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Abstract

We consider the bar complex of a monomial non-unital associative algebra A =
k⟨X⟩/(w1, ..., wt). For any fixed monomial w = x1..xn ∈ A one can define certain
subcomplex of the Bar complex of A. It was conjectured in [3] that homology of this
complex is at most one. We prove here this conjecture, and describe the place where
this nontrivial homology appears in terms of length of the Dyck path associated to a
given monomial in w ∈ A.
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1 Homologies of the subcomplex of the bar complex,

defined by a monomial, are at most one-dimensional

Let A be a monomial algebra without a unit. We fix a presentation of A by generators
and monomial relations w1, ..., wt : A = k⟨X⟩/(w1, ..., wt), and suppose that monomials
w1, ..., wt have the property that no monomial is a submonomial of another one, and this set
of monomials does not contain any generator from the set X. For introduction to monomial
algebras, their structural and homological properties on can refer to [1]. Note that algebras
we consider here are non-unital, which makes it possible for Bar complex to have nontrivial
homologies.

Consider the following subcomplex Bw of the bar complex, associated to a monomial
w = x1..xn.

0 −→ Bk = {x1⊗...⊗xn}
D−→Bk−1 = {x1⊗...⊗xixi+1⊗...⊗xn}

D−→ ...
D−→B1 = {x1...xn} −→ 0

Clearly, Bi ⊂ A⊗j and these subcomplexes of a bar complex, for all words w in the
monomial algebra A form a spectral sequence. Consider B = ⊕Bi as a graded linear space.
We have a linear map D : B −→ B, satisfying D2 = 0.

First we will prove quite surprising conjecture, constituting one of two puzzles in [3],
which states that homologies of the defined above subcomplex of a bar complex are at most
one-dimensional.
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The next step would be to find the place in the complex, where nonzero homology appears,
and express the result in combinatorial terms related to the monomial algebra data, namely
to the length of a Dyck path defined by the word in a monomial algebra.

Theorem 1.1. The full homology of the defined above subcomplex Bw of the bar complex of
the non-unital monomial algebra A is at most one-dimensional:

dimH•(Bw) = dim kerD/imD ∈ {0, 1}

Proof. (induction by n)
Basis: if the word w is empty, the complex is zero and Hw = 0. If w = x is a letter, the

complex is 0 −→ k −→ 0, and Hw = k is one-dimensional. If w = xy then in case xy ̸= 0 in
A, the complex is 0 −→ (x ⊗ y)k −→ xyk −→ 0. It is exact, Hw = 0. In case xy = 0, the
complex is 0 −→ (x⊗ y)k −→ 0, and Hw = k.

We need to prove: dim kerD/imD ∈ {0, 1}.
Since dim imD = dimB − dim kerD, it is the same as

dim kerD − dim imD =

2dim kerD − dimB ∈ {0, 1}

Thus, dimH•(Bw, D) = 2dim kerD − dimB.
Let us split the vector space B as B = E ⊕ F , where E = {x1 ⊗ ...}k and F = {x1...}k

are subspases spanned by those monomials where first letter is followed directly by a tensor
symbol, and by those where the tensor appearing later (or does not appear at all). Consider
the linear map J : E −→ F , defined by x1 ⊗ u 7→ x1u.

The kernel of this map is a linear span of monomials of the type x1 ⊗ x2...xs..., where
x1x2...xs is a shortest beginning subword of w, which is zero in A, i.e. x1x2...xs = 0, but
x1x2...xs−1 ̸= 0 :

ker J = {x1 ⊗ x2...xs...}k
Denote by L = {x2...xs}k, where x2...xs... as above, so that ker J = x1 ⊗ L.
First we calculate the images of differential D on elements from E and F .
Namely:

D(x1 ⊗ u) = x1u− x1 ⊗ du = J(x1 ⊗ u)− x1 ⊗ du

Here d is just the same differential as D, but acting on the word x2...xn.

D(x1u) = x1du = J(x1 ⊗ du)

Calculate now the kerD. Let ε ∈ B, such that D(ε) = 0. We have B = E ⊕ F , so ε is
uniquely presented as:

ε = x1u+ x1 ⊗ v

Applying D to elements from E and F as above, we have

0 = D(ε) = J(x1 ⊗ du) + J(x1 ⊗ v)− x1 ⊗ dv
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Note that here J(x1 ⊗ du) + J(x1 ⊗ v) ∈ F and x1 ⊗ dv ∈ E. Hence this is equivalent to
x1⊗dv = 0 and J(x1⊗(du+v)) = 0. Which means dv = 0 and x1⊗(du+v) ∈ ker J = x1⊗L.
Again, the letter two conditions are equivalent to dv = 0 and du+ v ∈ L, which in turn can
be reformulated as dv = 0 and v ∈ −du+ L. The latter two means v ∈ −du+ (L ∩ ker d).

Now,

dimkerD = dimF + dim (L ∩ ker d) = dimE − dimL+ dim (L ∩ ker d).

Thus

H•(Bw, D) = 2dim kerD − dimB =

2dimE − 2dimL+ 2dim (L ∩ ker d)− dimE − dimE + dimL =

2dim (L ∩ ker d)− dimL = H•(Lw′ , d)

Here d is a usual bar differential on the subword of w, starting from x2, w
′ = uxs+1...xn

and Lw′ is a bar subcomplex, defined by the word w′.
We got that H•(Bw, D) = H•(Lw′ , d), the letter by the inductive assumption is in {0, 1},

thus so is H•(Bw, D).

Let us formulate one corollary, which will be used in section2, in the proof of theorem??

Corollary 1.2. For any word w of noncommutative non-unital algebra A, the defined above
subcomplex Bw of the bar complex is exact if and only if the dimension of Bw is even.

Proof. For any complex B it is true, that its dimension is even or odd together with the
dimension of its homology. Indeed,

H•(B) = kerD/imD, B = kerD + imD,

so,

dimH•(B) = dim kerD − dim imD, dimB = dim kerD + dim imD,

thus, dimH•(B)− dimB = −2dim imD is even.
Taking in account theorem1.1, we see that since dimH•(Bw) can be either 0 or 1, the

subcomplex Bw is exact if and only if the dimB is even.

2 The exact position of nontrivial homology in the bar

subcomplex of a monomial algebra

Let as above Bw be the subcomplex of the bar complex of monomial non-unital algebra A,
associated to the monomial w = x1...xn ∈ ⟨X⟩.

0 −→ Bk = {x1⊗...⊗xn}
Dk−→Bk−1 = {x1⊗...⊗xixi+1⊗...⊗xn}

Dk−1−→ ...
D2−→B1 = {x1⊗...⊗xn} −→ 0

For any word w = x1...xn and a fixed set of generating monomials (relations) w1, ..., wt we
can define a Dyck path as follows. Take the first (minimal) beginning subword x1...xd1 of
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x1...xn, which is zero in A, that is contains as a submonomial one of the monomials w1, ..., wt.
In other words, x1...xd1 contains as a subword (beginning) one of w1, ..., wt, but x1...xd for
any d < d1 does not.

Then take minimal first subword x2...xd2 of x2...xn, which is zero in A, etc. We get a
sequence of numbers d1 6 d2 6 ... 6 dp, called a Dyck path.

Dyck paths are remarkable combinatorial objects [2]. The number of Dyck paths of order
p is a Catalan number:

Cn = frac1n+ 1(
2n

n
)

We say, that Dyck path d1 6 d2 6 ... 6 dp has length r if there are r different numbers
in this sequence.

Theorem 2.1. Let Bw:

0
Dk+1−→ Bk

Dk−→Bk−1
Dk−1−→ ...

D2−→B1
D1−→ 0

be a non-exact complex, associated to the word w = x1...xn in a monomial algebra A, and r
be the length of the corresponding Dyck path. Then the complex B has its nonzero homology
on the place n− r.

More precisely, if we denote
H1 = kerDk/imDk+1, H2 = kerDk−1/imDk,..., Hi = kerDk−i+1/imDk−i+2, ..., Hk =

kerD1/imD2,
then

Hn−r = 1, Hi = 0(i = 1, .., k, i ̸= n− r).

Lemma 2.2. If there exists a letter xi in the monomial w = x1...xn, which is not present in
the defining relations w1, ..., wt, then the complex associated to the monomial w = x1...xn is
exact.

Proof. First, let’s note the following, without loss of generality we can suppose that all
letters in w = x1...xn are different. Indeed, the defined above complex only depends on the
positions, where the words w1, ..., wt are appearing in the word w. Therefore, for an arbitrary
word w and its subwords w1, ..., wt, one can take another word w′, with the property that
all its letters are different, and as a relations take subwords w′

1, ..., w
′
t of w

′, sitting on the
same positions as w1, ..., wt in w. Then the corresponding complexes would coincide:

Bw,w1,...,wt = Bw′,w′
1,...,w

′
t
.

Thus, the study of a subclass of all monomial algebras, consisting of those algebras, where
each generator appearing in relations at most once, is sufficient for the study of the properties
of the bar complex.

Let us take a letter xi ∈ w, which is not present at any relation w1, ..., wt. Suppose it is
not the last letter in w : xi ̸= xn. Otherwise we can suppose it is not the first letter xi ̸= x1,
since it can’t appear twice in the word w.

The complex B is a span of tensors B = span{u1 ⊗ ... ⊗ uN}, where uj ̸= 0 in A. So,
obviously, if xi is not the last letter, the space B splits into two parts: span of those words
where xi is directly followed by a tensor symbol ⊗: ( xi ⊗ ...), or not: ( xi...⊗ ...). Denote
them V1 and V2 respectively, so B = span{u1 ⊗ ...⊗ uN} = V1 ⊗ V2.
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If we define a linear map φ : V1 → V2 by φ(. . . xi ⊗ u ⊗ . . . ) = . . . xiu ⊗ . . . , we see that
kerφ = 0, since xi is not contained in the relations, and it is clearly an onto map, so it is a
bijection. It means dimB = 2dimV1 is even, hence the complex is exact (corollary from the
theorem1.1).

Proof of Theorem2.1. Let us define a sequence of complexes

B, L(1), L(2), . . . , L(r−1), L(r)

inductively, using the definition of complex L from Section1. Namely, let us split B as
B = E ⊕ F , where

E = {x1 ⊗ . . . }k, F = {x1 . . . }k,

and consider the linear map J : E → F defined by x1 ⊗ w 7→ x1w. Then

ker J = {x1 ⊗ x2 . . . xs︸ ︷︷ ︸
u

. . . }k,

where u = x2 . . . xs is the first (minimal) zero subword of x1 . . . xn starting with x1 (in other
words, s is defined as a minimal number, such that x1 . . . xs = 0, but x1 . . . xs−1 ̸= 0).

Definition. We denote by L(B) the linear space spanned by the monomials defining the
ker J :

L(B) = {x2 . . . xs︸ ︷︷ ︸
u

. . . }k,

such that ker J = x1 ⊗ L. As a complex L = Buxs+1...xn is a bar complex defined by the
word uxs+1 . . . xn.

Then we set L(1) = L(B) and continue constructing L(2) = L(L(1)) and so on. Each of the
complexes L(i+1) is obtained as a quotient of L(i)

Lemma 2.3. The following diagram of complexes is commutative:
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0 −→ Bk
D−→ Bk−1 −→ . . . −→ B1 −→ 0

↓ ↓ ↓
0 −→ L

(1)
k

d(1)−→ L
(1)
k−1 −→ . . . −→ L

(1)
1 −→ 0

↓ ↓ ↓
...

...
...

↓ ↓ ↓
0 −→ L

(r−1)
k

d(r−1)

−→ L
(r−1)
k−1 −→ . . . −→ L

(r−1)
1 −→ 0

↓ ↓ ↓
0 −→ L

(r)
k

d(r)−→ L
(r)
k−1 −→ . . . −→ L

(r)
1 −→ 0

Proof. Consider the square of the diagram:

Bk
Dk−→ Bk−1

Mk ↓ ↓ Mk−1

Lk

d
(1)
k−→ Lk−1

Here maps Mk : Bk −→ Lk are defined by x1 ⊗ x2...xs1 ... 7→ u1..., where u1 = x2...xs1 , all
other monomials are mapped to zero.

Then

Dk(x1 ⊗ x2...xs1w1 ⊗ w2 ⊗ w3...) =

x1x2...xs1w1 ⊗ w2...− x1 ⊗ x2...xs1w1w2 ⊗ w3...+ ...

Applying M to this polynomial, we get

Mk(Dk)) = −u1w1w2 ⊗ w3...+ u1w1 ⊗ w2w3...− ...

Now we do it the other way around:

Mk(x1 ⊗ x2...xs1w1 ⊗ w2 ⊗ w3...) = u1w1 ⊗ w2 ⊗ w3...

dk(Mk(x1 ⊗ x2...xs1w1 ⊗ w2 ⊗ w3...)) = dk(u1w1 ⊗ w2 ⊗ w3...) =

u1w1w2 ⊗ w3...− u1w1 ⊗ w2w3...+ ...

So, we see that M(D(v)) = −d(M(v)) for any ’nontrivial’ monomial v = x1 ⊗ x2...xs1 ....
The same type of argument works in any other row of the diagram, just formulas for the

maps should be substituted accordingly.

The nth row of the diagram is defined by the nth element of the Dyck path (counted without
repetitions). Note that a number of spaces at the beginning of L(i) is zero. It is our first
goal to calculate where the first non-zero space in each row appears. For L(1) = Bu1xs1+1...xn ,
where u1 = x2 . . . xs1 is defined as: x1 . . . xs1 is the first (starting with x1) zero subword
x1 . . . xs1 of ω = x1 . . . xn. To get elements of this kind inside B (taking into account that
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each application of the differential cuts out one ⊗ symbol) we need s1 − 2 steps. So, L
(1)
i

is non-zero after s1 − 2 steps from the left (from L
(1)
k ). Since L(2) = Bu2xs2+1...xn , where

u2 = x3 . . . xs1+1 . . . xs2 is defined by x2 . . . xs2 being the first (starting with x2) zero subword
of x2 . . . xn, to get elements of this kind into B, we need to cut out s2 − s1 − 1 extra tensor
symbols, so L

(2)
i is non-zero after s1 − 2 + s2 − s1 − 1 = s2 − 3 steps. The number of steps,

which will be added at the third row is s3 − s2 − 1, so L
(3)
i is non-zero after s3 − 4 steps and

so on.
Now consider the step L(r−1): L(r−1) = Bur−1xsr−1+1...xn , where ur−1 = xr . . . xsr−1 is de-

fined as follows: xr . . . xsr−1 is the first (starting with xr−1) zero subword xr−1 . . . xsr−1 of
xr−1 . . . xn. L

(r−1) is non-zero after sr−1− r steps and it continues as the Bar complex of the
word ur−1xsr−1+1 . . . xn of length n − (sr−1 + 1) + 2 = n − sr−1 + 1. Since this is the last
step in the Dyck path, the only relation we have in the word, is the whole word. Thus the
complex is nearly the ”free” complex with the exception that at the last term we have zero
space instead of the one-dimensional space {ur−1xsr−1+1 . . . xn}k. Exactly at this last term,
the homology is 1. So, to get to this place, where the nonzero homology appears, we need
to do M − 1 more steps, where M is the length of the free complex on a word of length
n − sr−1 + 1. It is easy to see that M for a word of length k is k. Hence we have non-zero
homology at the place n− sr−1+1− 1+ sr−1− r = n− r from the beginning of the complex
B (from the left-hand side term Bk).

Note that in this construction we used that s1 < · · · < sr and sr = n. Otherwise the
complex would be exact. Indeed, the fact that two neighboring numbers coincide: si−1 = si
would mean that xi does not appear in relations, hence according to Lemma 2.2 the complex
is exact, which case is excluded from the statement of the theorem. Analogously, if sr ̸= n,
then xn does not appear in relations.
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