ABSOLUTE ALGEBRA III–THE SATURATED SPECTRUM

PAUL LESCOT

Abstract. We investigate the algebraic and topological preliminaries to a geometry in characteristic $1.\,$

1. Introduction

This work is a sequel to [2] and [3], of which, except when explicitly stated otherwise, we shall keep the definitions and notations. In particular, we shall always equip the spectrum Spec(A) of a B_1 -algebra with the topology defined in [3], Proposition 3.15, and the prime spectrum Pr(A) of A with the topology defined in [3], Theorem 2.4.

We shall denote by SP the category whose objects are these B_1 -spectra and whose morphisms are the continuous maps between them.

For A a B_1 -algebra and S a subset of A, let $\langle S \rangle$ denote the intersection of all the ideals of A containing S (there is always at least one such ideal : A itself). It is clear that $\langle S \rangle$ is an ideal of A, and therefore is the smallest ideal of A containing S. As in ring theory, one may see that

$$\langle S \rangle = \{ \sum_{j=1}^{n} a_j s_j | n \in \mathbb{N}, (a_1, ..., a_n) \in A^n, (s_1, ..., s_n) \in S^n \}.$$

2. A NEW DESCRIPTION OF MAXIMAL CONGRUENCES

Let A denote a B_1 -algebra. For \mathcal{P} a saturated prime ideal (see [3],p.1786) of A, let us define a relation $\mathcal{S}_{\mathcal{P}}$ on A by :

$$x\mathcal{S}_{\mathcal{P}}y \equiv (x \in \mathcal{P} \text{ and } y \in \mathcal{P}) \text{ or } (x \notin \mathcal{P} \text{ and } y \notin \mathcal{P})$$
.

Then $\mathcal{S}_{\mathcal{P}}$ is a congruence on A: if $x\mathcal{S}_{\mathcal{P}}y$ and $x'\mathcal{S}_{\mathcal{P}}y'$, then one and only one of the following holds:

- (i) $x \in \mathcal{P}, y \in \mathcal{P}, x' \in \mathcal{P} \text{ and } y' \in \mathcal{P}$
- (ii) $x \in \mathcal{P}, y \in \mathcal{P}, x' \notin \mathcal{P} \text{ and } y' \notin \mathcal{P}$ (iii) $x \notin \mathcal{P}, y \notin \mathcal{P}, x' \in \mathcal{P} \text{ and } y' \in \mathcal{P}$ (iv) $x \notin \mathcal{P}, y \notin \mathcal{P}, x' \notin \mathcal{P} \text{ and } y' \notin \mathcal{P}$

In case (i), $x + x' \in \mathcal{P}$ and $y + y' \in \mathcal{P}$, whence $x + x' \mathcal{S}_{\mathcal{P}} y + y'$; in cases (ii) and (iv), $x + x' \notin \mathcal{P}$ and $y + y' \notin \mathcal{P}$ (as \mathcal{P} is saturated), whence $x + x' \mathcal{S}_{\mathcal{P}} y + y'$. Case (iii) is symmetrical relatively to case (ii), therefore, in all cases, $x + x' S_P y + y'$:

 $\mathcal{S}_{\mathcal{P}}$ is compatible with addition. In cases (i), (ii) and (iii), $xx^{'} \in \mathcal{P}$ and $yy^{'} \in \mathcal{P}$, whence $xx^{'}\mathcal{S}_{\mathcal{P}}yy^{'}$; in case (iv) $xx' \notin \mathcal{P}$ and $yy' \notin \mathcal{P}$ (as \mathcal{P} is prime), whence also $xx'\mathcal{S}_{\mathcal{P}}yy' : \mathcal{S}_{\mathcal{P}}$ is compatible with multiplication, hence is a congruence on A.

As $0 \in \mathcal{P}$ and $1 \notin \mathcal{P}$, $0 \mathcal{S}_{\mathcal{P}} 1$, therefore $\mathcal{S}_{\mathcal{P}}$ is nontrivial; but each $x \in A$ is either in \mathcal{P} (whence $x\mathcal{S}_{\mathcal{P}}0$) or not (whence $x\mathcal{S}_{\mathcal{P}}1$). It follows that

$$\frac{A}{\mathcal{S}_{\mathcal{P}}} = \{\bar{0}, \bar{1}\} \simeq B_1 ;$$

in particular, $S_{\mathcal{P}}$ is maximal : $S_{\mathcal{P}} \in MaxSpec(A)$.

Obviously, $I(\mathcal{S}_{\mathcal{P}}) = \mathcal{P}$.

Furthermore, let $(x,y) \in A^2$ be such that $x\mathcal{R}_{\mathcal{P}}y$; then there is $z \in \mathcal{P}$ such that x+z=y+z. If $x\in\mathcal{P}$ then $y+z=x+z\in\mathcal{P}$, whence $y\in\mathcal{P}$ (as y+(y+z)=y+zand \mathcal{P} is saturated); symmetrically, $y \in \mathcal{P}$ implies $x \in \mathcal{P}$, whence the assertions $(x \in \mathcal{P})$ and $(y \in \mathcal{P})$ are equivalent, and $x\mathcal{S}_{\mathcal{P}}y$. We have shown that

$$\mathcal{R}_{\mathcal{P}} \leq \mathcal{S}_{\mathcal{P}}$$
.

We shall denote by α_A the mapping

$$\alpha_A$$
: $Pr_s(A) \to MaxSpec(A)$
 $\mathcal{P} \mapsto \mathcal{S}_{\mathcal{P}}$.

Let $\mathcal{R} \in MaxSpec(A)$; then $\mathcal{R} \in Spec(A)$, whence $I(\mathcal{R})$ is prime; by Theorem 3.8 of [3], it is saturated, i.e. $I(\mathcal{R}) \in Pr_s(A)$. Let us set

$$\beta_A(\mathcal{R}) := I(\mathcal{R})$$
.

Theorem 2.1. The mappings

$$\alpha_A: Pr_s(A) \mapsto MaxSpec(A)$$

and

$$\beta_A: MaxSpec(A) \mapsto Pr_s(A)$$

are bijections, inverse of one another. They are continuous for the topologies on $Pr_s(A)$ and MaxSpec(A) induced by the Zariski topologies on Pr(A) and Spec(A)defined in [3] (Theorem 2.4, resp. Proposition 3.15).

Proof. Let $\mathcal{R} \in MaxSpec(A)$; then

$$\alpha_A(\beta_A(\mathcal{R})) = \alpha_A(I(\mathcal{R})) = \mathcal{S}_{I(\mathcal{R})}.$$

Let us assume $x\mathcal{R}y$; then, if $x \in I(\mathcal{R})$ one has $x\mathcal{R}0$, whence $y\mathcal{R}0$ and $y \in I(\mathcal{R})$; by symmetry, $y \in I(\mathcal{R})$ implies $x \in I(\mathcal{R})$, thus $(x \in I(\mathcal{R}))$ and $(y \in I(\mathcal{R}))$ are equivalent, i.e. $x\mathcal{S}_{I(\mathcal{R})}y$. We have proved that $\mathcal{R} \leq \mathcal{S}_{I(\mathcal{R})}$. As \mathcal{R} is maximal, we have $\mathcal{R} = \mathcal{S}_{I(\mathcal{R})}$, whence

$$\alpha_A(\beta_A(\mathcal{R})) = \mathcal{S}_{I(\mathcal{R})} = \mathcal{R}$$
,

and

4

$$\alpha_A \circ \beta_A = Id_{MaxSpec(A)}$$
.

Let now $\mathcal{P} \in Pr_s(A)$; then

$$(\beta_A \circ \alpha_A)(\mathcal{P}) = \beta_A(\alpha_A(\mathcal{P}))$$

$$= \beta_A(\mathcal{S}_{\mathcal{P}})$$

$$= I(\mathcal{S}_{\mathcal{P}})$$

$$= \mathcal{P},$$

whence

$$\beta_A \circ \alpha_A = Id_{Pr_s(A)}$$
,

and the first statement follows.

Let now F denote a closed subset of $Pr_s(A)$; then $F = G \cap Pr_s(A)$ for G a closed subset of Pr(A) and $G = W(S) := \{ \mathcal{P} \in Pr(A) | S \subseteq \mathcal{P} \}$ for some subset S of A. But then, for $\mathcal{R} \in MaxSpec(A)$, $\mathcal{R} \in \beta_A^{-1}(F)$ if and only if $\beta_A(\mathcal{R}) \in F$, *i.e.* $I(\mathcal{R}) \in G \cap Pr_s(A)$, that is $I(\mathcal{R}) \in G$, or $S \subseteq I(\mathcal{R})$, which means $\mathcal{R} \in V(S)$. Thus

$$\beta_A^{-1}(F) = V(S) \cap MaxSpec(A)$$

is closed in MaxSpec(A). We have shown the continuity of β_A .

Let now $H \subseteq MaxSpec(A)$ be closed; then $H = MaxSpec(A) \cap L$ for some closed subset L of Spec(A) and L = V(T) for some subset T of A. Then a saturated prime ideal \mathcal{P} of A belongs to $\alpha_A^{-1}(H)$ if and only if $\alpha_A(\mathcal{P}) \in H$, that is

$$S_{\mathcal{P}} \in MaxSpec(A) \cap L$$
,

i.e.

$$S_{\mathcal{P}} \in V(T)$$

or $T \subseteq I(\mathcal{S}_{\mathcal{P}})$. But $I(\mathcal{S}_{\mathcal{P}}) = \mathcal{P}$ whence \mathcal{P} belongs to $\alpha_A^{-1}(H)$ if and only if $T \subseteq \mathcal{P}$, that is

$$\alpha_A^{-1}(H) = V(T) \cap MaxSpec(A)$$
,

which is closed in MaxSpec(A).

Let us consider the special case in which A is in the image of \mathcal{F} : $A = \mathcal{F}(M)$, for M a commutative monoid. Let P be a prime ideal of M; as seen in [3], Theorem 4.2, \tilde{P} is a saturated prime ideal in A, and one obtains in this way a bijection between $Spec_{\mathcal{D}}(M)$ and $Pr_s(A)$. The following is now obvious:

Theorem 2.2. The mapping

$$\psi_M : Spec_{\mathcal{D}}(M) \to MaxSpec(\mathcal{F}(M))$$

$$P \mapsto \alpha_{\mathcal{F}(M)}(\tilde{P})$$

is a bijection.

Two particular cases are of special interest:

- (1) M is a group; then $Spec_{\mathcal{D}}(M) = \{\emptyset\}$, whence $MaxSpec(\mathcal{F}(G))$ has exactly one element.
- (2) $M = C_n := \langle x_1, ..., x_n \rangle$ is the free monoid on n variables $x_1, ..., x_n$. Then the elements of $Spec_{\mathcal{D}}(M)$ are the $(P_J)_{J\subseteq\{1,...,n\}}$, where

$$P_J := \bigcup_{j \in J} x_j C_n$$

(a fact that was already used in [3], Example 4.4). Then

$$\psi_M(P_J) = \alpha_{\mathcal{F}(M)}(\tilde{P}_J) = \mathcal{S}_{\tilde{P}_J}$$

whence $x\psi_M(P_J)y$ if and only if either $(x \in \tilde{P}_J)$ and $y \in \tilde{P}_J)$ or $(x \notin \tilde{P}_J)$ and $y \notin \tilde{P}_J)$. But we have seen in [3], Theorem 4.5, that $\mathcal{F}(M) = B_1[x_1, ..., x_n]$ could be identified with the set of finite formal sums of elements of M. Obviously, an element x of $\mathcal{F}(M)$ belongs to \tilde{P}_J if and only if at least one of its components involves at least one factor $x_j (j \in J)$. It is now clear that, using the notation of [3], Definition 4.6 and Theorem 4.7,

$$\psi_M(P_J) = \tilde{J}$$
.

We hereby recover the description of $MaxSpec(B_1[x_1,...,x_n])$ given in [1] (Theorems 4.7, 4.8 and 4.10).

The following result will be useful

Theorem 2.3. Any proper saturated ideal of a B_1 -algebra A is contained in a saturated prime ideal of A.

Proof. Let J be a proper saturated ideal of A; as $I(\mathcal{R}_J) = \overline{J} = J \neq A$, $\mathcal{R}_J \neq \mathcal{C}_0(A)$. By Zorn's Lemma, one has $\mathcal{R}_J \leq \mathcal{R}$ for some $\mathcal{R} \in MaxSpec(A)$. According to Theorem 1.1, $\mathcal{R} = \alpha(\mathcal{P}) = \mathcal{S}_{\mathcal{P}}$ for a saturated prime ideal \mathcal{P} of A, therefore $\mathcal{R}_{\mathcal{J}} \leq \mathcal{S}_{\mathcal{P}}$ and

$$J = \overline{J} = I(\mathcal{R}_J) \subseteq I(\mathcal{S}_{\mathcal{P}}) = \mathcal{P}$$
.

3. Functorial properties of spectra

Let $\varphi: A \to C$ denote a morphism of B_1 -algebras, and let $\mathcal{R} \in Spec(C)$. We define a binary relation $\tilde{\varphi}(\mathcal{R})$ on A by :

$$\forall (a, a') \in A^{2} \ a\tilde{\varphi}(\mathcal{R})a' \equiv \varphi(a)\mathcal{R}\varphi(a') \ .$$

It is clear that $\tilde{\varphi}(\mathcal{R})$ is a congruence on A, and that

$$I(\tilde{\varphi}(\mathcal{R})) = \varphi^{-1}(I(\mathcal{R}))$$
.

In particular $I(\tilde{\varphi}(\mathcal{R}))$ is a prime ideal of A, hence $\tilde{\varphi}(\mathcal{R}) \in Spec(A)$: $\tilde{\varphi}$ maps Spec(C) into Spec(A). Let F := V(S) be a closed subset of Spec(A), and let $\mathcal{R} \in Spec(C)$; then $\mathcal{R} \in \tilde{\varphi}^{-1}(F)$ if and only if $\tilde{\varphi}(\mathcal{R}) \in F$, that is $S \subseteq I(\tilde{\varphi}(\mathcal{R}))$, or $S \subseteq \varphi^{-1}(I(\mathcal{R}))$, i.e. $\varphi(S) \subseteq I(\mathcal{R})$, or $\mathcal{R} \in V(\varphi(S))$. Therefore $\tilde{\varphi}^{-1}(F) = V(\varphi(S))$ is closed in Spec(C): $\tilde{\varphi}$ is continuous.

Furthermore, for $\varphi:A\to C$ and $\psi:C\to D$ one has

$$\widetilde{\psi \circ \varphi} = \widetilde{\varphi} \circ \widetilde{\psi} : Spec(D) \to Spec(A)$$
.

It follows that the equations $\mathcal{H}(A) = Spec(A)$ and $\mathcal{H}(\varphi) = \tilde{\varphi}$ define a contravariant functor \mathcal{H} from \mathcal{Z}_a to \mathcal{SP} .

Let J denote an ideal in C, and let us assume $a\mathcal{R}_{\varphi^{-1}(J)}a'$; then there is $x \in \varphi^{-1}(J)$ with a + x = a' + x. Then $\varphi(x) \in J$ and

$$\varphi(a) + \varphi(x) = \varphi(a+x)$$

$$= \varphi(a'+x)$$

$$= \varphi(a') + \varphi(x)$$

whence $\varphi(a)\mathcal{R}_J\varphi(a')$ and $a\tilde{\varphi}(\mathcal{R}_J)a'$. We have established

Proposition 3.1. Let A and C denote B_1 -algebras, $\varphi: A \to C$ a morphism and J an ideal of C: then

$$\mathcal{R}_{\varphi^{-1}(J)} \leq \tilde{\varphi}(\mathcal{R}_J)$$
.

Theorem 3.2. Let A and C denote two B_1 -algebras, and $\varphi: A \to C$ a morphism. Then $\tilde{\varphi}: Spec(C) \to Spec(A)$ maps MaxSpec(C) into MaxSpec(A), and the diagram

$$\begin{array}{ccc} Pr_s(C) & \stackrel{\varphi^{-1}}{\to} & Pr_s(A) \\ \downarrow^{\alpha_C} & & \downarrow^{\alpha_A} \\ MaxSpec(C) & \stackrel{\tilde{\varphi}}{\to} & MaxSpec(A) \end{array}$$

commutes.

Proof. Let $\mathcal{P} \in Pr_s(C)$, then, for all $(a, a') \in A^2$

$$a\tilde{\varphi}(\mathcal{S}_{\mathcal{P}})a^{'}\iff \varphi(a)\mathcal{S}_{\mathcal{P}}\varphi(a^{'})\\ \iff (\varphi(a)\in\mathcal{P}\text{ and }\varphi(a^{'})\in\mathcal{P}))\mathrm{or}(\varphi(a)\notin\mathcal{P}\text{ and }\varphi(a^{'})\notin\mathcal{P}))\\ \iff (a\in\varphi^{-1}(\mathcal{P})\text{ and }a^{'}\in\varphi^{-1}(\mathcal{P})))\mathrm{or}(a\notin\varphi^{-1}(\mathcal{P})\text{ and }a^{'}\notin\varphi^{-1}(\mathcal{P})))\\ \iff a\mathcal{S}_{\varphi^{-1}(\mathcal{P})}a^{'}.$$

Therefore

$$(\tilde{\varphi} \circ \alpha_C)(\mathcal{P}) = \tilde{\varphi}(\alpha_C(\mathcal{P}))$$

$$= \tilde{\varphi}(\mathcal{S}_{\mathcal{P}})$$

$$= \mathcal{S}_{\varphi^{-1}(\mathcal{P})}$$

$$= \alpha_A(\varphi^{-1}(\mathcal{P}))$$

$$= (\alpha_A \circ \varphi^{-1})(\mathcal{P})$$

whence $\tilde{\varphi} \circ \alpha_C = \alpha_A \circ \varphi^{-1}$. Incidentally we have proved that $\tilde{\varphi}$ maps $MaxSpec(C) = \alpha_C(Pr_s(C))$ into $\alpha_A(Pr_s(A)) = MaxSpec(A)$, *i.e.* the first assertion.

4. NILPOTENT RADICALS AND PRIME IDEALS

The usual theory generalizes without major problem to B_1 -algebras.

Theorem 4.1. In the B_1 -algebra A, let us define

$$Nil(A) := \{x \in A | (\exists n \ge 1) x^n = 0\}$$
.

Then Nil(A) is a saturated ideal of A, and one has

$$\bigcap_{\mathcal{P} \in Pr(A)} \mathcal{P} = \bigcap_{\mathcal{P} \in Pr_s(A)} \mathcal{P} = Nil(A) .$$

Proof. Let $M:=\bigcap_{\mathcal{P}\in Pr(A)}\mathcal{P}$ and $N=\bigcap_{\mathcal{P}\in Pr_s(A)}\mathcal{P}$. If $x\in Nil(A)$ and $\mathcal{P}\in Pr(A)$, then, for some $n\geq 1,\ x^n=0\in\mathcal{P}$, whence (as \mathcal{P} is prime) $x\in\mathcal{P}:Nil(A)\subseteq M$.

As $Pr_s(A) \subseteq Pr(A)$, we have $M \subseteq N$.

Let now $y \notin Nil(A)$; then

$$(\forall n \in \mathbf{N}) \ y^n \neq 0 \ .$$

Define

8

$$\mathcal{E} := \{ J \in Id_s(A) | (\forall n \ge 0) x^n \notin J \}.$$

This set is nonempty ($\{0\} \in \mathcal{E}$) and inductive for \subseteq , therefore, by Zorn's Lemma, there exists a maximal element \mathcal{P} of \mathcal{E} . As $1 = x^0 \notin \mathcal{P}$, $\mathcal{P} \neq A$.

Let us assume $ab \in \mathcal{P}$, $a \notin \mathcal{P}$ and $b \notin \mathcal{P}$; then $\overline{\mathcal{P} + Aa}$ and $\overline{\mathcal{P} + Ab}$ are saturated ideals of A strictly containing \mathcal{P} , whence there exists two integers m and n with $x^m \in \overline{\mathcal{P} + Aa}$ and $x^n \in \overline{\mathcal{P} + Ab}$. By definition of the closure of an ideal, there are $u = p_1 + \lambda a \in \mathcal{P} + Aa$ and $v = p_2 + \mu b \in \mathcal{P} + Ab$ such that $x^m + u = u$ and $x^n + v = v$. Then

$$ub = p_1b + \lambda(ab) \in \mathcal{P}$$

and

$$x^m b + ub = (x^m + u)b = ub ,$$

whence, as \mathcal{P} is saturated, $x^m b \in \mathcal{P}$.

Then

$$x^m v = x^m p_2 + \mu x^m b \in \mathcal{P} ;$$

as

$$x^{m+n} + x^m v = x^m (x^n + v)$$
$$= x^m v$$

we obtain $x^{m+n} \in \mathcal{P}$, a contradiction.

Therefore \mathcal{P} is prime and saturated and $x = x^1 \notin \mathcal{P}$, whence $x \notin N$. We have proved that $N \subseteq Nil(A)$, whence M = N = Nil(A).

Corollary 4.2.

$$Nil(A) = \bigcap_{\mathcal{P} \in Pr(A)} \overline{\mathcal{P}}$$
.

Proof.

$$\begin{aligned} Nil(A) &= \bigcap_{\mathcal{P} \in Pr(A)} \mathcal{P}(\text{by Theorem 3.1}) \\ &\subseteq \bigcap_{\mathcal{P} \in Pr(A)} \overline{\mathcal{P}} \\ &\subseteq \bigcap_{\mathcal{P} \in Pr_s(A)} \overline{\mathcal{P}} \\ &= \bigcap_{\mathcal{P} \in Pr_s(A)} \mathcal{P} \\ &= Nil(A) \text{(also by Theorem 3.1)}. \end{aligned}$$

Definition 4.3. For I an ideal of A, we define the root r(I) of I by

$$r(I) := \{x \in A | (\exists n > 1)x^n \in I\}.$$

Lemma 4.4. (i) r(I) is an ideal of A.

- (ii) $\overline{r(I)} \subseteq r(\overline{I})$; in particular, if I is saturated then so is r(I).
- (iii) $r(\{0\}) = Nil(A)$.

Proof. (i) Obviously, $0 \in r(I)$.

If $x \in r(I)$ and $y \in r(I)$, then $x^m \in I$ for some $m \ge 1$ and $y^n \in I$ for some $n \ge 1$, whence

$$(x+y)^{m+n-1} = \sum_{j=0}^{m+n-1} {m+n-1 \choose j} x^j y^{m+n-1-j}$$

$$(= \sum_{j=0}^{m+n-1} x^j y^{m+n-1-j})$$

$$\in I ,$$

as $x^j \in I$ for $j \ge m$ and $y^{m+n-1-j} \in I$ for $j \le m-1$ (as, then, $m+n-1-j \ge n$). Therefore $x+y \in r(I)$.

For $a \in A$, $(ax)^m = a^m x^m \in I$, whence $ax \in r(I)$. Therefore r(I) is an ideal of A.

(ii) Let $x \in \overline{r(I)}$ then there is $u \in r(I)$ such that x + u = u, and there is $n \ge 1$ such that $u^n \in I$. Let us show by induction on $j \in \{0, ..., n\}$ that $u^{n-j}x^j \in \overline{I}$. This is clear for j = 0. Let then $j \in \{0, ..., n-1\}$, and assume that $u^{n-j}x^j \in \overline{I}$; then

$$\begin{array}{rcl} u^{n-j-1}x^{j+1} + u^{n-j}x^j & = & u^{n-j-1}x^j(x+u) \\ & = & u^{n-j-1}x^ju \\ & = & u^{n-j}x^j \ . \end{array}$$

whence $u^{n-j-1}x^{j+1}\in \overline{\overline{I}}=\overline{I}$. Thus, for j=n, we obtain

$$x^n = u^{n-n} x^n \in \overline{I} ,$$

whence $x \in r(\overline{I})$.

If I is saturated, then

$$r(I) \subseteq \overline{r(I)}$$

 $\subseteq r(\overline{I})$ (by the above)
 $= r(I)$,

whence $r(I) = \overline{r(I)}$ is saturated.

(iii) That assertion is obvious.

Proposition 4.5. For each saturated ideal I of the B_1 -algebra A

$$r(I) = \bigcap_{\mathcal{P} \in Pr_s(A); I \subseteq \mathcal{P}} \mathcal{P} .$$

Remark 4.6. For $I = \{0\}$, this is part of Theorem 4.1.

Proof. Let $x \in r(I)$, and let $\mathcal{P} \in Pr_s(A)$ with $I \subseteq \mathcal{P}$; then, for some $n \ge 1$ $x^n \in I$, whence $x^n \in \mathcal{P}$ and $x \in \mathcal{P}$:

$$r(I) \subseteq \bigcap_{\mathcal{P} \in Pr_s(A); I \subseteq \mathcal{P}} \mathcal{P}$$
.

Let now $y \in A, y \notin r(I)$, and denote by π the canonical projection

$$\pi: A \twoheadrightarrow \tilde{A} := \frac{A}{\mathcal{R}_I}$$
.

As I is saturated, one has

$$\forall n \ge 1 \ y^n \notin \overline{I} \ ,$$

whence

$$\forall n \ge 1y^n \ \mathcal{R}_I 0 \ ,$$

or

$$\forall n \geq 1 \ \pi(y)^n = \pi(y^n) \neq \overline{0} \ .$$

Therefore $\pi(y) \notin Nil(\tilde{A})$, whence, according to Theorem 3.1, there exists a saturated prime ideal $\tilde{\mathcal{P}}$ of \tilde{A} such that $\pi(y) \notin \tilde{\mathcal{P}}$. But then $\mathcal{P} := \pi^{-1}(\tilde{\mathcal{P}})$ is a saturated prime ideal of A containing I with $y \notin \mathcal{P}$, whence

$$y \notin \bigcap_{\mathcal{P} \in Pr_s(A); I \subseteq \mathcal{P}} \mathcal{P}$$
.

5. Topology of spectra

We can now establish the basic topological properties of the spectra $Pr_s(A)$ (analogous, in our setting, to Corollary 1.1.8 and Proposition 1.1.10(ii) of [1]).

Theorem 5.1. $Pr_s(A)$ and MaxSpec(A) are T_0 and quasi-compact.

Proof. According to Theorem 1.1, $Pr_s(A)$ and MaxSpec(A) are homeomorphic, therefore it is enough to establish the result for $Pr_s(A)$.

Let \mathcal{P} and \mathcal{Q} denote two different points of $Pr_s(A)$; then either $\mathcal{P} \nsubseteq \mathcal{Q}$ or $\mathcal{Q} \nsubseteq \mathcal{P}$. Let us for instance assume that $\mathcal{P} \nsubseteq \mathcal{Q}$; then $\mathcal{Q} \notin W(\mathcal{P})$; set

$$O := Pr_s(A) \cap (Pr(A) \setminus W(\mathcal{P})) .$$

Then O is an open set in $Pr_s(A)$, $Q \in O$ and, obviously, $P \notin O$. Therefore $Pr_s(A)$ is T_0 .

Let $(U_i)_{i\in I}$ denote an open cover of $Pr_s(A)$:

$$Pr_s(A) = \bigcup_{i \in I} U_i ;$$

each $Pr_s(A) \setminus U_i$ is closed, whence $Pr_s(A) \setminus U_i = Pr_s(A) \cap W(S_i)$ for some subset S_i of A. Therefore $Pr_s(A) \cap (\bigcap_{i \in I} W(S_i)) = \emptyset$, i.e. $Pr_s(A) \cap W(\bigcup_{i \in I} S_i) = \emptyset$. Therefore $Pr_s(A) \cap W(\overline{\setminus \bigcup_{i \in I} S_i >}) = \emptyset$, whence, according to Theorem 2.3, $\overline{\setminus \bigcup_{i \in I} S_i >} = A$. Let $J = \langle \bigcup_{i \in I} S_i >$; then $1 \in \overline{J}$, hence there is $x \in J$ such that 1 + x = x. Furthermore, there exist $n \in \mathbb{N}$, $(i_1, ..., i_n) \in I^n$, $x_{i_k} \in S_{i_k}$ and $(a_1, ..., a_n) \in A^n$ such that $x = a_1x_{i_1} + ... + a_nx_{i_n}$. But then

$$1 + a_1 x_{i_1} + \dots + a_n x_{i_n} = a_1 x_{i_1} + \dots + a_n x_{i_n}$$

whence

$$1 \in \overline{\{x_{i_1},...,x_{i_n}\}} \subseteq \overline{\bigcup_{j=1}^n S_{i_j}}$$

and

$$\overline{\bigcup_{i=1}^{n} S_{i_j}} = A .$$

It follows that

$$Pr_s(A) \cap W(\bigcup_{j=1}^n S_{i_j}) = \emptyset$$
,

that is

$$Pr_s(A) \cap \bigcap_{j=1}^n W(S_{i_j}) = \emptyset$$
,

or

$$Pr_s(A) = \bigcup_{j=1}^n U_{i_j} :$$

 $Pr_s(A)$ is quasi-compact.

For $f \in A$, let

$$D(f) := Pr_s(A) \setminus (Pr_s(A) \cap W(\{f\}))$$
$$= \{ \mathcal{P} \in Pr_s(A) | f \notin \mathcal{P} \}.$$

Proposition 5.2. (1) Each $D(f)(f \in A)$ is open and quasi-compact in $Pr_s(A)$. (2) The family $(D(f))_{f \in A}$ is an open basis for $Pr_s(A)$.

Proof. (1) The openness of D(f) is obvious. Let us assume $D(f) = \bigcup_{i \in I} U_i$, where the U_i 's are open sets in D(f). Each U_i can be written as

$$U_i = D(f) \cap V_i$$
,

for V_i an open set in $Pr_s(A)$, i.e. $Pr_s(A) \setminus V_i = W(S_i)$ for S_i a subset of A. Then

$$D(f) \subseteq \bigcup_{i \in I} V_i = Pr_s(A) \setminus (\bigcap_{i \in I} W(S_i))$$
,

whence

$$Pr_s(A) \cap W(\bigcup_{i \in I} S_i) \subseteq W(\{f\})$$
,

that is, setting

$$S := \bigcup_{i \in I} S_i ,$$

$$f \in \bigcap_{\mathcal{P} \in W(S) \cap Pr_s(A)} \mathcal{P} = \bigcap_{\mathcal{P} \in Pr_s(A); S \subseteq \mathcal{P}} \mathcal{P} .$$

Therefore, by Proposition 2.4, $f \in r(\overline{\langle S \rangle})$: there is $n \geq 1$ such that $f^n \in \overline{\langle S \rangle}$. Thus, there is $g \in \langle S \rangle$ such that $f^n + g = g$; one has $g = \sum_{j=1}^m a_j s_j$ for $a_j \in A$, $s_j \in S$; for each $j \in \{1, ..., m\}$, $s_j \in S_{i_j}$ for some $i_j \in I$. Let $S_0 = \{s_1, ..., s_m\}$; then $g \in \langle \bigcup_{j=1}^n S_{i_j} \rangle$, whence $f^n \in \overline{\langle \bigcup_{j=1}^n S_{i_j} \rangle}$, and reading the above argument in reverse order with S replaced by $\bigcup_{j=1}^n S_{i_j}$ yields that

$$D(f) = \bigcup_{j=1}^{m} U_{i_j} ,$$

whence the quasi-compactness of D(f).

(2) Let U be an open set in $Pr_s(A)$, and $\mathcal{P} \in U$. We have $Pr_s(A) \setminus U = Pr_s(A) \cap W(S)$ for some subset S of A. As $\mathcal{P} \notin W(S)$, $S \nsubseteq \mathcal{P}$, whence there is an $s \in S$ with $s \notin \mathcal{P}$. It is now clear that $\mathcal{P} \in D(s)$ and

$$D(s) \subseteq Pr_s(A) \setminus W(S) = U$$
.

6. Remarks on the one-generator case

Let us now consider the case of a nontrivial monogenic B_1 -algebra containing strictly B_1 , *i.e.* $A = \frac{B_1[x]}{\sim}$ is a quotient of the free algebra $B_1[x]$ with $x \nsim 0$, $x \nsim 1$. Denote by α the image of x in A; then $\alpha \notin \{0,1\}$, and α generates A as a B_1 -algebra.

Let us suppose that, for some $(u, v) \in A^2$, $\alpha u = 1 + \alpha v$; then α is not nilpotent, as from $\alpha^n = 0$ would follow $0 = \alpha^n v = \alpha^{n-1}(\alpha v) = \alpha^{n-1}(1 + \alpha u) = \alpha^{n-1} + \alpha^n u = \alpha^{n-1}$, whence $\alpha^{n-1} = 0$ and, by induction, $1 = \alpha^0 = 0$, a contradiction.

Therefore three cases may appear

- (i) α is nilpotent.
- (ii) α is not nilpotent and there does not exist $(u, v) \in A^2$ such that $\alpha u = 1 + \alpha v$.
- (iii) (α is not nilpotent) and there exist $(u, v) \in A^2$ such that $\alpha u = 1 + \alpha v$.

In case (i), any prime ideal of A must contain α , hence contain αA ; the ideal αA is, according to the above remark, saturated, and is not contained in a strictly bigger saturated ideal other than A itself (in both cases, as any element of A not in αA is of the shape $1 + \alpha x$). Therefore $Pr_s(A) = \alpha A$, whence $Nil(A) = \alpha A$. In this case we see that

$$\frac{A}{\mathcal{R}_{Nil(A)}} \simeq B_1 \ .$$

In cases (ii) and (iii), no power of α belongs to Nil(A); as Nil(A) is saturated, it follows that $Nil(A) = \{0\}$. In fact, A is integral, whence $\{0\} \in Pr_s(A)$. If $\mathcal{P} \in Pr_s(A)$ and $\mathcal{P} \neq \{0\}$, then \mathcal{P} contains some power of α , hence contains α , hence contains αA . As above we see that $\mathcal{P} = \alpha A$; but, in case (iii), αA is not saturated. In case (ii) it is easy to see that αA is prime and saturated. Therefore:

in case (ii), $Pr_s(A) = \{\{0\}, \alpha A\}$; $\{0\}$ is a generic point $(\overline{\{\{0\}\}} = Pr_s(A))$, and αA a "closed point" $(\{\alpha A\} \text{ is closed})$;

in case (iii), $Pr_s(A) = \{\{0\}\}.$

One may remark that $B_1[x]$ itself falls into case (ii).

In [3], pp. 75–79, we have enumerated (up to isomorphism) monogenic B_1 –algebras of cardinality ≤ 5 . It is easy to see where these algebras fall in the above classification; we keep the numbering used in [3]. Let then $3 \leq |A| \leq 5$. We have the following repartition

Case (i): (6),(8),(12),(15),(18),(24)

Case (ii): (7),(10),(11),(16),(19),(25),(26)

Case (iii): (5),(9),(13),(14),(17),(20),(21),(22),(23),(27),(28)

7. Bibliography

Acknowledgment. This paper was written during a stay at I.H.E.S. (December 2010-March 2011). I am grateful to the staff and the colleagues who managed to make this stay pleasant and stimulating. I am also deeply indebted to Profesor Alain Connes for his constant moral support.

References

- [1] A. Grothendieck, J.A. Dieudonné *Eléments de Géométrie Algébrique I*, Publ. Math. IHES, No.4, 1960.
- [2] P. Lescot Algèbre Absolue, Ann. Sci. Math. Québec 33(2009), no 1, pp. 63-82.
- [3] P. Lescot Absolute Algebra II-Ideals and Spectra Journal of Pure and Applied Algebra 215(7), 2011, pp. 1782–1790.

 $E{-}mail~address: \verb|paul.lescot@univ-rouen.fr|\\ URL: \verb|http://www.univ-rouen.fr/LMRS/Persopage/Lescot/|$

LMRS, CNRS UMR 6085, UFR DES SCIENCES ET TECHNIQUES, UNIVERSITÉ DE ROUEN, AVENUE DE L'UNIVERSITÉ BP12, 76801 SAINT-ETIENNE DU ROUVRAY (FRANCE)