and finally:

〈(∆xa(t1) − ∆xb(t2))
2〉η = 2Tδab|t1 − t2| (4)

1.2. The Brownian gas

The Brownian gas consists of N Brownian particles (1) confined in a d-dimensional box

of volume V with periodic boundary conditions. As usual, the thermodynamic limit is

defined as:

V → ∞ ; N → ∞ ;
N

V
→ ρ0 = const (5)

The free parameters describing the gas are its average density ρ0 and its temperature

T , or equivalently the diffusion coefficient related to the temperature by the Einstein

relation: D = kBT
γ

. In natural units γ = 1 and kB = 1, so that D = T . The

natural length-scale in the system is the average separation between particles, defined as

λ = ρ
−1/d
0 . Also, the well-known relation for diffusive processes 〈∆x2〉 = 2D∆t = 2T∆t

fixes the natural time-scale of the system to be τ = λ2

2T
. Once distances and time

intervals are expressed in these natural units, the Brownian gas becomes a parameter-

free universal system.
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1.3. Density correlations

The number density field ̺(x, t) is defined as:

̺(x, t) =

N
∑

j=1

δ(x− xj(t)) or : ̺k(t) =
1

V

N
∑

j=1

eik·xj(t) (6)

We now compute the correlation of densities measured at n different points in space and

time. The average over initial conditions and realizations of the noise is fully determin-

istic and represents, at least at equilibrium, the expected outcome of a measurement.

The average over the initial positions 〈. . .〉I.P. and the realizations of the noise 〈. . .〉η are

defined in Appendix A.

The general structure of the following computations is:

- The position of each particle at time t depends both on the initial position and

on the realization of the associated noise. Using (2) the two contributions can be

separated and the averages over initial positions and noise realizations factorize.

- The average over initial conditions is computed using formula (A.1).

- The average over the noise is performed exploiting the standard relation 〈e−iψ〉ψ =

e−
1

2
〈ψ2〉ψ , valid for any Gaussian random variable ψ with probability distribution

P[ψ] ∝ e−
1

2
ψ2

, and applying (3) and (4).

The final result for a generic connected n-point function is surprisingly compact and is

reported in formula (10).

1.3.1. 2-point functions It is a simple exercise to verify that the 1-point function yields

ρ0, as expected from (5). Applying the steps described above, for the 2-point function

we obtain:

〈̺(x1, t1)̺(x2, t2)〉η,I.P. =
∑

k

(

eik·(x1−x2)
N

V 2
e−Tk

2|t1−t2|
)

+
N(N − 1)

V 2

The connected correlation function is:

〈̺(x1, t1)̺(x2, t2)〉c = 〈̺(x1, t1)̺(x2, t2)〉η,I.P. − 〈̺(x1, t1)〉η,I.P.〈̺(x2, t2)〉η,I.P.
=

N

V 2

(

∑

k

eik·(x1−x2)e−Tk
2|t1−t2|

)

− N

V 2

In the continuum limit another factor of V appears in the numerator of the first term
∑

k

=
1

∆k

∑

k

∆k → V

∫

ddk

(2π)d
(7)

which is then finite in the thermodynamic limit whereas the second term vanishes, being

suppressed by a factor 1
V

. In the thermodynamic limit the 2-point function is thus:

〈̺(x1, t1)̺(x2, t2)〉c → ρ0

∫

ddk

(2π)d
eik·(x1−x2)e−Tk

2|t1−t2|

= ρ0
1

(4πT |t1 − t2|)d/2
exp

(

− (x1 − x2)
2

4T |t1 − t2|

)
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1.3.2. 3-point functions The computation of the 3-point function gives some further

useful insight. The generalization to an n-point function is then straightforward.

〈̺(x1, t1)̺(x2, t2)̺(x3, t3)〉η,I.P.
=

∑

k1,k2,k3

eik1·x1eik2·x2eik3·x3
1

V 3
δk1+k2+k3N〈e−ik1·∆(t1)e−ik2·∆(t2)e−ik3·∆(t3)〉η

+
(

∑

k2,k3

eik2·x2eik3·x3
1

V 3
δk2+k3N(N − 1)〈e−ik2·∆(t2)e−ik3·∆(t3)〉η

+ (1 ↔ 2) + (1 ↔ 3)
)

+
1

V 3
N(N − 1)(N − 2)

Each term in the calculation above is associated to a connected or a disconnected

correlation; connected pieces represent single-particle self-correlations to which a formal

“conservation of momentum” rule is associated by formula (A.1). Again, the subtraction

of disconnected pieces removes, in the thermodynamic limit, all the terms except for the

first one, which is the only fully connected term.

1.3.3. n-point functions A connected n-point correlation functions can then be written

in the thermodynamic limit as:

〈̺(x1, t1) . . . ̺(xn, tn)〉c (8)

=
∑

k1,...,kn

eik1·x1 . . . eikn·xn
N

V n
δk1+...+kn〈̺(k1, t1) . . . ̺(kn, tn)〉η,I.P.

where 〈̺(k1, t1) . . . ̺(kn, tn)〉η = 〈e−ik1·∆(t1) . . . e−ikn·∆(tn)〉η. After computing the average

over the noise, the general n-point correlation function is easily obtained:

〈̺(k1, t1) . . . ̺(kn, tn)〉η = exp
(

T

n
∑

i<j

ki · kj |ti − tj|
)

(9)

Note that δk1+...+kn in (8) allows to perform easily one of the sums over k and the other

n−1 summations give, in the continuum approximation, a factor V n−1 as in (7). Hence

the whole expression is proportional to ρ0 and it is finite in the thermodynamic limit:

〈̺(x1, t1) . . . ̺(xn, tn)〉c (10)

= ρ0

∫

ddk1

(2π)d
. . .

∫

ddkn−1

(2π)d
eik1·(x1−xn) . . . eikn−1·(xn−1−xn)eT

Pn
i<j ki·kj|ti−tj |

with the constraint kn = −(k1 + . . . + kn−1) in the last exponential. The space and

time-translation invariance of the result are manifest.

As we have seen, the only finite contributions in the thermodynamic limit come from

single-particle self-correlations. The particles’ positions xj(t) obey the Langevin equa-

tion (1) and the solutions are Gaussian random variables for which all the connected

moments 〈x(t1) . . . x(tn)〉c vanish if n > 2. It could be somewhat surprising to find

non-vanishing connected moments of the density for every n. The key point is that the

density field (6) is a function of the particle positions and a generic function of Gaussian

random variables does not have to be, and in this case is not, Gaussianly distributed.
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2. The field-theoretic formalism

We now briefly review how to introduce a single differential equation with all the

information content of the system of Langevin equations describing the Brownian gas,

and how to rephrase it as a field theory.

2.1. Dean’s equation

The Brownian dynamics of a system of particles can be encoded in a stochastic ordinary

differential equation for each particle; since we consider the non-interacting case only,

the equations are naturally decoupled:

ẋj(t) = ηj(t) ; j = 1, . . . , N

Defining the density field as in (6), the system of equations can be formally translated

into Dean’s equation (11), which is the corresponding partial differential equation

governing the evolution of the density field:

∂t̺ = ∇ · (ξ√̺) + T∇2̺ (11)

In the process, the N independent noises ηj(t) have been turned into a single vector

field ξ(x, t) with self-correlation:

〈ξa(x, t)ξb(x′, t′)〉 = 2Tδabδ(t− t′)δ(x− x′)

Since in (11) the noise multiplies the density field, the differential equation becomes

a meaningful string of symbols only once a proper interpretation for the noise term is

given [7]. We adopt the Itô prescription, which implies a trivial Jacobian [4] for the

path-integral in (13).

It should be stressed that, due to the singular nature of the density field, the natu-

ral setting of Dean’s equation is a distribution space. In such a setting the equation has

been derived exactly, without any coarse-graining assumptions or cut-off scales which

are by no means necessary to obtain the differential equation [2].

2.2. The MSR action and the Feynman rules

2.2.1. The MSR procedure Through a formal procedure first devised by Janssen [8]

following Martin, Siggia and Rose (MSR) [9], a stochastic differential equation can be

recast into a field theory defined by a functional integral. The basic idea is to impose

the original equation of motion for the density field ρ by introducing a new field iφ̂ as

Lagrange multiplier, whereas the noise is integrated out exploiting its Gaussian measure.

After introducing for convenience a shifted density field with a vanishing average ‡,
̺(~x, t) = ρ0 + ρ(~x, t) s.t. 〈̺(x, t)〉 = ρ0 , 〈ρ(~x, t)〉 = 0 (12)

‡ The spatial average is always well defined, being one of the parameters defining the thermodynamic

limit. At equilibrium we expect it to be equivalent to a temporal average at a fixed position and also

to an average over the noise histories at fixed position and time.
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the analytic expression of the MSR generating functional is:

Z =

∫

Dφ̂Dρ eS (13)

with action:

S =

∫

ddx dt
{

iφ̂[∂tρ− T∇2ρ] + Tρ0[∇iφ̂]2 + Tρ[∇iφ̂]2
}

(14)

The time integration in (14) extends from −∞ to +∞ or, equivalently, the initial

conditions are shifted to the infinite past: due to the dissipative dynamics, the ground-

state of the theory describes then the equilibrated system, forgetful of any initial

condition. We do not specify instead the functional domain over which the path integrals

in (13) are computed and proceed formally: the functional integrals are regarded

as formal series of Gaussian integrals computed over unconstrained (i.e. positive and

negative) fields whereas, in principle, the integral over ρ should be restricted to sums

of δ’s only, as the form of the density field in (6) would suggest. The exact match of

the results we will obtain with the ones calculated in the particle formalism justifies

a posteriori such an approach, emphasizing the role of the auxiliary field iφ̂ and of

the vertex in imposing the equation of motion (11) and enforcing the positivity of the

density field.

2.2.2. Feynman rules For the following analysis it will be convenient to work in a rep-

resentation involving times t and momenta k. Introducing the time-ordering convention

to write earlier fields to the right of later fields, the appropriate Feynman rules are then:

〈ρρ〉(k, t) = ρ0e
−Tk2|t|

〈iφ̂ρ〉(k, t) = θ(−t)e+Tk2t

〈ρiφ̂〉(k, t) = θ(t)e−Tk
2t

〈iφ̂iφ̂〉(k, t) = 0

−2Tk1 · k2

The dotted edges on the vertex indicate the action of spatial derivatives. All the mo-

menta are considered positive when incoming in the vertex.

The propagator 〈ρρ〉 is the density-density correlator and we will refer to the propa-

gators 〈iφ̂ρ〉 and 〈ρiφ̂〉 as the advanced and retarded response functions respectively. It

is worth emphasizing that such terminology would be appropriate only in the case of

Langevin equations with additive noise, for which the occurrence of iφ̂ in a field-theoretic

expectation value can be proven to represent the linear response to the variation of a

chemical potential µ coupled to the density field. For the MSR field theory associated
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to Dean’s equation, instead, response functions are characterized not by iφ̂ but by the

composite operator ∇ · (̺∇iφ̂) as we will show in Section 4.1. Yet, for simplicity, in the

following we will refer to the pseudo-response functions 〈iφ̂ρ〉 and 〈ρiφ̂〉 as “response

functions” tout court.

2.2.3. Diagrammatics Although corresponding to a non-interacting particle system,

the action (14) has a vertex and the field theory is non-Gaussian. The study of the gas

is nevertheless easier than the interacting case since all loop diagrams vanish because of

causality, as the following example, easily generalizable to arbitrary n-point functions,

illustrates:

t1

t2
t3

Labeling t1, t2 and t3 the vertices of the triangle, the θ-functions in the propagators im-

pose: t1 ≤ t2, t2 ≤ t3 and t3 ≤ t1. Such constraints can be satisfied only by t1 = t2 = t3,

with a vanishing volume in phase space. Hence, only tree diagrams yield non-vanishing

amplitudes and such a simplification which will allow to compute exactly all the corre-

lation functions.

The structure of the vertex implies that among the edges of a tree there is one and

only one correlation-like propagator, all the other propagators being response-like. The

identity below allows to express a correlation-like propagator as a sum of two response-

like propagators:

〈ρρ〉(k, t) = ρ0e
−Tk2|t| = ρ0

[

θ(t)e−Tk
2t + θ(−t)eTk2t

]

= ρ0

[

〈ρiφ̂〉(k, t) + 〈iφ̂ρ〉(k, t)
]

(15)

Graphically: → ρ0( + ).

Using relation (15), each diagram can be decomposed into the sum of two simpler di-

agrams in which all the propagators are response-like: causality, encoded through the

θ(t) functions in the Feynman rules, endows the response-like propagators with a natural

orientation so that the concept of “earlier vertex” is well-defined. The above decompo-

sition leads also to the appearance of vertices with three dashed legs whose properties

are discussed in Section 2.4

After applying the decomposition (15) the diagrams contributing to a correlation func-

tion can be divided into two subsets:

- c-diagrams: all the external lines are solid lines or, equivalently, one of the vertices

has three dashed legs.
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- r-diagrams: one of the external lines is a dashed line or, equivalently, all the vertices

are of the kind depicted in the Feynman rules of Section 2.2.2.

Indicating by C and R the sum of all the c-diagrams and r-diagrams respectively, we

have:

- Response functions = R

- Correlation functions = C+R

In the next section we will develop a computational scheme for calculating all the

diagrams of the theory and, after summing together the appropriate contributions,

we will give explicit analytic expressions for the generic n-point density correlations.

In order to simplify the notation, the temperature will be set to one in the following

(T = 1) an it will be easily reintroduced in the final result (35).

2.3. Computation of all the r-diagrams

r-diagrams can be immediately mapped to binary rooted trees by considering the prop-

agator with the external dashed line as the root of the tree. Before confronting the

general case it is instructive to compute explicitly the first few r-diagrams to better

understand and appreciate the combinatorial approach developed in section 2.3.4. The

hasty reader might want to continue there directly.

Conventions:

t1 < t2 < . . . < tn−1 < tn
mab...yz := min (ta, tb, . . . , ty, tz)

2.3.1. 3-point Applying the Feynman rules and constraining the integration domain

according to causality:
1

2 3

R3(1, 2, 3) =

∫ m23

t1

dt̄ (−2k2 · k3)e
−k2

1
(t̄−t1)e−k

2
2
(t2−t̄)e−k

2
3
(t3−t̄) (16)

= e−k
2
1
(m23−t1)−k2

2
(t2−m23)−k2

3
(t3−m23) − e−k

2
2
(t2−t1)−k2

3
(t3−t1)

where conservation of momentum: −k2
1 + k2

2 + k2
3 = −2k2 · k3 has been used.

As explained below, the result can be depicted as:

R3 = −

1
2

2 3

1

2 3
(17)

In the following we will be careful with the terminology, calling “diagrams” the usual

Feynman diagrams [10], mapped to integrals by the Feynman rules, and “graphs” the

objects of the kind drawn in (17), which are a graphical representation of the result of
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such integrals.

The crucial property of such a graphical representation is that the group of permutation

of labels under which the exponentials in an analytic term are invariant is isomorphic to

the group of topologically equivalent relabelings of the associated graph. As we will see

starting from the computation of the 4-point r-function, the graphical approach greatly

eases the bookkeeping.

The rules for drawing a graph given the result of the integrations are very simple:

- To each term of the form e−k
2
j (a−b) associate two vertices labeled ‘a’ and ‘b’ linked by

a line. The edge should be labeled by k2
j , yet we will avoid doing so since the labels

for the edges of a graph can be easily guessed considering the momenta labelling

the original Feynman diagram and the contractions to obtain the graph.

- Identify all the vertices with the same label

Note that no loops are generated as a consequence of the tree-like structure of the

original Feynman diagrams and tadpoles are naturally removed since a = b implies

e−k
2
j (a−b) = 1.

Recovering an analytic expression given a labeled graphs is an obvious procedure.

Our graphical convention is to orient both, diagrams and graphs, in such a way that

the arrow of time points towards the bottom of the page. Then, the label mab...yz as-

sociated to the vertex of a graph is the time labeling the earliest of the underlying leaves.

2.3.2. 4-point The 4-point r-function can be easily computed from the result of the

3-point r-function:
1

2
@@R
A

3 4

r4(1, 2, 3, 4) =

∫ m234

t1

dt̄ (+2k2 · kA)e−k
2
1
(t̄−t1)e−k

2
2
(t2−t̄)R3(A, 3, 4)

= e−k
2
1
(m234−t1)−k2

2
(t2−m234)−k2

A
(m34−m234)−k2

3
(t3−m34)−k2

4
(t4−m34) (18)

− e−k
2
2(t2−t1)−k2

A(m34−t1)−k2
3(t3−m34)−k2

4(t4−m34)

− 2k2 · kA
(−k2

1 + k2
2 + k2

3 + k2
4)
e−k

2
1
(m234−t1)−k2

2
(t2−m234)−k2

3
(t3−m234)−k2

4
(t4−m234)

+
2k2 · kA

(−k2
1 + k2

2 + k2
3 + k2

4)
e−k

2
2
(t2−t1)−k2

3
(t3−t1)−k2

4
(t4−t1)

where kA = k1 + k2 = −(k3 + k4). In the last two terms of the result, rational

functions of the external momenta make their first appearance. The exponentials and

the denominators in the last two lines are independent of the permutation of labels

{2, 3, 4} and since the interest is eventually in the sum over all the topologically distinct

permutations, we add together the numerators of the rational expressions; due care
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should be taken since kA does depend on the particular permutation and the kA’s relative

to different permutations need to be distinguished:

2(k2 · kA + k3 · kA′ + k4 · kA′′)

= 2(k2 · (k1 + k2) + k3 · (k1 + k3) + k4 · (k1 + k4)) (19)

= 2(k2
2 + k2

3 + k2
4 + k1(k2 + k3 + k4)) = 2(−k2

1 + k2
2 + k2

3 + k2
4)

Simplifying the denominators, both rational expressions disappear, leaving a factor of 2.

The final result has then the following representation, the capital ‘R’ in R4 representing

the sum over all the possible labelings of all the r-diagrams:

R4 =
∑

TI

(

− − 2 + 2
)

(20)

∑

TI is a sum over all the topologically inequivalent relabelings of the graphs. Note

that the property of two labelings of being TI (topologically inequivalent) or TE

(topologically equivalent) depends on the particular graph. The first two graphs in (20)

need to be summed over the 3 TI permutations of external labels {2, 3, 4} (‘1’ being

always fixed since any r-diagram vanishes unless the external dashed line is associated

to the earliest time). The last two graphs do not need any further treatment or,

equivalently, the 3 possible labelings are topologically equivalent and they have been

summed over already to replace the rational functions with the integer ‘2’.

2.3.3. 5-point In this example one last complication, given by the existence of several

topologies of binary trees with the same number of external legs, needs to be faced. In

order to remove the rational functions it is required to sum not only over the permu-

tations of labels, as before, but also over the possible topologies of trees. Note that in

this context diagrams with the same topology but whose propagators have different ori-

entations are considered topologically distinct and they are mapped to different binary

rooted trees, namely 5a and 5b below.

Topology a:
1

2

@@R
B

3
@@R
A

4 5

r5a(1, 2, 3, 4, 5) =

∫ m2345

t1

dt̄ (+2k2 · kB)e−k
2
1(t̄−t1)e−k

2
2(t2−t̄)r4(B, 3, 4, 5) =

=

1
2

2
3

3
4

4 5
−

1

2
3

3
4

4 5
− A1

1
2

2 3
4

4 5
+ A1

1

2 3
4

4 5
(21)



On the Brownian gas: a field theory with a Poissonian ground state 12

− A2

1
2

2 3

3 4 5
+ A2

1

2
3

3 4 5
+ A3

1

2

2 3 4 5
− A3

1

2 3 4 5

where:

A1 =
2k2 · kB

−k2
1 + k2

2 + k2
3 + k2

A

A2 =
2k3 · kA

−k2
B + k2

3 + k2
4 + k2

5

A3 = A2
2k2 · kB

−k2
1 + k2

2 + k2
3 + k2

4 + k2
5

(22)

Topology b:
1

2

��	
C

3

@@R
A

4 5

r5b(5, 4, 3, 2, 1) =

∫ m2345

t1

dt̄(−2kA · kC)e−k
2
1
(t̄−t1)R3(C, 2, 3)R3(A, 4, 5)

=

1
2

2 4

2 34 5
−

1
2 4

2 34 5
− B1

1
2

2 3
4

4 5
+ B1

1

2 3
4

4 5
(23)

− B2

1
2

4 5 2

2 3
+ B2

1

4 5 2

2 3
+ B3

1
2

2 3 4 5
− B3

1

2 3 4 5

where:

B1 =
−2kA · kC

−k2
1 + k2

2 + k2
3 + k2

A

B2 =
−2kA · kC

−k2
1 + k2

4 + k2
5 + k2

C

B3 =
−2kA · kC

−k2
1 + k2

2 + k2
3 + k2

4 + k2
5

(24)

In the following, with 5a,nth and 5b,nth we will refer to the nth graph appearing in (21)

and (23) respectively.

A subtlety:

The group G5a of TI relabelings for Feynman diagram 5a contains 12 elements and in-

duces 12 relabelings for the graphs in (21). For each graph in (21) we can factorize G5a as

a product of TI and TE relabelings, the factorization depending on the particular graph

considered. The factorization is possible since the graphs generated by contracting edges

in diagram 5a have a higher symmetry than the diagram itself. Unfortunately this is not

always the case; in fact, Feynman diagram 5b has only 3 TI relabelings. However some
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of the graphs in (23), namely 5b,3rd, 5b,4th, 5b,5rd and 5b,6th, admit 6 TI relabelings since

the edge contractions have lowered the symmetry of 5b. Nevertheless, the troublesome

graphs appear in pairs ({5b,3rd, 5b,5th} and {5b,4rd, 5b,6th}) so that G5b induces 3 relabelings

on each of them for a total of 6 relabelings associated to each topology. The 3 elements

in G5b are thus enough to induce all the TI relabelings for any graph in (23). In general,

whenever the contractions reduce the symmetry factor of a diagram by a factor n, n

copies of the same graph appear, so that the TI labelings of the original diagram are

sufficient to induce all the possible TI labelings for the topology of the graph. This

is a general phenomenon deriving from the fact that the graphs are decorations of the

underlying tree structure determined by the Feynman diagrams.

The results for diagrams 5a and 5b ((21) and (23) respectively) contain several

graphs with the same topology: examples of such terms are {5a,3rd, 5b,3rd, 5b,5th},
{5a,4th, 5b,4th, 5b,6th}, {5a,7th, 5b,7th} and {5a,8th , 5b,8th}. A labeled graph fully determines

the exponentials of the analytic expressions, which are invariant under the TE relabel-

ings of the graph. Instead, the rational functions in (22) and (24) do depend on the

labeling. As for the 4-point function in (19), by summing over all the TE relabelings for

each graph we now replace the rational functions in (21) and (23) with integer numbers.

The computations are straightforward and can be summarized as follows: for the topol-

ogy of the groups {5a,3rd, 5b,3rd, 5b,5th} and {5a,4th , 5b,4th, 5b,6th} the Feynman diagram 5a

induces 12 labelings and 5b induces 6. The sum over the 18 labelings yields a factor

of 2. For the topology of the groups {5a,7th, 5b,7th} and {5a,8th , 5b,8th} the sum over the

12+3 induced labelings yields a factor of 6. Finally, the result can be expressed in terms

of a linear combination of graphs with integer coefficients, summed over TI relabelings

only:

R5 = R5a +R5b =
∑

TI

(

− + − (25)

− 2 + 2 − 2 + 2 + 6 − 6
)

2.3.4. n-point The previous sections clearly show that the amount of combinatorics

required to compute higher order r-functions rapidly becomes prohibitive and we need to

automate the computation of n-point diagrams. This can be achieved in two steps: first,

starting from a Feynman diagram, generate all the topologies of the relevant graphs, and

second, associate to each graph the appropriate combinatorial integer factor. Indeed,

given an n-point Feynman r-diagram, X, there is no need to apply the Feynman rules,

perform explicitly the computation and then draw the corresponding graphs. Instead,

the graphs representing the result are readily obtained by the following procedure:

- Consider all the graphs drawn after contracting m (m = 0, . . . , n − 2) among the

contractible edges of X, where a “contractible edge” is defined to be either an
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internal edge or the external edge labeled by the earliest time (which in the r-

graphs is always drawn as the uppermost edge, with the appearance a stalk).

- Multiply each graph by a factor (−1)m.

- To each vertex with l dangling lines associate a factor Rl = (l − 1)!. The integer

factor associated to the graph is then the product of all the coefficients associated

to its vertices. When considering an explicit labeling, the label associated to a

branching is the smallest (earliest) label of its descendant leaves.

- Sum each graph over its topologically inequivalent (TI) labelings.

The first two rules follow naturally from an iterative application of the fundamental

theorem of calculus:
∫ b

a
dtf(t) = F (b) − F (a). In fact, an integral over time is associ-

ated to each vertex of a Feynman diagram and the evaluation of the primitive at the

integration boundaries determines the sign and the survival or the contraction of the

edge in a graph. The third prescription depends on the specific form of the Feynman

rules and its proof is reported in Appendix B.1. All the above prescriptions should be

familiar after working out explicitly the analytic computation of the 3, 4, and 5-point

functions of the previous sections.

The next section aims at motivating one further prescription and at showing explicitly

the remaining steps for the calculation of density correlation functions. Some readers

might want to go directly to Section 2.4.4.

2.4. Computation of all the c-diagrams

In 2.2.3 we have defined the c-diagrams and noticed the appearance of a new vertex

with three dashed legs which was not explicitly present in the action (14). We recall

that the new vertex is a consequence of the application of the decomposition (15). After

summing over the three possible ways of orienting the original r-vertices, or, equivalently,

of distributing derivatives marked as dots on the edges, it is convenient to introduce such

vertex, called c-vertex, as a new effective Feynman rule:

= + +

with analytic expression:

− 2k1 · k2 − 2k1 · k3 − 2k2 · k3 = 2k2
1 + 2k2

2 + 2k1 · k2 = k2
1 + k2

2 + k2
3 (26)

It is easy to prove that the Feynman diagrams generated with the original Feynman

rules of section (2.2.2) and the decomposition (15) are the same as the ones generated

with a new set of Feynman rules consisting of an r-vertex, a c-vertex and response-like

propagators only. Diagrams generated only with r-vertices are r-diagrams; the ones in

which one c-vertex is present are c-diagrams.

The application of the Feynman rules is straightforward and the computations of the

integrals very similar to the ones for the r-functions. We just report some results,

emphasizing the differences with the previous calculations.



On the Brownian gas: a field theory with a Poissonian ground state 15

2.4.1. 3-point

1 2 3

c3(1, 2, 3) =

∫ m123

−∞

dt̄ (k2
1 + k2

2 + k2
3)e

−k2
1
(t1−t̄)e−k

2
2
(t2−t̄)e−k

2
3
(t3−t̄)

= e−k
2
1(t1−m123)−k2

2(t2−m123)−k2
3(t3−m123) (27)

Note the different integration domain in comparison with (16). The graphical

representation of (27) is:

C3(1, 2, 3) =
1

1 2 3
The which marks the c-vertex is just a bookkeeping symbol whose importance will be

clear soon.

We are eventually interested in the computation of the 3-point connected density cor-

relation function which is the sum of the 3-point r-function and c-function. Indicating

as usual with capital letters the sum over topologically inequivalent relabelings (in this

case just one), the graphical result is:

〈̺(k1, t1)̺(k2, t2)̺(k3, t3)〉c = R3 + C3 =
(

1
2

2 3
−

1

2 3

)

+
( 1

1 2 3

)

=

1

2

3

where we have crossed the edges to be removed when applying the contraction rule for

edges with the same label, as described in section 2.3.1. Finally, the last two graphs

cancel each other as can be explicitly noted comparing (16) and (27), the being

irrelevant in this context. In the result, the vertices of the ladder graph are pinpointed

for clarity by black dots.

2.4.2. 4-point Other n-point functions with n > 3 can be generated recursively from

one c-vertex and appropriate combinations of r-functions. For the 4-point c-function we

have:

1 2

S
Sw
A

3 4

c4(1, 2, 3, 4) =

∫ m1234

−∞

dt̄ (k2
1 + k2

2 + k2
A)e−k

2
1(t1−t̄)e−k

2
2(t2−t̄)r3(A, 3, 4)

= e−k
2
1(t1−m1234)−k2

2(t2−m1234)−k2
A(m34−m1234)−k2

3(t3−m34)−k2
4(t4−m34) (28)

− k2
1 + k2

2 + k2
A

(k2
1 + k2

2 + k2
3 + k2

4)
e−k

2
1
(t1−m1234)−k2

2
(t2−m1234)−k2

3
(t3−m1234)−k2

4
(t4−m1234)

or, graphically:

c4(1, 2, 3, 4) =

1

2 3
4

4 5
− C

1

2 3 4 5
(29)
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where:

C =
k2

1 + k2
2 + k2

A

(k2
1 + k2

2 + k2
3 + k2

4)
(30)

The Feynman diagram admits 6 TI permutations: differently from the case of the 4-

point r-function, the allowed permutations for the 4-point c-function involve all the

labels {1, 2, 3, 4}. The exponential in the second term of (28) is invariant under such

relabelings (or, equivalently, the relabelings are TE for the second graph in (29)).

Since the denominator of C is also invariant, we can just add together the numerators

corresponding to different labelings. Rewriting (k2
1 + k2

2 + k2
A) as (2k2

1 + 2k2
2 + 2k1 · k2)

and summing over the 6 relabelings:

(2k2
3 + 2k2

4 + 2k3 · k4) + (2k2
1 + 2k2

2 + 2k1 · k2) + (2k2
1 + 2k2

3 + 2k1 · k3) +

+ (2k2
1 + 2k2

4 + 2k1 · k4) + (2k2
2 + 2k2

3 + 2k2 · k3) + (2k2
2 + 2k2

4 + 2k2 · k4) =

= 5(k2
1 + k2

2 + k2
3 + k2

4)

After the sum, the rational function is replaced by a factor of 5. It is clear that the

new vertex generates combinatorial factors different from what we calculated for the

r-functions and this justifies a new graphical symbol for it.

The final result for the 4-point c-function is:

C4 =
∑

TI

(

− 5
)

(31)

In order to obtain the 4-point connected density correlation function we add together

(20) and (31):

〈̺(k1, t1)̺(k2, t2)̺(k3, t3)̺(k4, t4)〉c =
∑

TI

[

(

−

− 2 + 2
)

+
(

− 5
)

]

=

1
2
3
4

The reader is invited to perform the simple sum over the TI relabelings and verify

explicitly that, the result for the density correlator is again a ladder graph.

2.4.3. 5-point The general mechanism should be clear by now. As before, for the

5-point functions two topologies are present. We only report the final result, after

summing over the two topologies and all the TE relabelings for each graph:

C = C5a + C5b =
∑

TI

[

+ − 5 − 2 + 26

]

(32)

Note that the factor of 2 associated to the fourth term of the r.h.s. is a (3 − 1)! from

the sub-tree with 3 dangling lines. Moreover, an interesting pattern 1, 5, 26, . . . appears

for the integers associated to a c-vertex with l dangling lines. In Appendix B.2 it will
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be identified with the sequence of generalized Stirling numbers (Sloane A001705, [11]).

Verifying that the sum of (25) and (32) yields the 5-vertex ladder graph is a lengthy but

rewarding exercise. In Appendix C.1 it is proven for general n-point functions that such

ladder graphs are the graphical representation of the very same analytic result obtained

in (9) with the particle formalism.

2.4.4. n-point The general recipe of section 2.3.4 for generating graphs with their

integer coefficient can now be complemented with a new prescription:

- To each c-vertex with l dangling lines associate a factor Cl = Sl−2, where Sl is the

lth generalized Stirling number (see Appendix B.2 for a proof). The c-vertex is

labeled by ‘1’, being always the earliest vertex in a Feynman diagram.

2.5. Graph cancellations

Up to this point we have computed all the r-diagrams and all the c-diagrams writing

them as sums over topologically inequivalent labeling of graphs. At least in the simplest

examples, after combining them to compute an n-point density correlation function, we

have shown that the result is extremely simple, namely a ladder graph, i.e. a single

time-ordered labeling of a single graph, as displayed in (33). The equivalence of the

analytic expression corresponding to the ladder graphs and the result for the n-point

density correlation function computed with the particle formalism in (9) is explicitly

shown in Appendix C.1.

1

2

2 3
→

1

2

3 ;

1

2

2 3

3 4
→

1

2

3

4 ;

1
2

2
3

3
4

4 5
→

1
2
3
4
5 ; . . . (33)

Indeed, for every n-point function the same cancellations seen in the examples above

occur, causing the sum of all the graphs generated from the r-functions and the c-

functions to vanish, with the only exception of ladder graphs. Let us partition the

graphs generated by the graphical procedure into three classes: r-graphs with a stalk,

r-graphs without a stalk and c-graphs. In the figure below we report the example of the

5-point correlation function:

(

+ − 2 − 2 + 6
)

∪
(

− − + 2 + 2 − 6
)

(34)

∪
(

+ − 5 − 2 + 26
)
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It can be proven that r-graphs without a stalk completely cancel the c-graphs

(Appendix C.3) and that r-graphs with a stalk cancel one another with the exception

of the ladder graph (Appendix C.2). These facts lead us to the following grand result,

sealing the identity between the particle (9) and field-theoretic approaches:

〈̺(k1, t1) . . . ̺(kn, tn)〉c =

1
2

n = ρ0δ(k1 + . . .+ kn) exp
(

T

n
∑

i<j

ki · kj|ti − tj |
)

(35)

where the last term has been complemented with a factor ρ0(2π)dδ(k1 + . . . + kn), ρ0

coming from the decomposition (15) and the δ originating from the global conservation

of momentum associated to the Feynman diagrams.

3. The Poissonian distribution and a remark on coarse-graining

After Fourier-transforming (35), the analytic expression for an n-point density correla-

tion function in direct space is identical to (10): it follows then that the equal-time limit

of an n-point function is ρ0δ(x1 − xn) . . . δ(xn−1 − xn). At equal times the density field

is thus delta-correlated in space, as expected for a non-relativistic theory which is both

causal and local.

Let us consider the probability distribution function (PDF) for the equilibrium density

measured at a single point in space-time: the equal-time limit of an n-point function

is the nth moment of such a PDF. Since a probability distribution is uniquely deter-

mined by its moments and we know from (35) that all the cumulants are equal to ρ0,

it follows immediately that the PDF of the local density is a Poissonian distribution

with average equal to ρ0. Whereas this statement is obvious when considered from a

particle viewpoint, it is highly non-trivial from a field-theoretic perspective, involving

the resummation of an infinite class of Feynman diagrams.

For an infinite system, λ = ρ
−1/d
0 is the only natural length-scale. In principle we

may want to introduce by hand a second length-scale l, which could be a standard unit

of length (e.g. 1 cm) or being imposed by the spatial resolution of an experiment. Then,

ρ0 can be considered as a free parameter. In the large ρ0 limit the Poisson distribution

is well approximated by a Gaussian with average ρ0 and standard deviation σ =
√
ρ0.

More precisely, when measured at macroscopic space-time intervals, the 1-point function

is ρ0 ≫ 1, the 2-point functions are O(1) and all higher n-point function are suppressed,

being O(1/ρn−2
0 ). Hence, the effective behavior of the system can be approximated by

a free field theory.

Yet, for ρ0 . 1, the Poisson distribution is markedly different from a Gaussian§: the

§ No inter-particle potential would ever give rise to a genuine free field theory: in that case, in fact,

the PDF for the density would be a Gaussian and the density field would not be positive definite.
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hypothetical experiment is probing the system down to length-scales at which the gran-

ularity of the gas is manifest. The vertex appearing in the field theory, which faithfully

reproduces the Poissonian statistics, is then the vestige of the particle nature of the

gas. Its relevance is crucial at low densities where the free particle system is described

by a strongly interacting field theory. Note that the length-scale λ merely identifies

the cross-over between “free” and interacting theory but by no means it represents a

hard cutoff scale for the system. Again, any coarse-graining procedure would be purely

arbitrary, the field theory being well-defined at any length-scale.

4. Time-reversal symmetry and fluctuation-dissipation theorem

This last section contains a brief review of the time-reversal symmetry of the action and

the fluctuation-dissipation relation it implies. Also, we will finally focus on the mecha-

nism through which the symmetry is enforced at the level of correlation functions.

The path integral (13) and the action (14) define the field theory for the Brownian

gas. The corresponding equation of motion for the physical field ̺ is Dean’s equation

(11) and it can be interpreted as a continuity equation for the density:

∂t̺ = ∇ · j with current: j = −ξ√̺− T∇̺

4.1. Response functions

An external force f(x) acting on the density field shifts the current:

j(x) → j(x) + ρ(x)f(x) = j(x) − ρ(x)∇µ(x)

the last equality being meaningful only if f is exact and a scalar potential µ can be

defined: f(x) = −∇µ(x). Dean’s equation can then be written as:

∂t̺ = ∇ · (ξ√̺) + T∇2̺+ ∇ · (̺∇µ)

= ∇ · (ξ√̺) + ∇ ·
(

̺∇δF

δ̺

)

where the free energy functional F is defined as:

F [̺] =

∫

ddx

[

T̺(x, t)
(

ln
̺(x, t)

ρ0
− 1
)

+ µ(x, t)̺(x, t)

]

The physical interpretation of µ as a chemical potential field linearly coupled to the

density is now fully transparent. Notably, however, in the field theory µ appears in a

term of the MSR action which is not quadratic in the fields:

S =

∫

ddx dt
{

iφ̂(x, t)[∂t̺(x, t) − T∇2̺(x, t) −∇ · (̺∇µ)] + T̺(x, t)[∇iφ̂(x, t)]2
}

(36)
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We are now interested in the linear response of a generic local functional of the density

̺ to the external field µ, which is defined as:

RA(x, x′; t, t′) ≡
〈

δA[̺](x, t)

δµ(x′, t′)

〉

µ

∣

∣

∣

∣

∣

µ=0

Integrating (36) by parts and taking the functional derivative of the generating

functional with respect to µ yields the field-theoretic expectation value:

RA(x, x′; t, t′) =
〈

A[̺](x, t) ∇ · [(∇iφ̂)̺](x′, t′)
〉

(37)

The particular case A[̺] = ̺ makes explicit the distinction mentioned at the end

of Section 2.2.2 between the actual response function 〈ρ(x, t)∇ · [(∇iφ̂)̺](x′, t′)〉
and the pseudo-response functions given by the propagators 〈iφ̂(x′, t′)ρ(x, t)〉 and

〈ρ(x, t)iφ̂(x′, t′)〉. We now show how a symmetry of the action implies the fluctuation-

dissipation theorem involving the proper response function defined in (37).

4.2. Symmetry of the action

The action (14) is invariant, modulo total derivatives, under the time-reversal

transformation T , implemented as:

T :



















t → τ = −t
ρ(x, t) → ρ(x, τ)

∂tρ(x, t) → −∂τρ(x, τ)
iφ̂(x, t) → −iφ̂(x, τ) − ln ̺(x,τ)

ρ0

(38)

In general, the invariance of the action under a field transformation is not sufficient

to guarantee that such a transformation is a symmetry: in fact, a non-linear field

redefinition might lead to a non-trivial Jacobian. We now argue that, although the

transformation (38) is non-linear, its Jacobian is just a simple constant. Consider a

finite system with discretized space: a field configuration is then defined by a 2N -vector

v = (iφ̂1, . . . , iφ̂N ; ρ1, . . . , ρN ) and the Jacobian matrix J associated to (38) is:

Ji,j =
∂(T v)i
∂vj

=

(

A B

C D

)

with:

A = −IN×N ; B = −







ρ−1
1 0 0

0
. . . 0

0 0 ρ−1
N






; C = 0N×N ; D = IN×N

Since J is block triangular, | det(J)| = | det(A) det(D)| = | ± 1| and (38) is indeed a

symmetry of the field theory.
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The study of correlation functions is easier in Fourier space. The action (14) can then

be rewritten as:

S =

∫

k,t

{

[

iφ̂(k, t)∂tρ(−k, t)
]

−
[

iφ̂(k, t)

∫

k′

1

T
Q(k, k′, t)

δF

δρ(k′, t)

]

−
[

iφ̂(k, t)

∫

k′
Q(k, k′, t)iφ̂(k′, t)

]

}

where:
∫

k
≡
∫

ddk
(2π)d

and
∫

t
≡
∫

dt. The integral kernel Q is defined as:

Q(k, k′, t) = Tk · k′ρ(−k − k′, t) (39)

and Q−1 is such that:
∫

k′
Q(k, k′, t)Q−1(k′, k′′, t) = δ(k − k′′)

The time-reversal symmetry can now be implemented as:

T :



















t → τ = −t
ρ(k, t) → ρ(k, τ)

∂tρ(k, t) → −∂τρ(k, τ)
iφ̂(k, t) → −iφ̂(k, τ) −

∫

k′′
Q−1(k, k′′, t)∂τρ(−k′′, τ)

where the last line can also be expressed as:
∫

k′
Q(k, k′, t)iφ̂(k′, t) → −

∫

k′
Q(k, k′, t)iφ̂(k′, τ) − ∂τρ(−k, τ)

Notice that
∫

k′
Q(k, k′, t)iφ̂(k′, t) is nothing but the Fourier-transformed version of the

composite operator ∇·[(∇iφ̂)̺] appearing in (37). The FDT associated to any observable

A is then:
∫

k′
〈A(k, t)Q(k, k′, t′)iφ̂(k′, t′)〉 T−→ (40)

T−→ −
∫

k′
〈A(k, τ)Q(k, k′, τ ′)iφ̂(k′, τ ′)〉 − ∂τ ′〈A(k, τ)ρ(−k, τ ′)〉

In particular, we can consider A ≡ ρ and t′ < t so that one of the response terms

vanishes because of causality. Assuming time-translation and time-reflection invariance,

properties which are certainly true at equilibrium, we finally obtain the FDT:
∫

k′
Tk · k′〈ρ(k, t)ρ(−k − k′, t′)iφ̂(k′, t′)〉 = ∂t′〈ρ(k, t)ρ(−k, t′)〉 (41)

A few general properties useful in the following computations are:

- All the FDT’s written above hold only once the sum of connected and disconnected

correlators is considered.

- For the gas, any correlator containing more than one iφ̂ field vanishes.

- 〈iφ̂〉 ≡ 0.



On the Brownian gas: a field theory with a Poissonian ground state 22

- Each connected n-point function (n> 2) involving a field iφ̂ evaluated at the same

time as another field ρ is identically zero. This can be easily argued from the

integration domains in (16), (18), (25) which vanish if m2...n = t1 whereas the

integrand is a continuous function.

Verifying (41) with A ≡ ρ using the Feynman rules for the propagators is a simple

exercise, yielding:

− Tk2ρ0e
−Tk2(t−t′)θ(t− t′) = +Tk2ρ0e

−Tk2(t′−t)θ(t′ − t) − Tk2ρ0e
−Tk2|t−t′|sgn(t′ − t)(42)

When computing explicitly (40) in the case A ≡ ρρ or higher powers of ρ interesting

cancellations occur between different disconnected correlators. Let us consider the

simplest case (assuming t1 < t2 < t3):
∫

k′
〈ρ(k3, t3)ρ(k2, t2)Q(k2 + k3, k

′, t1)iφ̂(k′, t1)〉 = ∂τ1〈ρ(k3, τ3)ρ(k2, τ2)ρ(−k3 − k4, τ1)〉

After substituting (39) and expanding in the non-vanishing disconnected parts, the

formula above can be written in short-hand notation as:
∫

k′
T (k2 + k3) · k′

(

〈ρ3ρ2iφ̂1〉c〈ρ1〉 + 〈ρ3iφ̂1〉c〈ρ2ρ1〉c +

〈ρ2iφ̂1〉c〈ρ3ρ1〉c + 〈ρ3iφ̂1〉c〈ρ2〉〈ρ1〉 + 〈ρ2iφ̂1〉c〈ρ3〉〈ρ1〉
)

= (43)

= ∂τ1

(

〈ρ3ρ2ρ1〉c + 〈ρ3ρ1〉c〈ρ2〉 + 〈ρ2ρ1〉c〈ρ3〉
)

In particular we now show that the following equality holds:
∫

k′
T (k2 + k3) · k′

(

〈ρ3ρ2iφ̂1〉c〈ρ1〉+ 〈ρ3iφ̂1〉c〈ρ2ρ1〉c + 〈ρ2iφ̂1〉c〈ρ3ρ1〉c
)

= ∂τ1〈ρ3ρ2ρ1〉c(44)

The remaining terms appearing in (43) and not in (44) contain 1 and 2-point functions

only and are easily proven to be equal using (42). A key observation is that conservation

of momentum implies different values for k′ in the l.h.s. of (44): k′ = −k2−k3, k
′ = −k3

and k′ = −k2 respectively. Then, graphically:

Tρ0

[

− (k2 + k3) · (k2 + k3)
(

1
2

2 3
−

1

2 3

)

(45)

− (k2 + k3) · k3

1

2 3
− (k2 + k3) · k2

1

2 3

]

= ρ0 ∂τ1

1

2

3

which is clearly true after simplifying the wedge graphs and considering the graphical

rules of section 2.3.1. There are two points worth noting: first of all, the non-linear

symmetry leads to cross-cancellations between disconnected correlation functions of

different rank. Second, the particular dot-product structure of the vertex, together

with conservation of momentum, once again produce interesting combinatorial factors

which, in the particular case of (45), allow a single wedge graph to cancel two wedge

graphs. A generalization of this kind of computations is not a hard exercise.
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5. Conclusions and outlook

As a complementary approach to the direct development of approximations for an inter-

acting fluid, in this paper we have analyzed a non-interacting gas of Brownian particles;

the system has been fully characterized with the computation of all the n-point func-

tions. The exact correspondence between the particle and the field-theoretic formalism

has been established by the non-perturbative calculation of the ground state of the field

theory and the determination of the Poissonian probability distribution for the density

field. A non-perturbative treatment of the gas-vertex is thus necessary not only to pre-

serve the fluctuation-dissipation theorem in bare perturbation theory, as already argued

in previous works [4], but also, and more fundamentally, to define the unperturbed

ground state as the starting point for a perturbative expansion of physical observables

in the inter-particle potential.

At the fundamental level, we have shown that the system can be described exactly

by a field theory and that no coarse-graining procedure is required to define the density

field appearing in the path integral formulation. Hence, when considering the interact-

ing theory, any divergence arising from the computation of loop diagrams cannot be

ascribed to the effective nature of the field-theoretic description: instead it should be

considered as a genuine feature of the problem and properly renormalized. Along the

same lines, the particle origin of the field theory, expressed through the vertex, might

determine and naturally constrain the renormalizability properties of the interacting

theory.

Finally, the pattern through which the FDT is verified on the correlation functions of

the gas could shed light on its effect on the combinatorics of the interacting case, where

the interest is in the study of high order correlators to define a diverging dynamical

length scale [12].
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Appendix A. Definitions and conventions

Fourier Transforms For a finite system, in standard notation and using δk as a

shorthand notation for δk,0:

fk(t) =
1

V

∫

V

ddx e−ik·xf(x, t) ; f(x, t) =
∑

k

eik·xfk(t)
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∑

k

eik·x = V δ(x) ;

∫

V

ddx e−ik·x = V δk

In the field-theoretic formalism there is no need to consider a finite number of particles

and a finite volume as an intermediate step, the density being the only meaningful

quantity. The formulae above are then modified as follows:

f(k, t) =

∫

ddx e−ik·xf(x, t) ; f(x, t) =

∫

ddk

(2π)d
eik·xf(k, t)

∫

ddk

(2π)d
eik·x = δ(x) ;

∫

ddx e−ik·x = (2π)dδ(k)

where all the integrations extends over the entire d-dimensional space.

Note that due to the different definitions for the Fourier transforms, the dimensions of

the density field defined in (6) are different in Fourier space between the particle and the

field-theoretic formalism. For particle systems: ̺k=0(t) = 1
V

∫

V
ddx ̺(x, t) = ρ0 with di-

mensions of volume−1; in the field-theoretic formulation: ̺(k = 0, t) =
∫

ddx ̺(x, t) = N

which is dimensionless.

Averages and a useful identity

- 〈A〉η indicates the average of the noise-dependent observable A over the realizations

of the noises η1, . . . , ηN .

- 〈A〉I.P. indicates instead the average over the initial positions of the particles. It is

defined in such a way that 〈1〉I.P. = 1:

〈A〉I.P. :=
1

V

∫

V

ddx1(0) . . .
1

V

∫

V

ddxN (0) A

In the particle formalism, with the above conventions for the Fourier transforms, identity

(A.1) follows as a straightforward result:

〈e−ikj1 ·xj1(0) . . . e−ikjn ·xjn (0)〉I.P.

=



























δk1+...+kn if all j’s are the same

δk1+...+ka−1+ka+1+...+knδka if all j’s but ja are the same

. . . . . .

δk1 ...δka−1
δka+1

...δkb−1
δkb+1

...δknδka+kb if all j’s differ but ja = jb
δk1 . . . δkn if all j’s differ

(A.1)

Appendix B. Combinatorial coefficients

Appendix B.1. Factorials

Theorem: the coefficient Rl (defined in section 2.3.4) associated to a vertex with l

dangling lines is Rl = (l − 1)!.

We have verified in the text that the relation is true for some l: R2 = 1 = (2 − 1)!, as



On the Brownian gas: a field theory with a Poissonian ground state 25

shown in (16) and in the comment below it. Formula (19) implies R3 = 2 = (3 − 1)!.

From section 2.3.3 we also know that R4 = 6 = (4 − 1)!.

Assuming that the relation is valid for vertices having up to l dangling, we now prove it

for a vertex with l+1 dangling lines. Let us consider one such a vertex, with the upper

edge labeled by l + 1.

Rl = =
1

2!

(

+ (B.1)

+ + . . . +

)

In a Dyson-Schwinger fashion the earliest vertex is pulled out of the blob. Conversely,

when contracting the edges generated by the extraction of the vertex, the graphs on the

r.h.s. generate the graph on the l.h.s.. Note that in (B.1) any vertex with two dangling

lines must be a bare vertex since no loop-graphs contribute to the physical amplitudes.

All binary (non-planar) trees are generated by a recursive application of (B.1). They all

appear with coefficient 1 except for one particular case: when l is even, the graph on the

r.h.s. for which r = s = l/2 appears only once and the factor of 1/2 out of the braces in

(B.1) is not simplified. However such a graph has a left-right symmetry and because of

the very same symmetry a factor 2 will arise in formula (B.3) since the partition with

r elements and the partition with s elements are equivalent. This cancellation will be

tacitly assumed in the argument following (B.3).

Every term in the r.h.s of (B.1) represents a partition of the l dangling lines into two

groups with r and s dangling lines each, with the constraint l = r + s. For a generic

partition, the Feynman rule associated to the extracted vertex reads:

−
∑

TI

2(k1 + . . .+ kr) · (kr+1 + . . .+ kl) (B.2)

The
∑

TI is over the
(

l
r

)

possible partitions depicted in (B.1). Applying conservation of

momentum, we can rewrite (B.2) as:

2
∑

TI

(k1 + . . .+ kr) · (kl+1 + k1 + . . .+ kr) = (B.3)

= 2
∑

TI

[

(k2
1 + . . .+ k2

r) + (

r
∑

i6=j

ki · kj) + kl+1 · (k1 + . . .+ kr)
]

The sum over all TI labelings can be easily computed by the following argument: in the

sum each k2
i appears

(

l−1
r−1

)

times, since once ki is fixed to be in the group of r elements,

the other r− 1 elements can be chosen among l− 1 labels. Similarly, each ordered pair
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kikj in the inner sum appears
(

l−2
r−2

)

times, since once ki and kj are fixed to be in the

group of r elements, the other r − 2 elements can be chosen among l − 2 labels.

=

(

l − 1

r − 1

)

(k2
1 + ...+ k2

l ) +

(

l − 2

r − 2

) l
∑

i6=j

ki · kj +

(

l − 1

r − 1

)

kl+1 · (k1 + ...+ kl) (B.4)

=

(

l − 1

r − 1

)

(k2
1 + . . .+ k2

l ) +

(

l − 2

r − 2

) l
∑

i=1

ki · (−ki − kl+1) −
(

l − 1

r − 1

)

k2
l+1

=

(

l − 1

r − 1

)

(−k2
l+1 + k2

1 + . . .+ k2
l ) +

(

l − 2

r − 2

) l
∑

i=1

(−k2
i + k2

l+1)

=

(

l − 2

r − 1

)

(−k2
l+1 + k2

1 + . . .+ k2
l )

where in the second and third steps, conservation of momentum has been used.

Summing over all possible partitions of labels into two blobs and associating to each

blob with n dangling lines the appropriate Rn = (n− 1)!, we finally obtain:

l−1
∑

r=1

(

l − 2

r − 1

)

(r − 1)!(l − r − 1)! = (l − 2)!

l−1
∑

r=1

1 = (l − 1)! (B.5)

Appendix B.2. Generalized Stirling numbers

Theorem: the coefficient Cn (defined in section 2.4.4) associated to the c-vertex with n

dangling lines appearing in the computation of c-functions is: Cn = Sn−2, where Sn is

the sequence of generalized Stirling numbers (Sloane A001705, [11]).

We can write a Dyson-Schwinger equation similar to (B.1), with the important dif-

ference that the c-vertex needs to have 3 dangling blobs: the first blob with l dangling

lines, the second one with m, and the third one with n − l − m. The factor 1/2! in

(B.1) becomes 1/3! taking into account the possible permutations of blobs. The rig-

orous argument about the cancellation of symmetry factors for symmetric diagrams is

analogous to the one which followed equation (B.1). Formula (B.2) is replaced by the

Feynman rule for the c-vertex obtained in (26):

1

3!

∑

TI

[

(k1 + ...+ kl)
2 + (kl+1 + ...+ kl+m)2 + (kl+m+1 + ...+ kn)

2
]

(B.6)

In the sum over TI relabelings each k2
i appears once for each of the possible

(

n
l

)(

n−l
m

)

labelings, since ki has to be in one of the three groups in (B.6). If we ask an ordered

pair kikj to appear in the blob with l dangling lines, this happens
(

n−2
l−2

)(

(n−2)−(l−2)
m

)

times, since once ki and kj are fixed to be in the group of l elements, the other l − 2

labels can be chosen among n− 2; the other labels are then partitioned into blobs with

m and n − l − m dangling lines respectively. Focusing instead on the blobs with m

and n − l − m a given ordered pair appears
(

n−2
m−2

)(

n−m
l

)

and
(

n−2
l−2

)(

(n−2)−(l−2)
m

)

times
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respectively. Finally, to each blob with r dangling lines we associate a factor (r− 1)! as

derived in the previous section. The sum over TI labelings can now be written as:

1

3!

n−2
∑

l=1

n−l−1
∑

m=1

(l − 1)!(m− 1)!(n− l −m− 1)! ·

·
{(

n

l

)(

n− l

m

) n
∑

i=1

k2
i +

[(

n− 2

l − 2

)(

n− l

m

)

+

(

n− 2

m− 2

)(

n−m

l

)

+

(

n− 2

n− l −m− 2

)(

l +m

l

)] n
∑

i6=j

ki · kj
}

(B.7)

Exploiting once more conservation of momentum:
∑n

i6=j ki · kj = −∑n
i=1 k

2
i . We can

then factor out
∑n

i=1 k
2
i which always cancels the denominator of the rational function

generated by the c-vertex and will be dropped in the following. Simplifying the binomial

coefficients we obtain:

1

3!

n−2
∑

l=1

n−l−1
∑

m=1

(n− 2)!
( n− l

m(n− l −m)
+

n−m

l(n− l −m)
+
l +m

lm

)

Moreover, the three terms in parentheses clearly give the same result when summed

over l and m: for simplicity we focus only on the third one and multiply by 3. We thus

have, exchanging the order of the summations in the second term:

1

2!
(n− 2)!

(

n−2
∑

l=1

n−l−1
∑

m=1

l

m
+

n−2
∑

m=1

n−m−1
∑

l=1

m

l

)

=
1

2!
(n− 2)!

(

n−2
∑

l=1

Hn−l−1 +

n−2
∑

m=1

Hn−m−1

)

= Sn−2

where by Hn we have indicated the harmonic numbers.

Appendix C. Graphology

Appendix C.1. Correlation functions are represented by ladder graphs

Theorem: the analytic expression associated to an n-point ladder graph, namely:

exp
[

− k2
1(t2 − t1) − . . .− (k1 + . . .+ kn−1)

2(tn − tn−1)
]

(C.1)

is the same as the analytic formula (9) for the n-point connected correlation function

computed in the particle formalism:

〈̺(k1, t1) . . . ̺(kn, tn)〉η = exp
(

T

n
∑

i<j

ki · kj(tj − ti)
)

(C.2)

Examples of ladder graphs are drawn in figure (33), and the absolute value of the time

differences in (C.2) has been removed considering the convention t1 < . . . < tn.
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Let us define the variables k̂’s as k̂j =
∑j

i=1 ki. Hence we can rewrite (C.1) as:

exp
(

−
n−1
∑

m=1

k̂2
m(tm+1 − tm)

)

(C.3)

We will now prove the theorem, showing that the exponent in (C.2) can be rewritten as

the exponent in (C.3).

Expanding (tj − ti) in a telescopic sum:

tj − ti = (tj − tj−1) + (tj−1 − tj−2) + . . .+ (ti+1 − ti) =

j−1
∑

m=i

(tm+1 − tm)

we can write:
n
∑

j=1

j−1
∑

i=1

ki · kj(ti − tj) =

n
∑

j=1

j−1
∑

i=1

j−1
∑

m=i

ki · kj(tm − tm+1)

Exchanging the order of the summations we obtain:

n
∑

j=1

j−1
∑

i=1

j−1
∑

m=i

−→
n−1
∑

m=1

m
∑

i=1

n
∑

j=m+1

(C.4)

and looking at the innermost summation, conservation of momentum implies:

(

n
∑

j=m+1

kj

)

· ki(tm − tm+1) = −
m
∑

j=1

kj · ki(tm − tm+1) (C.5)

Applying (C.4), (C.5) and the definition of k̂ it is now easy to pass from the exponent

in (C.2) to the exponent in (C.3):

n
∑

j=1

j−1
∑

i=1

j−1
∑

m=i

ki · kj(tm − tm+1) =

n−1
∑

m=1

m
∑

i=1

n
∑

j=m+1

ki · kj(tm − tm+1) (C.6)

= −
n−1
∑

m=1

m
∑

i=1

m
∑

j=1

kj · ki(tm − tm+1) = −
n−1
∑

m=1

k̂2
m(tm − tm+1) (C.7)

Appendix C.2. Cancellations among r-graphs with a stalk

Theorem: in the sum over topologically inequivalent (TI) labelings, r-graphs with a

stalk cancel one another, leaving only one n-ladder graph.

Examples of r-graphs with a stalk appear in the first line of (34). Let us assume that

one of the r-vertices of a graph has n > 2 dangling lines. The combinatorial factor

associated to such vertex is Rn = (n − 1)!. In the sum over TI labelings, graphs with

such a vertex can be obtained in several ways: either from a labeling of the graph itself

or from a labeling of a “less contracted” graph which induce one or more contractions

generating the vertex. Since n > 2 we know that at least one contraction has occurred.

We can now work backwards and undo the contraction to obtain all the possible graphs
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which could have generated the original graph. From the group of n labels we can pull

out a group of k labels, leaving a vertex with n − k + 1 dangling lines in such a way

that the largest label is in the extracted group. The rules in section 2.3.4 imply then

that the edge we have just created must indeed be contracted. The combinatorial factor

associated to the two vertices just created are (k − 1)! and (n − k)! respectively. Note

that since the largest label has to be in the group with k elements, among the n − 1

labels left we have to choose k − 1 of them. Summing over all possibilities:
n−1
∑

k=2

(

n− 1

k − 1

)

(k − 1)!(n− k)! = (n− 1)! (C.8)

Remember now that each contraction brings a factor of (−1) so that all the graphs we

generated with one contraction less than X appear with a relative minus sign. But

(C.8) implies that the numerical value of the coefficient is the same and the sum over

the whole group of graphs vanishes.

On the other side ladder diagrams survive. In fact, in order to create a ladder, from a

blob with n labels we pull out recursively a group of n− 1 labels which do not contain

the earliest time among the n labels. Then, the argument above leading to the graph

cancellations does not apply.

Appendix C.3. c-graphs cancel r-graphs without a stalk

Theorem: in the sum over topologically inequivalent (TI) labelings, c-graphs completely

cancel r-graphs without a stalk.

Examples of r-graphs without a stalk and c-graphs appear in the second and third

line of (34) respectively.

Let us consider an n + 1 point function. r-graphs without a stalk have n leaves and c-

graphs have n+1 leaves. It is useful to note that for r-graphs the label ‘1’ is constrained

by causality to appear on the upper vertex (root), as a consequence of the contraction

of the stalk. For c-graphs, instead, the c-vertex itself is always labeled by ‘1’ (‘1’ being

the smallest among all the descendant labels), another label ‘1’ has to be placed on

some leaf, and because of this some edges need to be contracted according to the rules

discussed in section 2.3.1. The key idea of the proof is that for an r-graph the number of

edges dangling from the root is independent of the labeling, whereas for c-graphs edge

contractions cause this number to vary.

Let us consider an r-graph X whose root has l dangling lines with the associated combi-

natorial factor (l− 1)!. It is possible that particular labelings of some c-graphs Y which

initially have 3, . . . , l + 1 dangling lines produce X after operating the contractions

induced by the labelings. Those graphs will be multiplied by the generalized Stirling

numbers S1, . . . , Sl−1. In particular, we can construct all the graphs Y starting from

a c-vertex with l + 1 dangling lines and “pulling down” groups of edges with the con-

straints that a c-vertex must have at least three dangling lines and that ‘1’ labels one

of the lowest leaves in such a way to induce a contraction leading back to a root with l
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dangling lines.

An example should make things clear. One of the r-graphs without a stalk contributing

to the computation of the 5-point function, with the appropriate factor of (4 − 1)! = 6,

is:

X = 6 (C.9)

Among the c-graphs, the ones which follow generate X if, as explained above, ‘1’ labels

one of the lowest leaves. The coefficient in front of each graph is made up of: a sign

which keeps track of the number of contracted edges; the generalized Stirling number

associated to the c-vertex; the product of coefficients associated to the underlying r-

vertices; the number of labelings which leave ‘1’ to label one of the lowest leaves.

Y ′s = −26 · 1 · 1 + 5 · 1 ·
(

4

1

)

+ 1 · 2 ·
(

4

2

)

− 1 · 1 · 1 ·
(

4

2

)(

2

1

)

→ −6

or equivalently:

− S3 + S2

(

4

1

)

+ S1

(

4

2

)

2! + S1

(

4

2

)(

2

1

)

= −(4 − 1)! (C.10)

We see that (l−1)! is exactly canceled by a linear combination of the generalized Stirling

numbers S1, . . . , Sl−1. In this case l = 4.

Working out explicitly more complicated graphs through the “pulling down” proce-

dure, it is not hard to write the general form for the l.h.s. of (C.10), which is, modulo

a sign:

Sl−1 −
l−2
∑

k1=1

Sl−1−k1

(

l

k1

)

k1! +
l−2
∑

k2=2

k2−1
∑

k1=1

Sl−1−k2

(

l

k2

)(

k2

k1

)

(k2 − k1)!k1!

−
l−2
∑

k3=3

k3−1
∑

k2=2

k2−1
∑

k1=1

Sl−1−k3

(

l

k3

)(

k3

k2

)(

k2

k1

)

(k3 − k2)!(k2 − k1)!k1! + . . .

= Sl−1 −
l−2
∑

k1=1

Sl−1−k1

l!

(l − k1)!
+

l−2
∑

k2=2

Sl−1−k2

l!

(l − k2)!

k2−1
∑

k1=1

1

−
l−2
∑

k3=3

Sl−1−k3

l!

(l − k3)!

k3−1
∑

k2=2

k2−1
∑

k1=1

1 + . . .

= Sl−1 +

∞
∑

j=1

l−2
∑

kj=j

(−1)jSl−1−kj

l!

(l − kj)!

(

kj − 1

j − 1

)

= Sl−1 +

l−2
∑

k=1

Sl−1−k
l!

(l − k)!

k
∑

j=1

(−1)j
(

k − 1

j − 1

)

= Sl−1 − lSl−2 = (n− 1)!
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