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Abstract. —

We study the Feynman integral for the three-banana graph defined
as the scalar two-point self-energy at three-loop order. The Feynman
integral is evaluated for all identical internal masses in two space-time
dimensions. Two calculations are given for the Feynman integral; one
based on an interpretation of the integral as an inhomogeneous solu-
tion of a classical Picard-Fuchs differential equation, and the other using
arithmetic algebraic geometry, motivic cohomology, and Eisenstein se-
ries. Both methods use the rather special fact that the Feynman integral
is a family of regulator periods associated to a family of K3 surfaces. We
show that the integral is given by a sum of elliptic trilogarithms evalu-
ated at sixth roots of unity. This elliptic trilogarithm value is related to
the regulator of a class in the motivic cohomology of the K3 family. We
prove a conjecture by David Broadhurst that at a special kinematical
point the Feynman integral is given by a critical value of the Hasse-Weil
L-function of the K3 surface. This result is shown to be a particular case
of Deligne’s conjectures relating values of L-functions inside the critical
strip to periods.
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1. Introduction

The computation of scattering amplitudes in quantum field theory re-
quires the evaluation of Feynman integrals. This is a non-trivial task
for which many techniques have been developed by physicists over the
years (cf. the reviews [BDK| Bri, EKMZ, [EH|.) Feynman integrals
are multivalued functions of the physical parameters, given by the ex-
ternal momenta and internal masses. Differentiating with respect to the
physical parameters leads to a first order system of differential equa-
tions as in e.g. [H, [CHH] or to higher order differential equations as in
e.g. [LR, MSWZ, MSWZ2, Va, ABW, [ABW2].

The Feynman integral associated to a graph I' with n edges (propa-
gators) is an integral over the positive simplex A, = {[z1 : -+ : z,]| €
P 1(R) | #; > 0} in projective (n—1)-space of a meromorphic differential

(n — 1)-form:

(1.1) Ir = /A Or.

The form Qr depends on the physical parameters — that is, the external
momenta and internal masses attached to the graph — and is expressed
in terms of the first and second Symanzik polynomial [IZ]. The variables
x; are the Schwinger proper times indexed by edges (propagators).

For the algebro-geometric approach of [BEK], the Feynman integral
It is a period of the mixed Hodge structure on the relative cohomology
group H" }(P"~1\ X1, B\(BN X)), where Xt is the graph hypersurface
defined by the poles of Qr and B is a blow-up of the simplex A,,. Varying
the physical parameters leads to a variation of the Hodge structure. As a
result, the Feynman integral satisfies a set of first order differential equa-
tions under the action of the the Gauss-Manin connection |G], leading
to an inhomogeneous Picard-Fuchs equation. The inhomogeneous term
has its origin in the extension of mixed Hodge structure associated with

Feynman graphs. The dependence on external momenta means that we
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have a family of extensions, also known as a normal function from the
work of Poincaré |[P] and Griffiths [G2].

This point of view enables us to bring to bear a number of techniques
including Picard-Fuchs differential equations, motivic cohomology and
regulators, Eisenstein series, and Hodge structures, for the analysis of

the properties of Feynman integrals.

The main topic of this paper is the evaluation of the Feynman integral

for the three-banana graph

1 3 du;
/acl,a:z,a:?,ZO I+ e+ ) —t z:l_[l T
The associated graph hypersurface Xg (t) := {(1+X0_, 7;) (1+X% o7 1) —
t = 0} leads to a family of K3 surfaces with (generic) Picard number 19,

over the modular curve P! \ {0,4, 16,00} = Y1(6)™>. It is closely related
to the family of elliptic curves over Y;(6), which was studied in [BV] in

(12)  Ig(t):=

connection with the Feynman integral arising from the sunset (two-loop

banana) graph.

We prove in theorems [2.3.2] and |5.3.1] that the Feynman integral eval-

uates to the product of a period w;(7) of the K3 surface and an Eichler

integral of an Eisenstein series. Explicitly, we have

13)  Io) = m(r) (Z vin) g

3 1 _ 4n
nzlnl q

n

— 4(log q)* + 164(3)) :

where ¢ = exp(2miT), ¥(n) is a mod-6 character given in eq. ([2.3.24]),
and t is related to 7 by the Hauptmodul (2.3.11)) for T';(6)"3.

Remarkably, the Eichler integral factor can be expressed as a combi-

nation of the Beilinson-Levin elliptic trilogarithms [BLI, [L, [Z]
(14) To(t) = m(r) (107 log g + 24Lis(r, Go) + 21 Lis(7, )

+ 8Lis(7, () + TLis(T, 1))
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where (g := exp(im/3) is the same sixth root of unity that enters the
expression of the sunset integral studied in [BV].

It turns out that the three-banana integral is associated to a generalized
normal function arising from a family of “higher” algebraic cycles or mo-
tivic cohomology classes [KL, IDK]. The passage from classical normal
functions associated to families of cycles to normal functions associated to
motivic classes suggests interesting new links between mathematics and
physics (op.cit.). Actually motivic normal functions can, in many cases,
be associated with multiple-valued holomorphic functions which arise as
amplitudes as in this work or in the context of open mirror symmetry as
in [MW] for instance.

The plan of the paper is the following. In section [2] we derive the inho-
mogeneous Picard-Fuchs equation satisfied by the three-banana integral.
The solution of the differential equation in terms of the elliptic triloga-
rithm is given in theorem [2.3.2 In section [3] we give a construction of
the family of K3 surfaces associated with the three-banana graph.

In section 4] we show that the three-banana integral I (¢) is an higher
normal function, originating from a family of elements in K3(K3's) (a
charming sort of mathematical eponym). Specifically, we show that the
Milnor symbols {—z, —z9, —13} € KM (C(X@ (t))) extend to classes
=, € H}(Xo(t),Q(3)). We construct a family of closed 2-currents R,
representing the Abel-Jacobi classes AJ(Z;) € H*(Xg(t),C/Q(3)), and
a family of holomorphic forms &; € Q?(Xg(t)), such that

Io(t):/X (t)RtAth
®

(Theorem . This has immediate consequences, including a concep-
tual proof of the inhomogeneous Picard-Fuchs equation for /g (¢) (Corol-
lary .

In section [5| we pull the higher cycle =; back from the family of K3

surfaces to a modular Kuga 3-fold, where we are able to recognize it
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as an Fisenstein symbol in the sense of Beilinson. Applying a general
computation (Theorem [5.1.1f) of higher normal functions associated to
Beilinson’s cycles, gives a “motivic” proof (Theorem that the three-
banana integral I (t) takes the form claimed in (L.3)-(L.4). In section [f]
we give the abstract Hodge-theoretic formulation of the Feynman integral
in our case.

Finally, in sections and theorem we show that the integral
at t = 0 takes the value I5(0) = 7¢(3) recovering at result of [BBDG,
Broad1ll, Broad2|. And in sections [2.5| and we evaluate the three-
banana at the special value ¢t = 1. (The results in section [7| again make
crucial use of Theorem [1.3.2) We show the regulator to be trivial, which
means that the Feynman integral is actually a classical rational period of
the K3 up to a factor of 12mi/y/—15. A conjecture of Deligne then relates
the Feynman integral to the critical value of the Hasse-Weil L-function
of the K3 at s = 2. This proves a result first obtained numerically by

Broadhurst in [Broadll, Broad2] up to a rational coefficient.

Acknowledgements

We thank A. Clingher and C. Doran for helpful discussions. We thank
David Broadhurst for many helpful comments and encouragements. MK
thanks the IHES for support and good working conditions while part of
this paper was written. We acknowledge support from the ANR grant
reference QST ANR 12 BS05 003 01, and the PICS 6076, and partial
support from NSF Grant DMS-1068974.

2. The three-banana Feynman integral

2.1. The integral. — We look at the three-loop banana graph in two

space-time dimensions associated with the Feynman graph in figure[2.1.1
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K /7~ m X\ K
S

my

Ficure 2.1.1. The three-loop three-banana Feynman graph.
K is the external momentum in R? and m; > O withi =1,...,4
are internal masses.

o( ?:1 li+ K) f‘:l d?¢;
?:1(&2 + mf) .

Setting t = K2, this integral can be equivalently represented as (see for

(2.1.1) I (my, ma, mg, my; K) ::/
R8

instance [Val section 8])

1 3 dx;
2.1.2) I (mi;t :/ — -
(212) dolmit) = | S A s e ) 1 A o

Theorem 2.1.1. — The integral I (m;;t) defined in eq (2.1.2)) has the

following integral representation for t < (X1, m;)?

(2.1.3) Ig(my;t) = 2° /Oowlo(\/ix)ﬁ[(o(mix) dzx .

0
The Bessel functions Ky, Iy are defined by

1 oo
(2.1.4) Ky(2Vab) :== / e‘am_g@; for a,b >0,
2 /o x
and
x\ 2k 1
2.1.5 Iy(z) = () —_—.
(2.1.5) ol2) g) 2)  D(k+1)2

For the all equal mass case this Bessel representation has already been
given in [BBDG], Broad2].
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Proof. — For t < (31, m;)® we can perform the series expansion
(2.1.6) o(mit) = > ¢,

k>0
with

1 3 dw;
2.1.7 I, =
( ) g /an-ZO (mi + 2?21 m?xl-)k"'l( +3 i=1T; )k+1 'Ll_Il L

Exponentiating the denominators using [~ dza® exp(—az) = T'(k+1)/aF

for a > 0 we have

(2.1.8)

3
— / / uH S a e m o, meay) udv o de
F(k + 1>2 ;>0 Ju,v>0 (uv>7k i=1 X

Using the definition in (2.1.4)) the integral over each x; leads to a Ky(x)

Bessel function, therefore

23

7’M vm K 2 i
Tk 1)2 /o 4H o(2vuwma) ¢

Changing variables (u,v) — (z = 2y/uv,v) then

dudv

(219) I = el

24 2k+2 dxdv
_[ = B —————— FOR K 2‘/ i —
’ ['(k+1)2 /vxzoe H o(2v/uvrm;) < ) v
95 too 4 N\ 2k+2 o
2.1.10 _ K ; — —
110 w7 | Hl o(miz) (2) z

Now we can perform the summation over k using the series expansion of
the Bessel function Iy(v/t z) given in (2.1.5)) to conclude the proof. [

For the all equal masses case m; = my = mg = my = 1 we have
1 3 du;
Io(t) = / !
o) = | s sha—t U
(2.1.11) = 23/ zly(Vtz)Ko(z) da .
0




A FEYNMAN INTEGRAL VIA HIGHER NORMAL FUNCTIONS 9

2.2. The Picard-Fuchs equation. — In this section we show the
three-loop banana integral I (t) satisfies an inhomogeneous Picard-Fuchs
equation given in [MISWZ2, [Val, following the derivation given in [Val

for the equal masses banana graphs at all loop orders.

Theorem 2.2.1. — The three-loop banana integral

(2.2.1) Io(t) :/ ! - ﬁ aa;
w0 (L0 2)(L+ X0 27h) —t i @
satisfies the inhomogeneous Picard-Fuchs equation L} (t) = —24 with
the Picard-Fuchs operator L} given by
(2.2.2)
L= tQ(t—4)(t—16)d—3+6t(t2—15t+32)d—2+(7t2—68t+64)i+t —4.
dat? dt? dt

This Picard-Fuchs operator already appeared in the work by Verrill
in [Ve] and [MSWZ]. We will comment on the relation to this work in

B2

Proof. — We consider the Bessel integral representation of the previous
section
(2.2.3) Iot) =Y t",
k>0

where [ is given by withmi =mes=mg=my =1

94 +00 /N 2k+1
(2.2.4) I = N /0 (2) Ko(z)*dz .
Then the action of the Picard-Fuchs operators on this series expansion
gives
(2.2.5) L3Io(t) = I;) (tak + B+ Z’“) 7,
therefore

1
(2.2.6) LiIo(t) = %"’%]1 + Bolo+ Y (arle+Brsi L1 + Voo liso) tF

k>1
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Using the result of the lemma below, we have L3I (t) = v1 114 Bolo.
Evaluating the integrals gives that v, Iy + Solo = —24, which proves the

theorem.
m
Lemma 2.2.2. — The Bessel moment integrals
24 +o0o T 2k+1

2.2.7 == = Ko(x)*d
( ) FE TR 1) /0 (2) o(z)*dx
satisfy the recursion relation
(2.2.8) ol + Bri1lerr + Yieaolkro = 0, k>0
with for k >0

o = (k+1)>°
(2.2.9) B = —2(2k+1)(5k* + 5k + 2)

e = 64Kk7.

Proof. — The proof has been given in [BS| Example 6] (see [O] for
related considerations). Following this reference we introduce the Bessel
moment integrals cqorr1 = 22730 (k + 1)? I. One notices that Ko(z)*
satisfies the differential equation LsKy(x)* = 0 where

(2.2.10)

I — d 5_20 2 (@ 3_60 2 (4 2+8 2(822—9) 4 13222 (42°—1)
5 - — xdl‘ x :de X l’dx xr X Ide‘ X X .

And finally one notices the identities

+oo ] d\™
(2.2.11) /0 AR (xdx> (Ko(x)4> dr = (—1—k—j)" capy; -
Therefore integrating term by term the expression
+oo
(2.2.12) / " Ly Ko(z)* dx =0
0

leads to the recursion ([2.2.8)). O
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2.3. Solution of the inhomogeneous Picard-Fuchs equation. —
We need an intermediate result expressing the solution of the third order
differential equation using the Wronskian method. Recall the Wronskian

of a linear differential equation

(23.1) Fa@)y(@) ™ + .+ fi(@)y + folx)y =0

is the determinant W (zx) := det(y](-i)) where yi,...,y, are independent
solutions. Viewing the equation (2.3.1)) as a system of n first order equa-
tions, the Wronskian is the solution of the first order equation given by

the determinant of the system. This yields the formula

t
(2.3.2) W(t) = exp(—/ fo1(z)/ fu(x) dz).
Consider the inhomogeneous differential equation

(2.3.3)  fa(x)y"(2) + fa(x)y" (z) + fr(2)y (z) + fo(z)y(z) = S(x)

Let y;(z) with i = 1,2,3 be three independent solutions of the homoge-

neous equation. Let

1 2
(2.3.4) W(t) = | (t) wat) ys(t)

yi(t) w5 (t) ys(t)
be the Wronskian of these solutions, and introduce the modified Wron-

skian
(2.3.5) Wt z) = |yi(z) ya(z) y3(2)

We have the following identities

eas)  Wep=o MDDy g FWOD g
(2.3.7) > fi(t)aa;ﬁ/(t, ) =0
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A simple computation now yields the general solution for the inhomoge-

neous equation ([2.3.3))
S(x)dz
(2.3.8) a; it / W(t
-3, TORG

For the three-banana graph, the Picard-Fuchs operators in ((2.2.2)) has
fa(z) = 2%(x — 4)(z — 16) and fo(x) = 6x(2® — 152 + 32) = 2 dffligf),

2
therefore the Wronskian is given by

= eX — th(x) T | = WO
(239 W)= p( ola) ! ) (P-4t - 16))2

The arbitrary normalization Wy of the Wronskian is be determined in .
We now use the fact showed in [Vel theorem 3|, and reviewed in ,
that Picard-Fuchs operator is a symmetric square of the sunset Picard-
Fuch operator. For t € P'\{0,4, 16,00} the solutions of the homogenous

equations are given by

(2.3.10) (y1(t), ya(t), y3(t)) = @i () (1, 2miT, (2miT)?) .

In this expression w;(7) is a period and 7 is the period ratio. The

parameter ¢ is the Hauptmodul given by [Ve]

(2.3.11) t(r) = He(l7]) = (77((27))7]((362))

We recall that the Dedekind eta function 7(7) is defined by

o0

(2.3.12) n(t) = exp(mit/12) [] (1 — exp(2minT))

n=1
The special values of the Hauptmodul ¢ = {0,4, 16,400} are obtained
for the values of 7 = {0, _3+“[, 3“\[ ,+ico}. The nature of the fibers
for these values of the Hauptmodul are discussed in §3.2] The value t =4
is the pseudo-threshold of the Feynman integral and the value ¢t = 16 is

the normal threshold of the Feynman integral.
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In the neighborhood |¢| > 16 of t = co the holomorphic period is given
by

1 1 3 dSUZ
@i (1) = : / _
(2mi)? |z1[=|z2|=|zs]=1 (1+ Z?:l z;)(1 + Z?:l z; 1) —t Zzl_ll Z;
: ety ety I
= —Zt_n_l ; / (l—l— xi)"(1+ x; )" —
n>0 (270) J o=l = sl =1 i=1 p 1 T
2
n!
(2.313) = — 3 ¢! () |
7%‘6 p+q+zH:-Sn plglrls!
Using the above expression for the Hauptmodul ¢, the period is expressed
as
2 67))*
(2.3.14) o (r) = (2T)0(67)

Expanding the modified Wronskian

W(t,z) = yi(t) Waz(x) — ya(t) Wia(z) + y3(t) Wia(2)
(2.3.15) = @ (Was(z) — 7(t) Wis(x) 4+ 7(t)? Wia(x)) .
and then evaluating yields
(2.3.16)
Wis(t) = 2miw] CZ, Wis(t) = (27i)*w] 27 CZ, Was(t) = (27i)3wy 72 CZ :
Thus
(2.3.17) W(t,z) = (2mi)?w (1) (2)? (r(z) — 7(t))? fl; .
The condition
(2.3.18) RW(t,z)| =Wt

r=t

determines the normalization Wy = 2 of the Wronskian.
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Therefore the tree-loop banana integral is given by

(2.3.19)

I (t) = P 19(2mi)mn (1) /O (r(w) ~ 7(6)* (2 (w—4)(a-16))2 T

where IP°°d is an homogeneous solution belonging to @ (7)(C + 7C +
2
7°C).

Lemma 2.3.1. — Using the expressions for the Hauptmodul t and the

period @ then the function o(T) = —24w (1) (t(7)2(t(1) — 4)(t() —
16))2 has the following representation
1
(2320)  o(r) = = (~Eu(r) + 16E(2r) + 9E)(37) — 144E,(67))
where E4(T) is the Eisenstein series
1 n

q
(2.321)  Ey(r) = —— SRS VT) R o N
2¢(4) (mm)%é:(0,0) (mT + n)? n§>:1 1—qn

With q := exp(2miT) the coefficients o, of the q-expansion

(2.3.22) o(r)=> 0.q"
n>0
are given by oy = —24 and
1
(2.3.23) o =n’ §|: — Y(m)

where Y(n + 6) = (n) is an even mod 6 character taking the values

w(1) = —48, (2) =720, (3)= 384,
(2.324) (1) = 720, ¥(5) = —48, (6)= —5760.

Proof. — The expression in ([2.3.20)) is obtained by performing a ¢ expan-
sion and verifying that the coefficients are the same to very high-order

in the g-expansion using [Sage].
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The expression for the Fourier coefficients in (2.3.23]) are easily ob-
tained by using that
(2.3.25) Ey(1)=1+240)_ 03(n)q"
n>1

where o3(n) = 3,,, m® is the divisor sum, and a reorganization of the

g-expansion mod 6. O

co zZ"

n=1 pr*

Recall the polylogarithm functions Li,.(z) :=

Theorem 2.3.2. — The integral Ig(t) in (2.1.11) with t given in (2.3.11]),

is given by the following function of q

(2.3.26) Io(t(r)) = w1 (7) (16((3) +3 wg) fnqn — 4(log q)‘”’) .

n>1 1

with woy(7) the period in (2.3.14)) and v the even mod 6 character with the
values given in (2.3.24)). This integral can be expressed as linear combina-

tion of the elliptic trilogarithms introduced by Beilinson and Levin [BL,
L, Z].

(2.3.27) Io(t(1)) = @1 (7) (407 log ¢ — 48H 5 (7))

where

(2.3.28) He(T) := 24Lis(T, Cs) + 21 Lis(7, () + 8Lis(T, ¢F) + TLis(7, 1)
with Lis(t,z) defined by

(2.3.29) Lis(1,2) := Lis (2) + >_(Lis (¢"2) + Lis (q”z_1>)

n>1
( ! (log 2)* + ! log ¢ (log 2)? ! (lo )3)
12 8% gy OBAVE S T g o8 )
Proof. — In order to prove the theorem we just evaluate the integral

in (2.3.19). We perform the change of variables 2miT(t) = logg and
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2mit(x) = log g to get

A

1 ‘ ?
(2.3.30) Io(t) = IPeed 4 5@ (t) / (log Z) o(q)dlogq.
1

(Here we used that t = 0 for 7 = 0, and IP®°? is a solution of the
homogenous Picard-Fuchs equation in @, (7)(C+7C+72C).) The form
of the homogenous solution is determined in ({2.3.43]).

Using the g-expansion for o(7) and the following integrals

2

(g 2(q" — 1) — 2nlog g — n2(log g)?
/(lOgQ> Fdlogq — 20" 1) = 2nlogg —n(logq)
1 q

n3
q A\ 2 1 3

(2.3.31) / log (q) dlogq = (log ¢) .
1 q

3

Summing all the terms we find that

(2.3.32) ]®(t(7—)) — Jperiod
g on [, 1 .
tin) (60(1% O+ > % (q — = (1 +1og(q ))2>) .
n>1 n 2
This leads to

(2333) Iot(r) = '™+ Zw(r)(loga)® + m() X Za",

3
n>1

We remark that the coefficients o, in (2.3.23)) can be expressed in term

of the sixth root of unity (4 = exp(im/3)

6 1
(2.3.34) o, = —48n3 (Z ey m3 gm) n=>1
r=1

mln

with ¢, = {24, 21,16, 21,24, 14}. This allows to express the g-expansion

(2.3.35) % (logg)® + % " = —A8H o (1) + 407 log g — 16¢(3)

n>1

where

(2.3.36) He (T) := 24Li5(7, () + 21 Liz(7, (F) + 8Lis (7, (3) + TLis(T, 1)
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is given in terms of the elliptic trilogarithms Lis(7, z) of Beilinson and
Levin [BL, L] defined by

(2.3.37)  Liz(7,2) := Lisz (2) + >_(Liz (¢"z) + Lis (qnz—1>)

n>1

1 1 1
— (=—(log 2)® + — log g (log )2 — ——(1 3).
< 15 1082)” + 57 log g (log 2)° — — (log 9)

Therefore the three-loop banana integral is a sum of elliptic trilogarithms

modulo periods solutions of the homogeneous Picard-Fuchs equation
(2.3.38) Io(t(1) = @1(7) (a1 + T + a37°) — 48H g (1)

where we have expressed the homogeneous solution IP*°? as @ (7)(ay +

QT + a372) with aq, as and ag arbitrary complex numbers.

Using the relation ([2.3.35)) and that
(2.3.39) S g =Y vin) _g

n

n>1 n? n>1 n® 1—gq"
with ) (n) given in (2.3.24)), one can rewrite the expression in ([2.3.38)) as

follows

(23.40) Io(t(r)) = =1(r) (a1 + (0 — 4077 + a7

n

+3 Qﬂg) — Aoz + 16g(3)> .

n>1

Using lemmas [2.4.1] and [2.4.2| we can evalute the integral at ¢ = 0, corre-

sponding to 7 = 0,
(2.341)  Io(0) = lim wi(7) (a1 + (a2 — 407*)7 + 057 + 336((3)) -
Since lim, o @ (7) ~ (4872?)~!, we have that

_ a3 L. 2
(2342)  Io(0) =7¢(3) + ¢ + g lim T (o1 + (0 — 407%)7) .
Because the integral is finite at ¢ = 0 with the value I (0) = 7((3) as

shown in [BBDG/, Broadl, Broad2], we deduce that
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(2.3.43) a; = a3 =0; = 407
This proves the theorem. O
Remark 2.3.3. — Using [Sage| we have numerically evaluated the in-

tegral and the elliptic trilogarithms at the particular values given in ta-
ble , in order to check the validity of the representation in for
the three-loop banana integral.

The Feynman integral is regular for ¢ < 16. It will be noted that in
Table [T] we give no example with ¢ > 4. We are confident that an analytic
continuation of our result applies for 4 < ¢t < 16, but do not attempt to

compute any such value here.

Remark 2.3.4. — The integral expression in ([2.3.19))
(2.3.44)
t
I (t(1)) = (27i) @ (1) / (1(x)—7(t))* o(7(x)) dT+w; (C+7 C+7°C)
0

shows that Ig(t(7))/wi(7) is an Eichler integral of the modular form
o (7). Another proof of this will be given in §5[and in theorem |5.3.1}

2.4. Value of the integral at ¢ = 0. — This section contains the
two lemmas needed in proof of the theorem [2.3.2] when evaluating the

integral at ¢ = 0 which corresponds to 7 = 0.

Lemma 2.4.1. — We have the following identity

(2.4.1) 16g(3)+z¢7§?) T oY) 1

= 1—q _%sz n? (m+n7t)(m—nt)’
n>1
Proof. — Using the Kronecker-regularization for the sum [W]
1 1 "
(2.4.2) 3. _ _jp 14
ey, M+ nT 1—qm
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: ST
t(7) 4
Io(t) 9.109181165853514

—48H o (7) | 347.868145888636 + 637.725764198092i

w1 (T) —0.224110197194 — 0.3881702480357
: Eme

t(7) 1

Ig (t) 8.570280443360948

—48H o (7) | 404.292203809358 + 325.565905143148;

w1 (7’) 0.133813847482 — 0.5182588027911
T —(3 + 1.802241997471231')71
t(7) %
Ig (t) 9.106670607198028

—48H o (7) | 355.272552751915 + 625.839953492151¢

w1 (T) —0.206610686713 — 0.3884221740052

TABLE 1. Numerical evaluations of the Hauptmodul ¢(7) the
three-loop banana integral I (t), the elliptic trilogarithm sum
—48H (1) and the period w1 (7).

and that

(2.4.3) 16¢(3) + > =

we conclude that

(2.4.4)  16¢(3)+ > eln) " _ _LZ > Y(n) 1

3 _aqn € 3 ?
= n° l—gq 27nglmEZ ns m-+nt
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which can be rewritten as a converging sum

(245) % mzez ¢rgg) (m + m')l(m —nT1)

This expression is antisymmetric under the transformation 7 — —7.

Lemma 2.4.2. — The series in (2.4.1) has the following asymptotic
behaviour when T — 0
lim 772 T Z v(n) L

70 2mi 2=, n? m?— (n7)
n>1

(2.4.6) S = 336((3).

Proof. — We start by rewriting the sum as

Ty P(n) 1 = — 3 () ( 1 +m2(m21—(nT)2)>

211 2= n? m?— (n1)? 21 ntm?27r2
m>1 m>1

(2.4.7) Ty v ]

neZ,n#0 m2 m2 - (nT)2 '

m>1
where we used 3,5, ¢(n)/n* = 0. Therefore
(2.4.8)
T P(n) 1 73 P(n) 1 5760 73
e 5 2 2 = 5. 2 2 2 + . C(4)
2mi 2=, n? m?— (n7) 21 £ m? m? — (n7) 271
n>1 m2>1
We perform a Poisson summation on n to get
1 +o0 —2mixn
) > ‘ do
=, m?+ ((r+6n)7)? =) oo M2+ ((r +61)7)?
s mial | . ar
2.4.9 = — T Ty
( ) 6mT % ‘
Therefore
(2.4.10)
T ¥(n) 1 — _T: 26: 3 e(r) o~ B pin i 637 -3
21 Y= n? m?+ (n1)? 12 = & m3 2

n>1 m>1
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which has the limit for 7 — 0

(2.4.11)
: -2 T ¥(n) 1 _ B - —
T1—1>Ii{)l+ T o mzez n2 m?— (nt)2 12 1;1 = 336¢(3).

n>1

]

This result we will obtained using the higher normal function analysis
with the theorem [7.1.2

2.5. Value of the integral at ¢t = 1. — It is numerically obtained
in [Broadll, Broad2| that the value at ¢ = 1 of the banana graph is
given by a L-function value

(2.5.1) o) £ RL(*.2),

with L(f*,s) = Y,>1an/n° the L-function associated to the weight
three modular form f*(q) = n(7)n(37)n(57)n(157) X, ez g mntan®
> >0 ang" constructed in [PTV]. Because the functional equation equa-
tion is T'(s) (v/15/(27))* L(s) = I'(3—5) (v/15/(27))3~* L(3—s), the value
s = 2 is inside the critical band. We show in that for ¢ = 1 the
mixed Hodge structure (motive) associated to the Feynman integral has

rank two.

Anticipating on the relation between the three-banana and sunset ge-
ometry described in §3.2] we use the relation ¢(—1/(67)) = 10—9/t- (1) —
to(7) between the three-banana Hauptmodul ¢ and the sunset Haupt-
modul ¢ (7) = 9+ 72n(7)°n(27)n(37)"'n(67)°), one finds that the value
t=1Iis reache for to(ro) = 2(1 — v/5) with 75 = (3 +4v/15)/6 and
the sunset elliptic curve is defined over Q[v/5]

(DThere is of course another solution obtained for t5(75) = 2(3 + V/5) and & :
y? =23+ 2 (1+3V5) 22 + 3 (3+ /5) 2. These two elliptic curves are isogeneous.
We refer to @ for a review of the relation between the three-banana and the sunset
geometry.
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3 3
. 2 _ .3, 2 (1_ 2, 2 (a_
(2.5.2) oy _:c+8(1 3\/5>x+2(3 VE) x.
This curve has complex multiplication (CM) with discriminant —15 as
can be seen by fact that (14 iv15)(Z + 7.Z) = (Z + 757).

Getting back to the banana period ratio by 7g = —1/(675) = (=3 +
iv/15) /24, yields

253) To(1) = mlre) | —A(2riro) + 12 3 UL }m)z

mEZL
n>1

We remark that @;(7g) = —2 72 @, with 7o = (3 +14v/15)/6 and

o (77(76)77(376))4 _ plinTo p12im70 )2
R T T

which has the following sum expressio

(2.5.5) w, = (1 +2)° e_”gw\/g) (1 +2)° e‘”QW‘/ﬁ) :

n>1 n>1

showing that w, € R. Since the integral is real we conclude that

) .3 TE P(n) 1 =
(25.6) Sm |72 | —4QriTe)’ + 5o X (o) || =V

mezZ
n>1

that implies
(2.5.7)

N T p(n) 1 _JTER To ¥(n) 1 B 273
il P g;z n? m?— (n1g)? “\ 2 T;Z n? m? — (n1g)? 3
n>1 n>1

(2)Using the cubic modular equation of [BBDG, section 5.11], this expression is equal
4
to & (V15 — V3) (1 250 e—"zﬁﬁ> as given in [BBDG), Broad, Broad2).
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To evaluate the real part of the series we use

Te Y(n) 1
(258)  %e 270 mzezz n? m? — (n1g)?

V15 3 P(n) < 1 N 1 )
2 A& n? \24m?—6mn+n2  24m? + 6mn + n?

n>1

V15 1173

= o MW=

It then follows

(2r)® 1+ iv/15 (1)
wi(Tg) = —

Vis 16 0° V15 8’

and the conjecture in (2.5.1)) amounts showing

(2.5.9) Io(1) =

2 ©r
48 °
This relation between the period w, and the critical value of the L-

(2.5.10) L(f*,2) = —(2ni)

function is shown in section to be correct up to a rational coefficient.

3. The family of K3 surfaces

Our analysis of the three-banana pencil is based on its presentation
both as a family of anticanonical toric hypersurfaces and as a modu-
lar family of Picard-rank-19 K3 surfaces. Modern research in this area
is influenced by the theory of toric varieties, and most particularly the
toric variety associated to the Newton polytope of a Laurent polynomial.
Briefly, to a Laurent polynomial ¢ in n variables x1,...,x, we associate
firstly the set 9ty C Z" corresponding to exponents of monomials ap-
pearing with non-zero coefficient in ¢ and secondly the convex hull

(3.0.1) Ay ={> amm|an>0,> a,=1} CR"
meM
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of these points. Let xy be another variable and define the graded ring

(graded by powers of x)
(3.0.2) Ry :=C[{zpz™ |r € Z=°,m € rAyNZ"}] C Clxg, 27, ..., 25"
Notice that zo¢ € R,. By definition

(3.0.3) P, = Proj Ry D G, = Proj Clzg, 21", ..., 2} "]

n

where Proj R is the set of homogeneous prime ideals in a graded ring R
with the “trivial” graded ideal consisting of all elements of graded degree
> 0 omitted. (Alternatively, one may construct P, by taking the normal
fan to Ag.) Divisors at oo, i.e. in the complement Px, \ G}, correspond
to codimension 1 faces (facets) of Ays. For a summary of other important
properties of this construction, see [Batl].

We begin by reviewing the simplest example of a family of anticanoni-
cal modular toric hypersurfaces, the sunset family of elliptic curves stud-
ied in [BV].

3.1. Sunset in a nutshell. — Consider the Laurent polynomial
do(z,y) = (1+z+y)(1+a™" +y™)

and its associated (hexagonal) Newton polytope A, C R? which defines
a toric Fano surface Pa_ (P? blown up at three points). Compactifying

the hypersurface defined by
to — do(z,y) =0
in Pa, x P\Lo, (Lo :={0,1,9,00}) defines the sunset family
X, S PO\Lo.

For its modular construction, recall that the congruence subgroup

ry(6) = { (j 2) € SLy(Z)

a=d=1 mod6,c=0 mod6}
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of SLy(Z) produces a universal family
E1(6) := (Z2 x T1(6))\ (C x §) > T1(6)\ $ =: Yi(6)

of elliptic curves with six marked 6-torsion points (forming a copy of
Z/67Z). Write T for the parameter on §), and ¢ := €?™". Then we have

an isomorphism

% im
Yi(6) —= P\ Lo

of families, in which the Hauptmodul H

(3.1.1) to=Ho([7]) =9+ 797127) <"<6T>>5 ,

n(37) \ n(7)

3, [%] to to = 00,9,1,0, respectively. In the

2
semistable compactification of either family, these points support fibers

and maps [7] = [0], [ico], [

of (respective) Kodaira types Is 11, I3, Ir. Hs sends the marked points on

71 ([7]) to the six points where 75'(Ho([7])) meets the toric boundary
PA@\(C*)2'

3.2. Verrill’s family. — Turning to the three-banana, the relevant
pencil

Xo 5 PN\Lo
(Lo = {0,4,16,00}) of K3 surfaces is defined in the same fashion:
namely, we compactify the hypersurface

t_¢®<m7y72) =0

in Pa, X P"\Lg, where Ag C R? is the Newton polytope of

bo=(1-—z—y—2)1—a -y -2
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Here we are using the coordinate change 1 = —x, o = —y, 13 = —2,
which swaps RZj with RX?, for reasons related to the completion of the
Milnor symbol below.

Laurent polynomials with Newton polytope contained in Ag may be
regarded as sections of an ample sheaf O(1) on P [Batll Def. 2.4].
The polytope Ag has 12 vertices {£e;}?_; U {x(e; — €;) h<icj<3, and a

computation shows that its polar polytope
® ZI{UGR‘O" vew > —1(Vw€A@)}

has the 14 vertices {4e;} | U {=(e; + €j) hcicjes U{E(e1 +ea+es)}.
Since Ay is evidently integral, Ag is reflexive [Bat2, Def. 12.3], and
so O(1) is the anticanonical sheaf [loc. cit, Thm. 12.2]. Moreover, as
A% NZ? consists only of vertices and 0, by [Bat1l, Thm. 2.2.9(ii)], Pa
is smooth apart from 12 point singularities corresponding to vertices of
Ag. It follows that for any Laurent polynomial f which is Ag-regular
in the sense of [Batll, Defn. 3.1.1], the (anticanonical) hypersurface in
PA, defined by f = 0is a smooth K3 [Batl, Thm. 4.2.2]

We shall need to know the structure of “divisors at infinity” Dg :=
Pa, \ (C*)? and Dg = Wél (t)NDg, the latter of which is the base locus
of our pencil (and independent of ¢). This is understood by examining
the facets of Ag and facet polynomials of ¢g, as explained in [DK|
§2]. Briefly, we draw a plane R, through each facet o and (by choosing
an origin) noncanonically identify R, N Z3 =: Z, with Z%. The pair
(0,Z,) then yields a toric Fano surface D, in the usual manner; these
are the components of Dg. For Ag, one may choose the identifications
with Z? so that the 8 triangular facets [resp. 6 quadrilateral facets] have
vertices (0, 0), (1,0), (0,1) [resp. (0,0),(1,0),(0,1),(1,1)], whereupon the
corresponding {D,} are evidently isomorphic to P? [resp. P! x P!] (for

instance by taking normal fans).

(3)We need not carry out the MPCP-desingularization in [loc. cit.], as such a hyper-
surface avoids the 12 singular points (of P ) which it resolves.
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The components D, := Wél (t) "D, of Dg are obtained by retaining
only the terms of the Laurent polynomial with exponent vectors in o,
and viewing this as a Laurent polynomial in two variables (in a manner
made precise in §2.5 of [op. cit.]). One checks that Dg is a union of 20
rational curves. The respective configurations of Da, and D¢ are shown

below.

Note that t — ¢ fails to be Ag-regular at the point in each bound-
ary P! x P! where the two (rational curve) components of D, intersect.
However, in local holomorphic coordinates at each such point, ¢t — ¢g
takes the form w = wv; and it follows that for each ¢t € P' \ Lg), Wél(t>
is a smooth K3. Finally, as previously mentioned, Pa has 12 singular
points; one way to construct it is by blowing up P? at the 4 “vertices”
then along the proper transforms of the 6 “edges”, then blowing down
12 (—1)-curves. One choice of toric (MPCP-)desingularization (as in
[Bat1]) in fact simply reverses this blow-down; note that this produces
no additional components in Dg and does not affect the K3 hypersur-

faces. In subsequent sections, PA  will denote this smoothed toric 3-fold.

The family Xg was studied by Verrill [Ve] (cf. also [Ber, IDK]), who
proved that the generic fiber X; = m'(t) has Picard rank 19. More pre-
cisely the local system of R?*(7g ).Z contains a 19-dimensional subsystem
spanned by divisors. We write R?,  (7g).Z for the quotient. The fibres
Ry (T@)+Z =: H; .

2 (Xt) have monodromy group isomorphic to I';(6)
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The intersection form is H & (6) with discriminant 6. In particular, Xg
is a family of Mg := Fg(—1)%? & H & (—6)-polarized K3 surfaces, and
is thus of Shioda-Inose type (cf. [Mol). There are countably many ¢ for
which the Picard rank is 20. For these fibres, the transcendental part
H?(X;) is a quotient of H? . of rank 2. The motive H2(X;) for these

fibres has complex multiplication, i.e. the rational endomorphism ring is

an imaginary quadratic field.

We describe a modular construction of such a family, closely related
to that of [DKJ, sec. 8.2.2]. Set

o V3 % By = —V3 % o 0 %
levs s )T s v )T Ve o

and note that

Bse = pers
(3.2.1) ) - -1 0
gila=( 0 0 )e A IOt
We have a3(7) = —;ﬁ, pi6(T) = 5=. These induce involutions on Y;(6)
since
ry(6) < TIy(6)" = (I'1(6), as)
(3.2.2) A A
(T1(6), e) =2 T1(6)*° < T1(6)***° = (T'1(6), as, us)
2 -1 0 2 : o [ 1
and a3 = 0 1| =M (The action on cusps is [ioco] < [5],

[0] <+ [5] for ag and [ico] <+ [0], [3] <+ [3] for pg.) From (B.2.1) one

deduces that these involutions commute; and so g descends to Y7 (6)*3 :=
{(a3)\Y1(6)** and as to Y1(6)™® := (ue)\Y1(6)*¢, where “x” means to
delete fixed (elliptic) points.

Let '£1(6) — Y3(6) be the fiber-pullback of m; by as. (Note that o
and g do not lift to involutions of &£;(6), but do lift to 3 : 1 resp. 6: 1
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fiberwise isogenies.) Put '51[2](6) =& (6) >§ : '£1(6), and let
Yi(6

17+ "€7(6) 5 '£7(6)
be the involution given by

(75 [21]), [22]043(7)) = (as(7); [22]043(T)7 [21]7)-

A first approximation to the three-banana family is then

EP(6) 7 = I\ '€(6)™ 7 Yi(6)*,
It has fibers of type Ej; X Eja,(r), hence intersection form H @ (6) on
H2

var» and the same local system as R2,,. (7@ )« Zx,, - By Schur’s lemma and

the Theorem of the Fixed Part [Sc|, a C-irreducible Z-local system can
underlie at most one polarized Z-variation of Hodge structure, making
the two variations isomorphic.

However, 5 is not yet a family of K3 surfaces. Quotienting fibers by
(—id)? and resolving singularities yields a family of Kummer K3 surfaces,
with (incorrect) intersection form (H @ (6))[2] on H},, ;. To correct this
multiplication by 2, we require a fiberwise-birational 2 : 1 cover of the
Kummer family, which is the Shioda-Inose family [Mo] X;(6)™* over
Y1(6)™3. Since this is a family of Mg-polarized K3 surfaces with integral
H? isomorphic to mg, the relevant global Torelli theorem (cf. [Do, Cor.

3.2]) yields an isomorphism

Explicitly, the Hauptmodul (mapping [ico] +— oo, [0] +— 0, elliptic
points— 4, 16) is given by (2.3.11)) and we have the relation
—64t

(3.2.3) b= o0 =1
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This relation between the Hauptmoduls of Feynman integrals with two
and three loops was obtained more than 40 years ago by Geoffrey Joyce,
who established a corresponding result for honeycomb and diamond lat-
tices in condensed matter physics, exploiting results on integrals of Bessel
functions by Wilfrid Norman Bailey in the 1930s. For further details of
the striking relationships between Feynman integrals and lattice Green
functions, see [BBDG].

3.3. Miscellany. — Two observations about Hg are in order. The
first (used below in §5.2) is that we may construct a family X — Y;(6)*3
of smooth surfaces mapping onto X3 (6)™ and gl (6)73 (over Yi(6)T3),
with both projections generically 2 : 1 on each fiber. We may then
transfer generalized algebraic cycles from 51[2} (6)™ to X by composing
this correspondence with H g ; and the Abel-Jacobi maps are then related
by the action of this correspondence on cohomology (which is an integral
isomorphism on H? after multiplication by %) To obtain the family X,
we take (a) the fiber product &, of e (6)™ and the Kummer family over
EP(6)+3/((—id)*2) and (b) the fiber product &, of the Kummer family
and X;(6)"3 over the quotient of X;(6)™ by the Nikulin involution (cf.
[Mo]). Smoothing these families yields &, and &, whose fiber product
over the Kummer family followed by resolution of singularities yields X'

The second observatio is that we may use H g to perform a rational
involution on relative cohomology of the family over the automorphism
Wt % induced by pg. First of all, Xg does not itself have a bira-
tional involution over p, since H2, (X, Z) = HZ2, (E. X Euy ), Z) and

var var

(YThis is not used in the sequel, but illustrates an important difference between this
family and the Apéry family of K3 surfaces (cf. [DK]), which does admit such an
involution.
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2 ~ 2
HZ,(X ) = HZ,(E

var var 16

grally isoinorphic. In particular, we only have a correspondence

() X Eag(us(r)), Z) are rationally but not inte-

51[2] (6)*3 e 51[2] (6)*3

| |

}/’1(6)4-3 1(6)4—3

||zl§

which is a 2 : 1 isogeny in the first factor and 1 : 2 multivalued map in

the second factor, given by

(7 [21]rs [z2lag(n) = (M(T); [W]%(T)’ [2(—3271+1)] aswam)) |

However, the graph of this correspondence is a family of abelian sur-
faces, mapping fiberwise 2 : 1 onto both 81[2](6)+3 and its pg-pullback,
which does have an involution over pg. This family, or its associated
Shioda-Inose K3 family, can then be used as a correspondence (inducing
isomorphisms of rational HZ) between X;(6)™ and its ug-pullback over
Yl(6)+3.

Finally, for future reference we shall write down a family of holomor-

phic 2-forms on the fibers of 7. For any t € P'\ Lg), let

e
(331) Wt = R@SXt W

be the standard residue form. Remark that the holomorphic period in

the neighborhood |t| > 16 of ¢ = oo may be computed by integrat-
d p dy 5 dz
T Yy z

M8 o 1=t
residue theorem, this is

(3.3.2) (2mi)? > apt ™",

k>0

where ay,, given in (2.3.13), is the constant term in (¢g ).

over the product (S1)*3 of unit circles. By the Cauchy
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4. The three-banana integral as a higher normal function

In this section we shall explain the precise relationship between the
integral /g and the family X of K3 surfaces defined by the denominator
of the integrand. Properly understanding this, even without the modular
description (done in , leads at once to the inhomogeneous equation
(§4.3) and the special values at ¢ = 0 and 1 (§7).

There are a number of general comments. The integral /g is
a period, i.e. the integral of a rational differential form w on a variety
P over a chain ¢ whose boundary Oc is supported on a proper closed
subvariety ¥ C P. This theme goes back to Abel’s theorem on Riemann
surfaces. For Abel, P is a Riemann surface, ¥ = {p,q} C P is a set of
two points, w is a holomorphic 1-form on P and c¢ is a path from p to
g. In modern terms, this process associates to the 0-cycle (p) — (¢) an

extension of Hodge structures
0— H'(P,Q(1)) = H — Q(0) — 0.

The second point is that dependence on external momenta means that we
have a family of integrals depending on a parameter t. The corresponding
family of extensions is called a normal function and first appeared in the
work of Poincaré [P}, [G2].

Finally, it turns out that the three-banana amplitude is associated
to a generalized normal function arising from a family of “higher” alge-
braic cycles or motivic cohomology classes [KL, DK]. The passage from
classical normal functions associated to families of cycles to normal func-
tions associated to motivic classes suggests interesting new links between
mathematics and physics (op.cit.). For one thing, motivic normal func-
tions can, in many cases, be associated with multiple-valued holomorphic
functions which arise as amplitudes. For a discussion of normal functions

in physics, cf. [MW] for instance.



A FEYNMAN INTEGRAL VIA HIGHER NORMAL FUNCTIONS 33

Briefly, the higher Chow groups C H?(X, q) of a variety X over a field
k are the homology groups of a complex ZP(X, o). By definition Z?(X q)
is the free abelian group on irreducible codimension p subvarieties V <
X x (P'\ {1})? meeting faces properly, where faces are defined by setting
various P!-coordinates to be 0 or co. Elements of Z?(X,q) are called
(higher Chow) precycles. The face maps 2ZP(X,q) — ZP(X,q — 1) are
defined by restrictions to faces with alternating signs; elements of the
kernel are called (higher Chow) cycles.

If f1,..., f, are rational functions on X, the locus {z, fi(x), ..., fy(x)}
will (assuming the zeroes and poles of the f; are in general position)
define a precycle in ZP(X,p). The easiest way for its image under the
face map to vanish, so that this precycle is a cycle and represents a
class in CHP?(X, p), is for the f; to be units (invertible functions) on the
complement of the the subvariety of X defined by [T/_,(f;(z) — 1) =
0. A basic theorem of Suslin and Totaro identifies C'H?(Spec k,p) =
K IJ)‘/I (k), the p-th Milnor K-group of the field k. These groups are linked
to algebraic K-theory via the v-filtration

CHP(X,q) ® Q= grr K (X).

Finally, in keeping with modern usage, we will define motivic cohomol-
ogy by
Hy (X, 7Z(s)) := CH*(X,2s —r)
when X is smooth. Notice that H},(X,Z(r)) = CH"(X,r) in this case.
More generally, H}, (X, Q(s)) may be constructed from higher Chow pre-
cycles as described in §1.3 of [DK], which leads to a long-exact sequence
used only briefly at the end of below.

4.1. K3 of a K3!— Let X, = n !(t) (t € P'\Lg) be as in ,
X; = X, (C)* = X\Dg, Do = U2, D; (D; = P'). The Milnor
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symbol

{lx vl 2lx} € K31(C(X,) = lim 13 (U, Z(3))
UcCXy

Zar. op.

extends to a (cubical) higher Chow cycle
6] = [Ap N X7 x O] € CHY(X,3) = Hy (X[, Z(3)),

where [0 := P'\{1} and [- - -] denotes cycle class. To (integrally) lift [&]
to a class
(54 € Hjy (X1, Z(3))
in the exact sequenc
©;Hyy (D, Z(2)) = Hi(X0, Z(3)) = HYy (X7 Z(3)) "3 @, 13, (D], 2(2)),

we must check vanishing of the T am@D;([ft]). Inspection of the edge
polynomials [DK], sec. 2.5] shows that these are all of the form {tu, 1},
{1,£v}, and {£u, 1 — (du)} (in toric coordinates {u,v} on D} = (C*)?),
which are trivial.

On the cycle level, the mechanism by which the lift takes place is
given by the moving lemma for higher Chow groups [Blo2]. This yields
a quasi-isomorphism

ZX(X],0) & Z°(X,,0) /1) 2% (Dg), o)

inducing the above exact sequence, and there exists u; € Z3(X},4) such

thad@

&+ 0pe = J'E.

(®)The ambiguities of this lift by the images of the H},(D;,Z(2)) may for our purposes
be ignored, as they have no bearing upon the transcendental part of its Abel-Jacobi
image.

(6)Note: in this paper “0” is used both to denote the boundary of a C* cochain and
the differential in the higher Chow complex.
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Moreover, there are 6 of the D; (say, j = 1,...,6) on which z, y, or z
is identically 1, so that we may replace in this argument X; by X[ :=
X\ U2, Dj, & by its Zariski closure £ € Z°(X[7,3), and p; by some
p7. The fact that the configuration J = U2, D;

has trivial H; will be crucial for the argument in below.

Working modulo torsion, one can do somewhat better than a lift [=;] for
each t € P'\Lg that is ambiguous by the image of &;H;,(D;, Q(2)). Let
Xo =5 P'\{co} be the Zariski closure of Xg in Pa_ x (P*\{t = 0c}). One
shows that ¢g is reflexive and tempered and the assumptions of [DK|
Rem. 3.3(iv)] hold (with K = Q). So by [DK|, Thm. 3.1}, there exists
a motivic cohomology class [E¢] € H3(Xo,Q(3)) defined over Q and
restricting to [{z,y, z}] € H3; ((C*)3,Q(3)) under the inclusion (C*)? <
Xg given by (2,y, 2) — (2,9, 2, 0o (2, y,2)""). Its fiberwise restrictions
therefore produce rational lifts of &, and since H}, ((Al x Dj) /g, Q(Z)) =
Hi,(Spec(Q),Q(2)) = {0} there is also no ambiguity. This guarantees
that the processes described above can be carried out in a “continuous”
fashion, and that the lift extends (as a motivic cohomology class) across
the singular fibers over ¢t = 16, 4, 0.

In fact, the construction of [Eg)] in this case is quite simple. The total
space X has six singularities (of the local type xy = zw), situated over
t = 0 in the base locus where the two D;’s in each P! x P! component

cross. Blowing these points {p;}%_; up, we have exceptional divisors



36 S. BLOCH, M. KERR & P. VANHOVE

E,=P'xP! (k=1,...,6)in )?@, and the long exact sequence

D Hi (B, Q(3)) = Hy (X, Q(3)) —

HS,(Xo,Q(3)) & @ H, ({pe}, Q(3)) = @D H, (Er, Q(3)).

One easily lifts [{z,y, z}] to [Eg] € ij/l(élzf@, Q(3)) (since the Tame sym-

bols vanish), whereupon o(|
Dk B

In the sequel, the restriction of [Eg] to Hy;(Xg,Q(3)) will be denoted
by [Eg]; we call this the three-banana cycle.

o), 0) vanishes since z, y, or z was 1 at each

4.2. Review of Abel-Jacobi. — We shall need a few generalities on
regulator currents for the arguments below. The presentation will be
sketchy, as a more thorough exposition may be found in [DK| sec. 1].
Let X be a smooth projective variety with complexes of currents
D*(X) and (2mi)PA-valued C*-cochains Cf, (X;A(p)) (A C R a sub-
ring). Given a cochain ~y, we write 0, for the current of integration over

it, and use this to define the Deligne complex
C3 (X, A(p) = (Coi (X5 A(p)) ® F*D*(X) @ D*(X)) [-1]
with differential
(4.2.1) D(T,Q, R) := (0T, —d[Q],d]|R] — Q + or).
Its (2p — n)*™ cohomology sits in a short-exact sequence
0— JP™(X)y — HZ (X, A(p)) — HgP"(X)s — 0,
where

{ HgP™(X) s = Hompnms(A(0), H~(X, A(p)))
P X)a = Bty s (A0), HP~" (X, A(p)))

Let ZP(X,e) be the codimension-p higher Chow cycle complex with
n™ homology CH?(X,n) = H3? "(X,Z(p)), and boundary map 9; in
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particular, Z?(X,n) is a subgroup of the cycle group Z?(X x[0"). Denote
by ZE(X,e) C ZP(X, e)g the quasi-isomorphic subcomple described
in [KL, sec. 8.2]. By [KLM] sec. 7], the cycle class map

¢y CHY(X,n)o = Hj (X, Q(p)) = HF (X, Q(p))
defined in [Blo1] is computed by a map of complexes
Z(X, 0) = CF*(X,Q(p)).
Taking e = n, it is defined on irreducible components b
(4.2.2) & — (2mi)P7" ((2mi)" T, e, Re)

where (writing 7x, 7o for the projections from a desingularization £ to
X, O0") Re [resp. Q¢, T¢ is defined by applying (7x).(7m0)* tﬂ

" dz; dz
=Y ((—1)"2mi)’ " log(z;) LA A —0r,, - T,
j=1 Zj+1 Zn

ﬂT ﬂz (Roo)

—1

resp. Q, = N dzj

j=1 ~i
Properties of T},, 2, R, imply that

(4.2.3) d[Rg] = Qg - (27”)”572 + 27TiRa§,

so that (by (4.2.1] - gives a map of complexes.
Suppose 9§ = 0 (so that [€] € Ha? ™(X,Q(p))) and n > 1. Since [T¢]

and [€%] define the map to ng’”(X)Q(Whlch is zero for n > 1), there
exist K € FPD¥~"1(X)and T € O "' (X; Q(p)) such that Q¢ = d[K]

(") These are still precycles with Q-coefficients; the “R” refers to intersection conditions
with real-analytic chains.

(®)This differs from the formula in [KLM] by a (27i)~ 4™(X) twist arising there from
Poincare duality, since we interpret currents here as computing cohomology, not ho-
mology. (This choice is more convenient for computation.)

()Here log(z) is regarded as a 0-current on P! with branch cut along R.q, so that
d[log(z)] = % — 27iéy,. Operations involving pullback are not in general defined on
currents, but a convergence argument (when ¢ is in the subcomplex) shows that Re
and Q¢ are in fact currents on X.
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and T, = OI', whereupon
Rﬁ = Rf — K + (27T1.)n51ﬂ
defines a closed current with class [Rg] € H*»"=1(X C) projecting to

((€) =) AJE"(€) € JP"(X)q = H% " 1(X,C)

FrH?»== (X, C) + H* (X, Q(p))
If X is a smooth algebraic K3 surface and p =n = 3, then

(4.2.4) AJY?  H3 (X, Z(3)) — H*(X,C/Z(3)) = J>3(X)

is computed by

(4.2.5) Re := Re + (2mi)%6r,

since Q¢ € F*D3*(X) = {0}. Let U C X be a Zariski open set. Any
precycle ¢ € Z3(U,3) is a sum of components supported over divisors
and components with generic support. The simplest examples of the

latter are elements of the form

1, fa, fs}o = (=, fi(2), fol®), f3(2)) |2 € U\NU|(fi)l},

where f; € C(X)* and the bar denotes Zariski closure in U x (1. One

can show that

d d ) d .
R{f17f27f3} = log(fl);; A Jf + 2mi IOg(f2)£5Tf1 + (27TZ)2 IOg(f3>5TflﬂTf2

extends to a 2-current on X (even if the closure of {fi, fs, fs}v over X
is not a precycle).

This has the following application to the general situation of §4.1]
where & = {fi, fo, fs}v = 772 — O for E € ker(9) C Z3(X,3) and
€ Zg(U,4), under the assumption that N; f; ' (R<o) N U = 0. Working
modulo currents and chains supported on D := X\U, formally applying
(4.2.2)) (and noting that R, extends to X) gives

(4.2.6) ((2mi)*Te, 0, Re)+D ((2m)3Tu,o, erz_Ru) = ((2mi)*Tx, 0, Rz) ,
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while our assumption gives Ty = 0. For the chains, this yields Tz =
—0T), + Sp, where Sp is a (closed) 1-chain supported on D; since Tx is
exact, so is Sp (on X), and we write Sp = 0. For the currents,
gives

Rz = R¢ + erid[Rﬂ] + (27i)%6r, + Kp
for some 2-current K supported on D, so that (taking I' = =7}, + v in
(4.2.5))

~ 1
Rz = R + %d[Ru] +(2mi)°6, + Kp
gives a lift of AJ3*(Z).
The key point is now that if Hi(D) = {0}, then we may take v to be

supported on D, and up to exact currents on X and arbitrary currents

supported on D,

(4.2.7) R= = Ryfy g, 50}
This is precisely what occurs in §4.1| with X = X;, 2 = 5, = Eg|x,,

U=X7, D=7, and {f1, 2, fs} = {alxylxr 2|xz }; the assumption
T{z,,-y = 0 holds for

t ¢ ¢o(RZ) = [16,00].
Writing

AT = Mpar 0 ATES - HY,(X,, Q(3)) — HZ,(X:,C/Q(3)),

var

(4.2.7)) provides a well-defined lift (for ¢ ¢ [16,00] U {0,4})

Ry := Tar|[Rz,] € H2

var

(Xt7 (C)

of Ry = TJ?S(Et) As the extension of R? (7 ).Q across t = 0 has
only rank 1, and R, must extend through ¢ = 0, we conclude part (i) of
the
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Proposition 4.2.1. — (i) R, yields a holomorphic section of the sheaf
O ® R?,.(75).C over P\[16,00] U {0,4}, and is the unique such section
lifting R with no monodromy about t = 0 and t = 4.

(it) Writing 0; := t% and V for the Gauss-Manin connection, we have
v6th == —[Wt],

do pdy pdz
with wy := Resx, (M)

Proof. — (ii) follows at once from [DK], Cor. 4.1] (note tpx =¢7'). O

4.3. Reinterpreting the Feynman integral. — The term “higher
normal function” has been used in several different ways in the theory of
algebraic cycles — for instance, to describe the section of U, J33(X}) (i.e.
the family of extension classes ) associated to a family of higher
cycles like =;. Here we shall pair this section with a specific family
of holomorphic forms to get an actual function (Definition . We
preface this with a brief discussion of the pairings used here and in later
sections.

Let X be a smooth projective surface, [X]| € Hy(X, Q) its fundamental

class, and

: HY(X, Q) — Q(0)

(X]
the map (of Hodge type (—2,—2)) induced by pairing with [X]. We can

define a Poincaré pairing in one of two ways:
() H(X.Q) x H(X.Q) » HY(X.Q) Y Qo)

(,): H*(X,Q) x H*(X,Q) — H'(X,Q) = Q(-2).
While the second has type (0, 0), we prefer to work with the first bracket.

We now turn to the main content of this subsection.

Definition 4.3.1. — The (truncated) higher normal function associ-
ated to Zg is
Vol(t) = (Re, [@]) € O(Ug),
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where @; := (2;71.1)%% € 0*(X;) and Ug CP'\ Lg =P\ {0,4,16, 00} is

the complement of the real segment 16 < ¢t < oo.

Note that Vg extends holomorphically across ¢ = 4 and 0, since it
pairs finite (in fact nonzero) homology resp. cohomology classes (|wj]

resp. R;) on those singular fibers.
Theorem 4.3.2. — Ig(t) = Vg(t) on Ug.

Proof. — Begin by noting that

R TNy AT Resx, (Q
= e\ aglag ) e ()

so that (regarding ) € F3D3(Pa_) as a 3-current)
d [Qt] = 27TZ"lft(:)t.

Furthermore, Rj := R, .} extends to a 2-current on PA_, and writing
Q5 = df/\%/\%, T3 =T, NT,NT,, we have on Px_

(4.3.1) d[R5] = 5 — (27i)*07y + Kb,

where Kp (€ F'D*(P,_)) is supported on Dg.

Now[™] I (t) =
J S
= = —(2m
Rzgt—fﬁ@(ﬂ?,yﬁ) Ty t

- —(27‘(‘@')2/ 5T§" A\ Qt.
P

e

By (I31), this

1 .
(d[R3] — 5 — Kp) A Q.

2w
IPA©

(19)The apparent sign change in the denominator (compare (2.2.1)) arises from the
orientation of T3 and the change of variables.
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Noting that Kp A €, and Q5 A Q, are zero by type, it becomes

1 -
= 5 d[R5] A€

2T
Pag,

1 ~
= — R; A d[Q
21 PA® 3 [ t]

= / R; VAN th(jjt
P

e

4.3.2 = R N Wy
( ) /)<t {Z‘Xt’N’y'XtNVZlXtN} wt
Finally, the argument of (4.2.7)ff allows us to rewrite this as

:/ Rz, Ny = Vg (2).
Xt

Without the last step, (4.3.2) would not pair two closed currents and
would have no cohomological meaning. So the seemingly bizarre criterion
that H,(J) = {0}, in the end, is absolutely essential.

To give an idea of the power of Theorem [4.3.2] we conclude this section
with one of its basic consequences: namely, an alternate proof of Theorem
. The characterization of /g as a higher normal function can also
be used to compute some special values, cf. 7

For deriving the Picard-Fuchs equation, we shall modestly abuse no-

tation and regard the family of forms as a section
@ €T (P'\Lg, O ® R}, (76).C).

Let Vpr be the operator on cohomology obtained from Dpp := L3 =
S fk(t)c‘lit—i by replacing % by V; := Vdi, so that by [Ve, Prop. §]
Vprwy = 0. Note that f3(t) = t3(t — 4)(t — 16) and fo(t) = 6t(¢t* — 15t +
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32) = 3 fi(t). Introduce the Yukawa coupling
?(t) = <LD,§,V?(Dt>,

which may be computed as follows. Observe that by type 0 = (@, V,@;)

implies
d? . . . . .
0= @<w7§’ Vtwt) = <wt, V?wt> + 3(Vtwt, Vfwt>,
so that
d ~ o3 N 2, o3~
gy(t) = (@1, Vi) + Vi, Vidy) = g(wta Vi)
implies
~ 2 B 5 B
f3(t)Y/(t) = g(Wm _f2<t)vfwt - fl(t)vtwt - fo(t)wt>
= —f3()Y (1)
that implies
~ K
Y(t) = e C(¢).
= 7w <
We will see below in that k = o 2;)12. Assuming this, we conclude

Corollary 4.3.3. — Dpp (I@(t)) = —24.

Proof. — By Prop. [4.2.1{(ii),
Vth = (27m')2@t.
Now Ig(t) = Vg(t) = (R, @), and

d ~ N9 . N -
%(Rtawﬁ = (27TZ>2<Wt,Wt> + (Re, Viior) = (R, Viior)
d2
ﬁ<Rt7wt> = (27Ti)2<C:)t, Vt®t> + <Rt7 Vf@t> = <Rt, V?wt>

by type (and Griffiths transversality [G]). Together with

d3 N N2 -
%(]zt,wt) = (27TZ)2Y(t) + <Rt, V?wt%
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these give
Dpp(Ry, @) = (Ry, Vppay) + (2mi)* f3(1)Y (t)
— (2m0)2 f5(1)Y (1) = —24.
[

Remark 4.3.4. — For later reference we note that Y'(t) := (wy, V3 wy) =
(2mi) Y (t) = Y (c0) = (27i)*k.

5. A second computation of the three-banana integral: the

Eisenstein symbol

As an application of the results in sections [3|and , we will use Hg to
pull back the toric three-banana cycle Z¢ € Hi (X, Q(3)) to X1(6)7.
We then apply a correspondence to produce a higher Chow cycle on a
Kuga variety £12/(6) (defined below), and recognize this as an Eisenstein
symbol in the sense of Beilinson [Beil, DS, [DK]. This will allow us to
write the pullback V o Hg of the higher normal function (i.e. Feynman
integral) as an elliptic trilogarithm, giving another proof of Theorem
2.0.2]

5.1. Higher normal functions of Eisenstein symbols. — For sim-
plicity of exposition we shall restrict to the setting of Kuga 3-folds. We
begin with an explanation of Beilinson’s construction of higher cycles
("Eisenstein symbols") on these 3-folds and their relationship to Eisen-
stein series of weight 4. Each such cycle gives rise to a higher normal
function over a modular curve (defined in ), which turns out to
be an Eichler integral of the corresponding Eisenstein series. The main
result of this subsection, Proposition [5.1.1] computes the g-expansion
of this normal function. In many cases it may be rewritten in
terms of trilogarithms (cf. theorems [2.3.2| and |5.3.1)). Everything in this
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subsection is general. In §§5.2) we shall apply this general compu-
tation to our special case, by pulling back the three-banana cycle from
Xg to the Kuga 3-fold and interpreting the result (up to Abel-Jacobi

equivalence) as one of Beilinson’s cycles.

To describe these cycles, consider the elliptic modular surface E(NV) :=
(Z2xT(N))\(Cx$H) over Y(N) = T'(N)\$H, where ['(N) = ker{SLy(Z) —
SLy(Z/NZ)} and N > 3. Its fibers are elliptic curves with 1-form dz and
standard Betti 1-cycles o = [0, 1], 8 = [0, 7]. By duality we may regard
a, 3 as defining H' classes, and write [dz] = [8] — T[a].

wl2I(N)

Let EB(N) "—5’ Y(N) be the self-fiber product of £(N). There
exists a semistable compactification E2/(N) — Y (N) due to Shokurov
[Sh], with singular fibers DIZ(N) = ERI(N)\EPE(N). Choose for each

—S T

cusp o = [ﬂ € k(N) := Y(N)\Y(N) an element M, := b ) €

SLy(Z). Define modular forms of weight n for I'(N) by

(i)  F(r)=E00) —. gt (vy e T(N))
My(N) := {F €0®) (17) 1,(F):= Tl(irglooﬁ)’mgl < oo (Vo e k(N)) } )

There is an isomorphism ([Sh|, or [DK| Prop. 7.1])

ot

U: My(N) = QEF(N))(log DE(N))
F(r) w— (2mi)*F(7)dz Adzg Adr.

Let ®X (V) denote the vector space of K-valued functions on (Z/NZ)?,
with subspaces ®X(N), := ker{evaluation at (0,0)} and
®F(N)° := ker{augmentation} =
{f:(@/N2)* > K| >  f(mmn)=0}

0<m,n<N-1
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Assuming K D Q(Cy) (Cy := €), these are exchanged by the finite

Fourier transform

p(m,n) = G(um) = 3 @lmn)™.
(m,n)e(Z/NZ)?
This allows us to define the Q-Eisenstein series EX(N) by the image of

the map
E: ¥ — MyN)

(m7 +n)*

o o Blr) =-
(m,n)€Z\{(0,0)}

The horospherical maps
S, DI(N) —  Q

o o Holp) =LEENB(E) (70)ep)(a)
record the “values” lim,_,; £y (7) %4,1 (= 2, (p)) of the Eisenstein series
E, at the cusps. Here m, : (Z/NZ)* — Z/NZ sends (m,n) = a(p, q) +
b(—s,r) — a, while (,), sums along fibers of 7,, and By(z) = z* — 223+
x? — % is the fourth Bernoulli polynomial. Alternatively, one has

6
— L@, 4
where i, : Z/NZ — (Z/NZ)? sends a — a(—s,r) and
o(k
L(¢,n) = Z én)

k>1

To construct the cycles, let U C E(N) [resp. UP c EF(N)] be the
complement of the N? [resp. N?| N-torsion sections over Y (N). Fix
¢ € ®F(N)°, and (thinking of it as a Q-divisor supported on £(N)\U)
let my € Q and fo1, faz, fas € OF(U) satisty >, ma(fa1) * (faz) *
(fas) = ¢ (Pontryagin product). (Here (f,;) is the divisor of f,;, the

divisor being viewed as a function on (Z/NZ)? and the Pontryagin

Hq(p) = —

product of two functions on a finite abelian group is defined by (f *
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g)(a) = Ypieea f(b)g(c). The grou G = Dy, x (Z/NZ)* acts on
H3, (U2 Q(3)), and the G-symmetrization of

Y ma{for(=21), faa(21 = 22), fas(22)}

extends to a cycle in H3,(EP(N),Q(3)) (cf. [DK| sec. 7.3.4]). By abuse

of notation we shall call it 3, since its fiberwise AJ 3:3_classes

(5.1.1) Ro(y) € H2, (T2(N)'(1),C/QEB)), yeY(N),

depend only on ¢ — indeed, only on the {J%,(¢)|lc € k(N)} — and not
the choice of {f,;} [DK| Cor 9.1].

The connection between the cycle 3, and the Eisenstein series FE,
comes about as follows. First, by using the moving lemma [Blo2] and
log complexes of currents, it is possible to extend the (7,2, R) calcu-
lus of §4.2 to the quasi-projective setting ([KLM, §5.9],[KL, §3.1]). In
particular, the fundamental class of 3, (i.e. the image of ¢5’(3,) in
Hg*3(EP(N))g) is computed by the holomorphic (3,0)-form Q3. Ac-
cording to a result of Beilinson (in the form of [DK| Thm. 8.1]), we

have
(5.1.2) Q3, = V(E,) = {(2m)°Ey(1)dz1 A dzo} ® dr.

It follows that R,(y) is given (up to an important “constant of integra-

tion”) by the Gauss-Manin integral of (5.1.2)); that is, (5.1.2) is VR.,.
Define the associated higher normal function by(*%]

(5.1.3) V(1) = (72@([7]), [dz1 A dz)),

(1) D, denotes the dihedral group of order 8.

(12)The reader is warned of the typo “surjective” for “injective” in the statement of
[loc. cit., Lemma 9.1(ii)].

(13)Note: a priori this just uses the Poincaré pairing H?(EX?,C)®? — C on each
fiber. However, it is better to think of [dz; Adzs] as a class in Hy(EX?, C) by Poincaré
duality and as pairing H? x Hy — C, since this approach will extend across
the singular fibers of £[2/(N) over cusps o for which 5 (¢) = 0.
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where for now R, is an indeterminate lift of R, to O ® R?,, 7?(N),C.
Arguing as in the proof of Corollary H above, and noting V3[dz; A

dZQ] = O,
dS
7_3 (p( ) <”R¢,V [le VAN d22]>

< le A d22]>
<(2m) o(T)[d21 A dz), 2[on X as])
(5.1.4) = —2(27i)* E (7).

That is, V,, is an Eichler integral of E,. This leads to the following result,
which is closely related to [DK| Prop. 9.2].

Proposition 5.1.1. — Assume for simplicity that p(m,n) = ¢(—m, —n).
Then up to a Q(3)-period (27i)3Qo + (27i)*Q11logq + (2mi)Q2(log ¢)*

(515 Vo)

ﬁL( ;-*oo@, 4) (log ) + % L ((Tice)$: 3)

alM

+2 Y1 g% Sam  Laczynz Cn' Pld, a).
(Note that ﬁL(Ljoogﬁ,él) €Q.)

Proof. — By a classical result (cf. [Gul), we have

(B:10)  Eulr) = Ho(e) - 7 L a¥ S ¥ e (a).
L rIM  a€Z/NZ

In accordance with , we must take three indefinite integrals of

—2(2mi)®E,(7) with respect to dr = ;-dlogg, i.e. of —2E,(7) with

respect to dloggq. Applying this to the second term of gives

(5.1.7) R vy e ().

M>1 r|IM  a€Z/NZ

and replacing r by d = % recovers the sum in (5.1.5). Doing the same
to Hino) () would give —zH;0)(0)(log q)* plus an arbitrary quadratic
polynomial in log q. The more precise stated result follows at once from
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DK, (9.29)] "] which is based on the delicate fiberwise A.J*3 computa-
tion for 3, carried out in §9.2 of [op. cit.]. O

The connection of this formula to trilogarithms arises as follows. Define
. L xké 1
(5.1.8) Lig(z) :=Y_ Lis(a®) =>_ > 5= > xmzﬁ,
k>1 k>16>1 m>1 §m
and suppose that we can write

o= Z Na6¢a,6

a|N
BIN

where

1, if ajm and S|n

(5.1.9) Yo p(m,n) = {

0, otherwise

In the >Z)/>; term

M 1 aM
Z qr Z B Z (N Yays (d; a)

2
N 2 Has
o, M>1  dMm % aez/NZ

aM
of (5.1.5), the sum X ,c7/n7 CN' Ya,s(d, a) is zero unless ald and %|%

implies 2| M), in which case it is &. So after putting M = °¥m and
PHES 7 E 5

d = a0, the last displayed expression becomes

2N a\m 1
= —— o B INEE
N3 azﬁ,“ 5%1(61 ) %52@3
which (upon putting k = %)
oy el p (08
(5.1.10) = 2§ﬂagmg (a%).

(1)Note that while this formula is derived in [op. cit.] for ¢ of the form L7 _¢', any
¢ is of this form modulo ker(#f;) C dY(N)°.
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5.2. Modular pullback of the three-banana cycle. — In this sub-
section, we identify the pullback of Z¢ to £2(6) as an Eisenstein symbol.
We begin with a general statement.

Let X % P! be a 1-parameter family of anticanonical hypersurfaces in
a toric Fano 3-fold PA, with smooth total space obtained by a blow-up
x 2 Pa, and 3(Xp) := B(p71(0)) = Dp := Pa\(C*). Suppose we have a
higher cycle = € H3,(X\Xo, Q(3)) with 0T= the integral generator
of Hy(Xo, Z) and a rational map (or even a correspondence)

gEN) - - X
wl21(N) l
Y (V) o P!

Let © : EP(N) --» X be the restriction to the complement of the singular
fibers, and = € H},(X,Q(3)) the restriction of =. Defining coefficients
ro(E) € Q by

- e

0 (Xo) = > 10(5) 7B(N) (o),

o€kr(N)

we have

Proposition 5.2.1. — Modulo cycles with trivial fiberwise AJ>?, we

have
O'E =3, € H(E¥(N),Q(3))
for any ¢ € ®F(N)° with H,(p) = r4(Z) (Vo € k(N)).

Proof. — This is immediate from the fact that (5.1.1)) depends only on
the “residues” 72, (). O

(15) Alternatively, Res(Z) € H3; x,(X,Q(3)) has cycle class in Hy (X, Q(3)), ﬁ of
which integrally generates Hs(Xo,Z).
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To apply this general statement to the three-banana cycle =g constructed
in §4.1) we begin by analyzing the transformation of the family of holo-
morphlc forms w := {w;} € T(P"\Lg), (7e).22,) (cf. (.3.1)) under the

correspondence

P\ Lo

o

2:1
between 81[2](6) and Xg. Here X is described in and
J2 . ePle) .= £,6) x &(6) 5 e 6)
Y1(6)
is the map over Y;(6) defined by

N [Q‘H}( )

and jg[, its comp081t10n with the quotient by I35~ (cf. .

By (2 , the period of Hw over the minimal invariant cycle in
Hj, about ¢ = 0 (t = oo) limits to (2mi)*. Applying p5, (p1)-, (jg[?])*
multiplies this by 2, 2, resp. 3. Writing 6% := (JI)*(p1).p3, it follows
that

(5.2.1) 0*w = 12(27i)*dz; A dzo mod O(q)
hence (noting 8, = 5--2)

Y (o0) = <w,V§tw> |t=oo

112 (0%, V3,0°w) | 4=o

122(2mi)t

= To(amiy <[d21 A dz), V2[dz1 A d22]>
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= —24(2mi)?,
where Y (t) was defined in Remark [4.3.4] In fact, by that remark we now
have k = o )2 as claimed in the proof of Corollary 4.3.3

Turning to the computation of the {r,(Eg)}, we take © to be the
composition of § with the base change over Y (6) — Y;1(6). We examine
the pullback by © of the (3 O) form Q2= _ which Computes the fundamental

class of the cycle. By (4 and Pr0p081t10n ( i), Qz, = —wA % €

Q*(Xg), and (5.2.1) now gives
Qo-z, = —0"Q=z, = O"w AdlogHg ()
= 12(27i)%dz, A dzo A dT mod O(q),

Which implies at once that r;](Eg) = 12. (Note the consistency with

and (5.1.6).) Now the (partial) pullback of =g to ’5[ ]( 6) is in-
Varlant under 13[, l: a calculation as in [DK, sec. 8.2.2] shows that con-

sequently r[_%](E@) = Tlas(ic0)] (E0) = —W —3. In fact, writing
Q@*E© = (27Ti)3E@(T)d21 N dZQ A dT, we have E@(T) € M4(F1(6)+3),

and 7,(Eg) : k(6) — Q is the pullback of the function on x(6) =
{[zoo] [0, [5], [1]} taking the respective values 12,0, —3,0. (Under x(6) —
%1(6), the preimage of [ioo] resp. [3] is {[ico]} resp. {[%], 2], [—%]}) Us-
ing the formula for %%, one then finds that the function pg on (Z/NZ)?
with Fourier transform

—203%/5, (m,n) = (0,£1) mod 6
(5.2.2)  Pg(m,n) =< 2°33/5  (m,n) = (£2,+10or 3) mod 6

0, otherwise

satisfies 7, (vg) = 15(Eg).

Finally we determine the pullbacks of w and @. In [Vel, it is shown that
@1 (1) = (n(27)n(67))* (n(7)n(37))~2 is the Hg-pullback of a solution to
Dpp; so ©%(0) = C - wy(7)dz; A dzg for some constant C'. But then
0*(w) = —(2m)?*Cwy(1)Hg (7)d21 A dzg and by C =12.
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Remark 5.2.2. — One further immediate consequence is that Eg (1) =
dH (7
121”217(2)1{377() = 12424¢—168¢°+ - - ; but the equality Eg (1) = E,_ (7)

is more useful for us as it allows us to apply Proposition and get

the “constant of integration” right.

5.3. The main result. — Recall that Vg(t) = (Ry,[@]). Putting

everything together, we arrive at the

Theorem 5.8.1. — Up to a Q(3)-period (271)3 Qo+ (27)2Q 7+ (27i) Qo>
(Qi € Q), we have nggﬂ) =
—4(log q)® +16((3) — 16 {2Lis(¢") — Lis(¢*) — 6Lis(q”) + 3Lis(q) } ,

where Lis(z) = S Lig(zF).

Proof. — First notice that
1
Vo = (R,0) = E<@*R’ O*w)

- 112(72 12a0(7)[dz1 A dzs))

= @1(7) (R ; [dz1 A dz])
so that Vg = @y V. The leading term in (5.1.5)) is — 2 #fioe (9o ) (log ¢)?

—4(log q)3. For the constant term we compute

Per

—273%/5, n=0 mod6

((Tise))eP0) () =4 293%/5, n=%2 mod 6
0, otherwise
1 5 1 (i)« P (1)
1 —2-6° (7 1 1 1
S CRCRE S
2.6t 20

= 5 WC(B) = 16¢(3).
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Finally, we write using the character v, defined in ((5.1.9)

_3326
5 {10%61 — 1062 — g3 + Vs 6 — a1 + Yoo} .

Substituting this into ([5.1.10)) gives the remaining terms in the result. [J

Po =

6. Foundational Results via Hodge Theory

The methodology of sections |4 and [5[involving higher Chow cycles and
currents is delicate. Care is needed to avoid bad position and ill-defined
multiplication of currents. The purpose of this section is to give a general
Hodge-theoretic context for proving basic results about periods in related
situations. In the context of this paper, arguments using currents are
required to lift the Milnor symbol regulator, defined a priori only on X},
over all of X;. Arguments in this section only give results upto periods
over X;. Because X;\X; in our case is a union of rational curves, it
turns out that these extra periods associated to 2-chains on X; relative
to X3\ X, are themselves of motivic interest. This point will be discussed

briefly at the end of the section.

6.1. Some lemmas. — In this subsection, we give an elementary but
useful application of Verdier duality (Lemma — also known, thanks
to R. MacPherson, as “red-green duality” (cf. Remark .We work
throughout with sheaves for the complex topology.

Lemma 6.1.1. — Let P be a smooth, quasi-projective variety over C,

and let X, Y C P be closed subvarieties. Consider the diagram

P\(XUY) L P\ X

(6.1.1) Jk Jk
P\Y —5 P v

Assume that for every point z € X NY there exists a ball B about z

in P and a decomposition B = Bx X By (where By, By are smaller
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dimensional balls). Assume further there exist analytic subvarieties X' C
Bx andY' C By such that XN B =X'"x By andY N B = Bx x Y.
Then viewed as maps on the respective derived categories of sheaves for
the complex topology (in keeping with modern usage we write e.g. j. in

place of Rj,) we have

(6.1.2) JE.Qp\ (xuyy = kJiQp\ (xuv).-
Proof. — We have
(6.1.3) 7 kg1 Qp\(xuy) = k.Qp\(xuy)-

Since 7 is left adjoint to j* we deduce the existence of a map (extending
the identity map on P\ (X UY)) from left to right in (6.1.2)). To check
that this map is a quasi-isomorphism is a local problem. The assertion

is evident except at points of X NY C P. By assumption, near such a

point our diagram (6.1.1)) looks like

(6.1.4)
(BX \X/) X (By\Y/) E— (Bx\X/> X BY

| l

BXx(By\Y,) E— BXxBY — BXxY/.

The assertion is now clear by a variant of the Kunneth formula. Namely,
both sides are identified with

(6.1.5) (kBx+«QB\x7) @ (1B,1QBy\v7)-
O

Remark 6.1.2. — The hypotheses of the lemma are satisfied if XUY C

P is a normal crossings divisor locally at points of X NY".

Lemma 6.1.3. — Let notation be as above and write Z = X NY. We

have

(6.1.6) H*(P\ X,Y \ Z;Q) = H*(P, jk.Q)
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Proof. — We have

(6.1.7) IR Qp\(xuyy = 517 kQp x.

The functorial distinguished triangle of sheaves on P
S = 8 = idtS L.

yields a distinguished triangle

(6.1.8) 71k.Qp\(xuy) = k:Qp\x — 0.0k Qp\ x.
Consider the diagram
P\X +*— v\Z
(6.1.9) lk lk
P Y
The lemma will follow if we show i*k,.Qp\ x =N El*Qp\ x in . Since

1* is left-adjoint to 7., the existence of such a map is equivalent to the

existence of a map
(6.1.10) ky, — i, k0" = k0.0

It is enough to define a map from the identity functor to £,£*. But again
by adjunction, this is the same as a map ¢* — ¢*. Here we can take the
identity:.

Arguing as before, the problem is now local and we can work in a small
ball B = Bx x By. The local picture with the notation of the previous
lemma is

(Bx\X/) X By <— (BX \X/) x Y’

(6.1.11) l l

Bx x By — Bx x Y’

Again the assertion is clear by Kunneth. O
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Lemma 6.1.4. — Let notation and assumptions be as above, and write
n =dim P. Assume P is smooth and projective. Then we have a perfect

pairing
(6.1.12)  H*(P\Y,X\ Z;Q(n)) x H"*(P\ X,Y \ Z;:Q) — Q.

Said another way, we have

Proof. — From the previous lemma applied twice we are reduced to
showing
(6.1.14) H*(P,jik.Q)(—n) = H>™ *(P, kj.Q)".

The Verdier duality functor D is a contravariant functor on the derived
category of sheaves on P such that the sheaves S and DS are Poincaré
dual, i.e. there is a perfect pairing H(P,S) x H™(P,DS) — Q. We
have DQ = Q[—2n|(n), and D intertwines lower shriek and lower star.
Thus

H™ (P, D(k.jiQ))(=n) = H" (P, k.jiQ)(=n) = H"(P, jik,Q)(=n).
O

Remark 6.1.5. — In the analytic context, one way of representing the
factors of is in terms of topological cycles (using and
its analogue for the other factor). For the left-hand factor, these must
avoid X (red) but are allowed to bound on Y (green); whereas for the

right-hand factor, red and green are swapped.

6.2. Applications: CY periods. — Take n > 2 and assume (various
generalizations are possible) that 7 : P — P" is a toric variety obtained
by a sequence of blowups. Let X C P be the strict transform of a
hypersurface of degree n + 1, Xg C P". Let Yy C P" be the coordinate
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simplex Yy : I[§ 7; = 0 where the 7; are homogeneous coordinates, and
let Y = 77'Y,. We assume that X is smooth, and Y U X is a normal
crossings divisor. Let Z = X NY. Note that P\Y = P"\ Y, = G/,. The

exact sequence of relative cohomology yields
(6.2.1) H" (G}, Q(n)) = H" (X \ Z,Q(n)) —
H"(P\Y,X\ Z;Q(n)) - H*(G},,Q(n)) — 0.
This can be rewritten (the superscript ~ indicating we take the quotient
modulo the image of H"1(G",Q(n)))
(6.22) 0— H" X\ Z,Q(Mn)” =
H'(P\Y,X\ Z;Q(n)) — Q(0) — 0.
Assume further that the topological chain given by T; > 0,0 < i < n,
lifts to a chain o on P with doc C Y and cNX = (Z). Then o represents
a class in H,(P\X,Y\Z;Q) which maps to 1 € Q(0) = H,(P\Y,Q).
Via equation (6.1.13) above, we can interpret o € H"(P\Y, X\Z;Q(n))

as a splitting of (6.2.2) as an exact sequence of Q-vector spaces. The
extension class of (6.2.2) in the ext group of mixed Hodge structures

(6.2.3) Bty ys(Q(0), H"H(X\Z,Q(n))™) = H"1(X\Z,C(n)/Q(n))~
is computed as follows. By [D] corollaire 3.2.15(ii) it follows that
FOH"Y(X\Z,C(n))~ = (0).

As a consequence, one has FOH"(P\Y, X\Z;C(n)) = C(0), so there is
a unique sp € FYH"(P\Y,X\Z;C(n)) lifting 1. So the class of the
extension ([6.2.2)) is given by

e € H"H(X\Z,C(n)/Q(n))™,
where ¢ is the unique class with a(e) = 0 — sp.

(16)One can check for our family of K 3-surfaces that blowing up the vertices and then
the faces of dimension 1 in P3 suffices to achieve o0 N X = (.
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By assumption, X is an anti-canonical hypersurface in P*. Let £y # 0
be a global n-form on P with a pole of order 1 along X, and no other
singularities. Assume further the pullback € := 7*Q, has a pole along
the strict transform X of Xy and no other singularities, so €2 repre-
sents a class in F"H"(P\X,C). We have H"(Y\Z,C) = (0) by co-
homological dimension, and F"H" }(Y\Z,C) = (0) by [D] corollaire
3.2.15(ii), so the exact sequence of relative cohomology yields an isomor-
phism F"H"(P\X,C) = F"H"(P\X,Y\Z;C). Thus, Q lifts canonically
to Q € F"H"(P\X,Y\Z;C). We have a perfect pairing of mixed Hodge
structures by lemma
(6.24) () H"(P\X,Y\Z;Q) ® H"(P\Y, X\Z;Q(n)) — Q(0)

In particular, the element (2, sg)’ € F™C(0) = (0). We have proven

Proposition 6.2.1. — With notation as above, the pairing of €2 with
the extension class (6.2.2) is given up to (relative) periods

{/Q| I € image{ H,-1(X, Z; Q) ™ H,(P\X, Y\Z;Q)}}
r
by the integral of ) over the chain o:

(6.2.5) (Q,a—sF>’:/Q.

Alternatively, with w := Resx (), we have

1
'=— [ Q
wer=o5 )
modulo relative periods fvw, v e H, 1(X,Z;Q).

To relate the above to the Abel-Jacobi viewpoint for Milnor symbols
explained in section[4.2] one can use Deligne cohomology Hp(V, Z(q)) for
any quasi-projective variety V over C, [EV]. There is a functorial cycle
class map CH®*(V,b) 1, H%7*(V,Z(a)). One has the universal Milnor

(I7)We refer to the beginning of section for the definition of {, ).
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symbol in degree n which represents a class sym,, € CH"(G,,n). In our
situation, one has X\Z — P\Y = G,. Consider the diagram

(6.2.6)
CH"(G!',n) —— CH"(X\Z,n) —— CH"(G},X\Z;n—1)

| | l

HR(G}, Z(n)) —— HE(X\Z,Z(n)) —— Hp"(G},, X\Z; Z(n))
Deligne cohomology fits into an exact sequence

(6.2.7)
0 — Extys(Q(0), Hiei (V. Z(r)) = Hp(V, Z(r)) = Hpei(V, Z(r))

By cohomological dimension, we have
ng;%z(@:;m Z) = (O> = Hg’etti(X\Zu Z)u
so the bottom line in (6.2.6)) can be written

(6.2.8) Hp(Gy,, Z(n)) = Extys(Q(0), Hpui(X\Z, Z(n)))
— Extyg(Q(0), Hpeyri (G, X\Z: Z(n)))
Consider the diagram with top row the extension given by a[sym,] in
(6.2.8]).
0 — H"Y(X\Z,Q(n)) — M —Q(0) =0

(6.2.9) | b [
0 = H" 1 (X\Z,Q(n))” —H"(G},, X\Z;Q(n)) —Q(0) =0

It follows from that there exists an arrow b as indicated. This
means that up to rational scale, the Milnor symbol extension coincides
with the extension . Note that this does not recover Theorem m
Indeed, quite generally, the ambiguity is given by periods the fcw where
c represents a class in H, 1(X, Z;Q). In our situation, where we have
a family X; of K3-surfaces, the resulting multi-valued function of ¢ does

not satisfy the inhomogeneous Picard-Fuchs equation because the local
system with fibres H?(X;\Z;) is larger than the local system H?(X;).
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For us, the “extra” periods have the form fCt w; where ¢; is a 2-disc on X,
with boundary on Z;. Since Z; is a union of rational curves, such periods
are associated to motivic cohomology classes in H3;(X;, Q(2)). For more

detail on these interesting periods, see [K|] and the references cited there.

7. Special values of the integral

As promised in §4.3] we present some consequences for special values
of the identification of the Feynman integral as a higher normal function
(Theorem , by evaluating the three-banana integral at the special
values t =1 and t = 0.

7.1. Special value at ¢ = 1. — It has been conjectured in [BBDG,
Broadl, Broad2| that the value at ¢ = 1 of the three-banana integral

is given by an L-function value

(7.1.1) Io(1) =

where L(f*,s) = 3,51 an/n’ is the L-function associated to the weight-
three conductor 15 modular form

(7.1.2)  fH(r) = n(r)nBr)nGr)n5r) Y. ¢t = 3 g,

mne” n>1

constructed in [PTV] .

We will show that [7.1.1] holds up to a rational coefficient using a triv-
iality result, theorem below, for the trace of a certain Z/5Z-action
on the Milnor symbol. The proof invokes Deligne’s conjecture [D2] for
critical values of L-functions. In this case, the L-function in question
is a Hecke L-series associated to an algebraic Hecke character,
and Deligne’s conjecture was proven by Blasius [B]. The specific appli-

cation we will use of their work is the following

Proposition 7.1.1. — Let wy € ['(X;1,Q?) be the algebraic differential
form over Q, (B:3.1).
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(i) Let 0 # ¢ € Hy(X1, Q)4 be a 2-cycle. Then L(fF,2) € Q(v/—15) -
fe

(ii) Let 0 # x € H*(X1,Q(2))s be a Betti cohomology class. Then
L(f*,2) € Q(v/=15) - {x,w,)’. Here (x,w;)" is the Poincaré duality pair-

mg.

Proof. — Note that (i) and (ii) are equivalent because Hy(X;,Q) =
H?(X;,Q(2)), an isomorphism of Hodge structures which is compati-
ble with the pairings with H?. (To see that the L-function is critical
at s = 2 the reader can consult [HS| §2].) The usual formulation of
Deligne’s conjecture would say that if x in (ii) is invariant under the
real conjugation, then L(f",2) € Q- (x,w;)’. However, in this case we
have complex multiplication by Q(y/—15), i.e. H?*(X;,Q)s is a rank
one Q(y/—15)-vector space, so changing z multiplies the pairing by an
element in the CM field. O

7.1.1. Special fiber at t = 1. — Recall from that countably many
fibers X; in the K3 family have Picard number 20, and hence are of CM
type. That X; is one of these CM fibers is shown in [PTV] (so that
H?2(X,) is a CM Hodge structure). What makes X; special amongst the
CM fibers is an additional symmetry property which arises as follows.
Consider P* with homogeneous coordinates Ty, . . ., Ty, hyperplane H =
{ ?:()Tz‘ = 0}, and hypersurface Y = {Z?:o [T = O}. Then X; is
a resolution of singularities of H N'Y, which can be seen by writing
Ui =Ty (i =0,...,4) and 2; :== gt (i = 1,2,3). Since Y and H are
stable under the permutation action of the symmetric group &5 on the
{T}}, it is clear that &5 acts on H N'Y hence birationally on X;. Let

wi € N%(X;) be as in (3.3.1)). Since we may express w; as

4 NVT AT A - ANdT A -+ A dT

Resx Resy ( (DTl A AT A ATy
(S L Ty) (T)

the action of &5 on Cw; hence HZ(X;) (S HZ2,(X:)) is through the

var

)GQ%HOYL

alternating representation.



A FEYNMAN INTEGRAL VIA HIGHER NORMAL FUNCTIONS 63

7.1.2. The higher normal function analysis. —

Theorem 7.1.2. — I (1) is a (27mi)3 times a period of

ot o
W= Resx, (1 —(l—x—y—2)1—at—y - 2—1)> '
Proof. — Let o : X; — X; be the automorphism induced by the cyclic
permutation Ty +— Ty — .-+ — Ty — T, of the {T;}. Write =, =
1_0(07)*E1 € H};(X1,Q(3)). Since 0,01 = @1, we have

V(1) = 5(R1, @)

4

4

Z Rla *wl <Z(0])*Rlaa)l>7

=0 =0
where the cohomology class ¥]_o(07)* Ry € HZ,.(X1,C) gives a lift of
AT (Z)) € H2,.(X1,C/Q(3)). To show that V(1) is a Q(3)-period, it
will suffice to establish that the image of the latter in H2.(X;,C/Q(3))
Is zero.

Let U C X; be any Zariski open set, Y = X\U. In the commutative
diagra
Hjypy (X, Q(3)) —— Hjy(X1,Q(3)) H3, (U, Q(3))
J/AJY J{AJxl \LAJU
H{ (X1, C/Q(3)) —= H*(X,,C/Q(3)) —— H*(U,C/Q(3)),

the image of v factors the projection from H?(X;) to HZ(X;). This re-

duces the problem to checking that the image é1|nx1 of Z; in

ling 13,(U, Q(3)) = K3(C(X1)) ® Q

1S zero.

(®)Note: Hy; y(X,Q(3)) = CH?(Y,3)q.



64 S. BLOCH, M. KERR & P. VANHOVE

This is now a simple computation in Milnor K-theory (written addi-

tively). Working modulo (2-)torsion, we have

ei={wp.2h = {n., 2.2},

T T
U*g{y z 1+x+y+z} {1+I+y+z Y z}
R x x "'
z 1l+ox+y+2 1
{ y 9 }:_{1+x+y+z7y7z}7
y’ Yy
—i—:c—l—y—l—z 1 T 1
{ }:—{1+$+y+2,72},
"2 2 T

(o1)€ = - ;
g )
1+x+y+zl+x+y+zl+$+y+z
Y 1
{1+x+y+z }
x
Now observe that
z
§+a*§:{1+x+y+27ya}
T T
and
z
(02)*E + (0%) €+ (0h)¢ = {1+fﬂ+y+z i m}
so that Sy, = Yioo(0?) e =0. =

7.1.3. Value at t = 1. — The proof for Broadhurst’s formula
up to a rational coefficient is now straightforward. By theorem [7.1.2]
the regulator class in H?(Xi,C/Q(3))s is trivial, which implies that
the lifting R of this class to H*(X;,C)y, lies in H*(X1,Q(3))s = 2mi -
H*(X1,Q(2))s,. Thus,
(7.1.3)

Io(1) = (R,w;) € 2mi(H*(X1,Q(2)),w:1) = Q(v/—15) - 2miL(fT,2).

The identity on the right follows from proposition [7.1.1]
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7.2. Special value at ¢ = 0. — It has been showed in [BBDG),
Broad2] that /g (0) = 7¢(3). We provide this section a derivation of

this result form the point of view of higher normal functions.
Theorem 7.2.1. — 15 (0) = 7¢(3).

Proof. — The fiber X, (after semistable reduction) has the two compo-

Lyl -1 =,

nents Y] resp. Y; arising from 1—x—y—2 = Oresp. 1—x~
and six arising from the semistable reduction process which we may ig-
nore since Ry, .1 is zero there. The motivic cohomology formalism tells

us to compute the pairing

2
Vo (0) = ([Riay,], [@o]) = > g Rizy,zy N o
=1 i

of a cohomology and homology class.

Observing that Y1 NY53 is essentially the “triangle” {(z,y, 1—z—y) | (1—
z)(1—y)(z+y) = 0}, let v = y1 +72+73 be a generator of Hy(Y1NY5, Z).
Also let 5 = (814 2 be a 2-cycle on Xy with 03 = v = —03,, and where
(r,y,2) = (x4, y71 271) sends B; — By. We have in Hy(X,, Q) (really

(o] = £3. The 5 is obtained by computing

i.e. working modulo classes in the limit of the fixed part) that

dz A dy A dz
x z
Res,—1Resy—1Res,—1_,_y Y

¢@<$,y,2)
dz A dy
= Res,—1Resy—1 a Y
(1—at =yt =25 ) (e +y—1)
dx N\ dy 1

R ([ [ )

which is a period of @y over a vanishing cycle o € H*(X,) with {(a, 3) = 1.

It remains to compute

1 2
52 [ Riaysr = / Riay.e)
i=1YBi B1
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d d 1
:/ log(x)m/\y:/ ig—(xzdx/\dy
1 Ty vy =z —vy)

:/ d{log (1 1$_3’:)Elog($)dx} :/ log (1 ;_yllog(x)dx
o ot

1 11—z

This integral is readily evaluated as follows:

2/1 1og(—1x_) fg(x)dx = 4/1 log(1 — ) log(x)d; mod Q(3)

= —42 log )z*"tdr  mod Q(3)

k:>1 -1
1
=8 5 =7¢(3) mod Q3)
E>1
odd

Now Ig(0) is obviously real, so we can ignore the Q(3) ambiguity.

Remark 7.2.2. — Alternatively we can give a very different proof of

Theorem [7.2.1] using the Eisenstein analysis of §5] Referring to the proof

of Theorem [5.3.1 we have

Ig =Vg =w(7)- VSD@(T).

Applying Props. 9.2 and 9.4 of [DK] (the former suitably modified for

the cusp [0]), we have that
2

Vo (7) ~ = Ll(m0). 90, 8) = 7-3- 2'((3)7

as 7 — 0. For the other factor, the property n(—1/7) = /Tn(7) o

Dedekind eta allows us to to pull back w;(7) = % under g :

7+ —1/67 =: 7. Namely, we have

- 3. . . 3. 1
@) = @ (=1/67) = ~S P Ho (A (7) ~ 57 = =
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as 7 — 0. Taking the product (and noting the correspondence 7 = 0 <>
t =0) gives I (0) = 7¢(3).

Appendix A

Higher symmetric powers of the sunset motive

In this section we consider the higher symmetric powers for the sunset
regulator. This leads immediately to generalization of the Eichler inte-
gral found for the two-loop sunset (cf. [BV] and and three-banana
(cf. Feynman integrals. It remains to be seen whether this has any

relevance for the higher loop banana integrals studied in [Val §9].

Consider the series

(A.1) > nff(#b) Eisenstein summation, n = 3,4
a0 a"aT + )
(Here ¢ : (3/N3)? — C is some map.)

Let A be a finite dimensional Q-vector space, and let A := Hom(A, Q)
be the dual. There is a natural embedding A" < Der(Sym(A)) identi-
fying AY with the translation invariant derivations of Sym(A), the sym-
metric algebra. (For example, if a; is a basis of A, the dual basis elements

a) are identified with a%i.) This leads to perfect pairings
(A.2) (,): Sym™(AY) ® Sym™(A4) — Q; (D', a’) = D'(a”)|o

Notice, however, that because of factorials, this pairing is not perfect
integrally. (The integral dual of Sym is the divided power algebra.)
Let B := 3g; & 3ey. Identify B = BY via the pairing (g1,£2) =
—(€9,e1) = 1. With the above identification we find
o )24l i = ji
(A3) N

0 else
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We now compute

(wey + &0)" 2dr
((Te1 4 &9)"~ 2/ 1 =2 )

(ax +b)"
— o0 dg gk
— _2 n2k/ e
(n z%(k) ;  (az+0)"
= n—2/ (x dm
(@x—l—b”

(n — 1)a” 1(a$ +b)

(A4) -

Notice the left-hand-side is exactly the pairing we would expect to com-
pute for Sym" 2H'(&,), where & is the sunset elliptic curve, while the
right-hand-side when Eisenstein summed over a, b yields the correspond-
ing function (A.1)).
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