O-MINIMAL FLOWS ON ABELIAN VARIETIES.
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ABSTRACT. Let A be an abelian variety over C of dimension n
and m: C" — A be the complex uniformisation. Let X be an un-
bounded subset of C™ definable in a suitable o-minimal structure.
We give a description of the Zariski closure of m(X).

1. INTRODUCTION.

Let A be a complex abelian variety of dimension n. Write A = C"/A
where A C C" is a lattice and let m: C* — A be the uniformisation
map.

A subvariety V' of A is called weakly special if V = P + B where
P is a point of A and B is an abelian subvariety. The abelian Ax-
Lindemann-Weierstrass theorem is the following.

Theorem 1.1. Let Y be a complex algebraic subset of C*. The com-
ponents of the Zariski closure of 7(Y') are weakly special subvarieties.

This theorem is due to Ax (see [1] and [2]) and plays an important
role in the new proof by Pila and Zannier of the Manin-Mumford con-
jecture [7]. Note that the paper [7] provides a different proof of the
abelian Ax-Lindemann-Weierstrass theorem. For a proof close in spirit
to the contents of this paper, see Section 9 of [5]. In reality, in this
statement, Y can be taken to be only semialgebraic (C™ being identified
with R?"?).

The aim of this paper is to investigate the Zariski closure of the sets
7m(X) where X is definable in an o-minimal structure which is a much
wider class of objects. We refer to the book [11] for the notion of a set
definable in an o-minimal structure, in particular the structures R,
and Rg,, ezp. Just recall that R, is the o-minimal structure generated
by the restricted analytic functions and Ry, ¢z is additionally generated
by the graph of the real exponential. For a subset ¥ of A, we denote
by Zar(X) its Zariski closure.

To be able to prove anything, we will need to make certain additional
assumptions. Firstly, the set X will be assumed to be unbounded.

The necessity of this condition can be demonstrated by the following
1
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example. Let F be a connected bounded fundamental domain for the
action of A on C". The restriction of  to F is definable in R,,,. Let
V be any algebraic subvariety of A and let V = 7=%(V)NF. Then V

is definable in R,,, and Zar(w(V)) = V.
However, when X is an unbounded real analytic manifold, we prove
the following.

Theorem 1.2. Let X be an unbounded real analytic manifold of C™* =
R2™ definable in an o-minimal structure which is an extension of Rg,,.
Let V. = Zar(n(X)). For any point P of w(X) there is a positive
dimensional abelian subvariety Bp of A such that P+ Bp is contained
mn V.
In particular, V' contains a Zariski dense set of weakly special sub-
varieties.

To investigate general definable sets X, we will also impose some
mild restrictions on the o-minimal structure. Let S be an o-minimal
structure over R, containing R,,, and whose definable sets admit an an-
alytic stratification (as defined in [11], Chapter 3). This condition holds
for most ‘usual’ o-minimal structures, for example R,,, and Ry, czp. We
fix such a structure § and in what follows and by definable, we will
mean ‘definable in §.

Next we introduce the notion of essential Zariski closure. Let X
be an unbounded definable set as before. For R > 0, let B(0, R) be
the open unit ball of centre 0 and radius R. The behavior of the set
7(X N B(0,R)) when R — oo is what we call an o-minimal flow. We
show that for R large enough, the Zariski closure of the set 7(X\ (X N
B(0, R)) is constant. We call this Zariski closure, the essential Zariski
closure of w(X) and denote it by Zaress(m(X)).

For an abelian subvariety B of A, write Vg C C" the tangent space
to B at the origin and pp the projection C" — Vp.

We prove the following;:

Theorem 1.3. Let X be an unbounded definable subset of C". Let V'
be Zaress(m(X)).

For each point P, in w(X), there exists a positive dimensional abelian
subvariety Bp of A such that P + Bp is contained in V.

In particular, V' contains a Zariski dense set of weakly special sub-
varieties.

We prove a characterisation of subvarieties of an abelian variety con-
taining a Zariski dense set of weakly special subvarieties (see proposi-
tion 4.1) and deduce from theorem 1.3 the following.
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Theorem 1.4. Assume that X is a definable subset of C™ such that for
all abelian subvarieties B of A, pp(X) is unbounded. Then components
of Zaress(mw(X)) are weakly special.

The strategy of the proof of the theorem 1.2 relies on the theory
of o-minimality and Pila-Wilkie counting theorem. Let X be as in the
statement and V' be the Zariski closure of w(X). Using a suitable defin-
able set and applying Pila-Wilkie theorem, we show that there exists
a positive dimensional semi-algebraic set W C C" = R?" such that
X + W is contained in 7=V, Applying the Ax-Lindemann-Weierstrass
theorem, we then show that for any P of m(X), there exists a weakly
special subvariety P+ Bp C V.

Finally, we would like to point out one possible application of our
theorem.

Recall the following theorem of Bloch-Ochiai (see Chapter 9 of [3])
which is proved using Nevanlinna theory.

Theorem 1.5. Let A be an abelian variety and f: C — A be a non-
constant holomorphic map. Then the Zariski closure of f(C) is a trans-
late of an abelian subvariety.

In some cases our theorem 1.4 imples theorem 1.5.
Consider for example A = C"/A (where A is a lattice such that
A is a simple abelian variety) and f: C — A given by f(z) =

(z,...,2,€% ...,€%) with s factors of z and r times of e* with r+s = n.
Then consider the set X C C™ given by

X ={(x+iy,...,xv+iy,e%e?, ... e xR yecl0,2n]}

Clearly X is unbounded and definable in Ry, ¢, and its image in A is
contained in f(C). By theorem 1.4, the Zariski closure of f(C) is A
(since A is simple).

It is not however always possible to “extract” such a definable un-
bounded set X from f(C) as the example of (e e”*) C C? shows.
Indeed, in this example, for any subset Y C C such that f(Y') is defin-
able, both the real and imaginary parts of z € Y must be bounded.

Another (counter)-example is the following. Define the iterated ex-
ponential function exp, (x) by exp; = exp and exp, = expoexp,_,. By
Proposition 9.10 of [4], a definable function is bounded by exp,, (z™) for
some n, m. Therefore a graph of a function which ‘grows faster’ than
any exp, will not satisfy the assumptions of our theorems.

We conclude this introduction with an open question in the spirit of
[10]. It concerns the topological closure of 7(X) rather than Zariski



4 EMMANUEL ULLMO, ANDREI YAFAEV

closure. Recall from [10] that a real weakly special subvariety is de-
fined to be a translate of a real subtorus of A (hence not necessarily
algebraic).

Conjecture 1.6. Let X be as before be an unbounded definable real
analytic manifold. We denote by m the topological closure of m(X).

There exists a real analytic submanifold V' of A containing a dense
subset of real weakly special subvarieties such that

(X)) =n(X)UV.

In section 4, we prove a characterisation of subvarieties of abelian
varieties containing a Zariski dense subset of weakly special subvari-
eties, namely that such a subvariety is a union of weakly special ones.
We believe this result and our argument to be of independent interest.
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2. PROOF OF THEOREM 1.2.

In this section we assume that X is an unbounded real analytic
submanifold of C* = R?" definable in some o-minimal structure which
contains R,,. Let V' be the Zariski closure of 7(X) in A.

2.1. A definable set and point counting. The contents of this sec-
tion are essentially a reproduction of the arguments of Orr from Section
9 of [5] with slight adjustments. In this section we define a certain de-
finable set associated with X and, using Pila-Wilkie theorem, show
that this set contains a positive dimensional semi-algebraic subset.

Choose a fundamental set F for the action of A on C" such that
X N F is non-empty. We choose F to be an open connected subset of
C™ such that F is compact and A-translates of F cover C*. The set F
is an ‘open parallelepided’. Since F is an open subset of C", we have
that dim(X N F) = dim(X). Let V be F N7~ 'V. This is a definable
set since the o-minimal structure contains R,,, and m restricted to F is
definable in R,,,.

Consider the definable set

Y ={zeC":dim(X +2)NV = dim(X)}.

The argument is exactly the same as in the proof of Lemma 9.3 of

51.



O-MINIMAL FLOWS ON ABELIAN VARIETIES. 5

We have the following lemma:
Lemma 2.1. If A€ A and X N (F —X) # 0, then A € X.

Proof. From A-invariance of 771V + X\ = 771V we see that for A as in
the statement (in particular for A € A), X + A C 7'V,
It follows that

(X+M)NV=(X+\NNF.
As F — X\ is an open subset of C", we see that
dim(X N (F — X)) = dim(X) = dim((X + \) N F)
The conclusion follows. O

Fix a basis A1,..., X2, of A. Then A ® Q is identified with Q**. We
define the height of an element A = > a;\; € A (a; € Z) as

H(\) = max(|ai], ..., |azm])-
This height thus coincides with the usual height on Q™.
Proposition 2.2. There exists Ty > 0 such that for all T > Ty,
HreXNA:H(z) <T} >T/2.

Proof. This is essentially Lemma 9.1 of [5].

The first observation is that if z; and xo are two points of A such
that X N (F — z1) and X N (F — z2) are both non-empty, then ¥ N A
contains at least one point of height h for every h between H(z;) and
H(l‘g)

Note that X is path-wise connected in the Euclidean topology. Let
C' be a path from a point in X N (F — x3) to a point in X N (F — z3).

When C' crosses over from F — u; to to an adjacent domain F — us,
the heights of u; and us change by at most one.

It follows that for any h between H(z1) and H(xs), there is a u € A
of height < h such that X N (F — u) is not empty. This u belongs to
YN X.

By assumption X is unbounded. Thus as x varies in A such that
X NF — z is non-empty, h(x) goes to infinity.

It follows that there is an hg such that for any h > hy, XN A contains
at least one point of height h.

Take TO = 2h0 O

We now use the following theorem of Pila and Wilkie ([6], Theorem
1.8).

For a definable subset © C R", we define ©*9 to be the union of all
positive dimensional semi-algebraic subsets contained in ©. We define
O to be ©\O9,
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Theorem 2.3 (Pila-Wilkie). Let © be a subset of R™ definable in an
o-minimal structure. Let € > 0. There exists a constant ¢ = c¢(O,¢)
such that for any T > 0,

Hr e ©"NQ": H(x) < T} > T

From Proposition 2.2 it now follows that ¥*9 N A is not empty.

Let W be a connected positive dimensional semi-algebraic subset
contained in 3. For each w in W, dim((X + w) N'V) = dim(X) and
hence an analytic component of (X +w) N F is contained in 7~'V. By
analytic continuation, we see that X +w C 7~ 'V. We have proved:

Proposition 2.4. With the notations and assumptions of this section,
there exists a positive dimensional semialgebraic subset W such that

X+Wcr'v.

2.2. Final argument. We use the following lemma whose proof can
for example be found in [5], Lemma 8.1.

Lemma 2.5. Let Z be a connected complex analytic subset of C9. Let
X be a connected irreducible semialgebraic set contained in Z. Then
there is a complex algebraic variety Y such that X C Y C Z.

By proposition 2.4 and the above lemma, we see that for any = € X,
there exists a positive dimensional complex algebraic subset Y, con-
taining X and contained in 7—!(V'). By the abelian Ax-Lindemann-
Weierstrass theorem 1.1, the Zariski closure of m(Y,) is a union of
weakly special subvarieties of V. Therefore, V' contains a subvariety
of the form P + Bp where P = 7(z) and Bp is a positive dimensional
abelian subvariety of A. This finishes the proof of theorem 1.2.

3. CELL DECOMPOSITION AND ESSENTIAL CLOSURE.

In this section we consider an unbounded definable set X C C".
We refer to section 8 of [4] for the definition of a real analytic cell.
What is relevant to us is that a real analytic cell in R" is a definable
real analytic submanifold, definable-analytically isomorphic to R™ for
some m < n. By Theorem 8.9 of [4], there is a finite number of analytic
cells Xq,..., X} such that X is a disjoint union of the Xj.

Proposition 3.1. The essential closure Zaress(m(X)) is the union of
Zar(m(X;)) where X;s are the unbounded cells.

Proof. We start with a lemma.

Lemma 3.2. Let Z be a real analytic manifold in C* and U C Z an
open subset.
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Then
Zar(n(U)) = Zar(n(Z))
In particular, if Z is an analytic unbounded submanifold of C", then

Zaress(n(Z)) = Zar(w(Z))

Proof. One inclusion is obvious.

Write Zar(w(U)) C P™ for some m and let s € H°(P™, O(1)) for
[ > 1 such that s is zero on w(U). Then s o is zero on U and by
analytic continuation s o 7 is zero on Z. It follows that s is zero on

7(Z), hence Zar(n(Z)) C Zar(w(U)). O

Let X = X []...]] X« be a cell decomposition of X. For R large
enough, X N B(0, R) contains the union of all the bounded cells in the
above decomposition.

We have

Zaress(m(X)) = U Zaress(m(X;)).
{#:X;unbounded}
By Lemma 3.2, for an unbounded cell X;,
Zaress(m(X;)) = Zar(n(X;)).

The result follows.
O

4. CHARACTERISATION OF SUBVARIETIES CONTAINING A DENSE
SET OF WEAKLY SPECIAL SUBVARIETIES.

In this section we prove a proposition which we believe to be of
independent interest.

Let A be an abelian variety and V' a subvariety of A. Define the
stabiliser of V' as

Stab(V) ={P € A: P+ V =V}.

Recall that for an abelian subvariety B of A, there exists an abelian
subvariety B’ such that A = B+ B’ and B N B’ is finite. We always
refer to B and B’ as above.

Proposition 4.1. Let V' be an irreducible subvariety of A.
(1) Assume dim Stab(V') > 0.

Then there exists abelian subvarieties B and B’ of A such
that A= B+ B and V. = B + V' where V' is a subvariety of
B’
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(2) Assume that Stab(V) is finite. Then the set of positive dimen-
stonal weakly special subvarieties contained in V' is not Zariski
dense.

(3) Assume again that Stab(V') is finite. Let X be the set of all
positive dimensional weakly special subvarieties contained in 'V .

For an abelian subvariety B C A, denote by B’ an abelian
subvariety such that A= B+ B'.

There exists a finite set By, ..., B, of abelian subvarieties of
A and Wy, ..., W, of subvarieties of B, such that

Zar(X) = U B; +W,.

=1

Proof. Assume dim Stab(V) > 0 and let B be the neutral component
of Stab(V).

Let B’ be an abelian subvariety such that A = B + B’ and let
Y: A — A/B be the quotient. Let V' be 1|5/ (¥(V)). Then

V={B+z:2eV}={B+z:2eV'}=B+V.

This proves (1).

We will now prove (2). Assume that Stab(V) is finite. We start by
reducing to the case where Stab(V') = {0}. Let A" = A/Stab(V') and
let p: A — A’ be the quotient map and let V' = ¢(V'). Note that
¢~ (V') = V + Stab(V) = V. We claim that Stab(V’) = {0}. Let
P € Stab(V’) and Q € ¢~ (P). We have

HQ+V)=P+V =V’

It follows that Q+V C ¢! (V') = V and for dimension reasons Q+V =
V. Hence @ € Stab(V) and P = ¢(Q) = 0.

As the conclusion of (2) holds for V' if and only if it holds for V’, we
may therefore assume that Stab(V') = {0}.

For m > 1, consider the map

G VT — A™E
defined by

G (T1, . ) = (X1 — Toy o Ty — Tip1)-

By [12], Lemma 3.1, there exists m > 1 such that the map ¢,, is a
generic embedding.

Let P + B be a positive dimensional weakly special subvariety con-
tained in V. Then ¢,,((P + B)™) = B™'. The map ¢,, is therefore
not injective on (P+ B)™. Therefore V' can not contain a Zariski dense
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set of positive dimensional subvarieties of the form P+ B. This proves
(2).

Let us now prove (3). Let X as in the statement, the set of all positive
dimensional weakly special subvarieties contained in V' and let W be a
component of Zar(X). Then W contains a Zariski dense set of weakly
special subvarieties and by (2), Stab(W) is positive dimensional. It
follows from (1) that W = B+W’ where B is an abelian subvariety of A
and W’ a subvariety of B’. Since Zar(X) has finitely many components,
the conclusion of (3) follows. O

Remark 4.2. The geometric aspect of Lang’s conjecture predicts that
giwen a variety of general type V', the union subvarieties of W not of
general type, s not Zariski dense. It is a known fact that a subvariety
V' of an abelian variety is of general type if and only if Stab(V') is finite.
Therefore, our proposition 4.1 implies the geometric Lang’s conjecture
for subvarieties of abelian varieties.

Remark 4.3. This proposition is an abelian analogue of the result
of the first author (see [9]) in the hyperbolic case which is proved by
completely different methods.

5. PROOF THEOREMS 1.3 AND 1.4.

In this section we deduce theorems from what preceeds.

Let A and X be as in the assumptions of Theorem 1.3. Let V be a
component of the essential Zariski closure of 7(X).

In section 3 we have seen that Zaress(m(X)) is a finite union of
Zariski closures of sets of the form 7(Y) where Y is an unbounded
definable real analytic submanifold of C". Therefore, the conclusion of
theorem 1.3 follows from theorem 1.2.

Let now X be as in 1.4. By theorem 1.3, V = Zaress(X) contains
a Zariski dense set of positive dimensional weakly special subvarieties.
From proposition 4.1, we deduce that V is of the form V = B + V'’
where B is a positive dimensional abelian subvariety of A and V' is a
subvariety of B’. Reiterating the argument with B’ and '/, we conclude
that components of V' are weakly special.
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