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Abstract

Recently, a new type of renormalizable ¢;* scalar model on the Moyal space was proved
to be perturbatively renormalizable. It is translation-invariant and introduces in the action a
a/(0%*p?) term. We calculate here the 3 and v functions at one-loop level for this model. The
coupling constant 3y function is proved to have the same behaviour as the one of the ¢* model
on the commutative R*. The 3, function of the new parameter a is also calculated. Some
interpretation of these results are done.
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1 Introduction

Noncommutative (NC) quantum field theories (NCQFT) [1][2] is intensively investigated in the
recent years [3]-[20]. A first renormalizable ¢%* model on the Moyal space, the Grosse-Wulkenhaar
model (GWm), was proposed in [3]. Ever since several proofs of its renormalization were given and
some of its properties were studied [4]-[7]. The 8 function of this model was proved to be vanishing
at any order in perturbation theory [8, 9, 10]. These advances motivate to better scrutinize these NC
models. Moreover, other renormalizable models have been highlighted. The O(N) and U(N) GWm
were considered with respect to symmetry breaking issues [14]; their 5 functions were computed at
one-loop in [15]. Finally, the GWm in a magnetic field was considered with respect to its parametric
representation [16] and its # function computations at any order [17].

Nevertheless, the GWm mentioned above loses the usual translation invariance of a field theory.
Moreover, the extension of this GW procedure for the construction of a renormalizable gauge theory
seems unclear [18].

In [19], a different type of scalar model was proposed. This model preserves translation invari-
ance and is also proved to be renormalizable at all order of perturbation theory [19]. These features
come from a new term in the propagator, of the form a/(6#*p?) and on which relies the “cure” of
the UV/IR mixing. Finally, let us also mention that the extension of this mechanism for gauge
theories was recently proposed [20].

In this paper, we consider this NC translation-invariant scalar model and compute its one-loop
B functions for the coupling constant A, the mass m and the new parameter a. We decompose
the propagator of the theory as a sum of the usual commutative propagator and a NC correction.
Different comparisons with the commutative ¢* model are made. The sign of the 3y function is
proved to be the same as in the commutative theory.

The paper is organized as follows. The next section introduces the model and recalls some of
the renormalization results of [19]. The third section proposes the decomposition mentioned above
of the NC propagator. This decomposition allows us to calculate the v and (§ functions of the
model. Finally, some conclusions are drawn.

2 The model and its renormalization

The action [19] is

sl = [ dp{gporo + gn2oo + Jagso0+ TN, (21)
where a is some dimensionless parameter chosen such that a > 0 and Vj is the Fourier transform
of the potential %gb(a:)*4 in momentum space. Note that the 4 factor above (instead of the usual
commutative 4! factor) comes from the fact that the Moyal vertex is invariant only under cyclic
permutation of the incoming/outgoing fields. However, the comparison with the commutative
results will become more difficult. The propagator writes

1
_p2+m2+#'

C(p) (2.2)

Note that the condition on a above ensures the positivity of C(p). It is worthy to recall that the
Moyal vertex can be written in terms of momenta as
A

Vp = T s(pt +p° +p+ph 03 i<jce<a PLOMD (2.3)
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Figure 1: The tadpole graphs T, Ty and T5.
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Figure 2: The bubble graph

Let us introduce the following terminology.

Definition 2.1 Let g be the genus, L the number of lines, F' the number of faces, B the number
of faces broken by external legs of a graph.

(i) A planar graph is a graph such that g = 0.

(i) A nonplanar graph is a graph such that g > 0.
(iii) A planar reqular graph is a planar graph such that B = 1.
(iv) A planar irreqular graph is a planar graph such that B > 2.

As already stated in [19], the primitively divergent graphs of the model (2.1) are the two- and
four-point ones. More precisely, one has the following:

e the planar regular two-point graphs are responsible for the wave function and mass renormal-
ization,

e the planar regular four-point graphs are responsible for the coupling constant renormalization,

e the planar irregular two-point graphs are responsible for the renormalization of the parameter
a.

The rest of the graphs are irrelevant to the renormalization process. Thus, the one-loop graphs
to be considered are ones of Fig.1 and 2. Note that the tadpole graphs T and 75 are planar regular
graphs while 73 is a planar irregular graph.



3 The  functions of the model

3.1 Decomposition of the propagator: noncommutative correction

Before calculating the 8 and  functions of this model, let us write some useful integral represen-
tation of the propagator (2.2). We propose to use the formula

1 1 1 1
— —_ __R 1
A+B A A A+ B’ (3:1)
for
a
A=p*+m? B:02—p2. (3.2)
Thus, the propagator (2.2) writes
1 1 a
C = -
() p2+m?2  p2+m202p2(p2+m2)+a
1 1
= a (3.3)

prm? p?m? 02(p? + m)(p? +m3)’

where —m? and —m3 are the roots of the denominator of the second term in the lhs considered as
a second order equation in p?, namely

—02m?2 + V04im4 — 4624 _
262

0, (3.4)

with a < #?m*/4. One can also use the following formula

1 S BV 1
pPAm2p24+m3  mi—mi p2+m?  p?+mj

). (3.5)

This allows to write the propagator (3.3) as

o a 1 1 1
- p2+m?2 02(m3 —m2) p2+m2 ' p2+m?  p2+m3

C(p) )- (3.6)

Note that, in this paper, we will use the decomposition (3.3), the one given by (3.6) being equivalent.
One can interpret the last term of (3.3) as some noncommutative correction to the propagator. Let
us now prove that this correction leads only to irrelevant (i.e. finite) contribution when inserted
into the one-loop diagrams of Fig.1 and 2.

Indeed, when inserted in the 77 or 75 tadpole graphs, we get an integral of the form

1
/\/d4 ) 3.7

Thus the noncommutative correction obtained via the decomposition (3.3) is

1
A dip , 3.8
/ P02 02 +m?) (02 + m3) (p® + m3) (38)

which is convergent.
The case of the planar irregular tadpole graph T3 induces the same integral when letting the
external moment go to 0. Finally, the bubble graph of Fig.2 leads also to a finite integral which



is irrelevant. This can be explicitly seen by writing the corresponding Feynman amplitude (at
vanishing external momenta)

1
A2 / d* ) 3.9
p(p2 4+ m?2 4+ _92(;2 )2 ( )

Inserting now the decomposition (3.3) in the integral (3.9) implies the separation of the noncom-
mutative correction

1 a? 1
A2 2i/d4 +—/d4
[ 62 P+ m22(2 + m2)(p® +m3) 01 Pl + m2) 2 + m2)(p? + m2)2

Both these integrals are finite thus irrelevant.

(3.10)

3.2 One-loop  and v functions

We briefly set the renormalization group (RG) flow framework used hereafter. Firstly, the dressed
propagator G2(p) or connected two-point function is given by

2 o C(p) . 1
G0 = TS T O - S0k) (3.11)
Clp) ' =%p) = P +m+ s —2(p) (3.12)

92p2

where X(p) is the self-energy. One writes X(p) = (¢(p)o(—p)),p;, where by ¢ we understand
amputated. Furthermore, note that

Z(p) = Zplr(p) + Zpli(p)- (313)

“plr” and “pli” refer to planar regular and irregular contributions, respectively.
We now want to compute at one-loop the renormalization equations

r4 Yo
EOS00 -

(3.14)

where by 7, we mean “renormalized” and by b, we mean “bare”. In addition, Z is the wave function
renormalization and the amputated four-point function is

(' p?%,p°, —p' — p* — p*) = (6P o) d(*)d(—p" — p* — p*))ips (3.15)

The RG flow of the parameter a is now considered. In [19], it was already observed that
this renormalization is finite, meaning that the coefficient of 1/p? is finite. Indeed, an explicit
computation of the Feynman amplitude of a planar irregular two-point function leads to this result
(see again [19])

A= %F(p), (3.16)

where A is the corresponding amplitude and F(p) is a function uniformly bounded by a constant
for all p. This is related to the fact that the slice definition takes into consideration the mixing of
high and low energies.

One has



Proposition 3.1 At one-loop, the self-energy is given by

S(p) = - (25D(0) + sV (), (3.17)
where
ik, OV
Sy = / d%%. (3.18)
(3.19)
Proof. The self-energy can be obtained at first order in A\ by
X(p) = zg: K¢, Sg;(p) (3.20)

where G; runs over one-loop 1PI amputated two-point planar regular and irregular graphs with
amplitude Sg,(p), and Kg, corresponds to some combinatorial factor. As discussed above, the
graphs to be considered are the tadpole graphs Ty, To and T3 (see Fig.1), with the combinatorial
factors

K, =4, K, =4, Kp, =4, (3.21)

respectively. Since the noncommutative correction of the propagator produces an irrelevant con-
tribution (see above), we obtain S(1)(0) for the amplitudes of the tadpole graphs T; and T, and
S (p) for the amplitude of the T3 graph. O

Remark that the integral S (0) is quadratically divergent while S()(p) is convergent; nev-
ertheless it is this integral which leads to the UV /IR mixing (indeed, a 1/p? contribution which,
when inserting the corresponding planar irregular tadpole into a “bigger” graph will lead to a IR
divergence).

Furthermore, we point out that the decomposition (3.13) of the self-energy into a planar regular
and a planar irregular part corresponds in (3.17) to 25()(0) for the planar regular part (the wave
function and mass renormalization) and to S (p) (the renormalization of the parameter a). Hence,
one has a splitting of this self-energy into two distinct parts, responsible for the renormalization of
two distinct parameters, m and a. This is a major difference with respect to the commutative ¢*
model.

Let us calculate the wave function renormalization Z = 1 — 9,2 X1:(p)[p=0. Since S 1)(0) has no
dependence on the external momenta p, the following one-loop result is reached

Z=1. (3.22)
Then, the v function of the model is
v =0+ 0(\?). (3.23)

Note that we have proved that the results (3.22) and (3.23) are at one-loop, for the reasons explained
above, nothing but the ones of the ¢* theory on commutative space.

In the following, we investigate the RG flows of the parameters m. As a straightforward conse-
quence of Proposition 3.1, the tadpole graphs 77 and T5 represent 2/3 of 3(0). The total self-energy
at vanishing external momenta Y(0) is nothing but the one of the commutative ¢* model (for a
proper rescaling of A). We have

ﬁmO( g;)mmutative' (3'24)



As a consequence of the above discussion of the finite renormalization of the parameter a we
have

Ba = 0. (325)

We want to emphasize that the splitting (3.13) of the self-energy can also be associated to some
mechanism for taking the commutative limit, as already indicated in [19].

In the following, the RG flow of the coupling constant A is calculated. The following statement
holds.

Theorem 3.2 At one-loop, the RG flow of the coupling A satisfies

Ar = A (1 ~2A 8(2)) : (3.26)
with
1
@_ [ gL
S /d S mmeed (3.27)

Proof. The noncommutative correction of the propagator corresponds to an irrelevant contribution
in I'*. Only the bubble graph of Fig.2 has to be considered. Its combinatorial factor is

4-4-4. (3.28)

The Feynman amplitude of the bubble graph includes the integral S2. Thus, one gets

1
14(0,0,0,0) = —)\+)\2w4382 (3.29)

which completes the proof. O

Note that the divergence of the integral (3.27) is logarithmic when removing the UV cutoff.
The ) function of the model (2.1) is thus a simple fraction of the 3y function of the commutative
¢* model. The difference is due to the fact that one has to take into considerations only the planar
regular bubble graph of Fig.2. In other words, the symmetry factor of the noncommutative graph
of Fig.2 is only a part of the symmetry factor of the corresponding commutative graph (for a
commutative theory, the planar irregular or regular four-point graphs are indistinguishable).

With our conventions, after performing the solid angle integration of d*k (introducing a 27>
factor), one obtains

By = 41222 + O(\3). (3.30)

We have thus computed here the one-loop § and ~ functions of the NC translation-invariant
renormalizable scalar model (2.1). The () function is proved to have the same behaviour as in the
commutative ¢* case. This result is a direct consequence of the fact that 3y is given only by the
planar regular sector of the theory and this sector is not affected by noncommutativity (note that
this is the same as for the “naive” NC ¢** model, i.e. the NC scalar model without an harmonic
GW z? or a 1/p? term which presents the UV/IR mixing). Indeed, the “new” planar irregular
sector which, in the case of a NC theory, is qualitatively different of the planar regular one, is
responsible only for the renormalization of the constant a (as already observed in [19]). Finally, we
have also calculated the running 3, of this new constant a.
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