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Abstract

We compute at the one-loop order the β-functions for a renormalisable non-
commutative analog of the Gross-Neveu model defined on the Moyal plane. The
calculation is performed within the so called x-space formalism. We find that this
non-commutative field theory exhibits asymptotic freedom for any number of colors.
The β-function for the non-commutative counterpart of the Thirring model is found
to be non vanishing.
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1 Introduction
In the past few years, some activity has been focused on the study of various classes of
field theories defined on Moyal spaces [1]. These provide prototypes of non-commutative
field theories which are interesting in themselves since they involve some salient features
of non-commutative geometry [2]. The interest in the study of these field theories was
further increased by the claim that somehow similar non-commutative field theories seem
to emerge rather naturally from (some limiting regime of) String Theory and matrix theory
in magnetic backgrounds [3]. Recall that in non-commutative geometry, the commutative
algebras of functions defined on differentiable manifolds (roughly the coordinates spaces)
are replaced by associative but non-commutative algebras further interpreted as algebras
of functions on “non-commutative spaces”. Within this later algebraic framework, natural
non-commutative analogs of the main geometrical objects usually involved in field theories
can be algebraically defined, such as for instance connections, curvatures, vector bundles,
so that the construction of various non-commutative analogs of fields theories can be
undertaken. The starting relevant configuration spaces for the non-commutative field
theories are modules over the associative algebras which are naturally viewed as non
commutative analogs of vector bundles. One example of associative algebra among many
others is provided by the associative Moyal algebras [4, 5] therefore playing the role of “non-
commutative Moyal spaces”. At this level, one technical remark is in order. Throughout
this paper, we will consider only RD

θ algebras, i.e the non-commutative counterpart of
the Euclidean RD spaces. For studies related to non-commutative tori, see e.g. [1] and
references therein. Besides, the ensuing discussion refers to non-commutative field theories
defined on free modules.

The simplest non-commutative generalizations on Moyal spaces of the usual scalar
theories that have been first investigated were shown to suffer from the so called UV/IR
mixing [6], a phenomenon that makes the renormalisability very unlikely. Recall that
UV/IR mixing results from the existence of potentially dangerous non-planar diagrams
which, albeit UV finite, become singular at exceptional (low) external momenta. This
triggers the occurrence of UV divergences in higher order diagrams in which they are in-
volved as subdiagrams. This signals that UV and IR scales are related in a non trivial way
which should in principle invalidate a Wilson-type renormalisation scheme [7]. An appeal-
ing solution to the UV/IR mixing has been recently proposed by Grosse and Wulkenhaar
[8] within the non-commutative ϕ4 model on the 4-dimensional Moyal space where ϕ is
real-valued. They showed that the UV/IR mixing can be suppressed by supplementing
the initial action with a harmonic oscillator quadratic term leading to a renormalisable
non-commutative quantum field theory. The initial proof [8] was performed within the
matrix-base formalism, roughly a basis for the (Schwarz class) functions for which the
associative product of the Moyal algebra is a simple matrix product. This cumbersome
proof was simplified through a reformulation into the (position) x-space formalism in [9]
which exhibits some advantages compared to the matrix-base formulation. For instance,
the propagator in x-space can be explicitely computed (as a Mehler kernel [10] ) and actu-
ally used in calculations. Besides, it makes easier the comparition of the renormalisation
group for non-commutative theories and their commutative counterpart.

At the present time, another renormalisable non-commutative scalar quantum field
theory on Moyal spaces has been identified. This is a (complex-valued) scalar theory
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studied in [9] which can be viewed as a modified version of the LSZ model [11] (the scalar
theory in [12] is super renormalisable). Note that interesting solvable non-commutative
scalar field theories have also been considered in [13]. As far as Fermionic theories are
concerned, a non-commutative version on the Moyal plane of the Gross-Neveu model [14],
called the orientable non-commutative Gross Neveu model, has been recently considered
and shown to be renormalisable to all orders [15, 16]. It is worth mentioning that this
non-commutative field theory still exhibits some UV/IR mixing, even in the presence of
the Fermionic version of the harmonic oscillator quadratic term introduced in [8], which
however does not prevent the theory to be renormalisable. Note that in [17] the large
N limit of the non-commutative Gross-Neveu model, with however a restricted interac-
tion, has been studied; renormalisability is shown at this limit together with asymptotic
freedom. One should keep in mind that the fact that the orientable Gross Neveu model
is renormalisable although it involves some remaining UV/IR mixing [15] indicates that
further investigations are needed to actually clarify the effective role of the various gener-
alizations of the above mentionned harmonic oscillator term and of the related covariance
of the considered theory under the Langmann-Szabo duality [18] and their impact in the
control of the UV/IR mixing and renormalisability.

Despite this remaining uncertainty, coupling constant flows and β-functions can be
studied in the available renormalisable non-commutative field theories. The β-function for
the coupling constant of the non-commutative (real-valued) ϕ4 model on the 4-dimensional
Moyal space has been computed at the one-loop order in [20]. It exhibits a bounded
flow, finite fixed point and vanishes when the parameter affecting the harmonic oscillator
quadratic term, says Ω, is equal to unity, which corresponds to the (self-dual) point
in the parameter space where the field theory is invariant under the Langmann-Szabo
duality [18]. This latter result has been proven very recently to be valid to all orders
in [21]. In the present paper, we compute at the one-loop order the β-functions of the
coupling constants involved in the renormalisable non-commutative version on R2

θ of the
Gross-Neveu model considered in [15]. Recall that the (commutative) Gross-Neveu model
exhibits asymptotic freedom together with mass generation phenomenon [14]. In section
2, we recall the principal features of the renormalisable non-commutative version of the
Gross-Neveu model and collect the various ingredients relevant for the calculation. The
section 3 is devoted to the one-loop computation of the relevant correlation functions. The
analysis is carried out within the x-space formalism which appears to be well adapted for
the relevant calculations. In section 4, we present the expressions for the β-functions,
collect and discuss the main results and finally we conclude.

2 The Orientable non-commutative Gross-Neveu Model
In this section we recall the main features of the relevant action [15, 16], fix the con-
ventions and collect the useful material that will be needed throughout this paper. Let
R2

θ denotes the “Moyal plane” [4, 5], which can be viewed in the following as a unital
involutive associative algebra over C generated by the coordinate functions on R2 such
that [xµ, xν ]? = ıΘµν with [a, b]? = a ? b− b ? a for any (a, b) ∈ R2

θ. Here, “?” denotes the
associative Moyal-Groenwald product on R2

θ induced by Θ, an invertible constant skew-
symmetric matrix, that can be chosen to be Θ = θS, S =

(
0 −1
1 0

)
where the parameter θ
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has mass dimension −2. The Moyal product can be represented as

(a ? b)(x) =
1

(2π)2

∫
d2yd2k a(x+ 1

2
Θ.k)b(x+ y)eik.y (2.1)

where (Θ.k)µ = Θµνkν . We also define X.Θ−1.Y = XµΘ−1
µν Y

ν . For more mathematical
details, see e.g [4, 5].

The action for the orientable non-commutative Gross-Neveu model on R2
θ [15] can be

written as

S =

∫
d2x

[
ψ̄(−i/∂ + Ω/̃x+m+ κγ5)ψ −

3∑
A=1

gA

4
(J A ? J A)(x)

]
(2.2a)

J A =ψ̄ ? ΓAψ, Γ1 = 1, Γ2 = γµ, Γ3 = γ5 (2.2b)

where /a = aµγ
µ, x̃ = 2Θ−1.x and a summation over the Lorentz indices µ is understood in

the interaction term involving J2, J2?J2=
∑

µ(ψ̄?γµψ)?(ψ̄?γµψ). The Clifford algebra for
the 2D anti-Hermitian gamma matrices satisfy {γµ, γν} = −2δµν and γ5 = ıγ0γ1. The field
ψ denotes a 2N -component spinor field where N is the number of colors. The parameters
Ω (to be discussed in a while), 0 ≤ Ω < 1, and the gA’s are dimensionless. In (2.2a),
the term Ωψ̄x̃ψ can be viewed as the Fermionic counterpart of the harmonic oscillator
term first introduced in [8]. Here, two comments are in order. First, notice that the
minus sign affecting the four-Fermion interaction term in (2.2a) is a mere generalization
of the interaction term in the commutative Gross Neveu model [14] for which asymptotic
freedom is obtained. Next, the fact that the model defined in (2.2a) is called ”orientable”
comes from the present choice for the interactions. Recall that within the present non-
commutative framework, six independent four-fermion interactions can in principle be
constructed. The three interaction terms in which ψ and ψ̄ alternate, namely

∑
a,b ψ̄a ?

ψb ? ψ̄a ? ψb,
∑

a,b ψ̄a ? ψb ? ψ̄b ? ψa,
∑

a,b ψ̄a ? ψa ? ψ̄b ? ψb (the sum runs over color indices
a, b), gives rise after suitable Fierz transformations to the interaction term in (2.2a) from
which the diagrams occurring in the loopwise expansion can be given an orientation [15].
This explains why (2.2a) is called ”orientable”. Three other terms with adjacent ψ and
ψ̄ could in principle be written, namely

∑
a,b ψ̄a ? ψ̄b ? ψa ? ψb,

∑
a,b ψ̄a ? ψ̄b ? ψb ? ψa,∑

a,b ψ̄a ? ψ̄a ?ψb ?ψb. Such interaction terms would result in a field theory with diagrams
that cannot be orientated (in addition to the orientable one) [15]. Although the proper
interpretation of the non-orientable interactions is not clear within the present algebraic
framework, the corresponding field theory is interesting in itself. Its detailed study has
been undertaken in [22].

The action (2.2a) has been shown to be renormalisable to all orders in [15]. Notice
that the proof relies rather heavily on the orientability of the diagrams. In the massive
case (m 6=0), the term κψ̄γ5ψ in (2.2a), even not present at the classical level would be
generated by higher order corrections (at the two-loop order) [15]. The Feynman graphs
can be computed from the propagator and interaction vertex derived from (2.2a). In the
following, we will work within the x-space formalism [9] which proves convenient in the
present analysis. The propagator in the x-space C(x, y) = (−i/∂+Ω/̃x+m)−1(x, y) can be
written as [19, 16]

C(x, y) =

∫ ∞

0

dtC(t;x, y); C(t;x, y) = C̄(t; y − x) exp(ıΩx ∧ y), (2.3a)
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where x ∧ y = 2x.Θ−1.y and

C̄(t;u) =
Ω

πθ

e−m2t

sinh(2Ω̃t)
e−

eΩ
2

coth(2eΩt)u2(
ıΩ̃ coth(2Ω̃t)/u+ Ω/̃u+m

)
e−2γ5

eΩt, (2.3b)

with Ω̃ = 2Ω
θ

. Note that the following formula

e−αγ5 = cosh(α)1− sinh(α)γ5 (2.4)

holds for any real parameter α. The propagator C is diagonal in its color indices. The
interaction vertices can be read off from the RHS of∫

d2x (ψ̄ ? ΓAψ ? ψ̄ ? ΓAψ) =
1

π2θ2

∫ 4∏
i=1

d2xi ψ̄(x1)ΓAψ(x2)ψ̄(x3)ΓAψ(x4) (2.5a)

× δ(x1 − x2 + x3 − x4)e
−ı

P
i<j(−1)i+j+1xi∧xj .

We will denote the vertex kernel as

V (x1, x2, x3, x4) =δ(x1 − x2 + x3 − x4)e
−ı

P
i<j(−1)i+j+1xi∧xj . (2.5b)

The graphical representation of the vertex is depicted on the figure 1. The non-locality
of the interaction is conveniently represented by the rhombus appearing on fig. 1 whose
vertices correspond to the xi’s occurring in (2.5). It is usefull to represent the alternate
signs in the delta function of (2.5) by plus- and minus-signs, as depicted on the figure.
By convention, a plus-sign (resp. minus-sign) corresponds to an incoming field ψ̄ (resp.
outgoing field ψ). This permits one to define an orientation on the diagrams obtained
from the loop expansion. Notice that external lines are not drawn explicitly as we will
deal essentially with amputated Green functions.

x1

x2

x3

x4 − −

+

+

Figure 1: Graphical representation for the vertex in the x-space, obtained from (2.5). The plus-
sign (resp.minus-sign) appearing in the rhombus corresponds to incoming (resp. outgoing) external line
associated with ψ̄ (resp. ψ).

In the computation of the relevant diagrams, recall that a factor

3∑
A=1

gA

4π2θ2

∫
D(x); D(x) =

4∏
i=1

d2xi V (x1, x2, x3, x4) (2.6)

must appear in the amplitude for each involved (square) vertex. Besides, the contraction
between ψ and ψ̄ used in the computation of the amplitudes is defined by C(x, y) =
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ψ̄(y1) ψ(y2)

ψ̄(y3)ψ(y4) −

+ −

+

Figure 2: A typical tadpole obtained from the contraction between Fermion fields occurring within one
operator J . The other tadpole of the same type is obtained through the substitution y1 ↔ y3, y2 ↔ y4.
Both diagrams give rise to equal contributions to the amputated two-point Green function.

∫
Dψ̄Dψe−Sfreeψ(x)ψ̄(y). Furthermore, the following formulas among the γ matrices will

be useful

γµγν =− δµν1− ıεµνγ5 γµγνγρ =(δµνδρ
σ − δµρδν

σ + δνρδµ
σ)γσ (2.7a)

γ5γ
µ =− ıεµνγ

ν γ5γ
µγν =− ıεµν1− δµνγ5 (2.7b)

Tr(γµγν) =− 2δµν Tr(γµγνγργσ) =2(δµνδρσ − δµρδνσ + δµσδνρ) (2.7c)
Tr(γ5γ

µ) =0 Tr(γ5γ
µγν) =− 2ıεµν (2.7d)

Tr(γ5γ
µγνγργσ) =2ı(δµνερσ − δµρενσ + δµσενρ

+ δνρεµσ − δνσεµρ + δρσεµν) (2.7e)

where 1 is the identity in the Clifford algebra while the trace of an odd number of γ’s
vanishes. In (2.7), the Levi-Civita symbol εµν satisfies ε01 = +1. We are now in position
to evaluate the one-loop contributions to the two- and four-point functions.

3 Calculation of the Correlation Functions

3.1 The Two-point Function

Within the orientable non-commutative Gross Neveu model, the two-point Function re-
ceives contributions at the one-loop level from tadpole diagrams. There are obviously
two types of tadpole diagrams depending whether the contraction between ψ and ψ̄ is
performed within one among the two operators J defined in (2.2b) that forms the whole
vertex or the contraction takes place between the two operators J . Typical tadpoles are
depicted on the figures 2 and 3. The diagram on fig. 2 corresponds to a tadpole of the
first type mentionned above. The corresponding amputated amplitude is given by

A1 =−
3∑

A=1

gA

4π2θ2

∫
D(y) ψ̄(y1)Γ

Aψ(y2) Tr(C(y4, y3)Γ
A) (3.1)

where the trace runs over spinor and color indices. It can be easily realized that the
contribution from the other tadpole diagram, obtained through the substitution y1 ↔ y3,
y2 ↔ y4 is equal to the one given in (3.1) which reflects the invariance of the phase factor
in the vertex kernel (2.5b) under cyclic permutation. Therefore, both diagrams are taken
into account simply by multiplying the RHS of (3.1) by 2.
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ψ̄(y1)
ψ(y2)

ψ̄(y3)ψ(y4) −

+ −

+

Figure 3: A tadpole obtained from the contraction between Fermion fields taking place between two
operators J , the other one being obtained through y1 ↔ y3, y2 ↔ y4.

In the same way, the figure 3 represents a typical tadpole of the second type mentioned
above. The corresponding amplitude can be written as

A2 =
3∑

A=1

gA

4π2θ2

∫
D(y) ψ̄(y1)Γ

AC(y2, y3)Γ
Aψ(y4) (3.2)

while the amplitude stemming from the other tadpole diagram obtained from y1 ↔ y3,
y2 ↔ y4 is equal to the RHS of (3.2) so that again taking into account both diagrams
amounts to multiply the RHS of (3.2) by a factor 2.

By further making use of (2.3), (2.5) and the useful identity∫
d2x

(2π)2
eıαx∧z =

θ2

4α2
δ(z), (3.3)

it can be easily seen that two among the four integrals over the space variables yi’s can be
explicitely performed thanks to delta functions so that (3.1) and (3.2) can be reexpressed
as

A1 =−
3∑

A=1

gA

4(1 + Ω)2

∫
d2y1d

2y2 δ(y1 − y2)

∫ ∞

0

dt ψ̄(y1)Γ
Aψ(y2) Tr(C̄(t; y1 − y2)Γ

A),

(3.4)

A2 =
3∑

A=1

gA

4(1− Ω)2

∫
d2y1d

2y4 δ(y1 − y4)

∫ ∞

0

dt ψ̄(y1)Γ
AC̄(t; y1 − y4)Γ

Aψ(y4), (3.5)

which, upon integrating over the remaining delta functions, reduce respectively to

A1 =−
3∑

A=1

gA

4(1 + Ω)2

∫
d2ydt ψ̄(y)ΓAψ(y) Tr(C̄(t; 0)ΓA), (3.6)

A2 =
3∑

A=1

gA

4(1− Ω)2

∫
d2ydt ψ̄(y)ΓAC̄(t; 0)ΓAψ(y). (3.7)

Relation (3.6) combined with (2.3b) yields

A1 =−
3∑

A=1

mΩgA

4πθ(1 + Ω)2

∫
d2ydt ψ̄(y)ΓAψ(y) e−tm2(

coth(2Ω̃t) Tr(ΓA)− Tr(γ5Γ
A)

)
(3.8)
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Then, by further inspecting the remaining integrals over the Schwinger parameter t, it
is easy to see that the second term in (3.8) gives rise to a finite contribution and can
therefore be ignored in the present analysis while the first term is UV logarithmically
divergent as it can be realized from

I1
def
=

∫ ∞

0

dt e−m2t coth(2Ω̃t) = lim
ε→0

(− θ

4Ω
log ε) + . . . (3.9)

where the ellipses denote finite contributions. Finally, since Tr(ΓA) is non vanishing only
when ΓA = 1, (3.8) yields

A1 =− mΩg1

2πθ(1 + Ω)2
I1

∫
d2y ψ̄(y)ψ(y) + . . . (3.10)

where again the ellipses denote finite contributions. In a similar way, we find that the
logarithmically diverging part of (3.7) can be written as

A2 =
mΩ

4πθ(1− Ω)2
I1(g1 − 2g2 + g3)

∫
d2y ψ̄(y)ψ(y) + . . . (3.11)

Notice that the finite parts of (3.10) and (3.11) both involve a term equal to
δµi

∫
dy ψ̄(y)γ5ψ(y), i = 1, 2 with δµ1 = Ωg3

2πmθ(1+Ω)2
and δµ2 = −Ω(g1+2g2+g3)

4πmθ(1−Ω)2
.

3.2 The Four-point Function

The whole set of diagrams contributing to the 4-point Function can be conveniently
determined by finding all the possible ways to draw two contractions among the spinor
fields involved in the correlation function∑

A,B

gAgB

16π4θ4

∫
D(y)D(z) 〈0|ψ̄(y1)Γ

Aψ(y2)ψ̄(y3)Γ
Aψ(y4)ψ̄(z1)Γ

Bψ(z2)ψ̄(z3)Γ
Bψ(z4)|0〉

(3.12)

while forbidding the graphs involving vacuum-vacuum subdiagrams. By fixing the first
contraction to occur between ψ̄(y1) and ψ(z2), one easily finds that the remaining contrac-
tion can be built from 5 different ways in (3.12) generating 5 different diagrams. These
diagrams can be classified into two different types [8] among which only the planar regular
diagrams [9], plagued with UV logarithmic divergences, are relevant for the computation
of the β-functions [15]. These diagrams are depicted on the figures 4 and 5. At this level,
one comment is in order. Recall that the power-counting of a non-commutative field
theory depends on the topology of its Feynman diagrams. These ones may be equiva-
lently represented by ribbon diagrams. For example, the graph of the figure 6 corresponds
also to the figure 7. From the ribbon representation, one can easily compute the genus
g (through the Euler characteristic) and the number of broken faces B (defined as the
number of faces to which external legs belong). For the non-commutative Φ4 theory [8],
the superficial degree of convergence is

ω =N − 4 + 8g + 4(B − 1) (3.13)
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with N the number of external legs. From (3.13), one infers that the only divergent
diagrams have g = 0 and B = 1 (the planar regular ones) which are therefore the diagrams
relevant for the calculation of the β functions. In the Gross-Neveu case [15], the power-
counting is slightly more complicated but the same conclusion holds.

The amputated amplitudes corresponding to the figures 4 and 5 are given respectively
by

B1 =−
∑
A,B

gAgB

16π4θ4

∫
D(y)D(z) Tr

(
C(z2, y1)Γ

AC(y2, z1)Γ
B
)
ψ̄(y3)Γ

Aψ(y4)ψ̄(z3)Γ
Bψ(z4),

(3.14)

B2 =
∑
A,B

gAgB

16π4θ4

∫
D(y)D(z) ψ̄(y3)Γ

AC(y4, z3)Γ
Bψ(z4)ψ̄(z1)Γ

BC(z2, y1)Γ
Aψ(y2). (3.15)

ψ̄(y3)

ψ(y4)

ψ(z4)

ψ̄(z3)

ψ(y2) ψ̄(z1)

ψ̄(y1) ψ(z2)

+

− +

− +

− +

−

Figure 4: A UV logarithmically divergent planar diagram contributing to the β-functions, related to
the amplitude (3.14).

ψ(y2)

ψ̄(y3)

ψ̄(z1)

ψ(z4)

ψ̄(y1) ψ(z2)

ψ(y4) ψ̄(z3)

−

+ −

+ −

+ −

+

Figure 5: The other one-loop planar diagram contributing to the β-functions, related to the amplitude
(3.15).

The other type of one-loop diagrams, namely the broken-face diagrams, are UV finite
[15, 8] and can therefore be ignored in the present analysis. For instance, one obtains the
broken-face diagram depicted on the figure 6. Its corresponding amputated amplitude is
given by

BBF =
∑
A,B

gAgB

16π4θ4

∫
D(y)D(z) ψ̄(z1)Γ

BC(z2, y1)Γ
Aψ(y2)ψ̄(z3)Γ

BC(z4, y3)Γ
Aψ(y4)

(3.16)

and can be explicitely verified to be UV finite.
We now extract the potentially diverging part of (3.14) relevant for the computation

of the β-functions. First, integrating over y2 and z2 and making use of (2.3a) and the
relation (3.3), we find that (3.14) can be cast into the form

B1 =

∫
d2x1d

2x2d
2x3d

2x4F1(x1, x2;x3, x4) (3.17a)
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ψ̄(y1)

ψ(y2)

ψ̄(y3)

ψ(y4) ψ̄(z1)

ψ(z2)

ψ̄(z3)

ψ(z4)

−

+

−

+ −

+

−

+

Figure 6: The broken-face diagram corresponding to the amputated amplitude (3.16).

y2 y4 z3 z1

Figure 7: Ribbon diagram corresponding to the amputated amplitude (3.16), which is equivalent to the
broken-face diagram depicted on the figure 6

with

F1 =−
∑
A,B

gAgB

16π2θ2(1 + Ω)2
δ(Y1 + Z1)e

−ı(x1∧x2+x3∧x4)ψ̄(x1)Γ
Aψ(x2)ψ̄(x3)Γ

Bψ(x4)

×
∫ ∞

0

dt1dt2

∫
d2u Tr

(
C̄(t1;u+ Z1)Γ

AC̄(t2;Y1 − u)ΓB
)
e

ı
2
(1−Ω)u∧(Y1−Z1) (3.17b)

where we have defined Y1 = x1 − x2 and Z1 = x3 − x4. Then, by further making use of
the properties for the traces of products of γ matrices given in (2.7) combined with (2.3b)
and (2.4), we find that (3.17b) can be rewritten as

F1 =−
∑
A,B

gAgBΩ2Ω̃2

16π4θ4(1 + Ω)2
δ(Y1 + Z1)e

−ı(x1∧x2+x3∧x4)ψ̄(x1)Γ
Aψ(x2)ψ̄(x3)Γ

Bψ(x4) (3.18)

×
∫
dt1dt2d

2X e−m2(t1+t2)(c1c2)
2e−

eΩ
2
(c1+c2)X2− ı

2
(1−Ω)X∧(Y1−Z1) Tr( /XΓA /XΓB) + . . .

in which ci = coth(2Ω̃ti), i = 1, 2 and the ellipses denote finite contributions. Finally,
from the explicit computation of the trace in (3.18), one easily infers that the only non
vanishing contributions are those where ΓA and ΓB are equal to each other, leading to
(X2 = XµX

µ)

B1 =− NΩ2Ω̃2

8π2θ2(1 + Ω)2

∫
dxdX V(X)

(
g2
1X

2ψ̄ ? ψ ? ψ̄ ? ψ − g2
3X

2ψ̄ ? γ5ψ ? ψ̄ ? γ5ψ

− g2
2(2X

µXµ −X2)ψ̄ ? γµψ ? ψ̄ ? γµψ
)
(x) + . . . , (3.19a)

V(X) =

∫ ∞

0

dt1dt2 e
−m2(t1+t2)(c1c2)

2e−
eΩ
2
(c1+c2)X2

. (3.19b)
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A somehow similar analysis applied to (3.15) permits one to extract the potentially
diverging part relevant for the calculation of the β-functions. It takes the form

B2 =

∫
d2x1d

2x2d
2x3d

2x4F2(x1, x2;x3, x4) (3.20a)

with

F2 =
∑
A,B

gAgBΩ2Ω̃2

16π4θ4(1− Ω)2
e−ı(x4∧x1+x2∧x3)δ(Y2 + Z2)

∫
d2X V(X) (3.20b)

× ψ̄(x1)Γ
A /XΓBψ(x2)(ψ̄(x3)Γ

B /XΓAψ(x4) + . . .

in which Y2 = x4 − x1, Z2 = x2 − x3, V(X) is given by (3.19b) and the ellipses denote
finite contributions. By repeated use of (2.7a) and (2.7b), the amplitude (3.20b) can be
cast into the form

B2 =
Ω2Ω̃2

16π2θ2(1− Ω)2

∫
dxdX V(X) (3.21)

×
[
(g2

1 + g2
3)(X

µ)2ψ̄ ? γµψ ? ψ̄ ? γµψ + 2g2
2(X

µ)2ψ̄ ? γνψ ? ψ̄ ? γνψ

+ 2(g1g2 + g2g3)(X
µ)2

(
ψ̄ ? ψ ? ψ̄ ? ψ + ψ̄ ? γ5ψ ? ψ̄ ? γ5ψ

)
+ 2g1g3(X

µ)2ψ̄ ? γµ+1ψ ? ψ̄ ? γµ+1ψ
]
(x) + . . .

where in the last line, µ ∈ Z2.
It appears that B1 and B2 are plagued with UV logarithmic divergences as proven

in [15]. This can be easily verified by performing the integral over X in (3.19a) and
(3.21) and then studying the behaviour of the resulting expressions when the Schwinger
parameters become close to zero. Then using∫ ∞

0

dt1dt2 e
−(t1+t2)m2

(
coth(αt1) coth(αt2)

coth(αt1) + coth(αt2)

)2

= lim
ε→0+

− log ε

α2
+O(1), (3.22)

the diverging parts of (3.19a) and (3.21) are thus respectively given by

Bdiv
1 = lim

ε→0
− N log ε

32π(1 + Ω)2

∫
dx

(
g2
1ψ̄ ? ψ ? ψ̄ ? ψ − g2

3ψ̄ ? γ5ψ ? ψ̄ ? γ5ψ
)
(x) (3.23)

Bdiv
2 = lim

ε→0
− log ε

64π(1− Ω)2

∫
dx

( [
(g1 + g3)

2 + 4g2
2

]
ψ̄ ? γµψ ? ψ̄ ? γµψ (3.24)

+ 4(g1g2 + g2g3)
(
ψ̄ ? ψ ? ψ̄ ? ψ + ψ̄ ? γ5ψ ? ψ̄ ? γ5ψ

))
(x).

4 The β Functions
After having obtained the divergent parts of the relevant graphs at one loop, we are now
in position to write down the beta functions. First of all note that the two-point function
only enter the beta functions through the wave-function renormalisation. At one-loop
order, only the tadpoles (3.10) and (3.11) contribute to the two-point function. It turns
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out that their divergent parts are exactly local and then only renormalise the mass. Then
the beta functions at one-loop order are only computed from the four-point graphs. Notice
that, as a byproduct, Ω is not renormalised to the one-loop order.

The interaction part of the effective action is

Γint
eff =

∫
g1

4
ψ̄ ? ψ ? ψ̄ ? ψ +

g2

4
ψ̄ ? γµψ ? ψ̄ ? γµψ +

g3

4
ψ̄ ? γ5ψ ? ψ̄ ? γ5ψ

+
4

2!

(
− N log ε

32π(1 + Ω)2

∫
g2
1ψ̄ ? ψ ? ψ̄ ? ψ − g2

3ψ̄ ? γ5ψ ? ψ̄ ? γ5ψ

− log ε

64π(1− Ω)2

∫ [
(g1 + g3)

2 + 4g2
2

]
ψ̄ ? γµψ ? ψ̄ ? γµψ

+ 4(g1g2 + g2g3)
(
ψ̄ ? ψ ? ψ̄ ? ψ + ψ̄ ? γ5ψ ? ψ̄ ? γ5ψ

))
. (4.1)

On the second line of (4.1), the factor 1/2! comes from the expansion of the exponential
of Sint and the factor 4 is just the number of Wick contractions leading to the considered
graphs. By definition,

βi =
d

d(− log ε)
gi({gjR}) (4.2a)

where gjR stands for the renormalized constants. This gives

β1 =− g2
1R

4π(1 + Ω)2
− 1

2π(1− Ω)2
(g1Rg2R + g2Rg3R) (4.2b)

β2 =− g2
2R

2π(1− Ω)2
− 1

8π(1− Ω)2
(g1R + g3R)2 (4.2c)

β3 =
g2
3R

4π(1 + Ω)2
− 1

2π(1− Ω)2
(g1Rg2R + g2Rg3R). (4.2d)

In [15], it has been proven that the action (2.2a) is renormalisable to all orders. From
our one-loop computation, it seems that the stable manifold of parameters may well be
reduced. Indeed from the expressions for the beta functions, it is clear that at one-loop,
if g1 = g3 = 0 then the interaction g2ψ̄ ? γ

µψ ? ψ̄ ? γµψ is stable. An other possibility is
g2 = 0 = g1 + g3 which is also stable. These two points are also true in the commutative
case [14].

The table 1 summaries similarities and differences between the commutative and non-
commutative Gross-Neveu and Thirring models. Remind that the commutative Gross-
Neveu and Thirring models are given respectively by the following Lagrangians:

LGN =

∫
ψ̄(/p+m)ψ − λψ̄ψψ̄ψ (4.3a)

LTh =

∫
ψ̄(/p+m)ψ − λψ̄γµψψ̄γµψ (4.3b)

In table 1, the trajectories in the graphs correspond to contractions of spinor and color
indices. For example the first and third graphs, in the non-commutative case, correspond
respectively to figures 4 and 5. On R2 both the Gross-Neveu and the Thirring models are
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Commutative Non-commutative
Gross-Neveu Thirring Gross-Neveu Thirring

N(ψ̄ψ)2 0 N(ψ̄ψ)2 0

− (ψ̄ψ)2 0 finite finite

0 0 (ψ̄γµψ)2 (ψ̄γµψ)2

stable stable unstable stable
asympt. free asympt. free
β = 0 at N = 1 β > 0

Table 1: Comparition between the Gross Neveu and Thirring models and their non-commutative coun-
terparts.

500 1000 1500 2000 2500
UV to IR

0.001

0.002

0.003

0.004

0.005

0.006

g1

Figure 8: UV Asymptotic Freedom for the model (2.2a) when g1 = g2 = g3. The vertical (resp.
horizontal) axis represents g1 (resp. − log ε). Notice that the UV region corresponds to the leftmost
values. The units are arbitrary.

stable (which means that no new interaction vertex is created by radiative corrections).
On R2

θ the Gross-Neveu is not stable anymore. The third graph generates indeed a vertex
of the form ψ̄ ? γµψ ? ψ̄ ? γµψ. This was not the case on R2 thanks to a compensation
between two graphs. On R2

θ one of them is now finite (it has two broken faces). Note that
the same phenomenon occurs for the second graph which becomes finite on R2

θ. A well-
known fact about the commutative Gross-Neveu and Thirring model is their asymptotic
freedom. This is also a feature of the non-commutative model (2.2a). For g1 = g2 = g3

(the bare values) or for g1 = g3 = 0 or for g2 = 0 = g1 + g3, we find that the model is
asymptotically free in the UV region. A representative example is shown on the figure 8
when g1 = g2 = g3.

In [20], the one-loop beta function for the non-commutative Φ4 model has been com-
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puted. It was shown that for Ω < 1, the flow is bounded contrary to the commutative
case where the theory is asymptotically free in the IR. Note that this is not the case for
the non-commutative Gross-Neveu model. Moreover, at Ω = 1, the beta function of Φ4

vanishes at any order (asymptotically in the UV region) [21]. In the present case, the
limit Ω → 1− is singular as it can be seen from equation e.g. (3.24). This singularity
hides the actual behaviour of the β-functions at Ω = 1 so that further investigations are
needed to determine whether or not vanishing β can also be observed whenever Ω = 1,
as it is the case for the Φ4 model. Finally recall that for N = 1, the beta function of the
equivalent Thirring and Gross-Neveu models on R2 vanishes. This feature is also lost on
R2

θ.
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