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1. INTRODUCTION

This work is a sequel to [2] and [3], of which, except when explicitly stated
otherwise, we shall keep the definitions and notations. In particular, we shall al-
ways equip the spectrum Spec(A) of a By—algebra with the topology defined in [3],
Proposition 3.15, and the prime spectrum Pr(A) of A with the topology defined in
[3], Theorem 2.4.

We shall denote by SP the category whose objects are these Bj—spectra and
whose morphisms are the continuous maps between them.

For A a By—algebra and S a subset of A, let < S > denote the intersection of all
the ideals of A containing .S (there is always at least one such ideal : A itself). It is
clear that < S > is an ideal of A, and therefore is the smallest ideal of A containing
S. As in ring theory, one may see that

<S>= {Z a;sjln € N, (a1, ...,a,) € A", (s51,....8,) € S"}.

J=1
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2. A NEW DESCRIPTION OF MAXIMAL CONGRUENCES

Let A denote a Bj—algebra. For P a saturated prime ideal (see [3],p.1786) of A,
let us define a relation Sp on A by :

zSpy=(zePandyeP)or(z¢gPandy¢P).

Then Sp is a congruence on A : if Spy and x/Spy’ , then one and only one of the
following holds :

(i) zeP,ycP,z ePandy €P

(i) zeP,yeP,a ¢Pandy ¢ P ,

(i) 2 ¢ P,y¢ P,z ePandy €P ,

(iv) o ¢P,y¢P, 2 ¢Pandy ¢ 7P

In case (i), x + 2 ePandy+y P, whence z+2' Spy+y ;in cases (1) and
(iv), +2 ¢ Pand y+y ¢ P (as P is saturated), whence z 4+ 2’ Spy +y . Case
(#i1) is symmetrical relatively to case (i), therefore, in all cases, = + & Spy+y :
Sp is compatible with addition.

In cases (i), (i) and (iii), zo' € P and yy € P, whence zz Spyy’ ; in case (iv)
zx ¢ P and yy/ ¢ P (as P is prime), whence also xx/Spyy/ : Sp is compatible
with multiplication, hence is a congruence on A.

AsOePand1¢P,0 Spl, therefore Sp is nontrivial ; but each z € A is either
in P (whence £Sp0) or not (whence Sp1). It follows that

A _
— =40,1} ~ By ;
S’P {a} 1

in particular, Sp is maximal : Sp € MaxzSpec(A).

Obviously, I(Sp) = P.

Furthermore, let (z,y) € A? be such that 2Rpy ; then there is z € P such that
x+z=y+z lfzePtheny+z=2+2€ P, whencey € P (asy+(y+2) =y+=z
and P is saturated) ; symmetrically, y € P implies € P, whence the assertions
(x € P) and (y € P) are equivalent, and xSpy. We have shown that

Rp <Sp .
We shall denote by a4 the mapping
as : Prg(A) — MaxSpec(A)
P—Sp.

Let R € MaxSpec(A) ; then R € Spec(A), whence I(R) is prime ; by Theorem
3.8 of [3], it is saturated, i.e. I(R) € Prs(A). Let us set

Ba(R) :=1(R) .
Theorem 2.1. The mappings
ay: Prs(A) — MaxSpec(A)

and

Ba : MaxSpec(A) — Pry(A)
are bijections, inverse of one another. They are continuous for the topologies on
Prs(A) and MaxSpec(A) induced by the Zariski topologies on Pr(A) and Spec(A)
defined in [3])(Theorem 2.4, resp. Proposition 3.15).
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Proof. Let R € MaxSpec(A) ; then
aa(Ba(R)) = aa(I(R)) = Si(r) -

Let us assume xRy ; then, if z € I(R) one has R0, whence yR0 and y € I(R);
by symmetry, y € I(R) implies x € I(R), thus (z € I(R)) and (y € I(R)) are
equivalent, i.e. xS;(r)y. We have proved that R < Spg). As R is maximal, we
have R = Sy(r), whence

aa(Ba(R)) =Syr)y =R,
and
aa 0 Ba = Idyrazspec(a) -
Let now P € Pry(A) ; then

(Baoaa)(P) = PBalaa(P))
Ba(Sp)
I(Sp)

- P,

whence
Baoaa = Idp, (a) ,

and the first statement follows.

Let now F denote a closed subset of Pry(A) ; then F' = G N Pry(A) for G a
closed subset of Pr(A) and G = W(S) := {P € Pr(A)|S C P} for some subset S
of A. But then, for R € MaxzSpec(A), R € B,'(F) if and only if B4(R) € F, i.e.
I(R) € GN Prs(A), that is I(R) € G, or S C I(R), which means R € V(5). Thus

521(F) =V (S)N MaxSpec(A)

is closed in MaxzSpec(A). We have shown the continuity of B4.

Let now H C MaxSpec(A) be closed ; then H = MaxSpec(A) N L for some
closed subset L of Spec(A)and L = V(T) for some subset T of A. Then a saturated
prime ideal P of A belongs to a ;' (H) if and only if as(P) € H, that is

Sp € MaxSpec(A)NL ,
i.e.
Sp € V(T)

or T C I(Sp). But I(Sp) = P whence P belongs to a;*(H) if and only if T C P,
that is

o, (H) = V(T) N MazSpec(A) ,
which is closed in MazSpec(A). O

Let us consider the special case in which A is in the image of F : A = F(M), for
M a commutative monoid. Let P be a prime ideal of M ; as seen in [3], Theorem
4.2, P is a saturated prime ideal in A, and one obtains in this way a bijection
between Specp(M) and Prs(A). The following is now obvious :
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Theorem 2.2. The mapping

Yy o Speep(M) — MaxSpec(F(M))

P azun(P)

is a bijection.

Two particular cases are of special interest :

(1)
(2)

M is a group ; then Specp (M) = {0}, whence MaxSpec(F(G)) has exactly
one element.
M =C, =< x1,...,z, > is the free monoid on n variables z1, ..., x,.

Then the elements of Specp (M) are the (Py)jcq,... n}, Where
PJ = U ZEan
jed

(a fact that was already used in [3], Example 4.4). Then
Ua(Py) = aran(Py) = Sp,

whence 21 (Py)y if and only if either (z € Pyandy e P~J) or (z ¢ P; and
y ¢ Py). But we have seen in [3], Theorem 4.5, that F(M) = By[z1, ..., z,,]
could be identified with the set of finite formal sums of elements of M.
Obviously, an element = of F(M) belongs to P; if and only if at least one
of its components involves at least one factor x;(j € J).It is now clear that,
using the notation of [3], Definition 4.6 and Theorem 4.7,

Ym(Pr) =7 .
We hereby recover the description of MaxzSpec(Bi[z1,...,2,]) given in [1]
(Theorems 4.7, 4.8 and 4.10).

The following result will be useful

Theorem 2.3. Any proper saturated ideal of a Bi—algebra A is contained in a
saturated prime ideal of A.

Proof. Let J be a proper saturated ideal of A; as I(Ry) = J = J # A, R # Co(A).
By Zorn’s Lemma, one has R; < R for some R € MaxzSpec(A). According
to Theorem 1.1, R = a(P) = Sp for a saturated prime ideal P of A, therefore
RJ < 873 and

J=J=IR,)CISp)="P.
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3. FUNCTORIAL PROPERTIES OF SPECTRA

Let ¢ : A — C denote a morphism of Bj—algebras, and let R € Spec(C). We
define a binary relation @(R) on A by :

Y(a,a) € A% ap(R)a = p(a)Re(a) .
It is clear that ¢(R) is a congruence on A, and that
I(3(R)) = ¢~ (I(R)) .

In particular I(@¢(R)) is a prime ideal of A, hence $(R) € Spec(A) : @ maps
Spec(C) into Spec(A). Let F := V(S) be a closed subset of Spec(A), and let
R € Spec(C) ; then R € ¢~ 1(F) if and only if g(R) € F, that is S C I(¢(R)), or
S C oL I(R)), ie. p(S) CI(R),or R € V(p(S)). Therefore 3~1(F) = V(¢(5))
is closed in Spec(C) : ¢ is continuous.

Furthermore, for ¢ : A — C and ¥ : C'— D one has

zm =¢o 1; : Spec(D) — Spec(A) .

It follows that the equations H(A) = Spec(A) and H(p) = ¢ define a contravariant
functor H from Z, to SP.
Let J denote an ideal in C, and let us assume aR,-1(s)a ; then there is x €

@ 1(J) with a4+ z = a' 4 z. Then ¢(z) € J and
pla) + o) = ¢latz)
= ¢(a +)
= ld) +¢)
whence ¢(a)Rp(a’) and a@(Ry)a’. We have established
Proposition 3.1. Let A and C denote By—-algebras, ¢ : A — C a morphism and
J an ideal of C' : then
Ro-1) S @(Ry) -
Theorem 3.2. Let A and C denote two By —algebras, and ¢ : A — C' a morphism.
Then ¢ : Spec(C) — Spec(A) maps MaxSpec(C) into MaxSpec(A), and the
diagram
Pry(C) s Pry(A)
o e
MazxSpec(C) 5 MaxSpec(A)

commutes.
Proof. Let P € Pry(C), then, for all (a,a’) € A2
ap(Sp)a = ¢(a)Spep(a)
(p(a) € P and p(a’) € P))or(p(a) ¢ P and p(a’) ¢ P))

<
= (acp ' (P)anda € o (P)or(a ¢ ¢~ (P) and d ¢ ¢ (P)))
< aSw-l(p)a .
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Therefore
(poac)(P) = &(ac(P))
= o(Sp)
= S p)
= aa(p ' (P))
= (aaop H)(P)

whence goag =aq0p ! .

Incidentally we have proved that @ maps MaxzSpec(C) = ac(Prs(C)) into
aa(Prs(A)) = MaxSpec(A), i.e. the first assertion. O
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4. NILPOTENT RADICALS AND PRIME IDEALS

The usual theory generalizes without major problem to B;—algebras.
Theorem 4.1. In the By—algebra A,let us define
Nil(A) :={x € A|(In > 1)z" =0} .
Then Nil(A) is a saturated ideal of A, and one has

(Nl P= () P=Nil4).

PePr(A) PePrs(A)

NpeprayP- I @ € Nil(A) and

Proof. Let M = (\pepyayP and N =
> 1, 2™ =0 € P, whence (as P is prime) x € P :

P € Pr(A), then, for some n > 1,
Nil(A) C M.
As Prg(A) C Pr(A), we have M C N.
Let now y ¢ Nil(A) ; then

(VYneN)y" #0.

Define
E:={J e Id;(A)|(¥Yn > 0)z" ¢ J}.

This set is nonempty ({0} € &) and inductive for C, therefore, by Zorn’s Lemma,
there exists a maximal element P of £. As 1 =20¢ P, P £ A.

Let us assume ab € P, a ¢ P and b ¢ P ; then P + Aa and P + Ab are saturated
ideals of A strictly containing P, whence there exists two integers m and n with
™ € P+ Aa and x™ € P + Ab. By definition of the closure of an ideal, there
are 4 = p1 + Aa € P+ Aa and v = py + ub € P + Ab such that 2™ 4+ v = u and
2" +v =v. Then

ub=pi1b+ A(ab) € P
and
2"b+ub= (2™ +u)b = ub ,

whence, as P is saturated, b € P.

Then
v =aMps + pxrmb € P
as
2™ My = 2™ (2™ + )
= z2Mv,

we obtain ™*™ € P, a contradiction.
Therefore P is prime and saturated and z = z! ¢ P, whence x ¢ N. We have
proved that N C Nil(A), whence M = N = Nil(A). O

Corollary 4.2.
Nil(A)= () P.

PePr(A)
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Proof.

Nil(4) = ﬂ P(by Theorem 3.1)
PePr(A)

N 7
PePr(A)

(N P
PEPrs(A)
= ﬂ P

PePrs(A)
= Nil(A)(also by Theorem 3.1).

N

N

Definition 4.3. For I an ideal of A, we define the root r(I) of I by
r(I):={x € A|(3n > 1)z" € I}.
Lemma 4.4. (i) r(I) 4s an ideal of A.

(ii) (1) Cr(I) ; in particular, if T is saturated then so is r(I).
(iii) r({0}) = Nil(A).
Proof. (i) Obviously, 0 € (I).
If x € r(I) and y € r(I), then 2™ € I for some m > 1 and y" € I for
some n > 1, whence

m+n—1 & m+n—1 i, m4n—1—j
(z+y) = > S )aly 7
=0 J
m+n—1
(=Y e
=0
er,

asa’) € I for j > mand y™t" 177 € [ for j < m—1 (as, then, m+n—1—j >
n). Therefore x +y € r(I).

For a € A, (ax)™ = a™a™ € I, whence ax € r(I). Therefore r(I) is an
ideal of A.

(ii) Let = € r(I) then there is u € r(I) such that z +u = u, and there is
n > 1 such that «™ € I. Let us show by induction on j € {0,...,n} that
u™~Jzd € 1. This is clear for j = 0. Let then j € {0,...,n — 1}, and assume
that «” 727 € T ; then

ut I I Iy = I ()

— ’Lbn_j_le]’U,
n—j

= u" 2l

whence u" 7~ 1gi*t! € T = T . Thus, for j = n, we obtain

3

" =u"""a" el

whence x € ().
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If I is saturated, then
r(I)

<

—~
~ON N
NBENID N

N 1N

(
r(

(by the above)

r

)

whence r(I) = r(I) is saturated.
(i) That assertion is obvious.

Proposition 4.5. For each saturated ideal I of the By—algebra A
r(I) = N P.
PePrs(A);ICP
Remark 4.6. For I = {0}, this is part of Theorem 4.1.

Proof. Let « € r(I), and let P € Prs(A) with I C P ; then, for somen > 1 a™ € I,
whence z" € Pand x € P :

r(I) C N 7.
PePrs(A);ICP

Let now y € A, y ¢ r(I), and denote by 7 the canonical projection

~ A
T A—>» A= R
As I is saturated, one has B
Yn>1y"¢1,
whence
Vn > 1y" R0,
or

Vn>1n(y)" =n(y")#0.
Therefore 7(y) ¢ Jyzl(%), whence, according to Theorem 3.1, there exists a satu-
rated prime ideal P of A such that 7(y) ¢ P. But then P := 7~ (P) is a saturated
prime ideal of A containing I with y ¢ P, whence

y ¢ ﬂ P.

PePrs(A);ICP
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5. TOPOLOGY OF SPECTRA

We can now establish the basic topological properties of the spectra Prg(A)
(analogous, in our setting, to Corollary 1.1.8 and Proposition 1.1.10(ii) of [1]).

Theorem 5.1. Prs(A) and MaxSpec(A) are Ty and quasi—compact.

Proof. According to Theorem 1.1, Prs(A) and MaxSpec(A) are homeomorphic,
therefore it is enough to establish the result for Pr (A).

Let P and Q denote two different points of Prs(A) ; then either P ,@ Q or
Q ¢ P. Let us for instance assume that P ¢ Q ; then Q ¢ W(P) ; set

O := Pry(A) N (Pr(A)\ W(P)) .
Then O is an open set in Pry(A), Q € O and, obviously, P ¢ O. Therefore Pr(A)
is To.
Let (U;)ier denote an open cover of Prg(A) :
P’I“S(A) = U Ul 3
iel

each Prs(A)\ U; is closed, whence Prs(A)\ U; = Prs(A) NW(S;) for some subset
Si of A. Therefore Pro(A) N (e W(Si)) = 0, ice. Pro(A) N W(U;er Si) =
(. Therefore Pry(A) N W (< J;e;Si >) = 0, whence, according to Theorem 2.3,
<UjerSi > = A. Let J =< J;c;Si > ; then 1 € J, hence there is € J such

that 1 + 2 = z. Furthermore, there exist n € N, (iy,...,4,) € I" , x;, € S;, and
(a1, ...,an) € A™ such that x = ayz;; + ... + apx;,. But then

1+aiz;, + ... +anx;, = a1y, + ... +apx;,

whence
le {JC“, axzn} C U Sz]
j=1
and
U Si; =A
j=1

It follows that

j=1
that is
Pry(A)n (Y W(S;,) =0,
j=1
or
P?“S(A) = Uij
j=1
Prs(A) is quasi-compact. O
For f € A, let

D(f) = Pr(A)\ (Prs(A)nW{[})
{P e Pry(A)lf ¢ P}
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Proposition 5.2. (1) Each D(f)(f € A) is open and quasi—compact in Prs(A).
(2) The family (D(f))reca is an open basis for Prs(A).

Proof. (1) The openness of D(f) is obvious. Let us assume D(f) = (J,c; Us,
where the U,’s are open sets in D(f). Each U; can be written as
for V; an open set in Pry(A), i.e. Prs(A)\V; = W(S;) for S; a subset of
A. Then

D(f) € Vi = Pro(A)\ (N W(S)
icl i€l
whence
Pro(A)nw(lJs) cW{F) .
iel
that is, setting
S:=[]JSi.
iel
fe N P = N P.
PeW (S)NPrgs(A) PePrs(A);SCP
Therefore, by Proposition 2.4, f € r(< .S >) : there is n > 1 such that
fm e <8 >. Thus, there is ¢ €< S > such that f* 4+ g = ¢ ; one has
g = Z;"Zl ajs; for aj € A, s; € S ; for each j € {1,...,m}, s; € S
for some i; € I. Let Sy = {s1,...,5,} ; then g €< (Jj_, Si; >, whence
fre< U?:l Si; >, and reading the above argument in reverse order with
S replaced by Jj_, Si; yields that
D(f) = U Uij )
j=1
whence the quasi-compactness of D(f).
(2) Let U be an open set in Prs(A), and P € U. We have Prs(A)\ U =

P. LESCOT

Pry(A) N W(S) for some subset S of A. As P ¢ W(S), S ¢ P, whence
there is an s € S with s ¢ P. It is now clear that P € D(s) and

D(s) € Prs(A)\W(S)=U .



ABSOLUTE ALGEBRA III 13

6. REMARKS ON THE ONE—GENERATOR CASE

Let us now consider the case of a nontrivial monogenic B;—algebra containing

Bils]

x = 1. Denote by « the image of z in A ; then o ¢ {0,1}, and « generates A as a
Bi—algebra.

Let us suppose that, for some (u,v) € A%, au = 1+ av ; then « is not nilpotent,
as from o™ = 0 would follow 0 = a"v = o™ }(av) = " (1 +au) = a"  +a"u =
o™~ 1, whence o™~ = 0 and, by induction, 1 = a® = 0, a contradiction.

Therefore three cases may appear

strictly By, i.e. A = is a quotient of the free algebra Bj[x] with z =~ 0,

(i) « is nilpotent.
(ii) aisnot nilpotent and there does not exist (u,v) € A? such that au = 14+av.

(iii) (v is not nilpotent) and there exist (u,v) € A% such that au = 1+ av.

In case (i), any prime ideal of A must contain «, hence contain «A; the ideal
aA is, according to the above remark, saturated, and is not contained in a strictly
bigger saturated ideal other than A itself (in both cases, as any element of A not
in aA is of the shape 1+ ax). Therefore Pry(A) = a4, whence Nil(A) = aA. In
this case we see that 4

Riia)

In cases (ii) and (iii), no power of o belongs to Nil(A) ; as Nil(A) is saturated,
it follows that Nil(A) = {0}. In fact, A is integral, whence {0} € Prs(A4). If
P € Pry(A) and P # {0}, then P contains some power of «, hence contains «,
hence contains aA. As above we see that P = aA ; but, in case (iii), oA is not
saturated. In case (ii) it is easy to see that aA is prime and saturated. Therefore :

in case (ii), Prs(A) = {{0},aA} ; {0} is a generic point ({{0}} = Prs(A)), and
aA a “closed point 7 ({aA} is closed) ;

in case (iii), Prs(A) = {{0}}.

One may remark that Bj[z] itself falls into case (ii).

In [3], pp. 75-79, we have enumerated (up to isomorphism) monogenic Bj—
algebras of cardinality < 5. It is easy to see where these algebras fall in the above
classification ; we keep the numbering used in [3]. Let then 3 < |A] < 5. We have
the following repartition

Case (i) : (6),(8),(12),(15),(18),(24)

Case (ii): (7),(10),(11),(16),(19),(25),(26)

Case (idi): (5),(9),(13),(14),(17),(20),(21),(22),(23),(27),(28)

~

~ B .
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