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The interactions of gravitons with spin-1 matter are calculated in parallel with the well known
photon case. It is shown that graviton scattering amplitudes can be factorized into a product
of familiar electromagnetic forms, and cross sections for various reactions are straightforwardly
evaluated using helicity methods. Universality relations are identified. Extrapolation to zero mass
yields scattering amplitudes for photon-graviton and graviton-graviton scattering.

1. INTRODUCTION

The calculation of photon interactions with matter is part of any introductory (or advanced) course on quantum
mechanics. Indeed the evaluation of the Compton scattering cross section is a standard exercise in relativistic quantum
mechanics, since gauge invariance together with the masslessness of the photon allow the results to be presented in
terms of relatively simple analytic forms [1].

Naively, one might expect a similar analysis to be applicable to the interactions of gravitons since, like photons,
gravitons are massless and subject to a gauge invariance. Also, just as virtual photon exchange leads to a detailed un-
derstanding of electromagnetic interactions between charged systems, a careful treatment of virtual graviton exchange
allows an understanding not just of Newtonian gravity, but also of spin-dependent phenomena—geodetic precession
and Lense-Thirring frame dragging—associated with general relativity which have recently been verified by gravity
probe B [2]. However, despite these parallels, examination of quantum mechanics texts reveals that (with one ex-
ception [3]) the case of graviton interactions is not discussed in any detail. There are at least three reasons for this
situation:

i) the graviton is a spin-two particle, as opposed to the spin-one photon, so that the interaction forms are more
complex, involving symmetric and traceless second rank tensors rather than simple Lorentz four-vectors;

ii) there exist fewer experimental results with which to confront the theoretical calculations. added text Funda-
mental questions beyond the detection of quanta of gravitational fields have been exposed in [4];

iii) in order to guarantee gauge invariance one must include, in many processes, the contribution from a graviton
pole term, involving a triple-graviton coupling. This vertex is a sixth rank tensor and contains a multitude of
kinematic forms.

added text: Hundred years after the classical theory of general relativity and Einstein! argument for a quantization
of gravity [5], we are still looking after experimental signature of quantum gravity effects. This paper present and
extend recent works where elementary quantum gravity processes display new and very distinctive behaviour.

1 “Gleichwohl miiBten die Atome zufolge der inneratomischen Elektronenbewegung nicht nur elektromagnetische, sondern auch Gravita-
tionsenergie ausstrahlen, wenn auch in winzigem Betrage. Da dies in Wahrheit in der Natur nicht zutreffen diirfte, so scheint es, daf3 die
Quantentheorie nicht nur die Maxwellsche Elektrodynamik, sondern auch die neue Gravitationstheorie wird modifizieren miissen” [5].



Recently, however, using powerful (string-based) techniques, which simplify conventional quantum field theory
calculations, it has been demonstrated that the scattering of gravitons from an elementary target of arbitrary spin
factorizes [6], a feature that had been noted ten years previously by Choi et al. based on gauge theory arguments [7].
This factorization property, which is sometime concisely described by the phrase “gravity is the square of a gauge
theory”, permits a relatively elementary evaluation of various graviton amplitudes and opens the possibility of studying
gravitational processes in physics coursework. In a previous paper published in this journal [8] it was shown explicitly
how, for both spin-0 and spin-1 targets, the use of factorization enables elementary calculation of both the graviton

photoproduction, ’

y+S—=g+5,
and gravitational Compton scattering,

g+S—=9g+58S,

reactions in terms of elementary photon reactions. This simplification means that graviton interactions can now
be discussed in a basic quantum mechanics course and opens the possibility of treating interesting cosmological
applications.

In the present paper we extend the work begun in [8] to the case of a spin-1 target and demonstrate and explain the
origin of various universalities, i.e., results which are independent of target spin. In addition, by taking the limit of
vanishing target mass we show how both graviton-photon and graviton-graviton scattering may be determined using
elementary methods.

In section 2 then, we generate the electromagnetic interactions of a spin one system. In section 3 we calculate
the ordinary Compton scattering cross section for a spin-1 target and compare with the analogous spin-0 and spin—%
forms. In section 4 we examine graviton photoproduction and gravitational Compton scattering for a spin-1 target
and again compare with the analogous spin-0 and spin—% results. In section 5 we study the massless limit and show
how both photon-graviton and graviton-graviton scattering can be evaluated, resolving a subtlety which arises in the
derivation. Finally, our results are summarized in a brief concluding section 6. Two appendices contain formalism
and calculational details.

2. SPIN ONE INTERACTIONS: A LIGHTNING REVIEW

We begin by generating the photon and graviton interactions of a spin-1 system. We generate the photon interaction
by writing down the free Lagrangian for a scalar field ¢

£570 = 8,0'0"¢ —m*¢'o (1)
and using the minimal substitution [9]

10, — 1D, =10, —eA,
This procedure leads to the familiar interaction Lagrangian

L5590 = —iA, "9 o + €2 A, A 0010 2)

int

where e is the particle charge and A,, is the photon field and implies the one- and two-photon vertices

< prlVEHp: > = ie(ps + pi)*
<plVE p; > = ie*n (3)

The corresponding charged massive spin-1 Lagrangian has the Proca form [10]

_ 1
L5 = -5 Bl,B" +m® B}, B", (4)

nv
where B* is a spin one field subject to the constraint d,B* = 0 and B*” is the antisymmetric tensor

BM = 9"B” — 9" B (5)



The minimal substitution then leads to the interaction Lagrangian
— . A Apd
Eisn—tl =ieA*BYt (771/04 O pu—"Nap 0 ,,) B — eZA”AV(anaﬁ — nﬂanyg)BaTBﬁ, (6)

and the one, two photon vertices

(proen VS| pisea)g_, = —ieeng ((pf +pi)n*P —nPrp§ — n““pf) €Aa s
(pr.es [V | pivea)s_, = i€ epg (200" = 0" — ™ n"") €aq . (7)

However, Eq. (7) is not the correct result for a fundamental spin-1 particle such as the charged W-boson. Because
the W arises in a gauge theory, the field tensor is not given by Eq. (5) but rather is generated from the charged—

\/g (x £ iy)—component of
B,, =D,B, — D,B, — g,.B, x B, (8)

where g4, is the gauge coupling. This modification implies the existence of an additional W~ interaction, leading
to an “extra” contribution to the single photon vertex

(pr,eB [0V pisea)s—1 = ieeng (1™ (pi — ps)’ — 1" (pi — s)*)) €aa - 9)

The significance of this term can be seen by using the mass-shell Proca constraints p; - €4 = py - eg = 0 to write the
total on-shell single photon vertex as

(P €8 |(Vem + 0Vem )| pirea)s_y, = —ieehs ((0r + i) n™” 20°"(pi — ps)®) €aa
+ =20**(p; — py)”, (10)

wherein, comparing with Eq. 9 we observe that the coefficient of the term —n®*(p; — ps)? + n°#(p; — py)* has been
modified from unity to two. Since the rest frame spin operator can be identified via?

BIB; — BIB; = —iejju(f |Sk|i), (12)
the corresponding piece of the nonrelativistic interaction Lagrangian becomes
€ .
ﬁint:_g%<f’s‘z>'VXAa (13)

where ¢ is the gyromagnetic ratio and we have included a factor 2m which accounts for the normalization condition
of the spin one field. Thus the “extra” interaction required by a gauge theory changes the g-factor from its Belinfante
value of unity [11] to its universal value of two, as originally proposed by Weinberg [12] and more recently buttressed
by a number of additional arguments [13]. Henceforth in this manuscript then we shall assume the g-factor of the
spin-1 system to have its “natural” value g = 2, since it is in this case that the high-energy properties of the scattering
are well controlled and the factorization properties of gravitational amplitudes are valid [14].

3. COMPTON SCATTERING

The vertices given in the previous section can now be used to evaluate the ordinary Compton scattering amplitude,

y+S—=>v+S5,
2 Equivalently, one can use the relativistic identity
. . 1 i 1 .
€Bud €A —€Apq - €5 = o (Eeumépftf’sé = 5, (s +Pi)uch - qea ~q) (11)
T m?

where $% = Q:R e‘SUTCe*BUeAT (pg + pi)¢ is the spin four-vector.
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FIG. 1: Diagrams relevant to Compton scattering.

for a spin-1 system having charge e and mass m by summing the contributions of the three diagrams shown in Figure 1,
yielding

Di - ki pi-ky

* « [ € " Di € " DPf « [ €f Py 6?.1%)}
— lea-les ke]-€ ———— | —e€a- e ki€ <_
[ (€G] B(pi'ki pi'kf> S pi-ki  pi-ky

€<.p.6*.p €.p€*.p
Ampgo_rilp_2€2{ere’]‘3[l ¢y Pr G Prey in.G;}

1 1
— €a e k] €5, kel €5 — ———e€a -5, ke] - e, ki€ 14
ek ] e e Z]B]} (14)
with the momentum conservation condition p; + k; = py + k. It is then straightforward to verify that Eq. (14)
satisfies the gauge invariance strictures
e;ﬂk;’AmpSs’mSil = k?eé’AmpEﬁfEil =0. (15)
In order to pave the way for the transition to gravity in the next section, it is useful to utilize the helicity for-
malism [15], wherein one evaluates the matrix elements of the Compton amplitude between initial and final spin-1
and photon states having definite helicity, where helicity is defined as the projection of the particle spin along the
momentum direction. We work initially in the center of mass frame and, for a photon incident with four-momentum
k' = pem(1, 2), we choose the polarization vectors

€ = 3§< +idg),  hi=4, (16)

while for an outgoing photon with k}‘ = pom(1, cosOcmz + sin OcmE) we use polarizations

A A e .
eff :—7%(00590Mx+1)\fy—s1n90Mz>, A==, (17)
We can define corresponding helicity states for the spin-1 system. In this case the initial and final four-momenta

are p!' = (Ecm, —pemZ) and p’; = (Ecm, —pom(cosonmz + sinfovd)) and there exist two transverse polarization
four-vectors

PR
W= 0757

ke ( icosHCMi—i—iy:FsinHCM,%)
B - ) )

V2

in addition to the longitudinal mode with polarization four-vectors

(18)

1 )
6(,)4# = E(pCMa_ECMZ)a
1
€§ = —(pom, ~Ecm(cosfon + sinfond)) . (19)



In terms of the usual invariant kinematic (Mandelstam) variables

s=(pi+k)’ t=(ki—k)® u=(pi—ks)?,

we identify

. s —m? E _8—|—m2
pPcMm = 2\/5 ’ CM — 2\/5
1 1 1
1 (s=m?)?+st)? (m*—su)? 1 (—st)?
70 — = i *9 = . 20
oS pveM 5§ —m?2 s—m2 ' SmpieM =T (20)

The invariant cross-section for unpolarized Compton scattering is then given by

do.comp 1 1 Z Z ‘ b d ‘ (21)
dt 1671'(5 -m?)? 3 (abied)] -
b0+ 2 et

where
B'(ab;cd) = (py,b; k:f,d’Ampcomp‘pl,a ki c), (22)

is the Compton amplitude for scattering of a photon with four-momentum k;, helicity a from a spin-1 target having
four-momentum p;, helicity c¢ to a photon with four-momentum kj, helicity d and target with four-momentum py,
helicity b. The helicity amplitudes can now be calculated straightforwardly. There exist 32 x 22 = 36 such amplitudes
but, since helicity reverses under spatial inversion, parity invariance of the electromagnetic interaction requires that?

’Bl(ab; cd)’ = |B'(—a—b;—c—d)|.

Also, since helicity is unchanged under time reversal, but initial and final states are interchanged, T-invariance of the
electromagnetic interaction requires that

| B! (ab; cd)| = | B (ba; dc)| -

Consequently there exist only twelve independent helicity amplitudes. Using Eq. (14) we calculate the various helicity
amplitudes in the center of mass frame and then write these results in terms of invariants using Eq. (20), yielding the
forms quoted in Appendix A.
Substitution of these helicity amplitudes Eq. (86) into Eq. (21) then yields the invariant cross-section for unpolarized
Compton scattering from a charged spin-1 target
dacomp et
a 127(s — m?)*(u — m?)? [(

m* — su+t?)(3(m* — su) +t*) + 3 (t —m®)(t — 3m2)} ; (23)

which can be compared with the corresponding results for unpolarized Compton scattering from charged spin-0 and
spin-3 targets found in ref. [8].
Often such results are written in the laboratory frame, wherein the target is at rest, by use of the relations

2

s—m~ = 2nmw;, u—m" = —2mwy,
4 2 0L 2 2 2 0L
m* — su = 4m*ww; cos - m t = —4dm w;wy sin > (24)
and
dt d 2wZ(1—cosfr) \ wjzc (25)
d  2mdcosf \ 1+ “(1—cosfy)) m°

3 Note that we require only that the magnitudes of the helicity amplitudes related by parity and/or time reversal be the same. There
could exist unobservable phases.



Introducing the fine structure constant a = e2/4x, we find then

doComP 2 wh 01, 401 or\
Tlabs=1 _ ¥ *f ((:054 5 + sin? 2)(14—28112 2L)

dQ m? w}
160.)2»2 . BL . HL 32(4.]2L . 89L
+ 32 sin 2(1+2 7 + 3 sin 5|

(26)

Comparing with the corresponding forms found in [8], We observe that the nonrelativistic laboratory cross-section

has an identical form for any spin
a? 400 401 w;
:m[( o i 2)(”@(”1))]’ (27)

which follows from the universal form of the Compton amplitude for scattering from a spin-S target in the low-energy
(w < m) limit,

Comp NR
do 401ab,5

A0

(S, My; ey ‘Ampgomp’ S, Mi;6i>w<<m = 2¢? € €0y e (28)

and obtains in an effective field theory approach to Compton scattering [16].%

4. GRAVITATIONAL INTERACTIONS

In the previous section we discussed the treatment the familiar electromagnetic interaction, using Compton scatter-
ing on a spin-1 target as an example. In this section we show how the gravitational interaction can be evaluated via
methods parallel to those used in the electromagnetic case. An important difference is that while in the electromagnetic
case we have the simple interaction Lagrangian

Lint = —eA,J", (30)
where J* is the electromagnetic current matrix element, for gravity we have
Lot = —gh,wT*“’. (31)
Here the field tensor h,,, is defined in terms of the metric via
Guv = NMuv + Khyw (32)
where & is given in terms of the Cavendish constant G by &2 = 327G. The Einstein-Hilbert action is
SEinstein—Hilbert = /d4$ V=g % R, (33)
where
V—g = \/—detg = exp %trlogg =1+ %n””hw +.o., (34)
is the square root of the determinant of the metric and R := R’\Mug“ ¥ is the Ricci scalar curvature obtained by

contracting the Riemann tensor R*,,, with the metric tensor. The energy-momentum tensor is defined in terms of
the matter Lagrangian via

2 0/—gL
T L= mat .
12 /_79 6gMV (35)

4 That this seagull contribution dominates the non relativistic cross-section is clear from the feature that

€ P& P w .
S 7 ~— X Ampseagull = 262€f "€ (29)

AmpBorn ~ 282 k
p- m
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FIG. 2: Diagrams relevant to graviton photoproduction.

The various gravitational vertices can then be found and are given in Appendix B.
We work in harmonic (de Donder) gauge which satisfies, in lowest order,

1
Mhy, = iﬁyh, (36)
with
h = trh,, (37)
and in which the graviton propagator has the form
i 1
Dagivys(q) = mi(ﬁmﬁﬁs + NasTBy — Napys) - (38)

Then just as the (massless) photon is described in terms of a spin-1 polarization vector €, which can have projection
(helicity) either plus- or minus-1 along the momentum direction, the (massless) graviton is a spin-2 particle which
can have the projection (helicity) either plus- or minus-2 along the momentum direction. Since h,, is a symmetric
tensor, it can be described in terms of a direct product of unit spin polarization vectors—

helicity = +2: hfy) = e;ej,

helicity = —2: hf;,Q) =€,6, (39)

and just as in electromagnetism, there is a gauge condition—in this case Eq. (36)—which must be satisfied. Note
that the helicity states given in Eq. (39) are consistent with the gauge requirement since

n“”elfej' =n"e, e, =0, and k“ef =0. (40)

With this background under our belt, we can now examine specific graviton reactions.

4.1. Graviton Photoproduction

We first use the above results to discuss the problem of graviton photoproduction on a spin-1 target—y+5 — g+.5—
for which the relevant four diagrams are shown in Figure 2. The electromagnetic and gravitational vertices needed for
the Born terms and photon pole diagrams—Figures 2a, 2b, and 2d—are given in Appendix B. For the photon pole
diagram we require the graviton-photon coupling, Eq. (90)°

5 Note that this form agrees with the previously derived form for the massive graviton-spin-1 energy-momentum tensor—Eq. (87)—in the
m — 0 limit.



The individual contributions from the four diagrams in Figure 2 are quoted in Appendix C and have a rather
complex form. However, when combined, we find a much simpler result. The full graviton photoproduction amplitude
is found to be proportional to the already calculated Compton amplitude for spin-1—Eq. (14)—times a universal
kinematic factor, i.e.,

4

(prikesseses|Tlpis ki e0) = 3 Amp (Figd(0) = H x (€facisTompion(S = 1)) (41)
i=1

where

T % kzkf T 9% ki'kf )

(42)

and e}aeiﬁTgfmpton(S ) is the spin-1 Compton scattering amplitude calculated in the previous section. The gravita-

tional and electromagnetic gauge invariance of Eq. (41) is obvious, since it follows directly from the gauge invariance
already shown for the Compton amplitude together with the explicit gauge invariance of the factor H. The va-
lidity of Eq. (41) allows the straightforward calculation of the cross-section by helicity methods since the graviton
photoproduction helicity amplitudes are given simply by

C'(ab; cd) = H x B (ab; cd) (43)

where Bl(ab;cd) are the Compton helicity amplitudes found in the previous section. We can then evaluate the
invariant photoproduction cross-section using

dO’gl’;Olto ]. 1 Z ]- Z |Cl( b d)|2 (44)
— 5= - ab; ¢ ,
dt 16m(s —m?)"3 =5, 2 =,
yielding
d photo 2,2 4 _
0g—1 _ €K (m . SU) . {(m4 _ su+t2)(3(m4 _ S’U,) —|—t2)
dt 967775(5 — m2) (u — m2)

+ 3t —m?)(t — 3m?) ] . (45)

Since

1

Kk (m*—su)?
7 (A (L 46
= (") (16)

the laboratory value of the factor H is

r2m? cos® 30,

Hupl?P=——"2= 47
Hial” = 5o G 10, 1)
and the corresponding laboratory cross-section is
hoto Com
d"lpab,s:1 _ ‘H ‘2d‘71ab,sp:1
Q) tab dt
0 * 6 9 6 N A
= Gacos? 7]‘ <:’:> l(cthQL cos? ?L + sin? 2L> (1 + 2% sin? 2L>
16(}.)142 . 29[, Ww; . 29L 32&1? . 69[/
3Wsm 5 1+2ESIH > + 3 sin > (48)

Comparing Eq. (48) with the spin-0 and spin—% cross sections found in [8], we see that, just as in Compton scattering,
the low-energy laboratory cross-section has a universal form, which is valid for a target of arbitrary spin

dUlI;}gogo 2 0r, 20L 2 0L, . 9 0r, Wi
10 = Gacos 2(ctn Ecos 7+sm 2) <1+O<m)>. (49)



In this case the universality can be understood from the feature that at low-energy the leading contribution to the
graviton photoproduction amplitude comes not from the seagull, as in Compton scattering, but rather from the photon
pole term,

A GGG R S M T s S, M, 50
MPy _pole wZn WX i<pf’ ) f| M|p’“ ’ Z>' ( )

The leading piece of the electromagnetic current has the universal low-energy structure

: . A , u)
<pfaSaMf|J,u|puSaMz>* Qm(pf +p1)H5Mf,M,1 <1+O( m ) y (51)
where we have divided by the factor 2m to account for the normalization of the target particle. Since k; - (py +p;) —(>)
w—
2mw, we find the universal low-energy amplitude
NE e; - € e; - ks
Amp,y_pole = KJCUJW 5 (52)
whereby the helicity amplitudes have the form
1 14cosfp _ COSGTL 2 0L -
K e 2 S HL 1—cosfr, T sin 2L COS 2 ++ = 5
Ampf = 2 (53)
v pole 2v2 | 1. 1—cosf cos L . 9
5sindg (1_Cosai ) = sin” T 4—=—+
2
Squaring and averaging, summing over initial, final spins we find then
doPhoto 0 0 0 0 ;
(1;5’3 o G a cos? 71’ [(cthQL cos? 7L + sin? 2L> (1 +0 (:j;))} . (54)

as determined above—cf. Eq. (49).

Comparing the individual contributions from Appendix C with the simple forms above, the power of factorization
is obvious and, as we shall see in the next section, permits the straightforward evaluation of even more complex
reactions such as gravitational Compton scattering.

4.2. Gravitational Compton Scattering

In the previous section we observed the power of factorization in the context of graviton photoproduction on a
spin-1 target in that we only needed to calculate the simpler Compton scattering process rather than to consider
the full gravitational interaction description. In this section we consider an even more challenging example, that of
gravitational Compton scattering—¢g + S — g + S—from a spin-1 target, for which there exist the four diagrams
shown in Figure 3.

The contributions from the four individual diagrams can be calculated using the graviton vertices given in Appendix
B and are quoted in Appendix C. Each of the four diagrams has a rather complex form. Again however, when added
together the total simplifies enormously. Defining the kinematic factor

_/ipi-kipi-kf_ Kkt (s —m?) (u—m?)
- 8et ki-kp  16et t ’

(55)

the sum of the four diagrams is found to be given by

4
(ps.epikys erey |Ampgra\,’pi,e,4;ki7eiei>s = ZAmp (Fig.5(7))
i=1

= Yx[(ps,en; ki € |Ampey, | pis €a; kis €) ¢ X (pfi kiy € |Ampe,y, | pi; kis €) 50 ,
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FIG. 3: Diagrams relevant for gravitational Compton scattering.

with § = 1, where

e.pe* .p G.p 6* .p4
i Pi€y-Pf G fer i —6} 6l (57)
Di - ki pz"k?f

<pfa kiv 6f|Arnpem|p17 ki7 6i>S:0 - 262

is the Compton amplitude for a spinless target.

In (8] the identity Eq. (56) was verified for simpler cases of S = 0 and S = %. This relation is a consequence of the
general connections between gravity and gauge theory tree-level amplitudes derived using string-based methods as
explained in [17]. Here we have demonstrated its validity for the much more complex case of spin-1 scattering. The
corresponding cross-section can be calculated by helicity methods using

D'(ab;cd) =Y x B'(ab;cd) x A%(cd), (58)

where D' (ab; cd) is the spin-1 helicity amplitude for gravitational Compton scattering, B! (ab; cd) is the ordinary spin-
1 Compton helicity amplitude calculated in section 3, and A°(cd) are the helicity amplitudes for spin zero Compton
scattering arising from Eq. (57) calculated in [8], as given in Appendix A. Using Eq. (56) the invariant cross-section
for unpolarized spin-1 gravitational Compton scattering

do_{P 1 1
= = = (59)
dt 16m (s 7; + C_Z:Jr
is found to be
dUS o K 4 2 4 2 4 2
= (m® — su)*(3(m”* — su) +t°)(m"* — su+t°)
dt 7687r(3 - m2)4(u - m2)2t2 [ ( )
+ m*(B3m? —t)(m? —t)] . (60)

and this form can be compared with the unpolarized gravitational Compton cross-sections found in [8].
The corresponding laboratory frame cross-section is

do—lab(i:i’omlp 2 Qw}l 49L 9 0 oL 2
e _J 1 27 2
e) Gmw4 <ctn2c 2—|—Sl 2>(+ 2>

i

16 w? or, 0r, 6
+ 3::;’2<COSG2+SID 2)<1+2 22L>

16 w} 0 0 0
+ 3:;8in22L(COS42L+Sin4;):| ,

(61)
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We observe that the low-energy laboratory cross-section has the universal form for any spin

do'lgag%omp 2 9 49L 4 0r, . 4 0r, Wi
g =G"m {(ctn 7005 > + sin 2) (1+O(m))} . (62)

It is interesting to note that the “dressing” factor for the leading (4++) helicity Compton amplitude—

2 4 2,2 2 0L
4 K m- — sSu lab KM~ COS -5
‘Y| ‘A ‘ T 92 T — 22 G2 0L’ (63)

2
—is simply the square of the photoproduction dressing factor H, as might intuitively be expected since now both
photons must be dressed in going from the Compton to the gravitational Compton cross-section.® In this case the

universality of the nonrelativistic cross-section follows from the leading contribution arising from the graviton pole
term

K

* e 2 M.V My

(pg; S: My | Ty | pi S, M) . (65)

K
Ampg—pole §

Here the matrix element of the energy-momentum tensor has the universal low-energy structure

g (pg: Ss My | Ty | pis S, M;) = ﬁ (Pfupiv + ProPip) a1, 0, (1 + 0(%)) ; (66)

where we have divided by the factor 2m to account for the normalization of the target particle. We find then the
universal form for the leading graviton pole amplitude

2

Ampgfpole (6; : e’i)2 (pl : kf by - kf + i kl Py - kl) 6Mf,Mi . (67)

K
% e —
non—rel  8m kf . k’z

Since p -k — muw the helicity amplitudes become

wLm
2
(1+cos 9L) cos? HTL
2(17c050L) - sin? 971, Tr=-
Ampng{pole =47Gm A (68)
(lfcos 9L) sin? QTL
= T 0L +—=—-+
2(17c059L) sin® —*
Squaring and averaging,summing over initial,final spins we find
d i@%omp 0r, 01, 0r,
—22 s 2m? |etn? = cos? =2 +sint = 69
a2 wLm 2 2 21’ ( )

as found in Eq. (62) above.

5. GRAVITON-PHOTON SCATTERING

In the previous sections we have generalized the results of [8] to the case of a massive spin-1 target. Here we show
how these spin-1 results can be used to calculate the cross-section for photon-graviton scattering. In the Compton
scattering calculation we assumed that the spin-1 target had charge e. However, the photon couplings to the graviton
are identical to those of a graviton coupled to a charged spin-1 system in the massless limit, and one might assume
then that, since the results of the gravitational Compton scattering are independent of charge, the graviton-photon
cross-section can be calculated by simply taking the m — 0 limit of the graviton-spin-1 cross-section. Of course,

6 In the case of +— helicity the “dressing” factor is
2
K
Y||AT| = =5 m?. 64
vljar] = 5 (o)
so that the non-leading contributions will have different dressing factors.
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the laboratory cross-section no longer makes sense since the photon cannot be brought to rest, but the invariant
cross-section is well defined

do&_§omr L, A G? (3s%u? — dt?su+ 1) ArG2(s* + ut + s%u?)
dt m—>0 3s2t2 B 3s%t2 ’

(70)

and it might be (naively) assumed that Eq. (70) is the graviton-photon scattering cross-section. However, this is not
the case and the resolution of this problem involves some interesting physics.
We begin by noting that in the massless limit the only nonvanishing helicity amplitudes are

2
D' (++;++)m=0 = D'(==5=—)m=o = 81G 57 7
u2

DY (==i++)m=o = D'(++i=—)m=o =87G —,

DM (00; ++)m_o = D(00; ——)m—o :8wG%, (71)
which lead to the cross-section
do_Gomp 1
o 167r52 3 ;}7 Z; H(absed)
= 16;82 312 (87G)? x 2 x [i;l + 1;—;1 + si;ﬂ}
_ %TGQS —|—1;2t—|2— s2u? ’ (72)

in agreement with Eq. (70). However, this result reveals the problem. We know that in Coulomb gauge the photon has
only two transverse degrees of freedom, corresponding to positive and negative helicity—there exists no longitudinal
degree of freedom. Thus the correct photon-graviton cross-section is obtained by deleting the contribution from the
D*(00; ++) and D*(00; ——) multipoles

d
% - 167r523 Z Z (b ed)|

T2
1 1 4 4
- (87G) ><2><[s+1:2}—2 G2u

167s2 22 2 s2t2 7 (73)

which agrees with the value calculated via conventional methods by Skobelev [18]. Alternatively, since in the center
of mass frame

dt _ weM
a= (74)
we can write the center of mass graviton-photon cross-section in the form
docm 1+ cos® fem
— 2GRy, (2 (75)
. 40 )
ds2 sin® o

again in agreement with the value given by Skobelev [18].
So what has gone wrong here? Ordinarily in the massless limit of a spin-1 system, the longitudinal mode decouples
because the zero helicity spin-1 polarization vector becomes

1 m?2 1 m
0 L e N A
& m( ,(er o +>z> mpqu (O, 2pz) +... (76)

However, the term proportional to p, vanishes when contracted with a conserved current by gauge invariance while
the term in % vanishes in the massless limit. However, what takes place when two longitudinal spin-1 particles are
present is that the product of longitudinal polarization vectors is proportional to 1/m?, while the correction term to
the four-momentum p,, is O(m?) so that the product is nonvanishing in the massless limit and this is why the multipole
D(00; +4)m=0 = D(00; ——),,,—0 is nonzero. One deals with this problem by simply omitting the longitudinal degree
of freedom explicitly, as done above.



13
5.1. Extra Credit

Before leaving this section it is interesting to note that graviton-graviton scattering can be treated in a parallel
fashion. That is, the graviton-graviton scattering amplitude can be obtained by dressing the product of two massless
spin-1 Compton amplitudes [19]—

<pf,6363; kr,eres |Amp;(;tav|pi€A5A; ki7€i€i>m=075=2
=Y x (pf,ep; ky,ef |AMPST™P| pi, €a; ki€i)m—0,5-1
x(pssepiky,ep [Ampea™| piea; kiei)m=o,5=1 - (77)

Then for the helicity amplitudes we have
2 1 2
E?(++;++)meo = Y (B (++; ++)m=0) ", (78)

where E?(++; ++) is the graviton-graviton ++; ++ helicity amplitude while B (++; ++) is the corresponding spin-1
Compton helicity amplitude. Thus we find
E2(++; ++) K (025) Lyt (79)
M m=0— T e — = OTT -,
’ 07 16t ¢ u ut

which agrees with the result calculated via conventional methods [20].

6. THE FORWARD CROSS-SECTION

Before closing, we note some intriguing physics associated with the forward-scattering limit. In this limit, é.e., 8, —
0, in the laboratory frame, the Compton cross-section evaluated in section 3 has a universal structure independent of
the spin S of the massive target

do® o2
oo dQ 2m?’ (80)

reproducing the well-known Thomson scattering cross-section.

For graviton photoproduction, however, the small angle limit is very different, since the forward-scattering cross-
section is divergent—the small angle limit of the graviton photoproduction of section 4.1 is given by

photo
doyy,s  4Ga

li = 81
om0 dQ 2 (81)
and arises from the photon pole in figure 2(d).
The small angle limit of the gravitational Compton cross-section derived in section 4.2 is given by
dof ™ 16G7m?
lim : = 1 (82)
0r,—0 ds) 07

where again the limit is independent of the spin S of the matter field. The behavior in Egs. (82) is due to the graviton
pole in figure 3(d), and is typical of the small-angle behavior of Rutherford scattering in a Coulomb potential.

7. CONCLUSION

In [8] it was demonstrated that the gravitational interaction of a charged spin-0 or spin—% particle is greatly

simplified by use of factorization, which asserts that the gravitational amplitudes can be written as the product
of corresponding electromagnetic amplitudes multiplied by a universal kinematic factor. In the present work we

demonstrated that the same simplification applies when the target particle carries spin-1. Specifically, we evaluated
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the graviton photoproduction and graviton Compton scattering amplitudes explicitly using direct and factorized
techniques and demonstrated that they are identical. However, the factorization methods are enormously simpler, since
they require only electromagnetic calculations and eliminate the need to employ less familiar and more cumbersome
tensor quantities. As a result it is now straightforward to include graviton interactions in a quantum mechanics course
in order to stimulate student interest and allowing access to various cosmological applications.

We studied the massless limit of the spin-1 system and showed how the use of factorization permits a relatively
simple calculation of graviton-photon scattering, discussing a subtlety in this graviton-photon calculation having to
do with the feature that the spin-1 system must change from three to two degrees of freedom when m — 0 and we
explained why the zero mass limit of the spin-1 gravitational Compton scattering amplitude does not correspond to
that for photon scattering. The graviton-photon cross section may possess interesting implications for the attenuation
of gravitational waves in the cosmos [23]. We also calculated the graviton-graviton scattering amplitude.

Finally, we discussed the main feature of the forward cross-section for each process studied in this paper. Both the
Compton and the gravitational Compton scattering have the expected 1/6} behavior, while graviton photoproduction
has a different shape that could in principle lead to an interesting new experimental signature of a graviton scattering
on matter—~ 1/62. Again this result has potentially intriguing implications for the photoproduction of gravitons
from stars [24, 25].

Appendix A: Compton Scattering Helicity Amplitudes

For a spin-0 target we have

A%cd) = L(s,u)H® (cd) (83)
where
2¢e?
Lls,u) = (s —m2)(u —m2)
and

H(+4) = m* — su,

HO(+-) = —-m?t, (84)
For a spin-1 target we find
B'(ab; cd) = K(s,u)H"(ab; cd) (85)
where
2 2
K(s,u) = <

(s — m?)p(u —m?)
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FIG. 4: (a) The one-graviton and (b) two-graviton emission vertices from a vector particle.

and

I (i) = [ (== = (s = )2 Pt

[H (4 =) = |[H' (—=54+)| = (m" —su)?,

|H (+—+-)| = [H'(—+—4)| = m*¢*,

|H (+—;—+)| = [H'(—+;+-)| = s°,

|H' (++;4+-)| = [H' (== —+)| = [H' (++; )| = |H' (—=;+-)|,
= m?*t(m* — su),

|H' (+=;4++)| = [H' (—+;—=)| = |[H' (—+;++)| = |H' (+=;—)|,
= m?t(m* — su),

[H O+ 4+0)] = [H'(0= ) = |H'(+0; +4)| = [H' (=0, =),
= V2m(tm? + (s — m?)?)\/—t(m* — su),

|H' (0+;+-)| = |[H'(0—;—+)| = |[H'(+0; —+)| = [H'(=0;+-)|

|H (04 —+)| = |H' (0—+-)| =

=
+
=
i
I
=
N
=
|
X

|H' (0+;——)| = |H"(0—;++)| = |[H' (+0; —)| = |H'(—0; ++)
2mn/—t(m?* — su)3,

|H'(00;++4)| = [H'(00;——)| = (2tm® + (s — m?)*)(m* — su),

|H'(00;+-)| = [H"(00; —+)| = m*t((s — m®)* + 2st) . (86)

Appendix B: Gravitational Vertices

Using the formalism discussed in section 3, the needed gravitational couplings can be obtained. The spin 1-one
single graviton emission vertex shown in Fig. 4(a) is

(pr e VO | pivea)s, = —ig ep - ea(pi +piv}) — en - pi (Peh + €hp)
— eapy(pieg +pier) + (g pi —m®) (hely + her’)
— 0" [(pi-pr —m®)ep-€a—€p-piea-py] |, (87)

There also exista a two-graviton (seagull) vertex shown in Fig. 4(b), which are found by expanding the stress-energy



tensor to second order in hy,,.

+ + +

+
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q

FIG. 5: The three graviton vertex

2
<pfafB; ky |Vg(r22,ﬁ“”p"|pi»€14;ki>s=1: —1 % {

[pigpra — Map(Pi - pr — m*)] (Mupve + Moo — NuwMpo)
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N [Nap (PipD s + PiaPto) = NapPipPfo = NppPiaPfa
NBoPipPfa — NacPipPfp + (pi "pr— m2) (7711/37756 + 775/)7700)]
Npo [N (PipP v + PivDip) = NoapPipPrv — NsuPivPsa
NauPipPra — NavPipPsu + (Pi - pf —m2) (Mapnpe + NpuTav) |
(MapPin = NaPip) (N5l s = N6uPso)

(MaoPiv = NavPic) 18P 1 — N6uPso)

(aoPin — Nawbic) (NpP v — NeuD 1)

(

NapPiv — naupip) (nﬁapfu - nﬂupfa) } 6%(6%)*} :

We also require the triple graviton vertex of Fig. 5, which was given in [8].

ng,'y(s (kﬂ q)

iR

1 v 174 v 3 174
=3 {(Iama - 5%5%6) KR + (k= q)"(k —q)" + ¢"q” — " 7

+ QQ)\(]U [I)\a,aﬁllw,’yé + I)\a,’yé];w,aﬁ _ I)\u,aﬁlau,’yé _ Iov,aﬂIAp,,ws}

+ [qxq“ (MapI™ v + 0061 ap) + ax@” MapI™ 5 + 1y6 I 0p)

P (NapI™ s + s I ag) — 1P (aplysre + ﬁwéfaﬁ,xa)}

+ [qu (17" 35 1apno (k= " +17" 510 2 (k = @) =17 g
+ (I aplso” + Tapo 17" 15) + 1" 4o (Inp g 1715 + vapf””’aﬁ)]

+ [(k2 +

2

v ov 1 v 1
(k - q)2) (Iamaﬁ-['y&a +1 7a6-['y§,o'u - 777” (Iaﬁ,'yé - 577aﬂ77w5) )

— (F*napI" s + (k — (J)zmaf“'*aﬁ)] ] '

|

I’yﬁ,)\oku _Igu’oc,@[vé,)\o’ky)
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where
1
IaB,'yé = 5(7704777/35 + 7](1677,3’)')
The photon-graviton coupling was given in [8]
v . K * v 1% * 17 1%
(kpeq [Vl [ bives) = i [ef s (KERY + KUK — €5 - ka(Klf el + el'EY)
— k(R e +R) + k- kilef e + el e))
— 0 [y ki€ € — € ke Ry (90)

Finally, we need the seagull vertex which arises from the feature that the energy-momentum tensor depends on
pi,p¢ and therefore yields a contact interaction when the minimal substitution is made, yielding the spin-1 seagull
amplitude shown in Fig. 2c.

7; *
(pr.eniky,eper |T| pisea; ki7€i>seaguu = gnKe [Ef (py+pi)ey-ci€p-€a
E*B‘GiEF'pr}'EA76%'}%6}'@6}'6,47614'61'6;‘])1'6;'6*3
— €a-prepei€rep—€preaci-(pr+pi)e;-ep ] . (91)
Appendix C: Graviton Scattering Amplitudes

In this section we list the independent contributions to the various graviton scattering amplitudes which must be
added in order to produce the complete and gauge invariant amplitudes quoted in the text. We leave it to the (perspi-
cacious) reader to perform the appropriate additions and to verify the equivalence of the factorized forms shown earlier.

Graviton Photoproduction: spin-1
For the case of graviton photoproduction, we find the four contributions, cf. Fig. 2,

ke
Di - ki
— eA~pfe}~pfe;2'e};—f—pf-kfe}-eAe?eH

Fig.2(a) : Amp, (S =1)

€ * Di [G*B.eAe;;..pfe}.pf—e*B-kf6}~pf€}-6A

+ €46 [e*B-kie}~pfe§-pf—eg-kfe}-pfeji-ki—pf~kie}-pfe}-e}}

+ pf-kf6}~kie}-e*3]

— ea-k; [6*B~ei6}~pfe;-pf—e’f3-kfe;-pfe}-ei—ei-pfe;~pfe}?-e*3

+ pf~kfej}-e,;e;'e*3]

— E*B'G;ZEA'QG}'pfpi'ki}. (92)
Ke

Fig.2(b) : Amp,(S=1) =~ {Ez‘ “prlea-€pel pi€s pi—€p-pics pi€s-ea

pi - ky
eA-kfe}'pie}'GE—pi~kfe;~eAe}~eE]
+ ep-kilea-€i€ pict -pi—€i-pi€;-pi€;-eatea-kp€popi€s-e

_|_

— pi-k‘fe}-eAe?ei]
+ €i-€plea-ki€; pic;-pi—pi ki€ -pic;-eatea-ky€; pics-ki
— pi-krefeacs -k

— €a-€p€p-picp-€pi-ky|.
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— €p€peA€i€ pi—€a€pEp €i€p Pptepeacs epe (prpi) |,

and finally, the photon pole contribution

Fig.2(d) :

ER

Ampa(s =1) = =

X |ep-ealer - oy +pi)(ky-kics-ei—€;-kiei - ky)

+ € ki(€) - eiki- (i +pf) — €5 - kiei - (pf + pi))]
— 26*B~pi[e?~e,4(kf-kie}~ei—e;-kiei-kf)
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— 264 -pf [e}'E*B(kf~kie}~q—e}~kiq~kf)

+ e;wki(e?-eie}g-ki—e}-kiq-e};)}]

Gravitational Compton Scattering: spin-1

In the case of gravitational Compton scattering—Figure 3—we have the four contributions

Fig.3(a) :

Fig.3(b) :

1
2p; - ki
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Amp, (S =1) =&?

[m D)€ pp)en 6

(ei-pi)26}~pf (€p-€fea pytep-kpea-€})

€ "Di€f Dfe€i-Drea-ki€p-€;+ € pi€s-prer-pica-€iep-ky
(5} 'pf)ze*B'EieA‘fipi'ki+(6i'pi)26*3 '6? EA'E}Pf‘kf
fi'pzf;'pf(eA'kiG*B‘kfei'G;JrG*B’E}fA'fipi'pf)
€z"pz'ﬁ}'piGE'€}€A'€ipf'kf—€}'Pf€i'Pf€A'61‘6*3'6?1%'%1
— € pi€a-kicp-€r€r€ippky—€; preg-krea-€ici-€ppi-ki

+ + +

+ eA'eie*Boe?pi~kipf'kfere;fm%*B'e?eA~eie’}'pfeiopi

1
A =1)=—K'—-—
mp, (S =1) K 2pr Ty

2 2
(€ - pi)"(ei - pr) eaep
2 * *
(ei~pf) 6;"]91'(6,4']{7}06*3'Ef—EA'EfE*B'pi)
2
(€7 -pi) € pr(€p - kiea- € —€p-€i€a-py)
€F"Di€ Drep -Dfea-kyep € — € Pi€i-Dfei-Pi€a-€rep -k
2 4 %« * * 2
(€i-pf)ep-€rea-€ipi-ky— (€ i) €p-€eiea-eipy-k
ef-piei-pf(eA%fefB-kiei-e}—i—e};fie,q-e}pi-pf)
€F " Di€iDi€p-€i€a-€ppy-ki+ € pre; -prea-€pep-€ipi-ky
€ Di€a-kyep-€i€i-e€ppy-ki—¢€-preg-kiea-€pep-eipi-ky

6A~e}e*B-eipi~kfpf-k:iei-e}—mze*BfieA-e}ei-pfe}~pi

18

(95)

(96)



19

K2

Fig.3(c) : Amp, (S=1)=——|(& - e;)2(m2 —Di-Dy)ea - €p
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and finally the (lengthy) graviton pole contribution is

3(d) : Ampy(S=1)=

H2
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