TOPOLOGICAL INVARIANTS AND MODULI SPACES OF
GORENSTEIN QUASI-HOMOGENEOUS SURFACE
SINGULARITIES

SERGEY NATANZON AND ANNA PRATOUSSEVITCH

ABSTRACT. We describe all connected components of the space of hyperbolic
Gorenstein quasi-homogeneous surface singularities. We prove that any con-
nected component is homeomorphic to a quotient of R¢ by a discrete group.

1. INTRODUCTION

In this paper we study moduli spaces of hyperbolic Gorenstein quasi-homoge-
neous surface singularities (GQHSS). A normal isolated singularity of dimension n
is Gorenstein if and only if there is a nowhere vanishing n-form on a punctured
neighbourhood of the singular point. GQHSS can be spherical, Euclidean or hyper-
bolic. In this paper we are going to study the largest class, the class of hyperbolic
GQHSS. See a remark at the end of the paper for more information about the other
two classes of GQHSS.

According to work of Dolgachev [Dol83b] hyperbolic GQHSS of level m are in
1-to-1 correspondence with m-th roots of tangent bundles of Riemann orbifolds,
i.e. with (singular) complex line bundles on orbifolds such that their m-th tensor
power coincides with the tangent bundle. We find conditions for the existence of
GQHSS of level m with orbifold of given signature. We then consider the space of
all GQHSS of level m with orbifolds of given signature and genus g > 0. We show
that the space is connected if ¢ = 0 or if g > 1 and m is odd and that the space has
2 connected components if g > 1 and m is even. We also determine the number of
components in the case g = 1. Moreover we prove that any connected component
is homeomorphic to a quotient of R? by a discrete group action.

The main technical tool is the following: We assign (Theorem 5.9) to a hyperbolic
GQHSS of level m with corresponding Fuchsian group I" a unique function on the
space of homotopy classes of simple contours on the orbifold P = H /T with values
in Z/mZ, the associated m-Arf function.

The m-Arf functions are described by simple geometric properties:

Definition: Let P be a Riemann orbifold and p € P. We denote by 7%(P, p) the
set of all non-trivial elements of the orbifold fundamental group 7(P,p) that can
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a b

Figure 1: 6(ab) =6(a) +6(b) — 1

be represented by simple contours. An m-Arf function is a function
o7 (P,p) — Z/mZ

satisfying the following conditions

1. o(bab~1') = o(a) for any elements a,b € 7°(P,p),

2. o(a™!) = —o(a) for any element a € 7°(P, p) that is not of order 2,

3. o(ab) = o(a)+o(b) for any elements a and b which can be represented by a pair
of simple contours in P intersecting in exactly one point p with (a, b) # 0,

4. o(ab) = o(a)+o(b) — 1 for any elements a,b € 7(P, p) such that the element ab
is in 7°(P, p) and the elements a and b can be represented by a pair of simple
contours in P intersecting in exactly one point p with (a,b) = 0 and placed in a
neighbourhood of the point p as shown in Figure 1.

5. For any elliptic element ¢ of order p we have p-o(c) + 1 = 0mod m.

In order to be able to state our main results we need to give some definitions and
notation.

Definition: Let I" be a Fuchsian group of signature (g : p1,...,p,) and let P =H/T
be the corresponding orbifold. Let o : 7%(P,p) — Z/mZ be an m-Arf function.
We define the Arf invariant 6 = §(P,0) of o as follows: If ¢ > 1 and m is even
then we set 6 = 0 if there is a standard basis {a1,b1,...,ag,bg, cg11,...,cn} of the
fundamental group (P, p) such that

g

> (1= o(a))(1 = o(b;)) = 0mod 2

i=1
and we set 6 = 1 otherwise. If g > 1 and m is odd then we set § = 0. If g = 0 then
we set § = 0. If g = 1 then we set
0= ng(m7p1 - ]-7 vy Pr— ]-7 J(a'l)7 J(bl))a

where {a1,b1,¢2,...,¢r41} 18 a standard basis of the fundamental group w(P,p).
The type of the m-Arf function (P, o) is the tuple (g,p1,...,pr,d), where § is the
Arf invariant of o defined above.

Definition: We denote by S™(t) = S™(g,p1,-.-,pr,0) the set of all GQHSS of
level m and signature (g : p1, ..., p.) such that the associated m-Arf function is of
type t = (g9,p1,...,pr,0).

The following Theorem summarizes the main results:

Theorem:

1) Two hyperbolic GQHSS are in the same connected component of the space of
all hyperbolic GQHSS if and only if they are of the same type. In other words,
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the connected components of the space of all hyperbolic GQHSS are those sets
S™(t) that are not empty.

2) The set S™(t) is not empty if and only if t = (g, p1,...,pr, d) has the following
properties:

(a) The orders p1,...,p, are prime with m and satisfy the condition
1
(p1---pr) - <Z P (29 — 2) —r) = O0modm.
i=1
(b) If g > 1 and m is odd then 6 = 0.

)

(c) If g =1 then ¢ is a divisor of ged(m,p1 — 1,...,p, — 1).
(d) If g =0 then 6 = 0.

3) Any connected component S™(t) of the space of all hyperbolic GQHSS of
level m and signature (g : p1,...,pr) is homeomorphic to a quotient of the
space R%76T2" by a discrete action of a certain subgroup of the modular group
(see section 6.3 for details).

The paper is organised as follows: In section 2 we explore the connection between
hyperbolic GQHSS, roots of tangent bundles of orbifolds and lifts of Fuchsian groups
into the coverings G, of G = PSL(2,R). In section 3 we study algebraic properties
of the covering groups G,,,. We describe a level function induced by a decomposition
of the covering G, into sheets and choosing a numeration of the sheets and study
properties of these functions. In section 4 we study lifts of Fuchsian groups into G,,.
In section 5 we define m-Arf functions. We prove that there is a 1-1-correspondence
between the set of m-Arf functions and the set of functions associated to the lifts
of Fuchsian groups into G,,, via the numeration of the covering sheets. Hence these
two sets are also in 1-1-correspondence with the set of all hyperbolic GQHSS of
level m for a fixed orbifold. Moreover we show in this section using the explicit
description of the generalised Dehn generators of the group of homotopy classes of
surface autohomeomorphisms that the set of all m-Arf functions on an orbifold has
a structure of an affine space. In the last section we find topological invariants of m-
Arf functions and prove that they describe the connected components of the moduli
space. Furthermore we show using a version of Theorem of Fricke and Klein [Nat78§],
[Zie81] that any connected component is homeomorphic to a quotient of R? by a
discrete group action.

Part of this work was done during the stays at Max-Planck-Institute in Bonn and
at THES. We are grateful to the both institutions for their hospitality and support.
We would like to thank E.B. Vinberg and V. Turaev for useful discussions related
to this work.

2. GORENSTEIN SINGULARITIES AND LIFTS OF FUCHSIAN GROUPS

2.1. Singularities and automorphy factors. In this section we recall the results
of Dolgachev, Milnor, Neumann and Pinkham [Dol75, Dol77, Mil75, Neu77, Pin77]
on the graded affine coordinate rings, which correspond to quasi-homogeneous sur-
face singularities.

Definition 2.1. A (negative unramified) automorphy factor (U,T", L) is a complex
line bundle L over a simply connected Riemann surface U together with a discrete
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co-compact subgroup I' C Aut(U) acting compatibly on U and on the line bundle L,
such that the following two conditions are satisfied:

1) The action of T" is free on L*, the complement of the zero-section in L.

2) Let I «T be a normal subgroup of finite index, which acts freely on U, and
let E — P be the complex line bundle £ = L/f‘ over the compact Riemann
surface P = U /f‘ Then F is a negative line bundle, i.e. the self-intersection
number F - E is negative.

A simply connected Riemann surface U can be CP!, C, or H, the real hyper-
bolic plane. We call the corresponding automorphy factor and the corresponding
singularity spherical, Euclidean, resp. hyperbolic.

Remark. There always exists a normal freely acting subgroup of T' of finite in-
dex [Dol83b]. In the hyperbolic case the existence follows from the theorem of
Fox-Bundgaard-Nielsen. If the second assumption in the last definition holds for
some normal freely acting subgroup of finite index, then it holds for any such sub-
group, see [Dol83b].

The simplest examples of such complex line bundles with group actions are the
cotangent bundle of the complex projective line U = CP! and the tangent bundle
of the hyperbolic plane U = H equipped with the canonical action of a subgroup
I' C Aut(U).

Let (U,T',L) be a negative unramified automorphy factor. Since the bundle
E = L/f is negative, one can contract the zero section of E to get a complex
surface with one isolated singularity corresponding to the zero section. There is
a canonical action of the group I'/ I on this surface. The quotient is a complex
surface X (U,T", L) with an isolated singular point o(U,T", L), which depends only
on the automorphy factor (U, T, L).

The following theorem summarizes the results of Dolgachev, Milnor, Neumann,
and Pinkham:

Theorem 2.1. The surface X (U,T', L) associated to a negative unramified au-
tomorphy factor (U,T, L) is a quasi-homogeneous affine algebraic surface with a
normal isolated singularity. Its affine coordinate ring is the graded C-algebra of
generalised I'-invariant automorphic forms

A=PH WU L™

m>=0

All normal isolated quasi-homogeneous surface singularities (X, x) are obtained in
this way, and the automorphy factors with (X (U,T,L),o(U,T, L)) isomorphic to
(X, z) are uniquely determined by (X, x) up to isomorphism.

We now recall the definition of Gorenstein singularities and the characterization of
the corresponding automorphy factors.

A normal isolated singularity of dimension n is Gorenstein if and only if there is
a nowhere vanishing n-form on a punctured neighbourhood of the singular point.
For example all isolated singularities of complete intersections are Gorenstein.

In [Dol83b] Dolgachev proved the following theorem obtained independently by
W. Neumann (see also [Dol83a]).



MODULI SPACES OF GORENSTEIN SINGULARITIES 5

Theorem 2.2. A quasi-homogeneous surface singularity is Gorenstein if and only
if for the corresponding automorphy factor (U,T', L) there is an integer m (called
the level or the exponent of the automorphy factor) such that the m-th tensor power
L™ is I'-equvariantly isomorphic to the tangent bundle Ty of the surface U.

Let (U,T, L) be an automorphy factor of level m, which corresponds to a Goren-
stein singularity. The isomorphism L™ 2 Ty induces an isomorphism E™ = Tp.
A simple computation with Chern numbers shows that the possible values of the
exponent are m = —1 or m = —2 for U = CP', whereas m = 0 for U = C and m
is a positive integer for U = H.

2.2. Hyperbolic automorph)rvfactors and lifts of Fuchsian groups. We con-
sider the universal cover G = PSL(2,R) of the Lie group
G =PSL(2,R) = SL(2,R)/{+1},

the group of orientation-preserving isometries of the hyperbolic plane. Here our
model of the hyperbolic plane is the upper half-plane H = {z € C | Im(z) > 0}

and the action of an element [(ZZ)] € PSL(2,R) on H is by

az+b
cz+d’

We denote by [4] = [(22)] € PSL(2,R) the equivalence class of a matrix A = ((CLZ) €
SL(2,R).

Z —

As topological space G = PSL(2, R) is homeomorphic to the open solid torus Stx
C. The fundamental group of the open solid torus G is infinite cyclic. Therefore,
for each natural number m there is a unique connected m-fold covering

Gm =G/ (m-Z(G))

of G, where G is the universal covering of G and Z(G) is the centre of G. For m = 2
this is the group G2 = SL(2,R).

Here is another description of the covering groups G,, of G which fixes a group
structure. Let Hol(H, C*) be the set of all holomorphic functions H — C*.

Proposition 2.3. The m-fold covering group G,, of G can be described as
{(9,0) € G x Hol(H,C") | 6™ (2) = ¢'(2) for all z € H}
with multiplication (g2,92) - (91,01) = (g2 - g1, (02 0 g1) - 61).

Proof. Let X be the subspace of G x Hol(H, C*) in question. One can check that
the space X is connected and that the map X — G given by (v,d) — v is an
m-fold covering of G. Hence the coverings X — G and G,, — G are isomorphic.
One can check that the operation described above defines a group structure on X
and that the covering map X — G is a homomorphism with respect to this group
structure. (]

Remark. This description of G, is inspired by the notion of automorphic differential
forms of fractional degree, introduced by J. Milnor in [Mil75]. For a more detailed
discussion of this fact see [LV80], section 1.8.
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A Fuchsian group I' € PSL(2,R) acts on the hyperbolic plane H. A hyperbolic
Gorenstein automorphy factor of level m (associated to the Fuchsian group I') is
an action of a Fuchsian group I' on the trivial complex line bundle H x C over the
hyperbolic plane H given by

where §, : Hf — C* is a holomorphic function, for any g € I' we have S g’ and
for any g1, 92 € I we have 04,.9, = (09, 0 g1) - dg, -

Definition 2.2. A [ift of the Fuchsian group I into G,, is a subgroup I'* of G,,
such that the restriction of the covering map G,, — G to I'* is an isomorphism
between I'* and T'.

Using the description of the m-fold covering group G,, of G in Proposition 2.3
we obtain the following result:

Proposition 2.4. There is a 1-1-correspondence between the lifts of I' into G,
and hyperbolic Gorenstein automorphy factors of level m associated to the Fuchsian
group T.

3. LEVEL FUNCTIONS ON COVERING GROUPS OF PSL(2,R)

3.1. Classification of elements in the covering groups of G = PSL(2,R).
Elements of G can be classified with respect to the fixed point behavior of their
action on H. An element is called hyperbolic if it has two fixed points, which lie on
the boundary OH = R U {oo} of H. One of the fixed points of a hyperbolic element
is attracting, the other fixed point is repelling. The azis ¢(g) of a hyperbolic
element g is the geodesic between the fixed points of g, oriented from the repelling
fixed point to the attracting fixed point. The element g preserves the geodesic
£(g). We call a hyperbolic element with attracting fixed point a and repelling fixed
point 3 positive if « < 3. The shift parameter of a hyperbolic element g is the
minimal displacement inf,cy d(z,g(x)). An element is called parabolic if it has
one fixed point, which is on the boundary 0H. We call a parabolic element g with
fixed point « positive if g(x) > =z for all x € R\{a}. An element that is neither
hyperbolic nor parabolic is called elliptic. It has one fixed point that is in H. Given
a base-point © € H and a real number ¢, let p,(¢) € G denote the rotation through
angle ¢ counter-clockwise about the point x. Any elliptic element is of the form
pz(p), where z is the fixed point. Thus we obtain a 27-periodic homomorphism
pr i R — G (with respect to the additive structure on R). Elements of G resp. Gy,
can be classified with respect to the fixed point behavior of action on H of their
image in G. We say that an element of G resp. Gy, is hyperbolic, parabolic resp.
elliptic if its image in G has this property.

3.2. Central elements in covering groups of G = PSL(2,R). The homomor-
phism p, : R — @G lifts to a unique homomorphism r, : R — G into the uni-
versal covering group. Since p,(27¢) = id for £ € Z, it follows that the lifted
element 7, (27¢) belongs to the centre Z(G) of G. Note that the element r,(27¢)
depends continuously on . But the centre of G is discrete, so this element must
remain constant, thus r,(27¢) does not depend on z. The centre Z(G) of G is
equal to the pre-image of the identity element under the projection G — G, hence
Z(G) = {r.(2n0) | ¢ € Z}. Let u = ry(27) for some (and hence for any) z in H.
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The element u is one of the two generators of the centre of G since any other ele-
ment of the centre is of the form r,(27f) = (r,(27))* = u’. We would also like to
point out that for the lift of an elliptic element p, (27/p) of finite order p we have
(re(27/p))P = ry(27) = w.

3.3. Definition of a level function. Let A be the set of all elliptic elements
of order 2 in G. Let Z be the complement in G of the set A. The space G is
homeomorphic to the open solid torus S* x C. In [JN85] Jankins and Neumann give
an explicit homeomorphism (see [JN85], Apendix). The image of the set A under
this homeomorphism is {*} x C. From this description it follows in particular that
the subset Z is simply connected. The pre-image 2 of the subset = in G consists of
infinitely many connected components. Each connected component of the subset =
contains one and only one pre-image of the identity element of G, i.e. one and only
one element of the centre of G.

Definition 3.1. If an element of G is contained in the same connected component
of the set = as the central element uP, k € Z, we say that the element is at the
level k and set the level function s on this element to be equal to k. For pre-images
of elliptic elements of order 2 we set s(r,(§)) = k for { = 7 + 27k.

Remark. For elliptic elements we have s(r,(§)) = k < £ € (-7 + 27k, 7w + 27k].

Definition 3.2. We define the level function s, on elements of G, = G/(m-Z(@))
by s (g mod (m-Z(G))) = s(g) mod m for g € G. (All equations involving s,,
are to be understood as equations in Z/mZ, i.e. equations modulo m.)

Definition 3.3. The caponical li~ft of an element C' in G into G is an elerr}ent C
in G such that 7(C) = C and s(C) = 0. The canonical lift of an element C' in G

into G, is an element C in Gy, such that 7(C') = C and s,,(C) = 0.

3.4. Properties of the level function. In this subsection we study the behavior
of the level function s, under inversion (Lemma 3.1), conjugation (Lemma 3.2)
and multiplication in some special cases (Lemma 3.3). We shall obtain further
statements about the behavior of the level function under multiplication in Corol-
lary 4.7.

In this section we shall repeatedly use the following fact: Connected components
of the set = are separated from each other by connected components of the set A of
all pre-images of (elliptic) elements of order 2. If a path v in G avoids all pre-images
of elements of order 2, i.e. avoids A, then it means that the path ~ remains in the
same component of the set = and therefore the level function s is constant along ~.

Lemma 3.1. The equation s(A™) = —s(A) is satisfied for any element A in G with
exception of pre-images of elliptic elements of order 2. The equation s,,(A~') =
—sm/(A) is satisfied for any element A in G, with exception of pre-images of elliptic
elements of order 2.

Proof. We shall prove the statement about the level function s on G, the statement
about the level function s,, on G, follows immediately. Let A € G and let k = s(A),
then A is in the same connected component of = as u*. Let ~ be the path in =
that connects A with u*. Let the path § be given by §(t) = (y(¢))~'. The path §
connects A~! with u=*. The path v remains in the same component of é, ie. it
avoids pre-images of elliptic elements of order 2. Consequently, the path ¢ also
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avoids pre-images of elements of order 2, i.e. it remains in the same component

of . Thus the element A1 is in the same connected component of = as v, i.e.
s(A™H) = —k = —s(A). O

Lemma 3.2. For any elements A and B in G we have s(BAB™') = s(A). For
any elements A and B in G, we have s,,(BAB™') = 5,,(A).

Proof. We shall prove the statement about the level function s on C?', the state-
ment about the level function s,, on G, follows immediately. The element B can
be connected to the unit element in G via a path g : I — C?', where I is some
closed interval. The path v : I — G given by ~v(t) = B(t) - A- (B(t))~" connects
the elements A and B - A- B~ If A is not in A then the same is true for the
conjugate () of A, hence the path 7 remains in the same component of the set 2.
Thus s is constant along ~, in particular s(B-A-B~1) = s(A). If A is in A then the
conjugate (t) of A is also in A, hence the path v remains in the same component

of the set A. Thus s is constant along v, in particular s(B-A- B™1) =s(4). O

Lemma 3.3. If the azes of two hyperbolic elements A and B in G intersect then
s(AB) = s(A) + s(B). If the azes of two hyperbolic elements A and B in G,
intersect then s, (AB) = s$m(A) 4 sm(B).

Proof. Let £ 4 resp. £ be the axes of A resp. B. Let x be the intersection point of £ 4
and ¢p. Any hyperbolic transformation with the axis £4 is a product of a rotation
by 7 at some point y # x on £4 and a rotation by 7 at the point x. Similarly any
hyperbolic transformation with the axis g is a product of a rotation by 7 at the
point « and a rotation by 7 at some point z # x on £p. Hence the product of any
hyperbolic transformation with the axis £4 and any hyperbolic transformation with
the axis £ is a product of a rotation by 7 at a point y # x on £4 and a rotation
by 7 at a point z # x on {p, i.e. it is a hyperbolic transformation with an axis
going through the points y and z. Thus the product of two hyperbolic elements
with distinct but intersecting axes is always a hyperbolic element.

We shall prove the statement about the level function s on G, the statement
about the level function s,, on G,, follows immediately. Assume without loss of
generality that the elements A, B € G satisfy the conditions s(4) = s(B) = 0.
We want to show that s(AB) = 0. Let us deform the elements A and B. We
shall not change the axes but decrease the shift parameters, then the product tends
to the identity element. On the other hand we have explained that the product
remains hyperbolic, i.e. stays in Z. Therefore the value of s on the product remains
constant, i.e. s(AB) = s(id) = 0. O

4. LEVEL FUNCTIONS ON LIFTS OF FUCHSIAN GROUPS
4.1. Lifting elliptic cyclic subgroups.

Lemma 4.1. Let I’ be an elliptic cyclic Fuchsian group of order p.

1) Let us assume that the numbers p and m are relatively prime. Then the lift T*
of T into G, exists and is unique. There is a unique element n € Z/mZ such
that p-n+1 = 0mod m. The lift " is then determined by the following property:
If the elliptic element v = p,(27w/p) is a generator of the group ', then the lift T*
is generated by the pre-image 4 of v in Gy, such that s, (¥) = n.
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2) Let us assume that the numbers a and m are not relatively prime. Then the
group I' can not be lifted into G, .

Proof. Let v = p,(27/p) be a generator of the group I'. To lift T" into G,,, we
have to find an element 4 in the pre-image of v in G,, such that 47 = 1. The
pre-image of v in G, can be described as the coset {u" -7, (27/p) | n € Z/mZ}.
For the element r,(27/p) we obtain (r,(27/p))? = r(2r) = u. Hence for an
element u” - r,,(27/p) we obtain

(" - 227 /)P = u"P (ry (27 /p))P = u"P .

Therefore (u™ - ry(27/p))P =1 if and only if n-p+ 1 = 0mod m. There exists n €
Z/mZ with n-p+ 1 = 0mod m if and only if the numbers p and m are relatively
prime. Hence for not relatively prime p and m it is impossible to lift I" into G,,.
For relatively prime p and m there is a unique lift of I' into G,, generated by
u™ -1y (27/p) with s, (u™ - 1, (27/p)) =n and n-p+ 1 = 0mod m. O

4.2. Finitely generated Fuchsian groups. In this section we are going to de-
scribe finitely generated (co-compact) Fuchsian groups using standard sets of gen-
erators. The following definitions follow [Zie81]:

Definition 4.1. A Riemann factor surface or Riemann orbifold (P, Q) of signature

(g7 lhv lpv le cP1y .- 7ple)
is a topological surface P of genus g with [ holes and [, punctures and a set ) =
{(z1,p1), .-, (z1,,p1.)} of points x; in P equipped with orders p; such that p; € Z,
p; = 2 and x; # x; for i # j. The set Q is called the marking of the Riemann
factor surface (P, Q).

Definition 4.2. Let (P,Q = {(z1,p1), ..., (21, p1.)}) be a Riemann factor surface.

Two curves 7y and ~; which do not pass through exceptional points x; € @Q are

called Q-homotopic if vy can be deformed into ; by a finite sequence of the following

processes:

(a) Homotopic deformations with fixed starting point such that during the defor-
mation no exceptional point is encountered.

(b) Omitting a subcurve of ; which does not contain the starting point of v; and
is of the form %P, where ¢ is a curve on P which bounds a disk that contains
exactly one exceptional point z; in the interior.

(c) Inserting into ; a subcurve which does not contain the starting point of 7; and
is of the form 6%P¢, where § is a curve on P which bounds a disk that contains
exactly one exceptional point z; in the interior.

Two curves 7y and ~; which do not pass through exceptional points x; € @Q are
called freely Q-homotopic if the base point may be moved during the deformations.

Definition 4.3. Let (P,Q = {(z1,p1),..., (21, p1,)}) be a Riemann factor surface
and p € P\Q. Then the set of @-homotopy classes of curves starting and ending
in p forms a group. This group is called the Q-fundamental group or the orbifold
fundamental group and denoted by 72 (P, p) or m(P,p).

Definition 4.4. Let I’ be a Fuchsian group. The quotient P = H/T is a surface
and the projection ¥ : HH — P is a branched cover. Let @) consist of the branching
points and the corresponding orders. Then (P, Q) is a factor surface. We say that
the factor surface (P, Q) is defined by T'.
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by Qg

by
ai

Cg+1
Cp, Cg+1

Figure 2: Canonical system of curves

Proposition 4.2. Let T’ be a Fuchsian group, (P, Q) the corresponding factor sur-
face and p € P\Q. Then w(P,p) = T.

Definition 4.5. A canonical system of curves on a Riemann factor surface (P, Q =

{(z1,p1),-.., (@1, p1,)}) of signature (g;lp,lp,le : p1,...,p1,) is a set of simply
closed curves based at a point p € P

{&17 517 s 7a'ga 697 ég+1a cee 75g+lh+lp+le}7
where n = g + I, + 1, + [, with the following properties:

1) The contour ¢; encloses a hole in P for i = g+ 1,...,9 + I, a puncture for
i=g+lp+1,...,9+I,+(, and the marking point z; for ¢ = g+In+1,+1,...,n.

2) Any two curves only intersect at the point p.

3) In a neighbourhood of the point p, the curves are placed as is shown in Figure 2.

4) The system of curves cuts the surface P into l;, 41,41 +1 connected components
of which [, 4+ [, are homeomorphic to a disc with a hole, I}, + 1 are discs. The
last disc has boundary

arbiay byt agbgay by ey . .
If {a, bi,..., ag, l;g, Cg+1s--+»Cqily+1,+l. } 18 a canonical system of curves, then we
call the corresponding set {a1, b1, ..., ag4,bg, Cg41, .. ,chthHe} of elements in the
orbifold fundamental group w (P, p) a standard basis or a standard set of generators
of (P, p).

Definition 4.6. A sequential set of signature (0;lp,lp,le : p1,...,p1.) with I +1,+
l. = 3is a triple of elements (C7, C2, Cs) in G such that the element C; is hyperbolic
for i = 1,...,1p, parabolic for i = I, +1,...,l, + [, and elliptic of order p;;, 4,
fori=1Ip+1,+1,...,l+1,+1. = 3, their product is C; - C2- C3 = 1, and for some
element A € G the elements {C‘l = AC;A71'},1 2.5 are positive, have finite fixed
points and satisfy C; < Cy < Cs. (Figure 3 illustrates the position of the axes of
the elements C; for a sequential set of signature (0,3,0), i.e. when all elements are
hyperbolic.)

Definition 4.7. A sequential set of signature (0;lp,lp,le : p1,...,p1.) is & tu-
ple of elements (Ci,...,Cy, 41,41.) in G such that the element C; is hyperbolic
for i = 1,...,lp, parabolic for i = I, +1,...,l, + [, and elliptic of order p;;, 4,
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UACL A 0(AC, A~ 0(AC5A™Y)

LN N N

Figure 3: Axes of a sequential set of signature (0;3,0,0)

for i = I+ 1, +1,...,0h + 1, + I, and for any ¢ € {2,...,n — 1} the triple
(C1-+-Ci—1,C, Cipq -+ - Cy) s a sequential set.

Definition 4.8. A sequential set of signature (g;ln,lp,le : p1,...,p1.) is a tuple of
elements

(A1, Ag, Br, ..., By, Cyin,. oy Costysiy 1)

in G such that the elements A,, ..., Ag, B1,..., By are hyperbolic, the element Cy;
is hyperbolic for ¢ = 1,...,1, parabolic for i = I +1,...,l, + I, and elliptic of
order p;—y, i, fori=1,+1,+1,...,ln + 1, + ., and the tuple

(A1, BiAT' By, Ag, BgA B Copayo Cotygy +1,)
is a sequential set of signature (0;2g + lp,lp,le : p1,- .., P1.)-

The relation between sequential sets, standard bases, canonical systems of curves
and Fuchsian groups was studied in [Nat72]. Details for the case of Fuchsian groups
with elliptic elements can be found in [Zie81]. We recall here the results:

Theorem 4.3. Let V be a sequential set of signature (g;ln,lp,le @ p1,...,p1.)-
Fori=1,...,1l. let y; € H be the fized point of the corresponding elliptic element
of order p; in V. Let P = H/T and let ¥ : H — P be the natural projection.
Let Q = {(¥(y1),p1),---,(¥(yi.),pi.)}. Then the sequential set V generates a
Fuchsian group T' such that the Riemann factor surface (P = H/T', Q) is of signature
(g;lhslpsle D1, ... 1, ). The natural projection U : H — P maps the sequential set
V to a canonical system of curves on the factor surface (P, Q).

Theorem 4.4. Let I" be a Fuchsian group such that the factor surface P =H/T is
of signature (g;1lp,lp,le : P1,-..,p1.). Let p be a point in P which does not belong
to the marking. Let U : H — P be the natural projection. Choose ¢ € $~1(p) and
let ®:T — 7(P,p) be the induced isomorphism. Let

v = {alvblv s 7agabgvcg+1a s 7Cn}
be a canonical system of curves on P. In this case,

V=27 (v) = {27 (a1), 87 (bn), ..., @ (ag), 7 (bg), @7 (1), -, @7 (en)}
={A1,B1,...,A44,By,Cyy1,...,Cp}

is a sequential set of signature (g;ln,lp,le 2 p1,...,p1.).



12 SERGEY NATANZON AND ANNA PRATOUSSEVITCH

4.3. Lifting Fuchsian groups of genus 0.

Lemma 4.5. Let (0;1p,1p,1lc : p1,...,p1.) with I + 1, + e = n be the signature
of the sequential set (Cy,...,Cy). Fori = 1,...,n let C; be the canonical lift
of C; into G or Gp,. Let u be the generator of the centre Z(G) resp. Z(Gy). The
element u is given by the element r,(m) resp. its projection into G,,. Then the
elements Cy, ...,C, satisfy the following relations: C’f;HpH =u fori=1,...,1
and

C‘l....én:uniz.

Proof. Let II be the canonical fundamental polygon for the group generated by the
elements C, ..., C, such that the generators C; can be described as products

Ci = 0041

of reflexions o1, ...,0, in the edges of the polygon II (suitably numbered). Then
0?2 =1id, and therefore

Cy - Cp = (0102)(0203) -+ - (On—104)(0p01) = id.

Lifting the elements C; to their canonical lifts C; in G, it follows that the prod-
uct C - - - Cp, belongs to the centre Z(G). As we vary the polygon II continuously,
this central element must also vary continuously. But Z (é) is a discrete group, so
Cy ---C, must remain constant. In particular we can shrink the polygon IT down
towards a point z. In the course of this continuous deformation of the fundamental
polygon II the hyperbolic and parabolic elements of the sequential set will become
elliptic. As we continue shrinking the polygon II towards the point x, the angles of
the polygon tend to the angles 31, ..., 3, of some Euclidean n-sided polygon. Thus
the element C; € G tends towards the limit r, (25;), while the product Cy---Cy
tends towards the product

r2(261) - 12(28n) = 12 (261 + - 4 2By).
Therefore, using the formula
bi+-+0n=mn-2)n
for the sum of the angles of a Euclidean n-sided polygon, we see that the constant
product Cj - - - C,, must be equal to
re(2(n — 2)7) = u" 2

Projecting into G, we get the corresponding statement in G,,. (]

Lemma 4.6. Let (C1,...,Cy) be an n-tuple of elements in G, such that their
images (Cy,...,Cy) in G form a sequential set of signature (0;1p,1p,le : D1,...,P1.)
with U, +1p + 1l =n. Then Cy ---C,, = e if and only if

Sm(C1) + -+ 5, (Cp) = —(n —2).
Proof. Fori=1,...,n let C~’z be the canonical lift of C; into G,,,. The elements C;

can be written in the form
Ci e 07 . us”m(ci)7
therefore

Cy---C, = (CH .usm(CO) . (C'n .uSm(Cn>) =(Cy--- C*n) . eSm(C)+tsm(Cr)
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According to Lemma 4.5 the product of the elements C; is
él . ...én = un727

hence
Cy---C, = " 2tsm(C) e +sm (Cn)

Therefore the product C - - - C,, is equal to e if and only if the exponent of w in the
last equation is divisible by m, i.e. if
$Sm(C1) + -+ 8m(Cn) = —(n—2)mod m. O
Corollary 4.7. Let (C1,Cs,C3) be an triple of elements in G, with C1C2C3 = e.
Let C; be the image of the element C; in G. Let (Cy,Cs,C3) be a sequential set of
signature (0;1p, lp,le 1 D1, ..., p1.) with I + 1, +1c = 3. Then
$m(C1-C2) = 5, (C1) + $m(Ca) + 1
if the element Cs is not of order 2 and
S$m(Cy - C2) = =5 (C1) — sm(Ca) — 1
if the element Cs is of order 2.
Proof. According to Lemma 4.6 the elements C; satisfy
S$m(C1) + 8m(C2) + s (C3) = —1mod m.
On the other hand C1C5C3 = e implies C1C5 = Cgl, hence
$m(C1Cs) = sm(C?fl) = —5m(C3) = $m(C1) + 5m(C2) + 1
if the element C5 is not of order 2 and
sm(C1Cs) = sm(Cgl) = $m(C3) = =8 (C1) — $m(Ca) — 1
if the element C3 is of order 2. [l

4.4. Lifting sets of generators of Fuchsian groups.

Lemma 4.8. Let T’ be a Fuchsian group of signature (g;ln,lp,le : p1,...,D1.) gen-
erated by the sequential set V. = {A;,Bi,... ,flg,Bg,C'gH, .o, Cn}, where n =
g+l +1lp+le. Let V={A1,B1,..., Ay, By, Cos1,...,Cy} be a set of lifts of the
elements of the sequential set V into G, i.e. the image of A;, B; resp. C;inGis
A;, B; resp. Cj. Then the subgroup T* of G, generated by V is a lift of T into Gy,
if and only if

[A1, By] - [Agv Bg] -Cygq1--Cp =g, cP

G4l 4i = € fori=1,... 1.

Proof. For any choice of the set of lifts V' the restriction of the covering map G,,, —
G to the group I'* generated by V is a homomorphism with image I'. If the
conditions of the lemma hold true, then the group I'* satisfies the same relations
as the group I', hence this homomorphism is injective. (I
Lemma 4.9. Let

{A1,By,...,A4,By,Cyy1,...,Cp}

be a tuple of elements in G, such that the images

{AhBla"'7AgaBgacg+17"'7

g} |
——
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in G form a sequential set of signature (g; ln,lp,le : p1,...,01,) with g+ +1l,+1le =
n. Then

g
HA“B H Cj=e <= Z sm(C5) = (2 —2g) — (n — g) mod m.
i=1

Jj=g+1 j=g+1
(in the case n = g this means 2 —2g = 0mod m) and for anyi=1,...,1l,
ngl’l}rfl i =€ <= pi-5m(Cyyiy11,+i) + 1 =0mod m.

Proof. The case g = 0 was discussed in Lemma 4.6. We shall now reduce the
general case to the case g = 0. By definition of sequential sets the set

(A, BJAT'By Y. A, Bgflglég_l, Cyi1s--,Cn)
is a sequential set of signature (0;2g + l5,1p, le), hence
g n
[114: Bi] H C; = H(Ai-BiAlejl)- I] ci=e
=1 1=g+1 =1 i=g+1
if and only if

Z )+ sm(BiATIBTY) + sm(Ci) = —(29+ (n—g) —2)
i=1 i=g+1
=(2-2¢9)— (n—g)mod m.
Invariance of the level function s,, under conjugation (Lemma 3.2) implies that
sm(BiA7I B = s, (A7Y).
Since A; is not an element of order 2,
Sm(Afl) = _Sm(Ai)a
and hence sm(BiAi_lBi_l) = —sm(4;) and
Sm(A;) + sm(BiAi_lBi_l) = 8m(A;) — sm(A4;) =0.

The last statement of the lemma follows from Lemma 4.1. O

Proposition 4.10. Let I' be a Fuchsian group of signature (g : p1,...,pr). Let
V ={Ay,By,..., flg, Bg, C'g+1, ..., 0y} be a sequential set that generates T'. Then
there exist lifts of T into G, if and only if the signature (g : p1,...,Dr) satisfies the
following liftability conditions: ged(p;,m) =1 fori=1,...,r and

1

(p1---pr) - <Z P (29 — 2) —7") = 0modm.
i=1

Moreover, if the liftability conditions are satisfied then any set of lifts {A;, B;}

of {Al,B } into Gy, can be extended in a unique way to a set {A;, B;,C;} of lifts

of {4, B;, C; } that generates a lift of T' into G,,, hence there are m?9 dzﬁerent lifts

of T into G,

Proof. Let us first assume that there exists a lift of I' into Gy,. Let {A;,B;,C;}} be
a set of lifts of V' as in Lemmas 4.8 and 4.9. Let n; = s,,(Cy4;). Then according
to Lemma 4.9 we have p; -n; +1 =0mod m for i =1,...,r and

(2g—2)—|—r+2m£0modm.

i=1
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The first set of congruences implies that p; is prime with m for ¢ = 1,...,r. The
last congruence implies that

0=(p1-py)- ((29—2>+r+zni>

= (p1--pr) - (29— 2) +7) + Zm i)
= (p1--pr) - (29— 2) +7) + Zpl (-1)

@1...%).((@_2)”_2;).

— pi

Now let us assume that the liftability conditions are satisfied. We want to construct
a lift of I' into G,,,. Since p; is prime with m, we can choose n; € Z/mZ such that
pi-ni+1=0mod m fori=1,...,r. Then

(p1---pr)- <(29—2)+T+Zni>

i=1

= (- pr)- (29— 2) +7) Zpl (pini)
=(p1--p) - (29— 2) +7) Zpl = (-1

=(p1--pr)- ((2g—2)+r—2i> = O mod m.

=1 Pi

Since ged(p;, m) = 1, the equality (p1---pr) - ((2g —2)+r+ >, m) = O0mod m

i=1
implies (2g — 2) +r + >, n; = 0mod m, i.e. Y. n; = (2 —2g) — rmod m. Let
i=1 =

V = {4;, B;,C;} be any set of lifts of V such th;it $m(Cyqi) =m; fori=1,...,r.
We have p;-n;+1 =0mod mfori=1,...,r and Z n; = (2—2g)—rmod m, hence

according to Lemma 4.9 the set V generates a hft of I' into G,,,. Since Lemma 4.9
does not impose any conditions on the values s,,(A;) and s,,(B;) fori=1,...,g,
any of m29 choices of these 2g values leads to a different lift of " into G,,. O

5. HIGHER ARF FUNCTIONS

In [NP09] we introduced the notion of a higher Arf function and used it to
study moduli spaces of higher spin bundles on Riemann surfaces. In this section we
will introduce higher Arf functions on orbifolds, and study their connection with
Gorenstein automorphy factors.

5.1. Definition of higher Arf functions on orbifolds. In this subsection we will
define higher Arf functions on orbifolds (compare with subsection 4.1 in [NP09)]).
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a b

Figure 4: 6(ab) = 6(a) +6(b) +1

Let T be a Fuchsian group of signature (g;lp,lp,le : p1,...,p,) and P = H/T’
the corresponding orbifold. Let p € P. Let ¥ : H — P be the natural projection.
Choose ¢ € ¥~1(p) and let ® : T' — 7(P, p) be the induced isomorphism. Let I'*
be a lift of I in G,,.

Definition 5.1. Let us consider a function ép+ : 7(P,p) — Z/mZ such that the
following diagram commutes

T =

@l J{S'm ‘1"*

m(P,p) —=s Z/mZ

Lemma 5.1. Let «, 3, and v be simple contours in P intersecting pairwise in
exactly one point p. Let a, b, and ¢ be the corresponding elements of w(P,p). We
assume that a, b, and c satisfy the relations a,b,c # 1 and abc = 1. Let (-,-) be the
intersection form on w(P,p). Then for 6 = o«

1. If the elements a and b can be represented by a pair of simple contours in P
intersecting in exactly one point p with (a,b) # 0, then 6(ab) = &(a) + 6(b).

2. Ifab is in w°(P,p) and the elements a and b can be represented by a pair of simple
contours in P intersecting in exactly one point p with (a,b) = 0 and placed in a
neighbourhood of the point p as shown in Figure 4, then 6(ab) = 6(a)+6(b) +1
if the element ab is not of order 2 and 6(ab) = —6(a) —6(b) — 1 if the element ab
1s of order 2.

3. ifab is in 7°(P, p) and the elements a and b can be represented by a pair of simple
contours in P intersecting in exactly one point p with (a,b) = 0 and placed in a
neighbourhood of the point p as shown in Figure 1, then 6(ab) = 6(a)+&(b) — 1.

4. For any standard basis

v="{a1,b1,...,a4,bg,Cq41,...,¢n)}

of m(P,p) we have

n

Z d(ci) = (2—2g9) — (n — g) mod m.

i=g+1
5. For any elliptic element cgq1, 41,4i, 1 = 1,...,le, we have p;-6(cgy, +1,44) +1 =
0Omod m.
Proof. According to Theorem 4.4 either the set
V={2"(a), e (b), 2" (c)}

or the set
V= (@ ), e ) e )
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is sequential. This sequential set can be of signature (0 : *, %, %) or (1 : *).

If V' is a sequential set of signature (1 : *), then according to Lemma 3.3 we
obtain

6(ab) = 6(a) + &(b).
If V is a sequential set of signature (0 : *, %, %), then according to Corollary 4.7
we obtain

G(ab) =6(a) +6(b) +1
if the element ab is not of order 2 and
6(ab) = —6(a) —a(b) — 1
if the element ab is of order 2.
If V1 is a sequential set of signature (0 : *, x, *), then according to Corollary 4.7
we obtain,
b taH=6(a )+ +1
if the element ab is not of order 2 and
b la™ =6t -6 -1
if the element ab is of order 2. Therefore for the element ab not of order 2 we
obtain

and for the element ab of order 2 we obtain
o(ab) = 6((ab)™') = (b~ ta™t)
=6 H -6 -1
=d(a)+o(b)— 1.

To prove properties 4 and 5 of & we apply Lemma 4.9. ([

We now formalize the properties of the function & in the following definition:

Definition 5.2. We denote by 7V(P, p) the set of all non-trivial elements of 7(P, p)
that can be represented by simple contours. An m-Arf function is a function

o:1(P,p) — Z/mZ

satisfying the following conditions

1.
2.
3.

o(bab=!) = o(a) for any elements a,b € (P, p),

o(a™t!) = —o(a) for any element a € 7°(P, p) that is not of order 2,

o(ab) = o(a)+ o(b) for any elements a and b which can be represented by a pair
of simple contours in P intersecting in exactly one point p with (a, b) # 0,
o(ab) = o(a)+a(b) — 1 for any elements a,b € (P, p) such that the element ab
is in 79(P, p) and the elements a and b can be represented by a pair of simple
contours in P intersecting in exactly one point p with (a,b) = 0 and placed in a
neighbourhood of the point p as shown in Figure 1.

For any elliptic element ¢ of order p we have p-o(¢) + 1 = 0mod m.
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The following property of m-Arf functions follows immediately from Properties 4
and 2 in Definition 5.2:

Proposition 5.2. Let a and b be elements of 7°(P,p) such that the element ab is
in (P, p) and the elements a and b can be represented by a pair of simple contours
in P intersecting in exactly one point p with {a,b) = 0 and placed in a neighbourhood
of the point p as shown in Figure 4. Then the equation o(ab) = o(a) + o(b) + 1 is
satisfied if the element ab is not of order 2 and the equation o(ab) = —o(a)—o(b)—1
is satisfied if the element ab is of order 2.

Lemma 5.3. Let T be a hyperbolic polygon group of signature (0 : p1,...,pr),
r>3. Let cq,...,c. be a standard basis of I'. Then the element cicy is not elliptic.

Proof. Let II be the canonical fundamental polygon for the group generated by the
elements cq,...,c, such that the generators ¢; can be described as products ¢; =
0;0;41 of reflexions o1, ...,0, in the edges of the polygon II (suitably numbered).
Then c¢ice = (0102)(0203) = o103. The product of two reflexions o104 is an elliptic
element if and only if the axes of the reflexions intersect in H. Since r > 3, the sides
of the polygon II that correspond to the reflexions o7 and o3 are not next to each
other. Let us assume that the axes intersect and let @Q be the hyperbolic polygon
enclosed between by the axes and the polygon II. All angles of the polygon II are
acute. One angle of the polygon @ is the angle between the intersecting axes, two
angles are larger than 7/2, all other angles of @ are larger than 7, hence the sum
of the angles of () is larger that it should be for a hyperbolic polygon. O

Proposition 5.4. For any standard basis

v = {al, bl, ceey Qg bg, Cgtly---y Cg+lh+lp+le}

of m(P, p) we have

n

Z o(c;) = (2—29) — (Ip + 1, + Ic) mod m.
Jj=g+1

Proof. We discuss the case g = 0 first, and then we reduce the general case to the
case g = 0.
e Let g = 0. We prove that the statement is true for lifts of sequential sets of
signature (0 : p1,...,p,) by induction on 7.
In the case r = 3 Proposition 5.2 implies
o(crea) = o(c1) +o(ee) +1
if the element cjco = cgl is not of order 2 and
o(crea) = —o(c1) —o(ez) — 1
if the element cico = cgl is of order 2. If the element c3 is not of order 2, then
Property 2 implies
o(cica) = o(c3t) = —a(ca).
Combining o(cic2) = o(c1) + o(c2) + 1 and o(cie2) = —o(c3), we obtain
o(cr) +o(c2) +o(eg) = —1.
If the element c3 is of order 2, then

o(cic) = o(cgh) = o(cs).
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Combining o(cicz) = —o(c1) — o(c2) — 1 and o(ci1¢2) = o(cs3), we obtain

o(c1) +o(c2) +o(c3) = —1.

Assume that the statement is true for r < k — 1 and consider the case r = k.
By our assumption

oler-ca)+o(es)+--+o(eg)=2—(k—1)=(2—k)+ 1.
Moreover, according to Lemma 5.3 the element c;ce cannot be of order 2. Hence
by Proposition 5.2 we have o(cic2) = o(c1) + o(c2) + 1. The last two equations

imply that o(c1) + -+ o) =2 — k.
e We now consider the general case. The set

—1,-1 —1;-1
(ar,bray b7 ... ag,bga, by Cop1s -y Cotr)

is a standard basis of an orbifold of signature (0 : 2941, 1y, le : p1,...,p1, ), hence

g g+in+lp+le
D (o(ai) +olbia; b))+ > ole)
=1 i=g+1

=2—Q2g+l+l+l)=2-29)— (p+1,+1).

From Properties 1 and 2 of m-Arf functions we obtain that o(ba;'b; ') =
o(a;') = —o(a;) and hence o(a;) + o(ba; *b; ") = 0.

O

Definition 5.3. Let 6p+ : w(P,p) — Z/mZ be the function associated to a lift
I'* as in definition 5.1, then the function op« = or«[ro(p,) is an m-Arf function
according to Lemma 5.1, 3.1, and 3.2. We call the function op« the m-Arf function
associated to the lift T*.

5.2. Higher Arf functions and autohomeomorphisms of orbifolds. Let I'

be a Fuchsian group of signature (g : p1,...,p) and P = H/T the corresponding

orbifold. Let p € P. Let ¥ : H — P be the natural projection. Choose ¢ € ¥~1(p)

and let ® : I' — 7°(P,p) be the induced isomorphism. Let I'* be a lift of I' in G,
Consider the following transformations of a standard basis:

v={a1,b1,...,a4,bg,Cq41,...,Cn}

of 7°(P,p) to another standard basis

I _ AR o /.
o' ={ay, by, ag, b e )
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1. a) = aib;.

2. a'1 = (alag)al(alag)_l,

V) = (ara9)ay tay by (araz) ™1,
aby = arasa;’,
by = baay tayt.
3. a; = (b;109+1)b;1(b;10g+1)71a
by = (bg_lcg+1bg)cgi1bgagb;1(bg_lcg+1bg)_1a
i1 = byl egraby.
4. a% = Ak+1, b;C = bk+1,
a’;chl = (C;i1ck)ak(cgilck)ilv
f1 = (Copren)brlciyen)
5. ¢ =Cht1, Chp1 = c;ilckckﬂ.

Here ¢; = [a;,b;] for i =1,...,¢, in 4 we consider k € {1,...,g}, in 5 we consider
ke{g+1,...,n} such that ord(cy) = ord(cxt1). If al, b} resp. ¢} is not described
explicitly, this means a} = a;, b = b; resp. ¢, = ¢;.

We will call these transformations generalised Dehn twists. Each generalised
Dehn twists induces a homotopy class of autohomeomorphisms of the orbifold P,
which maps elliptic fixed points to elliptic fixed points of the same order. The group
of all homotopy classes of autohomeomorphisms of the orbifold P is generated by the
homotopy classes of generalised Dehn twists as described above (compare [Zie73]).

Now we will compute the values of an Arf function o on the standard basis v’
from the values of o on the standard basis v for each of the generalised Dehn twists
described above.

Lemma 5.5. Let o : 7°(P,p) — Z/mZ be an m-Arf function. Let D be a gener-
alised Dehn twist of the type described above. Suppose that D maps the standard
basis

v="{a1,bi,...,aq,bg, Cgy1,...,Cn}
into the standard basis
! ! / ! / / !
v = D('U) = {a‘la 1;"'7ag7bgacg+17"'7cn}'

Let «;, Bi, v resp. of, B, be the values of o on the elements of v resp. v'. Then
for the Dehn twists of types 1-5 we obtain

1. o) =a;+pr.

2. fi=f—ar—ax—1, Bi=pr—ar—a;—1

3 o/gz—ﬁg, Bgzozg—*ygﬂ—l.

4. ap =oagy1, B =Brr1, Gy =k, B = Bre
5. Y = Tkt Vep1 = Tk

Proof. We assume that the Dehn twist D belongs to one of the types described
in the definition above. In the following computations we illustrate the position



MODULI SPACES OF GORENSTEIN SINGULARITIES 21

AT BiATY B, AGt

(BN

Figure 5: Axes of B1A; " and A;"

of the contours on the surface with figures showing the position of the axes of the
corresponding elements in I'. Let

{AhBla- .. aAgaBgan-'rh" 7Cn}

be the sequential set corresponding to the standard basis v. In the first case ac-
cording to Property 3 of m-Arf functions we obtain

o(ay)) = o(aiby) = o(ay) + o(by).

In the second case according to Property 1 we obtain
o(ay) = o((ar1az)ar(aras) ") = o(ar),
a(th) = o((araz)ay tay 'bi(ara) ™) = o(ay tag 'br)
= o(ar(ay ay 'br)ay ') = o(ay bray ).

The mutual position of the axes of the elements Agl and BlAf1 is as in Figure 5,
hence Property 4 implies

o(by) = o(ay" - (bray ")) = o(ay ') +o(bray) — 1.

According to Property 3 we have o(bja; ') = o(by)+o(ay"). Thus using Property 2
we obtain

a(b)) =o(az") +a(br) +o(ay’) =1 =0(b1) —o(ar) —o(az) - L.
Similarly we show that o(ab) = o(az) and o (b)) = o(b2) — o(az) — o(a1) — 1.
In the third case we obtain according to Properties 2 and 1

a(ag) = o((by ' cgr1)by " (bg ' egr1)™h) = o(by ") = —a(by),

o(by) = U((b;109+1b9) g—',—lb aghy l(bgilcnglbg)il) =o(c g+1b aghy Y,

U(C;Jrl) = U(bg_lcg+1bg) = o(cgt1)-

The mutual position of the axes of the elements Cg_+11 and BgAgB;1 is as in Figure 6.
According to Properties 4 and 1 we obtain

U(b;) =o(c, g+1 -~ (bg agbg 1)) = U(C;il) + U(bgagbgl) -1= U(C;-h) +o(ag) — 1.

In the forth and fifth case computations are easy, we only use Property 1 of m-Arf
functions. O
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A, B, ByAB;! Cyih

Figure 6: Axes of Cg__:l and BgAng_1

5.3. Correspondence between higher Arf functions and hyperbolic Goren-
stein automorphy factors. Let I be a Fuchsian group of signature (g : p1,...,p,)
and P = H/T the corresponding orbifold. Let p € P. Let ¥ : H — P be the nat-
ural projection. Choose ¢ € ¥~!(p) and let ® : I' — 7°(P,p) be the induced
isomorphism.

Lemma 5.6. The difference o1 — oo : (P, p) — Z/mZ of two Arf functions oy
and oy induces a linear function ¢ : Hy(P;Z/mZ) — Z/mZ.

Proof. The proof is analogous to the proof of the corresponding statement for higher
Arf functions on Fuchsian groups without torsion (see Lemma 4.5 in [NP09]). The
main observation is the fact that according to Lemma 5.5 the action of the gen-
eralised Dehn twists on the tuples of values of a higher Arf function on elements
of a standard basis are by affine-linear maps, therefore the action on the tuples of
differences of values of two higher Arf functions is by linear maps. O

Corollary 5.7. The set Arf?™ of all m-Arf functions on 7°(P,p) has a structure
of an affine space, i.e. the set {o — og } o€ ArfP’m} is a free module over Z/mZ

for any oo € ArfP™,

Corollary 5.8. An m-Arf function is uniquely determined by its values on the
elements of some standard basis of ©°(P,p).

Theorem 5.9. Let T be a Fuchsian group of signature (g : p1,...,pr) and P =H/T
the corresponding orbifold. Let p € P. There is a 1-1-correspondence between

1) hyperbolic Gorenstein automorphy factors of level m associated to the Fuchsian
group T'.

2) lifts of T into G,,.

3) m-Arf functions o : 7°(P,p) — Z/mZ.

Proof. According to Proposition 2.4 there is a 1-1-correspondence between hyper-

bolic Gorenstein automorphy factors of level m associated to the Fuchsian group I'

and the lifts of ' into G,,. In Definition 5.1 we attached to any lift I'* of ' into

G, an m-Arf function op« on P. On the other hand we can attach to any m-Arf
function o a subset of G,

Iy ={9€Gn|n(g) €L, sm(g) = o(@(n(9)))},

where 7 : G, — G is the covering map. It remains to prove that this subset of G,
is actually a lift of I. Let

v={a1,b1,...,0a9,bg,Cq41,. .. Cgr} ={d1,...,dogr}
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be a standard basis of m(P, p) and let V = {®~71(dy),..., 2" (d2g+,)} be the cor-
responding sequential set. Let {Dj}j:Lm,ggH be a lift of the sequential set V,
ie. m(Dj) = ®1(d;), such that s,,(D;) = o(d;). Then we obtain according to
Proposition 5.4 that

Z sm(C;) = Z o(ci) = (2 —2g) — (n — g) mod m,
i=g+1 i=g+1
hence by Lemma 4.9 we obtain

g n
[Az,Bz] . H CZ = €.
i=1 i=g+1

This and the fact that for any i =1,...,r
Di - Sm(Cyyi) +1=p; - 0(cg+i) +1 = 0mod m

imply according to Lemma 4.8 that the subgroup I'* of G,, generated by V is a
lift of I' into G,,. Let us compare the corresponding Arf function op« with the Arf
function 0. We have

or* (d]) = Sm(Dj) = U(dj)

for all j i.e. the Arf functions op- and o coincide on the standard basis v. Thus by
Lemma 5.6 the Arf functions or« and o coincide on the whole 7°(P,p). From the
definition of op- and I'} we see that this implies that I'* = I'}, hence I'} is indeed
a lift of ' into G,,,. It is clear from the definitions that the mappings I'* — op-
and o — I'} are inverse to each other. ]

Corollary 5.10. Let P be a Riemann orbifold of signature (g : p1,...,pr). Let
v = {a1,b1,...,aq9,bg,Cgy1,...,Co1r} be a standard basis of ©(P,p). An m-Arf
function on w°(P,p) emists if and only if the signature (g : pi,...,p,) satisfies
the liftability conditions described in Proposition 4.10. Moreover, if the liftability
conditions are satisfied then any possible tuple of 2g values in Z/mZ can be realised
in a unique way as a set of values on a;,b; of an m-Arf function on w°(P,p), hence
there are m?9 different m-Arf functions on 7°(P,p).

Proof. The statement follows immediately from Theorem 5.9 and Proposition 4.10.
O

6. MODULI SPACES OF GORENSTEIN SINGULARITIES

We study the moduli space of Gorenstein quasi-homogeneous surface singularities
(GQHSS). Using Proposition 2.4, we define the moduli space of GQHSS of level m
as the space of conjugacy classes of subgroups I'* in G,,, such that the restriction of
the covering map G,, — G = PSL(2,R) to I'* is an isomorphism between I'* and
a Fuchsian group I'. The projection I'* — I' from the moduli space of GQHSS of
level m to the moduli space of Riemann orbifolds is a finite ramified covering.
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6.1. Topological classification of higher Arf functions. There is a 1-1-cor-
respondence (see Theorem 5.9) between automorphy factors of level m and m-Arf
functions on 7°(P,p). This correspondence allows us to reduce the problem of
finding the number of connected components of the moduli space of GQHSS of
level m to the problem of finding the number of orbits of the action of the group
of autohomeomorphisms on the set of m-Arf functions. We describe the orbit of
an m-Arf function under the action of the group of homotopy classes of surface
autohomeomorphisms.

Let P be a Riemann orbifold of signature (g : p1,...,p,). Let p € P.

Definition 6.1. Let o : 7°(P,p) — Z/mZ be an m-Arf function. We define the
Arf invariant § = 6(P, o) of o as follows: If g > 1 and m is even then we set § = 0 if
there is a standard basis {a1,b1,. .., ag,bg, Cg41, ..., n} of the fundamental group

m(P, p) such that
9

> (1= o(a))(1 = o(b;)) = 0mod 2
i=1
and we set 6 = 1 otherwise. If g > 1 and m is odd then we set § = 0. If g = 0 then
we set § = 0. If g = 1 then we set
0 =ged(m,p1 —1,...,p — 1,0(a1),0(b1)),
where {a1,b1,c¢a,...,¢r41} is a standard basis of the fundamental group 7(P,p).

Remark. It is not hard to see that § does not change under the transformations
described in Lemma 5.5, i.e. it is indeed an invariant of the Arf function.

Proof. Let D, v, V', ay, Bi, Vi, &, Bi, 7i be as in Lemma 5.5. Let us first consider
the case g > 1: For a Dehn twist of type 1 we have
(1—a)(1 = p1) = (1= (a1 + 1)1 - B)
=1—-a1))1-=01)—-06(1-051)=10—a)(1l—pF1)mod 2.
For a Dehn twist of type 2 we have

(1=af)(1=p1) + (1 —a5)(1 - 5)
=l-a)(l-fr+ar+a+1)+(1—-)(l—-0Fs+ar+az+1)
=(1-a)1-05)+ 1 —a2)(1—052)+2— (v +a2))((a1 +2) +1)
=1-a1)(1=7p1)+ (1 —a)(l—F2)mod 2.

For a Dehn twist of type 3, since m is even and p; - vg+1 + 1 = 0mod m, we have
that 7441 is odd. Then

(1—ap)(1=5y) = (1+8g) (1= g+ (vg+1+1)) = (14 55) (1 —ag) = (1) (1 - ag)

since yg+1 +1 = Omod 2 and 1+ By = 1 — fgmod 2. Dehn twists of type 4
do not change >Y_,(1 — o(a;))(1 — o(b;)) since they only permute (ax, ;) with
(1, Brt1). Dehn twists of type 5 do not change >-7_, (1 —o(a;))(1 —o(b;)) since
they only permute ~;.

Let us now consider the case ¢ = 1: Dehn twists of types 2 and 4 involve
pairs a;, b; and aj, by, i.e. they are not applicable in the case g = 1. Dehn twist of
type 5 only swaps the orders of two elliptic fixed points, hence it does not change 4.

For a Dehn twist of type 1 we obtain of = oy + 1 and 3] = 1. Thus
ged(ay, B1) = ged(aa + fBu, B1) = ged(au, 1)
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and therefore ged(m,p1 — 1,...,p, — 1,4, 81) = ged(m,p1 — 1,....pr — 1,1, B1).
For a Dehn twist of type 3 we obtain of = —f; and 8 = a3 — 72 — 1. Let d be a
common divisor of m,p; — 1,...,p. — 1, a1, B1, i.e

m=a; =% =0modd, p;=---=p,=1modd.

We know that p; -2 +1 = 0mod m, but m = 0mod d, hence p; -2 +1 = 0 mod d.
Since p; = 1 mod d, we obtain that 75 +1 = 0mod d. Hence d is a common divisor

ofm,p1—1,...,p.—1,ay = —B1,0] = a1—(y2+1). Similarly every common divisor
of myp1 — 1,...,p, — 1,04, 8] is a common divisor of m,p; — 1,...,p, — 1,1, (1.
Thus

ng(mapl - 17 sy Dr— ]-7 O/la 61) = ng(mapl - 17 sy Dr— ]-7 aq, 61) g
Definition 6.2. By the type of the m-Arf function (P,o) we mean the tuple
(gapla <5 Pry 5))

where ¢ is the Arf invariant of o defined above.

Lemma 6.1. Let o : w°(P, p) — Z/mZ be an m-Arf function.

(a) If g > 1 then there is a standard basis v = {a1,b1,...,a4,0q4,Cq41,-.-,¢n} Of
(P, p) such that

(U(a‘l)a U(bl)v ) U(ag)v U(bg)) = (0557 1; BRI 1)
with & € {0,1}. If m is odd then the basis can be chosen in such a way that
£=1, i.e. so that

(o(a1),0(b1),...,0(aq),0(bg)) =(0,1,1,...,1)

(b) If g = 1 then there is a standard basis v = {a1,b1,¢2,...,¢cn} of (P, p) such
that (o(a1),0(b1)) = (0,0), where § is the Arf invariant of o.

Proof. The proof is along the lines of the proofs of Lemma 5.1 and Lemma 5.2
in [NP09]. Using generalised Dehn twists of types 1,2 and 4 we can show that a
basis can be chosen in the desired way. The last step in the proof of Lemma 5.1
in [NP09] was to show that if m is even and o(cy41) is even then we can transform
a basis with

(o(a1),o(b1),...,0(aq),0(bg)) =(0,0,1,...,1)
into the basis with

(o(ar),o(b),...,0(aqe),0(by)) =(0,1,1,...,1).

However in the situation we are considering now we know that o(c;) satisfies the
equation p; - 0(¢;) + 1 = 0mod m. Therefore if m is even then o(c¢;) must be odd.
Hence this last reduction step does not apply in the case considered here. ([

Remark. An autohomeomorphism of a surface P induces an automorphism of the
lifted Fuchsian group. Let A be the corresponding group of such automorphisms
of lifts of Fuchsian groups. On the other hand, any autohomeomorphism generates
an element of Sp(2g,7Z), where ¢ is the genus of P. Lemma 6.1 implies that for two
autohomeomorphisms the corresponding elements in A differ if the corresponding el-
ements in Sp(2g, Z,,) differ. Thus we obtain a homomorphism f : A — Sp(2g, Z.,).
Using generalised Dehn twists of types 1,2 and 4 we can show that f is an epimor-
phism. Lemma 6.1 implies that ker(f) = d - T, where T is the group of all parallel
translations on the affine space of all lifts. Using Dehn twists of types 1-5 and
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Lemma 6.1 we are able to determine the number d. If g > 1 then d = 2 if m is even
and d = 1 otherwise. If g =1 then d = ged(m,p1 — 1,...,pr — 1,0(a1),0(b1)).

Theorem 6.2. A tuple t = (g,p1,...,pr,0) is the type of a hyperbolic m-Arf func-
tion on a Riemann orbifold of signature (g : p1,...,pr) if and only if it has the
following properties:

(a) The liftability conditions: The orders p1,...,p, are prime with m and satisfy
the condition

1
(p1---pp) - (Z p_ _(29—2)—r> = Omodm.
i=1

(b) If g > 1 then § € {0,1}.

(¢c) If g > 1 and m is odd then § = 0.

(d) If g =1 then ¢ is a divisor of gcd(m,p1 — 1,...,pr — 1).
(e) If g =0 then 6 = 0.

Proof. Let us first assume that the tuple t is a type of a hyperbolic m-Arf function
on a orbifold of signature (g : p1,...,p,). Then according to Corollary 5.10 the sig-
nature (g : p1,...,p,) satisfies the liftability conditions. If g > 1 and m is odd then
according to Lemma 6.1 there is a standard basis {a1,b1,...,ag,bg, Cg41;-- -, Cqtr}
of 7°(P,p) such that

(o(ar),o(b1),...,0(aq),0(bg)) =(0,1,1,...,1),

hence 6(P,0) = 0 by definition. If g = 1 then ¢ is a divisor of m,p; — 1,...,p, — 1
by definition. If g = 0 then § = 0 by definition.

Now let us assume that ¢t = (g, p1, ..., pr, ) satisfies the conditions (a)-(e). Let P
be a Riemann orbifold of signature (g : p1,...,p,) and let

{al, bl, ceey Qg bg, Cgtly---y Cg+r}
be a standard basis of 7°(P,p). According to Corollary 5.10 any tuple of 2g values
in Z/mZ can be realised as a set of values on a;, b; of an m-Arf function on 7%(P, p),
In particular if g > 1 then for any § € {0, 1} there exists an m-Arf function ¢° such
that (0%(ay),0%(b1),...,0%(ay),0°(by)) = (0,1 —6,1,...,1) and if g = 1 then for
any divisor § of m,p; — 1,...,p, — 1 there exists an m-Arf function ¢° such that

(0°(a1),0° (b1)) = (6,0).

Let g > 1. If 6 = 0 then the equation 6(c”) = 0 is satisfied by definition. If § = 1
and m is even, it remains to prove that §(c') = 1. To this end we recall that
g

> (1 = 0(a;))(1 — o(b;)) mod 2 is preserved under the Dehn twists and hence is
i=1

equal to 1 modulo 2 for any standard basis.

Now let g = 1. Then 6(¢°) = ged(m,p1 —1,...,p, —1,6,0) = § since § is a divisor
of gcd(m,p1 —1,...,p — 1). O

6.2. Teichmiiller spaces of Fuchsian groups. We recall the results on the mod-
uli spaces of Fuchsian groups from [Zie81].

Let I'g.p, ..., p. be the group generated by the elements

v = {alabla"'7ag7bg’cg+1a"'7cg+r}
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with defining relations
g+r

g
[a;, bj] H ¢ =1, 0§11=---=0§1r=1-
=1

i=g+1

K3

We denote by Ty.p, ... p. the set of monomorphisms v : Ty, . — Aut(H) such

that

r

¢(U) = {a‘llz)a b%a s ,a;ﬁ’ bg}a Cg-i—lv R} Cg)-i-r}
is a sequential set of signature (g;p1,...,pr). Here we assume that g > 1.

The group Aut(H) acts on Ty.p, .. p. by conjugation. We set

Toipy,.opr = Tg;ph...,pT/AUt(H)-

We parametrise the space Ty.p, ... by the fixed points and shift parameters of
the elements of the sequential sets ¢(v). We use here the following analogue of a
version [Nat78], [Nat04] of the Theorem of Fricke and Klein [FK65]:

Theorem 6.3. The space Ty.p, ... p. 15 diffeomorphic to an open domain in

"

R6g76+2r
which is homeomorphic to R%97672"

For an element v : Ty, . — Aut(H) of Ty.p, .. We write

sPr

e~ -
Mod = MOdg;ph...,pT ={ac AUt(Fg;pum,pr) | poa€ Tg;p17~~~,Pr}-

— —
One can show that Mod does not depend on v, hence we write Mod instead

) —
of Mod . Let IMod be the subgroup of all inner automorphisms of I'g.p,, ... . and
let

Modg.p, .....p. = Mod = Mod/IMod.

We now recall the description of the moduli space of Riemann orbifolds

Theorem 6.4. The group Mod = Modyg.p, ... p, and the group of homotopy classes
of orientation preserving autohomeomorphisms of the orbifold of signature (g :
P1,--.,Dr) are naturally isomorphic. The group Modg,p, ... p, acts naturally on
Tyipr,...p. by diffeomorphisms. This action is discrete. The quotient set

Typr,...pr/ Modgep, . p,.

can be identified naturally with the moduli space Mg.p, ... p
signature (g : p1,...,Pr).

6.3. Connected components of the moduli space.

Definition 6.3. We denote by S™(t) = S™(g,p1,-..,pr,d) the set of all GQHSS
of level m and signature (g : p1,...,p,-) such that the associated m-Arf function is

of type t = (g,p1,--.,pr,0).

of Riemann orbifolds of

r

Theorem 6.5. Let t = (g,p1,-..,pr,0) be a tuple that satisfies the conditions of
Theorem 6.2, i.e. the space S™(t) is not empty. Then the space S™(t) is homeomor-

phic to Tgp, .. p./Mody, . (t), where Tg.p, . p. is homeomorphic to RO9-6+2r
and Modyy, . (t) acts on Ty, . p, as a subgroup of finite index in the group

Modg;p,.,....p

sPr*
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Proof. Let us consider an element v of the space Ty;p, ... p,.. By definition ¢ is an
homomorphism 9 : Iy,p, . . — Aut(H). To the homomorphism ¢ we attach an
orbifold Py = H/¥(T'y.p, ... p.), & standard basis

_ [ Y P P
vw—{al,bl,...,a;f’,b;z’,cgﬂ,...,cgw}

of w(Py,p) and an m-Arf function o on this surface given by
(ou(al), op(®})) = (6,0) if g=1,
b

a
(0 (allp)’aw(bllb)’alb(a;p)’Uw(b;b)""70111(0’;!})701#({)1;))
2(0,1—5,1,...,1) if g>1.

By Theorem 5.9, the m-Arf function o, on the orbifold Py corresponds to a lift of
YT gipy.....p) into Gp,. The correspondence ) +— 0, defines a map

Toipi,cpr — S™(t).

According to Theorem 6.2 this map is surjective. Let Mody?, . (t) be the sub-
group of Aut(Py) = Modgyp,,...p, that preserves the m-Arf function oy. For
any point in S™(t) its pre-image in Ty, .. p, consists of an orbit of the sub-

group Mody:, . (t). Thus ’
S™(t) = Tyipy.....p, / Mody: (t). O

95P1,--,Pr

Summarizing the results of Theorems 6.2 and 6.5 we obtain the following

Theorem 6.6.

1) Two hyperbolic GQHSS are in the same connected component of the space of all
hyperbolic GQHSS if and only if they are of the same type. In other words, the
connected components of the space of all hyperbolic GQHSS are those sets S™(t)
that are not empty.

2) The set S™(t) is not empty if and only if t = (g,p1,...,pr,0) has the following
properties:

(a) The orders p1,...,p, are prime with m and satisfy the condition
1
(p1---pr)- <Z P (29 — 2) —7") = 0modm.
i=1 *

(b) If g > 1 and m is odd then § = 0.
(c) If g =1 then § is a divisor of ged(m,p1 — 1,...,pr — 1).
(d) If g =0 then 6 = 0.
3) Any connected component S™(t) of the space of all hyperbolic GQHSS of level m
and signature (g : p1,...,pr) 18 homeomorphic to

6g—6+2r m
R%7F /Modgs, o, (1),

where Mod" (t) is a subgroup of finite index in the group Modgy,p, ... p. and

9iP1;--Pr r

acts discretely on R89762r,

Remark. Q-Gorenstein singularities: A normal isolated singularity of dimension
at least 2 is Q-Gorenstein if there is a natural number r such that the divisor - Kx
is defined on a punctured neighbourhood of the singular point by a function. Here
Kx is the canonical divisor of X. According to [Pra07], hyperbolic Q-Gorenstein
quasi-homogeneous surface singularities are in 1-to-1 correspondence with groups
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of the form C* xI'*, where C* is a lift of a finite cyclic group of order r into G,,, and
'™ is a lift of a Fuchsian group I into G,,,. The lift of a finite cyclic group is unique,
hence hyperbolic Q-Gorenstein quasi-homogeneous surface singularities are are in
1-to-1 correspondence with lift of a Fuchsian group into G,,. Thus the moduli space
of hyperbolic Q-Gorenstein quasi-homogeneous surface singularities coincides with
the moduli space of hyperbolic Gorenstein quasi-homogeneous surface singularities
as described in Theorem 6.6.

Remark. Spherical and Euclidean Automorphy Factors: For a spherical
Gorenstein automorphy factor (CP*, T, L) the group of automorphisms is Aut(U) =
Aut(CP') = PSU(2). The discrete (and hence) finite subgroups of PSU(2) are the
cyclic groups, the dihedral groups and the symmetry groups of the regular poly-
hedra, i.e. the tetrahedral, octahedral and icosahedral groups. The corresponding
singularities are Ay, Dy, Fg, E7, Fs. For a Fuclidean Gorenstein automorphy fac-
tor (C,T, L) the group T is contained in the translation subgroup of Aut(C) and
can be identified with a sublattice Z -1+ Z - 7 of the additive group C, where 7 € C
and Im(7) > 0, see [Dol83b]. The corresponding singularities are Eg, Er, Eg. All
GQHSS other than Ay, Dy, Es, E7, Es, Eg, E7, Es belong to the class of hyperbolic
GQHSS, which is studied in this paper.
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