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Abstract

In this work we study 2- and 3-body oscillators with quadratic and sextic pairwise potentials
which depend on relative distances, |r; —rj|, between particles. The two-body harmonic oscillator
is two-parametric and can be reduced to a one-dimensional radial Jacobi oscillator, while in the
3-body case such a reduction is not possible in general. Our study is restricted to solutions in the
space of relative motion which are functions of mutual (relative) distances only (S-states). We pay
special attention to the cases where the masses of the particles and spring constants are unequal
as well as to the atomic, where one mass is infinite, and molecular, where two masses are infinite,
limits. In general, three-body harmonic oscillator is 7-parametric depending on 3 masses and 3
spring constants, and frequency. In particular, the first and second order integrals of the 3-body
oscillator for unequal masses are searched: it is shown that for certain relations involving masses
and spring constants the system becomes maximally (minimally) superintegrable in the case of two

(one) relations.



I. INTRODUCTION

The kinetic energy for the n-body quantum system of d-dimensional particles is of the

form,

- Al 1
with coordinate vector of ith particle r; = rgd) = (21, -+ ,x;iq) and mass m;. Here, Agd) is
the d-dimensional Laplacian,
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associated with the ith particle. The quantum Hamiltonian of n-body problem has the form,
H=T+V, (2)
where the configuration space for 7 is R"*?. The potential V is translation-invariant.
The center-of-mass motion described by d-dimensional vectorial coordinate

1 n n
R, = —kark, Mn:ij, (3)
VM, S j=1

n

can be separated out. After separation of the center-of-mass coordinate, the kinetic energy
in the space of relative motion R, = R®™ V%4 ig described by the flat-space Laplacian
ALCD) e M; = Zizl my, j = 1,---,n—1. Remarkably, if the space of relative motion

R, is parameterized by (n — 1), d-dimensional, vectorial Jacobi coordinates

J
() m1 M My T, .
r’’ = — | r; —g ) j=1--- n—-1, 4
J Mj—‘rl ( J+1 ot Mj ) ( )

see e.g. [1] and also [2] for discussion, the flat-space, (d(n — 1))-dimensional Laplacian of

the relative motion becomes diagonal,

n n—1
I @ 0?
T=-> A =7 - — =T +7T, (5)
Z m Z or; or}”
where 7y = —Agr, = —#ZRO is the kinetic energy of the center-of-mass motion. Note

that the first Jacobi coordinate rg‘]) is always proportional to the vector of relative distance
between particles 1 and 2. Evidently, the variables in 7, are separated and the kinetic
energy of relative motion is the sum of kinetic energies in the Jacobi coordinate directions.

By adding to 7, the harmonic oscillator potentials in each Jacobi coordinate direction we



arrive at the n-body harmonic oscillator as the collection of (n — 1) individual harmonic

oscillators,
S 0 @) )
H, = §j( - + A% (r) 1y )), (6)
=\ oo

where w is the frequency and A; > 0, i = 1,...(n—1) are spring coefficients. It is evident that
this is an exactly-solvable problem: all eigenfunctions and eigenvalues are known analytically.
It seems relevant to call this system the Jacobi harmonic oscillator. Let us note that if the
potential in (2), (6) is chosen in the form of the moment of inertia V' = ZlNzl m; r? all spring
coefficients become equal to each other and also to a reduced mass of the system,

n 1
oM n—1
A,-zuz<%) , M =M, ,

see e.g. [1, 3]. Thus, in the space of vectorial Jacobi coordinates (4) taking the moment of
inertia as the potential leads to the isotropic Jacobi harmonic oscillator. After the center-of-
mass motion is removed, the spectrum of (6) is the sum of spectra of individual oscillators.
Total zero angular momentum L = 0 implies zero angular momenta of individual oscilla-

tors, hence the radial Hamiltonian of relative motion is the sum of d-dimensional radial

Hamiltonians,
n—1
- 0? (d—1) 0 I
HgL_O) _ < _ _ + Az (.U2 (Tz( ). 'ri( )) . (7)
;:1: aTZ(J) aTZ(J) 7ﬂng) ari(J)

Needless to say, the problem (7) is exactly-solvable (ES), its eigenfunctions are the product of
individual eigenfunctions and the spectrum is linear in radial quantum numbers. Replacing
the individual quadratic potential Ajwz(rj(-‘]))2 by the quasi-exactly-solvable (QES) sextic
potential, we arrive at the QES anharmonic Jacobi oscillator. It is easy to check that in

the (n — 1)-dimensional space of relative radial motion of modules of Jacobi coordinates, or,
() & 0D

saying differently, of the Jacobi distances r;”’, its hidden algebra is s acting on the
(n — 1)-dimensional space, {pg»‘]) = \r§J)|2 Jg=1...(n=1}

Since the spectrum of the Jacobi oscillators (6), (7) is known explicitly, their eigen-
functions can be used as the basis to study many-body problems, as was proposed in [1].
The present authors are not aware of any studies of the Jacobi oscillators per se.

In this work we will explore the case of 2- and 3-body oscillators with quadratic and
sextic potentials which depend on relative distances, |r; — r;|, s.f. (4), between particles.
The two-body harmonic oscillator, see Fig.1 for illustration, is reduced to a one-dimensional

radial Jacobi oscillator, while in the 3-body case such a reduction is not possible in general.
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II. TWO-BODY CASE

At 1988 it was discovered that both the celebrated quantum one-dimensional harmonic
oscillator and renown sextic Quasi-Exactly-Solvable (QES) anharmonic oscillator [4] possess
the same hidden algebra sl(2) [5] (for review see [6]). In different terms, this meant that for
the two-body quantum problem with d degrees of freedom of masses m; and msy there existed
a (quasi)-exactly-solvable (sextic) quadratic potential in terms of relative distance riy for
which finitely-many (infinitely-many) quantum S-states could be found by algebraic means.
Their eigenfunctions were the elements of the finite-dimensional representation space(s) of
sl(2) algebra of differential operators. This observation implied that, separating the center-
of-mass (3) and then making the change of variables to the Euler coordinates in the space
of relative motion,

(r17r2)_>(R07p:71%27 Q)v

we wold arrive at the one-dimensional radial Schrodinger equation

~Analp) + V()] W) = EW(p),  Aualp) = ﬁ(z,oai + dap) NG

where

Hrad = _Arad + V>

is the radial Schrédinger operator, which governs one-dimensional (radial) dynamics, while

. _mim2
H mi1+ma

is the reduced mass. Note that in the atomic case, when one of masses is large
(or even infinitely large, mo = o0) the operator A,,q remains in the same functional form,
[ my.

The equation (8) has finitely-many polynomial eigenfunctions for the quasi-exactly-

solvable potential
vies) — 2y [<w2 - A(4N—|—d+2)) p+ ApAwp® + 4p* A2 pP (9)
if N is integer, and infinitely-many ones for the exactly-solvable
Ve = 2pwp (10)

potential. This defines a 2-body QES anharmonic oscillator and a 2-body exactly-solvable

(ES) harmonic oscillator, respectively, (for illustration see Fig.1). It is evident that both

bt
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FIG. 1. Two-body harmonic oscillator chain, Center-of-Mass marked by a blue bullet

oscillators correspond to Jacobi (an)harmonic oscillators. In general, A > 0 and w > 0 are
parameters.

The ground state function for N =0 in (9) is given by

(ges) __  —pwp—p2Ap?
Uy o=e

, (11)

with ground state energy

E(]:(A)d.

When A = 0 the anharmonicity disappears and V() = V(¢) the expression (11) becomes
the ground state function for the harmonic oscillator potential (10).

Now on without loss of generality we put m; = my = 1, thus putting u = 1/2. Via a
gauge rotation, the radial Schrodinger operator H,.,q can be converted to the one-dimensional
Hamiltonian,

d—1

HT’ = P% Hrad p_T = - Ag(p) + ‘/eff +V ) (12)
where the effective potential
(d—1)(d—-3)

4p
plays the role of a centrifugal force and Ay(p) =4 p 02 +2 0, is the Laplace-Beltrami operator

Ver =

)

with metric

gll — 4p



If d = 1, 3 the effective potential vanishes, Vg = 0. For d = 2 the effective potential term is
minimal.

It is evident that upon changing p to r: r = /p , the Laplace-Beltrami operator
in variable p becomes the second derivative in r, A, = 9?. Making de-quantization, i.e.,

replacing the quantum momentum (derivative) by the classical momentum,

—i0 — P,
one can get a classical analogue of (12),
HA(p) = ¢ (P2 + Vg + V 13
) = g9 (PE, + Ve + V. (13)

It describes the internal motion of a one-dimensional body with coordinate dependent tensor

1

of inertia (¢*)~! while the center of mass is kept fixed. In r-variables we arrive at

HQ(r) = P2+ Vg + V, (14)

which describes a one-dimensional classical (Q)ES (an)harmonic oscillator with centrifugal
term if d # 1, 3. Classical Hamiltonians (13) and (14) are related through a contact canonical
transformation,

2 1

p =1, PPZEPT.

All trajectories for both potentials (9), (10) are periodic, and both QES and ES periods can
be easily found.
The QES radial Schrédinger operator H,,q with the potential (9) can be converted into

the algebraic operator by making the gauge rotation,

hae)(p) = (BF) Y (Hypa — Eo) O

(15)
= —4p0; +2 (240> + 2wp — d)d, —4ANp,
where
L L (16)
cf. (11),
EO = dw . (17>

One can check that the operator hl%°®) has a single finite-dimensional invariant subspace
Py = (#10<p<N). (18)
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which coincides with the finite-dimensional representation space of the Lie algebra si(2) of

the first order differential operators
JHN) = p*9,—=Np, J'N) =p0-N, T =209,. (19)
Thus, the operator A% (15) can be written in terms of s/(2) algebra generators,
haes) — 477" +4ATY — 2(d4+2N)T” + 4wJ’ + 4Nw, (20)

Putting A = 0 in (20) we arrive at the exactly-solvable operator

W (p) = (U5) ™ (Hpa — Eo) U5 = —4p? + 2 (2pw —d) 0, , (21)
where
Uy = e (22)
0 9

is the ground state function and Ej is given by (17). Thus, the operator h(**) can be written

in terms of sl(2) generators J°, J~, see (19),
e = —47°7" — 2(d+2N)T + 4wJ’ + 4Nw. (23)

It can be immediately recognized that the operator h(®® (21) is the Laguerre operator.

Hence, the spectral problem,
Wg = eo,

has infinitely-many polynomial eigenfunctions,

d_q

6n = LE Vwp), n=0,1,2,...
which are the Laguerre polynomials Lgf‘) with equidistant spectra

€, = 4dwn .

III. THREE-BODY CASE

The general quantum Hamiltonian for three d-dimensional (d > 1) bodies of masses
my,ms, mg with translation-invariant potential, which depends on relative (mutual) dis-

tances between particles only, is of the form,

H = — Agd) + V(T127 ris, T23)7 (24>

3
— 2m;

=1



see e.g. [7, 8], where Agd) is d-dimensional Laplacian of ith particle with coordinate vector

— L@ _
ri=r," = (SCi,l y Li2 5 Li3 - ,%,d) , and

Tij:|ri—rj|, i,j:1,2,3, (25)

is the (relative) distance between particles ¢ and j, r;; = rj;. Separating the center-of-mass
(3) and then making the change of variables in the space of relative motion to generalized

Euler coordinates (three relative distances (25) and (2d — 3) angles)
(r1, r2, r3) — (Ry, 01227”%2 ) /)1327“%3 ) /)2327“33 , Q)
we arrive at a three-dimensional radial-type Schrédinger equation [8]

[=Araa(p) + V()] ¥(p) = EV(p), (26)

where

1 1 9 1 9 1 9
§Arad(p) = Eplz 05t EPlS 05t @023 05yt

(p13 + pr2 — 023)a (p13 + p23 — p12) 9 (p2s + p12 — 013)a

m P13, P12 + ms P13, P23 + Mo P23, P12 +
d| 1 1 1
— | —0py + 0y + s | 27
9 12 P12 L3 P13 La3 P23 ( )
c.t. [7], and
L my+m;
Hig B mim;

is the inverse reduced mass, which governs three-dimensional (radial) dynamics in variables

r12,713, T23. 1The operator

Hrad = _Arad + V7 (28>

is, in fact, the three-dimensional, radial Schrodinger operator, see [8]. It can be called

three-dimensional radial Hamiltonian. One can show that for the potential
VD) = 20w vy pio + vizpiz + Vs pas| (29)

the equation (26) has infinitely-many polynomial eigenfunctions, where w > 0 and 19, 113, Vo3
are certain positive mass-dependent parameters, see below. Note that as for the one-
dimensional case d = 1, the 3-body problem with potential (29) was analyzed in [9]. Here,

we consider the general case d > 1.
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FIG. 2. Three-body harmonic oscillator chain

A further remark is in order. The potential (29) is nothing but a three-dimensional
anisotropic oscillator in p-variables, hence, in the space of relative motion, see Fig.2. The
corresponding configuration space (the physics domain) is confined to the cube Ry (p12) X

R (p13) X Ry(p23) in E3. More explicitly, it is given by the condition

2(p12p1s + pr2pas + paspis) — (Pra + piy + pa3) = 0,

stating that the square of the area of the triangle formed by the particle positions must be

greater or equal than zero.

Now, it is easy to check that the ground state function in (28), (29) is given by

\I,ges) — ewl(apz pi2+bpis p1s +cp2s p23) (30)
where a, b, ¢ > 0 have the meaning of spring constants, with the ground state energy
Ey = wd(a+b+c), (31)
which is mass-independent. Here
vy = 02M12 T oab Hi12 f13 + ac Hi2 f23 be H13 23 ’
my mo ms
vy = b s + ab H1z f1s + be His fias - _ ac Hi2 pas , (32)
mq ms mo
P 02u23 T oac 12 23 1 obe M3 o ab H12 413 .
mo ms mq
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After a gauge rotation of (28) with gauge factor

1
r — (2 p12 p13 + 2 p12 p2s + 2 pas p13 — 0%2 - /)%3 - p%3)2_d * (33)
mims P12 + Mimsg P13 + MaMms pPag ’

the radial Schrodinger operator H,.q (28) is converted to a three-dimensional one-particle

Hamiltonian [8],
H, =T [=Analp) +V(p)IT = —Aws(p) + V(p) + VD, (34)
where App is the Laplace-Beltrami operator

Ars(p) = VD a, g, .  wvu=123,

L
vD

and 0y = 0,,,,02 = 0,,,03 = 0,,,, with the co-metric

Lp (p13+p12—p23)  (p23+p12—p13)
H12 12 mi ma
Hy — | (p13+p12—p23) 2 (p13+p23—p12) 35
9" (p) E— s P13 s | (35)
(p23tpr2—p13)  (p13+pas—p12) 2
m2 ms u23p23

Its determinant
mi + Mo + M3

D = Detg"’ = 2
g m?m3m?

(mams p1a + mamg 13 + mams pag) (2 p12 pra + 2 pra pas + 2 p1s P23 — Pia — Pis — Pa3)
(36)
is in factorisable form and, in general, is positive definite, while V(%) is the effective potential

3 (m1 +m2 —|—TTl3)

e — 2 - (37)
8 (mima p1a + mims pi3 + mams pa3)
X (d—2)(d—4) (mimapr2 + mimgpis + mamspas)
2 mimams (2 pr2 p13 + 2 p1a pas + 2 pas P13 — Pla — Pis — P33)

which plays the role of a centrifugal potential. The second term vanishes at d = 2,4.
Furthermore at d = 3 the effective potential is the smallest function: the second term
becomes negative. It must be emphasized that the mass-independent expression (2 pi p13 +
2 p1g pas3 + 2 pa3 P13 — Pry — Py — pag), which enters to (33), (36), (37), is the square of the

area of the triangle formed by particle positions, see Fig.1,

16 SZ = 2p12p13 + 2 p12 p23 + 2 paz p13 — pfg - p%g, - p§3 ;

11



[8]. By making another gauge rotation with \Il(()es) (30) as the gauge factor, we convert
the radial Schrodinger operator H,.q (28) to an algebraic operator, where the coefficient

functions are polynomials,

R = (W) T = Aralp) + V(p) — Bo) U =

P12 P13 P23

1 1 1
=2 |—p1d>, + —pi30s, + —p +
H13 23

(p13 + p12 — p23) (p2s + p12 — p13) (p13 + pasz — p12)
my aﬁ137P12 + Mo 8P237P12 + ms 8P13,P23 +
2p10w (2amymapra + buisma (p12 + pis — pas) + ciiesma (P12 + pas — p13)) — dmymy P
P12
H12 MM
2p13w (2bmymgpis + apams (p12 + pis — pas) + casmy (P13 + paz — p12)) — dmyms 5
b1z T+
13 1M1M3
293w (2cmamgpes + aptiams (p12 + pas — p1s) + bpazsme (P13 + pas — p12)) — dmams P
H23 M3 pes

(38)
Here Ej is given by (31). It is easy to check that (38) preserves the triangular space of

polynomials
Pz(vl’Ll) = (Mari3psl 0<pr+pa+ps<N), N=0,1,2,.... (39)

for any integer N. Hence, it preserves the flag P05 with the characteristic (weight) vector
(1,1,1).

Note that the operator (38) is of Lie-algebraic nature: it can be rewritten in terms of
the generators of the maximal affine sub-algebra b, of the algebra sl(4,R) realized by the

first order differential operators, see e.g. [5, 6]

0
\71 aui> ? ) Ly,
0
0 _ L
*72] - ulau] ) 1) = 172737

3
0
0 f— —_—
J(N) = ;:1 u,an N,

3
J

J=1

where N is a parameter and it is denoted

up = P12, Uz = P13 , Uz = P23 -

12



If N is a non-negative integer, a finite-dimensional representation space appears,
Py = (ui'uy?us’| 0 <py +p2+p3 < N) . (41)
This space coincides with (39). It is easy to check that the space Py is invariant with respect

to 3D projective transformations,

o ST G TGy g 3
OKU1+BUQ+”}/U3+(S

where a;,b;, c;,d;, ., B,7,0 are real parameters. By taking the parameters a,b,c’s at i =
1,2,3 and «, /3,7, 0 as the rows of the 4 x 4 matrix GG one can demonstrate that G € GL(4, R).
The spectrum of (38) depends on four integers (quantum numbers) and is linear in

quantum numbers. In terms of the generators (40), the algebraic operator (38) takes the

form

1 1 1 1
hel(T) = =2 |:—\7101 I+ —InTs +—TIT5 + —(Inn T +I2 Ty —T51 T5 ) +
H12 H13 23 my
1 L
Mo ms

I I +I0Ts =TTy ) + (T Ty + T Ty — T j?,_)] +

2 pip w ((QCLmlmz + byzma + cpozmy ) I + (bpizma — cpgzmy ) (Tay — j301>)

+
Ha2 Ty o
0 0 0 (42>
2 puzw | (2bmams + apaams + cpiazma) Joy + (apiems — cpozma ) (Jhy — Ts»)
+
H13 1M1 M3
2 poz w ((20m2m3 + apioms + cpuzma) Jay + (apmams — buagma) (T — 52%))
H23 M2 N3 -
d <£ _ S £)
H12 K13 K23
It is worth mentioning that for arbitrary masses mi, ms, mz the Hamiltonian
Ho= —Dualp) + V() + V(p), (43)

with the cubic in p’s potential

~ A2 A2 2
Vip) = 8 — T+ = 10?3 + = 10%3 +
12 H13 23



A13 A23 A12 A23 A12 A13
Al (m—lpfs + m—ngs p12 + Az Eﬂ%z + Eﬂ%g p13 + Aaz Eﬂfz + m—gpfs P23 —

A A A A Az A
(1213+ 1242 A3 Ao

ma mo ms

) P12 P13 p23] +

4w

— [Am ma (2amymg + bpizme + ¢pozmy) piy +
mymg g

Azms (apams + 2bmyms + ¢ gz my) piy +
Assmy (apams + bpisme + 2cmoms) pis +
(Azmy (apiems — cpozm) + Arems (bpizma — ciiozma)) pr2 p13 +
(Agzmy (apizms —bpuizmg) + Aiamg (¢ pigzmy — bz ma)) pia pas +
(Agzmy (bpazma — apims) + Ajzma (cpgzmy — apnams )) pis 023] -

A A A
2(d+2) | p1y + —pis + ﬁﬂz:&] , (44)
H12 H13 23

corresponds to a primitive QES problem. Here only the ground state function

_ 2 2 2
U, = \I,(()ex) X e (A12 piy+A1s pig+Aas p3s) ; (45)

is known explicitly, with constants Ajz, A1z, Aog > 0. The operator (43) has no invariant
subspaces except for < 1 >. We are unable to find other QES problems.

For the 3-body harmonic oscillator with potential (29) there are three important phys-
ically particular cases defined by values of masses: (i) the case of three equal masses, (ii)
atomic like case, when one mass is infinite, (iii) molecular like case when two masses are

infinite. and also (iv) the one-dimensional case d = 1. They will be studied in detail.

A. Three particles of equal masses
1. Arbitrary a,b,c

Let us take the eigenvalue problem (26) with potential (29) and consider the case of
three particles of equal masses, namely m; = ms = m3 = m, but different spring constants

a,b,c > 0. The exactly solvable potential (29) becomes

1
yem — 3 mw? [ (2a®+a(b+c)—be) pra + (20 +b(a+c)—ac) p13 + (2c2+c(a+b)—ab) pa3 ],
(46)

14



c.f. (32). This is a type of non-isotropic 3-body harmonic oscillator with different spring

constants. In this case the ground state function (30) is reduced to
\Ifé3m) — o (api2 + bpis + cp23) ’ (47>
while its energy (31) remains unchanged
ESP™ = wd(a+b+c).
The algebraic radial Schrédinger operator (38) simplifies to

2
W) (p) = m 2(p1202, + p1302, + pd2)

P12 P13 P23

+ (p13 + P12 — p23)8P13,P12 + (p23 + P12 — p13)8p23,P12 + (p13 + P23 — p12)8f>137ﬁ23:|

+ w| (da+b+c)p120,, + (4b+a+c) p130,,, + (dc+ a+ b) p230,,, +
(48)
(b—¢) (p1s — p23) Ops + (@ =) (912 — pas) s + (a— B) (13— p13) Op }

2d
- — |0 ) 0
m { P12 + P13 + p23:| )

as well as the corresponding Lie-algebraic operator (42)

2
WN(T) = [2 (TnTr + Indy + Inds) + Indir +I0dy —Indy +

TOTr 4 TN Tr — TN Te 4 TN Tr + IS — T T5 } "
- [<4a b4 AT+ bt at T+ (et at BIL+ (a— TS+ (a— DT (49)

2d
+ (b —a)Tpy + (b= )Ty + (¢ — a) Ty + (c — b)j?,ol] T (T + Ty +T5) -
It can be shown that the primitive QES problem (43) with potential (44) and the

ground state given by (45) does not admit extension to a more general QES problem.

2. a=b=c

Let us consider the case of three particles of equal masses and the equal spring con-
stants: m; = me = m3 = m and a = b = ¢. The potentials (29), (46) degenerate to a type

of three-dimensional isotropic 3-body harmonic oscillator without separation of p-variables

3
yBa) — 5maZcu2 (p12 + p13 + p23), (50)

15



[8]. In this case the wavefunction (30) and the corresponding ground state energy (31) take

the form

\II(()?)a) _ e—%a(pm + p13 + p23) , (51)
Ey = 3wda, (52)

respectively. The algebraic radial Schrodinger operator (48) is given by

exr 2
h( )(p) = _E |:2(p12a§12 + p13a§13 + p238f2)23) +
(P13 + P12 — P23)Opis i T (P23 + P12 = P13)Opog 1o + (P13 + Pz — p12)apl3vp23} +

(53)

2d
6aw(p128,,12 + pl3ap13 + p23ap23) I (aplz + 0p13 + 0p23) )

or, in its sl(4)-Lie-algebraic form (49),

2
h(ex)(j) = _E 2 (\7101 \71_ + \7202 j2_ + *7303 \73_) + \7202 jl_ + \7101 j2_ - *7301 \72_ +

\7303 jl_ + \7101 j3_ - \7203 \71_ + j202 j3_ + \7303 j2_ - \7102 j3_ :| +

o4
0 0 0 2d - - oY
6aw (T + T + Ts3) — E(jl +Jy +J5) -
Now the spectrum of (53) is the following:
g = 6aw(N1—|—N2+N3), (55)

where Ny, Ny, N3 =0,1,2,... are quantum numbers.
In this case of equal masses and spring constants there exists a true sl(4)-QES exten-

sion, described in [8], where all eigenfunctions are proportional to

T 3 _ 2 2 2
U, = \If(() a) % e~ (A2 ply+A1s pig+A2s p33) : (56)

see (51), thus, the exponential is a second degree polynomial in p’s.

B. Atomic case: m; =

An interesting special case of the three-body problem (26) emerges when m; — oo and

other two masses are kept equal my = m3 = m. In this case the potential (29) reduces to

V) — mw? |(2a®> +ac—bc)pry + 2V +bc—ac)pis + cla+b4¢)pas|, (57)
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c.f. (46). In general, the limit m; — oo when keeping ma 3 finite corresponds to physical
atomic systems where one mass is much heavier than the others (for instance, as in the
negative hydrogen ion H~(p, e, e) or the helium atom He («, e, €)). We call this case atomic
and for simplicity we put ms = mgz = m.

For the atomic case the ground state function (30) is simplified to
\I/(()at) _ 93" (2api2 + 2bpis + cpa3) (58)
Since the general ground state energy (31) does not depend on masses, it reads
Ey = wd(a+ b+ ¢, (59)
in this case. The algebraic radial Schrédinger operator (38) becomes

exr 2
W) (p) = - {pm 8§12 +p13 3§13+2 P23 8§23 +(p23 + p12 — P13)Dpos pio+(P13 + P23 — p12)8p137P23:|

Fu {<4a+c> 912 Oprs + (4 + €) prafls + 22 + 0+ b) prsOp
=l ) = (2= )0y + 20 =1) (pr2 =)0 | (60
d
- E 8P12 + aﬁlS + 28ﬁ23 )
while in its Lie-algebraic operator (42) form

W) = [jﬂ I+ Indy + 2d305 + JsJi + InJs

2
m
— I JT +InTs +Ip Ty — T j:;} + w [QG 2T0 + Ty + Ty — T3)
+ 20T+ T+ Ty — Ty + ¢ (AT + T+ T — Ty + I + Ty — Ty) | (61)
d, __ _ _
- ST +207)
For the atomic case m; — oo, the co-metric defined by the coefficients in front of second

derivatives in (60)

2 p12 0 (p23 + p12 — p13)
., 1
géﬁn) (n) = m 0 213 (P13 + p2s — pr2) | > (62)
(P23 + pr2 — p13) (P13 + paz — p12) 4 pa3

17



is proportional to 1/m and possesses a factorizable determinant

Doty = Detgé‘;) = (p12 + p13) X

m3

2
(2 P12 P13 + 2 P12 pas + 2 P13 pas — iy — Pis — /)33) =3 (pr2+p13) SA (63)

which is positive definite (cf. (36)). We emphasize that the operator (60) is three-
dimensional, all three p-variables remain dynamical, see discussion Section III.C.

It can be shown that the primitive QES problem (43) with potential (44) and ground
state given by (45) does not admit extension to a more general QES problem as in the case

of equal masses but non-equal spring constants.

C. Two-center case, msy, m3 = o0

In the genuine two-center case two masses are considered infinitely heavy, ms 3 — o0,
thus, the reduced mass j03 also tends to infinity, while the third mass m; = m remains
finite. Sometimes it is called the Born-Oppenheimer approximation of zero order. It implies
that the coordinate po3 is classical (thus, unchanged in dynamics, being constant of motion
in the process of evolution, it can be treated as external parameter), while two other p-
variables remain dynamical. The 3-body problem is converted to a two-center problem.
The potential (29) depends on masses, and in order to keep it finite in the molecular limit,
we set the spring constant ¢ = 0 from the very beginning. The ground state energy does

not depend Oon masses and 1S equal to
BV = wd(a+Db) (64)
0 )

c.f. (31). The energy is measured from the minimum of the potential (29), V,,;, = V' (0) = 0.

In the limit my3 — oo the radial Laplacian (27) (as well as the associated Laplace-
Beltrami operator) loses the property of invert ability: both 3rd row and 3rd column in
(35) vanish as well as the determinant of co-metric D (36). However, the radial Schrédinger
operator with potential (29) at ¢ = 0 in the molecular limit is well-defined and finite. In

particular,
L\ (mol) 1 2 > d
iArad (P) = E P12 amz + 13 ams + (/013 + p12 — p23)8p137012 + 5 (0012 + aPIB) ) (65)
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where now po3 plays the role of a parameter. It must be noted that the same expression
is obtained directly from (1), thus before center-of-mass separation, by taking the limit

me s — 00, then rewriting the first term Agd) in new variables

(1"1) = (/)12 27’%27 P13 :7’%3, Ql) )

with po3 = 735 kept fixed and separating out the (d — 2) angular variables {{); }.
Hence, in the molecular case the spectral problem (26) becomes two-dimensional and

the potential (29) at ¢ = 0 simplifies to
V(mOl) = 2mw2 (CL + b) |fL P12 + bp13:| s (66)

hence, 193 = 0 [12]. The ground state function for the molecular Hamiltonian (65) + (66)

HOD = AT (o) + VO (67)
can be easily found
gl = emem(ape +bps) (68)
it corresponds to the energy
Eémoz) = wd(a+b) + 2mw?abpys , (69)

c.f. (64). Note that E(()md) is measured from the reference point V(") (0) = 0 and it is always
larger than (or equal to) (64), ES™ > EY=% . E{™ takes minimal value at py; = 0, where it
coincides with exact ground state energy (64). From the viewpoint of the Born-Oppenheimer
approximation, widely used in molecular physics, where the first particle m; = m can be
associated with an electron and the whole system with a one-electron homonuclear diatomic
ion, the Hamiltonian H (™) (67) has the meaning of the so-called electronic Hamiltonian. It
describes the electronic degrees of freedom of a molecular system. The ground state energy
E((]mOl) (69) is called the ground state energy potential curve or, simply speaking, the potential

curve, see Fig. 3. The Hamiltonian ) (67) describes two-center problem.

From the coefficients in front of second derivatives in the operator %AEZQO” (65) one
can form the matrix
1 P12 5012 + P13 — pas)
géw 1) = 2 5 (70)
m %(ﬂm + p13 — p23) P13
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E(omol) :

20

d=3
- d=4

10+ -

FIG. 3. Ground state energy potential curves (69) vs pas (classical coordinate) at d = 2,3,4. It

corresponds to the values of the parametersa =b=m=w =1 .

with determinant

1

.y 1
Doty = Det(gf) = W[Qﬂ% (P12 +p13) = (P2 — p1s)? — pig] = Wsia (71)

cf. (36), (63), which remains positive definite. The matrix (70) is the principal minor for

933'

Making a gauge rotation of the operator %AEZ};D with the gauge factor
2—d

r=20o21

(mol)

we obtain a Laplace-Beltrami operator with co-metric gészol) plus effective potential,

_ 1 mol mol mol
p LA = A v

Here,
V(mol) _ (d - 2)(d - 4) P23
of 16m2 Doty

is proportional to the classical coordinate py3 and vanishes at d = 2,4. Hence, the matrix

géﬁrjml) has the meaning of a co-metric.
The radial Schrodinger operator (38) in the molecular limit remains algebraic:
B () = —2 |pia @+ pis @, + (prs + pr2 — p23)Oapma| +
p) = m P12 Op, T P130) 5 P13 T P12 = P23)0p13,p12

2w[(2a+0)p12 0y, + (204 0a) pr13 0y + b(p13 — p23) Opiy + a(pr2 — p2s) Oy |

Oz + Opis) -

_d
" (72)
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Its eigenfunctions ¢y, x, are marked by two integer (quantum) numbers ki, ke = 0,1,.. ..
They are two-variate triangular polynomials in pj9, p13 and its spectrum ey, x, is linear in

quantum numbers (kq, k) and g9 = 0. The spectrum of the Hamiltonian (67), is
mol mol
E]gl,kg) = é ) + gklykZ ° (73)

Note that the operator H(™) (67) is self-adjoint with respect to the measure

3_9d

w = Fz _D(mol) ~ D(2mol) .

The algebraic operator (42) is also Lie-algebraic of the form

2
WNT) = == |\IONTT + Tnds + Indi +I0ds —msdi Js | +

2w [(Qa +0) TN+ (204 a) Ty, + b(Tyy — ps Ty ) +a (T — p23j21)] - —(J +J),
(74)

where the J’s are generators of the algebra b € sl(3, R) realized by the first order differential

SN

operators. Hence, the hidden algebra in the molecular limit is b3 € si(3, R), contrary to the
general case and all other particular cases, when the hidden algebra is by € sl(4,R). In the
present case po3 plays the role of a parameter. Note that the algebra bs is six-dimensional
(of lower triangular matrices of size 3 x 3), it is spanned by {J0, %, Ta1» Togs J1 s T }-

It can be shown that the primitive QES problem (43) with potential (44) and ground
state given by (45) at ¢ = 0, see (68) does not admit extension to a more general QES

problem.

D. Molecular case in the Born-Oppenheimer approximation: ms, ms > m;

For the molecular case, m; < ms, m3 < oo, the 3-body oscillator model we deal with
allows exact solvability and a critical analysis of the Born-Oppenheimer approximation as
described below.

Following the formalism of the Born-Oppenheimer approximation, the energy of E,STZ?
(73) of the electronic Hamiltonian H (™) (67) should appear as the potential in a two-body

nuclear Hamiltonian. In order to derive this Hamiltonian we should replace in (24) the
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first term of kinetic energy by (73), separate center-of-mass in the second+third terms and

introduce the Euler coordinates

(1'2 ; 1'3) — (Ro ) P:7’§3 ) Q23) )

and then separate out (d — 1) angular variables {{223}. As a result we arrive at

L(L+d—-2
L LL+d-2)

p + 2w (mab+ue) p+wd(a+b) + xy gy

(75)

is the reduced mass, mq 3 are masses of the nuclei, 153 given by (32)

1
q(nucl) — _ <2p8§ + dap)
H

mams3

where f1 = g3 = 7208

and L is its two-body nuclear angular momentum and m = m;. Now p = po3 is restored as
a dynamical variable. For simplicity we limit ourselves to the ground state, putting L = 0

and k; = ko = 0 in the Hamiltonian (75),

nuc 1
Hy ) = ‘;(2p8§ + dﬁp) + 2w (mab+vy)p + wd(a+b),  (76)

cf. (8) with potential (10). This nuclear Hamiltonian defines the so-called vibrational

spectrum of the ground state, its lowest eigenvalue (sometimes called zero-point energy) is

B = (wd(a+b) + wd\/a[;m (1 + a?fn)) : (77)

(nuel)

Making comparison of the exact energy Ey (31) with Ej we get

b
EM™Y — Ey = wd{\/aum (1 + a’;j;”n) - c}. (78)

This difference “measures” the accuracy of the Born-Oppenheimer approximation: it tends

to zero as i — oco. For the relevant physics case my = mg3 = 1, we obtain the following

expansion in powers of the small parameter m =m; < 1

(79)

wd (a* — 14ab + 4ac + b* + 4bc)
+ )
2 4dc

E.énucl) — By = — ((a+b)m — m

As previously observed in the one-dimensional case d = 1 [9], the Born-Oppenheimer
approximation yields the leading term of the expansion of the exact result in powers of m

(or the ratio of the electron to nuclear mass) for any d > 1.
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E. One-dimensional case d =1

For d = 1 (three particles on the line), the 3-body system is described by the Hamil-

tonian
1 1

1
H=—(-—0 0> —? 1% 80
<2m1 e T g7 + 2y s + V(x12, 293, 31) , (80)

with the potential V' which depends on relative distances
Tig = |21 — X9, 13 = |71 — 23|, W23 = |12 — 23] ,

where only two of them are independent. One can separate out the center-of-mass variable
(3); then assuming that o3 is a dependent variable, x93 = 13 — 212[13], we arrive at the
two-dimensional spectral problem for the radial Hamiltonian

1 L
2 112 2113 o

9?2 —

z12

Hypg = o2 + V(x1a, 713) . (81)

12,213

1

my
see e.g. [8]. For the case of a 3-body harmonic oscillator, the potential is given by (29) at
d=1,

(es) _ 2 2 2 2

with s from (32) and z2; = (713 — 212)?, see [9]. Its final form is

‘/d(:? = 2(,02 |:(V12 —+ 1/23) I%z —+ (1/13 + V23) I%g — 2 V93 T12 I13:| . (82)
It corresponds to the radial Hamiltonian
Hdzl = — 1 82 — 1 02 —i02 + 2&)2 (1/12—|—l/23) 1’32 + (1/13—|—l/23) 1’33 -2 V93 X192 L13
2 ILL12 xr12 2”13 r13 ml 12,13
(83)
In is easy to check that the ground state function in (83) is given by
\1,868) — ew(apm2aty +bms iy +cpos (113-212)%) ’ (84)
with the ground state energy
Ey = w(a +b+ ¢). (85)

By making a gauge rotation with \If((fs) (84) as the gauge factor, the potential in the radial
Schrodinger operator Hy—; (83) disappears and we arrive at the algebraic operator with

polynomial coefficients
M = () (Hans — B U =
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I I L
_2M128m - %8“3 - Eam,m -
2w [z (@my 1 + buiz i) + cpog (T12 — 213) (M1 — 12 )] o 4
H12 1M o (86)
2w [,u13 (CL,M12 T2 + bmy J}13) + C 23 ($13 - $12) (ml — M13 )] P
M1 1My e

cf. [10]. Here Ej is given by (85). This operator has a Lie-algebraic form: it can be rewritten
in terms of the generators of the algebra b5 € sl(3,R) (see e.g. [5, 6])

0
— i —1.92
\71 aui7 v ’ 4
0
0o _ .
\72']' - uiauja Za]_1727

2
0
0 f— —_— —
J(N) = ;21 u,am N,

2
0 )
\7z+(N) = UZJO(N) = U (;uja—uj_N> ) 221727 (87)
where N is a parameter; it is denoted
Uy = T2, Uy = T13
Explicitly,
A = — ! (jl_)2 - L(~72_)2 - le_ Jy +
2 p12 2 p13 my
2w [pnz (amy T + bpas J5)) + cpos (T0 — T5)) (my — iz )] n
H12 Ty (88)
2w [p13 (ap2 j102 + bmy j202) + Ccl23 (j202 - j102) (my1 — 13 )]
H13 1 '
cf. [10].

The algebraic operator (88) does not admit extension to a non-trivial (non primitive)

QES problem.

IV. INTEGRABILITY ANALYSIS OF THE THREE-BODY PROBLEM: ARBI-
TRARY MASS CASE

Here we present the 1st and 2nd order integrals (symmetries) of the 3-body Hamilto-

nian in S-state for the case of arbitrary masses. We begin with the classical kinetic energy

1 classical) 1 1 1
—al = S = —pupl + —pi3ps + —p3p; 89
9 "rad (p) 1 M12p12 1 M13P13 o M23023 3 (89)
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(p12 + p13 — p23)p1 oo + (p12 + p23 — p13)p1 s + (pas + p13 — P12)p2 s |

my mo ms

_l_

c.f. (27). Here p1 = Dp1ps D2 = Ppiss P3 = Ppos are the conjugate canonical momenta. The

function AS;SSMD is invariant under the S3—group action (permutation between any pair of

particles). There exists a single, 1st order in the momenta and p’s, constant of the motion,
Ly = mg[(m1+m2)pis — (m1+ma)pas + (m1—ma)pra|pr +

may [ (my +m3)pag — (M1 +m3)piz + (M3 —mq)pis|p2 +
my [ (ma +m3)pia — (Mma+ms)pis + (M2 — m3)pas|ps ,

whose Poisson bracket with S; vanishes: {Si, Lo}pp = 0. It is easy to check that the Ly
is anti-invariant under the S3—permutation group action. The existence of Ly allows us to
separate out one variable in the free Hamiltonian (89). This was carried out in [8] where
the “ignorable” coordinate W3 was separated.

There are three 2nd order integrals that are quadratic in momenta and linear in the p

coordinates: S, Sy, S3 with vanishing Poisson brackets {S;, Sy} =0, 1 <j, k <3,
Sy = pispy — pi2pi + (p23+p13— pr2) paps + (P13 — piz — pa3) P D3

S; = —plgpg — plgpf + (p23 — p13 — pr2) P12

see (89) as for S;. Thus, the original 3-body free system for S-states is integrable. Note
that S is anti-invariant under the S;—permutation group action (permutation between the
particle 2 and particle 3) only. Besides that there are three 2nd order integrals, those are

quadratic in the p coordinates,
Fy = [ply+ pls + p33 — 2 (p12 p13 + pr2 p2s + pra pas) (mapa — mapr)?

Fy = [piy+ pi5 + P33 — 2 (P12 p1a + P12 pas + pi3 pas) J(ma ps — ma p1)?
Fy = [ply+ pis+ po5 — 2 (P12 p13 + p12 pas + p13 pa3) J(ma ps — mapo)?

as well as L2. Therefore, the original classical free 3-body system for S-states, described by
S1 (89), is maximally superintegrable. Only 5 integrals can be functionally independent in
this case, but we have not computed the dependence relations explicitly. Note that among

the known integrals there are also three triplets that are in involution:
{517 527 S3} ) {Slu F17 53} ) (90>
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{Sl, Lg, [m% + ml(mg + mg) — Mo mg] Fl + [mg + mg(ml + mg) — mq mg] F2
+ [m§ + m3(m1 + mg) —my mg] F3} ,

thus, forming commutative Poisson algebras. The maximal number of integrals in involution
is equal to three. In general, the Poisson bracket between two elements of different triplets
is non zero. This ends our analysis of integrals of the classical 3-body free Hamiltonian.

If we take the classical 3-body harmonic oscillator by adding to 2.5; the 3-body oscil-

lator interaction potential
HYD = 28 + 2w (Vapi2 + vizpiz + Vospos) (91)

in general, none of the above-mentioned integrals can be augmented to integrals of this new

system if the v’s are arbitrary. However, in the special case
mo Vi3 = M3 2 , mi Va3 = Mal13 mg3Viz = My lag (92)

(any two above relations imply that the third relation should hold), the Ly appears as an
integral: {#(), Ly}pp = 0, as do the prolonged So.3:

. v
Sy =5y + w? 13 X
mg(my + ma + ms3)

(ms(m§ + mymg + mams) p13 — m2(m;2), + mymg + mamg) p12 — Mo mz(mg — my) ,023) )

mily3

gg = Sg + (A)2
mg(my + ma + ms

) (m2 mg pag — Ma(ma + ms) p1a — ms(ma + ms) p13) .

Furthermore, it can be checked that F, I3, F3, see above, remain integrals as well. Thus, the
classical system H() under conditions (92) is mazimally superintegrable. Only 5 integrals
can be functionally independent, hence, there must exist two relations between them. Note
that if only the condition

mo 13 = M3 2 , (93)

holds, then it can be shown that (5’2, F,, F3) are not conserved anymore, the classical system
described by H() is minimally superintegrable: the triplet (Ss, Fi, Lo) commutes only with
the Hamiltonian.

As for the quantum 3-body harmonic oscillator, let us consider first its kinetic energy

- the radial operator ( — 2:4) (27) - which is, in fact, the free 3-body Hamiltonian .
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the quantum counterpart of Sy (89). It can be shown that the quantum counterparts of S 3

and [ 93, see above,

Séq) =130, — pr0a, + (pas+pis—p12) 8§237p13 + (p13 — p12 — p23) 5§237p12

P13 P12
d
+ 5 (apm - 8012 ) 5
(@) 2 2 2 d
Sy = — i3 ap13 — P12 8p12 + (p2s — p13 — p12) apm,pm ) (0p13 + Opis ),

F{? = (03 + iy + phs — 2 (pr2pus + paspis + przpas)) (m302, — 2mamsd?, .+ m3d2,,)
+ (d—1) [mg (P12 — P13 — p23) Opry + M3 (P13 — P12 — p23) Oy
+ mama ((p13 + pa3 — p12) Opyy + (P12 — P13 + p23) Oy )} )
Y = (%, + 03 + phs — 2 (pr2ps + pasprs + prapes)) (m302,, — 2mamsd2,, .+ m3o2,, )
+ (d—1) [mg (P12 — P13 — p23) Opry + M7 (P23 — P12 — P13) Opy
+ mims ((p13 + pa3 — p12) Opyy + (P12 — P23 + p13) Oy )} )
Fy? = (%, + 03 + pBs — 2 (pr2p1s + pasprs + propes)) (m302,, — 2mamad2, .+ m302,.)
+ (d—1) [m% (P13 — P12 — p23) Opry + M7 (P23 — P12 — p13) Opy
+ myma ((pas + p12 — P13)Opey + (P12 — P23 + P13) Opyy )} )
commute with the free Hamiltonian Sﬁq) as well as
L(()q) = ms[(m1+ma)pis — (M1 +ma)pas + (M1 —ma)p12] 0y, +

my [ (my +m3)pas — (M1 +mz)prz + (M3 —ma)piz] Opyy +

my[(mz +m3)piz — (m2+ms)pis + (ma —ms)pas]Opyy -
Furthermore, similar to the classical case, if the conditions (92) are imposed, the original
3-body quantum harmonic oscillator for S—states, described by the Hamiltonian

HD = 25@ + V) = —Ang + 20w (Viapia + vispis + Va3 pas) (94)

(c.f. (91)), is mazimally superintegrable. The triplet {H©@, F? S} where

mils

sl _ gl + W2
3 3 ms(my + mg + mg

) (mz mg Paz — Ma (Mg 4+ mg) p1a — mz(ms +ms) 013) )
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spans a commutative Lie algebra. Also FQ(q) and L(()q) commute with the Hamiltonian H(@.

Note that if only the single condition (93)
ma Vi3 = M3 V2 ,

holds, then it can be shown that F2(q), Fg(q) are not conserved and the quantum system (@

is minimally superintegrable: the triplet (§§q>, Fl(q), L(()q)) commutes with the Hamiltonian.
Now we proceed to the question of variable separation. Following the general theory

[11], we can show that separation of variables in the eigenvalue equation for free 3-body

Hamiltonian A,,q = —2 qu) (27) occurs in the coordinates {wy, wq, w3},

wy = paz , wWe = (mg+mgz)mspiz+ (Mg + ms) me pra — Mo ms pas

_ pas(pr2ama (ma 4+ mg) + prymg (Mg +mg) — pagmams)

[(pas — p13 + p12)ma — ms(pas + p13 — /)12)]2 (mg + ma)
w1wWa2

= ) (95)
[(p23 — p13 + p12)mae — ms(pes + p13 — ,012)]2 (mg + mg)

In these coordinates the (quantum) radial operator takes the form

Ang = My + M3 (le 8311 +d8w1) X (mg + mg)(my + mg + ms) (szgiz + dan)
ma M3 my
1 + +
+(m2+m3)< +m1 e mg) X
™o 13 W1 Ty Wa
[2w] (4ws(ma 4+ ms) —1)0%, + ws(12ws(ma +ms) +d — 4)dy,] - (96)

It is not algebraic anymore.
In order to demonstrate explicitly the separation of variables we consider the spectral

problem for the third term in (96), involving the variable w3 only,
[ng (4ws(mg +mg) —1 )afm + w3(12w3(m2 +m3)+d— 4)&,}3} O = \O,

where A is a spectral parameter. Making now a gauge rotation of (96) with gauge factor O,

A
O A O = M{zwlﬁfm + dd,, + —] +
Mo M3 wq
(m2+m3)(m1 +m2 +m3) |: szﬁiz X d&wz 4 i:| ’
my W

we obtain an operator which depends on w; s only in additive form and contains a type

of effective potential. It admits separation of variables w; and ws in the standard way:
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aH (wy; \) + bH (we; A) with eigenfunction in the form of the product W (w;)W (ws), where
the spectral problem

Hw W (w) = | 208 + doy + 2| W(w) = e W(w) (97)

w

defines the function W and € plays a role of the spectral parameter, a, b are mass-dependent
parameters. Thus, any eigenfunction of the free 3-body Hamiltonian Qqu) has the form of
the product W (wy)W (wq)O(ws3).

In w’s variables the harmonic oscillator potential (29) takes the form
VD) = 20 (2 p1z + 113 p1s + Vo3 pas)

= 2w

w1 + wy & 5
(ma + ms)? (ma + ms)? (mg +mg3)? w3

It is clear that if the condition

2 2 2
o [ M3 12 + M3 13+ (Mo + my)” vag V12 + 113 mglig — Mg V13 W1 Wa }

mg /13 = M3lig ,

see (93), is imposed the potential becomes defined unambiguously and also becomes ws-
independent. Therefore, the 3-body quantum harmonic oscillator (@ (94) written in w’s
coordinates admits complete separation of variables. It is worth emphasizing that in this

case the problem is minimally superintegrable.
Conclusions

We defined a 3-body harmonic oscillator with pairwise interaction and showed that
for S-states - the states with zero total angular momentum - in the 3-dimensional space
of relative motion parametrized by squared relative distances, the problem has a hidden
algebra sl(4,R) and is exactly-solvable. The eigenvalues are linear in quantum numbers
and the eigenfunctions are polynomials in three variables multiplied by a Gaussian function
in relative distances. For d = 1 a certain degeneracy occurs: the problem is reduced to a
2-dimensional one and the hidden algebra becomes s/(3,R) acting in the space of relative
distances z;;. We have exhibited a new 3d non-conformally flat oscillator system that is sep-
arable and maximally superintegrable. Almost all of the structure and classification theory
for superintegrable systems applies only to conformally flat spaces, e.g. [11]. Examples on
non-conformally flat spaces are relatively rare and thus valuable. The integrability results

presented here were derived for arbitrary masses that obey no algebraic relations in general.
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It is possible that for some special values of the masses and spring constants additional
integrals appear.

A generalization to the general n-body system of interactive (an)harmonic oscillators
in a d-dimensional space with d > n — 2 is straightforward, while for smaller d < n — 2 a
certain complications occur: in general, the form of A,.q is unknown. It will be considered

elsewhere.
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