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1 Introduction

Many second-order ordinary differential equations (ODEs) of the form ẍ = F (t, x, ẋ) admit
a Lagrangian description because of the existence of a Jacobi Last Multiplier (JLM), µ, which
can be shown to be equal to ∂2L/∂ẋ2. In a recent article Nucci et al [16] have shown how
one can obtain the Lagrangians for certain well known biological models described by planar
systems of ODEs using Jacobi’s last multiplier. Although in some cases the corresponding
Lagrangians are known, it may not always be possible to reduce a given planar system of
ODEs

ẋ = f(x, y, t), (1.1)

ẏ = g(x, y, t), (1.2)

to an equivalent second-order ODE. Therefore, the derivation of even a singular Lagrangian for
such a system will be interesting from the mathematical point of view. A singular Lagrangian
is one for which the Hessian matrix

H =

(
∂2L

∂ui∂uj

)
is singular. In such cases it is not possible to express the equation of motion in the form
ẍ = F (x, ẋ, t). For such singular Lagrangians the usual definition of the conjugate momentum
turns out to be velocity independent and consequently one can not define a Hamiltonian by
the usual process of a Legendre transformation.

The JLM is a useful tool for deriving an additional first integral for a system of n first-
order ODEs when n−2 first integrals of the system are known. Besides, the JLM allows us to
determine the Lagrangian of a second-order ODE in many cases [8, 9, 23, 4]. In recent years a
number of articles have dealt with this particular aspect [11, 15, 2]. However, when a planar
system of ODEs cannot be reduced to a second-order differential equation the question of inter-
est arises whether the JLM can provide a mechanism for finding the Lagrangian of the system.

In an interesting paper Nucci and Tamizhmani [16] showed that the method used by
Trubatch and Franco in [21] and Paine [17] for finding Lagrangians of certain representative
biological models actually relies on the existence of a JLM. Nucci et al have re-derived the
linear Lagrangians of these first-order systems using JLM. They have also obtained the La-
grangians of the corresponding single second-order equations which the earlier authors had
failed to do, for example in the case of the host-parasite model.

In this article we apply JLM to find the Lagrangian and the Hamiltonian of certain
systems of differential equations which appear in spatio-temporal studies and in biology. It
may be noted that a variational problem with a Lagrangian L and configuration space Q
may fail to satisfy the Legendre condition, i.e., the fibre derivative map FL : TQ → T ∗Q
may fail to be a local diffeomorphism. Therefore direct Hamiltonization of a nonlinear system
based on the JLM [1, 7] offers a distinct advantage over the usual process using Legendre
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transformations. In fact it also yields the canonical coordinates in terms of which one can
express the underlying system in canonical form. A similar though more restricted result is
given by Lucey and Newman [10], who have shown that for a given system of autonomous
ODEs there exists, locally at least a symplectic structure and a Hamiltonian function such
that the given system of equations can be expressed in Hamiltonian form. In this article we
apply the last multiplier to obtain the Hamiltonians of the Gierer-Meinhardt model [5], an
activator-inhibitor model. In one of his seminal papers Turing [22] showed that differences
in the diffusion constants of activator and inhibitor species can bring about destabilization
of the uniform state and lead to spontaneous emergence of periodic spatial patterns. Turing
patterns emerge in various areas of biological systems. The basic idea behind Gierer-Meinhardt
system is the so called diffusion-driven instability, originally due to Turing, which asserts
that different diffusion rates could lead to nonhomogeneous distributions of the reactants.
Gierer and Meinhardt developed a model of two coupled reaction-diffusion equation for the
production and diffusion of two different kinds of substances, called the activator and inhibitor
(see for example, [18]). Let u(t, x) and v(t, x) stand for the concentration of the activator and
inhibitor at (x, t) respectively, then the so called Gierer-Meinhardt model of morphogenesis is

ut = Duuxx + ρρ0 + λρ
u2

v
− bu ,

vt = Dvvxx + λ′ρ′u2 − cv , (1.3)

where Du and Dv are the diffusion constants of the activator and inhibitor, ρρ0 stands for
the sourse concentration for the activator and ρ′ is the one for the inhibitor, b and c are
respectively denote the degradation coefficients of the activator and inhibitor, λ and λ′ are
related to activator and inhibitor productions.

Granero-Porati and Porati [6] considered the ODE version of the Gierer-Meinhardt
model in the form

u̇ = ρρ0 + λρ
u2

v
− bu ,

v̇ = λ′ρ′u2 − cv . (1.4)

In the following we will deduce a Lagrangian and the corresponding Hamiltonian for this
system of equations. It is well known that vector fields whose flows preserve a symplectic
form up to a constant, such as simple mechanical systems with friction, are called conformal.
The Duffing oscillator being a typical example of this class. In fact, interestingly enough, the
system (1.4) also turns out to be a conformal Hamiltonian system [12, 14].

From the point of view of applications, the activator-inhibitor equations play a very
important role in the study of Turing pattern formation which provides a credible theoretical
explanation of animal coat patterns (see for example [13]). In an interesting paper Wojkowski
and Liverani [24] have studied the Lyapunov spectrum in locally conformal Hamiltonian sys-
tems. Furthermore, it was demonstrated that Gaussian isokinetic dynamics, Nośe-Hoovers
dynamics and other systems can also be studied through locally conformal Hamiltonian sys-
tems. In this paper we wish to focus on the dynamical aspects of these equations. We compute
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the Lagrangian and Hamiltonian of these equations. The paper is organized as follows. In
Section 2 we describe the Jacobi Last Multiplier (JLM) formulation for singular Lagrangian
equations illustrating our construction through examples. Section 3 is devoted to the Hamil-
tonian formulation of such singular activator-inhibitor type systems.

2 Preliminaries

Let us briefly recall the procedure described in [16] for finding Lagrangians for a planar system
of ODEs from a knowledge of the last multiplier. We assume that the system (1.1) and (1.2)
admits a Lagrangian and class of systems which we wish to deal in this paper are linear or
affine in velocities, so that

L(t, x, y, ẋ, ẏ) = F (t, x, y)ẋ+G(t, x, y)ẏ − V (t, x, y). (2.1)

Then the Euler-Lagrange equations of motion

d

dt

(
∂L

∂u̇

)
=
∂L

∂u
, with u = x and y

yield

ẏ =

(
Ft + Vx
Gx − Fy

)
= g(t, x, y), (2.2)

and

ẋ = −
(
Gt + Vy
Gx − Fy

)
= f(t, x, y), (2.3)

where the subscripts on F,G and V denote partial derivatives while the overdot represents
derivative with respect to time. It is obvious that one must have Gx 6= Fy. In order to
introduce the notion of Jacobi’s last multiplier we assume that Gx = −Fy and assign a
common value,

µ(t, x, y) := Gx = −Fy. (2.4)

From (2.2) and (2.3) we have

2µf(t, x, y) = −(Gt + Vy) (2.5)

2µg(t, x, y) = (Ft + Vx). (2.6)

It is clear that the construction

∂

∂x
(2µf) +

∂

∂y
(2µg)

leads to the following equation,

d

dt
log µ+

∂f

∂x
+
∂g

∂y
= 0. (2.7)
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using the original system of ODEs ẋ = f and ẏ = g. However, (2.7) is precisely the defining
relation for JLM [23]. Thus we see that given the solution of this equation one can easily
construct from (2.4) the coefficient functions F and G occurring in the expression for the
Lagrangian since

F (t, x, y) = −
∫
µ(t, x, y)dy and G(t, x, y) =

∫
µ(t, x, y)dx. (2.8)

Once these functions are determined one can obtain an expression for the partial derivatives
of V from (2.2) and (2.3) as follows

∂V

∂x
= 2µ(t, x, y)g(t, x, y) +

∂

∂t

(∫
µdy

)
, (2.9)

∂V

∂y
= −2µ(t, x, y)f(t, x, y)− ∂

∂t

(∫
µdx

)
. (2.10)

In view of (2.7) it is easy to check the equality of the mixed derivatives,

∂2V

∂x∂y
=

∂2V

∂y∂x
.

2.1 Illustrations of finding Lagrangians using JLM

In this section we demonstrate the construction of the Lagrangians for spatio-temporal au-
tocatalysis system and the celebrated Gierer-Meinhardt model, these are all autocatalytic
systems. We apply Jacobi’s last multiplier method to compute there Lagrangians.

2.1.1 Lagrangians for Spatio-temporal autocatalysis system

The following is an example of an auto-catalysis and activator inhibitor system.

ẋ =
a

b+ y
− cx := f(x, y) (2.11)

ẏ = dx− hy := g(x, y). (2.12)

From the defining relation (2.7) for the last multiplier, we have

d

dt
log µ− (c+ h) = 0,

which gives µ = e(c+h)t. It must be noted that µ is not necessarily a purely temporal function,
µ is defined up to a factor that is a constant of motion. It follows that the functions G(x, y)
and F (x, y) are given by

G(x, y) = xe(c+h)t, F (x, y) = −ye(c+h)t. (2.13)
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From (2.9) and (2.10) we have therefore

∂V

∂x
= 2e(c+h)t(dx− hy)

∂V

∂y
= −2e(c+h)t(

a

b+ y
− cx)

whence from the equality of the mixed derivatives we obtain the condition c + h = 0. Using
this condition the expression for the potential term becomes

V (x, y) = 2cxy − 2a log(b+ y) + dx2

and hence a Lagrangian for the reduced system

ẋ =
a

b+ y
− cx, ẏ = dx+ cy

is given by
L = xẏ − yẋ+ 2a log(b+ y)− dx2 − 2cxy. (2.14)

Notice that the condition c+ h = 0 causes the last multiplier to reduce to unity.

2.1.2 Lagrangians for the Gierer-Meinhardt model

Our second example is provided by the following system

u̇ = a− bu+
u2

v
, v̇ = u2 − v, (2.15)

which is known as the Gierer-Meinhardt model. Here u is a short-range autocatalytic sub-
stance, i.e., activator, and v is its long-range antagonist, i.e., inhibitor. In other words, this
scheme considers autocatalytic activation of chemical u and self inhibitation of v. The model
was formulated by Alfred Gierer and Hans Meinhardt in 1972 [5].

From the defining relation (2.7) for the last multiplier, we find that when the parameter
a = 0 the multiplier is given by

µ =
1

u2
e(1−b)t.

In this case proceeding in the same manner as above one finds that a consistent expression for
the potential term exists provided the parameter b = 1 and the final expression for a singular
Lagrangian may be given by

L =
v

u2
u̇+

1

u
v̇ + 2(u+

v

u
− log v), (2.16)

under the condition a = 0 and b = 1. The reduced system therefore has the appearance

u̇ = −u+
u2

v
, v̇ = u2 − v. (2.17)
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3 Time dependent Hamiltonian systems and the Jacobi

Last Multiplier

Let M denote a real two dimensional manifold with local coordinates x and y. Consider the
following non autonomous system of differential equations:

ẋ = f(x, y, t), ẏ = g(x, y, t), (3.1)

where f and g are smooth real valued functions. We can associate with the system (3.1) the
following:
(a) a vector field

X :=
∂

∂t
+ f

∂

∂x
+ g

∂

∂y

defined onM×R whose integral curves are determined by the system (3.1), (b) alternatively
we may consider the following set of one forms on M× R

α(1) := dx− f(x, y, t)dt, α(2) := dy − g(x, y, t)dt

and finally, (c) a two-form on M× R given by

α(1) ∧ α(2) = dx ∧ dy + (fdy − gdx) ∧ dt.

The classical Poincaré-Cartan form [19, 20] for a Hamiltonian H is given in the standard
extended phase space coordinates {t, qi, pj 1 ≥ i, j ≥ n}, by

Θ = pidq
i −Hdt. (3.2)

The Poincaré-Cartan form consists of two terms - the standard “symplectic” 1-form pidq
i and

the Hamiltonian term. The duality between the Hamiltonian and Lagrangian formulations
is well known by means of the Legendre transformation. Let L : R × TQ → R be a non-
autonomous Lagrangian. Let us recall that the Legendre transformation FL : R × TQ −→
R×T ∗Q, is a fibre derivative. Given f ∈ C∞(TQ,R) and a restriction fq := f |TqQ to the fibre
over q, the fibre derivative of f is a mapping defined by

FL(f) : TQ→ T ∗Q, FL
(
f(q, q̇)

)
:= Dfq(q̇).

The function f is said to be hyperregular if FL(f) is a diffeomorphism. Therefore a Legendre
transformation is locally given by

FL(t, qi, q̇j) ≡ (t, qi, FL(q̇j)) = (t, qi, pi = ∂L/∂q̇).

In terms of the jet coordinates {t, qi, q̇j} the one form Θ has a Lagrangian of the form

Θ = Ldt+
∂L

∂q̇i
(
dqi − q̇idt

)
. (3.3)
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When L is hyperregular, i.e., FL is a diffeomorphism, then in such a situation both for-
mulations are completely equivalent. Our focus here is on the Hamiltonian formulation. In
Hamiltonian coordinates we have

dΘ =
(
dpi +

∂H

∂qi
dt
)
∧
(
dqi − ∂H

∂pi
dt
)

so the differential system takes the well-known Hamiltonian form

dpi +
∂H

∂qi
dt = 0, dqi − ∂H

∂pi
dt = 0.

In other words, if (3.1) admits a Hamiltonian description then

q̇ =
∂H

∂p
, ṗ = −∂H

∂q
. (3.4)

An alternative description is given in terms of the Euler vector field

XE =
∂

∂t
+
∂H

∂p

∂

∂q
− ∂H

∂q

∂

∂p
, (3.5)

defined by
iXE

dΘ = 0 and iXE
dt = 1. (3.6)

Thus XE = ∂
∂t

+ XH , where XH is the standard Hamiltonian vector field defined by the
canonical symplectic form ω = dp ∧ dq. In fact the first equation yields the Hamiltonian
equation in the following form

dH + iXH
ω = 0.

3.1 Jacobi’s last multiplier and Hamiltonians

Our basic aim is to study the generalization of Hamiltonian mechanics and to construct an
exact expression for dH using Jacobi’s last multiplier. The algorithm to be employed for this
purpose is based on an application of the exterior algebra and is described below. Let

β(1) := dq − ∂H

∂p
dt, β(2) := dp+

∂H

∂q
dt. (3.7)

Clearly the two-form

Ω := β(1) ∧ β(2) = dq ∧ dp+ (dH − ∂H

∂t
dt) ∧ dt = dq ∧ dp+ dH ∧ dt, (3.8)

and is closed. It is obvious that when (3.1) is expressible in the form of (3.4) then the two-
form α(1) ∧ α(2) must be proportional to the closed two-form β(1) ∧ β(2), so that there exists a
function σ(x, y, t) such that

σ−1[dx ∧ dy + (fdy − gdx) ∧ dt] = [dq ∧ dp+ dH ∧ dt]. (3.9)
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Since the two-form on the rhs is necessarily closed it follows that we must have

σ−1

(
∂σ

∂t
+ f

∂σ

∂x
+ g

∂σ

∂y

)
=

(
∂f

∂x
+
∂g

∂y

)
. (3.10)

The last equation may be written as

d log σ

dt
=

(
∂f

∂x
+
∂g

∂y

)
,

and a comparison with (2.7), the determining equation for the JLM, shows that σ−1 = µ.
Hence from (3.9) we see that the existence of σ satisfying (3.10) implies that

σ−1(fdy − gdx) = dH + terms proportional to dt, (3.11)

provided ∂σ
∂t

= 0. The latter condition being true for autonomous differential equations.

For nonautonomous cases satisfying (3.9) form one must modify (3.11) by introducing
two auxiliary functions ψ and φ [1] such that

σ−1((f − ψ)dy − (g − φ)dx) = dH + terms proportional to dt, (3.12)

when ∂σ
∂t
6= 0. This essentially removes the explicit time-dependent terms and allows for

the construction of a Hamiltonian for the remaining autonomous part. However, the time
dependence is not altogether lost; it being manifested in the the data of the new coordinates.

Note that (3.12) implies

∂

∂x

(
σ−1(f − ψ)

)
+

∂

∂y

(
σ−1(g − φ)

)
= 0. (3.13)

It will now be observed that one may write (3.9) in the following manner

σ−1[dx∧dy+(fdy−gdx)∧dt] = σ−1[(dx−ψdt)∧ (dy−φdt)+(f −ψ)dy∧dt− (g−φ)dx∧dt],

which in view of (3.12) becomes

σ−1[dx ∧ dy + (fdy − gdx) ∧ dt] = σ−1(dx− ψdt) ∧ (dy − φdt) + dH ∧ dt. (3.14)

But a comparison of (3.14) with (3.9) shows that

σ−1(dx− ψdt) ∧ (dy − φdt) = dq ∧ dp. (3.15)

In view of (3.10) and (3.13) it is clear that the lhs of (3.15) is indeed closed. Thus the
problem of recasting (3.1) into the form of Hamilton’s equations reduces to a determination
of the auxiliary functions φ and ψ such that H is identified from (3.12). As for the canonical
variables q and p these are to be identified from (3.15) once φ and ψ are known and σ has
been obtained by solving (3.10). We illustrate the application of the above procedure with a
few examples.
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4 Hamiltonians of some systems of ODEs appearing in

biology

Let (M,ω) be a symplectic manifold, where M is a differentiable manifold endowed with a
symplectic form ω. Consider a diffeomorphism φ such that φ∗(ω) = kω, where k ∈ R. Let
the vector field Γ be the generator of a one-parameter group of canonical transformations
φ∗ε(ω) = k(ε)ω. Then, there exists a real number a 6= 0 such that Lie derivative of the
dynamical vector field Γ satisfies LΓω = aω, with k and a related by k(ε) = exp(aε). In this
section we analyse Hamiltonian structure of both the activator-inhibitor systems. In the first
case we map it to conformal Hamiltonian dynamics, but the Gierer-Meinhardt case yields
almost conformal Hamiltonian structure.

4.1 Autocatalysis system and conformal Hamiltonian Systems

Let us start our analysis with the autocatalysis system. One can check directly that Lie
derivative of the dynamical vector field of the autocatalysis system satisfies LΓω = (c + h)ω,
hence Γ is said to be conformal vector field with parameter c+h. When we impose c+h = 0,
Γ becomes symplectic or Hamiltonian vector field. When we restricted to the symplectic case,
i.e., c = −h, the associated Hamiltonian is given by

H = a log(b+ y)− dx
2

2
− cxy, (4.1)

with standard Poisson Brackets {x, y} = 1 with the equations of motion given by

ẋ = {x,H} =
∂H

∂y
=

a

b+ y
− cx

ẏ = {y,H} = −∂H
∂x

= dx+ cy.

When the manifold is R2 with coordinates (x, y) and ω = dx∧ dy, the conformal vector
fieldsthose whose flow is conformalhave the form:

ẋ =
∂H

∂y
, ẏ = −∂H

∂x
+ κy

where H : R2 → R is the Hamiltonian. Their flow has the property φ∗ω = eκtω, so the
symplectic inner product of any two tangent vectors contracts exponentially if κ < 0. If ω
is an locally symplectic structure (l.c.s.) then two l.c.s. ω and ω′ = eκtω are conformally
equivalent.

Thus general activator-inhibitor system can be expressed

ẋ =
∂H

∂y
, ẏ = −∂H

∂x
− (c+ h)y.
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Given H ∈ C∞(M), the vector field Γ ( or Xc
H- usual notation) satisfies

iXc
H
ω = dH − (c+ h)θ, θ = ydx

is conformal. The conformal vector field is given by XH + (c + h)Z, where Z is defined by
iZω = −θ. Here it turns out Z = y∂y.

4.2 The Gierer-Meinhardt model and almost conformal Hamilto-
nian structure

At first we study b = 1 case, then the integrating factor becomes µ = u−2. Consider planar
Hamiltonian system

u̇ = J(u, v)Hv, v̇ = −J(u, v)Hu,

where J is associated with the symplectic structure. Using last multiplier equation we obtain

d

dt
log µ+

J̇

J
= 0,

which yields µ = 1
J

. Thus symplectic matrix is given by

J =

(
0 µ−1

−µ−1 0

)
.

Thus only multiplying with the inverse integrating factor µ−1 = u2 admits a Hamiltonian
structure

H = log v − u− v

u
, (4.2)

with fundamental Poisson Brackets given by

{u, u} = {v, v} = 0, {u, v} = µ−1 = u2. (4.3)

In general for any arbitrary nonsingular function f(u) it is possible to change the nonstandard
Poisson structure to standard Poisson structure by substituting v 7−→ f−1(u)v. Then the
“new” Poisson bracket satisfies

{u, v}f = f−1(u){u, v} = 1.

It is now easy to verify that the Hamiltonian ( for nonstandard Poisson structure)
equations

u̇ = {u,H} = u2∂H

∂v
= −u+

u2

v
, (4.4)

v̇ = {v,H} = −u2∂H

∂u
= u2 − v, (4.5)
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reproduce the equations of the reduced system (2.17). Furthermore as dH/dt = 0 the Hamil-
tonian H is also a first integral of the reduced system (2.17). The Poisson structure associated
with (4.3) is called nonstandard Poisson structure. It is clear that the equations (4.4) and (4.5)
are not divergence free. The multiplication by the JLM µ yields volume preserving condition

2∑
i=1

∂

∂wi
µ
dwi
dt

= 0, where wi = u, v,

so the phase space volume is preserved.

Let µ be the multiplier and the dynamical vector field associated to b = 1 Gierer-
Meinhardt equation is given by

Γ = (−u+
u2

v
)
∂

∂u
+ (u2 − v)

∂

∂v
. (4.6)

We consider transformation of vector field Γ corresponding to the transformation of Poisson
bracket, Γ 7−→ µΓ, which satisfies

iµΓΩ = dH, where Ω = du ∧ dv. (4.7)

Here µ can be identified with the inverse integrating factor. The terminology “integrating
factor” for the function V comes from the fact that 1/V is an integrating factor for the vector
field Γ, i.e., that V Γ is divergence-free. These allow the use of techniques from the theory of
(local) Hamiltonian differential equations.

The vector field Γ̃ associated to the general equation satisfies

iµΓ̃Ω = dH − (b− 1)
dv

u
. (4.8)

Hence the conformal vector field can be decomposed into

µΓ̃ = XH − (b− 1)u−1 ∂

∂u
, (4.9)

where

XH = (−1

u
+

1

v
)
∂

∂u
+ (1− v

u2
)
∂

∂v
. (4.10)

Thus we give a Hamiltonian description of the Gierer-Meinhardt model.

5 Conclusion

In this paper we have studied the Hamiltonization of systems of equations appearing in acti-
vator and inhibitor model. The Hamiltonians described here are true in the sense that they
allow us to reproduce the original equations through the standard Hamilton equations. This
method described here is specifically suited for systems which are intrinsically described by
singular Lagrangians. There are some open problems popped up from this paper, it would
be nice to study this formulation for other activator-inhibitor models. In particular, we wish
to study a model commonly referred to as the Thomas model [13], proposed in 1975, it is an
empirical model based on a specific reaction involving uric acid and oxygen.
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