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Abstract. Let A be an abelian variety over C of dimension n
and π : Cn −→ A be the complex uniformisation. Let X be an un-
bounded subset of Cn definable in a suitable o-minimal structure.
We give a description of the Zariski closure of π(X).

1. Introduction.

Let A be a complex abelian variety of dimension n. Write A = Cn/Λ
where Λ ⊂ Cn is a lattice and let π : Cn −→ A be the uniformisation
map.

A subvariety V of A is called weakly special if V = P + B where
P is a point of A and B is an abelian subvariety. The abelian Ax-
Lindemann-Weierstrass theorem is the following.

Theorem 1.1. Let Y be a complex algebraic subset of Cn. The com-
ponents of the Zariski closure of π(Y ) are weakly special subvarieties.

This theorem is due to Ax (see [1] and [2]) and plays an important
role in the new proof by Pila and Zannier of the Manin-Mumford con-
jecture [7]. Note that the paper [7] provides a different proof of the
abelian Ax-Lindemann-Weierstrass theorem. For a proof close in spirit
to the contents of this paper, see Section 9 of [5]. In reality, in this
statement, Y can be taken to be only semialgebraic (Cn being identified
with R2n).

The aim of this paper is to investigate the Zariski closure of the sets
π(X) where X is definable in an o-minimal structure which is a much
wider class of objects. We refer to the book [11] for the notion of a set
definable in an o-minimal structure, in particular the structures Ran

and Ran,exp. Just recall that Ran is the o-minimal structure generated
by the restricted analytic functions and Ran.exp is additionally generated
by the graph of the real exponential. For a subset Σ of A, we denote
by Zar(Σ) its Zariski closure.

To be able to prove anything, we will need to make certain additional
assumptions. Firstly, the set X will be assumed to be unbounded.
The necessity of this condition can be demonstrated by the following
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example. Let F be a connected bounded fundamental domain for the
action of Λ on Cn. The restriction of π to F is definable in Ran. Let
V be any algebraic subvariety of A and let Ṽ = π−1(V ) ∩ F . Then Ṽ

is definable in Ran and Zar(π(Ṽ )) = V .
However, when X is an unbounded real analytic manifold, we prove

the following.

Theorem 1.2. Let X be an unbounded real analytic manifold of Cn =
R2n definable in an o-minimal structure which is an extension of Ran.

Let V = Zar(π(X)). For any point P of π(X) there is a positive
dimensional abelian subvariety BP of A such that P +BP is contained
in V .

In particular, V contains a Zariski dense set of weakly special sub-
varieties.

To investigate general definable sets X, we will also impose some
mild restrictions on the o-minimal structure. Let S be an o-minimal
structure over R, containing Ran and whose definable sets admit an an-
alytic stratification (as defined in [11], Chapter 3). This condition holds
for most ‘usual’ o-minimal structures, for example Ran and Ran,exp. We
fix such a structure S and in what follows and by definable, we will
mean ‘definable in S’.

Next we introduce the notion of essential Zariski closure. Let X
be an unbounded definable set as before. For R > 0, let B(0, R) be
the open unit ball of centre 0 and radius R. The behavior of the set
π(X ∩B(0, R)) when R −→∞ is what we call an o-minimal flow. We
show that for R large enough, the Zariski closure of the set π(X\(X ∩
B(0, R)) is constant. We call this Zariski closure, the essential Zariski
closure of π(X) and denote it by Zaress(π(X)).

For an abelian subvariety B of A, write VB ⊂ Cn the tangent space
to B at the origin and pB the projection Cn −→ VB.

We prove the following:

Theorem 1.3. Let X be an unbounded definable subset of Cn. Let V
be Zaress(π(X)).

For each point P , in π(X), there exists a positive dimensional abelian
subvariety BP of A such that P +BP is contained in V .

In particular, V contains a Zariski dense set of weakly special sub-
varieties.

We prove a characterisation of subvarieties of an abelian variety con-
taining a Zariski dense set of weakly special subvarieties (see proposi-
tion 4.1) and deduce from theorem 1.3 the following.
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Theorem 1.4. Assume that X is a definable subset of Cn such that for
all abelian subvarieties B of A, pB(X) is unbounded. Then components
of Zaress(π(X)) are weakly special.

The strategy of the proof of the theorem 1.2 relies on the theory
of o-minimality and Pila-Wilkie counting theorem. Let X be as in the
statement and V be the Zariski closure of π(X). Using a suitable defin-
able set and applying Pila-Wilkie theorem, we show that there exists
a positive dimensional semi-algebraic set W ⊂ Cn = R2n such that
X+W is contained in π−1V . Applying the Ax-Lindemann-Weierstrass
theorem, we then show that for any P of π(X), there exists a weakly
special subvariety P +BP ⊂ V .

Finally, we would like to point out one possible application of our
theorem.

Recall the following theorem of Bloch-Ochiai (see Chapter 9 of [3])
which is proved using Nevanlinna theory.

Theorem 1.5. Let A be an abelian variety and f : C −→ A be a non-
constant holomorphic map. Then the Zariski closure of f(C) is a trans-
late of an abelian subvariety.

In some cases our theorem 1.4 imples theorem 1.5.
Consider for example A = Cn/Λ (where Λ is a lattice such that

A is a simple abelian variety) and f : C −→ A given by f(z) =

(z, . . . , z, ez, . . . , ez) with s factors of z and r times of ez with r+s = n.
Then consider the set X ⊂ Cn given by

X = {(x+ iy, . . . , x+ iy, exeiy, . . . , exeiy) : x ∈ R, y ∈ [0, 2π]}.

Clearly X is unbounded and definable in Ran,exp and its image in A is
contained in f(C). By theorem 1.4, the Zariski closure of f(C) is A
(since A is simple).

It is not however always possible to “extract” such a definable un-
bounded set X from f(C) as the example of (ez, eiz) ⊂ C2 shows.
Indeed, in this example, for any subset Y ⊂ C such that f(Y ) is defin-
able, both the real and imaginary parts of z ∈ Y must be bounded.

Another (counter)-example is the following. Define the iterated ex-
ponential function expn(x) by exp1 = exp and expn = exp◦expn−1. By
Proposition 9.10 of [4], a definable function is bounded by expn(xm) for
some n,m. Therefore a graph of a function which ‘grows faster’ than
any expn will not satisfy the assumptions of our theorems.

We conclude this introduction with an open question in the spirit of
[10]. It concerns the topological closure of π(X) rather than Zariski
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closure. Recall from [10] that a real weakly special subvariety is de-
fined to be a translate of a real subtorus of A (hence not necessarily
algebraic).

Conjecture 1.6. Let X be as before be an unbounded definable real
analytic manifold. We denote by π(X) the topological closure of π(X).

There exists a real analytic submanifold V of A containing a dense
subset of real weakly special subvarieties such that

π(X) = π(X) ∪ V.
In section 4, we prove a characterisation of subvarieties of abelian

varieties containing a Zariski dense subset of weakly special subvari-
eties, namely that such a subvariety is a union of weakly special ones.
We believe this result and our argument to be of independent interest.
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2. Proof of theorem 1.2.

In this section we assume that X is an unbounded real analytic
submanifold of Cn = R2n definable in some o-minimal structure which
contains Ran. Let V be the Zariski closure of π(X) in A.

2.1. A definable set and point counting. The contents of this sec-
tion are essentially a reproduction of the arguments of Orr from Section
9 of [5] with slight adjustments. In this section we define a certain de-
finable set associated with X and, using Pila-Wilkie theorem, show
that this set contains a positive dimensional semi-algebraic subset.

Choose a fundamental set F for the action of Λ on Cn such that
X ∩ F is non-empty. We choose F to be an open connected subset of
Cn such that F is compact and Λ-translates of F cover Cn. The set F
is an ‘open parallelepided’. Since F is an open subset of Cn, we have

that dim(X ∩ F) = dim(X). Let Ṽ be F ∩ π−1V . This is a definable
set since the o-minimal structure contains Ran and π restricted to F is
definable in Ran.

Consider the definable set

Σ = {x ∈ Cn : dim(X + x) ∩ Ṽ = dim(X)}.
The argument is exactly the same as in the proof of Lemma 9.3 of

[5].
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We have the following lemma:

Lemma 2.1. If λ ∈ Λ and X ∩ (F − λ) 6= ∅, then λ ∈ Σ.

Proof. From Λ-invariance of π−1V + λ = π−1V , we see that for λ as in
the statement (in particular for λ ∈ Λ), X + λ ⊂ π−1V .

It follows that

(X + λ) ∩ Ṽ = (X + λ) ∩ F .
As F − λ is an open subset of Cn, we see that

dim(X ∩ (F − λ)) = dim(X) = dim((X + λ) ∩ F)

The conclusion follows. �

Fix a basis λ1, . . . , λ2n of Λ. Then Λ⊗Q is identified with Q2n. We
define the height of an element λ =

∑
aiλi ∈ Λ (ai ∈ Z) as

H(λ) = max(|a1|, . . . , |a2n|).
This height thus coincides with the usual height on Qn.

Proposition 2.2. There exists T0 ≥ 0 such that for all T ≥ T0,

|{x ∈ Σ ∩ Λ : H(x) ≤ T}| ≥ T/2.

Proof. This is essentially Lemma 9.1 of [5].
The first observation is that if x1 and x2 are two points of Λ such

that X ∩ (F − x1) and X ∩ (F − x2) are both non-empty, then Σ ∩ Λ
contains at least one point of height h for every h between H(x1) and
H(x2).

Note that X is path-wise connected in the Euclidean topology. Let
C be a path from a point in X ∩ (F − x2) to a point in X ∩ (F − x2).

When C crosses over from F − u1 to to an adjacent domain F − u2,
the heights of u1 and u2 change by at most one.

It follows that for any h between H(x1) and H(x2), there is a u ∈ Λ
of height ≤ h such that X ∩ (F − u) is not empty. This u belongs to
Σ ∩X.

By assumption X is unbounded. Thus as x varies in Λ such that
X ∩ F − x is non-empty, h(x) goes to infinity.

It follows that there is an h0 such that for any h > h0, Σ∩Λ contains
at least one point of height h.

Take T0 = 2h0. �

We now use the following theorem of Pila and Wilkie ([6], Theorem
1.8).

For a definable subset Θ ⊂ Rn, we define Θalg to be the union of all
positive dimensional semi-algebraic subsets contained in Θ. We define
Θtr to be Θ\Θalg.
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Theorem 2.3 (Pila-Wilkie). Let Θ be a subset of Rn definable in an
o-minimal structure. Let ε > 0. There exists a constant c = c(Θ, ε)
such that for any T ≥ 0,

|{x ∈ Θtr ∩Qn : H(x) ≤ T}| ≥ cT ε.

From Proposition 2.2 it now follows that Σalg ∩ Λ is not empty.
Let W be a connected positive dimensional semi-algebraic subset

contained in Σ. For each w in W , dim((X + w) ∩ Ṽ ) = dim(X) and
hence an analytic component of (X +w)∩F is contained in π−1V . By
analytic continuation, we see that X + w ⊂ π−1V . We have proved:

Proposition 2.4. With the notations and assumptions of this section,
there exists a positive dimensional semialgebraic subset W such that

X +W ⊂ π−1V.

2.2. Final argument. We use the following lemma whose proof can
for example be found in [5], Lemma 8.1.

Lemma 2.5. Let Z be a connected complex analytic subset of Cg. Let
X be a connected irreducible semialgebraic set contained in Z. Then
there is a complex algebraic variety Y such that X ⊂ Y ⊂ Z.

By proposition 2.4 and the above lemma, we see that for any x ∈ X,
there exists a positive dimensional complex algebraic subset Yx con-
taining X and contained in π−1(V ). By the abelian Ax-Lindemann-
Weierstrass theorem 1.1, the Zariski closure of π(Yx) is a union of
weakly special subvarieties of V . Therefore, V contains a subvariety
of the form P + BP where P = π(x) and BP is a positive dimensional
abelian subvariety of A. This finishes the proof of theorem 1.2.

3. Cell decomposition and essential closure.

In this section we consider an unbounded definable set X ⊂ Cn.
We refer to section 8 of [4] for the definition of a real analytic cell.
What is relevant to us is that a real analytic cell in Rn is a definable
real analytic submanifold, definable-analytically isomorphic to Rm for
some m ≤ n. By Theorem 8.9 of [4], there is a finite number of analytic
cells X1, . . . , Xk such that X is a disjoint union of the Xk.

Proposition 3.1. The essential closure Zaress(π(X)) is the union of
Zar(π(Xi)) where Xis are the unbounded cells.

Proof. We start with a lemma.

Lemma 3.2. Let Z be a real analytic manifold in Cn and U ⊂ Z an
open subset.
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Then

Zar(π(U)) = Zar(π(Z))

In particular, if Z is an analytic unbounded submanifold of Cn, then

Zaress(π(Z)) = Zar(π(Z))

Proof. One inclusion is obvious.
Write Zar(π(U)) ⊂ Pm for some m and let s ∈ H0(Pm,O(l)) for

l ≥ 1 such that s is zero on π(U). Then s ◦ π is zero on U and by
analytic continuation s ◦ π is zero on Z. It follows that s is zero on
π(Z), hence Zar(π(Z)) ⊂ Zar(π(U)). �

Let X = X1

∐
. . .

∐
Xk be a cell decomposition of X. For R large

enough, X ∩B(0, R) contains the union of all the bounded cells in the
above decomposition.

We have

Zaress(π(X)) =
⋃

{i:Xiunbounded}

Zaress(π(Xi)).

By Lemma 3.2, for an unbounded cell Xi,

Zaress(π(Xi)) = Zar(π(Xi)).

The result follows.
�

4. Characterisation of subvarieties containing a dense
set of weakly special subvarieties.

In this section we prove a proposition which we believe to be of
independent interest.

Let A be an abelian variety and V a subvariety of A. Define the
stabiliser of V as

Stab(V ) = {P ∈ A : P + V = V }.

Recall that for an abelian subvariety B of A, there exists an abelian
subvariety B′ such that A = B + B′ and B ∩ B′ is finite. We always
refer to B and B′ as above.

Proposition 4.1. Let V be an irreducible subvariety of A.

(1) Assume dim Stab(V ) > 0.
Then there exists abelian subvarieties B and B′ of A such

that A = B + B′ and V = B + V ′ where V ′ is a subvariety of
B′.
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(2) Assume that Stab(V ) is finite. Then the set of positive dimen-
sional weakly special subvarieties contained in V is not Zariski
dense.

(3) Assume again that Stab(V ) is finite. Let Σ be the set of all
positive dimensional weakly special subvarieties contained in V .

For an abelian subvariety B ⊂ A, denote by B′ an abelian
subvariety such that A = B +B′.

There exists a finite set B1, . . . , Br of abelian subvarieties of
A and W1, . . . ,Wr of subvarieties of B′i such that

Zar(Σ) =
r⋃
i=1

Bi +Wi.

Proof. Assume dim Stab(V ) > 0 and let B be the neutral component
of Stab(V ).

Let B′ be an abelian subvariety such that A = B + B′ and let
ψ : A −→ A/B be the quotient. Let V ′ be ψ|−1B′ (ψ(V )). Then

V = {B + x : x ∈ V } = {B + x : x ∈ V ′} = B + V ′.

This proves (1).
We will now prove (2). Assume that Stab(V ) is finite. We start by

reducing to the case where Stab(V ) = {0}. Let A′ = A/Stab(V ) and
let φ : A −→ A′ be the quotient map and let V ′ = φ(V ). Note that
φ−1(V ′) = V + Stab(V ) = V . We claim that Stab(V ′) = {0}. Let
P ∈ Stab(V ′) and Q ∈ φ−1(P ). We have

φ(Q+ V ) = P + V ′ = V ′

It follows that Q+V ⊂ φ−1(V ′) = V and for dimension reasons Q+V =
V . Hence Q ∈ Stab(V ) and P = φ(Q) = 0.

As the conclusion of (2) holds for V if and only if it holds for V ′, we
may therefore assume that Stab(V ) = {0}.

For m > 1, consider the map

φm : V m −→ Am−1

defined by

φm(x1, . . . , xm) = (x1 − x2, . . . , xm − xm−1).

By [12], Lemma 3.1, there exists m > 1 such that the map φm is a
generic embedding.

Let P + B be a positive dimensional weakly special subvariety con-
tained in V . Then φm((P + B)m) = Bm−1. The map φm is therefore
not injective on (P +B)m. Therefore V can not contain a Zariski dense
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set of positive dimensional subvarieties of the form P +B. This proves
(2).

Let us now prove (3). Let Σ as in the statement, the set of all positive
dimensional weakly special subvarieties contained in V and let W be a
component of Zar(Σ). Then W contains a Zariski dense set of weakly
special subvarieties and by (2), Stab(W ) is positive dimensional. It
follows from (1) that W = B+W ′ where B is an abelian subvariety of A
and W ′ a subvariety of B′. Since Zar(Σ) has finitely many components,
the conclusion of (3) follows. �

Remark 4.2. The geometric aspect of Lang’s conjecture predicts that
given a variety of general type V , the union subvarieties of W not of
general type, is not Zariski dense. It is a known fact that a subvariety
V of an abelian variety is of general type if and only if Stab(V ) is finite.
Therefore, our proposition 4.1 implies the geometric Lang’s conjecture
for subvarieties of abelian varieties.

Remark 4.3. This proposition is an abelian analogue of the result
of the first author (see [9]) in the hyperbolic case which is proved by
completely different methods.

5. Proof theorems 1.3 and 1.4.

In this section we deduce theorems from what preceeds.
Let A and X be as in the assumptions of Theorem 1.3. Let V be a

component of the essential Zariski closure of π(X).
In section 3 we have seen that Zaress(π(X)) is a finite union of

Zariski closures of sets of the form π(Y ) where Y is an unbounded
definable real analytic submanifold of Cn. Therefore, the conclusion of
theorem 1.3 follows from theorem 1.2.

Let now X be as in 1.4. By theorem 1.3, V = Zaress(X) contains
a Zariski dense set of positive dimensional weakly special subvarieties.
From proposition 4.1, we deduce that V is of the form V = B + V ′

where B is a positive dimensional abelian subvariety of A and V ′ is a
subvariety of B′. Reiterating the argument with B′ and V ′, we conclude
that components of V are weakly special.
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