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A COUNTEREXAMPLE TO PREMET’S AND JOSEPH’S CONJECTURES

O.YAKIMOVA

INTRODUCTION

Let g be a finite-dimensional reductive Lie algebra of rank l over an algebraically closed
field K of characteristic zero, and let G be the adjoint group of g. Given x ∈ g, we denote

by gx the centraliser of x in g.

Conjecture 1 (Premet). For any x ∈ g the algebra S(gx)gx of gx-invariants is a graded polyno-
mial algebra in l variables.

In some particular cases the problem is simple. For example, for regular nilpotent ele-
ments the algebra S(gx)gx is known to be free. In [5], Conjecture 1 is shown to be true in
types A and C. It is also verified for some nilpotent elements of orthogonal Lie algebra

and for the minimal nilpotent orbits in simple Lie algebras except of type E8. Later, by a
different method, Brown and Brundan [1] proved that Conjecture 1 holds in type A.

Suppose that p+ and p− are opposite parabolic subalgebras of g, i.e., g = p+ + p−. Then
the intersection q := p+ ∩ p− is called a biparabolic or, in other terminology, seaweed subal-
gebra. Since g itself is a parabolic subalgebra, we see that parabolics are particular cases

of seaweeds.
For any Lie algebra q let q′ := [q, q] denote its derived algebra. In [3, Section 7.7], the

following conjecture was made.

Conjecture 2 (Joseph). For any seaweed subalgebra q ⊂ g the semi-invariants S(q)q′ form a
polynomial algebra.

A formula for tr.deg S(q)q′ is given in [3]. It is rather complicated and we are not go-
ing to use it in full generality. In [2] and [3], it is proved that Conjecture 2 holds for all
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parabolics and seaweeds in simple Lie algebras of types A and C. As was noticed in [5,
Section 4.9], minimal nilpotent orbits provide a testing site for Joseph’s conjecture as well

as Premet’s one. If g is simple, then for each minimal nilpotent element e ∈ g there exists
a parabolic subalgebra p ⊂ g such that S(ge)ge ∼= S(p)p′. The detailed explanation of this
construction is given below. We note only that naturally tr.deg S(p)p

′
= tr.deg S(ge)ge and

tr.deg S(ge)ge = l by [4].

In this note, we show that Conjecture 1 does not hold for the minimal nilpotent orbit

in the simple Lie algebra of type E8. As a consequence, a conjecture of Joseph on the
semi-invariants of (bi)parabolics is not true either.

Acknowledgements. This paper was written during my stay at the IHES. I thank the
Institute for warm hospitality and support.

1. THEORY

Let us say a few words about the general method of [5], which, unfortunately, does

not work for the minimal nilpotent orbit in E8. Let g be a simple Lie algebra and e ∈ g

a nilpotent element. Suppose that 〈e, h, f〉 ⊂ g is an sl2-triple containing e. We identify
g and g∗ by means of the Killing form. For each F ∈ S(g)G let eF stand for the minimal

degree component of the restriction F |e+gf
. As was shown in [5], eF ∈ S(ge)ge . A set of ho-

mogeneous generators {F1, . . . , Fl} ⊂ S(g)G is said to be good if the eFi’s are algebraically

independent.
Given a linear function γ on ge we denote by (ge)γ the stabiliser of γ in ge and set

(g∗
e)sing := {γ ∈ g∗

e | dim(ge)γ > l}.

Theorem 1. [5] Suppose e admits a good generating system F1, . . . , Fl in S(g)G and assume fur-
ther that (g∗

e)sing has codimension ! 2 in g∗
e. Then S(ge)ge is a polynomial algebra in eF1, . . . , eFl.

Suppose now that e is a minimal nilpotent element. Then dim(ge)γ = l for generic
γ ∈ g∗

e, see [4]; and (g∗
e)sing is of codimension ! 2, see [5, Section 3.10.]. If g is of type E8,

then there is no good generating system, [5, Remark 4.2.]. For that reason in Section 4.8

of [5] another approach was developed. As was proved there, Conjecture 1 holds if and
only if there is a certain system of generating invariants in E7.
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Since e is a minimal nilpotent element, the Z-grading defined by h is

g = g(−2) ⊕ g(−1) ⊕ g(0) ⊕ g(1) ⊕ g(2),

with g(2) = Ke and g(1) ⊕ g(2) being a Heisenberg Lie algebra. Set l := g(0)e = ge ∩ g(0).
Then g(0) = l ⊕ Kh. Clearly p := g(0) ⊕ g(1) ⊕ g(2) is a parabolic subalgebra of g and
p′ = g(0)′ ⊕ g(1) ⊕ g(2). Since p = Kh ⊕ ge and [h, e] = 2e, we have

S(p)p′ ⊂ S(p)e ⊂ S(ge).

If g is not of type A, then l = g(0)′ and p′ = ge. Hence S(p)p′ = S(ge)ge .

Remark 1. If g is of type A, then, so far, we can only say that S(p)p
′

= S(ge)g′e . Set n :=

g(1) ⊕ g(2). Then there is an ismorphism of l-modules (S(ge)[1/e])
n ∼= S(l)[e, 1/e], see [5,

Section 4.8.] or [7, Lemma 3.]. Therefore the centre of l acts on n-invariants trivially and
S(p)p′ = S(ge)g′e = S(ge)ge .

From now on assume that g is of type E8. Then l is of type E7. For generic v ∈ g(1) the

stabiliser lv is a simple Lie algebra of type E6. Fix such v ∈ g(1). Let t ⊂ l and t̂ ⊂ lv be
maximal tori such that t̂ ⊂ t. Then there is a unique orthogonal decomposition t = t̂⊕Kh0.

Let W and W ′ denote the Weyl groups of l and lv, respectively. Each ϕi ∈ S(t)W can be
presented uniquely as

ϕi =
ν∑

j=0

ϕ(j)
i hj

0

(
ϕ(j)

i ∈ S(t)W ′
, ϕ(ν)

i )= 0, ν = ν(i)
)
.

Theorem 2. [5, Theorem 4.14.] The algebra S(gẽ)gẽ is free if and only if there is a homoge-

neous generating system ϕ1, . . . , ϕ7 in S(t)W such that the elements ϕ(ν)
1 hν(1)

0 , . . . , ϕ(ν)
7 hν(7)

0 are
algebraically independent.

The main technical result of this paper is the following:

Proposition 1. Suppose that ϕ1, . . . , ϕ7 is a system of homogeneous generators of S(t)W with
deg ϕi < deg ϕj for i < j. Then the elements ϕ(ν)

1 hν(1)
0 , ϕ(ν)

2 hν(2)
0 , ϕ(ν)

3 hν(3)
0 are algebraically

dependent.

Combining Theorem 2 and Proposition 1, we conclude that Conjectures 1 and 2 are
false.
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2. CALCULATIONS

Since it is difficult to deal with E7 directly, we first consider a regular subalgebra sl8 ⊂

E7 such that t ⊂ sl8. Let $i and $′
i denote the fundamental weights of E7 and SL8,

respectively. We use the Vinberg–Onishchik numbering of simple roots and fundamental

weights, see [6, Tables]. We may (and will) assume that the simple roots of sl8 are the
first six simple roots of E7 and the lowest root δ. On the extended Dynkin diagram of E7,
which is given below, the simple roots of sl8 form the upper line. Recall that t̂ is a maximal

torus in a regular subalgebra E6 ⊂ E7. Without loss of generality, we may assume that t̂
coincides with the annihilator of the weight $1. Expressing δ as a linear combination of
the simple roots one can see that $1(δ) = −1. Hence the subtorus t̂ is also the annihilator

of $′
1 − $′

7.

Ẽ7 : ◦ ◦ ◦ ◦ ◦ ◦ ◦

◦

...................................................... ...................................................... ..................................................................................................

...................................................... ...................................................... ......................................................
1 2 3 4 5 6

7
δ

Without loss of generality, we may assume that t is the subspace of diagonal matrices of

sl8. The dual space t̃∗ is spanned by ε1, ε2, . . . , ε8 subject to the relation ε1 +ε2 + · · ·+ε8 = 0

and the Weyl group of SL8 permutes the εi’s. Since the fundamental weights $′
1, $′

7 can
be expressed as $1 = ε1 and $7 = −ε8, we conclude that t̂ is the annihilator of ε1 + ε8.

Therefore t̂ can be presented as a linear space of diagonal matrices:

(1) t̂ = {diag(b, b1, b2, . . . , b6,−b) |
6∑

i=1

bi = 0}.

Then

(2) Kh0 = {diag(a,−a/3,−a/3,−a/3,−a/3,−a/3,−a/3, a) | a ∈ K}.

Let us identify t with t∗ by means of the Killing form. Then Weyl group invariants of
SL8 can be expressed in terms of variables a, b, b1, . . . , b6; the ϕ(ν)

i ’s will be polynomials
in b, b1, . . . , b6 and h0 proportional to a. Since sl8 is a maximal rank subalgebra of E7, one

can write invariants of E7 as polynomials in invariants of SL8 with unknown coefficients.
This will give us certain constrains on ϕ(ν)

1 hν(1)
0 , ϕ(ν)

2 hν(2)
0 , and ϕ(ν)

3 hν(3)
0 .
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First we concentrate on SL8-invariants. According to formulas (1) and (2), any diagonal
matrix in sl8 is of the form:

(a + b,−a/3 + b1,−a/3 + b2,−a/3 + b3,−a/3 + b4,−a/3 + b5,−a/3 + b6, a − b)

with
∑6

i=1 bi = 0. Set τk :=
∑6

i=1 bk
i , and let Si be the trace of the i + 1 power of a diagonal

matrix. Then

S2 = 2a2 + 2b2 +
6

9
a2 +

6∑

i=1

(−2

3
abi + b2

i ) =
8

3
a2 + 2b2 + τ2.

In the same way

S3 =
16

9
a3 + 6ab2 − aτ2 + τ3;

S4 = (2 +
2

27
)a4 + 12a2b2 +

2

3
a2τ2 −

4

3
aτ3 + 2b4 + τ4;

S5 = (2 − 2

81
)a5 + 20a3b2 − 10

27
a3τ2 +

10

9
a2τ3 + 10ab4 − 5

3
aτ4 + τ5;

S6 = (2 +
2

35
)a6 + 30a4b2 +

5

27
a4τ2 −

20

27
a3τ3 + 30a2b4 +

5

3
a2τ4 + . . . ;

S8 = (2 +
2

37
)a8 + 56a6b2 +

28

36
a6τ2 −

56

35
a5τ3 + 140a4b4 +

70

81
a4τ4 + . . . .

In principle, it is possible to calculate all of them either by hand or using computer. The
expression for S7 is of no importance for us. Also, the coefficients of smaller degrees of a

play no rôle in the following calculations. Therefore they are not written down in S6 and
S8.
Let ϕ1, ϕ2, and ϕ3 be Weyl group invariants of E7 of degrees 2, 6, and 8, respec-

tively. Then deg(ϕ(ν)
1 ) = 0. Since sl8 is a maximal rank subalgebra of E7, the E7-

invariants are polynomials in SL8-invariants. Using this, we will show that deg(ϕ(ν)
2 ) " 2

and deg(ϕ(ν)
3 ) " 4. Since both these polynomials are invariants of the Weyl group of

E6, they must be algebraically dependent (recall that the degrees of E6-invariants are
2, 5, 6, 8, 9, 12).

Lemma 1. For the Weyl group invariant ϕ2 with deg ϕ2 = 6, we have deg(ϕ(ν)
2 ) " 2.

Proof. The invariant ϕ2 is a linear combination of SL8-invariants of degree 6. One can

express this as follows:

ϕ2 = x1S
3
2 + x2S

2
3 + x3S2S4 + x4S6, where xi ∈ K.
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Assume that deg(ϕ(ν)
2 ) > 2. Since ϕ(ν)

2 is an invariant of E6, it cannot be of degree 3. Hence
deg(ϕ(ν)

2 ) ! 4 and the coefficients of a6, a4, and a3 in ϕ2 are zeros. This condition gives us
four linear equations on xi.

Let us write down the polynomials in question:

S3
2 =

512

27
a6 +

64

3
a4(2b2 + τ2) + . . . ;

S2
3 =

256

81
a6 +

32

9
a4(6b2 − τ2) +

32

9
a3τ3 + . . . ;

S2S4 =
448

81
a6 + (36 +

4

27
)a4b2 + (2 +

50

27
)a4τ2 −

32

9
a3τ3 + . . . ;

S6 = (2 +
2

35
)a6 + 30a4b2 +

5

27
a4τ2 −

20

27
a3τ3 + . . . .

Again we calculate only whose coefficients, which will be used. Since b and all τi are

algebraically independent, we indeed obtain four linear equations.






512
27 x1 + 256

81 x2 + 448
81 x3 + (2 + 2

35 )x4 = 0

128
3 x1 + 64

3 x2 + (36 + 4
27)x3 + 30x4 = 0

64
3 x1 − 32

9 x2 + (2 + 50
27)x3 + 5

27x4 = 0

32
9 x2 − 32

9 x3 − 20
27x4 = 0

The determinant of this system is non-zero. Hence the only solution is trivial. Since

ϕ2 )= 0, we have proved that deg(ϕ(ν)
2 ) " 2. #

Lemma 2. For the Weyl group invariant ϕ3 with deg ϕ3 = 8, we have deg(ϕ(ν)
3 ) " 4.

Proof. Argument for this invariant is essentially the same as in Lemma 1, but here calcu-
lations are more involved. Again

ϕ3 = y1S
4
2 + y2S2S

2
3 + y3S

2
2S4 + y4S2S6 + y5S3S5 + y6S

2
4 + y7S8, where yi ∈ K.

We need coefficients of this seven polynomials up to a4. Here they are:

S4
2 =

4096

81
a8 +

4096

27
a6b2 +

2048

27
a6τ2 +

128

3
a4(4b4 + 4b2τ2 + τ 2

2 ) + . . . ;

S2S
2
3 =

2048

243
a8 +

5120

81
a6b2 − 512

81
a6τ2 +

256

27
a5τ3 +

416

3
a4b4 − 160

9
a4b2τ2 −

8

9
a4τ 2

2 + . . . ;



COUNTEREXAMPLE 7

S2
2S4 =

3584

243
a8 +

8704

81
a6b2 +

1280

81
a6τ2 −

256

27
a5τ3+

+
4064

3
a4b4 − 2144

27
a4b2τ2 +

152

27
a4τ 2

2 +
64

9
a4τ4 + . . . ;

S2S6 =
3904

729
a8 +

20416

243
a6b2 +

488

243
a6τ2 −

160

81
a5τ3+

+140a4b4 +
820

27
a4b2τ2 +

5

27
a4τ 2

2 +
40

9
a4τ4 + . . . ;

S3S5 =
2560

729
a8 +

1280

27
a6b2 − 640

243
a6τ2 +

320

81
a5τ3+

+
1240

9
a4b4 − 200

9
a4b2τ2 +

10

27
a4τ 2

2 − 80

27
a4τ4 + . . . ;

S2
4 =

3136

729
a8 +

448

9
a6b2 +

224

81
a6τ2 −

448

81
a5τ3 +

4112

27
a4b4 + 16a4b2τ2 +

4

9
a4τ 2

2 +
112

27
a4τ4 + . . . ;

S8 = (2 +
2

37
)a8 + 56a6b2 +

28

36
a6τ2 −

56

35
a5τ3 + 140a4b4 +

70

81
a4τ4 + . . . .

I calculated these expansions on the computer in “Maple”. It is quite possible to check
any of the coefficients by hand, but getting them all is rather tiresome.
Assume that deg(ϕ(ν)

3 ) > 4. Then the coefficients of a8, a6, a5, and a4 in ϕ3 are zeros.

Therefore there are eight linear equations, corresponding to the summands

a8, a6b2, a6τ2, a
5τ3, a

4b4, a4b2τ2, a
4τ 2

2 , a4τ4,

depending on seven variables yi. Since at least one 7×7 minor of this matrix is non-zero

(it was checked on the computer), the only possible solution is zero. Thus if ϕ3 )= 0, then
deg(ϕ(ν)

3 ) " 4. #

Proof of Proposition 1. Suppose that ϕ1, . . . , ϕ7 is a system of homogeneous generators of
S(t)W with deg ϕi < deg ϕj for i < j. Then deg ϕ1 = 2, deg ϕ2 = 6, and deg ϕ3 = 8. Clearly

ϕ(ν)
1 hν(1)

0 is proportional to h2
0. Hence the polynomials ϕ(ν)

1 hν(1)
0 , ϕ(ν)

2 hν(2)
0 , and ϕ(ν)

3 hν(3)
0 are

algebraically independent if and only if ϕ(ν)
2 and ϕ(ν)

3 are. By Lemmas 1 and 2, we have
deg ϕ(ν)

2 , deg ϕ(ν)
3 " 4. Recall that ϕ(ν)

2 and ϕ(ν)
3 are invariants of E6. Since the Weyl group

of type E6 has no basic invariants of degrees 1, 3, and 4; and only one of degree 2, these
polynomials are algebraically dependent. !
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