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A COUNTEREXAMPLE TO PREMET’S AND JOSEPH’S CONJECTURES

0. YAKIMOVA

INTRODUCTION

Let g be a finite-dimensional reductive Lie algebra of rank [ over an algebraically closed
field K of characteristic zero, and let G be the adjoint group of g. Given = € g, we denote

by g. the centraliser of z in g.

Conjecture 1 (Premet). For any x € g the algebra 8(g.)% of g,-invariants is a graded polyno-

mial algebra in [ variables.

In some particular cases the problem is simple. For example, for regular nilpotent ele-
ments the algebra 8(g,)?% is known to be free. In [5], Conjecture 1 is shown to be true in
types A and C. It is also verified for some nilpotent elements of orthogonal Lie algebra
and for the minimal nilpotent orbits in simple Lie algebras except of type Ex. Later, by a

different method, Brown and Brundan [1] proved that Conjecture 1 holds in type A.

Suppose that p; and p_ are opposite parabolic subalgebras of g, i.e.,, g = p; + p_. Then
the intersection q := p; N p_ is called a biparabolic or, in other terminology, seaweed subal-
gebra. Since g itself is a parabolic subalgebra, we see that parabolics are particular cases
of seaweeds.

For any Lie algebra q let ¢’ := [q, q] denote its derived algebra. In [3, Section 7.7], the

following conjecture was made.

Conjecture 2 (Joseph). For any seaweed subalgebra q C g the semi-invariants $(q)% form a

polynomial algebra.

A formula for tr.deg 8(q)? is given in [3]. It is rather complicated and we are not go-

ing to use it in full generality. In [2] and [3], it is proved that Conjecture 2 holds for all
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parabolics and seaweeds in simple Lie algebras of types A and C. As was noticed in [5,
Section 4.9], minimal nilpotent orbits provide a testing site for Joseph’s conjecture as well
as Premet’s one. If g is simple, then for each minimal nilpotent element e € g there exists
a parabolic subalgebra p C g such that 8(g.)% = §(p)¥'. The detailed explanation of this
construction is given below. We note only that naturally tr.deg §(p)* = tr.deg 8(g.)% and
tr.deg 8(g.)% = [ by [4].

In this note, we show that Conjecture 1 does not hold for the minimal nilpotent orbit
in the simple Lie algebra of type Es. As a consequence, a conjecture of Joseph on the
semi-invariants of (bi)parabolics is not true either.

Acknowledgements. This paper was written during my stay at the IHES. I thank the

Institute for warm hospitality and support.

1. THEORY

Let us say a few words about the general method of [5], which, unfortunately, does
not work for the minimal nilpotent orbit in Eg. Let g be a simple Lie algebra and e € g
a nilpotent element. Suppose that (e, h, f) C g is an sly-triple containing e. We identify
g and g* by means of the Killing form. For each F' € §(g)“ let °F stand for the minimal
degree component of the restriction F'|c4,. As was shown in [5], °F" € 8(g.)%. A set of ho-
mogeneous generators {Fy, ..., F;} C 8(g)¢ is said to be good if the °F}’s are algebraically
independent.

Given a linear function 7 on g. we denote by (g.), the stabiliser of v in g. and set
(97)sing == {7 € 97| dim(ge), > 1}

Theorem 1. [5] Suppose e admits a good generating system Iy, ..., Fyin 8(g)¢ and assume fur-

ther that (g )sing has codimension > 2 in g:. Then 8(g.)% is a polynomial algebra in °Fy, . .., °F).

Suppose now that ¢ is a minimal nilpotent element. Then dim(g.), = [ for generic
v € gi, see [4]; and (g )sing is of codimension > 2, see [5, Section 3.10.]. If g is of type E,
then there is no good generating system, [5, Remark 4.2.]. For that reason in Section 4.8
of [5] another approach was developed. As was proved there, Conjecture 1 holds if and

only if there is a certain system of generating invariants in Ex.
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Since e is a minimal nilpotent element, the Z-grading defined by £ is

g=9(=2) S a(-1) g(0) g(l) ®g(2),
with g(2) = Ke and g(1) @ g(2) being a Heisenberg Lie algebra. Set [ := g(0). = g. N g(0).
Then g(0) = [ & Kh. Clearly p := g(0) ® g(1) @ g(2) is a parabolic subalgebra of g and
p’ =9g(0) @ g(1) ® g(2). Since p = Kh & g. and [h, ¢] = 2¢, we have

8(p)" C S(p)° C S(ge).

If g is not of type A, then [ = g(0)' and p’ = g.. Hence 8(p)* = 8(g.)%.

Remark 1. If g is of type A, then, so far, we can only say that $(p)* = §(g.)%. Setn :=
g(1) @ g(2). Then there is an ismorphism of [-modules (8(g.)[1/e])" = 8(I)[e, 1/e], see [5,
Section 4.8.] or [7, Lemma 3.]. Therefore the centre of [ acts on n-invariants trivially and

S(p)* = 8(ge)% = 8(ge)%.

From now on assume that g is of type Es. Then [ is of type E;. For generic v € g(1) the
stabiliser [, is a simple Lie algebra of type Es. Fix such v € g(1). Lett C [and t C [, be
maximal tori such that t C t. Then there is a unique orthogonal decomposition t = t®Khy.
Let W and W’ denote the Weyl groups of [ and [,, respectively. Each ¢; € §(t)" can be

presented uniquely as
o= v B (49 €8, o #0, v=10).
5=0

Theorem 2. [5, Theorem 4.14.] The algebra S$(g:)% is free if and only if there is a homoge-
neous generating system ¢y, ..., o7 in S(OW such that the elements @' h" . QY hET are

algebraically independent.

The main technical result of this paper is the following:

Proposition 1. Suppose that ¢y, ..., o7 is a system of homogeneous generators of S(t)" with
degp; < degp; for i < j. Then the elements o\ hi" G808 oWn®) are algebraically
dependent.

Combining Theorem 2 and Proposition 1, we conclude that Conjectures 1 and 2 are

false.
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2. CALCULATIONS

Since it is difficult to deal with E; directly, we first consider a regular subalgebra sly C
E; such that t C slg. Let w; and @, denote the fundamental weights of E; and SLs,
respectively. We use the Vinberg—Onishchik numbering of simple roots and fundamental
weights, see [6, Tables]. We may (and will) assume that the simple roots of sl are the
first six simple roots of E; and the lowest root 4. On the extended Dynkin diagram of E,
which is given below, the simple roots of sls form the upper line. Recall that t is a maximal
torus in a regular subalgebra F; C F;. Without loss of generality, we may assume that t
coincides with the annihilator of the weight w;. Expressing § as a linear combination of
the simple roots one can see that @, (§) = —1. Hence the subtorus t is also the annihilator
of w] — wr.

E? : 1 2 3 4 5 6

Without loss of generality, we may assume that t is the subspace of diagonal matrices of
slg. The dual space t* is spanned by ¢, &9, . . ., £ subject to the relation e, +e3++ - - +e3 =0
and the Weyl group of SLg permutes the ¢;’s. Since the fundamental weights @/, @’ can
be expressed as w; = ¢; and w; = —¢&5, we conclude that t is the annihilator of £, + &s.

Therefore t can be presented as a linear space of diagonal matrices:

6

(1) t = {diag(b, by, b, ..., bg, —b) | Y b =0}.
i=1
Then
(2) Khoy = {diag(a, —a/3,—a/3, —a/3,—a/3,—a/3,—a/3,a) | a € K}.

Let us identify t with t* by means of the Killing form. Then Weyl group invariants of
SLg can be expressed in terms of variables a,b, by, ..., bs; the gpﬁ”)’s will be polynomials
inb,b,...,bs and hy proportional to a. Since sls is a maximal rank subalgebra of E7, one
can write invariants of E7 as polynomials in invariants of S Lg with unknown coefficients.

This will give us certain constrains on ¢\ 2", 0% h® and 0™ .
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First we concentrate on S Ls-invariants. According to formulas (1) and (2), any diagonal

matrix in slg is of the form:
(a+b,—a/3 4 by, —a/3 + by, —a/3 + b3, —a/3 + by, —a/3 + bs, —a/3 + b, a — b)

with Z?:l b; = 0. Set 73, 1= 26 b¥, and let S; be the trace of the i + 1 power of a diagonal

=1 "1/

matrix. Then
6 6 2 8
5.2 2 2 2y % o 2
Sy =2a" +2b +§a +;1(—§abz+bi)—3a + 20" + 1o.

In the same way

16
Sy = 3@3 + 6ab® — ary + T3;

Si=(2+ 2)a’ +120°0° + §a27'2 — 397 + 26" + 74

27
2 10 10 5
S5 =(2— 8—1)a5 + 20a3h® — ﬁa%’g + §a27'3 + 10ab* — §a7'4 + T5;
2 d 20 5
Se = (2 + g)a6 + 30a*b?* + ﬁa47'2 - §a37’3 + 30ab* + §a27'4 +...;
2 28 o6 70
Sg = (2 + ?)CLS + 56a°b* + §a67'2 — §a573 + 140a*b* + ga‘lu +... .

In principle, it is possible to calculate all of them either by hand or using computer. The
expression for S; is of no importance for us. Also, the coefficients of smaller degrees of a
play no réle in the following calculations. Therefore they are not written down in S and
Ss.

Let ¢1, @2, and 3 be Weyl group invariants of E; of degrees 2, 6, and 8, respec-
tively. Then deg(gpgy)) = 0. Since slg is a maximal rank subalgebra of FE;, the E;-
invariants are polynomials in S Ls-invariants. Using this, we will show that deg(%”) < 2
and deg(¢}’) < 4. Since both these polynomials are invariants of the Weyl group of
Eg, they must be algebraically dependent (recall that the degrees of Eg-invariants are
2,5,6,8,9,12).

Lemma 1. For the Weyl group invariant o, with deg o = 6, we have deg(p3)) < 2.

Proof. The invariant ¢, is a linear combination of SLs-invariants of degree 6. One can

express this as follows:

Y2 = .]71823 + .CITQS:? + .7735254 + .]7456, Where x; € K.
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Assume that deg(gp(;)) > 2. Since cpé”) is an invariant of Eg, it cannot be of degree 3. Hence

deg(go(;)) > 4 and the coefficients of a°, a*, and a® in , are zeros. This condition gives us
four linear equations on ;.

Let us write down the polynomials in question:

Sy = 52172 " 63—4a4(2b2 + 1)+
Sz = 28516 39—2a4(6b2 —T2) + 3—92a37'3 +...;
5251 = %a + (36 + 247> a't’ +(2+ Z(;)a 7 — 3_92@ Ts+ .
Se = (2+ %)a6 + 30a*h?® + %a%@ — ¥a37’3 +.

Again we calculate only whose coefficients, which will be used. Since b and all 7; are

algebraically independent, we indeed obtain four linear equations.

8221 4+ Bay + as + (2+ )14 =0

%xl + @xg + (36 + 2—7)333 +30x4 =0

64 50 5
Sy —Zay+ 2+ D)oz + 24 =0
32 32 20

. ?ZEQ — —1'3 27ZE4 =0

The determinant of this system is non-zero. Hence the only solution is trivial. Since

w9 # 0, we have proved that deg(goé”)) < 2. O
Lemma 2. For the Weyl group invariant ps with deg 3 = 8, we have deg(gpé”)) <4

Proof. Argument for this invariant is essentially the same as in Lemma 1, but here calcu-

lations are more involved. Again
3 = Y19 + Y25253 + y35554 + Y4525 + Y55355 + Y653 + Y75, where y; € K.

We need coefficients of this seven polynomials up to a*. Here they are:

4096 4096 2048 128
Sy = 31 a® + o7 ab® + o —adn+ — 5 at(4b* + 40P + 1) + ..
2048 5120 512 256 416 160 8
SQS:)? = 243 &8 + 31 &662 — §&6TQ + 2—7& T3 + 7@4174 - 7@4172 9@47'22 + ...
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3584 8704 1280 256
52284— 243 + 31 6b2 31 a72—2—7a T3+
4064 2144 152 64 ,
+Ta4b4 - 2—7a4b27'2 27 at 22 + ga A+ ...
3904 20416 488 160
S9S6 = a’h? + — - —
25 = g @+ g OV g et
820 5 40
+140a*b* + 2—7a4b Ty + 2—7a47'22 + §a47'4 +...;
2560 1280 640 320
5SS = 6b2 6 cer b
355 = g 0 Ty OV — g’ ATt
1240 200 10 80
+Ta4b4 - ?a4b27'2 77¢ ir2 — ﬁa Ty + .
3136 448 224 448 4112 4 4 112,
Sf = 729 o 5p% 4 ga Ty — ga T3 + 7 a*b* + 16a*b*m + 9a 7'2 + Wa T4+ .
2 28 56 70
Sg = (2+ 77 )a + 56a°b* + 3—a Ty — ga 73 + 140a*b* + ga‘lm +... .

I calculated these expansions on the computer in “Maple”. It is quite possible to check
any of the coefficients by hand, but getting them all is rather tiresome.
Assume that deg(gpé”)) > 4. Then the coefficients of a®, a%, a°, and a* in 3 are zeros.

Therefore there are eight linear equations, corresponding to the summands

a8, a6bQ, a67'2, a57'3, a4b4, a4b27'2, a47'22, a47'4,

depending on seven variables y;. Since at least one 7x7 minor of this matrix is non-zero
(it was checked on the computer), the only possible solution is zero. Thus if p3 # 0, then
deg(p§”) < 4. O

Proof of Proposition 1. Suppose that ¢, ..., 7 is a system of homogeneous generators of

8()"V with deg ¢; < degp; for i < j. Then degy; = 2, deg s = 6, and deg 3 = 8. Clearly

o hg

algebraically independent if and only if goQ ) and gog are. By Lemmas 1 and 2, we have

is proportional to h2. Hence the polynomlals ¥ )h”(l , cp;)hy@ and ¢ h v() are

deg 0, deg p{”) < 4. Recall that ¢\ and ") are invariants of Eg. Since the Weyl group
of type Es has no basic invariants of degrees 1, 3, and 4; and only one of degree 2, these

polynomials are algebraically dependent. O
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