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ABSTRACT

We study generalized matrix models corresponding to n-point Virasoro conformal
blocks on Riemann surfaces with arbitrary genus g. Upon AGT correspondence, these
describe four dimensional N = 2 SU(2)n+3g−3 gauge theories with generalized quiver
diagrams. We obtain the generalized matrix models from the perturbative evaluation of
the Liouville correlation functions and verify the consistency of the description with
respect to degenerations of the Riemann surface. Moreover, we derive the Seiberg-
Witten curve for the N = 2 gauge theory as the spectral curve of the generalized
matrix model, thus providing a check of AGT correspondence at all genera.
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1 Introduction

The distinctive feature of M-theory is the description in geometrical terms of non-perturbative
phases of superstrings. This approach is very effective for local geometries, where the dynamics
of gravitational degrees of freedom gets decoupled and we gain a framework for the description
of non-perturbative gauge theory dynamics. M-theory beautifully encodes the Seiberg-Witten ge-
ometry of four dimensional N = 2 theories in terms of M5-brane compactifications [1, 2, 3]. In
particular in [3] a full class of generalized quiver gauge theories has been described in terms of
multiple M5-brane systems covering a generic punctured Riemann surface Cg,n. For example, for
C0,n and C1,n one recovers Witten’s constructions of linear and circular quivers in the appropriate
degeneration limits.

In this context a very intriguing relation between the partition function of four dimensional
SU(2) superconformal N = 2 gauge theories [4] and Liouville theory on Cg,n has been discovered
in [5]. This proposal has been subject of intensive investigations and refinements from different
viewpoints. Evidence for this conjecture as well as complete proofs for some cases can be found
in [6, 7]. Extensions to higher rank gauge groups and Toda field theories were introduced and
discussed in [8]. The refinement of the correspondence in presence of gauge theory observables
has been presented and studied in [9, 10]. Moreover, some arguments for the derivation of the
AGT correspondence were proposed in the M-theory context in [11] and via matrix models in
[12, 13, 14, 15, 16, 17, 18].
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Here we would like to address this correspondence from a complementary point of view, ex-
plaining how to recover the geometry of the M-theory set-up and the Seiberg-Witten data starting
from the analysis of Liouville theory in the wildest generality. To this end we derive a generalized
matrix model from Liouville theory on Cg,n and study its large N limit recovering the gauge theory
Seiberg-Witten curve as its spectral curve. This provides a check of the AGT conjecture at all
genera.

In Section 2 we derive the generalized matrix model – as extended Selberg integrals – starting
from the Coulomb gas representation of the residues of the perturbative Liouville theory correla-
tors. The matrix model potential that we get has the form anticipated by [12] and in the elliptic
case it coincides with the one derived in [17].

In Section 3 we discuss the stability of this picture and its consistency with respect to the
degeneration of the curve Cg,n in general and present the degenerations of punctured tori as an
explicative example.

In Section 4 we analyze the large N limit and show how, by consistently adapting to our case
the standard matrix model techniques, one gets a spectral curve in terms of quadratic differentials
on Cg,n precisely reproducing the Seiberg-Witten curve and differential proposed in [3].

We leave our concluding remarks to Section 5 and devote an Appendix to the detailed study of
the degenerations of the C2,0 Seiberg-Witten data.

2 From Liouville theory to generalized matrix model

In this section we derive the generalized matrix model which corresponds to the n point conformal
block on a Riemann surface Cg of genus g. We derive it from the perturbative calculation of the
correlation function of the Liouville theory by following the discussion in [19].

The n-point function of the Liouville theory on Cg is given by the following path integral

A ≡

〈
n∏

k=1

e−2mkφ(wk,w̄k)

〉
Liouville on Cg

≡
∫

Dφ(z, z̄)e−S[φ]

n∏
k=1

e−2mkφ(wk,w̄k), (2.1)

where the Liouville action is given by

S[φ] =
1

4π

∫
d2z

√
g(gab∂aφ∂bφ + QRφ + 4πµe2bφ). (2.2)

We divide the Liouville field into the zero mode and the fluctuation φ(z, z̄) = φ0 + φ̃(z, z̄), obtain-
ing

A =

∫
Dφ̃e−S̃

n∏
k=1

e−2mkφ̃(wk,w̄k)

∫ +∞

−∞
dφ0e

−µe2bφ0
R

d2z
√

ge2bφ̃

e−
Qφ0
4π

R

d2z
√

gRe−2φ0
P

k mk , (2.3)
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where

S̃ =
1

4π

∫
d2z

√
g(gab∂aφ̃∂bφ̃ + QRφ̃). (2.4)

We can integrate out the zero mode φ0 as∫ +∞

−∞
dφ0 e−µe2bφ0

R

d2z
√

ge2bφ̃

e−2(g−1)Qφ0e−2φ0
P

k mk =
µNΓ(−N)

2b

(∫
d2z

√
ge2bφ̃

)N

, (2.5)

where we have used
∫

d2z
√

gR = 4πχ = 8π(1 − g) and N is defined as

N ≡ 1

b

∑
k

mk +
Q

b
(1 − g). (2.6)

Therefore, the n-point function can be written as

A =
µNΓ(−N)

2b

∫
Dφ̃e−S̃

(∫
d2z

√
ge2bφ̃

)N n∏
k=1

e−2mkφ̃(wk,w̄k). (2.7)

When N ∈ Z≥0, the correlator diverges due to the factor Γ(−N). The residues AN at these simple
poles are computed then in perturbation theory in b around the free scalar field action (2.4). From
now on, our convention is that

〈. . .〉free on Cg
=

∫
Dφ̃e−

1
4π

R

d2z
√

ggab∂aφ̃∂bφ̃ . . . , (2.8)

which leads to

AN =
(−µ)N

2bN !

〈
e−

Q
4π

R

d2z
√

gRφ̃(z)

N∏
i=1

∫
d2zi

√
ge2bφ̃(zi)

n∏
k=1

e−2mkφ̃(wk)

〉
free on Cg

. (2.9)

The condition (2.6) ensures momentum conservation in the free theory.

Here we choose as a reference volume form d2z
√

g = |ω(z)dz|2 where ω(z) is the coefficient
of a reference holomorphic differential. This differential has 2g − 2 zeros, which we denote by ξI

(I = 1, · · · 2g − 2). Then, the first factor in the expectation value of (2.9) becomes

Q

2π

∫
d2z φ̃(z)∂∂̄log |ω|2 =

Q

2π

∫
d2z φ̃(z)

2g−2∑
I=1

(2π)δ2(z − ξI) = Q

2g−2∑
I=1

φ̃(ξI), (2.10)

where we have used R = −(2/
√

g)∂∂̄log
√

g. Thus, we obtain

AN =
(−µ)N

2bN !

〈
2g−2∏
I=1

eQφ̃(ξI)

∫ N∏
i=1

d2zi|ω(zi)|2e2bφ̃(zi)

n∏
k=1

e−2mkφ̃(wk)

〉
free on Cg

. (2.11)
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The `-point function of the free theory on Cg is given in the factorized form as [20, 21, 22]〈∏̀
i=1

eikiφ(zi,z̄i)

〉
free on C

= (detImτ)1/2 δ(
∑

i

ki) ×

∫ ∞

−∞

g∏
a=1

dpa

∣∣∣∣∣∏̀
i=1

ω(zi)
−k2

i /4
∏
i<j

E(zi, zj)
kikj/2 exp

(
2πi
∑
a,b

papbτab + 2πi
∑
a,i

paki

∫ zi

ωa

)∣∣∣∣∣
2

.

(2.12)

where τab is the period matrix, E (zi, zj) is the prime form, {ωa} is a basis of normalized holomor-
phic one-forms, and pa is interpreted as the momentum flowing through the a-th A-cycle.

Using the explicit expression (2.12) for (2.9), we find that the residue AN of the n-point func-
tion of the Liouville theory reduces to the following integral

AN ∝
g∏

a=1

∫ +∞

−∞
dpa

∣∣∣∣∣exp

(
2πi
∑
a,b

papbτab + 2π
∑

a

pa

(
Q
∑

I

∫ ξI

ωa − 2
∑

k

mk

∫ wk

ωa

))∣∣∣∣∣
2

N∏
i=1

∫
d2zi|ω(zi)|2+2b2

∣∣∣∣∣exp

(
4πb

∑
a,i

pa

∫ zi

ωa

)∣∣∣∣∣
2

∣∣∣∣∣∏
i<j

E(zi, zj)
−2b2

∏
i,k

E(zi, wk)
2bmk

∏
I,i

E(ξI , zi)
−1−b2

∣∣∣∣∣
2

, (2.13)

up to zi-independent factors.

As in the torus case [17], it is not straightforward to factorize the integrals over the Riemann
surface into holomorphic and anti-holomorphic integrals for generic N . However this is easily
performed in the large N limit. Indeed, the last two-lines of (2.13) can be written as∫ ∏

i

d2zi |µe
b

gs
W |2 ∼ |

∫ ∏
dziµe

b
gs

W |2 (2.14)

where µ and W are

µ =

[
ω(zi)

1+b2
∏
i,I

E(zi, ξI)
−1−b2

] ∏
1≤i<j≤N

E(zi, zj)
−2b2

∏
i

E(zi, z
∗)2b

P

k mk/gs (2.15)

W =
N∑

i=1

(
n∑

k=1

2mk log
E(zi, wk)

E(zi, z∗)
+ 4π

g∑
a=1

pa

∫ zi

ωa

)
. (2.16)

where we have chosen a base point z∗ in order to split the measure from the potential and we have
rescaled the parameters as mk → mk/gs and pa → pa/gs. Notice that the term in the square
brackets in (2.15) is independent on the zeroes of the conformal factor, ensuring therefore that the
generalized matrix model correctly embodies the conformal symmetry of Liouville theory.
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The large N limit amounts to take gs → 0 keeping gsN , b, mk and pa finite. In this limit, the
conditions for the criticality are given by

b
∑
j 6=i

E ′(zi, zj)

E(zi, zj)
dzi −

n∑
k=1

mk
E ′(zi, wk)

E(zi, wk)
dzi − 2π

g∑
a=1

paωa(zi) = 0 (2.17)

where E ′(z1, z2) ≡ ∂z1E(z1, z2). The conditions obtained from the z̄i-derivatives are just the
complex conjugate of (2.17). It is remarkable that the conditions for criticality are separated into
holomorphic and anti-holomorphic equations, which implies that the integrals over the Riemann
surface in (2.13) can be factorized into holomorphic and anti-holomorphic integrals in the large N

limit as stated in (2.14). We are therefore left with the following matrix-like integral

Z
Cg,n

N (w, m, p, v) ≡∫ N∏
i=1

dzi

[
ω(zi)

1+b2
∏
i,I

E(zi, ξI)
−1−b2

] ∏
1≤i<j≤N

E(zi, zj)
−2b2

∏
i

E(zi, z
∗)2b

P

k mk/gs

× exp

(
b

gs

N∑
i=1

(
n∑

k=1

2mk log
E(zi, wk)

E(zi, z∗)
+ 4π

g∑
a=1

pa

∫ zi

ωa

))
, (2.18)

where w = {wk} , m = {mk}, p = {pa} and v = {να} are the filling fractions να ≡ bgsNα

which specify the holomorphic integral above. The integrand in (2.18) is a proper one-from in
each variable zi on the covering space of the Riemann surface due to momentum conservation
(2.6). The matrix model potential that we find is in the form anticipated by [12].

In order to count the number of moduli of our matrix model we should note that there are
n + 2g − 3 independent filling fractions: naively the number of critical points of the action is
2g − 2 + n + 1. However, there are constraints coming from the fact that we are free to move
the base point z∗ and that we have specified the residue at the base point as above by using the
momentum conservation. The latter is equivalent to the constraint on the sum of filling fractions∑

α να = bgsN . These constraints reduce the number of moduli by two, thus giving the correct
counting. The paths of the integrals are defined such that only the solution of (2.17) labeled by
the fixed filling fractions {να} contributes to the integrals. The measure factor in (2.18) can be
regarded as a generalization of the Vandermonde determinant. The differential dz∂zW has simple
poles with residues ({2mk},−2

∑
k mk) at the points (wk, z

∗).

The integral in (2.13) is then obtained by integrating (2.18) and its complex conjugate over the
filling fractions. Thus, in the large N limit, AN becomes

AN =

∫ ∞

−∞

g∏
a=1

dpa

∫ n+2g−3∏
k=1

dνk

∣∣∣∣∣
( ∏

1≤k<l≤n

E(wk, wl)
−2mkml/g2

s

)
(2.19)

exp

(
2πi

g∑
a=1

g∑
b=1

paτabpb − 4π
n∑

k=1

g∑
a=1

mkpa

∫ wk

ωa

)
Z

Cg,n

N (w, m, p, v)

∣∣∣∣∣
2

.
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At the level of the generalized matrix model, the filling fractions να are free parameters. Together
with pa (a = 1, . . . , g) which are independent parameters in the potential, we have totally n+3g−3

independent moduli which are identified with the internal momenta in the Liouville conformal
block and then with the Coulomb moduli of the gauge theory. Under this identification, we see
from (2.19) that Z

Cg,n

N (w, m, p, v) is proportional to the conformal block of Liouville theory [23].

3 Degenerations

To study the behavior of the generalized matrix model when approaching perturbative corners
in the space of gauge couplings, we have to study what happens when we degenerate Cg,n. The
degeneration is usually described by using the plumbing fixture decomposition of the curve. Let
Ut be the annulus

Ut = {(z, w)|zw = t; |t| < |z| < 1; |t| < |w| < 1}

which as t ∼ 0 describes the squeezed cylinder. The curve undergoes the decomposition Cg,n =

Cg−1,n,2 ∪Ut when the degeneration is of pinching type and Cg,n = Cg1,n1,1 ∪Ut ∪Cg2,n2,1 with g1 +

g2 = g and n1+n2 = n, with 1−2gi−ni < 0, when the degeneration is dividing. The components
Cg,n,h are here Riemann surfaces with genus g, n punctures and h non overlapping disks removed
which will become the punctures in the degeneration limit. The fact that the holomorphic integrals
react correctly under the degeneration of the curve Cg,n is a remnant of the analogous property of
the conformal field theory [24] and is indeed a consequence of the construction we performed in
the previous section. We assume the shrinking cycle do not intersect the contour system along
which (2.18) is evaluated.

Let us focus on the dividing case first. In this case the prime form E(z, z′) behaves as follows.
If both its arguments belong to a given same component, the prime form reduces to the prime
form on that component, while if its arguments belong to different components, then E(z′, z′′) ∼
E1(z

′, P1)E2(P2, z
′′)t−1/2, where P1,2 correspond to the punctures created by the dividing. To see

what the prime form degeneration implies for the generalized matrix model measure and potential,
we have to split the integration contours in components according to the dividing decomposition.
This splits the {zi} in two sets according to which components of the contour they are integrated
along, namely N ′ of them on the first component and N ′′ on the second with N = N ′ + N ′′.
Correspondingly, also the puncture set will split in two subsets w = w′∪w”, one for each component.
By using the above degeneration formulas for the prime form and the fact that the holomorphic
harmonic differentials ωa reduce to the ones relative to the two splitting factors, we get that

Z
Cg,n

N (w, m, p, v) ∼ Z
Cg1,n1+1

N ′ (w′ ∪ P1, m
′ ∪ m∗

1, p
′, v′)Z

Cg2,n2+1

N ′′ (w′′ ∪ P2, m
′′ ∪ m∗

2, p
′′, v′′) (3.1)

where m∗
1 = bgsN

′−
∑

k′ mk′ +gsQ(g1−1) and m∗
2 = bgsN

′′−
∑

k′′ mk′′ +gsQ(g2−1) after using
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momentum conservation. In the computation of (3.1) one needs to count the two extra zeros for the
reference holomorphic differential to be placed at the location of the two resulting punctures. The
direct computation of the above mass formulas from the integral (2.18) indeed gives, for example,
m∗

1 = −bgsN
′′−g2gsQ+

∑
k′′ mk′′ where the first term comes from the generalized Vandermonde,

the second from the measure term in the square bracket and the third from the punctures. The
computation of m∗

2 is identical. Notice that m∗
1 + m∗

2 = −gsQ corresponding to the fact that the
two Liouville insertions generated at the punctures are conjugated and therefore the masses of the
two flavors at the two punctures Pi are equal. The conformal modulus which gets traded to the
mass is the total filling fraction between the two integrals. Formula (3.1) is valid for each dividing
degeneration such that g = g1 + g2, n = n1 + n2 with 1 − 2gi − ni < 0.

In the pinching case, the prime form restricts to the one of the degenerate surface together with
the holomorphic differentials with zero αg-cycle. The left over one scales as ωg(z) ∼ ∂z log E(z,P1)

E(z,P2)

up to O(t) terms. In this limit, since ω in the conformal factor has been chosen to be regular, two
of its zeroes will be at the two punctures generated at the pinching node and by direct computation
one gets

Z
Cg,n

N (w, m, p, v) ∼ Z
Cg−1,n+2

N (w ∪ {P1, P2}, m ∪ {m∗
+,m∗

−}, p̂, v) (3.2)

where p̂a are the momenta in the g − 1 left over handles and

m∗
± = −gsQ

2
± 2πpg, (3.3)

with pg the momentum in the squeezed one. The two contributions to the above mass formulas
arise respectively from the term in the square brackets in the measure and the second term in the
potential. Once again, the two masses at the generated punctures are Weyl conjugated m∗

+ +m∗
− =

−gsQ. In the pinching case the conformal modulus which is traded for the mass is the momentum
flowing in the squeezed handle. The formulas above are general and valid at finite N .

In the following subsection we will discuss in detail the punctured torus case as an illustration.
One could also study for example the punctured genus two case. This case is special since all
degenerations reduce to punctured tori ∗. We discuss some aspects of the Seiberg-Witten geometry
on genus two curves in the Appendix.

∗The dividing degeneration C2,n → C1,n′+1∪C1,n−n′+1 generates two punctured tori. Indeed, the genus two prime
form in such a degeneration reduces to the relevant θ-functions on the two tori since the period matrix at genus two
becomes diagonal in the degeneration limit. In the pinching case C2,n → C1,n+2, the genus two θ-function entering

the explicit expression of the prime from as E(z, w) =
θ(

R z
w

−→ω ,τ)√
ω�(z)

√
ω�(w)

contracts to the torus θ-function times a

contribution from the off-diagonal term of the period matrix which cancels in the degeneration limit the square-roots
of the abelian differentials appearing in the denominator of the prime form.
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3.1 Degenerations of punctured tori

In this subsection, we concentrate on the pinching degeneration of a torus which leads to a sphere
with two more punctures. Associated with the torus with n punctures we can consider a class of
quiver gauge theories [2, 3] whose particular weak coupling descriptions include a gauge theory
with circular quiver. Specifying a particular weak coupling description corresponds to choosing
a particular pants decomposition of the Riemann surface. This gauge theory will reduce in the
pinching of the torus to a linear quiver theory with n − 1 SU(2) gauge groups associated with a
sphere with n+2 punctures. In what follows, we verify that the generalized matrix model correctly
reduces to the Penner type matrix model on the sphere [12].

Since on the torus the canonical bundle is trivial, the choice of a base point is not needed. The
prime form is E(z, w) = θ1(z−w|τ)

θ′1(0|τ)
and therefore the generalized matrix model (2.18) reduces to

Z
C1,n

N ∼
∫ N∏

i=1

dzi

∏
i<j

θ1(zi − zj)
−2b2e

b
gs

P

i W (zi), (3.4)

up to zi-independent factors. The potential is

W (z) =
n∑

k=1

2mk log θ1(z − wk) + 8π2ipz, (3.5)

and

θ1(z) = 2 sin(πz)
∞∏

m=1

(1 − e2πizqm)(1 − e−2πizqm)(1 − qm), (3.6)

with q = e2πiτ . The momentum conservation is given by

−
n∑

k=1

mk + bgsN = 0. (3.7)

Also, the identification of the moduli of the torus and the gauge coupling constants of SU(2) gauge
groups qk is as follows [5, 17]:

e2πi(w1−w2) = q1, e2πi(w2−w3) = q2, . . . , e2πi(wn−1−wn) = qn−1, e2πiτ =
n∏

k=1

qk, (3.8)

which, by fixing wn = 0, leads to

e2πiwn−1 = qn−1 ≡ tn−1, e2πiwn−2 = qn−2qn−1 ≡ tn−2, . . . , e2πiw1 = q1 . . . qn−1 ≡ t1. (3.9)

The mass parameters and one of the Coulomb moduli correspond to mk and p respectively.
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Let us consider the pinching degeneration of the torus. We take Imτ → ∞ which corresponds
in the gauge theory to the decoupling limit of the n-th gauge group qn → 0. To consider the
behavior of the generalized matrix model in this limit, we first observe that the prime form reduces
as

(dz)−1/2(dw)−1/2 θ1(z − w)

θ′1(0)
→ (dz)−1/2(dw)−1/2 sin π(z − w)

π

= (dξ)−1/2(dζ)−1/2(ξ − ζ), (3.10)

where in the last line we have changed coordinates to ξ = e2πiz and ζ = e2πiw. It is straightforward
to see that the Vandermonde determinant of (3.4) reduces to that of the usual β-deformed matrix
model. The potential also reduces to

W (ξ) =
n∑

k=1

2mk log(ξ − tk) + 2(−gsQ/2 + 2πp) log ξ, (3.11)

where we have used (3.9) with tn = 1. Note that the first term corresponding to the momentum
at ξ = 0 comes from the measure factor ω(z)1+b2 of the generalized matrix model (2.18). By the
pinching, the punctures at ξ = 0 and ∞ are created. However, the latter disappeared from the
potential, which thus reduces exactly to the Penner type matrix model [12, 16] †

W (z) =
n−1∑
k=0

2mk log(z − tk) + 2mn log(z − 1), (3.12)

with the momentum conservation

−
n∑

k=0

mk − m∞ + bgsN = gsQ, (3.13)

where m∞ is the momentum inserted at infinity. The relation between the parameters tk and the
gauge couplings [16] (See also [7]) is the same as the one defined in (3.9) with t0 = 0. It follows
from (3.11) that m0 = −gsQ/2 + 2πp.

Let us then analyze the momentum conservation under this degeneration. On one hand, in the
original generalized matrix model, the conservation is described by (3.7). On the other hand, in
the Penner type one, the conservation is (3.13). The momentum at infinity is then

m∞ = −gsQ

2
− 2πp. (3.14)

These values of the momenta m0 and m∞ are the ones which were already derived in the generic
analysis of the previous section (3.3). Note that there is a slight difference between the momenta
m0 and m∞, which however disappears in the large N limit.

†The convention here is slightly different from the one in [12, 15, 16]. The momenta are related as 2m = mDV.
Our convention leads to the momentum conservation (3.13).
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The original generalized matrix model has n − 1 independent filling fractions να. Recall that
the overall

∑
α να = bgsN is constrained by the momentum conservation. Thus, by adding p, we

have n independent parameters which are identified with the vevs of the vector multiplet scalars.
The degeneration limit and the above argument mean that p in the action is the vev of the n-th
SU(2) vector multiplet scalar and some combinations of the filling fractions are the vevs of the
other SU(2) scalars.

4 Spectral curve of the generalized matrix model

In this section, we derive the spectral curve of the generalized matrix model (2.18) in the large N

limit and show that it coincides with the Seiberg-Witten curve of the corresponding gauge theory.

In the large N limit, the evaluation of (2.18) reduces to the calculation of the critical points.
The condition for criticality is given by

dW (zi) − 2bgs

∑
j 6=i

dzi
log

(
E(zi, zj)

E(zi, z∗)

)
= 0, (4.1)

where the potential W (z) is defined in (2.16) and we have used the momentum conservation (2.6).
Then, the genus zero prepotential, defined as exp (F/g2

s) ≡ Z, is given by

1

g2
s

F =
b

gs

∑
i

W (zi) − 2b2
∑
i<j

log

(
E(zi, zj)

E(zi, z∗)

)
, (4.2)

where each eigenvalue satisfies (4.1).

It is natural to assume that the eigenvalues are distributed in line segments around the critical
points of W (z), similarly to the usual matrix model. Indeed the second term in (4.2) reduces
locally to the standard Coulomb gas potential. We denote the line segments as Cα where α =

1, · · · , n + 2g − 2. We assume that Cα do not include the base point z∗ and the punctures wk,
at which the potential W (z) diverges. We denote by Nα the number of eigenvalues on the line
segment Cα, where Nα satisfies

∑n+2g−2
α=1 Nα = N .

Let us introduce the eigenvalue density current ρ(z) supported on {Cα} and normalized as∮
Cα

ρ(z) = bgsNα ≡ να. Using the variables introduced above, the prepotential and the condition
for criticality are written as

F =

∫
P

α Cα

ρ(z)W (z) −
∫

P

α Cα

∫
P

α Cα

ρ(z)ρ(z′) log
E(z, z′)

E(z, z∗)
, (4.3)

dW (z) − 2

∫
P

α Cα

ρ(z′)dz log

(
E(z, z′)

E(z, z∗)

)
= 0, (4.4)
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respectively. Here, z in (4.4) is on either of the line segment Cα and the integral is defined as the
principal integral.

In order to solve the above condition (4.4) , we define the following one form, which is the
generalization of the resolvent of the usual matrix model

R(z) ≡
∫

P

α Cα

ρ(z′)dz log

(
E(z, z′)

E(z, z∗)

)
, (4.5)

This “resolvent” is defined at generic points z on the Riemann surface contrary to the second term
in (4.4). Note that the resolvent as well as dW (z) are single-valued one-forms on the Riemann
surface. The resolvent has cuts at the line segments Cα and a simple pole at z∗. Also, the filling
fractions are obtained by integrating the resolvent along the cuts as

να =
1

2πi

∮
Cα

R(z). (4.6)

On the line segments Cα, the resolvent behaves as

R(z + iεeiϕ(z)) + R(z − iεeiϕ(z)) = 2P

∫
P

α Cα

ρ(z′)dz log

(
E(z, z′)

E(z, z∗)

)
= dW (z), (4.7)

R(z + iεeiϕ(z)) − R(z − iεeiϕ(z)) =

∮
z

ρ(z′)dz log

(
E(z, z′)

E(z, z∗)

)
= −2πiρ(z) (4.8)

where we take real number ε infinitely small and ϕ(z) is properly defined such that z + iεeiϕ(z)

or z − iεeiϕ(z) does not go across the cuts Cα when z moves along Cα. The integral in (4.7) is
principal integration, which is given as an average of integral along the path above the singularity
and that below the singularity. The resolvent should be determined such that (4.7) and (4.8) are
satisfied for z ∈ Cα. A candidate of the solution for (4.7) is

R0(z) =
1

2
dW (z). (4.9)

However, it does not reproduce the correct structure of singularity expressed in (4.8). We need
singular contributions:

R(z) =
1

2
dW (z) + R(z)sing, (4.10)

where (4.7) and (4.8) impose

R(z + iεeiϕ(z))sing + R(z − iεeiϕ(z))sing = 0. (4.11)

R(z + iεeiϕ(z))sing − R(z − iεeiϕ(z))sing = −2πiρ(z). (4.12)

The above discussion is valid for a generic potential W (z). In the following, we use its explicit
form (2.16) to determine the resolvent R(z). Then, we find that
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Rsing(z) =

∫
P

α Cα

ρ(z′)dz log

(
E(z, z′)

E(z, z∗)

)
−

n∑
k=1

mkdz log

(
E(z, wk)

E(z, z∗)

)
− 2π

g∑
a=1

paωa(z)

=

∫
P

α Cα

ρ(z′)dz log E(z, z′) −
n∑

k=1

mkdz log E(z, wk) − 2π

g∑
a=1

paωa(z) (4.13)

does not depend on the base point z∗, where we used the momentum conservation (2.6) and ignored
the subleading term in the large N expansion. We see that R(z)sing has cuts in the regions Cα and
simple poles with residues mk at z = wk. Moreover, it is independent on the base point z∗ as
expected.

From (4.11), we see that the sign of R(z)sing changes across the cuts. Therefore its square only
displays singularities at the punctures z = wk. From (4.13) we see that these are at most quadratic
poles with coefficients mk

2. The spectral curve of the generalized matrix model thus reads

Rsing(z)2 =
n∑

k=1

mk
2η(z, wk) + ζ(z) (4.14)

where η(z, wk) are quadratic Strebel differentials, with double pole at wk, and ζ(z) is a quadratic
differential which has at most simple poles at wk. ζ(z) is determined in terms of n + 3g − 3

parameters; in particular it depends on the n + 2g − 3 independent filling fractions να and the
g internal momenta pa. Thus, we find that the spectral curve (4.14) of the generalized matrix
model (2.18) and the meromorphic differential Rsing(z) coincide with the Seiberg-Witten curve
and differential of the corresponding gauge theory.

5 Conclusions

In this paper, we have shown that the perturbative analysis of Liouville correlation functions dis-
plays in the large N limit holomorphic factorization of the surface integrals and leads to generalized
matrix models, defined on the cover of Cg,n, which describe the relevant Virasoro conformal blocks.
We provided an all genera check of the AGT correspondence by obtaining the Seiberg-Witten data
from the saddle point analysis of these generalized matrix models.

We underline that the models presented in this paper could be useful for the exploration of the
full set of gauge theories with generalized quiver structure of [3]. Indeed, so far most of the analysis
of the AGT correspondence has been focused on the linear and elliptic quiver cases, mainly due to
the lack of calculational tools for higher genera. However, to fully exploit the generalized matrix
model approach one should be able to extend its analysis to finite N . This would amount to provide
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a full derivation at finite N of the holomorphic factorization, which in turn would give a precise
prescription for the contour integrals possibly extending the recipe of [18] to higher genera.

Moreover, for gauge groups of higher rank, which according to [12, 13] should correspond to
multi-matrix models, this approach could shed light on the description of strongly coupled sectors
naturally appearing in the general framework and not admitting a known lagrangian description.

Another very interesting issue to explore is the relation of the generalized matrix models with
the quantization of integrable systems [25, 10]. (See also [26].) In particular this could provide an
alternative derivation of the quantum Hamiltonians for Hitchin integrable systems and generalize
it to higher genera.
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Appendix

A Addendum: playing with genus 2 curves

A hyperelliptic curve Cg of genus g is given by the equation

y2 = P2g+2(x)

where P2g+2 is a polynomial of degree 2g + 2 and is realized ‡ in the total space of TP
g+1
2 .

As it is well known, all genus 2 curves are hyperelliptic. These are realized in general by a
sextic polynomial equation

y2 =
6∏

i=1

(x − ai) (A.1)

which we denote by C2.

‡Under conformal inversion x = 1/x′ on the Riemann sphere, the stability of the description is guaranteed by the

transformation y = y′x′−(g+1) = y′ ( ∂x
∂x′

) g+1
2 .
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The complex structure moduli M2,0 of genus two curves is then obtained by considering the
complex parameters {ai} modulo the action of the permutation group S6 and the PSL(2,C).

A basis of abelian differentials is given by ωa = xa−1dx
y

, a = 1, 2, while a basis of quadratic
differentials is given by φα = xα−1dx2

y2 , α = 1, 2, 3 [27].

The Seiberg-Witten (SW) geometry of the SU(2) theory at genus 2 is specified by a double
cover of C2 in T ∗C2. As such, this is specified by a general quadratic differential on C2 in the form

w2 = Φ2 (A.2)

where Φ2 =
∑

α Kαφα can be expanded in the Coulomb moduli Kα of the theory.

The perturbative expansions of the theory are available in the vicinity of the degeneration locus
of the moduli space, namely around

∂M̄2,0 = M̄1,1 × M̄1,1 ∪ M̄1,2 (A.3)

The second factor in (A.3) is still generically not lagrangian and has to be degenerated as ∂M̄1,2 =

M̄1,1 × M̄0,3 ∪ M̄0,4 to reach corners around which known lagrangian descriptions are available.
The first factor in (A.3), being given by two copies of the N = 2∗ SU(2) theory, is already
lagrangian. The first degeneration is dividing and the second one is pinching.

Let us discuss the dividing case in detail. This is reached by taking the limit in which three
branch points in (A.1) collide. To be concrete, let’s fix the position of two of them at 0 and ∞,
write our curve as

y2 = x(x − a1ε)(x − a2ε)(x − a3)(x − a4) (A.4)

and take the limit as ε → 0. The curve (A.4) becomes in the x coordinate

y2 = x3(x − a3)(x − a4)

which, redefining y = xỹ, reads

ỹ2 = x(x − a3)(x − a4) (A.5)

that is the torus with a puncture at x = 0.

Let us check now the SW geometry in the degeneration limit. The issue to discuss is just
the scaling of the Coulomb parameters in this limit. Notice that the degeneration is obtained by
contracting to zero two nearby branching points, therefore we are saturating a complex structure
modulus corresponding to a Beltrami differential µε with support around the origin of size ∼ ε.
This is dual to a holomorphic quadratic differential which, not to have a vanishing overlap integral
with µε should not be zero at x = 0. This is uniquely determined to be dx2

y2 . Therefore, along the
limit with ε → 0, the corresponding parameter in the SW curve has to scale away.

14



As a consequence of the above reasoning, exposing the ε-parameter, the SW curve is parametrized
as

w2 =
u′ε + m2x + ux2

y2
(dx)2 (A.6)

The degeneration of C2 is easily kept into account in the SW geometry which becomes

w2 =
m2x−1 + u

ỹ2
(dx)2 (A.7)

The standard parameterization of the punctured torus is in the coordinates where the puncture sits
at ∞. Therefore, we rewrite the elliptic curve (A.5) after the inversion x = 1

x′ to pull the puncture
at x′ = ∞ and redefine accordingly ỹ = 1

(x′)2
ỹ′. After this, the SW curve reads

w2 =
m2x′ + u

(ỹ′)2
(dx′)2

which we can put in the representation with respect to the periodic coordinate via the Weierstrass
parameterization§ x′ = P(z) + c and ỹ′ = d

dz
P(z) so that we stay with

w2 =
[
m2P(z) + (u + cm2)

]
(dz)2 (A.8)

which is the SW curve for a copy of the N = 2∗ theory.

The other copy corresponds to the other half in which the original genus 2 surface was split.
Let’s see how to get this second copy. In order to do it we have to consider the curve in the coordi-
nate appropriate for the other half, namely we have to change (A.4) to x = ε/x̂ and correspondingly
y = ŷ ε3/2

(x̂)3
after which we get

ŷ2 = x̂(1 − a1x̂)(1 − a2x̂)(ε − a3x̂)(ε − a4x̂) . (A.9)

(A.9) becomes after the degeneration limit the curve

ŷ2 = x̂3(1 − a1x̂)(1 − a2x̂)(a3a4)

which we bring to the form of a punctured torus by redefining ŷ = ˜̂yx̂ and get

˜̂y
2

= x̂(1 − a1x̂)(1 − a2x̂)(a3a4) .

Let’s follow now what happens to the SW curve (A.6) in the x̂ patch. This becomes

w2 =
u′ + m2x̂−1 + uεx̂−2

ŷ2
(dx̂)2 (A.10)

§The constant c needs to bring (A.5) to the standard Weierstrass form where the quadratic term vanishes and can
be computed explicitly.
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which in the limit ε → 0 has the same form of (A.7), but referring to the second punctured torus
with an independent Coulomb parameter u′. So, following the same procedure leading to (A.8),
we get the second copy of N = 2∗ with an independent gauge coupling and Coulomb parameter
but the same mass as the first.

A pinching of the genus 2 curves (A.4) can be obtained by letting ε → a3

a2
for example. In such

a case the curve gets to
y2 = x(x − a1a3/a2)(x − a3)

2(x − a4) (A.11)

which is, after renaming y = ỹ(x − a3), the twice punctured torus

ỹ2 = x(x − a1a3/a2)(x − a4). (A.12)

Correspondingly, the holomorphic quadratic differential entering the Seiberg-Witten curve
(A.6) becomes

Φ2 →
u′a3/a2 + m2x + ux2

(x − a3)2ỹ2
(dx)2 (A.13)

which explicitly displays quadratic poles at the two images of x = a3 with equal coefficients.
This coefficient is actually fixed by the Coulomb parameter corresponding to the ungauged group
SU(2) at the end of the shrinking of the handle.
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