
Three-body problem in 3D space: ground state,

(quasi)-exact-solvability

Alexander V Turbiner

Instituto de Ciencias Nucleares, UNAM, México DF 04510, Mexico
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Abstract

We study aspects of the quantum and classical dynamics of a 3-body system in 3D space with

interaction depending only on mutual distances. The study is restricted to solutions in the space

of relative motion which are functions of mutual distances only. It is shown that the ground state

(and some other states) in the quantum case and the planar trajectories in the classical case are of

this type. The quantum (and classical) system for which these states are eigenstates is found and

its Hamiltonian is constructed. It corresponds to a three-dimensional quantum particle moving

in a curved space with special metric. The kinetic energy of the system has a hidden sl(4, R)

Lie (Poisson) algebra structure, alternatively, the hidden algebra h(3) typical for the H3 Calogero

model. We find an exactly solvable three-body generalized harmonic oscillator-type potential as

well as a quasi-exactly-solvable three-body sextic polynomial type potential.
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INTRODUCTION

The Hamiltonian for 3-body quantum system of 3-dimensional particles with translation-

invariant potential, which depends on relative distances between particles only, is of the

form,

H = −
3∑
i=1

∆
(3)
i + V (r12, r13, r23) , (1)

with coordinate vector of ith particle ri ≡ r
(3)
i = (xi,1 , xi,2 , xi,3) , where

rij = |ri − rj| , (2)

is the (relative) distance between particles i and j. The number of relative distances is equal

to the number of edges of the triangle formed by taking the body positions as vertices. We

call this triangle the triangle of interaction. Here, ∆
(3)
i is the 3-dimensional Laplacian,

∆
(d)
i =

∂2

∂ri∂ri
,

associated with the ith body. For simplicity all masses are assumed to be equal: mi = m =

1/2. The configuration space for H is R9. The center-of-mass motion described by vectorial

coordinate

R0 =
1√
3

3∑
k=1

r
k
,

can be separated out; this motion is described by a 3-dimensional plane wave.

The spectral problem is formulated in the space of relative motion Rr ≡ R6; it is of the

form,

Hr Ψ(x) ≡
(
−∆(6)

r + V (r12, r13, r23)

)
Ψ(x) = EΨ(x) , Ψ ∈ L2(Rr) , (3)

where ∆
(6)
r is the flat-space Laplacian in the space of relative motion. If the space of relative

motion Rr is parameterized by two, 3-dimensional vectorial Jacobi coordinates

r
(F )
j =

1√
j(j + 1)

j∑
k=1

k (rk+1 − rk) , j = 1, 2 ,

the flat-space 6-dimensional Laplacian in the space of relative motion becomes diagonal

∆(6)
r =

∂2

∂r
(F )
i ∂r

(F )
i

. (4)

Observation:
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There exists a family of the eigenstates of the Hamiltonian (1), including the

ground state, which depends on three relative distances {rij} only .

Our primary goal is to find the differential operator in the space of relative distances {rij} for

which these states are eigenstates. In other words, to find a differential equation depending

only on {rij} for which these states are solutions. This implies a study of the evolution of

the triangle of interaction.

I. GENERALITIES

As a first step let us change variables in the space of relative motion Rr : (r
(F )
j )↔ (rij,Ω),

where the number of (independent) relative distances rij is equal to 3 and Ω is a collection of

three angular variables. Thus, we split Rr into a sum of the space of relative distances R̃ and

a space parameterized by angular variables, essentially those on the sphere S3. There are

known several ways to introduce variables in Rr: the perimetric coordinates by Hylleraas

[1], the scalar products of vectorial Jacobi coordinates r
(F )
j [2] and the relative (mutual)

distances rij (see e.g. [3]). We follow the last one. In turn, the angular variables are

introduced as the two Euler angles on the S2 sphere defining the normal to the interaction

plane (triangle) and the azimuthal angle of rotation of the interaction triangle around its

barycenter, see e.g. [2].

A key observation is that in new coordinates (rij,Ω) the flat-space Laplace operator (the

kinetic energy operator) in the space of relative motion Rr takes the form of the sum of two

the second-order differential operators

∆(6)
r = ∆R(rij) + ∆̃(rij,Ω, ∂Ω) , (5)

where the first operator depends on relative distances only, while the second operator de-

pends on angular derivatives in such a way that it annihilates any angle-independent func-

tion,

∆̃(rij,Ω, ∂Ω) Ψ(rij) = 0 .

If we look for angle-independent solutions of (3), the decomposition (5) reduces the general

spectral problem (3) to a particular spectral problem

H̃R Ψ(rij) ≡
(
−∆R(rij) + V (r12, r13, r23)

)
Ψ(rij) = EΨ(rij) , Ψ ∈ L2(R̃) , (6)
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where R̃ is the space of relative distances. Surprisingly, one can find the gauge factor Γ(rij)

such that the operator ∆R(rij) takes the form of the Schrödinger operator,

Γ−1 ∆R (rij) Γ = ∆LB(rij)− Ṽ (rij) ≡ −H̃R , (7)

where ∆LB is the Laplace-Beltrami operator with contravariant metric gij, in general, on

some non-flat, (non-constant curvature) manifold. It makes sense of the kinetic energy.

Here Ṽ (rij) is the effective potential. The potential Ṽ becomes singular at the boundary

of the configuration space, where the determinant D = det gij vanishes. The operator H̃R

is Hermitian with measure D−
1
2 . Eventually, we arrive at the spectral problem for the

Hamiltonian

HR = −∆LB(rij) + V (rij) + Ṽ (rij) . (8)

Following the de-quantization procedure of replacement of the quantum momentum (deriva-

tive) by the classical momentum

−i ∂ → p ,

one can get a classical analogue of (8),

H
(c)
R = gijpipj + V (rij) + Ṽ (rij) . (9)

It describes the motion of 3-dimensional rigid body with tensor of inertia (gij)−1 .

The Hamiltonians (8), (9) are the main objects of study of this paper.

II. THREE-BODY CASE: CONCRETE RESULTS

After straightforward calculations the operator ∆R(rij) in decomposition (5) is found to

be

∆R(rij) =

[
2 (∂2

r12
+ ∂2

r23
+ ∂2

r13
) +

4

r12

∂r12 +
4

r23

∂r23 +
4

r13

∂r13 (10)

+
r2

12 − r2
13 + r2

23

r12r23

∂r12∂r23 +
r2

12 + r2
13 − r2

23

r12r13

∂r12∂r13 +
r2

13 + r2
23 − r2

12

r13r23

∂r23∂r13

]
,

cf. e.g. [3]. It does not depend on the choice of the angular variables Ω. Its configuration

space is

0 < r12, r13, r23 <∞, r23 < r12 + r13, r13 < r12 + r23, r12 < r13 + r23. (11)
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In the space with Cartesian coordinates (x, y, z) = (r12, r13, r23) the configuration space lies

in the first octant and is the interior of the inverted tetrahedral-shaped object with base at

infinity, vertex at the origin and edges (t, t, 2t), (t, 2t, t) and (2t, t, t), 0 ≤ t <∞.

Formally, the operator (10) is invariant under reflections Z2 ⊕ Z2 ⊕ Z2,

r12 → −r12 , r13 ⇔ −r13 , r23 ⇔ −r23 ,

and w.r.t. S3-group action. If we introduce new variables,

r2
12 = ρ12 , r

2
13 = ρ13 , r

2
23 = ρ23 , (12)

the operator (10) becomes algebraic,

∆R(ρij) = 4(ρ12∂
2
ρ12

+ ρ13∂
2
ρ13

+ ρ23∂
2
ρ23

) + 6(∂ρ12 + ∂ρ13 + ∂ρ23)+

2

(
(ρ12 + ρ13 − ρ23)∂ρ12∂ρ13 + (ρ12 + ρ23 − ρ13)∂ρ12∂ρ23 + (ρ13 + ρ23 − ρ12)∂ρ13∂ρ23

)
. (13)

From (11) and (12) it follows that the corresponding configuration space in ρ variables is

given by the conditions

0 < ρ12, ρ13, ρ23 <∞, ρ23 < (
√
ρ12 +

√
ρ13)2, ρ13 < (

√
ρ12 +

√
ρ23)2, ρ12 < (

√
ρ13 +

√
ρ23)2.

We remark that

ρ2
12 + ρ2

13 + ρ2
23 − 2ρ12ρ13 − 2ρ12ρ23 − 2ρ13ρ23 < 0 , (14)

because the left-hand side (l.h.s.) is equal to

−(r12 + r13 − r23)(r12 + r23 − r13)(r13 + r23 − r12)(r12 + r13 + r23)

and conditions (11) should hold. Therefore, l.h.s. is proportional to the square of the area

of the triangle of interaction S2
4 .

The associated contravariant metric for the operator ∆R(ρij) defined by coefficients in

front of second derivatives is remarkably simple

gµν(ρ) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

4ρ12 ρ12 + ρ13 − ρ23 ρ12 + ρ23 − ρ13

ρ12 + ρ13 − ρ23 4ρ13 ρ13 + ρ23 − ρ12

ρ12 + ρ23 − ρ13 ρ13 + ρ23 − ρ12 4ρ23

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
, (15)
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it is linear in ρ-coordinates(!) with factorized determinant

det gµν = −6 (ρ12 + ρ13 + ρ23)
(
ρ2

12 + ρ2
13 + ρ2

23 − 2ρ12ρ13 − 2ρ12ρ23 − 2ρ13ρ23

)
≡ D > 0 ,

(16)

and is positive definite. It is worth noting a remarkable factorization property of the deter-

minant

D = − 6 (r2
12 + r2

13 + r2
23) ×

(r12 + r13 − r23)(r12 + r23 − r13)(r13 + r23 − r12)(r12 + r13 + r23) =

= 96P S2
4 ,

where P = r2
12 + r2

13 + r2
23 - the sum of squared of sides of the interaction triangle.

The determinant can rewritten in terms of elementary symmetric polynomials σ1,2,

τ1 = σ1(ρ12, ρ13, ρ23) = ρ12 + ρ13 + ρ23 ,

τ2 = σ2(ρ12, ρ13, ρ23) = ρ12 ρ13 + ρ12 ρ23 + ρ13 ρ23 ,

τ3 = σ3(ρ12, ρ13, ρ23) = ρ12ρ13ρ23 ,

(17)

which are invariant w.r.t. S3-group action, as follows,

D = 6 τ1 (4τ2 − τ 2
1 ) . (18)

When det gµν = 0, hence, either τ1 = 0, or τ 2
1 = 4τ2 - it defines the boundary of the

configuration space, see (14).

It can be shown that there exists the 1st order symmetry operator

L1 = (ρ13 − ρ23)∂ρ12 + (ρ23 − ρ12)∂ρ13 + (ρ12 − ρ13)∂ρ23 , (19)

for the operator (13),

[∆R(ρij) , L1] = 0 .

Here, L1 is an algebraic operator, which is anti-invariant under the S3-group action. The

existence of the symmetry L1 implies that in the space of relative distances one variable can

be separated out in (13).

Set

w1 = ρ12 + ρ13 + ρ23 , w2 = 2
√
ρ2

12 + ρ2
13 + ρ2

23 − ρ12ρ13 − ρ12ρ23 − ρ13ρ23 , (20)
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where w2 = 2
√

(τ 2
1 − 3τ2) as well , which are invariant under the action of L1, and

w3 =

√
3

9

(
sgn (ρ23 − ρ13) arcsin(

2ρ12 − ρ23 − ρ13

w2

) + sgn(ρ13 − ρ12) arcsin(
2ρ23 − ρ13 − ρ12

w2

)

+sgn(ρ12 − ρ23) arcsin(
2ρ13 − ρ23 − ρ12

w2

)− 3π

4

)
, (21)

with sgn(x) = x
|x| for nonzero x. These coordinates are invariant under a cyclic permutation

of the indices on the ρjk: 1 → 2 → 3 → 1. Under a transposition of exactly two indices,

see e.g. (12), (3) , we see that w1, w2 remain invariant, and w3 → −w3 −
√

3π
6

. Expressions

for w3 vary, depending on which of the 6 non-overlapping regions of (ρ12, ρ13, ρ23) space we

choose to evaluate them:

1.

(a) : ρ23 > ρ13 > ρ12 , (b) : ρ13 > ρ12 > ρ23 , (c) : ρ12 > ρ23 > ρ13 ,

2.

(d) : ρ13 > ρ23 > ρ12 , (e) : ρ12 > ρ13 > ρ23 , (f) : ρ23 > ρ12 > ρ13 ,

The regions in class 1 are related by cyclic permutations, as are the regions in class 2.

We map between regions by a transposition. Thus it is enough to evaluate w3 in the region

(a) : ρ23 > ρ13 > ρ12. The other 5 expressions will then follow from the permutation

symmetries. In this case we have

(a) : w3 = −
√

3

9
arcsin

[
2
√

2

w3
2

((2−
√

3)ρ13 − ρ23 + (
√

3− 1)ρ12)×

(2ρ23 − (1 +
√

3)ρ13 + (
√

3− 1)ρ12)((2 +
√

3)ρ12 − (1 +
√

3)ρ13 − ρ23)
]
.

(The special cases where exactly two of the ρjk are equal can be obtained from these results

by continuity. Here, w3 is a single-valued differentiable function of ρ12, ρ13, ρ23 everywhere

in the physical domain (configuration space), except for the points ρ12 = ρ13 = ρ23 where it

is undefined.)

In these coordinates, the operators (19) and (13) take the form

L1(w) = ∂w3 ,

∆R(w) = 6w1∂
2
w1

+ 6w1∂
2
w2

+ 2
w1

w2
2

∂2
w3

+ 12w2∂
2
w1w2

+ 18 ∂w1

+ 6
w1

w2

∂w2 ,
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respectively. It is evident that for the w3-independent potential

V (w1, w2;w3) = g(w1, w2) ,

the operator L1 is still an integral, where g is an arbitrary function.

Both operators (13) and (19) are sl(4,R)-Lie algebraic - they can be rewritten in terms

of the generators of the maximal affine subalgebra b4 of the algebra sl(4,R), see e.g. [4, 5]

J −i =
∂

∂ui
, i = 1, 2, 3 ,

Jij0 = ui
∂

∂uj
, i, j = 1, 2, 3 , (22)

J 0(N) =
3∑
i=1

ui
∂

∂ui
−N ,

J +
i (N) = uiJ 0(N) = ui

(
3∑
j=1

uj
∂

∂uj
−N

)
, i = 1, 2, 3 , (23)

where N is parameter and

u1 ≡ ρ12 , u2 ≡ ρ13 , u3 ≡ ρ23 .

If N is non-negative integer, a finite-dimensional representation space occurs,

P(3)
N = 〈up11 u

p2
2 u

p3
3 | 0 ≤ p1 + p2 + p3 ≤ N〉 . (24)

Explicitly, these operators look as

∆
(3)
R (J ) = 4(J 0

11 J −1 + J 0
22 J −2 + J 0

33 J −3 ) + 6 (J −1 + J −2 + J −3 ) + (25)

2

(
J 0

11 (J −2 + J −3 ) + J 0
22 (J −1 + J −3 ) + J 0

33 (J −1 + J −2 )− J 0
31 J −2 − J 0

23 J −1 − J 0
12 J −3

)
,

and

L1 = J 0
21 − J 0

31 + J 0
32 − J 0

12 + J 0
13 − J 0

23 . (26)

The remarkable property of the algebraic operator ∆R(ρij) (13) is its gauge-equivalence

to the Schrödinger operator. Making the gauge transformation with determinant (16), (18)

as the factor,

Γ = D−1/4 ∼ 1

τ
1/4
1 (4τ2 − τ 2

1 )
1/4

,

see also (17), we find that

Γ−1 ∆R(ρij) Γ = ∆LB(ρij)− Ṽ , (27)
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where the effective potential

Ṽ (ρij) =
9

8 (ρ12 + ρ13 + ρ23)
+

(ρ12 + ρ13 + ρ23)

2 (ρ2
12 + ρ2

13 + ρ2
23 − 2ρ12ρ13 − 2ρ12ρ23 − 2ρ13ρ23)

.

Note that in r-coordinates

4

(r12 + r13 − r23)(r12 + r23 − r13)(r13 + r23 − r12)
=

1

r12r13r23

(
r23

r12 + r13 − r23

+
r13

r12 + r23 − r13

+
r12

r13 + r23 − r12

+ 1

)
,

and
1

(r23 + r13 − r12)(r23 + r12 − r13)(r13 + r12 − r23)(r12 + r13 + r23)

=
1

8r23r13(r23 + r13)

[
1

r23 + r13 − r12

+
1

r23 + r13 + r12

]
+

1

8r23r13r12

[
1

r12 − r13 + r23

+
1

r12 + r13 − r23

]
,

thus, the effective potential can be written differently,

Ṽ (rij) =
9

8 (r2
12 + r2

13 + r2
23)

+
r2

12 + r2
13 + r2

23

16

[
1

r13r23(r13 + r23)

(
1

r13 + r23 − r12

+
1

r12 + r13 + r23

)
+

1

r12r13r23

(
1

r12 + r23 − r13

+
1

r12 + r13 − r23

)]
.

In turn,

∆LB(ρij) = 4(ρ12∂
2
ρ12

+ ρ13∂
2
ρ13

+ ρ23∂
2
ρ23

)

+ 2

(
(ρ12 + ρ13 − ρ23)∂ρ12∂ρ13 + (ρ12 + ρ23 − ρ13)∂ρ12∂ρ23 + (ρ13 + ρ23 − ρ12)∂ρ13∂ρ23

)
−3

(
ρ12∂ρ12 + ρ13∂ρ13 + ρ23∂ρ23

ρ12 + ρ13 + ρ23

)
+ 4 (∂ρ12 + ∂ρ23 + ∂ρ13) , (28)

is the Laplace-Beltrami operator,

∆LB(ρij) =
√
D∂µ

1√
D
gµν∂ν , ∂ν ≡

∂

∂ρν
,

see (15), (16). Eventually, taking into account (27) we arrive at the Hamiltonian

Hrd(rij) = −∆LB(rij) + Ṽ (rij) + V (r12, r13, r23) , (29)
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in the space of relative distances, or

Hrd(ρij) = −∆LB(ρij) + Ṽ (ρij) + V (ρij) , (30)

in ρ-space, see (12). The Hamiltonian (29), or (30) describes the three-dimensional quantum

particle moving in the curved space with metric gµν . The Ricci scalar, see e.g. [6], for this

space is equal to

Rs = − 41 (ρ12 + ρ13 + ρ23)2 − 84 (ρ12 ρ13 + ρ12 ρ23 + ρ23 ρ13)

12 (ρ12 + ρ13 + ρ23)
(
(ρ12 + ρ13 + ρ23)2 − 4 (ρ12 ρ13 + ρ12 ρ23 + ρ23 ρ13)

)
=
−84 τ2 + 41 τ1

2

12 τ1(4 τ2 − τ 2
1 )

.

It is singular at the boundary of the configuration space. The Cotton tensor, see e.g. [6],

for this metric is nonzero, so the space is not conformally flat.

Making the de-quantization of (30) we arrive at a three-dimensional classical system

which is characterized by the Hamiltonian,

H(c)
rd (ρij) = gµν(ρij)Pi Pj + Ṽ (ρij) + V (ρij) , (31)

where Pi Pj, i, j = 1, 2, 3 are classical momenta in ρ-space and gµν(ρij) is given by (15). Here

the underlying manifold (zero-potential case) admits an so(3) algebra of constants of the

motion linear in the momenta, i.e., Killing vectors. Thus, the free Hamilton-Jacobi equation

is integrable. However, it admits no separable coordinate system.

A. (Quasi)-exact-solvability

Let us take the function

Ψ0(ρ12, ρ13, ρ23) = τ
1/4
1 (4 τ2 − τ 2

1 )
γ
2 e−ω τ1−

A
2
τ21 , (32)

where γ, ω > 0 and A ≥ 0 are constants and τ ’s are given by (17), and seek the potential

for which this (32) is the ground state function for the Hamiltonian Hr(ρij), see (30). This

potential can be found immediately by calculating the ratio

∆LB(ρij)Ψ0

Ψ0

= V0 − E0 .

The result is

V0(τ1, τ2) =
9

8τ1

+ γ(γ − 1)

(
2τ1

4τ2 − τ 2
1

)
+

11



6ω2 τ1 + 6Aτ1 (2ω τ1 − 2γ − 3) + 6A2τ 3
1 , (33)

with the energy of the ground state

E0 = 12ω (1 + γ) . (34)

Now, let us take the Hamiltonian Hrd,0 ≡ −∆LB + V0, see (30), with potential (33),

subtract E0 (34) and make the gauge rotation with Ψ0 (32). As the result we obtain the

sl(4,R)-Lie-algebraic operator with additional potential ∆VN , [4, 5]

Ψ−1
0 (−∆LB + V0 − E0) Ψ0 = −∆R(J ) + 2(1− 2 γ) (J −1 + J −2 + J −3 ) +

12ω (J 0
11 + J 0

22 + J 0
33) + 12A

(
J +

1 (N) + J +
2 (N) + J +

3 (N)
)

+ ∆VN (35)

≡ h(qes)(J) + ∆VN ,

see (25), where

∆VN = 12ANτ1 .

It is evident that for integer N the operator h(J) has a finite-dimensional invariant subspace

P(3)
N , (24), with dimP(3)

N ∼ N3 at large N . Finally, we arrive at the quasi-exactly-solvable

Hamiltonian in the space of relative distances:

Hrd,qes(ρij) = −∆LB(ρij) + V
(qes)
N (ρij) , (36)

cf.(8), where

V (qes,N)(τ1, τ2) =
9

8τ1

+ γ(γ − 1)

(
2τ1

4τ2 − τ 2
1

)
+

+ 6ω2 τ1 + 6Aτ1 (2ω τ1 − 2γ − 2N − 3) + 6A2τ 3
1 . (37)

For this potential ∼ N3 eigenstates can be found by algebraic means. They have the

factorized form of the polynomial multiplied by Ψ0 (32),

PolN(ρ12, ρ13, ρ23) Ψ0(τ1, τ2) .

(Note that for given N we can always choose appropriate values of γ such that the boundary

terms vanish for polynomials in the invariant subspace vanish and the Hamiltonian (36) acts

as a self-adjoint operator.) These polynomials are the eigenfunctions of the quasi-exactly-

solvable algebraic operator

h(qes)(ρ) = (38)
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−4(ρ12∂
2
ρ12

+ ρ13∂
2
ρ13

+ ρ23∂
2
ρ23

)

−2 ((ρ12 + ρ13 − ρ23)∂ρ12∂ρ13 + (ρ12 + ρ23 − ρ13)∂ρ12∂ρ23 + (ρ13 + ρ23 − ρ12)∂ρ13∂ρ23)

+2(1− 2 γ)(∂ρ12 + ∂ρ13 + ∂ρ23) + 12ω(ρ12∂ρ12 + ρ13∂ρ13 + ρ23∂ρ23)

−12A (ρ12 + ρ13 + ρ23)(ρ12 ∂ρ12 + ρ13 ∂ρ13 + ρ23 ∂ρ23 −N)

which is the quasi-exactly-solvable sl(4, R)-Lie-algebraic operator

h(qes)(J) = −4(J 0
11 J −1 + J 0

22 J −2 + J 0
33 J −3 )− 6 (J −1 + J −2 + J −3 ) (39)

−2

(
J 0

11 (J −2 + J −3 ) + J 0
22 (J −1 + J −3 ) + J 0

33 (J −1 + J −2 )− J 0
31 J −2 − J 0

23 J −1 − J 0
12 J −3

)
+2 (1− 2 γ) (J −1 + J −2 + J −3 ) + 12ω (J 0

11 + J 0
22 + J 0

33)

+12A ( J+
1 (N) + J+

2 (N) + J+
3 (N) ) ,

cf. (35).

As for the original problem (6) in the space of relative motion

H̃R Ψ(rij) ≡
(
−∆R(rij) + V (rij)

)
Ψ(rij) = EΨ(rij) , Ψ ∈ L2(R̃) ,

the potential for which quasi-exactly-solvable, polynomial solutions occur of the form

PolN(ρ12, ρ13, ρ23) Γ Ψ0(τ1, τ2) ,

where Γ ∼ D−1/4, see (18), is given by

V
(qes,N)
relative (τ) =

(
γ − 1

2

)2(
2τ1

4τ2 − τ 2
1

)
+

+ 6ω2 τ1 + 6Aτ1 (2ω τ1 − 2γ − 2N − 3) + 6A2τ 3
1 , (40)

cf. (37); it does not depend on τ3.

If the parameter A vanishes in (32), (37) and (35), (39) we will arrive at the exactly-

solvable problem, where Ψ0 (32) at A = 0, plays the role of the ground state function,

Ψ0(ρ12, ρ13, ρ23) = τ
1/4
1 (4 τ2 − τ 2

1 )
γ
2 e−ω τ1 , (41)

The sl(4,R)-Lie-algebraic operator (39) contains no raising generators {J +(N)} and be-

comes

h(exact) = −∆R(J ) + 2(1− 2 γ) (J −1 + J −2 + J −3 ) + 12ω (J 0
11 + J 0

22 + J 0
33) ,

13



see (25), and, hence, preserves the infinite flag of finite-dimensional invariant subspaces P(3)
N

(24) at N = 0, 1, 2 . . . . The potential (37) becomes

V (es)(τ1, τ2) =
9

8τ1

+ γ(γ − 1)

(
2τ1

4τ2 − τ 2
1

)
+ 6ω2 τ1 = (42)

=
9

8 (ρ12 + ρ13 + ρ23)
+ 6ω2 (ρ12 + ρ13 + ρ23)

− γ(γ − 1)

(
2(ρ12 + ρ13 + ρ13)

ρ2
12 + ρ2

13 + ρ2
23 − 2ρ12ρ13 − 2ρ12ρ23 − 2ρ13ρ23

)

=
9

8 (r2
12 + r2

13 + r2
23)

+ 6ω2
(
r2

12 + r2
13 + r2

23

)
+ γ(γ − 1)

r2
12 + r2

13 + r2
23

16

[
1

r13r23(r13 + r23)

(
1

r13 + r23 − r12

+
1

r12 + r13 + r23

)
+

1

r12r13r23

(
1

r12 + r23 − r13

+
1

r12 + r13 − r23

)]
.

Eventually, we arrive at the exactly-solvable Hamiltonian in the space of relative distances

Hrd,es(ρij) = −∆LB(ρij) + V (es)(ρij) , (43)

where the spectra of energies

En1,n2,n3 = 12ω(n1 + n2 + n3 + γ + 1) , n1, n2, n3 = 0, 1, 2, . . .

is equidistant. All eigenfunctions have the factorized form of a polynomial multiplied by Ψ0

(41),

PolN(ρ12, ρ13, ρ23) Ψ0(τ1, τ2) , N = 0, 1, . . . .

These polynomials are eigenfunctions of the exactly-solvable algebraic operator

h(exact)(ρ) = −4(ρ12∂
2
ρ12

+ρ13∂
2
ρ13

+ρ23∂
2
ρ23

)+(2− 4 γ)(∂ρ12+∂ρ13+∂ρ23)+12ω(ρ12∂ρ12+ρ13∂ρ13+ρ23∂ρ23)

−2(ρ12 + ρ13 − ρ23)∂ρ12∂ρ13 − 2(ρ12 + ρ23 − ρ13)∂ρ12∂ρ23 − 2(ρ13 + ρ23 − ρ12)∂ρ13∂ρ23 , (44)

or, equivalently, of the exactly-solvable sl(4,R)-Lie-algebraic operator

h(exact)(J) = −4(J 0
11 J −1 + J 0

22 J −2 + J 0
33 J −3 )− 6 (J −1 + J −2 + J −3 )

−2

(
J 0

11 (J −2 + J −3 ) + J 0
22 (J −1 + J −3 ) + J 0

33 (J −1 + J −2 )− J 0
31 J −2 − J 0

23 J −1 − J 0
12 J −3

)
+2 (1− 2 γ) (J −1 + J −2 + J −3 ) + 12ω (J 0

11 + J 0
22 + J 0

33) . (45)

14



Those polynomials are orthogonal w.r.t. Ψ2
0 , (32) at A = 0, their domain is given by (14).

Being written in variables w1,2,3, see above, they are factorizable, F (w1, w2) f(w3). To the

best of our knowledge these orthogonal polynomials have not been studied in literature.

The Hamiltonian with potential (42) can be considered as a three-dimensional gener-

alization of the 3-body Calogero model [7], see also [8], [9], with loss of the property of

pairwise interaction. Now the potential of interaction contains two- and three-body inter-

action terms. If γ = 0, 1 in (42) we arrive at the celebrated harmonic oscillator potential

in the space of relative distances, see e.g. [10]. In turn, in the space of relative motion this

potential contains no singular terms and becomes,

V = 6ω2τ1 = 6ω2(ρ12 + ρ13 + ρ23) = 6ω2(r2
12 + r2

13 + r2
23) ,

see [10].

The quasi-exactly-solvable sl(4, R)-Lie-algebraic operator h(qes)(J) , (39) as well as the

exactly-solvable operator as a degeneration at A = 0, written originally in ρ variables (38)

can be rewritten in τ variables (17). Surprisingly, this operator is algebraic (!) as well

h(qes)(τ) = −6 τ1∂
2
1 − 2τ1(7τ2 − τ 2

1 )∂2
2 − 2τ3(6τ2 − τ 2

1 )∂2
3 − 24 τ2∂

2
1,2 − 36τ3∂

2
1,3 − (46)

2 (4τ 2
2 + 9τ1τ3 − τ 2

1 τ2)∂2
2,3 − 18∂1 − 14τ1∂2 − 2(7τ2 − τ 2

1 )∂3 +

2(1− 2γ)(3∂1 + 2τ1∂2 + τ2∂3) + 12ω (τ1∂1 + 2τ2∂2 + 3τ3∂3) +

12Aτ1(τ1∂1 + 2τ2∂2 + 3τ3∂3 −N) .

Evidently, it remains algebraic at A = 0,

h(es)(τ) = −6 τ1∂
2
1 − 2τ1(7τ2 − τ 2

1 )∂2
2 − 2τ3(6τ2 − τ 2

1 )∂2
3 − 24 τ2∂

2
1,2 − 36τ3∂

2
1,3 − (47)

2 (4τ 2
2 + 9τ1τ3 − τ 2

1 τ2)∂2
2,3 − 18∂1 − 14τ1∂2 − 2(7τ2 − τ 2

1 )∂3 +

2(1− 2γ)(3∂1 + 2τ1∂2 + τ2∂3) + 12ω (τ1∂1 + 2τ2∂2 + 3τ3∂3) ,

becoming the exactly-solvable one.

It can be immediately checked that the quasi-exactly-solvable operator (46) has the finite-

dimensional invariant subspace in polynomials,

P(1,2,3)
N = 〈τ p11 τ p22 τ p33 | 0 ≤ p1 + 2p2 + 3p3 ≤ N〉 , (48)
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cf. (24). This finite-dimensional space appears as a finite-dimensional representation space

of the algebra of differential operators h(3) which was discovered in the relation with H3

(non-crystallographic) rational Calogero model [11] as its hidden algebra.

The algebra h(3) is infinite-dimensional but finitely-generated, for discussion see [11].

Their generating elements can be split into two classes. The first class of generators (lowering

and Cartan operators) act in P(1,2,3)
N for any N and therefore they preserve the flag P(1,2,3).

The second class operators (raising operators) act on the space P(1,2,3)
N only.

Let us introduce the following notation for the derivatives:

∂i ≡
∂

∂τi
, ∂ij ≡

∂2

∂τi∂τj
, ∂ijk ≡

∂3

∂τi∂τj∂τk
.

The first class of generating elements consist of the 22 generators where 13 of them are the

first order operators

T
(1)
0 = ∂1 , T

(2)
0 = ∂2 , T

(3)
0 = ∂3 ,

T
(1)
1 = τ1∂1 , T

(2)
2 = τ2∂2 , T

(3)
3 = τ3∂3 ,

T
(3)
1 = τ1∂3 , T

(3)
11 = τ 2

1∂3 , T
(3)
111 = τ 3

1∂3 ,

T
(2)
1 = τ1∂2 , T

(2)
11 = τ 2

1∂2 , T
(3)
2 = τ2∂3 ,

T
(3)
12 = τ1τ2∂3 ,

(49)

the 6 are of the second order

T
(11)
2 = τ2∂11 , T

(13)
22 = τ 2

2∂13 , T
(33)
222 = τ 3

2∂33 ,

T
(12)
3 = τ3∂12 , T

(22)
3 = τ3∂22 , T

(22)
13 = τ1τ3∂22 ,

(50)

and 2 are of the third order

T
(111)
3 = τ3∂111 , T

(222)
33 = τ 2

3∂222 . (51)

The generators of the second class consist of 8 operators where 1 of them is of the first

order

T+
1 = τ1T0 , (52)

4 are of the second order

T+
2,−1 = τ2∂1T0 , T+

3,−2 = τ3∂2T0 , T+
22,−3 = τ 2

2∂3T0 , T+
2 = τ2T0(T0 + 1) , (53)
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and 3 are of the third order

T+
3,−11 = τ3∂11T0 , T+

3,−1 = τ3∂1T0(T0 + 1) , T+
3 = τ3T0(T0 + 1)(T0 + 2) , (54)

where we have introduced the diagonal operator (the Euler-Cartan generator)

T0 = τ1∂1 + 2τ2∂2 + 3τ3∂3 −N . (55)

for a convenience. In fact, this operator is the identity operator, it is of the zeroth order

and, hence, it belongs to the first class.

It is not surprising that the algebraic operator h(qes)(τ) (46) can be rewritten in terms of

generators of the h(3)-algebra,

h(qes)(T ) = −
[
6T

(1)
1 T

(1)
0 + 2 (7T

(2)
2 − T (2)

11 )T
(2)
1 + T

(3)
3 (6T

(3)
2 − T (3)

11 )

+ T
(1)
0 (24T

(2)
2 + 36T

(3)
3 ) + 2 (4T

(3)
2 T

(2)
2 + 9T

(2)
1 T

(3)
3 − T

(3)
11 T

(2)
2 )

+ 2 (9T
(1)
0 + 7T

(2)
1 ) + 2 (7T

(3)
2 − T (3)

11 )

] (56)

+2 (1− 2 γ) (T
(3)
2 + 2T

(2)
1 + 3T

(1)
0 ) + 12ω (J0 +N) + 12AJ+

1 ,

as well as the algebraic operator h(es)(τ) (47), which occurs at A = 0, can be rewritten in

terms of generators of the h(3)-algebra,

h(es)(T ) = −
[
6T

(1)
1 T

(1)
0 + 2 (7T

(2)
2 − T (2)

11 )T
(2)
1 + T

(3)
3 (6T

(3)
2 − T (3)

11 )

+ T
(1)
0 (24T

(2)
2 + 36T

(3)
3 ) + 2 (4T

(3)
2 T

(2)
2 + 9T

(2)
1 T

(3)
3 − T

(3)
11 T

(2)
2 )

+ 2 (9T
(1)
0 + 7T

(2)
1 ) + 2 (7T

(3)
2 − T (3)

11 )

] (57)

+2 (1− 2 γ) (T
(3)
2 + 2T

(2)
1 + 3T

(1)
0 ) + 12ω J0 ,

where without a loss of generality we put N = 0.

CONCLUSIONS

In this paper we found the Schrödinger type equation in the space R̃ of relative distances

{rij},

HrdΨ(r12, r13, r23) = EΨ(r12, r13, r23) , Hrd = −∆LB(rij) + V (r12, r13, r23) , (58)
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where the Laplace-Beltrami operator ∆LB, see e.g. (28), makes sense as the kinetic energy of

a three-dimensional particle in curved space with metric (15). This equation describes angle-

independent solutions of the original 3-body problem (1), including the ground state. Hence,

finding the ground state involves the solution of the differential equation in three variables,

contrary to the original six-dimensional Schrödinger equation of the relative motion. Since

the Hamiltonian Hr is Hermitian, the variational method can be employed with only three-

dimensional integrals involved.

The gauge-rotated Laplace-Beltrami operator, with determinant of the metric D raised to

a certain degree as the gauge factor, appears as the algebraic operator both in the variables

which are squares of relative distances and which are the elementary symmetric polynomials

in squares of relative distances as arguments. The former algebraic operator has the hidden

algebra sl(4,R), while latter one has the hidden algebra h(3), thus, becoming Lie-algebraic

operators. Both operators can be extended to (quasi)-exactly-solvable operators. Inter-

estingly, both (quasi)-exactly-solvable operators lead to the same (quasi)-exactly-solvable

potentials in the space of relative distances.

The above formalism admits a natural generalization to the case of arbitrary d > 1 di-

mensional bodies. The Laplace-Beltrami operator remains unchanged, the effective potential

(27) is changed but not dramatically. It will be presented elsewhere.
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