
ABSOLUTE ALGEBRA
III–THE SATURATED SPECTRUM

PAUL LESCOT

Abstract. We investigate the algebraic and topological preliminaries to a

geometry in characteristic 1.

Date: March 15th, 2011.

2000 Mathematics Subject Classification. 06F05, 20M12, 08C99.
Key words and phrases. Characteristic one, spectra, Zariski topologies.

1



2 P. LESCOT

1. Introduction

This work is a sequel to [2] and [3], of which, except when explicitly stated
otherwise, we shall keep the definitions and notations. In particular, we shall al-
ways equip the spectrum Spec(A) of a B1–algebra with the topology defined in [3],
Proposition 3.15, and the prime spectrum Pr(A) of A with the topology defined in
[3], Theorem 2.4.

We shall denote by SP the category whose objects are these B1–spectra and
whose morphisms are the continuous maps between them.

For A a B1–algebra and S a subset of A, let < S > denote the intersection of all
the ideals of A containing S (there is always at least one such ideal : A itself). It is
clear that < S > is an ideal of A, and therefore is the smallest ideal of A containing
S. As in ring theory, one may see that

< S >= {
n∑
j=1

ajsj |n ∈ N, (a1, ..., an) ∈ An, (s1, ..., sn) ∈ Sn}.
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2. A new description of maximal congruences

Let A denote a B1–algebra. For P a saturated prime ideal (see [3],p.1786) of A,
let us define a relation SP on A by :

xSPy ≡ (x ∈ P and y ∈ P) or (x /∈ P and y /∈ P) .

Then SP is a congruence on A : if xSPy and x
′SPy′, then one and only one of the

following holds :
(i) x ∈ P, y ∈ P, x

′ ∈ P and y
′ ∈ P ,

(ii) x ∈ P, y ∈ P, x
′
/∈ P and y

′
/∈ P ,

(iii) x /∈ P, y /∈ P, x
′ ∈ P and y

′ ∈ P ,
(iv) x /∈ P, y /∈ P, x

′
/∈ P and y

′
/∈ P .

In case (i), x+ x
′ ∈ P and y+ y

′ ∈ P, whence x+ x
′SPy+ y

′
; in cases (ii) and

(iv), x+ x
′
/∈ P and y + y

′
/∈ P (as P is saturated), whence x+ x

′SPy + y
′
. Case

(iii) is symmetrical relatively to case (ii), therefore, in all cases, x + x
′SPy + y

′
:

SP is compatible with addition.
In cases (i), (ii) and (iii), xx

′ ∈ P and yy
′ ∈ P, whence xx

′SPyy
′

; in case (iv)
xx
′
/∈ P and yy

′
/∈ P (as P is prime), whence also xx

′SPyy
′

: SP is compatible
with multiplication, hence is a congruence on A.

As 0 ∈ P and 1 /∈ P, 0 6 SP1, therefore SP is nontrivial ; but each x ∈ A is either
in P (whence xSP0) or not (whence xSP1). It follows that

A

SP
= {0̄, 1̄} ' B1 ;

in particular, SP is maximal : SP ∈MaxSpec(A).
Obviously, I(SP) = P.
Furthermore, let (x, y) ∈ A2 be such that xRPy ; then there is z ∈ P such that

x+z = y+z. If x ∈ P then y+z = x+z ∈ P, whence y ∈ P (as y+(y+z) = y+z
and P is saturated) ; symmetrically, y ∈ P implies x ∈ P, whence the assertions
(x ∈ P) and (y ∈ P) are equivalent, and xSPy. We have shown that

RP ≤ SP .

We shall denote by αA the mapping

αA : Prs(A)→MaxSpec(A)
P 7→ SP .

Let R ∈MaxSpec(A) ; then R ∈ Spec(A), whence I(R) is prime ; by Theorem
3.8 of [3], it is saturated, i.e. I(R) ∈ Prs(A). Let us set

βA(R) := I(R) .

Theorem 2.1. The mappings

αA : Prs(A) 7→MaxSpec(A)

and
βA : MaxSpec(A) 7→ Prs(A)

are bijections, inverse of one another. They are continuous for the topologies on
Prs(A) and MaxSpec(A) induced by the Zariski topologies on Pr(A) and Spec(A)
defined in [3](Theorem 2.4, resp. Proposition 3.15).
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Proof. Let R ∈MaxSpec(A) ; then

αA(βA(R)) = αA(I(R)) = SI(R) .

Let us assume xRy ; then, if x ∈ I(R) one has xR0, whence yR0 and y ∈ I(R);
by symmetry, y ∈ I(R) implies x ∈ I(R), thus (x ∈ I(R)) and (y ∈ I(R)) are
equivalent, i.e. xSI(R)y. We have proved that R ≤ SI(R). As R is maximal, we
have R = SI(R), whence

αA(βA(R)) = SI(R) = R ,

and
αA ◦ βA = IdMaxSpec(A) .

Let now P ∈ Prs(A) ; then

(βA ◦ αA)(P) = βA(αA(P))
= βA(SP)
= I(SP)
= P ,

whence
βA ◦ αA = IdPrs(A) ,

and the first statement follows.
Let now F denote a closed subset of Prs(A) ; then F = G ∩ Prs(A) for G a

closed subset of Pr(A) and G = W (S) := {P ∈ Pr(A)|S ⊆ P} for some subset S
of A. But then, for R ∈ MaxSpec(A), R ∈ β−1

A (F ) if and only if βA(R) ∈ F , i.e.
I(R) ∈ G∩ Prs(A), that is I(R) ∈ G, or S ⊆ I(R), which means R ∈ V (S). Thus

β−1
A (F ) = V (S) ∩MaxSpec(A)

is closed in MaxSpec(A). We have shown the continuity of βA.
Let now H ⊆ MaxSpec(A) be closed ; then H = MaxSpec(A) ∩ L for some

closed subset L of Spec(A)and L = V (T ) for some subset T of A. Then a saturated
prime ideal P of A belongs to α−1

A (H) if and only if αA(P) ∈ H, that is

SP ∈MaxSpec(A) ∩ L ,

i.e.
SP ∈ V (T )

or T ⊆ I(SP). But I(SP) = P whence P belongs to α−1
A (H) if and only if T ⊆ P,

that is
α−1
A (H) = V (T ) ∩MaxSpec(A) ,

which is closed in MaxSpec(A). �

Let us consider the special case in which A is in the image of F : A = F(M), for
M a commutative monoid. Let P be a prime ideal of M ; as seen in [3], Theorem
4.2, P̃ is a saturated prime ideal in A, and one obtains in this way a bijection
between SpecD(M) and Prs(A). The following is now obvious :
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Theorem 2.2. The mapping

ψM : SpecD(M)→MaxSpec(F(M))

P 7→ αF(M)(P̃ )

is a bijection.

Two particular cases are of special interest :
(1) M is a group ; then SpecD(M) = {∅}, whence MaxSpec(F(G)) has exactly

one element.
(2) M = Cn :=< x1, ..., xn > is the free monoid on n variables x1, ..., xn.

Then the elements of SpecD(M) are the (PJ)J⊆{1,...,n}, where

PJ :=
⋃
j∈J

xjCn

(a fact that was already used in [3], Example 4.4). Then

ψM (PJ) = αF(M)(P̃J) = SP̃J

whence xψM (PJ)y if and only if either (x ∈ P̃J and y ∈ P̃J) or (x /∈ P̃J and
y /∈ P̃J). But we have seen in [3], Theorem 4.5, that F(M) = B1[x1, ..., xn]
could be identified with the set of finite formal sums of elements of M .
Obviously, an element x of F(M) belongs to P̃J if and only if at least one
of its components involves at least one factor xj(j ∈ J).It is now clear that,
using the notation of [3], Definition 4.6 and Theorem 4.7,

ψM (PJ) = J̃ .

We hereby recover the description of MaxSpec(B1[x1, ..., xn]) given in [1]
(Theorems 4.7, 4.8 and 4.10).

The following result will be useful

Theorem 2.3. Any proper saturated ideal of a B1–algebra A is contained in a
saturated prime ideal of A.

Proof. Let J be a proper saturated ideal of A ; as I(RJ) = J = J 6= A, RJ 6= C0(A).
By Zorn’s Lemma, one has RJ ≤ R for some R ∈ MaxSpec(A). According
to Theorem 1.1, R = α(P) = SP for a saturated prime ideal P of A, therefore
RJ ≤ SP and

J = J = I(RJ) ⊆ I(SP) = P .

�
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3. Functorial properties of spectra

Let ϕ : A → C denote a morphism of B1–algebras, and let R ∈ Spec(C). We
define a binary relation ϕ̃(R) on A by :

∀(a, a
′
) ∈ A2 aϕ̃(R)a

′
≡ ϕ(a)Rϕ(a

′
) .

It is clear that ϕ̃(R) is a congruence on A, and that

I(ϕ̃(R)) = ϕ−1(I(R)) .

In particular I(ϕ̃(R)) is a prime ideal of A, hence ϕ̃(R) ∈ Spec(A) : ϕ̃ maps
Spec(C) into Spec(A). Let F := V (S) be a closed subset of Spec(A), and let
R ∈ Spec(C) ; then R ∈ ϕ̃−1(F ) if and only if ϕ̃(R) ∈ F , that is S ⊆ I(ϕ̃(R)), or
S ⊆ ϕ−1(I(R)), i.e. ϕ(S) ⊆ I(R), or R ∈ V (ϕ(S)). Therefore ϕ̃−1(F ) = V (ϕ(S))
is closed in Spec(C) : ϕ̃ is continuous.

Furthermore, for ϕ : A→ C and ψ : C → D one has

ψ̃ ◦ ϕ = ϕ̃ ◦ ψ̃ : Spec(D)→ Spec(A) .

It follows that the equations H(A) = Spec(A) and H(ϕ) = ϕ̃ define a contravariant
functor H from Za to SP.

Let J denote an ideal in C, and let us assume aRϕ−1(J)a
′

; then there is x ∈
ϕ−1(J) with a+ x = a

′
+ x. Then ϕ(x) ∈ J and

ϕ(a) + ϕ(x) = ϕ(a+ x)

= ϕ(a
′
+ x)

= ϕ(a
′
) + ϕ(x)

whence ϕ(a)RJϕ(a
′
) and aϕ̃(RJ)a

′
. We have established

Proposition 3.1. Let A and C denote B1–algebras, ϕ : A → C a morphism and
J an ideal of C : then

Rϕ−1(J) ≤ ϕ̃(RJ) .

Theorem 3.2. Let A and C denote two B1–algebras, and ϕ : A→ C a morphism.
Then ϕ̃ : Spec(C) → Spec(A) maps MaxSpec(C) into MaxSpec(A), and the
diagram

Prs(C)
ϕ−1

→ Prs(A)
↓αC ↓αA

MaxSpec(C)
ϕ̃→ MaxSpec(A)

commutes.

Proof. Let P ∈ Prs(C), then, for all (a, a
′
) ∈ A2

aϕ̃(SP)a
′
⇐⇒ ϕ(a)SPϕ(a

′
)

⇐⇒ (ϕ(a) ∈ P and ϕ(a
′
) ∈ P))or(ϕ(a) /∈ P and ϕ(a

′
) /∈ P))

⇐⇒ (a ∈ ϕ−1(P) and a
′
∈ ϕ−1(P)))or(a /∈ ϕ−1(P) and a

′
/∈ ϕ−1(P)))

⇐⇒ aSϕ−1(P)a
′
.
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Therefore

(ϕ̃ ◦ αC)(P) = ϕ̃(αC(P))
= ϕ̃(SP)
= Sϕ−1(P)

= αA(ϕ−1(P))
= (αA ◦ ϕ−1)(P)

whence ϕ̃ ◦ αC = αA ◦ ϕ−1 .
Incidentally we have proved that ϕ̃ maps MaxSpec(C) = αC(Prs(C)) into

αA(Prs(A)) = MaxSpec(A), i.e. the first assertion. �
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4. Nilpotent radicals and prime ideals

The usual theory generalizes without major problem to B1–algebras.

Theorem 4.1. In the B1–algebra A,let us define

Nil(A) := {x ∈ A|(∃n ≥ 1)xn = 0} .

Then Nil(A) is a saturated ideal of A, and one has⋂
P∈Pr(A)

P =
⋂

P∈Prs(A)

P = Nil(A) .

Proof. Let M :=
⋂
P∈Pr(A) P and N =

⋂
P∈Prs(A) P. If x ∈ Nil(A) and

P ∈ Pr(A), then, for some n ≥ 1, xn = 0 ∈ P, whence (as P is prime) x ∈ P :
Nil(A) ⊆M .

As Prs(A) ⊆ Pr(A), we have M ⊆ N .
Let now y /∈ Nil(A) ; then

(∀n ∈ N) yn 6= 0 .

Define

E := {J ∈ Ids(A)|(∀n ≥ 0)xn /∈ J}.

This set is nonempty ({0} ∈ E) and inductive for ⊆, therefore, by Zorn’s Lemma,
there exists a maximal element P of E . As 1 = x0 /∈ P, P 6= A.

Let us assume ab ∈ P, a /∈ P and b /∈ P ; then P +Aa and P +Ab are saturated
ideals of A strictly containing P, whence there exists two integers m and n with
xm ∈ P +Aa and xn ∈ P +Ab. By definition of the closure of an ideal, there
are u = p1 + λa ∈ P + Aa and v = p2 + µb ∈ P + Ab such that xm + u = u and
xn + v = v. Then

ub = p1b+ λ(ab) ∈ P

and

xmb+ ub = (xm + u)b = ub ,

whence, as P is saturated, xmb ∈ P.
Then

xmv = xmp2 + µxmb ∈ P ;

as

xm+n + xmv = xm(xn + v)
= xmv ,

we obtain xm+n ∈ P, a contradiction.
Therefore P is prime and saturated and x = x1 /∈ P, whence x /∈ N . We have

proved that N ⊆ Nil(A), whence M = N = Nil(A). �

Corollary 4.2.

Nil(A) =
⋂

P∈Pr(A)

P .
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Proof.

Nil(A) =
⋂

P∈Pr(A)

P(by Theorem 3.1)

⊆
⋂

P∈Pr(A)

P

⊆
⋂

P∈Prs(A)

P

=
⋂

P∈Prs(A)

P

= Nil(A)(also by Theorem 3.1).

�

Definition 4.3. For I an ideal of A, we define the root r(I) of I by

r(I) := {x ∈ A|(∃n ≥ 1)xn ∈ I}.

Lemma 4.4. (i) r(I) is an ideal of A.
(ii) r(I) ⊆ r(I) ; in particular, if I is saturated then so is r(I).
(iii) r({0}) = Nil(A).

Proof. (i) Obviously, 0 ∈ r(I).
If x ∈ r(I) and y ∈ r(I), then xm ∈ I for some m ≥ 1 and yn ∈ I for

some n ≥ 1, whence

(x+ y)m+n−1 =
m+n−1∑
j=0

(
m+ n− 1

j

)
xjym+n−1−j

( =
m+n−1∑
j=0

xjym+n−1−j)

∈ I ,

as xj ∈ I for j ≥ m and ym+n−1−j ∈ I for j ≤ m−1 (as, then, m+n−1−j ≥
n). Therefore x+ y ∈ r(I).

For a ∈ A, (ax)m = amxm ∈ I, whence ax ∈ r(I). Therefore r(I) is an
ideal of A.

(ii) Let x ∈ r(I) then there is u ∈ r(I) such that x + u = u, and there is
n ≥ 1 such that un ∈ I. Let us show by induction on j ∈ {0, ..., n} that
un−jxj ∈ I. This is clear for j = 0. Let then j ∈ {0, ..., n− 1}, and assume
that un−jxj ∈ I ; then

un−j−1xj+1 + un−jxj = un−j−1xj(x+ u)

= un−j−1xju

= un−jxj ,

whence un−j−1xj+1 ∈ I = I . Thus, for j = n, we obtain

xn = un−nxn ∈ I ,

whence x ∈ r(I).
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If I is saturated, then

r(I) ⊆ r(I)

⊆ r(I)(by the above)
= r(I) ,

whence r(I) = r(I) is saturated.
(iii) That assertion is obvious.

�

Proposition 4.5. For each saturated ideal I of the B1–algebra A

r(I) =
⋂

P∈Prs(A);I⊆P

P .

Remark 4.6. For I = {0}, this is part of Theorem 4.1.

Proof. Let x ∈ r(I), and let P ∈ Prs(A) with I ⊆ P ; then, for some n ≥ 1 xn ∈ I,
whence xn ∈ P and x ∈ P :

r(I) ⊆
⋂

P∈Prs(A);I⊆P

P .

Let now y ∈ A, y /∈ r(I), and denote by π the canonical projection

π : A � Ã :=
A

RI
.

As I is saturated, one has
∀n ≥ 1 yn /∈ I ,

whence
∀n ≥ 1yn 6 RI0 ,

or
∀n ≥ 1 π(y)n = π(yn) 6= 0 .

Therefore π(y) /∈ Nil(Ã), whence, according to Theorem 3.1, there exists a satu-
rated prime ideal P̃ of Ã such that π(y) /∈ P̃. But then P := π−1(P̃) is a saturated
prime ideal of A containing I with y /∈ P, whence

y /∈
⋂

P∈Prs(A);I⊆P

P .

�
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5. Topology of spectra

We can now establish the basic topological properties of the spectra Prs(A)
(analogous, in our setting, to Corollary 1.1.8 and Proposition 1.1.10(ii) of [1]).

Theorem 5.1. Prs(A) and MaxSpec(A) are T0 and quasi–compact.

Proof. According to Theorem 1.1, Prs(A) and MaxSpec(A) are homeomorphic,
therefore it is enough to establish the result for Prs(A).

Let P and Q denote two different points of Prs(A) ; then either P * Q or
Q * P. Let us for instance assume that P * Q ; then Q /∈W (P) ; set

O := Prs(A) ∩ (Pr(A) \W (P)) .

Then O is an open set in Prs(A), Q ∈ O and, obviously, P /∈ O. Therefore Prs(A)
is T0.

Let (Ui)i∈I denote an open cover of Prs(A) :

Prs(A) =
⋃
i∈I

Ui ;

each Prs(A) \ Ui is closed, whence Prs(A) \ Ui = Prs(A) ∩W (Si) for some subset
Si of A. Therefore Prs(A) ∩ (

⋂
i∈IW (Si)) = ∅, i.e. Prs(A) ∩ W (

⋃
i∈I Si) =

∅. Therefore Prs(A) ∩W (<
⋃
i∈I Si >) = ∅, whence, according to Theorem 2.3,

<
⋃
i∈I Si > = A. Let J =<

⋃
i∈I Si > ; then 1 ∈ J , hence there is x ∈ J such

that 1 + x = x. Furthermore, there exist n ∈ N, (i1, ..., in) ∈ In , xik ∈ Sik and
(a1, ..., an) ∈ An such that x = a1xi1 + ...+ anxin . But then

1 + a1xi1 + ...+ anxin = a1xi1 + ...+ anxin

whence

1 ∈ {xi1 , ..., xin} ⊆
n⋃
j=1

Sij

and
n⋃
j=1

Sij = A .

It follows that

Prs(A) ∩W (
n⋃
j=1

Sij ) = ∅ ,

that is

Prs(A) ∩
n⋂
j=1

W (Sij ) = ∅ ,

or

Prs(A) =
n⋃
j=1

Uij :

Prs(A) is quasi–compact. �

For f ∈ A, let

D(f) := Prs(A) \ (Prs(A) ∩W ({f})
= {P ∈ Prs(A)|f /∈ P}.
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Proposition 5.2. (1) Each D(f)(f ∈ A) is open and quasi–compact in Prs(A).
(2) The family (D(f))f∈A is an open basis for Prs(A).

Proof. (1) The openness of D(f) is obvious. Let us assume D(f) =
⋃
i∈I Ui,

where the Ui’s are open sets in D(f). Each Ui can be written as

Ui = D(f) ∩ Vi ,
for Vi an open set in Prs(A), i.e. Prs(A) \ Vi = W (Si) for Si a subset of
A. Then

D(f) ⊆
⋃
i∈I

Vi = Prs(A) \ (
⋂
i∈I

W (Si)) ,

whence
Prs(A) ∩W (

⋃
i∈I

Si) ⊆W ({f}) ,

that is, setting
S :=

⋃
i∈I

Si ,

f ∈
⋂

P∈W (S)∩Prs(A)

P =
⋂

P∈Prs(A);S⊆P

P .

Therefore, by Proposition 2.4, f ∈ r(< S >) : there is n ≥ 1 such that
fn ∈ < S >. Thus, there is g ∈< S > such that fn + g = g ; one has
g =

∑m
j=1 ajsj for aj ∈ A, sj ∈ S ; for each j ∈ {1, ...,m}, sj ∈ Sij

for some ij ∈ I. Let S0 = {s1, ..., sm} ; then g ∈<
⋃n
j=1 Sij >, whence

fn ∈ <
⋃n
j=1 Sij >, and reading the above argument in reverse order with

S replaced by
⋃n
j=1 Sij yields that

D(f) =
m⋃
j=1

Uij ,

whence the quasi–compactness of D(f).
(2) Let U be an open set in Prs(A), and P ∈ U . We have Prs(A) \ U =

Prs(A) ∩W (S) for some subset S of A. As P /∈ W (S), S * P, whence
there is an s ∈ S with s /∈ P. It is now clear that P ∈ D(s) and

D(s) ⊆ Prs(A) \W (S) = U .

�



ABSOLUTE ALGEBRA III 13

6. Remarks on the one–generator case

Let us now consider the case of a nontrivial monogenic B1–algebra containing

strictly B1, i.e. A =
B1[x]
∼

is a quotient of the free algebra B1[x] with x � 0,

x � 1. Denote by α the image of x in A ; then α /∈ {0, 1}, and α generates A as a
B1–algebra.

Let us suppose that, for some (u, v) ∈ A2, αu = 1 +αv ; then α is not nilpotent,
as from αn = 0 would follow 0 = αnv = αn−1(αv) = αn−1(1+αu) = αn−1 +αnu =
αn−1, whence αn−1 = 0 and, by induction, 1 = α0 = 0, a contradiction.

Therefore three cases may appear
(i) α is nilpotent.

(ii) α is not nilpotent and there does not exist (u, v) ∈ A2 such that αu = 1+αv.
(iii) (α is not nilpotent) and there exist (u, v) ∈ A2 such that αu = 1 + αv.
In case (i), any prime ideal of A must contain α, hence contain αA; the ideal

αA is, according to the above remark, saturated, and is not contained in a strictly
bigger saturated ideal other than A itself (in both cases, as any element of A not
in αA is of the shape 1 + αx). Therefore Prs(A) = αA, whence Nil(A) = αA. In
this case we see that

A

RNil(A)
' B1 .

In cases (ii) and (iii), no power of α belongs to Nil(A) ; as Nil(A) is saturated,
it follows that Nil(A) = {0}. In fact, A is integral, whence {0} ∈ Prs(A). If
P ∈ Prs(A) and P 6= {0}, then P contains some power of α, hence contains α,
hence contains αA. As above we see that P = αA ; but, in case (iii), αA is not
saturated. In case (ii) it is easy to see that αA is prime and saturated. Therefore :

in case (ii), Prs(A) = {{0}, αA} ; {0} is a generic point ({{0}} = Prs(A)), and
αA a “closed point ”({αA} is closed) ;

in case (iii), Prs(A) = {{0}}.
One may remark that B1[x] itself falls into case (ii).
In [3], pp. 75–79, we have enumerated (up to isomorphism) monogenic B1–

algebras of cardinality ≤ 5. It is easy to see where these algebras fall in the above
classification ; we keep the numbering used in [3]. Let then 3 ≤ |A| ≤ 5. We have
the following repartition

Case (i) : (6),(8),(12),(15),(18),(24)
Case (ii): (7),(10),(11),(16),(19),(25),(26)
Case (iii): (5),(9),(13),(14),(17),(20),(21),(22),(23),(27),(28)
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