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ABSTRACT. Using the symmetry properties of two-dimensional sigma
models, we introduce a notion of the Beltrami-Courant differential, so
that there is a natural homotopy Gerstenhaber algebra related to it. We
conjecture that the generalized Maurer-Cartan equation for the corre-
sponding L., subalgebra gives solutions to the Einstein equations.

1. INTRODUCTION

The geometric and algebraic properties of two-dimensional sigma-models
lead to a lot of important discoveries in mathematics. One of the most inter-
esting topics, emerged this way in the last decade is the study of gerbes of
chiral differential operators, which give the proper mathematical description
of the simplest first-order sigma-models. In [17], it was shown that the clas-
sical actions of the standard second-order sigma-models can be reformulated
under certain conditions (one of which is the introduction of complex struc-
ture) in terms of perturbed first-order ones. In the same article, it was also
suggested that the conformal invariance conditions for the perturbed sigma
model, which have the form of the Einstein (and higher order) equations,
will have a homotopical meaning as generalized Maurer-Cartan equations
for certain Lo, algebra. In this paper, we show that there is a larger struc-
ture, namely of homotopy Gerstenhaber algebra, so that the desired Lo,
structure is a part of it.

The central object in the construction is the vertex algebroid with a
Calabi-Yau structure and its classical limit, the Courant algeboid. In [37]
we associated to every positively graded vertex operator algebra (VOA) the
homotopy Gerstenhaber algebra, which, according to the work of [15], [13],
[14], [31] can be extended to G algebra [30] and even to BV, algebra [8],
[9]. The relationship between vertex algebroid and vertex algebra is similar
to the relationship between Lie algebra and its universal enveloping algebra.
We show here that the correspondence constructed in [37] can be reformu-
lated by consructing a functor from the category of vector algebroids to the
category of G-algebras. Another important observation of the article [37]
is that one can construct a quasiclassical limit of the resulting G, alge-
bra, so that the operations become covariant, i.e. can be expressed via the
operations of Courant algebroid only. This G algebra is much easier to
grasp: its C and Lo, subalgebras reduce to C3 and L3 algebras, where the
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Lg-algebra is the extension of the L3 algebra of Roytenberg and Weinstein
[28]. An example of the above construction we need in this paper is the
Goo— algebra for the vertex algebroid on the space of holomorphic sections
of T M o T*1O M and its antiholomorphic counterpart, so that the cor-
responding vertex algebra gives (locally) a description of the unperturbed
first-order sigma-model. The appropriately completed tensor product of cor-
responding ”holomorphic” and ”antiholomorphic” homotopy Gerstenhaber
algebras gives the homotopy Gertsenhaber algebra and we conjecture that
this homotopy Gerstenhaber algebra can be extended to G, algebra. The
Maurer-Cartan elements for the resulting L.,-subalgebra are parametrized
by the perturbation terms of the first-order sigma model, i.e. by the sec-
tions of D((THO M aT* GO M) @ (TOV M aT* OV M) @ C(M). We call the
sections from the first summand as Beltrami— Courant dif ferentials, jus-
tifying that name by its symmetry transformations of the first-order sigma-
model, which are very similar to the ones of Beltrami differentials on Rie-
mann surfaces and by the fact that the infinitesimal formula is expressed
algebraically via the operations on Courant algebroid. The sections of the
second term in the summand will be called normalized dilaton fields.

It is possible to show that there is a subcomplex in the complex on which
the homotopy Gerstenhaber algebra is defined, so that all higher operations
vanish leaving the structure of Gerstenhaber algebra on this subcomplex (in
fact, it is a BV-algebra [11]). We show that the Maurer-Cartan equation of
the corresponding differential graded Lie algebra is equivalent to Einstein
Equations with dilaton and B-field, if the bivector field from I‘(T(l’o)M ®
TOD M), which parametrizes the Maurer-Cartan element, gives rise to the
Hermitian metric. This allows to conjecture, using the relation between
first and second-order sigma models that the generalized Maurer-Cartan
equations (GMC) for Ly-algebra on the full complex give Einstein equations
with B-field and dilaton, parametrized by the Beltrami-Courant differential.
We justify the conjecture by showing that the symmetries of GMC reproduce
the infinitesimal diffeomorphisms and gauge transformations of a B-field up
to the second order in the Beltrami-Courant differential.

The structure of the paper is as follows. In Section 2 we study the clas-
sic action functionals for first- and second-order sigma models and the re-
lationship between their symmetries. This leads to the definition of the
Beltrami-Courant differential and its symmetries, e.g. under diffeomorphism
transformations. In Section 3, we discuss Vertex/Courant algebroids with
the Calabi-Yau structure, related G-algebras and their classical limits. In
Section 4 we describe the relation of these algebras to Einstein equations
with B-field and dilaton, parametrized by Beltrami differential. First we
describe the simplest case, when the G algebra is reduced to the Ger-
stenhaber algebra, then we formulate the conjecture regarding more general
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Einstein equations and support it by calculation of the symmetry transfor-
mations.

Acknowledgements. The author is indebted to M. Kontsevich and S.
Merkulov for fruitful discussions and remarks, and to A.N. Fedorova for the
careful reading of the manuscript.

2. SIGMA-MODELS AND BELTRAMI-COURANT DIFFERENTIALS

In this section, we introduce the first object of interest: Beltrami-Courant
differential. We derive its definition from the symmetries of the classical
sigma-model actions. Let X be some compact Riemann surface, M is a
complex manifold of dimension d and X : 3 — M is some differentiable
map. Let us consider the following action:

) S0= g | (P 0X) = (5 0X)),

where p and p belong to Q10 (M) @ Q10(%) and QO M @ QO(2) cor-
respondingly, and (-, -) stands for standard pairing. This action has the fol-
lowing symmetries (we write them in components in the infinitesimal form):

X' = X' =0 (X),  pi— pi+ 0 py,
(2) X' = X' —0(X), p;— pi+ 0ty
Here, the generators of the infinitesimal transformations v,v are the ele-
ments of [(O(TMOM)) and T(O(TOVM)) correspondingly, ie. v' (v*)
are (anti)holomorphic. These symmetries illustrate invariance under the
holomorphic coordinate transformations. There is another set of symme-
tries, induced by the (anti)holomorphic 1-forms. Let w € O(T*M? M) and
@ € O(T*OY ). Then the action (1) is invariant under the transformatiosn
of p, p:

(3)  pi— pi — OXF(Opws — D), i — p; — OXF (Ogw; — Oswp).

We want to generalize the action (1) so that it would be invariant under the
diffeomorphism transformations and nonholomorphic generalizations of (3).
In order to do that, one has to introduce extra (perturbation) terms to the
action (1). Let us see how it works with an example. Suppose v%,v® in the
formulas (2) are not holomorphic anymore, then Sy won’t be invariant and
there will be an extra contribution to Sp:

(4) 8Sg = —ﬁ /((5v,pA 0X) + (0v,p A OX)).

Therefore, to compensate this term, it makes sense to add extra terms to
the action of the form

(5) 38 = —5or [ (e A OX) + {1.0X ),

2rih
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where p € T(THOM @ T* OV (M), @ e DTOVM @ T*10 (M), so that
upon the (v,v) transformations p, i should be modified as follows:

(6) p—=p—0v+..., Gg—p—00+...,

where dots stand for terms higher in p and f. Continuing and further
applying this approach to the non(anti)holomorphic generalizations of the
transformations (2), (3) we find that we have to add the following terms to
So, such that the resulting action is:

2mh/2<<pA5X> — (PN OX) —
(0 NOX) — (1, 0X AP) — (b,0X N OX)),

where b € F(T*(l’o)M QT+ s ). The resulting symmetry transformations
generated by (v, 7) can be written as follows:

(7) S =

(8)/{% — M% — 83vi + vkﬁku% + v’@,;u% + u%@;vk - u?&kvi + u%u;f@kvl,

bij — bij + v kb + v b + b 00" + b0 + bk Opo® + byt Opd,
and the formula for the transformation of i can be obtained from the one of
p by formal complex conjugation. This leads to the symmetry of the action
S if
9) X' = X'—o{(X,X), pi— pi+pp0ot — pku;—“@-vi - bj,;(?Z-UEBXj,

X' X (X, X), P = P; + DRO” — priaf ot — b o097,

Therefore, the resulting action is invariant under the action of the infinites-
imal diffeomorphism group. The component formulas (8) were first discov-
ered in [10]. Similarly, we obtain that the transformations

biz = b7 + Ow; — Ow; + ,u%(&-wk — Ogw;) +
(10) fif (D505 — Osw) + 15115, (Do — Do)
accompanied with
Di — Pi — 8Xk(8kwi — Owy) — Orw;OX" — ﬂ,;@iwgan,
(11) D; — D — 5XE(8,;w; — Owi) — 0w 0X" — ,ui@iwséXE.

leave S invariant. Hereinafter, it is useful to consider y, i, b as matrix ele-
ments of M € D((TMOM & T*3) M) @ (TODM & 7OV M), ie.

(12) M = (2 g).

For simplicity of notation let us define £ = TM & T*M, also £ = TAOM @
TGN and € = TOVM o T* OV M, so that E=E @ €.

Let a € T(E), i.e. a = (v,V,w,w), where v,v are the elements of
D(TMO M) and T(TY M) correspondingly and w € Q10 (A1), @ € QO (M),
Next, we introduce operator the operator D : I'(E) — I'(€ ® £), such that
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0 v
Do = ( o5 0w — dw >

Then the transformation of M under (8), (10) can be expressed by the
following formula:
(13) M-)M—Da+¢1(a,M)+¢2(Q,M,M).
The second operation ¢;(a, M) can be described as follows. Let us consider
(14) £ € J*(0um) @ J¥(0(E)) ® J*(O(E)) ® J*(Om),

L € J®(0&)) @ J®(0(£)),

where J°°(F), for any bundle E over M stands for the corresponding co-jet
bundle of E. In other words, let

§:ZfJ®BJ+ZbK®fK7
J K
(15) L:Za1®a’,

where a’,b7 € J*®(0(E)), fI € J*(Oy) and @', b’ € J*(O(E)), f1 €
J°(Oyr). Then we can introduce the operation qbl(f L) as follows:

(16)  ¢u(&,L) =) [p',d'lpe fla’ + ) fFa' @ p¥,a']p,
1,J 1K
where [-,-]p is a Dorfman bracket, see e.g. [26] or the next section. Com-

pleting the tensor products in (14), we find that the operation ¢; can be
induced on a € I'(E) and M € I'(€ ® £). One can explicitly check that (16)
leads to the part of (8) and (10), linear in o and M. The last part, bilinear
in M, also has an algebraic meaning of a similar kind: returning back to the
notation (15), we find that on the jet counterparts of o, M, i.e. on &, L the
expression for ¢q is:

¢2(§7L7L):
a1 5 S L (7t 1 L Y ol (e e (5,0,
2I,J,K ]JK

where a’(f!), a’(f") correspond to the action of the differential operator,
associated to the vector field, on a function (@’ (f!), a’(f!) are set to be
zero if @’, a’ are 1-forms). At the same time, the operation ¢y has the
following simple description:

(18) ¢2(a, M,M) = M - Do - M
if we consider M as an element of End(I'(E)).

Let us notice that we could generalize M in the following way: in the
matrix expression for M let us fill in the empty spot, i.e. let us add extra
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element g € T(TMO M @ TV M). Then the modified M, i.e. M € T(E®E)
can be expressed as follows:

(19) M = (g ZL) :

The corresponding action functional is:

Sfo=5—> /z(<pA5X> +(pAOX) -
(20) —~(g9:p AD) = (1, NOX) — (i, p A OX) — (b, 0X N OX)).

It turns out that the symmetries of this action functional can be described
by the same formula (13), where algebraic meaning of the operations on the
jet level is given by the same formulas (16), (17), and the formula (18) is
also valid. In Appendix, one can find the explicit component formulas for
the infinitesimal symmetries of the action Sy,. The reason for introducing

the g-term in the action functional is as follows. If the matrix {g”} is
invertible, then using elementary variational calculus, one can find that the
critical points for Sy, are the same as for the second-order action functional:

(21) Sso =
1 5yt i5vk i_ i i3y
o d*2(g;;(0X" — ptOX™)(0X7 — p,0X*) — b;;0X'0X7),
which can be re-expressed as

1 _
(22) Sso = 11 / d*2(Gy + B, )0X" 09X,
7

where G is a symmetric tensor and B is antisymmetric, indices p,v run
through the set {i,7}. The expression for G and B via M is given by:

(23)  Gg = gijfsky + 95k — beps B = g5l — 9k — Dk
Gsi = —gigith — g5, Gg=—gsi1 — gijis,
By = ggit — 9i5it),  Bg = gi1h — g2,

where {g;5} stands for the inverse matrix of {g}. Such parametrization
of the second-order action in the case when M is a Riemann surface was
first introduced in [25], [38]. The symmetries of the action functional S¢,
transform into infinitesimal diffeomorphism transformations and the 2-form
B symmetry
(24) G—-G-L,G, B— B-L\B,
B — B — 2dw,

if @ = (v,w), so that v € T(TM), w € QY(M), i.e. the symmetries of Si,.

Let us formulate this as a theorem.

Theorem 1.1. Let M € T'(€ ® €), parametrized as in (19), so that its
D(TMOM @ TOVM) part is given by {g”}, which is invertible, then the
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infinitesimal diffeomorphism transformations of the resulting symmetric and
antisymmetric tensors G and B (see (23)), as well as the B-tensor shift by
exact 2-forms are encoded in the formula

(25) M%M_Da+¢l(avM)+¢2(Q7M7M)7

where a € T'(E) and operations ¢1, 2 are defined above.

Note that if {G,,, } is invertible and real, it gives rise to the metric tensor.
Therefore, since M parametrizes both G and B, and transforms according
to (25) under diffeomorphisms, it is analogous to Beltrami differential on
the Riemann surface. So, from now on we will call the elements of ['(€ ® £)
as Beltrami-Courant differentials, since, as we see in the following sections,
they are described by means of the Courant algebroid [16] structure on &, £.

3. VERTEX ALGEBROIDS, (G5o-ALGEBRA AND QUASICLASSICAL LIMIT

In this section, we describe the constructions of the article [37] with some
modifications and refer the reader to this article for some of the details.

Each of the terms in the classical action Sy from which we started the
previous section, leads to the quantum theory which is well described lo-
cally on open neighborhoods of M by means of vertex algebra generated by
operator products

, hét - hot
(26) Xi(2)piw) ~ —L, X (@pj() ~ =

and globally by means of gerbes of chiral differential operators on M [22],
[20]. Each of the corresponding vertex algebras, which provide the local
description, form a Z-graded vector space V = ;“i% V., so that it is
determined (see [20]) by means of a vertex algebroid. In our case, the vertex
algebroid is described by means of the sheaf V = O(£) ® C[h] = O(E)"
(resp. O(E)), of vector spaces V1, as well as the sheaf of V{ spaces, which
coincides with the structure sheaf Oy, @C[h] = O (resp. O%,), with certain
algebraic operations between them.

Let us define a vertex alebroid (see e.g. [20], [2]) and then study our
concrete case in detail.

A wvertex Opr-algebroid is a sheaf of C-vector spaces V with a pairing
Om Q¢ V = V, ie. f®@uv = fxwvsuch that 1 xv = v, equipped with a
structure of a Leibniz C[h]-algebra [, | : V®c[p)V — V, a C[h]-linear map of
Leibniz algebras 7 : V — I'(T'M ), which usually is referred to as an anchor,
a symmetric C[h]-bilinear pairing ( , ) : V &cp V — Oh, a C-linear map
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0 : Oy — V such that o 0 = 0, which satisfy the relations

x(g*v) = (fg) xv=m(v)(f) *I(g) + m(v)(g) * I(f),
[Ul,f*vz] m(v1)(f) * va + [ * [v1, va),
[v1,v2] + [v2, v1] = O((v1,v2)),  (f xv) = fr(v),
(f xv1,02) = flvr,v2) — m(v1)(m(v2)(f)),
W(v)((vlav2>) ([v,v1],v2) + (v1, [0, v2]),
Afg) = f=9(g) +g=0(f),
(27) [Uaa(f)] Am(v)(f)), (v,0(f)) =m(v)(f),

where v,v1,v0 €V, f,g € (9%4.

The correspondence between vertex algebroid on each neighborhood U is
similar to the correspondence between Lie algebra and its universal envelop-
ing algebra: for more details see [20].

Let us concentrate on the case when V = O(E)". Explicitly, if f €
Owr, v,v1,v9 € O(TOOIM), w,wi,wy € O(T*(LO)M), then locally in the
neighborhood with the coordinates {X*}

of =df, w(v)f=—-hv(f), m(w)=0,
frv=fo+hdX'0;0;fv, f*rw= fuw,
[v1,v2] = —h[vi,ve]p — thXiﬁiakvfasvg,
[v,w] = —hlv,w]p, [w,v] =—hlw,v]p, [wi,ws]=0,
(28) (v,w) = =h(v,w)®, (v1,v2) = —h28iv{8jv§, (w1, wz) =0,

where (-, )% is a standard pairing on £ and [+, ]p is the Dorfman bracket:
[Ulv UQ]D = [Ubv?]Liev [an]D = Lyw,
(29) [w,v]p = —iydw, [w1,ws]p = 0.

n [37], it was shown that given a holomorphic volume form on the open
neighborhood U of M, one can associate a homotopy Gerstenhaber algebra
to the vertex algebroid on U (although the main emphasis of [37] was on Cx
part of it). This was done by considering semi-infinite complex associated to
the vertex algebra: due to the results of[15], [14], [13], [31], there is a struc-
ture of G, algebra attached to it if the central charge of the corresponding
Virasoro algebra is 26. Using this fact and considering the subcomplex cor-
responding to the elements of total conformal weight zero, we find out that
the central charge condition can be dropped. The resulting complex (F°, Q)
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appears to be much shorter that original semi-infinite one:

(30) V V
0
P @ @ L hdiv
—%hdiv
ol Ol ——— 0l oh,.

Here F0 = (95\1/[ s .7-";?, ]:,}L = (95\‘/[ @V = F?, and div stands for divergence
operator with respect to the nonvanishing volume form applied to sections
of D(U, T(M9) (M)). Appropriate analogue of operator div in the case of gen-
eral vertex algebroid is called Calabi — Yau structure on vertex algebroid
[20] (since e.g. in our case to be defined globally M should possess a non-
vanishing holomorphic volume form). According to [37], this complex has a
bilinear operation, which satisfies the Leibniz identity with respect to @, it
is also homotopy commutative and associative, and can be described by the
following table:

(31) (a1,a2)p =
al It ~ ~
Ul A1 (] Al V1 Uy

a2

u9 uLuU2 A1U2 v1ug A1UQ f)ﬂLQ ﬂlUQ
+7T(A1)U2

As u1 Ao —[Al, A2]+ —v1 Ao+ %(Al, A2> —7T(A2)171 0
%<A1,A2> 7'('(’131)142 ’

V2 ulﬂg Ava 0 *W(Al)vg *2711)2 0

A2 UlAQ %<A1,A2> —TI'(AQ)Ul 0 0 0

’l~)2 u1&2 7T(A1)l~)2 —’1)1172 0 0 0

U U1l 0 0 0 0 0

where u; € ]:,?, (Ui,Ai) S fé, (QNJZ,AZ) S .7:}2” u; € f,{?

We note that there is an operator b of degree -1 on (F;, Q) which anti-
commutes with Q:

id

(32) Y<——-V
Q) b

po_ 4d h po_—id h

Oy <—0n Oy ~— 0Oy

This operator gives rise to the bracket operation

(33) (=)l {ay, as}y = blar, az)p, — (bar, az)n — (—1)1"I(a1bas)y,

which satisfies quadratic relations together with (-, ), and @, which follows
from the properties of the vertex algebra [15]. On the cohomology of @) these
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relations turn into defining properties of Gerstenhaber algebra. Namely, the
following Proposition holds.

Proposition 3.1.[37] Symmetrized versions of operations (31) together with
(83) satisfy the relations of the homotopy Gerstenhaber algebra, which fol-
lows from these relations:

(34) Q(ai,a2)n =
(Qa1, az)p, + (—1)1*"I(a1, Qaz)s,
(a1, a2)n — (—1)\l%2l(ay, ay), =
Qm(ay, az) +m(Qay, az) + (1) m(ay, Qas),
Q(a1, a2, a3)n + (Qax, az, az) + (—1)1"(ar1, Qag, as)y +
(—1)lalHla2l(qy ay, Qas)y, = ((a1,a2)n, az)n — (a1, (az,az)n)n
{a1, a0} + (_1)(|a1|—1)(|a2|—1){a2’ a} =
(D)1= (@Qmi, (a1, a2) — m},(Qar, az) — (—1)1*?lmj, (a1, Qay)),
{a1, (a2, a3)n}n = ({a1, as}n, az)p + (—=1)1=Dllezl(ay L4y, ag}p)n,
{(a1,a2)n, a3} — (a1, {az, az}p)n — (—~1)Il=Dle2l(Lay az}y, a0), =
(—1)‘“1|+‘a2‘_1(Qn§1(a1,ag,ag) —n},(Qay,az,a3) —
(—=D)!"Inj, (a1, Qaz, as) — (1)1 122l (a1, 4z, Qas),
{H{a1, a2}tn, astn — {a1, {az, az}ntn +
(_1)(|a1|—1)(|a2|—1){a27 {a1,a3}n}n =0,

where my,mj}, are some bilinear operations of degrees —1, —2 correspond-
ingly and ny,n), are trilinear operations of degree -1, -2 correspondingly.
There exist higher homotopies which turn this homotopy Gerstenhaber alge-
bra into G algebra.

The last part of the Proposition follows from the results of [13], [31],
[14] where it was show that the symmetrized versions of (-, ), {, }» can be
continued to the G, algebra [30].

One of the central observations of [37] was that this G, algebra has
quasiclassical limit, which can be constructed as follows. Let V|,—¢ = Yo
(in our example V° = O(£)), then consider the subcomplex of (F;,Q), i.e.
(F,Q) = (F;,Q), which is:

(35) Yo

Onm hOn




It appears that

(36) Fi@ Fi — FHh],
b: F — hF'[h),

so that

(37) (-)o = lim (-, ),
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{‘Evfj} — hfi-i—j—l[h])

.« . — 15 -1 . . — |5 -1
{a }0 ]%,L}I%h {7 }h) bO }{L}Héh b

are well defined. The corresponding homotopy Gerstenhaber algebra is much
less complicated: the corresponding L., and Cy, parts are only L3 and Cs-
algebras. Let us have a look in detail. On the level of the vertex algebroid
of O(&)", let us denote

(38)

lim 74 ) = (- 0.

}13_% h o, va] = [v1,v2]o, }1l1_>1% hlr =,

Therefore, we can express the bilinear operations (-,-)o and {-,-}o on the

complex
(39) o) o0¢€)
d
@ @ %div
—%div
via the following tables:
(a1,a2)0=
“ly Ay U1 Ay U1 (1
ag
U UU2 Aqug VU2 Aqug D12 U1z
+mo(A1)ug
A uy Ay | —[A1, AoJo— | —v1 s | 3{A1, A2)o | —mo(A2)(T1) 0
(A1, A2)o
V2 ulﬁg A1U2 0 0 —1711)2 0
AQ U1A2 %(Al, A2>0 0 0 0 0
772 ulﬂg —71'0(141)172 —1)1172 0 0 0
U UL U2 0 0 0 0 0

{a1,a2}o=
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“ uy Ay vy Ay U1 Uy
a2
U9 0 —mo(Ap)ug | O mo(A1)ug 0 0
AQ 0 —[Al, AQ]O 0 —[A}, AQ]O —7T(](A2)’l~)1 WO(AQ)'ELl

—2(A;, As)o

() 0 —7'(‘0(141)112 0 0 0 0
Ay 0 —[Al, AQ]Q 0 <A1, A2>0 —TrQ(Ag)@l 0
By 0 —mo(A1)2 | 0 | —mo(A)de 0 0
ﬂg —7T0(A1)222 0 0 0 0 0

where u; € ]:}?, (Ui,Ai) € fé, (@,Ai) € f2, U; € .F]?
Let us summarize the results about the quasiclassical limit via Proposition.

Proposition 3.2.[37] The operations (-, -)o, {-, }o satisfy the relations (34)
so that their symmetrized versions satisfy the relations of G algebra which
is the quasiclassical limit of G algebra considered in Proposition 3.1. The
resulting Coo and Lo, algebras are reduced to C3 and Ls algebras.

The classical limits for the corresponding homotopies m; = mg + O(h)
and nyp = ng + O(h) are as follows. The commutativity homotopy mg is
nonzero iff its both arguments belong to Fi:

(40) mo = —<A1,A2>0.

The associativity homotopy ng is nonzero only when all three elements be-
long to Fi or one of the first two belongs to F» and the other belong to
Fi:

no(A1, A2, Az) = Aa(Aq, As)o — A1(Aa, A3)o,
(41) no(A1, 0, Az) = ng(v, A1, Az) = —0(Aq, A2)o.

Notice, that in the quasiclassical limit we get rid of all noncovariant terms
in the expression for the product and the bracket. This is very close to the
classical limit procedure for vertex algebroid. Namely, using (38), one can
obtain vertex algebroid from Courant algebroid.

The definition of Courant algebroid is as follows (see e.g. [16], [2]). A
Courant Oj-algebroid is an Op-module Q equipped with the structure
of a Leibniz C-algebra [,]p : Q ®c Q@ — Q, an Op-linear map of Leibniz
algebras (the anchor map) mp : Q@ — I'(T'M), a symmetric Oj-bilinear
pairing (-,-) : Q ®0,, @ — O, a derivation 0 : Oy — Q, which satisfy

(42) m00 =0, [q1, fq2lo = fla1, 2] + m0(q1)(f)g2;
(la, o], @2) + (@1, (@, @2]) = 70(@) (a1, @2)0), 14, O(f)]o = d(mo(q)(f)),
(0. 0(f)) =mo(0)(f) a1, a2)o + a2, a1]o = (a1, q2)0),
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where f € Oy and ¢,q1,92 € Q. In our case Q = O(E), mp is just a
projection on O(TM)

(43) g1, @2)o = —[a1, 2], (@1, 02)0 = —(q1,q2)°, 0 =d.

As we indicated earlier, both Cs and L., parts of G, algebra appear
to be short. We expect this to happen with all the homotopies, i.e. it is
natural to suggest the following.

Conjecture 3.1.The G algebra of Proposition 3.2. has only bilinear and
trilinear operations, i.e. it is a G3 algebra.

In the following, since we are interested only in the quasiclassical algebra
on the complex (F',Q), we will neglect the 0 subscript for all multilinear
operations of this algebra.

4. HoMOTOPY GERSTENHABER ALGEBRA AND EINSTEIN EQUATIONS

4.1. BV-subalgebra and a nontrivial example of Einstein equa-
tions. The homotopy Gerstenhaber algebra we studied in the previous
section, has a subalgebra based on the following complex (F;,,, Q).

(44) O(T10 M) O(T1O M)
0
Ldiv
0 @ @ 2
—%div
C C . Om Om

It is just a Gerstenhaber algebra (with no higher homotopies), moreover it
is a BV algebra, since b operator also preserves (F;,,,Q). Therefore, we
have the following Proposition.

Proposition 4.1. Bilinear operations (-,-), {-,-} together with operator b
generate the structure of BV algebra on (F,,,, Q).

Let us consider the oo-jet version of the complex (F;,,,, Q): we substitute
On, O(TOD(M)) by J*®(Op), J®(O(TOD(M)). We denote the resulting
complex as (Fy,, ~,, Q). Then the completed tensor product

where (F,,.00, @) is the complex obtained from (F;,, .,Q) by complex
conjugation. Complex (Fy,, ., Q), where @ = Q + Q, is the jet version
of the complex (F;,,Q), such that e.g. F2 = T[(TOOM @ TODM) @

O(TOVM)® O(TOOM) ® Op @ Opr ® C. Clearly, the complex (F,,, Q)
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carries a structure of BV algebra inherited from (F;
conjugation, so that

(46) (-1 Har, az} =
b_(al,ag) — (b_al,ag) — (—1)‘a1|<a1b_a2),

m.cos @) and its complex

where b~ = b — b. Note, that the elements closed under b~ form a subal-
gebra in the differential graded algebra (DGLA), generated by @, {-,-}. It
turns out that the Maurer-Cartan equations of this DGLA and their sym-
metries have a very interesting meaning. To describe them, let us define
some extra algebraic operations for convenience. )

Let g,h € I‘(T(LO)M ® T(Ovl)M) so that their components are ¢”9; ®
5, h"9; © 8;. Then one can define symmetric bilinear operation [17], [34]:

(47) 1] F(T(l’o)M ® T(O’l)M) ® F(T(l’O)M ® T(O,I)M) N
(T M @ TOV M)

written in components as follows:

(48) lg. b=

an(~1 looks much less complicated in the jet notation (see section 2). Namely,
if &7 € JXOTMIM) @ J°(OTOVM), so that ¢ = S0l @3, 5 =
S, w! @ w!, where vl w’ € J(OTHOM), ol w! € JoOTO M),
then

(49) (€, = > ' w’] @[0!, @7].

1,0

As noted in [17],[34], if bilinear tensor g is such that one can associate a
Kahler metrics to it, then the Ricci tensor R associated with such metric
tensor is proportional to [[g, g]], more precisely

(50) R (9) = 3lg.g)1"

If the complex manifold M has a volume form €2, such that in local
coordinates Q = efdX!---ANdX"AdX'A...dX™. Let us denote the volume
form which determines the differential Q as €', so that f = —2®(, then @
has to be locally a sum of holomorphic and antiholomorphic functions, i.e.
it satisfies equation 0;0;®( = 0.

We will refer to the vector field divag such that (divag)’ = 9;g" +0;fg",
(divag)t = %gij +0;f g% as the divergence of bivector field g with respect
to the volume form 2.

Now let the Maurer-Cartan element, closed under b™, namely the element
of (T (M) @ TOVD (M) & O(TOD (M) & O(TH) (M) & O & Opp) be
defined by its components in the direct sum, i.e. as (g, 7, v, ¢, @).
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Then the following Theorem holds, which can be proven by direct calcu-
lation.

Theorem 4.1a. The Maurer-Cartan equation for the differential graded Lie

algebra on F,, |,-—o generated by Q and {-,-} imposes the following system
of equations on g, ¢, ¢ (v,v turn out to be auxialliary variables):

1). Vector field divgg, where Q = O e=29129 s determined by f =
—28) = —2(®) + ¢ — ¢) and 9;,0;® = 0, is such that its T(TLOM),
F(T(O’l)M) components are correspondingly holomorphic and antiholomor-
phic.

2). Bivector field g € T(T'M @ T" M) obeys the following equation:

(51) [[gv g]] + ﬁdivg(g)g =0,

where Lgiyoq) 15 @ Lie derivative with respect to the corresponding vector
fields.

3). divqdivg(g) = 0.

The infinitesimal symmetries of the Maurer-Cartan equation coincide with
the holomorphic coordinate transformations of the volume form and tensor

{g"}.

The constraints 1), 2), 3) coincide with the equations studied in [34],
where it was shown that they are equivalent to Einstein equations, i.e. the
following statement is valid.

Theorem 4.1b. If tensor {gﬁ} parametrises Hermitean metric, then the
conditions 1), 2), 3) on g and ®y from Theorem j.la are equivalent to
Einstein equations

1
(52) RM = ZHWHKP — 2VIVY D,

VNHMVP _ Q(V)\(I))H/\Vp =0,
1
4(V,®)* — 4V, VI® + R + s Hyup HM = 0,

where H = dB s a 3-form, so that metric G, 2-form B and the dilaton field
& € C(M) are expressed as follows:

(53) Git = 9in» Bt = 0. © =1log /g + Py,
Gir =G5, = Gy, = Gy = 0,
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where by g under the square root we denote the determinant of {g,-;}. In
other words, (52) are equivalent to the following system:

005Dy =0, 9pd?g™ =0, BpdgM =0,
29rl_aral_gil_c . Qargiﬁaﬁg'rl_c . gil_al_dg)ogsl_f B grl_cardg?o gﬁ +
argil_cd;?ogjr + 8ﬁgl_cidsognﬁ =0,

(54) didge gt =0,

where d;bogji = (0; — 26¢<I>0)gi3, d;?ogji = (0; - 285<I>0)gi3, which is the com-
ponent form of the conditions 1), 2) and 3).

4.2. Physical motivation for the main conjectures. In this subsection,
we give the physics motivation for the generalization of the result of Section
4.1: namely, we want to extend Theorem 4.1. to the case of full complex
F*. For more details we refer the reader to the paper [17], [34]. In Section
2, we considered the equivalence of two action functionals Sy, and Ss,. On
the quantum level the object of primary interest is the path integral

(55) / (dp] ] [dX][dX]eS

In the case of S = Sy the quantum theory corresponding to this path inte-
gral, is described by the gerbes of chiral differential operators (and locally
just by vertex algebras), as it was already mentioned in Section 3. However,
this action should be modified to accomodate the holomorphic volume form
on M, otherwise the Virasoro element in the corresponding vertex algebras
wouldn’t be globally defined. On the level of action functionals, one has to
add an extra term to Sp, namely

(56) Sy = So + /E VIR (7)6(X),

where e72? is the density for the volume form on M, so that 0;0;¢ = 0,
~ is a metric on ¥ and R(®) () is its curvature. Let us add a similar term
to its perturbed version Spo, i.e. [ /7R® (7)®o(X) with no restrictions
on Py, and the resulting action will be denoted as S?g. We will call g a

normalized dilaton field.
The integration over p, p leads to the following (see [17]):

(57) [ dplldp X )aXe57 = [ax][ax)em ot #0000,

This heuristic formula gives the proper correspondence between the first-
and second-order actions on the quantum level. The relation of those to
Einstein equations is as follows. Analysing the path integral in the right
hand side involves regularization procedure which leads to the broken scale
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(and conformal) invariance. In order to make the model conformally invari-
ant, one has to impose a sequence of constraints, appearing for the vanishing
of the S-function (see [3], [4], [24]). The S-function is the function depending
on G-metric, 2-form B, dilaton

(58) O =Py + /7

and parameter h. At the zeroth order in h vanishing of the [S-function
leads to Einstein equations (52). Vanishing of the coefficients of higher
powers in h lead to the equations involving higher number of derivatives
and higher powers in Ricci curvature. It was noted that the linearized
form of Einstein equations and their symmetries can be obtained as the
closedness condition for the elements of degree 2 in the semi-infinite (BRST)
complex associated to the Virasoro module corresponding to the conformal
field theory described by Sg, with the flat metric. One of the statements
of String Field Theory is that the full conformal invariance conditions can
be obtained from Maurer-Cartan equations for some L..-algebra on BRST
complex [39], so that the full metric, B-field and dilaton can be restored
from the Maurer-Cartan element. The symmetries of the maurer-cartan
equations correspond to the h-corrected diffeomorphism symmetries and the
exact shifts of the antisymmetri tensor B.

The complex corresponding to the flat metric does not have any simple
algebraic structure on it (because it is not a vertex algebra) and it is compli-
cated to construct such algebraic operations explicitly. On the contrary, for
the first-order model we start from the vertex algebra and we have related
G« structure due to [15], [14], [13], [31]. Using the results of [37], we are able
to reduce it to much smaller complex and find the quasiclassical limit. We
claim that the Maurer-Cartan equation corresponding to its L..-subalgebra
of the quasiclassical limit of this G, algebra reproduces Einstein equations
and their symmetries, where the metric, 2-form B and the dilaton ® are
expressed by means of (23), (58). In subsection 4.1., we obtained this cor-
respondence in the case when only one of the perturbing terms was present
in Sf,, namely (g,p A p). In the next subsection, we extend the statement
of Theorem 4.1 to the case of general Sy,.

4.3. Main Conjectures. Following the ideas of Section 4.1, we want to
repeat the construction in the case of the complex (F',Q). Namely, we

consider its jet version (F.,, Q) and its complex conjugate (F.,, Q), so that
(59) Fi = Foo®Fu

It is the jet version of the complex (F', Q), such that e.g. the subspace of
degree 1 is as follows: F! 2 T(E)©C(M)®C(M). As in the section 4.1, the
divergence operator which determines Q-operator, is based on the volume
form, given in the local coordinates as e 220X dx! dX" AdX1.. . dX™,
so that 81-83@6 =0.
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We can give F' the structure of the homotopy Leibniz bracket by means
of formula which is the same as in Section 4.1:

(-1 {ay, a0} =
(60) b~ (a1,a2) — (b~ ay,az) — (—1)*(a1b~ay),

however now we have higher homotopies. We also note that F'|,-_o = F_ is
invariant under {-,-}. Let us formulate the first part of the main conjecture.

Conjecture 4.1a. The structure of homotopy Gerstenhaber algebra on F
can be extended to Goo-algebra, so that the subcomplex ¥ _ is invariant under
Lo operations.

Let us focus on the subcomplex (F_, Q). The space of Maurer-Cartan
elements, i.e. the subspace of the elements of degree 2 is:
(61) F22T(E@EaT(E)®C(M)aC(M).

The elements of this space are defined by means of the components from
the direct sum above, i.e. ¥ = (M,7,$,$). We will denote the difference
¢—¢ = ®F and &g = [, + P{J. Let us formulate the second part of the main
conjecture.

Conjecture 4.1b. Let ¥ = (M,n, ¢,¢) be the solution of the generalized
Maurer-Cartan (GMC) equation for Ls-algebra on F_, so that

(62) M = (Z 2‘) :

Then the n-component is auziliary and is expressed via M and ¢, ¢. If {gij}
is invertible, then G, B obtained from M via (23) together with ® = ®q+,/g,
where g is the determinant of {g;3}, satisfy the Einstein equations (52).

The space of infinitesimal symmetry generators of GMC equation, i.e. F!
is given by
(63) FL ~T(E)®Cc(M),
so that any element can be written in components as A = (&, f).

The third part of the conjecture concerns the question how &, f are related
to o € I'(E) in the transformation formula
(64) M—>M—DO{+¢1(CM7M)+¢Q(Q,M,M)

from Section 1. First, to justify the statement of Conjecture 4.1b., we prove
the following Proposition.

Proposition 4.2. Let A = (£, f) € FL be the generator of the infinitesimal
transformation of the solution of GMC equation. Then after the substitution
¢ =a+ M-« (where M is considered as an element of End(I'(E))) the
transformation of M-component of the solution coincides with (64) up to the
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second order in M.
Proof. At first, we show that the expression
1
(65) \I/—>\I/+QA'—{A',\I/}+§{A',\II,\I/}

gives the formula (64), where {-, -, -} is the homotopy for the Leibniz identity
for [,-], A = (a, s), ¥ = (M, n, ¢, ¢). It is easy to check that for the Oth and
1st order in M. To prove Proposition 4.2, we just need to check the term
corresponding to trilinear operation. Let us return to the jet level, i.e. we
assume that

(66) M=) dwa

Then the only terms contributing to the relevant part of {A’, U, U} are as
follows:

- Z (ma(blva’K)ﬂa’J) ® ({ajv]ﬂ}va’K) -
1,J K

(67) Y (a1} ") @ (mp',a"),a”).

IJK

We see that modulo the necessary coefficient this coincides with the trilinear
operation ¢9 (17). The statement of the Proposition 4.2 can be obtained
from the antisymmetrization of {-,-}, and therefore of {-,-,-}, so that the
formula

1
(68) W — W QA {W, AF*™ 4 {0, W, AJTT

corresponds to (64) if A = (a+ M- a, s). [ |

We note, that the symmetry generated by f-part of F! element does not
affect metric B-field or dilaton. It is easy to check that on the level of Oth
order in M: the symmetry transformation corresponds to the shift of ¢ and ¢
by f. One can check, similar to Proposition 4.2, that this symmetry remains
redundant for the first and second order. We claim that these statements
are exact, namely the following Conjecture is true.

Conjecture 4.1c. Let A = (&, f) € FL | be the generator of the infinitesimal
symmetries of GMC equation (68). The corresponding transformation of M-
component of the solution of GMC coincide with (64) if € = oHr%M-a. Under
conditions of Conjecture 4.1b these transformations reproduce infinitesimal
diffeomorphism transformations and shifts of B-field by exact 2-form, which
are the symmetries of equations (52).
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5. APPENDIX

Here we give explicitly the formulas for the transformations of M (see
Section 2):

(69) M — M — Da + ¢1(a, M) + o (c, M, M)

of the matrix elements of Beltram-Courant differential

_ (9 H
(70) M = <u b) ,
where g € D(THOMRTOYM), e T(TE) MT* OV M), i e T(T*HO Mo
TOYM), b e T(T*HO M @ TV M), The explicit form of the transforma-
tions in components is (with the notations from Section 2):

(71) g7 = g7+ o*og + vka,;gﬁ — gika,;ﬂ; — gMopt +
g™ il 0" + M o,
e = iy — B50* + 0ROl + 0ROl + 00" — kO’ +
,u}u;—?akvi + gi’;blja,;vl,
bis — b5 + V" bz + vF b + oz + bsont +
biﬁﬂéjakvk + szﬂfafcvl,

(72) g7 = g + gF (O — Gn)g”,
u% — ,u;; + g (61103 - ajwi) + M%gik (Orwy, — Ogwr),

bij — bz‘j + 63% — &wj + ,u%(aiwk — 8kw7;) + ﬂf(ang, — 850.);) +

ﬂ;‘ﬂi (Osw; — Ogws).
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