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Abstract

We consider the bar complex of a monomial non-unital associative algebra A =
kE(X)/(wi1,...,w;). For any fixed monomial w = zj..x,, € A one can define certain
subcomplex of the Bar complex of A. It was conjectured in [3] that homology of this
complex is at most one. We prove here this conjecture, and describe the place where
this nontrivial homology appears in terms of length of the Dyck path associated to a
given monomial in w € A.
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1 Homologies of the subcomplex of the bar complex,
defined by a monomial, are at most one-dimensional

Let A be a monomial algebra without a unit. We fix a presentation of A by generators
and monomial relations wy, ..., w; : A = k(X)/(wy,...,w;), and suppose that monomials
wy, ..., w; have the property that no monomial is a submonomial of another one, and this set
of monomials does not contain any generator from the set X. For introduction to monomial
algebras, their structural and homological properties on can refer to [1]. Note that algebras
we consider here are non-unital, which makes it possible for Bar complex to have nontrivial
homologies.

Consider the following subcomplex B,, of the bar complex, associated to a monomial
W= T1..Tp.

Clearly, B; C A® and these subcomplexes of a bar complex, for all words w in the
monomial algebra A form a spectral sequence. Consider B = ®B; as a graded linear space.
We have a linear map D : B — B, satisfying D? = 0.

First we will prove quite surprising conjecture, constituting one of two puzzles in [3],
which states that homologies of the defined above subcomplex of a bar complex are at most
one-dimensional.



The next step would be to find the place in the complex, where nonzero homology appears,
and express the result in combinatorial terms related to the monomial algebra data, namely
to the length of a Dyck path defined by the word in a monomial algebra.

Theorem 1.1. The full homology of the defined above subcomplex B, of the bar complex of
the non-unital monomial algebra A is at most one-dimensional:

dim H,(B,,) = dimker D/im D € {0,1}

Proof. (induction by n)

Basis: if the word w is empty, the complex is zero and H,, = 0. If w = x is a letter, the
complex is 0 — k — 0, and H,, = k is one-dimensional. If w = zy then in case zy # 0 in
A, the complex is 0 — (z ® y)k — zyk — 0. It is exact, H,, = 0. In case zy = 0, the
complex is 0 — (z ® y)k — 0, and H,, = k.

We need to prove: dimker D/im D € {0, 1}.

Since dim im D = dim B — dimker D, it is the same as

dimker D —dimim D =

2dimker D —dim B € {0,1}

Thus, dim He(B,, D) = 2dimker D — dim B.

Let us split the vector space B as B = E @ F, where £ = {z; ® ...}, and F = {x;...}
are subspases spanned by those monomials where first letter is followed directly by a tensor
symbol, and by those where the tensor appearing later (or does not appear at all). Consider
the linear map J : E — F', defined by z; ® u +— xju.

The kernel of this map is a linear span of monomials of the type z1 ® xs...x,..., where
1Ts...x, is a shortest beginning subword of w, which is zero in A, i.e. zi125...x5 = 0, but
T1T9..Ts 1 #0:

ker J = {x1 ® xg...s... }
Denote by L = {xs...xs}, where xs...7,... as above, so that ker J = x; ® L.
First we calculate the images of differential D on elements from E and F.
Namely:
Dz ®u) =xu—2,@du=J(x; ®u) — 21 ®du

Here d is just the same differential as D, but acting on the word x,...x,,.

D(ziu) = z1du = J(x; ® du)

Calculate now the ker D. Let € € B, such that D(¢) = 0. We have B = E® F, so ¢ is
uniquely presented as:

E=T1u+21 QU

Applying D to elements from E and F' as above, we have

0=D(e)=J(r ®du) + J(x1 ®v) — 21 @ dv



Note that here J(z; ® du) + J(z1 ® v) € F and x; ® dv € E. Hence this is equivalent to
r1®dv = 0 and J(z1®(du+v)) = 0. Which means dv = 0 and 21 ® (du+v) € ker J = 21 ® L.
Again, the letter two conditions are equivalent to dv = 0 and du + v € L, which in turn can
be reformulated as dv = 0 and v € —du + L. The latter two means v € —du + (L Nkerd).

Now,

dimker D = dim F'+ dim (L Nkerd) = dim F — dim L + dim (L Nker d).

Thus

H.(B,,D) =2dimker D —dim B =
2dim ' — 2dim L + 2dim (L Nkerd) —dim F —dim £ + dim L =
2dim (L Nkerd) —dim L = Ho(Ly,d)

Here d is a usual bar differential on the subword of w, starting from x5, w' = urs ...z,
and L, is a bar subcomplex, defined by the word w’.
We got that He(By, D) = He(Lyy,d), the letter by the inductive assumption is in {0, 1},
thus so is He(By, D).
]

Let us formulate one corollary, which will be used in section2, in the proof of theorem??

Corollary 1.2. For any word w of noncommutative non-unital algebra A, the defined above
subcomplex B, of the bar complex is exact if and only if the dimension of B, is even.

Proof. For any complex B it is true, that its dimension is even or odd together with the
dimension of its homology. Indeed,

H,B)=%erD/imD, B=%kerD +imD,

S0,

dim He(B) = dimker D — dimim D, dim B = dimker D + dim im D,

thus, dim He(B) — dim B = —2dim im D is even.
Taking in account theoreml.l, we see that since dim H,(B,) can be either 0 or 1, the
subcomplex B,, is exact if and only if the dim B is even. O

2 The exact position of nontrivial homology in the bar
subcomplex of a monomial algebra

Let as above B, be the subcomplex of the bar complex of monomial non-unital algebra A,
associated to the monomial w = z;...x,, € (X).

Dy

For any word w = x1...x,, and a fixed set of generating monomials (relations) wy, ..., w;, we
can define a Dyck path as follows. Take the first (minimal) beginning subword z;...z4, of
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Z1...T,, which is zero in A, that is contains as a submonomial one of the monomials wy, ..., w;.
In other words, x;...r4, contains as a subword (beginning) one of wy, ..., wy, but z;...x4 for
any d < d; does not.

Then take minimal first subword z5...z4, of zs...x,, which is zero in A, etc. We get a
sequence of numbers d; < dy < ... < d,, called a Dyck path.

Dyck paths are remarkable combinatorial objects [2]. The number of Dyck paths of order
p is a Catalan number:

C, = fracln + 1(2—n)
n

We say, that Dyck path d; < d, < ... < d, has length r if there are r different numbers
in this sequence.

Theorem 2.1. Let B,,:

028 B, 2B, 2 Py p g

be a non-exact complex, associated to the word w = xy...x, in a monomial algebra A, and r
be the length of the corresponding Dyck path. Then the complex B has its nonzero homology
on the place n — r.

More precisely, if we denote

H1 = keer/ikaH, HQ = keer,l/ika,..., H,L = keer,i+1/ika,¢+2, ceey Hk =
ker D;/im Do,

then

H,,=1H=00i=1,. ki#n—r).

Lemma 2.2. [f there exists a letter x; in the monomial w = xy...x,, which is not present in
the defining relations wy, ..., wy, then the complex associated to the monomial w = x1...x, is
exact.

Proof. First, let’s note the following, without loss of generality we can suppose that all
letters in w = z1...x, are different. Indeed, the defined above complex only depends on the
positions, where the words wy, ..., w; are appearing in the word w. Therefore, for an arbitrary
word w and its subwords wq, ..., w;, one can take another word w’, with the property that
all its letters are different, and as a relations take subwords wi, ..., w} of w’, sitting on the
same positions as wy, ..., w; in w. Then the corresponding complexes would coincide:

p— / !
Bw,wl,‘..,wt Bw’,wl,...,wt'

Thus, the study of a subclass of all monomial algebras, consisting of those algebras, where
each generator appearing in relations at most once, is sufficient for the study of the properties
of the bar complex.

Let us take a letter x; € w, which is not present at any relation wy, ..., w;. Suppose it is
not the last letter in w : x; # z,. Otherwise we can suppose it is not the first letter z; # x1,
since it can’t appear twice in the word w.

The complex B is a span of tensors B = span{u; ® ... ® ux}, where u; # 0 in A. So,
obviously, if z; is not the last letter, the space B splits into two parts: span of those words
where x; is directly followed by a tensor symbol ®: ( z; ® ...), or not: ( z;... ® ...). Denote
them V; and V5 respectively, so B = span{u; ® ... @ uy} =V} @ Va.



If we define a linear map ¢ : V; = Vo by (... 2, Qu®...) =...2;u® ..., we see that
ker ¢ = 0, since x; is not contained in the relations, and it is clearly an onto map, so it is a
bijection. It means dim B = 2dim V} is even, hence the complex is exact (corollary from the
theorem1.1). O

Proof of Theorem2.1. Let us define a sequence of complexes
B, LW, L@ LY Lo

inductively, using the definition of complex L from Sectionl. Namely, let us split B as
B =FE®F, where
E:{Z'l@}k, F:{[Ifl...}k,

and consider the linear map J : F — F defined by r; ® w — xyw. Then

ker J ={r1 ®2x9...25... },
——

u

where u = x5 ...z, is the first (minimal) zero subword of z; ...z, starting with z; (in other
words, s is defined as a minimal number, such that x;...xs =0, but x1...x5_1 # 0).

Definition. We denote by L(B) the linear space spanned by the monomials defining the
ker J:

L(B)=A{zy...25... }k,
such that ker J = z; ® L. As a complex L = By, 5, is a bar complex defined by the
word uTgyy ... Tp.
Then we set L) = L(B) and continue constructing L®) = L(L™M) and so on. Each of the
complexes LU*Y is obtained as a quotient of L

Lemma 2.3. The following diagram of complexes is commutative:



0 — By &Bk_1—>...—> B — 0

} 3 \J
1
0 — M Lo L0
\ 1 \
} + 3
r—1
0 — LY ) L) — . — 'Y — o
\ 1 \

d()
—

0 — L L, — ... — I — o

Proof. Consider the square of the diagram:

D
By —% B,

My | L M
4
Ly —= Ly

Here maps My : By — Ly, are defined by x; ® xs...x4,... ¥ u;y..., where uy = x5...74,, all
other monomials are mapped to zero.
Then

Di(r1 ® T9...x5, w1 @ Wy @ w3...) =

T1T2...Tg, W1 X Wy... — 1 X T...TgyW1W2 X wsz... + ...

Applying M to this polynomial, we get

Mk(Dk)) = —UWiW2 @ Ws3... + UTW1 Q Wols... — ...

Now we do it the other way around:

Mk(.Il X T...TgyWq X wy K ’LUS) = Uwi X wy K ws...
dp( Mg (11 ® Tg...25, w1 @ Wy ® ws...)) = di(uwy @ we @ ws...) =

UTW1We X W3... — UW X WoW3... + ...

So, we see that M(D(v)) = —d(M (v)) for any 'nontrivial’ monomial v = z; ® zy...75, ...
The same type of argument works in any other row of the diagram, just formulas for the
maps should be substituted accordingly.
O

The n'" row of the diagram is defined by the n'" element of the Dyck path (counted without
repetitions). Note that a number of spaces at the beginning of L) is zero. It is our first
goal to calculate where the first non-zero space in each row appears. For LW = Bums1 e
where u; = x9...x5 is defined as: xy...z4 is the first (starting with x;) zero subword
x1...x5 of w=x1...2,. To get elements of this kind inside B (taking into account that
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each application of the differential cuts out one ® symbol) we need s; — 2 steps. So, Lgl)
is non-zero after s; — 2 steps from the left (from L,(Cl)). Since L& = Buyzaysr..vns Where
Uy = Tg...Tg 41 ... Ts, is defined by zs . . . x4, being the first (starting with xs) zero subword
of x5...x,, to get elements of this kind into B, we need to cut out sy — s; — 1 extra tensor
symbols, so LE2 is non-zero after s; — 2 4+ s — s1 — 1 = s9 — 3 steps. The number of steps,
which will be added at the third row is s3 — sy — 1, so L§3) is non-zero after s3 — 4 steps and
SO on.

Now consider the step LU~Y: L=1) = B
fined as follows: z, ...z, _, is the first (starting with x,_1) zero subword x,_; ...z, _, of
Ty_q...T,. LU~V is non-zero after s,_; —r steps and it continues as the Bar complex of the
word u, 12, _,41...2, of length n — (s,_1 +1) +2 =n — s,_1 + 1. Since this is the last
step in the Dyck path, the only relation we have in the word, is the whole word. Thus the
complex is nearly the "free” complex with the exception that at the last term we have zero
space instead of the one-dimensional space {u,_1xs _,41...2,}k. Exactly at this last term,
the homology is 1. So, to get to this place, where the nonzero homology appears, we need
to do M — 1 more steps, where M is the length of the free complex on a word of length
n —s.—1 + 1. It is easy to see that M for a word of length k is k. Hence we have non-zero
homology at the place n —s,_1+1—14+s,_1 —r = n —r from the beginning of the complex
B (from the left-hand side term Bj).

Note that in this construction we used that s; < --- < s, and s, = n. Otherwise the
complex would be exact. Indeed, the fact that two neighboring numbers coincide: s; 1 = s;
would mean that x; does not appear in relations, hence according to Lemma 2.2 the complex
is exact, which case is excluded from the statement of the theorem. Analogously, if s, # n,
then x,, does not appear in relations. O

Ur 12, 41.ans WHETE Up_1 = Tp... Tg s de-

3 Acknowledgements

We are grateful to THES and MPIM for hospitality, support, and excellent research atmo-
sphere. I would like to thank Maxim Kontsevich for useful discussions and pointing out
certain inaccuracies in formulation of Theorem 2.1. in the initial version of the text, as well
as loannis Vlassopoulos for communicating to me the problem, and number of enlightening
discussions. This work is funded by the ERC grant 320974, and partially supported by the
project PUT9038.

References

[1] A.Belov, V.Latyshev, V.Borisenko Monomial algebras, VINITI, 1995
[2] R.A.Brualdi Introductory combinatorics, New York, Elsevier, 1997

[3] M.Kontsevich Two word puzzles, talk at the special day ’Combinatorics and arithmetic
for physics’, IHES, 11-12 May 2015.

NATALIA IYUDU



SCHOOL OF MATHEMATICS

THE UNIVERSITY OF EDINBURGH
JAMES CLERK MAXWELL BUILDING
THE KING’S BUILDINGS

PETER GUTHRIE TAIT ROAD
EDINBURGH

ScotLAND EH9 3FD

E-MAIL ADDRESS: niyudu@staffmail.ed.ac.uk



