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On the Origin of Time and the Universe
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We present a novel solution to the low entropy and arrow of time puzzles of the initial state of the
Universe. Our approach derives from the physics of a specific generalization of Matrix theory put
forth in earlier work as the basis for a quantum theory of gravity. The particular dynamical state
space of this theory, the infinite dimensional analogue of the Fubini-Study metric over a complex
non-linear Grassmannian, has recently been studied by Michor and Mumford. The geodesic distance
between any two points on this space is zero. Here we show that this mathematical result translates
to a description of a hot, zero entropy state and an arrow of time after the Big Bang. This is modeled
as a far from equilibrium, large fluctuation driven, “freezing by heating” metastable ordered phase
transition of a non-linear dissipative dynamical system.

Introduction and summary — The observed expansion of
the Universe together with measurements of the cosmic
microwave background radiation vindicate the paradigm
of a hot Big Bang. Standard cosmological models pro-
pose an initial spacelike singularity. Such a state signals
the breakdown of spacetime and geometry as effective
descriptions of Nature. Understanding the physics of the
singularity and the dynamical evolution of the Universe
at the earliest times remains one of the long standing and
unrealized ambitions of any putative quantum theory of
gravity.

The initial state of the Universe has a very low entropy.
In fact, from the point of view of the Wheeler-DeWitt
equation, the entropy should be zero as the wavefunction
of the Universe is unique. The present entropy of the
observed Universe can be estimated by the degrees of
freedom associated holographically to the causal horizon:
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where Ry is the Hubble radius and /p the Planck length.
The number of microstates is then given by Boltzmann’s
formula Q = e ~ 610123, and the probability associated
with the Big Bang is

polawn o
The Big Bang therefore appears to be an exceptionally
special point in phase space, as finely tuned as the cos-
mological constant [1].

In this letter, we advance the idea that a low entropy
initial state, indeed one with zero entropy, is not only
natural but compulsory. We address the origin of the
Universe in the context of a new approach to quantum
gravity rooted in a quantum equivalence principle that
renders the state space of a generalized quantum mechan-
ics fully dynamical [2]. This indicates that the state space
is an infinite dimensional complex non-linear Grassman-
nian that is a diffeomorphism invariant generalization of

CP™, the complex projective phase space of quantum me-
chanics [3, 4].

Subsequent to the proposal that this non-linear Grass-
mannian should play a central role in a theory of quan-
tum gravity, new properties of this space were brought
to light that make it uniquely suited for application to
the physics of the Big Bang. According to a remark-
able theorem of Michor and Mumford [5], the geodesic
distance between any two points on this Grassmannian,
as measured by the exact analogue of the Fubini-Study
(FS) metric on CP", vanishes. On the strength of this
theorem, the everywhere high curvature properties of the
metric, and in concert with parallels found in the geomet-
ric and topological approach to Hamiltonian dynamics
and statistical mechanics of condensed matter systems
and in non-equilibrium, dissipative systems, we conclude
the following: (1) That our probabilistic scheme is en-
dowed with a Big Bang event, and because the quantum
phase space is comprised of a single microstate this occurs
with probability one, implying that S = 0; (2) That the
Big Bang corresponds to a far from equilibrium collective
state, a large fluctuation inducing “freezing by heating”
metastable phase transition that yields a cosmological
arrow of time.

Time and M-theory— Standard quantum mechanics may
be cast geometrically as Hamiltonian dynamics over a
specific phase space CP", the complex projective Hilbert
space of pure quantum states [6]. CP™ is a compact,
homogeneous, isotropic, and simply connected Kéahler—
Einstein manifold with constant, holomorphic sectional
curvature 2/h. Notably, being Kéahler it possesses a
triad of compatible structures, any two of which deter-
mine the third. These are a symplectic two-form w, an
unique FS metric g, and a complex structure j. All
of the key features of quantum mechanics are encoded
in this geometric structure. In particular, the Rieman-
nian metric determines the distance between states on
the phase space, and the Schrédinger equation is simply



the associated geodesic equation for a particle moving on
CP™ = U(n+1)/(U(n) x U(1)) in the presence of an
effective external gauge field (namely, the U(n) x U(1)
valued curvature two-form) whose source is the Hamilto-
nian of a given physical system. When the configuration
space of the theory is the physical space, the FS metric
reduces to the spatial metric. This observation suggests
that space, indeed curved spacetime, need not be inputs
but may emerge from a suitably extended quantum the-
ory over phase space, generalized both kinematically and
dynamically. To put our results in their proper context,
we briefly summarize the pertinent features of the gener-
alized quantum theory.

First, we recall that crucially, Matrix theory is a mani-
festly second quantized, non-perturbative formulation of
M-theory on a fixed spacetime background [7]. While
physical space emerges as a moduli space of the super-
symmetric matrix quantum mechanics, time still appears
as in any other canonical quantum theory.

Time is not an observable in quantum mechanics: there
is no “clock” operator. Moreover, as we demand diffeo-
morphism invariance in a theory of gravitation, time and
spatial position are simply labels, and when the metric is
allowed to fluctuate, classical notions, such as spacelike
separation of points, cease to have operational meaning.
To construct a background independent formulation of
Matrix theory, it becomes necessary to relax the rigidity
of the underlying quantum theory.

The extension of geometric quantum mechanics via a
quantum equivalence principle yields the following [2, 3,
8]. At the basic level, there are only dynamical corre-
lations between quantum events. The phase space must
have a symplectic structure, namely a symplectic two-
form, and be the base space of a U(1) bundle; and it
must be diffeomorphism invariant. We demand a three-
way interlocking of the Riemannian, the symplectic, and
the non-integrable almost complex structures. In depart-
ing from the integrable complex structure of CP", the
quantum mechanical phase space becomes the non-linear
Grassmannian, Gr(C"*1) = Diff(C**1)/Diff (C" !, C" x
{0}), with n — 0o, a complex projective, strictly almost
Kahler manifold. Moreover, diffeomorphism invariance
implies that not just the metric but also the almost com-
plex structure and hence the symplectic structure be fully
dynamical. Consequently, with the coadjoint orbit na-
ture of Gr(C"*1), the equations of motion of this general
theory are the Einstein—Yang—Mills equations:
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with 7., as determined by F,;, the holonomic Yang—
Mills field strength, the Hamiltonian (“charge”) H, and
a “cosmological” term A. Furthermore,

VaF* = Hu (4)

2Mp

where u® are the velocities, Mp is the Planck energy,

and H the Matrix theory Hamiltonian [7]. These cou-
pled equations imply via the Bianchi identity a conserved
energy-momentum tensor: V,7% = 0. Just as the
geodesic equation for a non-Abelian charged particle is
contained in the classical Einstein—Yang—Mills equations,
so is the corresponding geometric, covariant Schrodinger
equation. It is here genuinely non-linear and cannot be,
as in quantum mechanics, linearized by lifting to a flat
Hilbert space. The above set of equations defines the
physical system (here the model Universe) and identifies
the correct variables including time.

Geometry of Gr(C"*t1) — As the space Gr(C"*1!) is the
central focus of this letter, and for comparison to CP", we
list its main features. It is a compact, homogeneous but
non-symmetric, multiply-connected, infinite dimensional
complex Riemannian space. It is a projective strictly
almost Kahler manifold, a coadjoint orbit, hence a sym-
plectic coset space of the volume preserving diffeomor-
phism group [9]. It is also the base manifold of a circle
bundle over Gr(C"*!), where the U(1) holonomy pro-
vides a Berry phase.

Crucial for our purposes, non-linear Grassmannians
are Fréchet spaces. As generalizations of Banach and
Hilbert spaces, Fréchet spaces are locally convex and
complete topological vector spaces. (Typical examples
are spaces of infinitely differentiable functions encoun-
tered in functional analysis.) Defined either through a
translationally invariant metric or by a countable family
of semi-norms, the lack of a true norm makes their topo-
logical structures more complicated. The metric, not the
norm, defines the topology. Moreover, there is generally
no natural notion of distance between two points so that
many different metrics may induce the same topology.
In sharp contrast to CP", the allowed metrical struc-
tures are much richer and more elastic, thereby allow-
ing novel probabilistic and dynamical applications. Thus
Gr(C™*1) has in principle an infinite number of metrics,
a subset of which form the solution set to the Einstein—
Yang—Mills plus Matrix model equations we associate
with the space. For example, in [5], an infinite one-
parameter family of non-zero geodesic distance metrics
are found.

Since Gr(C™*!) is the diffeomorphism invariant coun-
terpart of CP", the simplest and most natural topological
metric to consider is the analogue of the F'S metric. This
weak metric was analyzed by Michor and Mumford [5],
who obtained the striking result, henceforth called their
vanishing theorem. The theorem states that the general-
ized F'S metric induces on Gr(C"*1) a vanishing geodesic
distance. Such a paradoxical phenomenon is due to the
curvatures being unbounded and positive in certain di-
rections causing the space to curl up so tightly on itself
that the infinitum of path lengths between any two points
collapses to zero.

A Universe of zero size— The crucial point of this work



is to take seriously this most unusual mathematical prop-
erty of Gr(C"*!) and to interpret it in physical terms.
Taking this as the space of states out of which spacetime
emerges, we see that the vanishing theorem naturally de-
scribes an initial state in which the Universe exists at
single point, the cosmological singularity.

Moreover, viewed through this lens, a statistical no-
tion of time may apply close to the cosmological singu-
larity. We observe that in both the standard geometric
quantum mechanics and its extension, the Riemannian
structure encodes the statistical structure of the theory.
The geodesic distance is a measure of change in the sys-
tem, for example through Hamiltonian time evolution.
By way of the F'S metric and the energy dispersion AE |
the infinitesimal distance in phase space is

ds = % AEdt . (5)
Through this relation, time reveals its statistical, quan-
tum nature. It also suggests that dynamics in time relate
to the behavior of the metric on the configuration space.
As Wootters [10] showed, what the geodesic distance
ds on CP™ measures is the optimal distinguishability of
nearby pure states: if the states are hard to resolve exper-
imentally, then they are close to each other in the met-
rical sense. Statistical distance is therefore completely
fixed by the size of fluctuations. A telling measure of the
uncertainty between two neighboring states or points in
the state space is given by computing the volume of a
spherical ball B of radius r as r — 0 around a point p of
a d-dimensional manifold M. This is given by

VO](BP(T)) — Td (1 _ R(p) 7“2 +0(7"2)) ; (6)
Vol(B.(1)) 6(d+1)

where the left hand side is normalized by Vol(B.(1)),
the volume of the d-dimensional unit sphere. R(p), the
scalar curvature of M at p, can be interpreted as the
average statistical uncertainty of any point p in the state
space [11]. As 2/Ris the sectional curvature of CP", ki can
be seen as the mean measure of quantum fluctuations.
Eq. (6) indicates that, depending on the signs and values
of the curvature, the metric distance gets enlarged or
shortened and may even vanish.

The vanishing geodesic distance under the weak FS
metric on Gr(C"*!) is completely an effect of extremely
high curvatures [5]. Because the space is extremely folded
onto itself, any two points are indistinguishable (i.e. the
distance between them is zero). This is an exceptional
locus in the Fréchet space of all metrics on Gr(C"*1).
This is a purely infinite dimensional phenomenon, and
one that does not occur with the CP™ of the canonical
quantum theory.

The low entropy puzzle — From the foregoing discussion,
the low entropy problem tied to the initial conditions
of the Universe is naturally resolved. In the language

of statistical geometry and quantum distinguishability,
the generalized F'S metric having vanishing geodesic dis-
tance between any two of its points means that none of
the states of our non-linear Grassmannian phase space
can be differentiated from each other. Due to the large
fluctuations in curvatures everywhere, the whole phase
space is comprised of a single, unique microstate. Since
the state space is the model for quantum cosmology, if
its metric is the weak Michor-Mumford FS metric, the
Universe is in a fixed configuration with probability one.
As we shall see, this is a non-equilibrium setting, but we
may nevertheless infer via Boltzmann’s formula [12] that
the entropy of the Universe is identically zero.

The Big Bang as the ultimate traffic jam — What could
the physics behind a low (zero) entropy, yet high tem-
perature state of the Big Bang be? We suggest that
the paradoxical zero distance, everywhere high curva-
ture property of Gr(C"*!) with the FS metric finds an
equally paradoxical physical realization in the context of
our model. This is to be found in a class of far from equi-
librium collective phase transitions, the so called “freez-
ing by heating” transitions. From many studies [13] it
has been established that high curvatures in the phase
or configuration manifold of a physical system precisely
reflect large fluctuations of the relevant physical observ-
ables at a phase transition point. This correspondence
means equating the high curvatures of the FS metric on
Gr(C™*1) with large fluctuations in our system at a phase
transition. The vanishing geodesic distance can be inter-
preted as the signature, or order parameter, of a strong
fluctuation (or “heat”) induced zero entropy and hence
highly ordered state.

While from an equilibrium physics perspective such
a state seems nonsensical, it occurs in certain far from
equilibrium environments. Specifically, we point to a
representative continuum model [14, 15] where such an
unexpected state was first discovered. Here, one has a
system of particles interacting, not only through fric-
tional forces and short range repulsive forces, but also
and most importantly via strong driving fluctuations
(e.g., noise, heat, etc.). As the amplitude of the fluc-
tuations (e.g., temperature) goes from weak to strong to
extremely strong and as its total energy increases, such a
system shows a thermodynamically counterintuitive evo-
lution from a fluid to a solid and then to a gas. At and
beyond the onset of strong fluctuations, it first goes to
a highly ordered, low entropy, indeed a crystalline state,
which is a phase transition like-state if both particle num-
ber and fluctuations are sufficiently large. This collec-
tive state, being energetically metastable then goes into
a third disordered, higher entropy gaseous state under
extremely strong fluctuations.

While our model’s dynamics are mathematically far
more intricate than the above models for phenomena such
as traffic jams and the flocking of birds, it does have
the requisite combination of the proper kind of forces to



achieve these “freezing by heating” transitions. The sys-
tem being considered is far from equilibrium with low
entropy, high temperature, and negative specific heat.
In addition we have non-linear, attractive, and repul-
sive Yang—Mills forces, short range repulsive forces of
DO0-branes in the Matrix theory, repulsive forces from
a positive “cosmological” term, and most importantly
large gravitational fluctuations induced by the large cur-
vatures. Moreover it is known that geometric quantum
mechanics can be seen as a classical Hamiltonian system,
one with a Kahler phase space. Its complete integrability
in the classical sense [16] derives from this Kéahler prop-
erty which returns hermiticity of all observables in their
operatorial representations. The extended quantum the-
ory is similarly viewed in terms of classical non-linear
field and particle dynamics over a strictly almost com-
plex phase space. This last property implies that corre-
sponding operators are non-hermitian, and hence this is
a dissipative system [17]. Moreover, classical Einstein—
Yang—Mills systems are non-integrable and chaotic [18].
Time’s arrow — From the relation between geodesic dis-
tance and time, we also have the emergence of a cos-
mological arrow of time. While the system has entropy
S = 0, the very high curvatures in Gr(C"*!) signal a
non-equilibrium condition of dynamical instability. Be-
cause of its non-linear dissipative and chaotic dynam-
ics, our system will flow toward differentiation, which
thereby yields, through entropy production, distinguish-
able states in the state space. This instability is further
evidenced by the above mentioned existence of a whole
family of non-zero geodesic distance metrics, of which
the zero entropy metric is a special case [5]. The dynam-
ical evolution according to the second law is toward some
higher entropy but stable state. During this evolution,
spacetime, and canonical quantum mechanics emerge.

Furthermore, the model we have presented is a gen-
eralized quantum dissipative system, i.e. one with fric-
tional forces at work. Because the fluctuations of lin-
ear quantum mechanics and its associated equilibrium
statistical mechanics are incapable of driving a system
such as our Universe to a hot yet low entropy state and
of generating a cosmological arrow of time [19], a non-
linear, non-equilibrium, strong fluctuation driven quan-
tum theory such as the one presented here becomes nec-
essary. Time irreversibility is of course a hallmark of
non-equilibrium systems; this cosmological model nat-
urally produces both an arrow and an origin of time.
Moreover, in this approach the relationship of canonical
quantum theory and equilibrium statistical mechanics is
extended to an analogy of generalized quantum theory
and non-equilibrium statistical mechanics.

An interesting avenue of further investigation is the
possible extrapolation of the results concerning Gr(C"*1)
to the study of black hole singularities.
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