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Abstract

We study aspects of the quantum and classical dynamics of a 3-body system in 3D space with
interaction depending only on mutual distances. The study is restricted to solutions in the space
of relative motion which are functions of mutual distances only. It is shown that the ground state
(and some other states) in the quantum case and the planar trajectories in the classical case are of
this type. The quantum (and classical) system for which these states are eigenstates is found and
its Hamiltonian is constructed. It corresponds to a three-dimensional quantum particle moving
in a curved space with special metric. The kinetic energy of the system has a hidden sl(4, R)
Lie (Poisson) algebra structure, alternatively, the hidden algebra h®) typical for the Hy Calogero
model. We find an exactly solvable three-body generalized harmonic oscillator-type potential as

well as a quasi-exactly-solvable three-body sextic polynomial type potential.



INTRODUCTION

The Hamiltonian for 3-body quantum system of 3-dimensional particles with translation-
invariant potential, which depends on relative distances between particles only, is of the

form,

3
H = —ZAZ@ + V(ria, 113, 123) , (1)
i=1
with coordinate vector of ith particle r; = r§3’ = (®i1,%i2,%;3), where
rij = |ri — ;] (2)

is the (relative) distance between particles ¢ and j. The number of relative distances is equal
to the number of edges of the triangle formed by taking the body positions as vertices. We

call this triangle the triangle of interaction. Here, Af’) is the 3-dimensional Laplacian,

@ _ 0
Ai n 81'2'81'1' ’

associated with the ¢th body. For simplicity all masses are assumed to be equal: m; = m =
1/2. The configuration space for H is R?. The center-of-mass motion described by vectorial

coordinate
1S
R, = — r
can be separated out; this motion is described by a 3-dimensional plane wave.

The spectral problem is formulated in the space of relative motion R, = RY; it is of the

form,
H, U (z) = (— AO) LV (1, ris, r23)> U(r) = EV(z), Ve Ly(R,), (3)

where A is the flat-space Laplacian in the space of relative motion. If the space of relative
motion R, is parameterized by two, 3-dimensional vectorial Jacobi coordinates

J

(F) 1 :
r; = ——=) k(tp—1), i=12,
’ 3+ 1) ;
the flat-space 6-dimensional Laplacian in the space of relative motion becomes diagonal
92
&Y = —— 0
8rEF)8r§F)

Observation:



There exists a family of the eigenstates of the Hamiltonian (1), including the

ground state, which depends on three relative distances {r;;} only .

Our primary goal is to find the differential operator in the space of relative distances {r;;} for
which these states are eigenstates. In other words, to find a differential equation depending
only on {r;;} for which these states are solutions. This implies a study of the evolution of

the triangle of interaction.

I. GENERALITIES

As a first step let us change variables in the space of relative motion R, : (rgF)) > (ri5,9),
where the number of (independent) relative distances 7;; is equal to 3 and € is a collection of
three angular variables. Thus, we split R, into a sum of the space of relative distances R and
a space parameterized by angular variables, essentially those on the sphere S3. There are
known several ways to introduce variables in R,: the perimetric coordinates by Hylleraas
[1], the scalar products of vectorial Jacobi coordinates r§F) 2] and the relative (mutual)
distances 7;; (see e.g. [3]). We follow the last one. In turn, the angular variables are
introduced as the two Euler angles on the S? sphere defining the normal to the interaction
plane (triangle) and the azimuthal angle of rotation of the interaction triangle around its
barycenter, see e.g. [2].

A key observation is that in new coordinates (r;;, 2) the flat-space Laplace operator (the

kinetic energy operator) in the space of relative motion R, takes the form of the sum of two

the second-order differential operators

A® = AR(Tij) +A(TijaQaaQ> ) (5)

r

where the first operator depends on relative distances only, while the second operator de-
pends on angular derivatives in such a way that it annihilates any angle-independent func-
tion,

A(nj,Q,ﬁg) \I’(T’ij) = 0.

If we look for angle-independent solutions of (3), the decomposition (5) reduces the general

spectral problem (3) to a particular spectral problem

7‘23 \I/(Tij) = (— AR(Hj) + V(Tu, 13, 7"23)) \II(TZ‘J‘) = E\IJ(TZ]) s \IJ - LQ(R) s (6)
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where R is the space of relative distances. Surprisingly, one can find the gauge factor I'(r;;)

such that the operator Ag(r;;) takes the form of the Schrédinger operator,
' Ag (rij)T' = App(ry) — V(ﬁj) = —Hp ; (7)

where Ay p is the Laplace-Beltrami operator with contravariant metric ¢, in general, on
some non-flat, (non-constant curvature) manifold. It makes sense of the kinetic energy.
Here f/(mj) is the effective potential. The potential V becomes singular at the boundary
of the configuration space, where the determinant D = det ¢*/ vanishes. The operator Hp
is Hermitian with measure D~ 2. Eventually, we arrive at the spectral problem for the

Hamiltonian

Hrp = —App(ry) + V(ry) + Viry) . (8)

Following the de-quantization procedure of replacement of the quantum momentum (deriva-

tive) by the classical momentum

—10 — p,
one can get a classical analogue of (8),
HY = g7pip;+ V(ry) + V() . (9)

It describes the motion of 3-dimensional rigid body with tensor of inertia (g)~".

The Hamiltonians (8), (9) are the main objects of study of this paper.

II. THREE-BODY CASE: CONCRETE RESULTS

After straightforward calculations the operator Ag(r;;) in decomposition (5) is found to

be

4 4 4
Ag(ri) = | 2(02,+ 0%, +02,) + . Oy + -~ Oros + - Ory (10)
2 2 2 2 2 2 2 2 2
Tie — T13 T T3 T +Tig — T3 Tz + T3 — 'y
+ Or150rgq + Or150ry5 + Ory30ris |
7’127“23 12 23 7"127"13 12 13 T13’f’23 23 13

cf. e.g. [3]. It does not depend on the choice of the angular variables €. Its configuration

space is

0 <rig,m3,723 <00, 723 < Ti2+ 713, T3 <Ti2+7T23, T2 < T13+ To3. (11)



In the space with Cartesian coordinates (z,y, z) = (r12,713,723) the configuration space lies
in the first octant and is the interior of the inverted tetrahedral-shaped object with base at
infinity, vertex at the origin and edges (¢, t,2t), (,2t,t) and (2t,¢,t), 0 < t < 0.

Formally, the operator (10) is invariant under reflections Zy & Zy & Zs,
ri2 — —T12, 13 < —T13 ro3 <> —T23 ,
and w.r.t. S3-group action. If we introduce new variables,
My = P12, Tiy = Pz, T3 = pas (12)
the operator (10) becomes algebraic,

AR(Pij) - 4(10126;2 + p13a§13 + ,0238§23) + 6(8/)12 + a1713 + aPza)—i_

2 ((Pw + P13 = 023)0p1,0p15 + (P12 + P23 — £13)0p120pps + (P13 + P23 — p12)8p133p23> - (13)

From (11) and (12) it follows that the corresponding configuration space in p variables is

given by the conditions

0 < p12, P13, p23 < 00, pa3 < (VP12 +/p13)°, p1s < (Vp1z + /p23)°, prz < (V/p1s + v/p23)’
We remark that
Py + Pis + a3 — 2p12P13 — 2p12p23 — 2p13pas < O, (14)
because the left-hand side (1.h.s.) is equal to
— (712 + 113 — 723) (112 + 1oz — 113) (13 + 723 — r12)(T12 + 713 + 723)

and conditions (11) should hold. Therefore, L.h.s. is proportional to the square of the area
of the triangle of interaction S% .
The associated contravariant metric for the operator Ag(p;;) defined by coefficients in

front of second derivatives is remarkably simple

4p1o P12 + P13 — P23 P12 + P23 — P13
" (p) = | pi2 + p13 — pa3 4p13 P13+ P23 — P12 | > (15)
P12 + P23 — P13 P13 + P2z — P12 4pa3



it is linear in p-coordinates(!) with factorized determinant

det g"" = —6(p12 + p13 + p23) (P%z + pis + Pog — 2p12p13 — 2p12p23 — 2p13023) =D>0,
(16)
and is positive definite. It is worth noting a remarkable factorization property of the deter-

minant
D = —6(riy + 1l +733) X
(r12 4+ 713 — 723) (112 + 723 — 713) (713 + 1oz — 712) (r12 + 713 + T23) =
= 96 P S% ,

where P = r?, + ri; + r2; - the sum of squared of sides of the interaction triangle.

The determinant can rewritten in terms of elementary symmetric polynomials o7 o,

71 = 01(p12, P13, P23) = P12 + P13 + P23
Ty = 02(p12, P13, P23) = P12 P13 + P12 P23 + P13 P23 (17)
T3 = U3(P12> P13, 023) = pP12P13P23 ,

which are invariant w.r.t. Ss-group action, as follows,
D = 671 (4 —17) . (18)

When det ¢ = 0, hence, either 7, = 0, or 78 = 47, - it defines the boundary of the
configuration space, see (14).

It can be shown that there exists the 1st order symmetry operator

L1 = (p13 — p23)0p1o + (P23 — p12)0p1s + (P12 — £13)Opsy (19)

for the operator (13),
[Ar(pig) , L] =0

Here, L, is an algebraic operator, which is anti-invariant under the S3-group action. The
existence of the symmetry L; implies that in the space of relative distances one variable can
be separated out in (13).

Set

wy = pi2+pi3+ps , wr = 2 \/ﬂ%g + p2s + p3s — prap1z — prapas — P3P, (20)

7



2 _

where wy = 24/(7f — 372) as well, which are invariant under the action of L, and

2 — — 2 — —
( P12 — P23 P13) X sgn(p13 _ p12) arcsin( P23 — P13 P12)
Wao W

V3 .
W3 = ? sgn (p23 — plg) arcsin

(21)

2p13 — — 3
sgn(pia — pas) arcsin( P13 — P23 P12) _ _7T> ’

wWao 4

with sgn(x) = ‘f;—| for nonzero x. These coordinates are invariant under a cyclic permutation
of the indices on the pjp: 1 —+ 2 — 3 — 1. Under a transposition of exactly two indices,
see e.g. (12),(3), we see that wy, ws remain invariant, and ws — —ws — %. Expressions
for ws vary, depending on which of the 6 non-overlapping regions of (p12, p13, p23) Space we

choose to evaluate them:

1.

(@) : pas > p13>p1a, (b): pi3>pia>pas, (€)1 p1a> pag > p13,

(d) : p13 > pas>pi1a, (€): pra>pis>pas, (f): p2s > p12 > p1s,

The regions in class 1 are related by cyclic permutations, as are the regions in class 2.
We map between regions by a transposition. Thus it is enough to evaluate w3 in the region
(@) : pog > p13 > p12. The other 5 expressions will then follow from the permutation

symmetries. In this case we have

(@) : wsg = —\/?g arcsin %((2 —V3)p1s — pas + (V3 — 1)p1a) X

(2023 — (1+ V3)p1s + (V3 — 1)p12) (2 + V3)p12 — (1 + V3)p1s — pas) | -

(The special cases where exactly two of the p;;, are equal can be obtained from these results
by continuity. Here, ws is a single-valued differentiable function of pis, p13, p23 everywhere
in the physical domain (configuration space), except for the points pjo = p13 = peg where it

is undefined.)
In these coordinates, the operators (19) and (13) take the form

Ll(U)) :8w3 y
Ap(w) = 6w d2, + 6w 0, +2—02 + 12w . + 180y,
%)
+ 6%,
Wa



respectively. It is evident that for the ws-independent potential
V(wy, wo;wz) = g(wi, wa) ,

the operator L, is still an integral, where ¢ is an arbitrary function.
Both operators (13) and (19) are si(4, R)-Lie algebraic - they can be rewritten in terms
of the generators of the maximal affine subalgebra b, of the algebra si(4,R), see e.g. [4, 5]

0
T =  =1.2
‘-71 aui7 t ) 737
0 0 .
t.77,j - uz% ) 1,) = 17273 ) (22>
J
N,
ON) = ; - N
J(N) Zulauz ,

JH(N) =uw;J°N) = u; <iuji—N> , i=1,2,3, (23)
where N is parameter and
Uy = P12, Uz = P13 Uz = P23 -
If N is non-negative integer, a finite-dimensional representation space occurs,
7)1(\?) = (u'uy’uy’| 0 <py +pa+ps < N) . (24)
Explicitly, these operators look as
Ag)(j) = 4( »7101 Ji + j202 Jy + »7303 /Y ) +6 (»71_ +Jy + j3_) + (25)

2 («7101 (o +T5 )+ In(Tr +T5)+ T (T + Ty ) =TTz — Ty T — T ~73_> ;
and
Ly = j201 - j301 + «7302 - jloz + j103 - \7203 : (26)
The remarkable property of the algebraic operator Ag(p;;) (13) is its gauge-equivalence

to the Schrédinger operator. Making the gauge transformation with determinant (16), (18)

as the factor,
1

7'11/4(47'2 —72)

_ —1/4
I = DY ~ e

see also (17), we find that

L' Ar(pi)) T = Arplpiy) =V, (27)
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where the effective potential

7 B 9 (p12 + p13 + p23)
(Pz‘j)—g( T +2 2 2 2 _ 9 —9 —9 ’
P12 + p13 + p23) (P12 + Pis + P33 — 2p12p13 — 2p12p23 — 2p13P23)

Note that in r-coordinates

4

(r12 + 7113 — 723) (112 + 723 — r13) (113 + T23 — T12)

1 T'93 13 T'12
+ + +1),
712713723 \T12 + 713 —T23  Ti2 +To3 — 713 T13 + 723 — T2

and
1

(ros 4 r13 — 712) (23 + 112 — r13)(r13 + 12 — T23) (712 + T13 + Ta3)

1 1 1
B 8ra3713(T23 + T13) {7"23 +7ri3—"ri2 Te3+ T3+ 7'12}

1 1 1
Sramar | + |
8rogrisTiz [T12 — T13 +7Te3  Ti2 + 713 — a3

thus, the effective potential can be written differently,

~ 9
V(’I"Z' ) =
! 8 (rfy + i3+ 133)
1y + 173 + 755 { 1 ( 1 N 1 )
16 13723 (113 + 723) \ 713+ 723 — 12 Ti2 + 713+ Tas

1 1 1
+ +
12713723 \T12 + 723 —7T13  Ti12 + 713 — T'23

In turn,

Arp(pij) = 4(P12a§12 + p1ga§13 + p233523)

+ 2 ((pl? + P13 — p23>aﬁl2ap13 + (:012 + P23 — :013)69128P23 + (/313 + P23 — p12)aplsap23)

_3 (Plzapu + P130p15 + 23054
P12 + p13 + P23

is the Laplace-Beltrami operator,

)+4<am Oy + D) (28)

L
VD

see (15), (16). Eventually, taking into account (27) we arrive at the Hamiltonian

Arg(piy) = VDO, g"o,, 0, =

2
Dy’

Hya(rij) = —App(rij) + V(ﬁ'j) + V(ri2, T3, T23) , (29)

10



in the space of relative distances, or
Hea(pis) = —Drslpi) +Vipi) +Vips) (30)

in p-space, see (12). The Hamiltonian (29), or (30) describes the three-dimensional quantum
particle moving in the curved space with metric g"”. The Ricci scalar, see e.g. [6], for this
space is equal to

A1 (p12 + pr3 + pas)” — 84 (p12 p13 + prz paz + p23 p13)
12 (p12 + p13 + pa3) ((p12 + p13 + pa3)? — 4 (p12 p1z + pra pas + pa p13))

—847'2 + 417’12
127 (47m — 72)°

It is singular at the boundary of the configuration space. The Cotton tensor, see e.g. [6],

Rs = —

for this metric is nonzero, so the space is not conformally flat.
Making the de-quantization of (30) we arrive at a three-dimensional classical system

which is characterized by the Hamiltonian,
H (i) = 9" (i) Pi P+ V(pi) + V(i) (31)

where P, P;, 1,7 = 1,2, 3 are classical momenta in p-space and ¢g"”(p;;) is given by (15). Here
the underlying manifold (zero-potential case) admits an so(3) algebra of constants of the
motion linear in the momenta, i.e., Killing vectors. Thus, the free Hamilton-Jacobi equation

is integrable. However, it admits no separable coordinate system.

A. (Quasi)-exact-solvability

Let us take the function

X A 2
2

Uo(p12, prs, p23) = 7'11/4(472 — )2 e T2 (32)

where v, w > 0 and A > 0 are constants and 7’s are given by (17), and seek the potential
for which this (32) is the ground state function for the Hamiltonian H,(p;;), see (30). This

potential can be found immediately by calculating the ratio

Arp(pij)¥Po

= Vo— Ep.
\I/() 0 0

The result is
9 2T
Vo(r, 2) = — + v(y—1) (—1) -

2
8711 A1y — 7§

11



6w?n + 6AT (Qwn — 2y —3) + 6A4%7] (33)

with the energy of the ground state
Ey = 2w+ 7). (34)

Now, let us take the Hamiltonian H,qo = —Arp + Vo, see (30), with potential (33),
subtract Ey (34) and make the gauge rotation with ¥, (32). As the result we obtain the
sl(4, R)-Lie-algebraic operator with additional potential AVy, [4, 5]

Ul (—Ap+ Vo — Eo) Wo = —Ar(T) + 20 =29 (T +T5 +T5 ) +

12w (\7101 + «7202 + ~7303) +12A (j1+(N) + J;(N) + «73+<N)) + AVy (35)
= hl) () + AVy ,

see (25), where
AVN = 12AN7’1 .

It is evident that for integer N the operator h(.J) has a finite-dimensional invariant subspace
77](\?), (24), with dim 73]((;’) ~ N? at large N. Finally, we arrive at the quasi-exactly-solvable

Hamiltonian in the space of relative distances:

Hrdgges(pij) = —Arp(pij) + Vj&rqu)(pij) ; (36)

cf.(8), where

9 2
V(qes’N)(Th n) = —+ (v —1) % +
8T1 47—2 - 7—1

+ 6w’ + 6AT 2Qwm — 2y — 2N — 3) + 6A4%7 . (37)

For this potential ~ N3 eigenstates can be found by algebraic means. They have the

factorized form of the polynomial multiplied by ¥, (32),

POlN(pu, P13, /923) ‘Ifo(ﬁ, 7'2) .

(Note that for given NV we can always choose appropriate values of  such that the boundary
terms vanish for polynomials in the invariant subspace vanish and the Hamiltonian (36) acts
as a self-adjoint operator.) These polynomials are the eigenfunctions of the quasi-exactly-
solvable algebraic operator

B (p) = (38)

12



—4(P128212 + p138,§13 + P238§23)
=2 ((p12 + P13 — 023)0p12 0015 + (P12 + P23 — P13)0p150pss + (P13 + P23 — P12)0p150,5)
+2(1 = 27)(0p1y + Opiy + Opos) + 12w (012051, + P130515 + 0230,55)
—12 A (p12 + p13 + p23) (P12 Op1y + P13 Opys + P23 Opy — N)

which is the quasi-exactly-solvable sl(4, R)-Lic-algebraic operator
Raes)() = —d( TN Ty +TenTo + T Ts ) —6(T + Ty +T5) (39)
—2 <Jﬁ (T + T )+ T (T + T )+ Ty (Ty +To ) =T Ty — Ty T — T J3>
+2(1=29)(Jy + Ty +T5) +120 (T + T + Ts3)
+12 A (JF(N) + JH(N) + JF (N))

cf. (35).
As for the original problem (6) in the space of relative motion

He W (ryj) = (— Ag(rij) + V(w)) U(ry) = E¥(ry), Ve L(R),
the potential for which quasi-exactly-solvable, polynomial solutions occur of the form

POIN(P12>P13,,023) I ‘Do(Tl,Tz) )

where I' ~ D~1/4 see (18), is given by

V(qes,}N)(7_> _ _1 2 27'1 +
relative v 2 47_2 _ 7_12

+6w?n + 6AT (2w — 2y — 2N — 3) + 64}, (40)

cf. (37); it does not depend on 73.
If the parameter A vanishes in (32), (37) and (35), (39) we will arrive at the exactly-
solvable problem, where ¥, (32) at A = 0, plays the role of the ground state function,

_ 174 NF —wm
‘1’0(012, P13, P23) = Ty (472—71) € ) (41)

The sl(4, R)-Lie-algebraic operator (39) contains no raising generators {J(N)} and be-

comes

h(exact) _ —AR(j) + 2(1 — 27) (jl— + j2_ + k73_) + 12w (jlol + j202 + jgog) )

13



see (25), and, hence, preserves the infinite flag of finite-dimensional invariant subspaces 77](5’)

(24) at N =0,1,2.... The potential (37) becomes

27'1

87 2) + 6w'n = (42)
1

A1y — 7§

9
V) = o=t o= 1)

9
= + 6w” (p12 + p1s +
8 (p12 + p13 + p23) (P12 p1s 4 pas)
1 2(p12 + p13 + p13)
- 7(7 - ) 2 2 2 9 _9 — 9
Pia + Pis + Pa3 — 2pP12P13 — 2P12023 — 2013023

9
_ 62 (12 2 2
8 (rfy + 113 +133) M (7"12 T T23>

T%2+7’%3+7“§3{ 1 ( 1 n 1 )
16 T13723(T13 + 7re3) \7r13 + 723 — 712 ri2 + 713+ Tos

+y(v—1)

1 1 1
- + .
T12T13723 \T12 +T23 —7T13  T12 + 713 — 723
Eventually, we arrive at the exactly-solvable Hamiltonian in the space of relative distances

Heaes(pi;) = —Arp(piy) + V(o) (43)
where the spectra of energies
Eringns = L2w(ni+na+ng+v+1), ni,ng,ny=0,1,2,...

is equidistant. All eigenfunctions have the factorized form of a polynomial multiplied by ¥,
(41),
Poly (p12, p13, p23) Wo(T1,72) , N =0,1,... .

These polynomials are eigenfunctions of the exactly-solvable algebraic operator

h(ea:act)(p) - _4(p1262 +p1382 +p2382 )+(2_47)(8912+8913+ap23)+12w(p128f712+p13aﬂ13+p23@f723)

P12 P13 P23
—2(p12 + P13 — P23)0p150p15 — 2(p12 + P23 — P13)0p150ps — 2(P13 + P23 — £12)0p150pss »  (44)
or, equivalently, of the exactly-solvable sl(4, R)-Lie-algebraic operator
W) = —A(Th Ty +Inds + Ty )= 6(T0 +T5 +J5)
—2 (jlol (Jo + T3 )+ In(Tr +T3) + Ty (Ty +Ty) =TTy — T I — T j:a)
+2(1=29)(J7 + Ty +T5) + 12w (T} + Tap + Tg3) - (45)

14



Those polynomials are orthogonal w.r.t. W2, (32) at A = 0, their domain is given by (14).
Being written in variables w; o 3, see above, they are factorizable, F'(wy, ws) f(ws). To the
best of our knowledge these orthogonal polynomials have not been studied in literature.
The Hamiltonian with potential (42) can be considered as a three-dimensional gener-
alization of the 3-body Calogero model [7], see also [8], [9], with loss of the property of
pairwise interaction. Now the potential of interaction contains two- and three-body inter-
action terms. If v = 0,1 in (42) we arrive at the celebrated harmonic oscillator potential
in the space of relative distances, see e.g. [10]. In turn, in the space of relative motion this

potential contains no singular terms and becomes,
V = 6w'n = 6w (pio+pi3+pas) = 6w(rip + 1l + 135)

see [10].
The quasi-exactly-solvable si(4, R)-Lie-algebraic operator h\%)(.J), (39) as well as the
exactly-solvable operator as a degeneration at A = 0, written originally in p variables (38)

can be rewritten in 7 variables (17). Surprisingly, this operator is algebraic (!) as well
R (1) = —6707 — 21 (T1y — 72)02 — 275(675 — 72)02 — 24 707, — 3673075 —  (46)
2 (473 + 913 — 7127'2)62273 — 180, — 147,05 — 2(T19 — 72)05 +
2(1 — 279)(301 + 271102 + T203) + 12w (1101 + 271205 + 37303) +
12 A1y (1101 4 27902 + 31305 — N) .
Evidently, it remains algebraic at A = 0,
W) () = —67107 — 271 (Try — 7)05 — 273(672 — T1)05 — 247207, — 3673075 —  (47)
2 (473 + 913 — 7'127'2)82273 —180; — 147,05 — 2(T19 — 71)05 +
2(1 — 27)(301 + 27102 + 1203) + 12w (1101 + 27205 + 373053)

becoming the exactly-solvable one.
It can be immediately checked that the quasi-exactly-solvable operator (46) has the finite-

dimensional invariant subspace in polynomials,

7)1(\}’2’3) = <Tf17'§27'§)3| 0<p1+2py+3ps < N> ) (48)

15



cf. (24). This finite-dimensional space appears as a finite-dimensional representation space
of the algebra of differential operators h® which was discovered in the relation with Hj
(non-crystallographic) rational Calogero model [11] as its hidden algebra.

The algebra h® is infinite-dimensional but finitely-generated, for discussion see [11].
Their generating elements can be split into two classes. The first class of generators (lowering
and Cartan operators) act in 73](\}’2’3) for any N and therefore they preserve the flag P23,

’7)

The second class operators (raising operators) act on the space PN only.

Let us introduce the following notation for the derivatives:

) 0? i

81' 87'1' ) aij = m ) aijk: - m .

The first class of generating elements consist of the 22 generators where 13 of them are the

first order operators

=0, T¥ =0, T = 05,

Tl(l) =10, T2(2) = Ty0,, T(3) = 7303,

Tl(g) = 71103, Tl(f) =T 20, T111 =N 003, (49)
TI(Q) =109, Tl(f) =720y, T2(3) = 1205,

TS’) = T1T205 ,

the 6 are of the second order

TQ(H) = 1011 , T2(2 = 13013, T2(22 = 15053,
(12) (22) (22) (50)
Tg = 73012 ) T3 = T30 ) T13 = 717302 s
and 2 are of the third order
Tgfln) = 738111 ) T(222) = 73,28222 . (51)

The generators of the second class consist of 8 operators where 1 of them is of the first
order

T1+ = TlTO s (52)
4 are of the second order
Tng_l = 1011y, T;;L_z = 130,10, T;E,_g = 7‘2253T0 ) T; =7nTo(To+1), (53)
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and 3 are of the third order
Ty =mouTy, T3 =moTo(To+1), T3 =mTo(To+1)(To +2) , (54)
where we have introduced the diagonal operator (the Euler-Cartan generator)
Ty = 1101 + 21305 + 31305 — N . (55)

for a convenience. In fact, this operator is the identity operator, it is of the zeroth order
and, hence, it belongs to the first class.
It is not surprising that the algebraic operator h(9°9)(7) (46) can be rewritten in terms of

generators of the h(®-algebra,
hee)(T) = — [6 TV TV +2(7TyY -~ T T + TP (6 T4Y — 1Y)
+ TN 4T +36 T + 24TV TP + 9T T — T 1) (56)
+2000") + 7T +2(7Y - 1Y)

21 =29 (TP + 272 + 3TV) + 12w (Jo + N) + 12 A J;-

as well as the algebraic operator h(°?)(7) (47), which occurs at A = 0, can be rewritten in

terms of generators of the h(®-algebra,
WD) = — |60 TV + 21 - TP) T + T (6 T - TY)
+TM @41? 436 TP + 24T TP + 91D T — T TPy (57)
201 + 71 12718 — 1Y)

+2(1 =2 (T + 272 4+ 37) + 12w Jg |

where without a loss of generality we put N = 0.

CONCLUSIONS

In this paper we found the Schrodinger type equation in the space R of relative distances

{rij },
%rd‘l’(ﬁz, 13, 7“23) = E‘P(Tm, 13, 7"23) s Hea = _ALB(Tij) + V(T127 13, 7”23) ) (58)
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where the Laplace-Beltrami operator Ay g, see e.g. (28), makes sense as the kinetic energy of
a three-dimensional particle in curved space with metric (15). This equation describes angle-
independent solutions of the original 3-body problem (1), including the ground state. Hence,
finding the ground state involves the solution of the differential equation in three variables,
contrary to the original six-dimensional Schrodinger equation of the relative motion. Since
the Hamiltonian H, is Hermitian, the variational method can be employed with only three-

dimensional integrals involved.

The gauge-rotated Laplace-Beltrami operator, with determinant of the metric D raised to
a certain degree as the gauge factor, appears as the algebraic operator both in the variables
which are squares of relative distances and which are the elementary symmetric polynomials
in squares of relative distances as arguments. The former algebraic operator has the hidden
algebra sl(4, R), while latter one has the hidden algebra h(®, thus, becoming Lie-algebraic
operators. Both operators can be extended to (quasi)-exactly-solvable operators. Inter-
estingly, both (quasi)-exactly-solvable operators lead to the same (quasi)-exactly-solvable

potentials in the space of relative distances.

The above formalism admits a natural generalization to the case of arbitrary d > 1 di-
mensional bodies. The Laplace-Beltrami operator remains unchanged, the effective potential

(27) is changed but not dramatically. It will be presented elsewhere.
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