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The interactions of gravitons with spin-1 matter are calculated in parallel with the well known
photon case. It is shown that graviton scattering amplitudes can be factorized into a product
of familiar electromagnetic forms, and cross sections for various reactions are straightforwardly
evaluated using helicity methods. Universality relations are identified. Extrapolation to zero mass
yields scattering amplitudes for photon-graviton and graviton-graviton scattering.

1. INTRODUCTION

The calculation of photon interactions with matter is part of any introductory (or advanced) course on quantum
mechanics. Indeed the evaluation of the Compton scattering cross section is a standard exercise in relativistic quantum
mechanics, since gauge invariance together with the masslessness of the photon allow the results to be presented in
terms of relatively simple analytic forms [1].

Naively, one might expect a similar analysis to be applicable to the interactions of gravitons since, like photons,
gravitons are massless and subject to a gauge invariance. Also, just as virtual photon exchange leads to a detailed un-
derstanding of electromagnetic interactions between charged systems, a careful treatment of virtual graviton exchange
allows an understanding not just of Newtonian gravity, but also of spin-dependent phenomena—geodetic precession
and Lense-Thirring frame dragging—associated with general relativity which have recently been verified by gravity
probe B [2]. However, despite these parallels, examination of quantum mechanics texts reveals that (with one ex-
ception [3]) the case of graviton interactions is not discussed in any detail. There are at least three reasons for this
situation:

i) the graviton is a spin-two particle, as opposed to the spin-one photon, so that the interaction forms are more
complex, involving symmetric and traceless second rank tensors rather than simple Lorentz four-vectors;

ii) there exist fewer experimental results with which to confront the theoretical calculations. added text Funda-
mental questions beyond the detection of quanta of gravitational fields have been exposed in [4];

iii) in order to guarantee gauge invariance one must include, in many processes, the contribution from a graviton
pole term, involving a triple-graviton coupling. This vertex is a sixth rank tensor and contains a multitude of
kinematic forms.

added text: Hundred years after the classical theory of general relativity and Einstein1 argument for a quantization
of gravity [5], we are still looking after experimental signature of quantum gravity effects. This paper present and
extend recent works where elementary quantum gravity processes display new and very distinctive behaviour.

1 “Gleichwohl müßten die Atome zufolge der inneratomischen Elektronenbewegung nicht nur elektromagnetische, sondern auch Gravita-
tionsenergie ausstrahlen, wenn auch in winzigem Betrage. Da dies in Wahrheit in der Natur nicht zutreffen dürfte, so scheint es, daß die
Quantentheorie nicht nur die Maxwellsche Elektrodynamik, sondern auch die neue Gravitationstheorie wird modifizieren müssen” [5].
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Recently, however, using powerful (string-based) techniques, which simplify conventional quantum field theory
calculations, it has been demonstrated that the scattering of gravitons from an elementary target of arbitrary spin
factorizes [6], a feature that had been noted ten years previously by Choi et al. based on gauge theory arguments [7].
This factorization property, which is sometime concisely described by the phrase “gravity is the square of a gauge
theory”, permits a relatively elementary evaluation of various graviton amplitudes and opens the possibility of studying
gravitational processes in physics coursework. In a previous paper published in this journal [8] it was shown explicitly
how, for both spin-0 and spin- 12 targets, the use of factorization enables elementary calculation of both the graviton
photoproduction,

γ + S → g + S,

and gravitational Compton scattering,

g + S → g + S,

reactions in terms of elementary photon reactions. This simplification means that graviton interactions can now
be discussed in a basic quantum mechanics course and opens the possibility of treating interesting cosmological
applications.

In the present paper we extend the work begun in [8] to the case of a spin-1 target and demonstrate and explain the
origin of various universalities, i.e., results which are independent of target spin. In addition, by taking the limit of
vanishing target mass we show how both graviton-photon and graviton-graviton scattering may be determined using
elementary methods.

In section 2 then, we generate the electromagnetic interactions of a spin one system. In section 3 we calculate
the ordinary Compton scattering cross section for a spin-1 target and compare with the analogous spin-0 and spin- 12
forms. In section 4 we examine graviton photoproduction and gravitational Compton scattering for a spin-1 target
and again compare with the analogous spin-0 and spin- 12 results. In section 5 we study the massless limit and show
how both photon-graviton and graviton-graviton scattering can be evaluated, resolving a subtlety which arises in the
derivation. Finally, our results are summarized in a brief concluding section 6. Two appendices contain formalism
and calculational details.

2. SPIN ONE INTERACTIONS: A LIGHTNING REVIEW

We begin by generating the photon and graviton interactions of a spin-1 system. We generate the photon interaction
by writing down the free Lagrangian for a scalar field φ

LS=0
0 = ∂µφ

†∂µφ−m2φ†φ (1)

and using the minimal substitution [9]

i∂µ −→ iDµ ≡ i∂µ − eAµ

This procedure leads to the familiar interaction Lagrangian

LS=0
int = −iAµφ†

←→
∂ µφ+ e2AµA

νηµνφ
†φ (2)

where e is the particle charge and Aµ is the photon field and implies the one- and two-photon vertices

< pf |V (1)µ
em |pi > = ie(pf + pi)

µ

< pf |V (2)µν
em |pi > = ie2ηµν (3)

The corresponding charged massive spin-1 Lagrangian has the Proca form [10]

LS=1
0 = −1

2
B†µνB

µν +m2B†µB
µ , (4)

where Bµ is a spin one field subject to the constraint ∂µB
µ = 0 and Bµν is the antisymmetric tensor

Bµν = ∂µBν − ∂νBµ . (5)
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The minimal substitution then leads to the interaction Lagrangian

LS=1
int = i eAµBν†

(
ηνα
←→
∂ µ − ηαµ

←→
∂ ν

)
Bα − e2AµAν(ηµνηαβ − ηµαηνβ)Bα†Bβ , (6)

and the one, two photon vertices〈
pf , εB

∣∣V (1)µ
em

∣∣ pi, εA〉S=1
= −i e ε∗Bβ

(
(pf + pi)

µηαβ − ηβµpαf − ηαµpβi
)
εAα ,〈

pf , εB
∣∣V (2)µν
em

∣∣ pi, εA〉S=1
= i e2 ε∗Bβ

(
2ηαβηµν − ηαµηβν − ηανηβµ

)
εAα . (7)

However, Eq. (7) is not the correct result for a fundamental spin-1 particle such as the charged W -boson. Because
the W arises in a gauge theory, the field tensor is not given by Eq. (5) but rather is generated from the charged—√

1
2 (x± iy)—component of

Bµν = DµBν −DνBµ − ggaBµ ×Bν (8)

where gga is the gauge coupling. This modification implies the existence of an additional W±γ interaction, leading
to an “extra” contribution to the single photon vertex〈

pf , εB
∣∣δV (1)µ

em

∣∣ pi, εA〉S=1 = i e ε∗Bβ
(
ηαµ(pi − pf )β − ηβµ(pi − pf )α)

)
εAα . (9)

The significance of this term can be seen by using the mass-shell Proca constraints pi · εA = pf · εB = 0 to write the
total on-shell single photon vertex as〈

pf , εB
∣∣(Vem + δVem)µ

∣∣ pi, εA〉S=1
= −i e ε∗Bβ

(
(pf + pi)

µηαβ 2ηβµ(pi − pf )α
)
εAα

+ −2ηαµ(pi − pf )β , (10)

wherein, comparing with Eq. 9 we observe that the coefficient of the term −ηαµ(pi − pf )β + ηβµ(pi − pf )α has been
modified from unity to two. Since the rest frame spin operator can be identified via2

B†iBj −B†jBi = −i εijk
〈
f
∣∣Sk∣∣ i〉 , (12)

the corresponding piece of the nonrelativistic interaction Lagrangian becomes

Lint = −g e

2m

〈
f
∣∣S∣∣ i〉 ·∇×A , (13)

where g is the gyromagnetic ratio and we have included a factor 2m which accounts for the normalization condition
of the spin one field. Thus the “extra” interaction required by a gauge theory changes the g-factor from its Belinfante
value of unity [11] to its universal value of two, as originally proposed by Weinberg [12] and more recently buttressed
by a number of additional arguments [13]. Henceforth in this manuscript then we shall assume the g-factor of the
spin-1 system to have its “natural” value g = 2, since it is in this case that the high-energy properties of the scattering
are well controlled and the factorization properties of gravitational amplitudes are valid [14].

3. COMPTON SCATTERING

The vertices given in the previous section can now be used to evaluate the ordinary Compton scattering amplitude,

γ + S → γ + S,

2 Equivalently, one can use the relativistic identity

ε∗Bµq · εA − εAµq · ε
∗
B =

1

1− q2

m2

(
i

m
εµβγδp

β
i q
γSδ −

1

2m
(pf + pi)µε

∗
B · qεA · q

)
(11)

where Sδ = i
2m

εδστζε∗BσεAτ (pf + pi)ζ is the spin four-vector.
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(a) (b) (c)

FIG. 1: Diagrams relevant to Compton scattering.

for a spin-1 system having charge e and mass m by summing the contributions of the three diagrams shown in Figure 1,
yielding

AmpComp
S=1 = 2e2

{
εA · ε∗B

[
εi · piε∗f · pf
pi · ki

−
εi · pf ε∗f · pi
pi · kf

− εi · ε∗f
]

−
[
εA · [ε∗f , kf ] · ε∗B

(
εi · pi
pi · ki

− εi · pf
pi · kf

)
− εA · [εi, ki] · ε∗B

(
εf · pf
pi · ki

−
ε∗f · pi
pi · kf

)]
−
[

1

pi · ki
εA · [εi, ki] · [ε∗f , kf ] · ε∗B −

1

pi · kf
εA · [ε∗f , kf ] · [εi, ki]ε∗B

]}
(14)

with the momentum conservation condition pi + ki = pf + kf . It is then straightforward to verify that Eq. (14)
satisfies the gauge invariance strictures

ε∗µf k
ν
i AmpComp

µν,S=1 = kµf ε
ν
i AmpComp

µν,S=1 = 0 . (15)

In order to pave the way for the transition to gravity in the next section, it is useful to utilize the helicity for-
malism [15], wherein one evaluates the matrix elements of the Compton amplitude between initial and final spin-1
and photon states having definite helicity, where helicity is defined as the projection of the particle spin along the
momentum direction. We work initially in the center of mass frame and, for a photon incident with four-momentum
kµi = pCM(1, ẑ), we choose the polarization vectors

ελii = − λi√
2

(
x̂+ iλiŷ

)
, λi = ± , (16)

while for an outgoing photon with kµf = pCM(1, cos θCMẑ + sin θCMx̂) we use polarizations

ε
λf
f = − λf√

2

(
cos θCMx̂+ iλf ŷ − sin θCMẑ

)
, λf = ± . (17)

We can define corresponding helicity states for the spin-1 system. In this case the initial and final four-momenta
are pµi = (ECM,−pCMẑ) and pµf = (ECM,−pCM(cos θCMẑ + sin θCMx̂)) and there exist two transverse polarization
four-vectors

ε±µA =
(

0,
±x̂− iŷ√

2

)
,

ε±µB =
(

0,
± cos θCMx̂+ iŷ ∓ sin θCMẑ√

2

)
, (18)

in addition to the longitudinal mode with polarization four-vectors

ε0µA =
1

m

(
pCM,−ECMẑ

)
,

ε0µB =
1

m

(
pCM,−ECM(cos θCMẑ + sin θCMx̂)

)
, (19)
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In terms of the usual invariant kinematic (Mandelstam) variables

s =
(
pi + ki

)2
, t =

(
ki − kf

)2
, u =

(
pi − kf

)2
,

we identify

pCM =
s−m2

2
√
s

, ECM =
s+m2

2
√
s

,

cos
1

2
θCM =

(
(s−m2)2 + st

) 1
2

s−m2
=

(
m4 − su

) 1
2

s−m2
, sin

1

2
θCM =

(
− st

) 1
2

s−m2
. (20)

The invariant cross-section for unpolarized Compton scattering is then given by

dσComp
S=1

dt
=

1

16π(s−m2)2
1

3

∑
a,b=−,0,+

1

2

∑
c,d=−,+

∣∣∣B1(ab; cd)
∣∣∣2 . (21)

where

B1(ab; cd) =
〈
pf , b; kf , d

∣∣AmpComp
S=1

∣∣ pi, a; ki, c
〉
, (22)

is the Compton amplitude for scattering of a photon with four-momentum ki, helicity a from a spin-1 target having
four-momentum pi, helicity c to a photon with four-momentum kf , helicity d and target with four-momentum pf ,
helicity b. The helicity amplitudes can now be calculated straightforwardly. There exist 32× 22 = 36 such amplitudes
but, since helicity reverses under spatial inversion, parity invariance of the electromagnetic interaction requires that3∣∣B1(ab; cd)

∣∣ =
∣∣B1(−a− b;−c− d)

∣∣ .
Also, since helicity is unchanged under time reversal, but initial and final states are interchanged, T-invariance of the
electromagnetic interaction requires that ∣∣B1(ab; cd)

∣∣ =
∣∣B1(ba; dc)

∣∣ .
Consequently there exist only twelve independent helicity amplitudes. Using Eq. (14) we calculate the various helicity
amplitudes in the center of mass frame and then write these results in terms of invariants using Eq. (20), yielding the
forms quoted in Appendix A.

Substitution of these helicity amplitudes Eq. (86) into Eq. (21) then yields the invariant cross-section for unpolarized
Compton scattering from a charged spin-1 target

dσComp
S=1

dt
=

e4

12π(s−m2)4(u−m2)2

[
(m4 − su+ t2)

(
3(m4 − su) + t2

)
+ t2(t−m2)(t− 3m2)

]
, (23)

which can be compared with the corresponding results for unpolarized Compton scattering from charged spin-0 and
spin- 12 targets found in ref. [8].

Often such results are written in the laboratory frame, wherein the target is at rest, by use of the relations

s−m2 = 2mωi, u−m2 = −2mωf ,

m4 − su = 4m2ωiωf cos2
θL
2
, m2t = −4m2ωiωf sin2 θL

2
, (24)

and

dt

dΩ
=

d

2πd cos θL

(
− 2ω2

i (1− cos θL)

1 + ωi
m (1− cos θL)

)
=
ω2
f

π
. (25)

3 Note that we require only that the magnitudes of the helicity amplitudes related by parity and/or time reversal be the same. There
could exist unobservable phases.
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Introducing the fine structure constant α = e2/4π, we find then

dσComp
lab,S=1

dΩ
=

α2

m2

ω4
f

ω4
i

[(
cos4

θL
2

+ sin4 θL
2

)(
1 + 2

ωi
m

sin2 θL
2

)2

+
16ω2

i

3m2
sin4 θL

2

(
1 + 2

ωi
m

sin2 θL
2

)
+

32ω4
i

3m4
sin8 θL

2

]
,

(26)

Comparing with the corresponding forms found in [8], We observe that the nonrelativistic laboratory cross-section
has an identical form for any spin

dσComp
lab,S

dΩ

∣∣∣∣∣
NR

=
α2

m2

[(
cos4

θL
2

+ sin4 θL
2

)(
1 +O

(ωi
m

))]
, (27)

which follows from the universal form of the Compton amplitude for scattering from a spin-S target in the low-energy
(ω � m) limit, 〈

S,Mf ; εf
∣∣AmpComp

S

∣∣S,Mi; εi
〉
ω�m = 2e2 ε∗f · εi δMi,Mf

+ . . . , (28)

and obtains in an effective field theory approach to Compton scattering [16].4

4. GRAVITATIONAL INTERACTIONS

In the previous section we discussed the treatment the familiar electromagnetic interaction, using Compton scatter-
ing on a spin-1 target as an example. In this section we show how the gravitational interaction can be evaluated via
methods parallel to those used in the electromagnetic case. An important difference is that while in the electromagnetic
case we have the simple interaction Lagrangian

Lint = −eAµJµ , (30)

where Jµ is the electromagnetic current matrix element, for gravity we have

Lint = −κ
2
hµνT

µν . (31)

Here the field tensor hµν is defined in terms of the metric via

gµν = ηµν + κhµν , (32)

where κ is given in terms of the Cavendish constant G by κ2 = 32πG. The Einstein-Hilbert action is

SEinstein−Hilbert =

∫
d4x
√−g 2

κ2
R , (33)

where

√−g =
√
−detg = exp

1

2
trlogg = 1 +

1

2
ηµνhµν + . . . , (34)

is the square root of the determinant of the metric and R := Rλµλνg
µν is the Ricci scalar curvature obtained by

contracting the Riemann tensor Rµνρσ with the metric tensor. The energy-momentum tensor is defined in terms of
the matter Lagrangian via

Tµν =
2√−g

δ
√−gLmat

δgµν
. (35)

4 That this seagull contribution dominates the non relativistic cross-section is clear from the feature that

AmpBorn ∼ 2e2
ε∗f · pεi · p
p · k

∼
ω

m
×Ampseagull = 2e2ε∗f · εi. (29)
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(a) (b)

(c) (d)

FIG. 2: Diagrams relevant to graviton photoproduction.

The various gravitational vertices can then be found and are given in Appendix B.
We work in harmonic (de Donder) gauge which satisfies, in lowest order,

∂µhµν =
1

2
∂νh , (36)

with

h = trhµν , (37)

and in which the graviton propagator has the form

Dαβ;γδ(q) =
i

q2 + iε

1

2
(ηαγηβδ + ηαδηβγ − ηαβηγδ) . (38)

Then just as the (massless) photon is described in terms of a spin-1 polarization vector εµ which can have projection
(helicity) either plus- or minus-1 along the momentum direction, the (massless) graviton is a spin-2 particle which
can have the projection (helicity) either plus- or minus-2 along the momentum direction. Since hµν is a symmetric
tensor, it can be described in terms of a direct product of unit spin polarization vectors—

helicity = +2 : h(2)µν = ε+µ ε
+
ν ,

helicity = −2 : h(−2)µν = ε−µ ε
−
ν , (39)

and just as in electromagnetism, there is a gauge condition—in this case Eq. (36)—which must be satisfied. Note
that the helicity states given in Eq. (39) are consistent with the gauge requirement since

ηµνε+µ ε
+
ν = ηµνε−µ ε

−
ν = 0, and kµε±µ = 0 . (40)

With this background under our belt, we can now examine specific graviton reactions.

4.1. Graviton Photoproduction

We first use the above results to discuss the problem of graviton photoproduction on a spin-1 target—γ+S → g+S—
for which the relevant four diagrams are shown in Figure 2. The electromagnetic and gravitational vertices needed for
the Born terms and photon pole diagrams—Figures 2a, 2b, and 2d—are given in Appendix B. For the photon pole
diagram we require the graviton-photon coupling, Eq. (90)5

5 Note that this form agrees with the previously derived form for the massive graviton-spin-1 energy-momentum tensor—Eq. (87)—in the
m→ 0 limit.
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The individual contributions from the four diagrams in Figure 2 are quoted in Appendix C and have a rather
complex form. However, when combined, we find a much simpler result. The full graviton photoproduction amplitude
is found to be proportional to the already calculated Compton amplitude for spin-1—Eq. (14)—times a universal
kinematic factor, i.e.,

〈
pf ; kf , εf εf

∣∣T ∣∣pi; ki, εi〉 =

4∑
i=1

Amp (Fig.4(i)) = H ×
(
ε∗fαεiβT

αβ
Compton(S = 1)

)
, (41)

where

H =
κ

2e

pf · Ff · pi
ki · kf

=
κ

2e

ε∗f · pf kf · pi − ε∗f · pi kf · pf
ki · kf

, (42)

and ε∗fαεiβT
αβ
Compton(S) is the spin-1 Compton scattering amplitude calculated in the previous section. The gravita-

tional and electromagnetic gauge invariance of Eq. (41) is obvious, since it follows directly from the gauge invariance
already shown for the Compton amplitude together with the explicit gauge invariance of the factor H. The va-
lidity of Eq. (41) allows the straightforward calculation of the cross-section by helicity methods since the graviton
photoproduction helicity amplitudes are given simply by

C1(ab; cd) = H ×B1(ab; cd) , (43)

where B1(ab; cd) are the Compton helicity amplitudes found in the previous section. We can then evaluate the
invariant photoproduction cross-section using

dσphoto
S=1

dt
=

1

16π
(
s−m2

)2 1

3

∑
a=−,0,+

1

2

∑
c=−,+

∣∣C1(ab; cd)
∣∣2 , (44)

yielding

dσphoto
S=1

dt
= − e2κ2(m4 − su)

96πt
(
s−m2

)4(
u−m2

)2 [(m4 − su+ t2)
(
3(m4 − su) + t2

)
+ t2(t−m2)(t− 3m2)

]
. (45)

Since

|H| = κ

e

(
m4 − su
−2t

) 1
2

, (46)

the laboratory value of the factor H is

|Hlab|2 =
κ2m2

2e2
cos2 1

2θL

sin2 1
2θL

, (47)

and the corresponding laboratory cross-section is

dσphoto
lab,S=1

dΩ
=
∣∣Hlab

∣∣2 dσComp
lab,S=1

dt

= Gα cos2
θL
2

(
ωf
ωi

)4
[(

ctn2 θL
2

cos2
θL
2

+ sin2 θL
2

)(
1 + 2

ωi
m

sin2 θL
2

)2

+
16ω2

i

3m2
sin2 θL

2

(
1 + 2

ωi
m

sin2 θL
2

)
+

32ω4
i

3m4
sin6 θL

2

]
. (48)

Comparing Eq. (48) with the spin-0 and spin- 12 cross sections found in [8], we see that, just as in Compton scattering,
the low-energy laboratory cross-section has a universal form, which is valid for a target of arbitrary spin

dσphoto
lab,S

dΩ
= Gα cos2

θL
2

(
ctn2 θL

2
cos2

θL
2

+ sin2 θL
2

)(
1 +O

(ωi
m

))
. (49)
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In this case the universality can be understood from the feature that at low-energy the leading contribution to the
graviton photoproduction amplitude comes not from the seagull, as in Compton scattering, but rather from the photon
pole term,

Ampγ−pole −→
ω�m

κ
ε∗f · εi ε∗f · ki

2kf · ki
× kµi

〈
pf ;S,Mf

∣∣Jµ∣∣pi;S,Mi

〉
. (50)

The leading piece of the electromagnetic current has the universal low-energy structure

〈
pf ;S,Mf

∣∣Jµ∣∣ pi;S,Mi

〉
=

e

2m

(
pf + pi

)
µ
δMf ,Mi

(
1 +O

(pf − pi
m

))
, (51)

where we have divided by the factor 2m to account for the normalization of the target particle. Since ki · (pf +pi) −→
ω→0

2mω, we find the universal low-energy amplitude

AmpNRγ−pole = κ eω
ε∗f · εi ε∗f · ki

2kf · ki
, (52)

whereby the helicity amplitudes have the form

AmpNRγ−pole =
κ e

2
√

2


1
2 sin θL

(
1+cos θL
1−cos θL

)
=

cos
θL
2

sin
θL
2

cos2 θL2 ++ = −− ,

1
2 sin θL

(
1−cos θL
1−cos θL

)
=

cos
θL
2

sin θ
2

sin2 θL
2 +− = −+ .

(53)

Squaring and averaging, summing over initial, final spins we find then

dσphoto
lab,S

dΩ
−→
ω�m

Gα cos2
θL
2

[(
ctn2 θL

2
cos2

θL
2

+ sin2 θL
2

)(
1 +O

(ωi
m

))]
. (54)

as determined above—cf. Eq. (49).
Comparing the individual contributions from Appendix C with the simple forms above, the power of factorization

is obvious and, as we shall see in the next section, permits the straightforward evaluation of even more complex
reactions such as gravitational Compton scattering.

4.2. Gravitational Compton Scattering

In the previous section we observed the power of factorization in the context of graviton photoproduction on a
spin-1 target in that we only needed to calculate the simpler Compton scattering process rather than to consider
the full gravitational interaction description. In this section we consider an even more challenging example, that of
gravitational Compton scattering—g + S → g + S—from a spin-1 target, for which there exist the four diagrams
shown in Figure 3.

The contributions from the four individual diagrams can be calculated using the graviton vertices given in Appendix
B and are quoted in Appendix C. Each of the four diagrams has a rather complex form. Again however, when added
together the total simplifies enormously. Defining the kinematic factor

Y =
κ2

8e4
pi · ki pi · kf
ki · kf

=
κ4

16e4
(s−m2) (u−m2)

t
, (55)

the sum of the four diagrams is found to be given by

〈
pf , εB ; kf , εf εf

∣∣Ampgrav

∣∣ pi, εA; ki, εiεi
〉
S

=

4∑
i=1

Amp (Fig.5(i))

= Y×]
〈
pf , εB ; ki, εf

∣∣Ampem

∣∣ pi, εA; ki, εi
〉
S
×
〈
pf ; ki, εf

∣∣Ampem

∣∣ pi; ki, εi〉S=0 ,

(56)
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(a) (b)

(c) (d)

FIG. 3: Diagrams relevant for gravitational Compton scattering.

with S = 1, where

〈pf ; ki, εf |Ampem|pi; ki, εi〉S=0 = 2e2
[
εi · pi ε∗f · pf

pi · ki
−
εi · pf ε∗f · pi
pi · kf

− ε∗f · εi
]
, (57)

is the Compton amplitude for a spinless target.
In [8] the identity Eq. (56) was verified for simpler cases of S = 0 and S = 1

2 . This relation is a consequence of the
general connections between gravity and gauge theory tree-level amplitudes derived using string-based methods as
explained in [17]. Here we have demonstrated its validity for the much more complex case of spin-1 scattering. The
corresponding cross-section can be calculated by helicity methods using

D1(ab; cd) = Y ×B1(ab; cd)×A0(cd) , (58)

where D1(ab; cd) is the spin-1 helicity amplitude for gravitational Compton scattering, B1(ab; cd) is the ordinary spin-
1 Compton helicity amplitude calculated in section 3, and A0(cd) are the helicity amplitudes for spin zero Compton
scattering arising from Eq. (57) calculated in [8], as given in Appendix A. Using Eq. (56) the invariant cross-section
for unpolarized spin-1 gravitational Compton scattering

dσg−Comp
S=1

dt
=

1

16π
(
s−m2

)2 1

3

∑
a=−,0,+

1

2

∑
c=−,+

∣∣D1(ab; cd)
∣∣2 , (59)

is found to be

dσg−Comp
S=1

dt
=

κ4

768π
(
s−m2

)4(
u−m2

)2
t2

[
(m4 − su)2

(
3(m4 − su) + t2)(m4 − su+ t2)

)
+ m4t4(3m2 − t)(m2 − t)

]
. (60)

and this form can be compared with the unpolarized gravitational Compton cross-sections found in [8].
The corresponding laboratory frame cross-section is

dσg−Comp
lab,S=1

dΩ
= G2m2

ω4
f

ω4
i

[(
ctn4 θL

2
cos4

θL
2

+ sin4 θL
2

)(
1 + 2

ωi
m

sin2 θL
2

)2

+
16

3

ω2
i

m2

(
cos6

θL
2

+ sin6 θL
2

)(
1 + 2

ωi
m

sin2 θL
2

)
+

16

3

ω4
i

m4
sin2 θL

2

(
cos4

θL
2

+ sin4 θL
2

)]
,

(61)
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We observe that the low-energy laboratory cross-section has the universal form for any spin

dσg−Comp
lab,S

dΩ
= G2m2

[(
ctn4 θL

2
cos4

θL
2

+ sin4 θL
2

)(
1 +O

(ωi
m

))]
. (62)

It is interesting to note that the “dressing” factor for the leading (++) helicity Compton amplitude—

∣∣Y ∣∣ ∣∣A++
∣∣ =

κ2

2e2
m4 − su
−t

lab−→ κ2m2

2e2
cos2 θL2
sin2 θL

2

, (63)

—is simply the square of the photoproduction dressing factor H, as might intuitively be expected since now both
photons must be dressed in going from the Compton to the gravitational Compton cross-section.6 In this case the
universality of the nonrelativistic cross-section follows from the leading contribution arising from the graviton pole
term

Ampg−pole −→
ω�m

κ

4kf · ki
(
ε∗f · εi

)2 (
kµf k

ν
f + kµi k

ν
i

) κ
2

〈
pf ;S,Mf

∣∣Tµν∣∣ pi;S,Mi

〉
. (65)

Here the matrix element of the energy-momentum tensor has the universal low-energy structure

κ

2

〈
pf ;S,Mf

∣∣Tµν∣∣ pi;S,Mi

〉
=

κ

4m

(
pfµpiν + pfνpiµ

)
δMf ,Mi

(
1 +O

(pf − pi
m

))
, (66)

where we have divided by the factor 2m to account for the normalization of the target particle. We find then the
universal form for the leading graviton pole amplitude

Ampg−pole −→
non−rel

κ2

8mkf · ki
(
ε∗f · εi

)2 (
pi · kf pf · kf + pi · ki pf · ki

)
δMf ,Mi

. (67)

Since p · k −→
ω�m

mω the helicity amplitudes become

AmpNR
g−pole = 4πGm


(
1+cos θL

)2
2
(
1−cos θL

) =
cos4

θL
2

sin2 θL
2

++ = −− ,(
1−cos θL

)2
2
(
1−cos θL

) =
sin4 θL

2

sin2 θL
2

+− = −+ .

(68)

Squaring and averaging,summing over initial,final spins we find

dσg−Comp
lab,S

dΩ
−→
ω�m

G2m2

[
ctn4 θL

2
cos4

θL
2

+ sin4 θL
2

]
, (69)

as found in Eq. (62) above.

5. GRAVITON-PHOTON SCATTERING

In the previous sections we have generalized the results of [8] to the case of a massive spin-1 target. Here we show
how these spin-1 results can be used to calculate the cross-section for photon-graviton scattering. In the Compton
scattering calculation we assumed that the spin-1 target had charge e. However, the photon couplings to the graviton
are identical to those of a graviton coupled to a charged spin-1 system in the massless limit, and one might assume
then that, since the results of the gravitational Compton scattering are independent of charge, the graviton-photon
cross-section can be calculated by simply taking the m → 0 limit of the graviton-spin-1 cross-section. Of course,

6 In the case of +− helicity the “dressing” factor is ∣∣Y ∣∣ ∣∣A+−∣∣ =
κ2

2e2
m2 . (64)

so that the non-leading contributions will have different dressing factors.
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the laboratory cross-section no longer makes sense since the photon cannot be brought to rest, but the invariant
cross-section is well defined

dσg−Comp
S=1

dt
−→
m→0

4πG2
(
3s2u2 − 4t2su+ t4

)
3s2t2

=
4πG2(s4 + u4 + s2u2)

3s2t2
, (70)

and it might be (naively) assumed that Eq. (70) is the graviton-photon scattering cross-section. However, this is not
the case and the resolution of this problem involves some interesting physics.

We begin by noting that in the massless limit the only nonvanishing helicity amplitudes are

D1(++; ++)m=0 = D1(−−;−−)m=0 = 8πG
s2

t
,

D1(−−; ++)m=0 = D1(++;−−)m=0 = 8πG
u2

t
,

D1(00; ++)m=0 = D1(00;−−)m=0 = 8πG
su

t
, (71)

which lead to the cross-section

dσg−Comp
S=1

dt
=

1

16πs2
1

3

∑
a=+,0,−

1

2

∑
c=+,−

∣∣D1(ab; cd)
∣∣2

=
1

16πs2
1

3 · 2 (8πG)2 × 2×
[
s4

t2
+
u4

t2
+
s2u2

t2

]
=

4π

3
G2 s

4 + u4 + s2u2

s2t2
, (72)

in agreement with Eq. (70). However, this result reveals the problem. We know that in Coulomb gauge the photon has
only two transverse degrees of freedom, corresponding to positive and negative helicity—there exists no longitudinal
degree of freedom. Thus the correct photon-graviton cross-section is obtained by deleting the contribution from the
D1(00; ++) and D1(00;−−) multipoles

dσgγ
dt

=
1

16πs2
1

3

∑
a=+,−

1

2

∑
c=+,−

∣∣D1(ab; cd)
∣∣2

=
1

16πs2
1

2 · 2
(
8πG

)2 × 2×
[
s4

t2
+
u4

t2

]
= 2πG2 s

4 + u4

s2t2
, (73)

which agrees with the value calculated via conventional methods by Skobelev [18]. Alternatively, since in the center
of mass frame

dt

dΩ
=
ωCM

π
, (74)

we can write the center of mass graviton-photon cross-section in the form

dσCM

dΩ
= 2G2 ω2

CM

(
1 + cos8 θCM

2

sin4 θCM

2

)
, (75)

again in agreement with the value given by Skobelev [18].
So what has gone wrong here? Ordinarily in the massless limit of a spin-1 system, the longitudinal mode decouples

because the zero helicity spin-1 polarization vector becomes

ε0µ −→
m→0

1

m

(
p,
(
p+

m2

2p
+ . . .

)
ẑ

)
=

1

m
pµ +

(
0,
m

2p
ẑ
)

+ . . . (76)

However, the term proportional to pµ vanishes when contracted with a conserved current by gauge invariance while
the term in m

2p vanishes in the massless limit. However, what takes place when two longitudinal spin-1 particles are

present is that the product of longitudinal polarization vectors is proportional to 1/m2, while the correction term to
the four-momentum pµ is O(m2) so that the product is nonvanishing in the massless limit and this is why the multipole
D(00; ++)m=0 = D(00;−−)m=0 is nonzero. One deals with this problem by simply omitting the longitudinal degree
of freedom explicitly, as done above.
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5.1. Extra Credit

Before leaving this section it is interesting to note that graviton-graviton scattering can be treated in a parallel
fashion. That is, the graviton-graviton scattering amplitude can be obtained by dressing the product of two massless
spin-1 Compton amplitudes [19]—〈

pf , εBεB ; kf , εf εf
∣∣Amptot

grav

∣∣ piεAεA; ki, εiεi
〉
m=0,S=2

= Y × 〈pf , εB ; kf , εf |AmpComp
em | pi, εA; kiεi〉m=0,S=1

×〈pf , εB ; kf , εf |AmpComp
em | pi, εA; kiεi〉m=0,S=1 . (77)

Then for the helicity amplitudes we have

E2(++; ++)m=0 = Y
(
B1(++; ++)m=0

)2
, (78)

where E2(++; ++) is the graviton-graviton ++; ++ helicity amplitude while B1(++; ++) is the corresponding spin-1
Compton helicity amplitude. Thus we find

E2(++; ++)m=0 =
κ2

16e4
su

t
×
(

2e2
s

u

)2

= 8πG
s3

ut
, (79)

which agrees with the result calculated via conventional methods [20].

6. THE FORWARD CROSS-SECTION

Before closing, we note some intriguing physics associated with the forward-scattering limit. In this limit, i.e., θL →
0, in the laboratory frame, the Compton cross-section evaluated in section 3 has a universal structure independent of
the spin S of the massive target

lim
θL→0

dσComp
lab,S

dΩ
=

α2

2m2
, (80)

reproducing the well-known Thomson scattering cross-section.

For graviton photoproduction, however, the small angle limit is very different, since the forward-scattering cross-
section is divergent—the small angle limit of the graviton photoproduction of section 4.1 is given by

lim
θL→0

dσphoto
lab,S

dΩ
=

4Gα

θ2L
, (81)

and arises from the photon pole in figure 2(d).

The small angle limit of the gravitational Compton cross-section derived in section 4.2 is given by

lim
θL→0

dσg−Comp
lab,S

dΩ
=

16G2m2

θ4L
. (82)

where again the limit is independent of the spin S of the matter field. The behavior in Eqs. (82) is due to the graviton
pole in figure 3(d), and is typical of the small-angle behavior of Rutherford scattering in a Coulomb potential.

7. CONCLUSION

In [8] it was demonstrated that the gravitational interaction of a charged spin-0 or spin- 12 particle is greatly
simplified by use of factorization, which asserts that the gravitational amplitudes can be written as the product
of corresponding electromagnetic amplitudes multiplied by a universal kinematic factor. In the present work we
demonstrated that the same simplification applies when the target particle carries spin-1. Specifically, we evaluated
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the graviton photoproduction and graviton Compton scattering amplitudes explicitly using direct and factorized
techniques and demonstrated that they are identical. However, the factorization methods are enormously simpler, since
they require only electromagnetic calculations and eliminate the need to employ less familiar and more cumbersome
tensor quantities. As a result it is now straightforward to include graviton interactions in a quantum mechanics course
in order to stimulate student interest and allowing access to various cosmological applications.

We studied the massless limit of the spin-1 system and showed how the use of factorization permits a relatively
simple calculation of graviton-photon scattering, discussing a subtlety in this graviton-photon calculation having to
do with the feature that the spin-1 system must change from three to two degrees of freedom when m → 0 and we
explained why the zero mass limit of the spin-1 gravitational Compton scattering amplitude does not correspond to
that for photon scattering. The graviton-photon cross section may possess interesting implications for the attenuation
of gravitational waves in the cosmos [23]. We also calculated the graviton-graviton scattering amplitude.

Finally, we discussed the main feature of the forward cross-section for each process studied in this paper. Both the
Compton and the gravitational Compton scattering have the expected 1/θ4L behavior, while graviton photoproduction
has a different shape that could in principle lead to an interesting new experimental signature of a graviton scattering
on matter—∼ 1/θ2L. Again this result has potentially intriguing implications for the photoproduction of gravitons
from stars [24, 25].

Appendix A: Compton Scattering Helicity Amplitudes

For a spin-0 target we have

A0(cd) ≡ L(s, u)H0(cd) (83)

where

L(s, u) =
2e2

(s−m2)(u−m2)

and

H0(++) = m4 − su ,
H0(+−) = −m2t , (84)

For a spin-1 target we find

B1(ab; cd) ≡ K(s, u)H1(ab; cd) (85)

where

K(s, u) =
2e2

(s−m2)3(u−m2)
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p1

p2

µν

p1

p2

µν

ρσ

FIG. 4: (a) The one-graviton and (b) two-graviton emission vertices from a vector particle.

and ∣∣H1(++; ++)
∣∣ =

∣∣H1(−−;−−)
∣∣ = ((s−m2)2 +m2t)2 ,∣∣H1(++;−−)

∣∣ =
∣∣H1(−−; ++)

∣∣ = (m4 − su)2 ,∣∣H1(+−; +−)
∣∣ =

∣∣H1(−+;−+)
∣∣ = m4t2 ,∣∣H1(+−;−+)

∣∣ =
∣∣H1(−+; +−)

∣∣ = s2t2 ,∣∣H1(++; +−)
∣∣ =

∣∣H1(−−;−+)
∣∣ =

∣∣H1(++;−+)
∣∣ =

∣∣H1(−−; +−)
∣∣ ,

= m2t(m4 − su) ,∣∣H1(+−; ++)
∣∣ =

∣∣H1(−+;−−)
∣∣ =

∣∣H1(−+; ++)
∣∣ =

∣∣H1(+−;−−)
∣∣ ,

= m2t(m4 − su) ,∣∣H1(0+; ++)
∣∣ =

∣∣H1(0−;−−)
∣∣ =

∣∣H1(+0; ++)
∣∣ =

∣∣H1(−0;−−)
∣∣ ,

=
√

2m(tm2 + (s−m2)2)
√
−t(m4 − su) ,∣∣H1(0+; +−)

∣∣ =
∣∣H1(0−;−+)

∣∣ =
∣∣H1(+0;−+)

∣∣ =
∣∣H1(−0; +−)

∣∣ ,
=
√

2mst
√
−t(m4 − su) ,∣∣H1(0+;−+)

∣∣ =
∣∣H1(0−; +−)

∣∣ =
∣∣H1(+0; +−)

∣∣ =
∣∣H1(−0;−+)

∣∣ ,
=
√

2m3t
√
−t(m4 − su) ,∣∣H1(0+;−−)

∣∣ =
∣∣H1(0−; ++)

∣∣ =
∣∣H1(+0;−−)

∣∣ =
∣∣H1(−0; ++)

∣∣ ,
=
√

2m
√
−t(m4 − su)3 ,∣∣H1(00; ++)

∣∣ =
∣∣H1(00;−−)

∣∣ = (2tm2 + (s−m2)2)(m4 − su) ,∣∣H1(00; +−)
∣∣ =

∣∣H1(00;−+)
∣∣ = m2t((s−m2)2 + 2st) . (86)

Appendix B: Gravitational Vertices

Using the formalism discussed in section 3, the needed gravitational couplings can be obtained. The spin 1-one
single graviton emission vertex shown in Fig. 4(a) is

〈
pf , εB

∣∣V (1)µν
grav

∣∣ pi, εA〉S=1
= −i κ

2

[
ε∗B · εA

(
pµi p

ν
f + pνi p

µ
f

)
− ε∗B · pi

(
pµf ε

ν
A + εµAp

ν
f

)
− εA · pf

(
pνi ε
∗µ
B + pµi ε

∗ν
B

)
+
(
pf · pi −m2

)(
εµAε
∗ν
B + ενAε

∗µ
B

)
− ηµν

[(
pi · pf −m2

)
ε∗B · εA − ε∗B · pi εA · pf

] ]
, (87)

There also exista a two-graviton (seagull) vertex shown in Fig. 4(b), which are found by expanding the stress-energy
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µν

αβ

γδ

k − q
k

q

FIG. 5: The three graviton vertex

tensor to second order in hµν .

〈
pf , εB ; kf

∣∣V (2)µν,ρσ
grav

∣∣ pi, εA; ki
〉
S=1

= −i κ
2

4

{
+
[
piβpfα − ηαβ(pi · pf −m2)

](
ηµρηνσ + ηµσηνρ − ηµνηρσ

)
+ ηµρ

[
ηαβ
(
piνpfσ + piσpfν

)
− ηανpiβpfσ − ηβνpiσpfα

− ηβσpiνpfα − ηασpiβpfν + (pi · pf −m2
)(
ηανηβσ + ηασηβν

)]
+ ηµσ

[
ηαβ
(
piνpfρ + piρpfν

)
− ηανpiβpfρ − ηβνpiρpfα

− ηβρpiνpfα − ηαρpiβpfν + (pi · pf −m2
)
ηανηβρ + ηαρηβν

)]
+ ηνρ

[
ηαβ
(
piµpfσ + piσpfµ

)
− ηαµpiβpfσ − ηβµpiσpfα

− ηβσpiµpfα − ηασpiβpfµ + (pi · pf −m2
)(
ηαµηβσ + ηασηβµ

)]
+ ηνσ

[
ηαβ
(
piµpfρ + piρpfµ

)
− ηαµpiβpfρ − ηβµpiρpfα

− ηβρpiµpfα − ηαρpiβpfµ + (pi · pf −m2
)(
ηαµηβρ + ηαρηβµ

)]
− ηµν

[
ηαβ
(
piρpfσ + piσpfρ

)
− ηαρpiβpfσ − ηβρpiσpfα

− ηβσpiρpfα − ηασpiβpfρ +
(
pi · pf −m2

)(
ηαρηβσ + ηβρηασ

)]
− ηρσ

[
ηαβ
(
piµpfν + piνpfµ

)
− ηαµpiβpfν − ηβµpiνpfα

− ηβνpiµpfα − ηανpiβpfµ + (pi · pf −m2
)(
ηαµηβν + ηβµηαν

)]
+
(
ηαρpiµ − ηαµpiρ

)(
ηβσpfν − ηβµpfσ

)
+
(
ηασpiν − ηανpiσ

)
ηβρpfµ − ηβµpfρ

)
+
(
ηασpiµ − ηαµpiσ

)(
ηβρpfν − ηβνpfρ

)
+
(
ηαρpiν − ηανpiρ

)(
ηβσpfµ − ηβµpfσ

)}
εαA(εβB)∗

}
. (88)

We also require the triple graviton vertex of Fig. 5, which was given in [8].

τµναβ,γδ(k, q)=−
i κ

2

[(
Iαβ,γδ −

1

2
ηαβηγδ

) [
kµkν + (k − q)µ(k − q)ν + qµqν − 3

2
ηµνq2

]
+ 2qλqσ

[
Iλσ,αβI

µν,
γδ + Iλσ,γδI

µν,
αβ − Iλµ,αβIσν,γδ − Iσν,αβIλµ,γδ

]
+
[
qλq

µ
(
ηαβI

λν,
γδ + ηγδI

λν,
αβ) + qλq

ν(ηαβI
λµ,

γδ + ηγδI
λµ,

αβ

)
− q2

(
ηαβI

µν,
γδ + ηγδI

µν,
αβ)− ηµνqλqσ(ηαβIγδ,λσ + ηγδIαβ,λσ

)]
+
[
2qλ
(
Iσν,γδIαβ,λσ(k − q)µ+Iσµ,γδIαβ,λσ(k − q)ν − Iσν,αβIγδ,λσkµ−Iσµ,αβIγδ,λσkν

)
+ q2

(
Iσµ,αβIγδ,σ

ν + Iαβ,σ
νIσµ,γδ

)
+ ηµνqλqσ

(
Iαβ,λρI

ρσ,
γδ + Iγδ,λρI

ρσ,
αβ

)]
+
[(
k2 + (k − q)2

)(
Iσµ,αβIγδ,σ

ν + Iσν,αβIγδ,σ
µ − 1

2
ηµν
(
Iαβ,γδ −

1

2
ηαβηγδ)

)
−
(
k2ηαβI

µν,
γδ + (k − q)2ηγδIµν,αβ

)] ]
. (89)
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where

Iαβ,γδ =
1

2
(ηαγηβδ + ηαδηβγ)

The photon-graviton coupling was given in [8]〈
kf , εf

∣∣V (γ)µν
grav

∣∣ ki, εi〉 = i
κ

2

[
ε∗f · εi

(
kµi k

ν
f + kνi k

µ
f

)
− ε∗f · ki

(
kµf ε

ν
i + εµi k

ν
f

)
− εi · kf

(
kνi ε
∗µ
f + kµi ε

∗ν
f

)
+ kf · ki

(
εµi ε
∗ν
f + ενi ε

∗µ
f

)
− ηµν

[
kf · kiε∗f · εi − ε∗f · kiεi · kf

] ]
. (90)

Finally, we need the seagull vertex which arises from the feature that the energy-momentum tensor depends on
pi, pf and therefore yields a contact interaction when the minimal substitution is made, yielding the spin-1 seagull
amplitude shown in Fig. 2c.〈

pf , εB ; kf , εf εf
∣∣T ∣∣ pi, εA; ki, εi

〉
seagull

=
i

2
κ e
[
ε∗f · (pf + pi) ε

∗
f · εi ε∗B · εA

− ε∗B · εi ε∗f · pf ε∗f · εA − ε∗B · pi ε∗f · εi ε∗f · εA − εA · εi ε∗f · pi ε∗f · ε∗B
− εA · pf ε∗f · εi ε∗f · ε∗B − ε∗f · εA εi · (pf + pi) ε

∗
f · ε∗B

]
. (91)

Appendix C: Graviton Scattering Amplitudes

In this section we list the independent contributions to the various graviton scattering amplitudes which must be
added in order to produce the complete and gauge invariant amplitudes quoted in the text. We leave it to the (perspi-
cacious) reader to perform the appropriate additions and to verify the equivalence of the factorized forms shown earlier.

Graviton Photoproduction: spin-1

For the case of graviton photoproduction, we find the four contributions, cf. Fig. 2,

Fig.2(a) : Ampa(S = 1) =
κe

pi · ki

[
εi · pi

[
ε∗B · εA ε∗f · pf ε∗f · pf − ε∗B · kf ε∗f · pf ε∗f · εA

− εA · pf ε∗f · pf ε∗f · ε∗B + pf · kf ε∗f · εA ε∗f · ε∗B
]

+ εA · εi
[
ε∗B · ki ε∗f · pf ε∗f · pf − ε∗B · kf ε∗f · pf ε∗f · ki − pf · ki ε∗f · pf ε∗f · ε∗B

+ pf · kf ε∗f · ki ε∗f · ε∗B
]

− εA · ki
[
ε∗B · εi ε∗f · pf ε∗f · pf − ε∗B · kf ε∗f · pf ε∗f · εi − εi · pf ε∗f · pf ε∗f · ε∗B

+ pf · kf ε∗f · εi ε∗f · ε∗B
]

− ε∗B · ε∗f εA · εi ε∗f · pfpi · ki
]
. (92)

Fig.2(b) : Ampb(S = 1) = − κe

pi · kf

[
εi · pf

[
εA · ε∗B ε∗f · pi ε∗f · pi − ε∗B · pi ε∗f · pi ε∗f · εA

+ εA · kf ε∗f · pi ε∗f · ε∗B − pi · kf ε∗f · εA ε∗f · ε∗B
]

+ ε∗B · ki
[
εA · εi ε∗f · pi ε∗f · pi − εi · pi ε∗f · pi ε∗f · εA + εA · kf ε∗f · pi ε∗f · εi

− pi · kf ε∗f · εA ε∗f · εi
]

+ εi · ε∗B
[
εA · ki ε∗f · pi ε∗f · pi − pi · ki ε∗f · pi ε∗f · εA + εA · kf ε∗f · pi ε∗f · ki

− pi · kf ε∗f · εA ε∗f · ki
]

− εA · ε∗f ε∗f · pi ε∗B · εi pi · kf
]
.

(93)
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Fig.2(c) : Ampc(S = 1) = κ e

[
ε∗f · εi(ε∗B · εA ε∗f · (pf + pi)− εA · pf ε∗B · ε∗f − ε∗B · pi εA · ε∗f )

− ε∗B · ε∗f εA · εi ε∗f · pi − εA · ε∗f ε∗B · εi ε∗f · pf + ε∗f · εA ε∗f · ε∗B εi · (pf + pi)

]
, (94)

and finally, the photon pole contribution

Fig.2(d) : Ampd(S = 1) = − e κ

2kf · ki

×
[
ε∗B · εA

[
ε∗f · (pf + pi)(kf · kiε∗f · εi − ε∗f · ki εi · kf )

+ ε∗f · ki(ε∗f · εi ki · (pi + pf )− ε∗f · kiεi · (pf + pi))
]

− 2ε∗B · pi
[
ε∗f · εA (kf · ki ε∗f · εi − ε∗f · ki εi · kf )

+ ε∗f · ki (ε∗f · εi εA · ki − ε∗f · ki εi · εA)
]

− 2εA · pf
[
ε∗f · ε∗B(kf · ki ε∗f · εi − ε∗f · ki εi · kf )

+ ε∗f · ki (ε∗f · εi ε∗B · ki − ε∗f · ki εi · ε∗B)
] ]

. (95)

Gravitational Compton Scattering: spin-1

In the case of gravitational Compton scattering—Figure 3—we have the four contributions

Fig.3(a) : Ampa(S = 1) = κ2
1

2pi · ki

[
(εi · pi)2(ε∗f · pf )2εA · ε∗B

− (ε∗f · pf )2εi · pi(εA · kiε∗B · εi + εA · εi ε∗B · pi)
− (εi · pi)2ε∗f · pf (ε∗B · ε∗f εA · pf + ε∗B · kf εA · ε∗f )

+ εi · pi ε∗f · pf εi · pf εA · ki ε∗B · ε∗f + εi · pi ε∗f · pf ε∗f · pi εA · εi ε∗B · kf
+ (ε∗f · pf )2ε∗B · εi εA · εi pi · ki + (εi · pi)2ε∗B · ε∗f εA · ε∗f pf · kf
+ εi · pi ε∗f · pf (εA · ki ε∗B · kf εi · ε∗f + ε∗B · ε∗f εA · εi pi · pf )

− εi · pi ε∗f · pi ε∗B · ε∗f εA · εi pf · kf − ε∗f · pf εi · pf εA · εi ε∗B · ε∗f pi · ki
− εi · pi εA · ki ε∗B · ε∗f ε∗f · εi pf · kf − ε∗f · pf ε∗B · kf εA · εi εi · ε∗f pi · ki

+ εA · εi ε∗B · ε∗f pi · ki pf · kf εi · ε∗f −m2ε∗B · ε∗f εA · εi ε∗f · pf εi · pi
]
.

(96)

Fig.3(b) : Ampb(S = 1) = −κ2 1

2pi · kf

[(
ε∗f · pi

)2(
εi · pf

)2
εA · ε∗B

+
(
εi · pf

)2
ε∗f · pi

(
εA · kf ε∗B · ε∗f − εA · ε∗f ε∗B · pi

)
+
(
ε∗f · pi

)2
εi · pf

(
ε∗B · kiεA · εi − ε∗B · εi εA · pf

)
− ε∗f · pi εi · pf ε∗f · pf εA · kf ε∗B · εi − ε∗f · pi εi · pf εi · pi εA · ε∗f ε∗B · ki
−
(
εi · pf

)2
ε∗B · ε∗f εA · ε∗f pi · kf −

(
ε∗f · pi

)2
ε∗B · εi εA · εi pf · ki

+ ε∗f · pi εi · pf
(
εA · kf ε∗B · ki εi · ε∗f + ε∗B · εi εA · ε∗f pi · pf

)
+ ε∗f · pi εi · pi ε∗B · εi εA · ε∗f pf · ki + εi · pf ε∗f · pf εA · ε∗f ε∗B · εi pi · kf
− ε∗f · pi εA · kf ε∗B · εi εi · ε∗f pf · ki − εi · pf ε∗B · ki εA · ε∗f ε∗f · εi pi · kf

+ εA · ε∗f ε∗B · εi pi · kf pf · ki εi · ε∗f −m2ε∗B · εi εA · ε∗f εi · pf ε∗f · pi
]
.

(97)
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Fig.3(c) : Ampc(S = 1) = −κ
2

4

[(
εi · ε∗f

)2(
m2 − pi · pf

)
εA · ε∗B

+ εA · pf ε∗B · pi
(
εi · ε∗f

)2
+ εi · pi ε∗f · pf

(
2εi · ε∗f εA · ε∗B − 2εA · ε2 ε∗B · ε1

)
+ εi · pf ε∗f · pi

(
2εi · ε∗f εA · ε∗B − 2εA · εi ε∗B · ε∗f

)
+ 2εi · pi ε1 · pf εA · ε∗f ε∗B · ε∗f + 2ε∗f · pf ε∗f · pi εA · εi ε∗B · εi
− 2εi · pi εi · ε∗f εA · pf ε∗B · ε∗f − 2ε∗f · pf εi · ε∗f εA · εi ε∗f · pi
− 2εi · pf εi · ε∗f εA · ε∗f ε∗B · pi − 2ε∗f · pi εi · ε∗f ε∗B · εi εA · pf

− 2
(
m2 − pf · pi

)
εi · ε∗f

(
εA · εi ε∗B · ε∗f + εA · ε∗f ε∗B · εi

)]
, (98)

and finally the (lengthy) graviton pole contribution is

3(d) : Ampd(S = 1) = − κ2

16 ki · kf

[
ε∗B · εA

[(
εi · ε∗f

)2[
4ki · pi pf · ki + 4kf · pi kf · pf

− 2
(
pi · ki pf · kf + pf · ki pi · kf

)
+ 6pi · pf ki · kf

]
+ 4
[(
εi · kf

)2
ε∗f · pf ε∗f · pi

+
(
ε∗f · ki

)2
εi · pi εi · pf + εi · kf ε∗f · ki

(
εi · pi ε∗f · pf + εi · pf ε∗f · pi

)]
− 4εi · ε∗f

[
εi · kf

(
ε∗f · pi pf · kf + ε∗f · pf kf · pi

)
+ ε∗f · ki

(
εi · pi pf · ki + εi · pf pi · ki

)]
− 4ki · kf εi · ε∗f

(
εi · pi ε∗f · pf + εi · pf ε∗f · pi

)
− 4pi · pf εi · ε∗f εi · kf ε∗f · ki

]
−
(
pi · pf ε∗B · εA − ε∗B · pi εA · pf

)[
10
(
εi · ε∗f

)2
ki · kf + 4εi · ε∗f εi · kf ε∗f · ki

− 4
(
εi · ε∗f

)2
ki · kf − 8εi · ε∗f εi · kf ε∗f · ki

]
+
(
pi · pf −m2

)[(
εi · ε∗f

)2(
4εA · ki ε∗B · ki

+ 4εA · kf ε∗B · kf − 2
(
εA · ki ε∗B · kf + εA · kf ε∗B · ki

)
+ 6ε∗B · εA ki · kf

)
+ 4

[(
εi · kf

)2
εA · ε∗f ε∗B · ε∗f +

(
ε∗f · ki

)2
εA · εi ε∗B · εi + εi · kf ε∗f · kf

(
εA · εi ε∗B · ε∗f

+ εA · ε∗f ε∗B · εi
)]
− 4εi · ε∗f

[
εi · kf

(
εA · ε∗f ε∗B · kf + ε∗B · ε∗f εA · kf

)
+ ε∗f · ki

(
εA · εi ε∗B · ki + ε∗B · εi εA · ki

)
+ ki · kf

(
εA · εi ε∗B · ε∗f + ε∗B · εi εA · ε∗f

)
+ εA · ε∗B εi · kf ε∗f · ki

]]
− 2εA · pf

[(
ε∗f · εi

)2[
2ε∗B · ki pi · ki + 2ε∗B · kf pi · kf

+ 3ε∗B · pi ki · kf −
(
ε∗B · ki pi · kf + ε∗B · kf pi · ki

)]
+ 2
(
εi · kf

)2
ε∗B · ε∗f ε∗f · pi

+ 2
(
ε∗f · ki

)2
ε∗B · εi εi · pi + 2εi · kf ε∗f · ki

(
ε∗B · εi ε∗f · pi + εi · pi ε∗B · ε∗f

)
− 2εi · ε∗f

[
εi · kf

(
ε∗B · ε∗f pi · kf + ε∗f · pi ε∗B · kf

)
+ ε∗f · ki

(
ε∗B · εi pi · ki + ε∗B · ki εi · pi

)]
− 2ki · kf εi · ε∗f

(
ε∗B · εi ε∗f · pi + ε∗B · ε∗f εi · pi

)
− 2ε∗B · pi εi · ε∗f εi · kf ε∗f · ki

]
− 2ε∗B · pi

[(
ε∗f · εi

)2[
2εA · ki pf · ki + 2εA · kf pf · kf + 3εA · pf ki · kf

−
(
εA · ki pf · kf + εA · kf pf · kf )

]
+ 2
(
εi · kf

)2
εA · ε∗f ε∗f · pf + 2

(
ε∗f · ki

)2
εA · εi εi · pf

+ 2εi · kf ε∗f · ki
(
εA · εi ε∗f · pf + εi · pf εA · ε∗f − 2εi · ε∗f

[
εi · kf

(
εA · ε∗f pf · kf

+ ε∗f · pf εA · kf
)

+ ε∗f · ki
(
εA · εi pf · ki + εA · ki εi · pf

)]
− 2ki · kf εi · ε∗f

(
εA · εi ε∗f · pf + εA · ε∗f εi · pf

)
− 2εA · pf εi · ε∗f εi · kf ε∗f · ki

]]
.

(99)
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